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Abstract. In 1978, Osserman [124] wrote a rather comprehensive survey on the isoperimetric in-
equality. The Brunn-Minkowski inequality can be proved in a page, yet quickly yields the classical
isoperimetric inequality for important classes of subsets of Rn, and deserves to be better known.
We present a guide that explains the relationship between the Brunn-Minkowski inequality and
other inequalities in geometry and analysis, and some of its recent applications.

1. Introduction

About a century ago, not long after the first complete proof of the classical isoperimetric
inequality was found, Minkowski proved the following inequality:

V ((1− λ)K + λL)1/n ≥ (1− λ)V (K)1/n + λV (L)1/n. (1)

Here K and L are convex bodies (compact convex sets with nonempty interiors) in Rn, 0 < λ < 1,
V denotes volume, and + denotes vector or Minkowski sum. The inequality (1) had been proved
for n = 3 earlier by Brunn, and now it is known as the Brunn-Minkowski inequality. It is a sharp
inequality, equality holding if and only if K and L are homothetic.

The Brunn-Minkowski inequality was inspired by issues around the isoperimetric problem, and
was for a long time considered to belong to geometry, where its significance is widely recognized.
It implies, but is much stronger than, the intuitively clear fact that the function that gives the
volumes of parallel hyperplane sections of a convex body is unimodal. It can be proved on a
single page (see Section 6), yet it quickly yields the classical isoperimetric inequality (21) for
convex bodies and other important classes of sets. The fundamental geometric content of the
Brunn-Minkowski inequality makes it a cornerstone of the Brunn-Minkowski theory, a beautiful
and powerful apparatus for conquering all sorts of problems involving metric quantities such as
volume, surface area, and mean width.

By the mid-twentieth century, however, when Lusternik, Hadwiger and Ohmann, and Henstock
and Macbeath had established a satisfactory generalization of (1) and its equality conditions to
Lebesgue measurable sets, the inequality had begun its move into the realm of analysis. The last
twenty years have seen the Brunn-Minkowski inequality consolidate its role as an analytical tool,
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and a compelling picture (see Figure 1) has emerged of its relations to other analytical inequali-
ties. In an integral version of the Brunn-Minkowski inequality often called the Prékopa-Leindler
inequality (12), a reverse form of Hölder’s inequality, the geometry seems to have evaporated.
Largely through the efforts of Brascamp and Lieb, this can be viewed as a special case of a sharp
reverse form (32) of Young’s inequality for convolution norms. A remarkable sharp inequality (36)
proved by Barthe, closely related to (32), takes us up to the present time. The modern viewpoint
entails an interaction between analysis and convex geometry so potent that whole conferences
and books are devoted to “analytical convex geometry” or “convex geometric analysis.”

The main development of this paper includes historical remarks and several detailed proofs
that amplify the previous paragraph and show that even the latest developments are accessible
to graduate students. Several applications are also discussed at some length. Extensions of the
Prékopa-Leindler inequality can be used to obtain concavity properties of probability measures
generated by densities of well-known distributions. Such results are related to Anderson’s theorem
on multivariate unimodality, an application of the Brunn-Minkowski inequality that in turn is
useful in statistics. The entropy power inequality (48) of information theory has a form similar
to that of the Brunn-Minkowski inequality. To some extent this is explained by Lieb’s proof that
the entropy power inequality is a special case of a sharp form of Young’s inequality (31). This is
given in detail along with some brief comments on the role of Fisher information and applications
to physics. We come full circle with consequences of the later inequalities in convex geometry.
Ball started these rolling with his elegant application of the Brascamp-Lieb inequality (35) to the
volume of central sections of the cube and to a reverse isoperimetric inequality (45).

The whole story extends far beyond Figure 1 and the previous paragraph. The final Section 19
is a survey of the many other extensions, analogues, variants, and applications of the Brunn-
Minkowski inequality. Essentially the strongest inequality for compact convex sets in the direction
of the Brunn-Minkowski inequality is the Aleksandrov-Fenchel inequality (51). Here there is a
remarkable link with algebraic geometry: Khovanskii and Teissier independently discovered that
the Aleksandrov-Fenchel inequality can be deduced from the Hodge index theorem. Analogues and
variants of the Brunn-Minkowski inequality include Borell’s inequality (57) for capacity, employed
in the recent solution of the Minkowski problem for capacity; Milman’s reverse Brunn-Minkowski
inequality (64), which features prominently in the local theory of Banach spaces; a discrete Brunn-
Minkowski inequality (65) due to the author and Gronchi, closely related to a rich area of discrete
mathematics, combinatorics, and graph theory concerning discrete isoperimetric inequalities; and
inequalities (67), (68) originating in Busemann’s theorem, motivated by his theory of area in
Finsler spaces and used in Minkowski geometry and geometric tomography. Around the corner
from the Brunn-Minkowski inequality lies a slew of related affine isoperimetric inequalities, such
as the Petty projection inequality (62) and Zhang’s affine Sobolev inequality (63), much more
powerful than the isoperimetric inequality and the classical Sobolev inequality (24), respectively.
There are versions of the Brunn-Minkowski inequality in the sphere, hyperbolic space, Minkowski
spacetime, and Gauss space, and there is a Riemannian version of the Prékopa-Leindler inequality,
obtained very recently by Cordero-Erausquin, McCann, and Schmuckenschläger. Finally, pointers
are given to other applications of the Brunn-Minkowski inequality. Worthy of special mention
here is the derivation of logarithmic Sobolev inequalities from the Prékopa-Leindler inequality by
Bobkov and Ledoux, and work of Brascamp and Lieb, Borell, McCann, and others on diffusion
equations. Measure-preserving convex gradients and transportation of mass, utlilized by McCann
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in applications to shapes of crystals and interacting gases, were also employed by Barthe in the
proof of his inequality.

