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Concentration inequalities are estimates for the degree of approximation
of functions on metric probability spaces around their mean. It turns out
that in many natural situations one can give very good such estimates,
and that these are extremely useful. We survey here some of the main
methods for proving such inequalities and give a few examples to the way
these estimates are used.
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1 Introduction: approximate isoperimetric inequalities and con-
centration

Let (£2, F, pu) be a probability space where F is the Borel o-field with respect
to a metric d on €2 . The isoperimetric problem for the probability metric space
(Q, F,p,d) is: Given 0 < a < 1 and € > 0, what is

inf{u(A); Ae F,u(A)=a}?

and for what A is it attained. Here A, the € neighborhood of A, is defined as
Ac={w e Q; dw,A) < €}.

There are relatively few interesting cases, some of which will be described be-
low, in which the answer to this question is known. However, it turns out that
for many applications a solution to a somewhat weaker question is sufficient:
Instead of finding the actual infimum of the quantity above it is enough to
find a good lower bound to p(A.), subject to u(A) = a. We shall refer to such
a lower bound as a solution to the approzimate isoperimetric inequality (for
the given space and parameters) provided the solution is optimal except for
absolute constants in the “right places”.

Let us illustrate the above by the example most relevant for us. The space
under question will be (S, F, u, d). Here S™ ! is the unit sphere in R", d the
geodesic distance, F the Borel o-field and p the normalized Haar measure (the
unique probability measure on S™"~! which is invariant under the orthogonal
group). P. Lévy [35] stated and sketched a proof of the isoperimetric inequality
for this space. For every a and e the minimal set is an (arbitrary) cap (i.e.,
a d-ball) of measure a. For a cap B of measure %, B, is a cap of radius

say, and any €

5 + €. A standard computation then implies that, for a = %,
w(A) > w(B) > 1 — \/r/8e <"/ for any Bore set A C S™ ! of measure :.

Any inequality, u(A,) > 1 — e <" holding for all A with u(A) = 5, with
¢ an absolute constant, will be referred to as an approximate isoperimetric
inequality (for sets of measure %) in this case. As we shall see below these

inequalities are extremely powerful, the value of the constant ¢ is of little



importance for the applications we have in mind, and it is much easier to
prove the approximate inequality than the isoperimetric one. Moreover, several
proofs of the approximate isoperimetric inequality in this case (and there are
many of them) can be generalized to other situations in which no isoperimetric
inequality is known.

The importance of the approximate isoperimetric inequalities stems from the
fact that they imply the following concentration phenomenon.

In the setup above, if p(Ac) > 1—n/2 for all A with u(A) > 5 and if f : @ — R
is a function with Lipschitz constant 1, i.e., |f(z) — f(y)| < d(z,y) for all
vy €9, then p({r ; |F(x) — M| > c}) <.

Here M denotes the median of the function f, i.e., is defined by u({f > M}),
u({f < M}) > 5. This is easily seen (and first noticed by Lévy in the setting
of S™~1) by applying the inequality u(A.) > 1—mn/2 once for the set {f < M}
and once for {f > M}. If n is small this is interpreted as “any such f is
almost a constant on almost all of 27. For example, in the example above
we get that any Lipschitz function of constant one, f : S* ! — R, satisfies
p({z e 81 |f(x) — M| > €}) < 2e ™2 which is quite counterintuitive.

The median M can be replaced by the expectation of f, Ef = [g.—: f du pro-
vided we change the constants 2, % to other absolute constants. Furthermore,
each of these two concentration inequalities is also equivalent (with a change
of constants) to u x u({(z,y) € S* ' x 8" |f(z)— f(y)| > €}) < Ce~e,
This holds not only in this particular example but in great generality (see for
example [40] V.4).

The opposite statement to the one in the second to last paragraph also holds.

Concentration implies approximate isoperimetric inequality:
If u({z 5 |f(x) — M| > €}) < n for all Lipschitz function with constant one
then u(Ae) > 1 —n for all sets A of measure at least %

This follows easily by considering the function f(z) = d(z, A).

Vitali Milman realized the relevance of Lévy’s concentration inequality to
problems in Geometry and Functional Analysis. Using it he found in [39] a new
proof of Dvoretzky’s theorem [11] on Euclidean section of convex bodies which
was much more accessible than the complicated original proof. Much more
importantly, his proof is subject to vast variations and generalizations. See
Section 3.1 for this proof. Except for using the idea of concentration in many
instances himself, Milman also promoted the search for new concentration
inequalities and new applications of them.



In this article we survey many (but not all) of the methods of proof of concen-
tration and approximate isoperimetric inequalities. We tried to concentrate
mostly on methods which are quite general or that we feel were not explored
enough and should become more general. There are many different such meth-
ods with some overlap as to the inequalities they prove. Section 2 contains this
survey.

In Section 3 we give a sample of applications of concentration inequalities.
There are many more such applications. At some points our presentation is
very sketchy since on one hand many of the applications need the introduction
of quite a lot of tools not directly connected to the main theme here and on
the other hand some of the subjects dealt with in this application section are
also dealt with, with more details in other articles in this handbook. We hope
we give enough to wet the reader’s appetite to search for more in the original
sources or the other articles of this handbook.

We would like to emphasize that this is far from being a comprehensive survey
of the topic of concentration. This author has a soft point for new ideas in
proofs and in many instances below preferred to give a glimpse into these
ideas by treating a special case or a version of the relevant result which is
not necessarily the last word on it rather than to give all the details on the
subject.

2 Methods of proof
2.1 Isoperimetric inequalities, Brunn—Minkowsk: inequality

We start by stating two forms of the classical Brunn—Minkowski inequality.
Here |- | denotes Lebesgue measure in R* and A+ B denotes the Minkowski’s
addition of sets in R*; A+ B ={a+b;a € A,b€ B}.

Theorem 1 (i) For every n and every two nonempty measurable subsets of

R* A and B,
| A+ B|'/" > A" 4 | B|'" (1)

(ii) For every n, every two nonempty measurable subsets of R* A and B and
every 0 < A < 1,

A+ (1= N)B| > |A]}BI'. (2)

Equality in either inequality holds if and only if A and B are homothetic.



Theorem 1 has many different proofs. We refer to [51] for two of them and for
an extensive discussion concerning this theorem. A variation of this theorem
was proved by Prékopa and Leindler [45], [33]. One possible proof of their
theorem is by induction on the dimension (see e.g. [44]). Theorem 1 is a simple
consequence of this theorem.

Theorem 2 Let f, g, h be integrable non-negative valued functions on R* and
let 0 < A < 1. Assume

h(Az 4+ (1 — N)y) > f(x)*g(y)*™, for all z,y € R (3)

R[hz (@/f) (R/g) (4)

Theorem 1 provides a simple proof of the classical isoperimetric inequality in
R™. To avoid restricting ourselves to bodies for whose surface area is definable
we prefer to state it as: for every 0 < a < oo and every € > 0, among all bodies
of volume a in R the ones for which the volume of A, is minimal are exactly
balls of volume A.

then

Maurey [38] noticed that Theorem 2 can be used to give a simple proof of
the approximate isoperimetric inequality on the sphere (or equivalently for
the canonical Gaussian measure on R™). Recently, Arias-de-Renya, Ball and
Villa [4] discovered an even more direct proof of the approximate isoperimetric
inequality on the sphere, using Theorem 1. Their proof actually establishes a
far reaching generalization originally due to Gromov and Milman [19]. We refer
to [23] for a discussion of the notion of uniform convexity. We only recall the
following (equivalent) definition for the modulus of convexity ¢ of a normed
space (X, [| - []):

Tty
2

6(¢) = inf {1 —

el vl < Lle -yl z ). )

Given a norm || - || on R* we consider, in the following theorem, the set S =
{z € R"; ||z|| = 1} with the metric d(z,y) = || —y|| and the Borel probability

A; 0<t<1
measure ji(A) = ‘\{fx;‘nwu;‘l}}\"

Theorem 3 Let || - || be a norm on R™ and let 6 be the modulus of convexity
of (R*,|| - ||). Then for any Borel set A C S and any € > 0,

(A > 1 —2p(A) e/, (6)



Proof. Let K = {xz; ||z|| < 1} and v the normalized Lebesgue measure on
K. By considering the set {tA;  <¢ <1} it is clearly enough to prove that,

for BC K, v(B,) > 1— v(B) te 2,

Put C = {z € K; d(x,B) > €} then, for all x € B,y € C,
ie.,

| < 1— (),

B+C
2

C(1-68(e)K

therefore, by the Brunn—Minkowski inequality,

v(B)v(C) < (1 —6(e))*™ < e 200,

Since for the Euclidean norm on R", §(€) > €*/8, we get a simple proof of the
approximate isoperimetric inequality for the sphere S™ ! (with the Euclidean
or geodesic distance and Haar measure) discussed in the introduction.