The reader might share a sense of mystery and excitement. In a sea of mathematics, the Brunn-
Minkowski inequality appears like an octopus, tentacles reaching far and wide, its shape and color
changing as it roams from one area to the next. It is quite clear that research opportunities
abound. For example, what is the relationship between the Aleksandrov-Fenchel inequality and
Barthe’s inequality? Do even stronger inequalities await discovery in the region above Figure 1?
Are there any hidden links between the various inequalities in Section 19? Perhaps, as more
connections and relations are discovered, an underlying comprehensive theory will surface, one in
which the classical Brunn-Minkowski theory represents just one particularly attractive piece of
coral in a whole reef. Within geometry, the work of Lutwak and others in developing the dual
Brunn-Minkowski and Lp-Brunn-Minkowski theories (see Section 19) strongly suggests that this
might well be the case.

An early version of the paper was written to accompany a series of lectures given at the
1999 Workshop on Measure Theory and Real Analysis in Gorizia, Italy. I am very grateful to
Franck Barthe, Apostolos Giannopoulos, Paolo Gronchi, Peter Gruber, Daniel Hug, Elliott Lieb,
Robert McCann, Rolf Schneider, Béla Uhrin, and Gaoyong Zhang for their extensive comments
on previous versions of this paper, as well as to many others who provided information and
references.

2. A first step

An old saying has it that even a journey of a thousand miles must begin with a single step.
Ours will be the following easy result (see Section 3 for definitions and notation).

Theorem 2.1. (Brunn-Minkowski inequality in R.) Let 0 < λ < 1 and let X and Y be nonempty
bounded measurable sets in R such that (1− λ)X + λY is also measurable. Then

V1 ((1− λ)X + λY ) ≥ (1− λ)V1(X) + λV1(Y ). (2)

Proof. Suppose that X and Y are compact sets. It is straightforward to prove that X + Y is also
compact. Since the measures do not change, we can translate X and Y so that X ∩ Y = {o},
X ⊂ {x : x ≤ 0}, and Y ⊂ {x : x ≥ 0}. Then X + Y ⊃ X ∪ Y , so

V1(X + Y ) ≥ V1(X ∪ Y ) = V1(X) + V1(Y ).

If we replace X by (1−λ)X and Y by λY , we obtain (2) for compact X and Y . The general case
follows easily by approximation from within by compact sets. ¤

Simple though it is, Theorem 2.1 already raises two important matters.
Firstly, observe that it was enough to prove the theorem when the factors (1 − λ) and λ

are omitted. This is due to the positive homogeneity (of degree 1) of Lebesgue measure in R:
V1(rX) = rV1(X) for r ≥ 0. In fact, this property allows these factors to be replaced by arbitrary
nonnegative real numbers. For reasons that will become clear, it will be convenient for most of
the paper to incorporate the factors (1− λ) and λ.

Secondly, the set (1− λ)X + λY may not be measurable, even when X and Y are measurable.
We discuss this point in more detail in Section 9.

The assumption in Theorem 2.1 and its n-dimensional forms, Theorem 5.1 and Corollary 5.3
below, that the sets are bounded is easily removed and is retained simply for convenience.
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   Prekopa-Leindler (12)

  
   Holder (11)

  
   General Brunn-Minkowski (14)

  
   Aleksandrov-Fenchel (51)

  
   Barthe (36)

  
   Brascamp-Lieb (35)

  
   Reverse Young (32)

  
    Young (31)

  
   Brunn-Minkowski for C1 domains

  
   Sobolev for C1 functions (24)

  
   Brunn-Minkowski for convex bodies (1)

  
   Minkowski’s first for convex bodies (20)

  
   Isoperimetric for C1 domains

  
   Isoperimetric for convex bodies (21)

  
   Entropy power (48)

.' .