Corollary 4 If AC S" ! and € > 0 then

H(AL) > 1= 2u(A) e/,

Consequently, if f: S™ 1 — R is a function with Lipschitz constant 1 then

({5 |f(@) = M| = e}) < 8e /1.

There are several ways to prove the isoperimetric inequality (as opposed to
approximate isoperimetric inequalities) on the sphere. Some of them generalize
to give isoperimetric inequalities in other situations. We refer to Appendix I in
[40] in which Gromov presents a generalization based on Levy’s original proof
and proves an isoperimetric inequality for Riemannian manifolds in term of
their Ricci curvature. A particularly useful instance of this generalization is
the case of O(n) equipped with its Haar measure and Euclidean metric (i.e.
the Hilbert-Schmidt norm). [13] contains a relatively easy and self contained
proof of the isoperimetric inequalities on the sphere by symmetrization. It
seems however to be very special to S"~1. We now sketch very briefly a proof by
another method of symmetrization which is not very well known and which we
think deserves to be better known. It seems to have the potential to generalize
to other situations. It is due to Baernstein II and Taylor [6] and is written in
detail with indications towards generalizations in [7].



Sketch of proof of Levy’s isoperimetric inequality. Given a Hyperplane
H through zero in R* we denote Sy = S" ' N H and by S, and S_ the two
open half spheres in the complement of H. Let also 0 = oy be the reflection
with respect to H. Of course o is an isometry with respect to the (Euclidean
or geodesic) metric on S"71 it satisfies 02 = identity and preserves the Haar
measure. It also satisfies that if x,y € S then d(z,y) < d(z,0(y)).

Given a set A C S™ ! we define its two point symmetrization A* with respect
to the above decomposition as

A*=[AN(SLUSHIUANS_Nno(AnS)|U[e(ANS_\c(ANS,))]

i.e., we “push up” elements of AN S_ into S, using o whenever there is
space available. The term symmetrization seems a bit misleading since we
desymmetrize as far as symmetry with respect to H is concerned. The point
of course is that A* is closer to cap than A is and in that sense is more
symmetric.

Note that if A is Borel, u(A*) = u(A). It is also easy to prove that for every
e > 0 and for every A C S*~!

(A7) € (A"

In particular,

1((A%)e) < p((A)") < p(Al).

The definition of the symmetrization procedure and the last property hold
for any metric probability space (K, p) admitting an isometric and measure
preserving involution o and any partition of the complement of Ky = {z; = =
o(z)} into K, K provided this involution and partition satisfy the following
properties: Ky = o(K ) and d(z,y) < d(z,0(y)) for all z,y € K.

To prove the isoperimetric inequality we would like to apply the operation
A — A* with respect to many hyperplanes, reach a set so that no farther
application of this operation improves u(A,) and prove that such a set must
be a cap. We'll sketch in a minute how to do that for S*~! but we would like
to emphasis again that this seems plausible in other situations as well and we
think it deserves further investigation.

Consider the metric space C of all closed subsets of S" ! with the Housdorff
metric. Fix A € C and consider the set B C C' of all sets B € C satisfying:

— Foralle >0 pu(B) < p(A:) and



One checks that the set B is closed in C.

Fix a point 29 € S™ ! and let C be the closed cap centered at xy with measure
p(A). It is enough to prove that C' € B. For any hyperplane H with zq ¢ H
we denote by S, the open half sphere containing xy. One now proves that
B — u(BnNC) is upper semi continuous on C. Consequently, u(BNC') attains
its maximum on B, say at B. We shall show that B O C' which will prove
the claim. If this is not the case then pu(B\ C) = pu(C \ B) > 0. Let x €
B\ C and y € C'\ B be points of density of the respective sets and let H
be the hyperplane perpendicular to the segment [z,y] and crossing it at the
midpoint (z + y)/2. Let B(z,7) C S_, B(y,r) C S; be small balls such that
pu(B(z,r)N(B\C)) > 0.99u(B(z,r)) and p(B(y, r)N(C\B)) > 0.99u(B(y,)).
Applying the symmetrization B — B* with respect to this hyperplane, most of
B(x,r) will be transferred into B(y,r) while no point of C'N B is transferred
to a point which is not in C. Thus, p(B* N C) > pu(B N C). Since B* also
belongs to B we get a contradiction. ]

With a bit more effort the proof above can be adjusted to show that caps are
the only solutions to the isoperimetric problem in S™!.

2.2 Martingales

Recall that for f € Li(Q, F, P) and for G, a sub o-algebra of F, the conditional
expectation, E(f|G), of f given G is the unique h € L;(Q, G, Pg) satisfying

/ hdP = / fdP forall A€ g. (7)
A A

(h is the Radon-Nikodym derivative of the measure v(A) = [, fdP on G with
respect to Pg.)

The correspondence f — E(f|G) is a linear positive operator of norm one on
all the spaces L,(2, F,P), 1 < p < oo. Some additional properties of this
operator are:

— If G’ C G is a sub o-algebra then E(E(f|G)|G’) = E(f|G’).
— It g € Lo(Q,G, P) then E(fg|G) = gE(f|G).
— For the trivial o-algebra G = {0, Q}, E(f|G) = Ef, the expectation of f.

Given a finite or infinite sequence of o-algebras, Fy, Fi,..., a sequence of
elements of L,(2, F, P), fo, f1,-.., is said to be a martingale with respect to



Fo, Fu, ... if fi = E(f;|F;) for all i < j. We shall always assume here that
Fo is the trivial o-algebra {0, Q} and that the sequence is finite with the last
terms being f, = f and F,, = F. Then, f; = E(f|F;), i = 0,1,...,n. We
also denote d; = f; — fi_1, 4 = 1,2,...,n, and call the sequence {d;}!" , the
martingale difference sequence. One set of examples of a martingale is the
following: Let X; be a sequence of mean zero independent random variables
and put f; = Y5 X;, then {f;} is a martingale with respect to {F;} where F;
is the smallest o-algebra with respect to which Xy, ..., X; are measurable. In
a lot of senses a general martingale resembles this particular set of examples.
There are many inequalities estimating the probability of the deviation of
[ = fu from fy = Ef in terms of the behavior of the sequence {d;}. In the
next proposition we gather some of them. (i) is due to K. Azuma [5] or[52]
p. 238. (ii) and (iii) are due to Pisier [42], (ii) was first used in [24]. (iv) is a
generalization to the martingale case of Prokhorov’s inequality. In a somewhat
weaker form it first appears in [27]. The form here is from [21]

Proposition 5 (i) For allt > 0,
P({w; |f(w) —Ef] > t}) < 2exp(—t/2 3 [|di[|3,). (8)
i—1

(i1) Foralll <p<2andt >0,

P({w; [f(w) —Ef] =2 t}) < Kexp(=6(t/[[{lldilloc}]p.00)*) — (9)

where ¢+ p~' = 1, K and & depend only on p and [[{a;}1|lpoe =
maX]_Sanjl/pa/; with {a;-‘} denoting the decreasing rearrangement of the
sequence {|a;|}.

(i11) For allt >0,

P({w; |f(w) = Ef] = t}) < Kexp(—exp(8t/|[{[[dilloc Hl1,00))  (10)

where K and 6 are absolute constants.
(iv) Put M = maxi<i<, [|di]|e and S* = || " E(d?|Fi—1)||eo. Then, for all
t>0,

P{w: |f(w) —Ef| > 1)) < 2exp <—ﬁ-arcsinh (%)) (11)

The proofs of these and similar inequalities are usually quite simple. Let us
sketch the proof of (i). If F; is “rich” enough, extreme points in the set
{d € Lo(Q,F;,P); E(d|Fi—1) = 0, |d] < a} have constant absolute value
equal to a. Consequently for all A € R,

E(e M | F; 1) < cosh A||d;||oe < X 14il1572, (12)




Extending F; (to become rich enough) if necessary, this inequality holds al-
ways. It follows that

Eer Ximd — | (E(e)‘ S di fn1)> N ldnlise/2 (13)

[terating this (by applying E(-|F, 2), then E(-|F, 3)...) we get

EAED < o3 LI il /2, (14)

Applying Chebyshev’s inequality we get, for positive A,

P({w; f(w) —Ef >t}) < P({w; X@-EN=A > 1)
< e MEA—ES) < ef)\t+>\2 > ||di||§o/2'

(15)

Minimizing over positive A and repeating this with negative A\ we get the
result. ]

V. V. Yurinski [59] was probably the first to use martingale inequalities in the
context of Banach space valued random variables. The point is that if X; are
independent Banach space valued random variables and we form the martin-
gale fi = E(|| X7_, X;|| |F;) then the martingale differences satisfy |d;| < [|.X;]|.
This can be used to estimate the tail behavior of || 3-7_, Xj||. Maurey [37] no-
ticed that martingale deviation inequalities can be used to prove approximate
isoperimetric inequality for the interesting case of the permutation group. We
present a somewhat simplified version of his proof with some abstractization
([46] [40]).

The length of a finite metric space (€2, d) is defined as the infimum of ¢ =
(X, a2)'/? over all sequences ay, . . ., a, of positive numbers satisfying: There
exists a sequence {Q}7_, of partitions of 2 with

- Qy ={Q} and Q, = {{w}}wea-

— Qp refines .1, k=1,...,n.

-Itk=1,...,n, A€ Q_y, B,C C A and B,C € ( then there is a one to
one map h from B onto C such that d(w, h(w)) < ay for all w € B.

The two basic examples we shall deal with are the Hamming cube, H,,, and the
permutation group, II,,. The Hamming cube is the set {0,1}" with the metric
d((e)™, (6:)™ ) = #{1; €; # 6;}. 11, is the set of permutations of {1,2,...,n}
with the metric d(m, ) = #{i; 7(i) # ¢(i)}. The length is smaller or equal
/n in the first case and 2y/n — 1 in the second. Let us illustrate this in the
second example. Fix 1 < k < n — 1 and 01,19, ...,1; distinct elements of

10



{1,2,...,n}. Put

Ai17i2 _____ i — {71' € Hn, 7T(1) = il, e ,7T(k) = Zk} (16)
and let € be the partition whose atoms are all the sets A; ;, ; where
(11,19, . ..,1) ranges over all n!/(n — k)! possibilities. It is clear that the first

n—1

two requirements from {};Z; are satisfied (with n — 1 replacing n). To
show that the third one is satisfied with a; = 2 for ¢+ = 1,...,n — 1, let
A=A i iv, € Urand B = A; 5y i 1 C = Ailin,in s € 4 and
define h : B — C by h(w) = (r,s) o w (where (7, s) is the transposition of r
and s).

We are now ready to state the main theorem of this section.

Theorem 6 Let (Q2,d) be a finite metric space of length at most (. Let P be
the normalized counting measure on 2. Then,

(i) Let f:Q — R satisfy |f(z) — f(y)| < d(x,y) for all z,y € Q. Then for
all t > 0,

P({w; |f(w) —Ef| > t}) < 2exp(—t*/20%). (17)
(ii) Let A C Q with P(A) > 1/2 then for allt > 0

P(A;) > 1 —2exp(—t*/8(%). (18)

Sketch of proof. Let ¢ = (X7, a?)'/? with a; and ;, i = 0,...,n, as in
the definition of length. Let F; be the field generated by €2; and form the
martingale f; = E(f|F;), ¢ = 0,...,n. Note that f; is constant on each atom
B of Q; and that this constant is f;p = Ave,cpf(x). If B,C are two atoms of
2; contained in an atom A of §2;_; then by the third property of the sequence
of partitions,

|fis = facl = 1BI7H| 3 f(@) = f(h(2))] < a. (19)

zeB

Since f;_1)4 is the average of f; 5 over all atoms B of F; which are subsets of
A, we get from (19) that |fi_1ja — fijc| < a; and since this holds for all such
A and C, ||d;||oo < a;. Now apply 5 (i). This proves (i). (ii) follows from (i) as
explained in the introduction. [

Corollary 7 Let (Q,d) be either H, or 11,.

(i) Let f:Q — R satisfy |f(z) — f(y)| < d(z,y) for all z,y € Q. Then for

11



all t > 0,
P({w; |f(w) —Ef| > t}) < 2exp(—t*/8n). (20)
(ii) Let A C Q with P(A) > 1/2 then for allt > 0
P(A;) > 1— 2exp(—t*/32n). (21)

By considering a ball in the Hamming metric it is easy to see that, except
for the choice of the absolute constants involved, the result for H, is best
possible. In this case, the exact solution to the isoperimetric problem is known
as well (and, for sets of measure 2% /2", is a ball) [20],[14]. For sets of measure
of the form 2%/2" this can also be deduced from the method of two point
symmetrization introduced in the previous section. For II,, the solution to the
isoperimetric problem is not known. However, again except for the absolute
constants involved, the corollary gives the right result:

Example 8 Let n be odd and define A C Ily, by

A = {m; w(i) < n for more than n/2 indices i with 1 <i <n}. (22)

Then, w(A) = 5 and for all k < n/2,

c [%_k]‘i'l n n:  n!
P(A}) = . T 241=0 ( )—: _'
(23)

For k with k/n bounded away from 0 and 1, a short computation shows that
this is larger than e ***/m,

It is also not hard to see that, at least for some a and ¢, balls are not the
solution to the isoperimetric problem inf{P(A4;); P(A) = a} on II,. We
wonder whether there is an equivalent, with constants independent of n, (and
hopefully natural) metric on II, for which one can solve the isoperimetric
problem.

The advantage of the method described above is in its generality; in principle,
whenever we have a metric probability space we can estimate its length by
trying different sequences of partitions and get some approximate isoperimet-
ric inequality. In reality it turns out that in most specific problems, and in
particular when the space is naturally a product space, one gets better results
by other methods.

12



2.8  Product spaces - Induction

In [53] Talagrand introduced a relatively simple but quite powerful method
to prove concentration inequalities which works in many situations in which
the probability space is a product space with many components. The proofs,
as naive as they may look, are by induction on the number of components.
The monograph [57] contains many more instances in which variants of this
method work. Another feature in Talagrand’s work is the deviation from the
traditional way of measuring distances; the “distance” of a point from a set
is not always measured by a metric. We start with a small variation on the
original theorem of Talagrand taken from [25].

Theorem 9 Let Q; C X;, @ =1,...,n, be compact subsets of normed spaces
with diam(€;) < 1. Consider Q@ = Q; X Qy X ... X Q, as a subset of the {y
sum (X0 ®X;)e. Let p; be a probability measure on Q;, i =1,...,n, and put
P =y X pg X ... py. For a compact A C Q2 denote the convex hall of A by
conv(A) and for x € Q put p(x, A) = dist(x,conv(A)) (with respect to the
metric in (37, ®X;)2). Then

(i) [eran < ﬁ. (24)

In particular, for all t > 0,

P({z; p(z, A) > t}) < ﬁ/ (25)

(i) If f : Q — R is conver and Lipschitz (with respect to the metric of
(X1, ®X;)2) with constant 1 then

Pl{a; (@) = [ f]> 1)) < e (26)

for all t > 0 and some universal ¢ > 0.

Sketch of proof. The proof of the first assertion of (7) is by induction. The
second assertion of (i) and also (ii) (with a bit more effort) follow as in (15).
The other theorems in this section are proved similarly. We shall illustrate
the induction step. Assume that [ e? @/4qP(z) < ﬁ for all compact
ACQ=0x...xQ, and let A C Qx Q1. Forw € Q41 put A(w) ={x €
Q; (z,w) € A} (where, for v = (z1,...,2,) € Q, (z,w) = (21,...,Tp,w)).
Put also B = Uyeq,,, A(w). Fix a y = (z,w) € Q x Q,4; and notice that
oy, A) < ¢(z, A(w)) provided A(w) # 0. Also, ¢(y, A) < ¢(z, B) + 1. From
these two inequalities it is easy to deduce that, for all 0 < X\ < 1, ¢*(y, A) <
Ap?(z, A(w)) + (1 — N)p?(x, B) + (1 — A)%. Using Holder’s inequality and the

13



induction hypothesis, one gets, for all w € 2,11,

ey ayn €UV (P(AW)) )T
/6 (), 4)/4 < 5 ( BB} ) , (27)

Q

We now use a numerical inequality (which can serve as a good Calculus exer-
cise). Forall 0 <p <1,

: “A(1=2)?/4 o
Ogilp e <2-—p.

% and integrating (27) over w, we get

2 1 P x o, I(A) 1
ey o L (2 _E X)) o 2 (98
ni s[ - P(B P(B) T P X pnga(A) (2%)

Using this inequality with p =

Note that if X; = {—1,1} with the uniform measure for each i then by Corol-
lary 7 the same conclusion as in Theorem 9(7:) holds for any (i.e., not necessar-
ily convex) function satisfying |f(z) — f(y)| < n~? ¥ |a; — y;|. However, for a
convex function, Theorem 9 gives a much better result since n2y |z —yi| <

(X |2 — yi)2

The theorem above has the disadvantage that, because of the convexity as-
sumption, it applies only to €2;’s which lie in a linear space. This is taken care
of in the next theorem from [57] which surprisingly is extremely applicable.

Given probability spaces (€2;, Fi, i;), ¢ = 1,...,n, form the product space
(Q,P) with @ = [I*,Q; and P = [[p;. For z,y € Q let U(z,y) be the
sequence in {0,1}" which realizes the Hamming distance between x and v,
i.e., has 0 exactly in the coordinates ¢ where x; = y;. For a subset A of 2 and
for z € Q we set U(xz, A) to be the subset of {0,1}" consisting of all sequences
U(z,y) for some y € A, i.e.,

Uz, A) = {{e&}r, € {0,1}"; for some y € A,y;, = z; iff ¢, = 0}.
For x € Q and A C Q let p(z, A) = d(0,conv(U(x,A))). It should be noted
that, in general, ¢(x, A) is not induced by a metric. i.e., there is no metric d

on Q such that p(z, A) = inf{d(z,y); v € A}. This is easily seen to be the
case for 2 = {0,1}" for example.
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Theorem 10 Let A C €2 then

2 1
P, A)/4 < ) 29
/ ‘ = P(A) (29)
In particular, for all t > 0,
1 2
P({z; A)>t}) < iy 30
(o ol ) > 1)) € e (30)

Using the Hahn Banach theorem one can show that

o(x,A)= sup inf{ Y  a; ye A}. (31)
> ai=1 {Gyi#wi}

Notice that, if A denotes the Hamming distance on Q, i.e., h(z,y) = #{i;y; #
x;}, then formula 31 implies that ¢(x, A) < hY/?(x, A). Using this inequality
and the martingale method of section 2.2 one gets only P(p(x, A) > t'/?) <
Ce="’/" while Theorem 10 gives P(p(z, A) > t/?) < 4e~/* < 4e=V/* for ¢
in the relevant range, 0 < t < n. This illustrates the possible advantage of
this inequality over Corollary 7 for H,. Theorem 10 has many applications.
We refer to [57] for some on them. A variant of Theorem 9 and particularly
of (26) was recently proved by M. Ledoux ([30] or [31]). The difference is
that the convexity assumption on f is weakened to convexity of each variable
separately but the conclusion is only a one sided deviation inequality:

P{a; fla) = [ £> ) <4e (32

It is unknown whether a similar lower deviation inequality also holds.

The next result was first proved by Talagrand in [54]. The original proof was
very complicated but in [57] Talagrand presented a much simpler inductive
proof which we shall sketch here. Consider a product probability space (£2 =

" QP =TI", 1) Given a ¢ € N and ¢ + 1 elements of Q, z,y',...,y%,
we define the “Hamming distance” of & from the g-tuple 3, ..., y? by

hasy's.y?) = #6 o & {y, .. vl (33)

Given ¢ subsets Ay,..., A, of 2, we define

h(x; Ay, ..., Ay) = inf{h(z;y', ... y0); y' € Ay, ..yt € A} (34)

15



Theorem 11

' 1
/qh(I’Al ----- Aq) < T (35)

In particular,

P({z; h(z; Ay, ..., Ay) > k}) < (36)

for all k € N.

Sketch of proof of the induction step: For A;,..., 4, C @ x Q,;; and
w € 2,41 put

Ajw)={y e (yw)e 4}, j=1,....q (37)

and

Bj = UuEQn.HAj(u)) ] = ]_, ey q. (38)

Fixwe Qand k € {1,...,¢} and put also

Cj_{Bj if ] #k )
Ap(w) if j = k.

One then shows that

h((z,w); Ay, ..., Ay) <min{l + h(z; By, ..., By), h(z;Cy,...,C,)}. (40)

It then follows from the induction hypothesis that

_ 1 . . P(By)
h((2w)iAL,Ag) < Bl Sl V2 O 41

j=1
fo<h; <1,:=1,...,q, are functions on a probability space then

[ minta.in 1) < TT(f )7 (12
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This follows easily from the inequality [h ([ h)? < 1 which holds for every
function A satisfying ¢! < h < 1. Using (42) and integrating (41) over Q,1,
we get the assertion for n + 1. [ |

We shall see in a minute the big advantage of this theorem over the concen-
tration inequality for the Hamming metric. Although it looks like there is not
much difference between h(-; A, A), say, and the Hamming distance of a point
from a set (d(-, A) of Section 5), it turns out that the last theorem gives much
better concentration when it applies. Theorem 11 is still looking for good ap-
plications. As far as we know Theorem 11 has basically one application dealing
with the tail behavior of norms of sums of independent Banach space valued
random variables. This is the original application which led Talagrand to prove
this result (see [54] and [57], section 13). This particular application also has
a different proof [29].

To illustrate the advantage of Theorem 11 over the basic inequality for the
Hamming metric we define a class of functions and state a corollary which
amounts to a deviation inequality for this class of functions. For I C {1,...,n}
denote

.....

el

and let [ : Q* — R". We say that f is monotone if

1CTC{L,..on} fmplies f((w)ier) < f((a)es)  (43)

for all (z;)jes € ;. We say that fis subadditive if for all I, J disjoint subsets
of {1,,...,n} and all (z;)icrus € Qpuy,

f((@)ierus) < f((@i)ier) + f((25)5e0)- (44)
Here is an example of such a function: Let €2; be subsets of a normed space
(X, 11+ 1) and put f((zi)ier) = Avee,—i1|| Zicr aiil-

For x € Q;,y € Q; we shall denote by h(x,y) the number of coordinates
in which z; # y; including coordinates in which one or both of z;,y; are not
defined.

Corollary 12 Let f : Q* — R" be monotone, subadditive and satisfy |f(x) —
f@)| < h(x,y) for all z,y € Q. Then, for alla > 0,1 <k <n and q € N,

Pz e f(x) > (¢+Da+k}) < P(f <a) g (45)
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For a being the median of f and ¢ = 2, say, one gets P(f > 3a+k) < 427%. If
a << k << n this is much better than what one gets for a general Lipschitz

function from, e.g., the martingale method. There one gets P(f > a + k) <
26—k2/4n‘

Note the resemblance with the situation concerning Theorem 9: In both cases
we evaluate the probability of deviation of f from its expectation (or median),
a quantity which depends only on the behavior of f on € (since the probability
measure is supported there). However, by extending f to a larger set (in
Theorem 9 the convex hull of Q, here Q*), if possible, using its Lipschitz
constant on the larger set and some additional properties of the extended
function (there convexity, here monotonicity and subadditivity) we get, in
some cases a stronger concentration result than the basic one.

Proof of Corollary 12. For 1 <i < gput A; = A= {z € Q; f(z) < a}.
Then

{f(z) > (g+ Da+k} C{h(z;A,..., Ay > k}.

Indeed, if h(z; A1,...,A;) <k, let y',...,y? € A be such that, putting I =
{i; v & {y}, ..., y¥}}, #I < k. The complement of I can be written as U?ZIJJ-
with J; C {1,...,n} satistying z; = yl for i € J;j. Then, assuming / is not
empty,

f(@) < flay) + X5, fz))
< flop +yj,) + i f(yfjj)

< #L+ fyl,) + X9 fy))) (46)
< #I+ f(y') + X5 f()
<k+(¢+1)a.

The corollary follows now immediately from Theorem 11. ]

The paper [57] also contains a generalization of the concentration inequality
for the permutation group, Corollary 7. The (inductive) proof of this result is
a bit harder than the other proofs surveyed in this section and we shall not
reproduce it. This result also awaits good applications.
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Equip the symmetric group S, with its natural probability measure, u. For
cesS,and ACS, let

o) =it {3 51050 € Valo) | (47)

where V(o) is the convex hall of the set
{(s1,...,8,) €{0,1}"3Ir € Ast. Vi<n,s;,=0=17(i) =0(i)}.

Theorem 13 for every A C S,, t >0

u({o: f(o,A) > 1)) < ﬁ/ (48)

The manuscript [57] contains many refinements of Theorems 10, 11 and 13
which we do not reproduce here.

2.4 Spectral methods

Let (€2, F, i) be a probability space, A some set of measurable functions and
€ : A — Rt some function (which we shall refer to as energy function). For
[ € Ly(Q) denote by o?(f) the variance of f,

()= [(f ~EBp2du= [ frdu— ([ fap)? (49)
and, for f € L*logL (i.e. [ f*log" fdu < o), denote by €(f) the entropy of
f27

«(f) = [ 11108 fp— [ fdpog( [ fu) (50)

(which is necessarily finite). We say that (A, £) satisfy a Poincaré inequality
with constant C' if

o*(f) < CE(f) forall f € A. (51)

We say that (A, &) satisfy a logarithmic Sobolev inequality with constant C
if

e(f) < CE(f) forall fe A (52)
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The main example of an energy function £ is related to the gradient or gener-
alization of it. If d is a metric on Q (and F the Borel o-field), define the norm
of the gradient at x € ) by

IV f(x) = hmiggw (53)

Note that V f(z) by itself is not defined. The reason for this notation is of
course that if (€2,d) is a Riemannian manifold (in particular if it is R* with
the Euclidean distance) and if f is differentiable at x then |V f(x)| is the
Euclidean norm of the gradient of f at x. Define now

&) = [ 1V1@)Pdu(x). (54)

The classical Poincaré (or Rayleigh-Ritz) inequality says that, in the case of
a compact Riemannian manifold, (51) is satisfied with C' = AT, A\; being the
first positive eigenvalue of the Laplacian on Ly (€2, i).

We shall only deal here with the energy function (54). [31] contains many
other examples and a comprehensive treatment of the subject of this section.

If A is the set of bounded Lipschitz functions on (2, d), the norm of the
gradient satisfies the chain rule: If ¢ € C'(R) and f € Q then ¢ o f € Q and

IV(¢o @) < |V f(@)]l¢'(f(x))] (55)

and consequently

E@of) < Iy [ 160 (@) Pdu(a) (56)

where || f]|Lip denotes the Lipschitz constant of f. The next theorem, basically
due to Gromov and Milman, shows that Poincaré inequality implies concen-
tration.

Theorem 14 Let (Q, F, u,d) be a probability metric space. Let A be the set
of bounded Lipschitz functions on (Q,d) and let € be defined by (54). Assume
that (A, €) satisfies the Poincaré inequality (51). Then for all |\ < 2/V/C
and every bounded f with Lipschitz constant 1

FAUEn « 240

Si—oa (57)
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In particular

P(|f —Ef| > t) < 240e VE'  for all t > 0. (58)

Proof. By (51) and (56)

C
Ee? — (Ee?/2)? < CE(e9?) < 1 lgllzopEe?

for any g € A. In particular, for any A,

2
Ee M (]Eegf)z < %Ee’\f
or
EN < L (Bedl)?
€ C)\z( € )

[terating we get for every n,

n—1 2k n
B < ] (71 1) (Be7)’

k=o0 T gkt

which tends to

i ()

k=0 T gktT
|

Remark 15 1. A simple limiting argument shows now that the assumption
that f 1s bounded s superfluous.

2. The simple example of the exponential distribution on R shows that (except
for the absolute constants involved) one can’t improve the concentration func-
tion e~ As we shall see below, what looks like a slight change, logarithmic
Sobolev inequality instead of Poincaré inequality, changes the behavior of the
concentration function from e~ to e <.

The next theorem is apparently due to Herbst.

Theorem 16 Let (Q, F, u,d) be a probability metric space. Let A be the set
of bounded Lipschitz functions on (2, d) and let € be defined by (54). Assume
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that (A, E) satisfies the logarithmic Sobolev inequality (52) then for all A € R

and every bounded f with Lipschitz constant 1

E BN < (O34

In particular

P(If —Ef| > ) <2¢7%/C forallt > 0.

Proof. Put h(\) = Ee*/| then

e(eM?) = EAfeN — EeM log(EeM) = AW/(A\) — h(A)log(h(N)).

Also, from (56), we get,
A2 A2
E(eM/?) < ZEeM = ().
4 4
Combining (61), (62) and (52) we get

AW(3) A og(h() < 2-Cn

or, putting k(\) = A"'log h()) (and, by continuity, k(0) = Ef),

IRV IV

') == for all A € R.
(A) YY) X 0 orall A €

It follows that k(A) — £(0) < <* and thus

EeXI-EN) — ARN—KO) < (CN/4

(59)

(60)

(61)

(62)

Remark 17 A simple limiting arqgument shows that here too the assumption

that f 1s bounded is superfluous.

Both Poincaré inequality and logarithmic Sobolev inequality carry over nicely
to product spaces in the following sense: Fori = 1,2, ..., n, let (;, F;, pi;) be a
probability space, A; some set of measurable functions on ; and &; : A; — Rt
some energy function. Put (2, P) = [1",(€;, i;). Given a function f on  we
denote by f; the same function considered as a function of the i-th variable

22



only, keeping all other variables fixed. Define E(f) = Ep >0, &(fi). Let A
denote the set of all functions f such that (for all z1,...,x, and) for all 7, f;
is in A;.

One can prove that

oX(f) SEp Y 0*(f) and (f) <Ep Y e(f) (63

i=1 =1

from which the following proposition easily follows.

Proposition 18 Assume (A;,&;), i = 1,...,n, all satisfy Poincaré inequal-
ity (resp. logarithmic Sobolev inequality) with a common constant, C. Then
(A, &) satisfies Poincaré inequality (resp. logarithmic Sobolev inequality) with
the same constant, C.

Example 19 The symmetric exponential measure on R, i.e. the measure with
density %e*‘”, satisfies Poincaré inequality with constant 4. Consequently, the
same s true for the measure on R™ which is the n fold product of this measure.

The canonical Gaussian measure on R and thus on R" satisfies logarithmic
Sobolev inequality with constant 2.

The proof of both statements can be found in [31]. The second one is due to
Gross and, in view of Theorem 16, implies the concentration inequality for 7,,
the Gaussian measure on R™: If f : R* — R is Lipschitz with constant one
with respect to the Euclidean metric then

(1= [ £l > 1) < oo

From this it is not hard to get the concentration inequality for S"~!. One uses
Lemma 22 below.

We would also like to state a theorem first proved by Talagrand [56] which
“interpolates” between the last two theorems. See [8] and [31] for a relatively
simple proof along the lines of the proofs of the last two theorems. We state it
only for a specific probability measure P on R", the product of the measures
with density Ze~I"l on R. See [31] for generalizations.

Theorem 20 Let f: R* — R be a function satisfying

[f(@) = fWl < alle —ylle and  [f(x) = Fy)] < Blle =yl . (64)
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Then, with the probability introduced above,

P(|f(z) —Ef| > r) < Cexp(—cmin(r/g,r*/a?)) (65)

for some absolute positive constants C,c and all r > 0.

Remark 21 Although it deals with a different probability measure, Theorem
20 also implies the concentration inequality for the Gaussian measure on R”
(and thus, via Lemma 22 below, also for the Haar measure on S™'). This
follows from a simple transference of the Gaussian measure to the product of
the symmetrized exponential measure discussed above. Thus, Theorem 20 can
be considered as a strengthening of these inequalities. We refer to [56] and [31]
for that and further discussion.

Although the methods in this and the previous section are specialized to prod-
uct measures, there is a way to transfer such results to some other situations.
In particular to the case of unit balls of £ spaces equipped with the normal-
ized Lebesgue measure. The basic tool is the following simple result: Consider
the measure p(A) = % on the surface of the £ ball, 0 < p < oo. Con-
sider also n independeﬁt random variables X 1,X2,...,X, each with density
function c,e ", ¢ € R. (Note that necessarily ¢, = p/2I'(1/p).)

Lemma 22 Put S = (X%, | X;|))*. Then (& X2 ... &) induces the

IR 7S
measure oB". M X Xz Xn) s ind dent of S
poon OB} . Moreover, (=&, <&, ..., =g ) is independent of S.

See [49] for a proof. This lemma is used there to compute the tail behavior
of the £, norm on the /7 ball. Recently ([50]) this result was strengthen, in
the case p =1, ¢ = 2, to give a concentration inequality for general Lipschitz
functions, with respect to the Euclidean metric, on the ¢7 ball B}'. The proof
combines most of the results of this section and we shall not give it here.

Theorem 23 There exist positive constants C,c such that of f : 0B} — R
satisfies |f(x) — f(y)| < ||z — yl2 for all x,y, € OB} then, for all t >0,

p({z; |f(x) —Ef| > t}) < Cexp(—ctn). (66)
2.5 Bounds on Gaussian processes

As we shall see below, in the application sections, concentration inequalities
are used mostly to find a point w, in the metric probability space under con-
sideration, in which a big collection of functions {G(w) }1er are each close to
its mean. There may be other ways to reach such a conclusion. Assuming the
means of all the functions under consideration are zero, it would be enough, for
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example, to prove that Esup,., |G| is small (then, for a set of w’s of measure
at least 1/2, sup,cp |Gi(w)]| is at most 2xsmall).

When T is a metric space and G; a Gaussian process (meaning that any finite
linear combination of the G¢’s has a Gaussian distribution) the evaluation of
Esup,, |G| is an extensively studied subject in Probability (having to do
with the existence of a continuous version of the process). See for example
[32]. There are well studied connections between the quantity Esup,.; |Gyl
and the entropy (or covering) function of the metric space T as well as with
other properties of T'. A recent achievement in this area is Talagrand’s ma-
jorizing measure theorem which relates the boundedness of Esup,., |G| to
the existence of a certain measure (called majorizing measure) on 7" and gives
new ways to estimate this quantity. This subject is reviewed in [28] and we’ll
not get into it any further here. We only remark that the proofs in this area
are very much connected with concentration properties of Gaussian variables.

2.6 Other tools

We dealt above mostly with geometric and probabilistic tools to prove con-
centration and approximate isoperimetric inequalities. There are many other
methods and results that are not discussed here for lack of space. In partic-
ular we didn’t discuss at all combinatorial methods. For example the (exact)
isoperimetric inequality for the Hamming cube (from which Corollary 7 for
that case follows) was first proved by Harper [20] (see also [14] for a simpler
proof) by combinatorial methods.

There are also geometrical and probabilistic methods we didn’t discuss. [43]
contains a yet another nice probabilistic proof of Corollary 4 due to Maurey
and Pisier. It uses properties very special to Gaussian variables and thus does
not seem to generalize much.

48] contains a generalization of Corollary 4 to harmonic measures on S™ 1.
The proof is by reduction to the Haar measure.

A new probabilistic method which emerged recently is that of transportation
cost, see [36], [58] and [10]. This seems very much related to Kantorovich’s
solution of Monge’s “mass transport” problem although, as far as I know, no
concrete relation has been found yet.

This short list is far from exhausting all the sources on this vast subject.
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3 Applications
3.1 Dwvoretzky-like theorems

The introduction of the method(s) of concentration of measure into Banach
Space Theory was initiated by Milman in his proof [39] of Dvoretzky’s theorem
concerning spherical sections of convex bodies [11]. Although this topic is
extensively reviewed in the article [15] in this handbook, I would like to begin
the applications section with a statement of the theorem and a brief description
of its proof.

Theorem 24 For all € > 0 there exists a constant ¢ = c(e) > 0 such that for
any n-dimensional normed space X there exists a subspace Y of dimension
k > clogn such that the Banach-Mazur distance d(Y,€5) <1 +e.

See [23] for the definition of the Banach—Mazur distance. The one to one cor-
respondence between n-dimensional normed spaces and n-dimensional sym-
metric convex bodies (and the fact that every 2n-dimensional ellipsoid has
an n-dimensional section which is a multiple of the canonical Euclidean ball)
easily shows that the theorem above is equivalent to the following geometri-
cal statement. By a convex body in R" we mean a compact convex set with
non-empty interior.

Theorem 25 For all € > 0 there ezists a constant ¢ = c(e) > 0 such that
every centrally symmetric conver body K admits a k > clogn central section
Ky and a positive number r satisfying rB C Ky C (1 + €)rB, where B is the
canonical Fuclidean ball wn the subspace spanned by Ky.

Sketch of proof. Since the statement of each of the two theorems is invariant
under invertible linear transformations, we may assume that the unit ball K
of X = (R*,]| - ||) satisfies BY C K and the canonical Euclidean ball B} in
R™ is (the) ellipsoid of maximal volume among all ellipsoids inscribed in K.
(It is a theorem of F. John that the maximal volume ellipsoid is uniquely
determined but we do not need this fact here.) A relatively easy theorem of
Dvoretzky and Rogers [12] (see also [40] p.10) implies now that E=E|| - || =

Jgnor ||z||dp(z) > ¢\/™ 8% for some absolute constant c.

Denoting by v the normalized Haar measure on the orthogonal group O(n)
and applying Corollary 4 to the function x — ||z||, which is Lipschitz with
constant one, we get that, for every fixed z € S" !,

v({w; |uzl| - E| > eB}) =p({z € S ||lz]| — E| > €E})
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<6—cezEzn < e—CEQIOg’n

Fix a k-dimensional subspace V, C R* and an € net A/ in Vj, N .S™ ! of cardi-
nality smaller than (3/¢)*. The existence of such a net follows from an easy
volume argument (see [40] p.7). It then follows that if (3/€)*e~c"18" < 1, 1.,
if k£ is no larger than a constant depending on ¢ times logn, then

v({u; |||uz| — E| > €E, for some z € N'} <1

which implies that there is a u € O(n) such that
(1 - OF < |Juz|| < (1+€)E, forall zeN.
It now follows from a successive approximation argument that similar inequal-

ities hold for all # € S™ ! which implies the conclusion of the theorem for the
subspace uVj. [

We next state another application of the concentration inequality on the Eu-
clidean sphere. This Lemma of Johnson and Lindenstrauss is much simpler
but has a lot of applications including “real life” ones like efficient algorithms
for detecting clusters.

Theorem 26 Let xy,x,. .., 2, be points in some Hilbert space. If k > 5 logn
(with ¢ > 0 an absolute constant), then there are yy,ya, ..., yn € €5 satisfying

[l = 5]l < llyi = y5ll < (L +e)ljzi — ] (67)

foralll <i+# 35 <n.

Sketch of proof. We may assume that the points x; are in ¢3. Fix a k <n
and a rank & orthogonal projection Py on ¢3. When u ranges over O(n), P =
uPyu~! ranges over all rank k orthogonal projections. It is not hard to check

that, for all x € S" 1, B = [y, [[uPou"z[|dv(u) is of the order \/k/n and
thus, for every x € S™ 1,

v({u; |||uPou™ 2| — E| > ¢E}) = u({z; ||Pox| — E| > eE}) < o’k

It follows that, if k£ < & logn, there is a u € O(n) for which
uPyu™! <7$Z — % )
[l = 4]
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1 uPou~la;
0 7 ]

for all ¢ # 5. The range of uPyu~ (e

is k-dimensional. Take y; =

3.2 Fine embeddings of subspaces of Ly, in [

When specializing the proof of Theorem 24 to the case of X = £, one sees
quite easily that iof 1 < r < 2 then for all € > 0 there exists a constant
c = c(r,€) > 0 such that for all n there exists a subspace Y of £ of dimension
k > cn whose Banach—Mazur distance to Euclidean space, d(Y, (%) < 1 + €.
(For 2 < r < oo the same holds with k > cn?".) This subject is extensively

reviewed in [15].

Since it is known (and follows from the existence of p-stable random variables,
see below) that for r < p < 2 ¢, embeds isometrically into L,[0,1], it is
natural to ask whether a similar statement holds with 2 replaced by p, i.e.,
whether, for r < p < 2, 6’; (1 4 €)-embeds into ¢ for k proportional to
n. Noticing that Gaussian variables are very different from p-stable ones for
p < 2 (the first decay exponentially while the latter only polynomially), and
that the concentration inequality behind the proof of Theorem 24 has very
much to do with the exponential decay of Gaussian variables, one’s first guess
would be that the answer to the question above is negative (and probably that
k can only be some logarithmic function of n).

It turns out, however, that the answer to the question above is positive. It
was proved in [24] that for 1 < p < 2 and for every n and €, {} contains a
subspace Y with d(Y, () < 1+ € where k > ¢(p, e)n. This was the first result
concerning “tight embeddings” that didn’t deal with Euclidean spaces. It was
proved using certain approximation of p-stable random variables and concen-
tration inequalities for martingales as discussed in Section 2.2. This result lead
to a series of generalizations and results of similar nature. We refer to [26] for
a survey of this topic. Here we only deal with two such examples of general-
izations. We would first like to mention a result of Pisier [42], generalizing the
result above from the side of the containing space, (7.

Recall that a random variable h whose characteristic function is given by
Ee*" = e~” for some positive constant ¢, is called (symmetric) p-stable.
Lévy proved the existence of such variables for 0 < p < 2. (There are no such
variables for p > 2.) A p-stable variable has r-th moment for all » < p but
doesn’t have p-th moment. For 1 < p < 2 we’ll denote from now on by A the
p-stable variable whose first moment is equal to 1. This defines its distribution
uniquely. If A, hy, ..., h, are independent and identically distributed then it
is easy to see (compute the characteristic function) that Y- ; a;h,; also has
the same distribution as h as long as 3" ; |o;|? = 1. In particular the span of
hi, ...,y in L1]0, 1] is isometric to €.
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For 1 < p < 2, the stable type p constant of a Banach space X, denoted
ST,(X), is the smallest constant C' such that,

El| D" haxil| < Cn'/? sup ||| (68)
1<i<n
for all finite sequences {z1,...,x,} of elements of X. (This is an equivalent

definition to the more common one where n'/? sup, ., ||z;|| is replaced with
(S0, ||las]|P)Y/P.) Pisier’s result is:

Theorem 27 For each 1 < p < 2 and ¢ > o there is a positive constant
¢ = c(p,€) such that any Banach space X contains a subspace Y satisfying

d(Y, €3) as long as

k< eST,(X)P/e=b), (69)

Since it is easy to see that ST,(¢%) > n(P=Y/P this implies the result of [24]
referred to above.

A brief sketch of the proof. Pick a finite sequence, x1,x»,...,x,, of el-
ements of X for which max||z;|| = 1 and E|| 3 hyzy]| > $n'/PST,(X). Let
U1, Uz, ... be a sequence of independent random variables each uniformly dis-
tributed over the set of 2n elements {+x,+x,,...,+x,}. Put also I'; =
Zle A;, j=1,2,..., where the A;’s are independent (and independent of the
sequence {u;}) canonical exponential variables, i.e., P(4; > t) = e %, ¢t > 0.
We shall use a representation theorem for p-stable variables, due to Lepage,
Woodroofe and Zinn [34] which says in particular that, for some constant c,
depending only on p,

S=> F;l/puj has the same distribution as c,n /? Y hyz;  (70)
7=1 =1

and in particular, E[|S|| > %ST,(X). Note that for any functional *, 2*(S)
is a p-stable variable. If Sy,..., S, are independent and all have the same
distribution as S then it is easily seen that if 3% | |o;|? = 1 then XF | a;S;
has the same distribution as S and in particular E|| >% | «;S;|| = E[|S]].

The next step is to replace the random coefficients {Fj_l/ Pl with the deter-
ministic sequence {j 7}, Put R = 3252, j /Pu; and let Ry, ..., Ry be inde-
pendent and all have the same distribution as R. A computation using the
explicit distribution of I'; shows that
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and it follows that, if ¥F | |a;|? = 1,

| Sk, ciSil| — Bl Sh, el < O 2K o)
< C’k(P_l)/P(Zle |ai|P)1/P (71)

< CclP=V/PST,(X)

by the choice of k.

Note that 3% | |oy|P = 1 implies that ||{c;j'/?}||, . = 1 and thus Proposition
5(ii) implies that for all such {q;} and for all ¢ > 0,

P (I aslill = BIIY kil

> t) < Kexp (—6t/ V). (72)

This last equation is of course the place where the method of concentration
enters, which was the main thing we wanted to illustrate here. The rest of the
proof goes along similar lines to the end of the proof of Theorem 24: Note that
it follows from (71), that, for ¢ small enough, E|| 3 oy R;|| is of order ST,(X).
Choose an € net in the sphere of ¢% of cardinality smaller than (3/¢)*. Then,
with high probability, || X «;R;|| is of order ST,(X) for all sequences {c;} in
the net. By a successive approximation the same holds now for all sequences
{a;} in the sphere of £ which completes the proof. n

Another way to generalize the result of Schechtman and Johnson [24] (that £;"
nicely embeds in (1) is from the side of the embedded space, £;. After some
initial work by Schechtman (mostly [47]) on embedding finite dimensional
subspaces of L,[0,1] in low dimensional ¢ spaces in which a new class of
“random embeddings” (which were not related to p stable variables) were
introduced, Bourgain, Lindenstrauss and Milman [9] proved that, for 0 < r <
2, every k dimensional subspace of L.[0,1] (1+ €)-embeds in ¢! provided n/k
is at least a certain power of logn times a constant (depending only on 7 and
€). See also [25] for a different proof. All the proofs involved use concentration
in one way or another. The result of [9] mentioned above was improved and
simplified by Talagrand [55]. Since his proof has to do with bounds on Gaussian
processes and is related to Section 2.5, we would like to briefly review it. As
we have already advertized, the article [26] has more on that subject. Here we
shall deal only with the case r = 1.

Theorem 28 For every € there is a constant C(€) such that for all n, every

n dimensional subspace Y of L,[0,1] is (1 + €)-isomorphic to a subspace of
élc’nlogn.

We remark in passing that one of the main open problems in this area is
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whether the factor logn is needed. Besides concentration inequalities the proof
uses some other heavy tools and is discussed in [26]. We shall only touch the
idea involving bounds on Gaussian procceses.

The idea of the proof. By crude approximation we may assume that Y is
a subspace of ¢1* for some finite (but huge) m. We would like to show that a
restriction to a “random” subset of cardinality Cnlogn of the coordinates is
a good isomorphism when restricted to Y. Of course this is wrong in general
(for instance if Y has an element which is supported on only one coordinate,
this element would most probably be sent to zero by such a restriction). The
idea is to first “change the density” and send Y to an isometric subspace
whose elements are “spread out” over the m coordinates. The idea that this
may work was the point of [47]. It will be dealt with in [26] and will not be
discussed here any further. We’ll concentrate in describing how to evaluate
the norm of the random restriction on Y and the norm of its inverse assuming
Y is already in good position.

We do it inductively, restricting first to a random set of about half the coordi-
nates where each coordinate is choosen with probability 1/2 and the different
choices are independent. Equivalently, let {¢;}™, be independent variables
each taking the values —1 and 1 with probability 1/2 each. We would like to
evaluate the restriction to the set A = {i; ¢; = 1}. If we could show that

sup 23 Jai] — 3l | < e(n,m) (73)
=1

z€Y||z|<1 | jeca

with €(n,m) “very small” when n/m is small, then this would mean that (2
times) the restriction to A is very close to an isometry. Iterating this would
lead, depending on the behavior of ¢(n, m), to the desired random restriction
onto a small set of coordinates. Note that the quantity in (73) is equal to
SUD, ey |of <1 | i1 €i|7i|| and in particular is the same for A and its comple-
ment. Since we are interested in only one set A, of cardinality at most m/2
satisfying (73), it is enough to establish

m

Zfz|x1|

=1

E sup < €(n,m). (74)

weY,|zl|<1

This quantity is dominated by a similar one with independent standard Gaus-
sian variables g;’s replacing the ¢;’s. So the problem reduces to estimating

Zgi|$z'|

=1

E sup
zeY|z]|<1
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i.e. the expectation of the supremum of a specific Gaussian process. This makes
the connection with Section 2.5. We shall not go into more details here.

Theorem 28 has a nice geometrical interpretation which is obtained by looking
at the polar body to the unit ball of Y.

Corollary 29 Let K be the (Minkowski) sum of segments in R* (or limit of
such bodies, these are called zonoids). Then, for every e, there is a body L in
R™ which is the sum of at most C(e)nlogn segments and which € approzimates
K n the sense that

LCcKcC(1+e¢l.

3.8  Selecting good substructures

Given a sequence of independent vectors {xy,xs,...,,} in a normed space X
and an € > 0, what is the largest cardinality k£ such that there are k£ disjoint
blocks y1, ya, . . ., yxr which are (1 + €)-unconditional or (1 + €)-symmetric?

Recall that by disjoint blocks we mean vectors of the form y; = 3=, a;z5,

1 =1,...,k, with o1, 09,..., 04 disjoint subsets of 1,2,...,n. y1,y2,..., Yy is
said to be (1 + €)-unconditional (resp. (1 + €)-symmetric) if

k k
1D ebiysl] < X+ e[| D biysll
1=1 =1

for all signs {¢;} and all coefficients {b;}. (resp. if

k k
1D €bitinoy|l < (1 +€)]| D baysil|
Pt i1

for all signs {¢;}, all permutations = of 1,2,... k and all coefficients {b;}.)
These problems and various variations thereof were treated quite successfully

by concentration of measure methods. The point is that, fixing a partition
01,09,...,0, of {1,2,...,n} and coefficients {{a;};c0, }¥_,, the norms

k k
1D bieillu = Ave|| Y bi D ejazu;]]
=1

i=1 j€Eoy
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and

k

k
13" bieills = Avee || Db > ejaniya;ll
=1 =1

Jj€oT;

on R" are l-unconditional and 1-symmetric respectively. If we can find signs
{{ej}jeo Jy such that, for all {b;}, | S5, b ¥jeo, €501/ 25 bieill. is ap-
propriately close to one, then we found disjoint blocks of length k£ which are
(1 4 €)-unconditional. A similar statement holds for the symmetric case.

For lack of space we shall not review all that is known about this subject. The
unconditional case was first treated by Amir and Milman in [2],[3]. Gowers
improved some of their quantitative estimates ([16],[17]) and in some instances
got, except for possible log factors, the best possible estimates. The symmetric

case was treated by Maurey [37] and was the motivation for proving Corollary
7 (for I1,,).

We were dealing here only with applications to functional analysis and convex-
ity. There are many applications to other areas which we shall not expend on.
There are applications to graph theory (see e.g. the construction of expander
graphs in [1]), to other combinatorial questions, computer science, mathemat-
ical physics and probability (in particular to estimating the tail behavior of
random variables of the form || 3 ¢; X;|| for independent vector valued random
variables { X;}). [57] contains many applications of the material of Section 2.3.

References

[1] N. Alon and V. D. Milman, A;, isoperimetric inequalities for graphs, and
superconcentrators, J. Combin. Theory Ser. B 38 (1985) 73-88.

[2] D. Amir, V. D. Milman, Unconditional and symmetric sets in n-dimensional
normed spaces, Israel J. Math. 37 (1980) 3-20.

[3] D. Amir, V. D. Milman, A quantitative finite-dimensional Krivine theorem, Israel
J. Math. 50 (1985) 1-12.

[4] J. Arias-de-Reyna, K. Ball and R. Villa, Concentration of the distance in finite
dimensional normed spaces.

[5] K. Azuma, Weighted sums of certain dependent random variables, Téhoku Math.
J. 19 (1967) 357-367.

[6] A. Baernstein II, B. A. Taylor, Spherical rearrangements, subharmonic functions,
and #-functions in n-space, Duke Math. J. 43 (1976) 245-268.

33



[7] Y. Benyamini, Two point symmetrization, the isoperimetric inequality on the
sphere and some applications, Longhorn Notes, Univ. of Texas, Texas Funct.
Anal. Seminar, (1983-1984) 53-76.

[8] S. Bobkov and M. Ledoux, Poincaré’s inequalities and Talagrand’s concentration
phenomenon for the exponential distribution, Probab. Theory Related Fields 107
(1997) 383-400.

[9] J. Bourgain, J. Lindenstrauss and V. D. Milman, Approximation of zonoids by
zonotopes Acta Math. 162 (1989) 73-141.

[10] A. Dembo, Information inequalities and concentration of measure, Ann. Probab.
25 (1997) 927-939.

[11] A. Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Symp.
on Linear Spaces, (Jerusalem, 1961) 123-160.

[12] A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in
normed linear spaces, Proc. Nat. Acad. Sci. USA 36 (1950) 192-197.

[13] T. Figiel, J. Lindenstrauss and V. D. Milman, The dimension of almost spherical
sections of convex bodies, Acta Math. 139 (1977) 53-94.

[14] P. Frankl and Z. Fiiredi, A short proof for a theorem of Harper about Hamming-
spheres, Discrete Math. 34 (1981) 311-313.

[15] A. A. Giannopoulos and V. M. Milman, this handbook.

[16] W. T. Gowers, Symmetric block bases in finite-dimensional normed spaces,
Israel J. Math. 68 (1989) 193-219.

[17] W. T. Gowers, Symmetric block bases of sequences with large average growth,
Israel J. Math. 69 (1990) 129-151.

[18] M. Gromov and V. D. Milman, A topological application of the isoperimetric
inequality, Amer. J. Math. 105 (1983) 843-854.

[19] M. Gromov and V. D. Milman, Generalization of the spherical isoperimetric
inequality to uniformly convex Banach spaces, Compositio Math. 62 (1987) 263—
282.

[20] L. H. Harper, Optimal numberings and isoperimetric problems on graphs, J.
Combinatorial Theory 1 (1966) 385-393.

[21] P. Hitczenko, Best constants in martingale version of Rosenthal’s inequality,
Ann. Probab. 18 (1990) 1656-1668.

[22] W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a
Hilbert space, Contemp. Math. 26 (1984) 189-206

[23] W. B. Johnson and J. Lindenstrauss, this handbook.

[24] W. B. Johnson and G. Schechtman, [;* into [T, Acta Math. 149 (1982) 71-85.

34



[25] W. B. Johnson and G. Schechtman, Remarks on Talagrand’s deviation
inequality for Rademacher functions, in: Functional analysis (Austin, TX,
1987/1989) (Lecture Notes in Math., 1470, Springer, Berlin, 1991) 72-77.

[26] W. B. Johnson and G. Schechtman, this handbook.

[27] W. B. Johnson, G. Schechtman and J. Zinn, Best constants in moment
inequalities for linear combinations of independent and exchangeable random
variables, Ann. Probab. 13 (1985) 234-253.

[28] S. Kwapien, this handbook.

[29] S. Kwapien, J. Szulga, Hypercontraction methods in moment inequalities for
series of independent random variables in normed spaces, Ann. Probab. 19 (1991)
369-379.

[30] M. Ledoux, On Talagrand’s deviation inequalities for product measures, ESAIM
Probab. Statist. 1 (1995/97) 63-87.

[31] M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities,
Preprint (1997).

[32] M. Ledoux and M. Talagrand, Probability in Banach spaces, Isoperimetry and
processes (Springer-Verlag, Berlin, 1991).

[33] L. Leindler, On a certain converse of Holder’s inequality II, Acta Sci. Math.
(Szeged) 33 (1972) 217-223.

[34] R. Lepage, M. Woodroofe and J. Zinn, Convergence to a stable distribution via
order statistics, Ann. Probab. 9 (1981) 624-632.

[35] P. Lévy, Problmes concrets d’analyse fonctionnelle (French) 2d ed. (Gauthier-
Villars, Paris, 1951).

[36] K. Marton, A measure concentration inequality for contracting Markov chains,
Geom. Funct. Anal. 6 (1996) 556-571.

[37] B. Maurey, Construction de suites symétriques. (French) C. R. Acad. Sci. Paris
Sér. A-B 288 (1979) 679-681.

[38] B. Maurey, Some deviation inequalities, Geom. Funct. Anal. 1 (1991) 188-197.

[39] V. D. Milman, A new proof of the theorem of A. Dvoretzky on sections of
convex bodies, Funct. Anal. Appl. 5 (1971) 28-37.

[40] V. D. Milman and G. Schechtman, Asymptotic theory of finite-dimensional
normed spaces (Lecture Notes in Mathematics, 1200. Springer-Verlag, Berlin-
New York, 1986).

[41] V. D. Milman and G. Schechtman, An “isomorphic” version of Dvoretzky’s
theorem, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 541-544.

[42] G. Pisier, On the dimension of the [;-subspaces of Banach spaces, for 1 < p < 2,
Trans. Amer. Math. Soc. 276 (1983) 201-211.

35



[43] G. Pisier, Probabilistic methods in the geometry of Banach spaces, CIME,
Varenna, 1985 (Lecture Notes in Mathematics, 1206. Springer-Verlag, 1986).

[44] G. Pisier, The volume of convex bodies and Banach space geometry Cambridge
University Press (1989).

[45] A. Prékopa, On logarithmic concave measures and functions, Acta Sci. Math.
(Szeged) 34 (1973) 335-343.

[46] G. Schechtman, Lévy type inequality for a class of finite metric spaces, in:
Martingale theory in harmonic analysis and Banach spaces (Cleveland, Ohio,
1981) (Lecture Notes in Math., 939, Springer, Berlin-New York, 1982) 211-215.

[47] G. Schechtman, More on embedding subspaces of L, in [}, Compositio Math.
61 (1987) 159-169.

[48] G. Schechtman and M. Schmuckenschliger, A concentration inequality for
harmonic measures on the sphere, in: Geometric aspects of functional analysis
(Israel, 1992-1994), Oper. Theory Adv. Appl. 77 (1995) 255-273.

[49] G. Schechtman and J. Zinn, On the volume of the intersection of two L; balls
Proc. Amer. Math. Soc. 110 (1990) 217-224.

[50] G. Schechtman and J. Zinn, Concentration on the ¢} ball, in preparation.

[51] R. Schneider, Convez bodies: the Brunn-Minkowski theory (Encyclopedia of
Mathematics and its Applications, 44. Cambridge University Press, Cambridge,
1993).

[52] W. F. Stout, Almost sure convergence (Probability and Mathematical Statistics,
Vol. 24. Academic Press 1974).

[53] M. Talagrand, An isoperimetric theorem on the cube and the Kintchine-Kahane
inequalities Proc. Amer. Math. Soc. 104 (1988) 905-9009.

[54] M. Talagrand, Isoperimetry and integrability of the sum of independent Banach-
space valued random variables, Ann. Probab. 17 (1989) 1546-1570.

[55] M. Talagrand, Embedding subspaces of L; into I, Proc. Amer. Math. Soc.
108 (1990) 363-369.

[56] M. Talagrand, A new isoperimetric inequality and the concentration of
measure phenomenon, Geometric aspects of functional analysis (Israel, 1989-
90), (Lecture Notes in Math., Springer) 1469 (1991) 94-124.

[57] M. Talagrand, Concentration of measure and isoperimetric inequalities in
product spaces, Inst. Hautes Ftudes Sci. Publ. Math. 81 (1995) 73-205.

[58] M. Talagrand, Transportation cost for Gaussian and other product measures,
Geom. Funct. Anal. 6 (1996) 587-600.

[59] V. V. Yurinsky, Exponential bounds for large deviations, Theor. Probab. Appl.
19 (1974) 154-155.

36