Figure 1. Relations between inequalities labeled as in the text.
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3. A few preliminaries

We denote the origin, unit sphere, and closed unit ball in n-dimensional Euclidean space Rn

by o, Sn−1, and B, respectively. The Euclidean scalar product of x and y will be written x · y,
and ‖x‖ denotes the Euclidean norm of x. If u ∈ Sn−1, then u⊥ is the hyperplane containing o
and orthogonal to u.

Lebesgue k-dimensional measure Vk in Rn, k = 1, . . . , n, can be identified with k-dimensional
Hausdorff measure in Rn. Then spherical Lebesgue measure in Sn−1 can be identified with Vn−1

in Sn−1. In this paper dx will denote integration with respect to Vk for the appropriate k and
integration over Sn−1 with respect to Vn−1 will be denoted by du.

The term “measurable” applied to a set in Rn will mean Vn-measurable unless stated otherwise.
If X is a compact set in Rn with nonempty interior, we often write V (X) = Vn(X) for its volume.

We shall do this in particular when X is a convex body, a compact convex set with nonempty
interior. We also write κn = V (B). In geometry, it is customary to use the term volume, more
generally, to mean the k-dimensional Lebesgue measure of a k-dimensional compact body X (equal
to the closure of its relative interior), i.e. to write V (X) = Vk(X) in this case.

Let X and Y be sets in Rn. We define their vector or Minkowski sum by

X + Y = {x + y : x ∈ X, y ∈ Y }.
If r ∈ R, let

rX = {rx : x ∈ X}.
If r > 0, then rX is the dilatation of X with factor r, and if r < 0, it is the reflection of this
dilatation in the origin. If 0 < λ < 1, the set (1− λ)X + λY is called a convex combination of X
and Y .

Minkowski’s definition of the surface area S(M) of a suitable set M in Rn is

S(M) = lim
ε→0+

Vn(M + εB)− Vn(M)
ε

. (3)

In this paper we will use this definition when M is a convex body or a compact domain with
piecewise C1 boundary.

A function f on Rn is concave on a convex set C if

f ((1− λ)x + λy) ≥ (1− λ)f(x) + λf(y),

for all x, y ∈ C and 0 < λ < 1, and a function f is convex if −f is concave. A nonnegative
function f is log concave if log f is concave. Since the latter condition is equivalent to

f ((1− λ)x + λy) ≥ f(x)1−λf(y)λ,

the arithmetic-geometric mean inequality implies that each concave function is log concave.
If f is a nonnegative measurable function on Rn and t ≥ 0, the level set L(f, t) is defined by

L(f, t) = {x : f(x) ≥ t}. (4)

By Fubini’s theorem,
∫

Rn

f(x) dx =
∫

Rn

∫ f(x)

0
1 dt dx =

∫ ∞

0

∫

L(f,t)
1 dx dt =

∫ ∞

0
Vn (L(f, t)) dt. (5)
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If E is a set, 1E denotes the characteristic function of E. The formula

f(x) =
∫ ∞

0
1L(f,t)(x) dt (6)

follows easily from f(x) =
∫ f(x)
0 dt. In [91, Theorem 1.13], equation (6) is called the layer cake

representation of f .

4. The Prékopa-Leindler inequality

Theorem 4.1. (Prékopa-Leindler inequality in R.) Let 0 < λ < 1 and let f , g, and h be
nonnegative integrable functions on R satisfying

h ((1− λ)x + λy) ≥ f(x)1−λg(y)λ, (7)

for all x, y ∈ R. Then

∫

R
h(x) dx ≥

(∫

R
f(x) dx

)1−λ (∫

R
g(x) dx

)λ

.

Two proofs of this fundamental result will be presented after a comment about the strange-
looking assumption (7) that ensures h is not too small. Fix a z ∈ R and choose 0 < λ < 1 and
any x, y ∈ R such that z = (1− λ)x + λy. Then the value of h at z must be at least the weighted
geometric mean (it is the geometric mean if λ = 1/2) of the values of f at x and g at y. Note
also that the logarithm of (7) yields the equivalent condition

log h ((1− λ)x + λy) ≥ (1− λ) log f(x) + λ log g(y).

If f = g = h, we would have

log f ((1− λ)x + λy) ≥ (1− λ) log f(x) + λ log f(y),

which just says that f is log concave. Of course, the previous theorem does not say anything
when f = g = h.

First proof. We can assume without loss of generality that f and g are bounded with

sup
x∈R

f(x) = sup
x∈R

g(x) = 1.

If t ≥ 0, f(x) ≥ t, and g(y) ≥ t, then by (7), h ((1− λ)x + λy) ≥ t. With the notation (4) for
level sets,

L(h, t) ⊃ (1− λ)L(f, t) + λL(g, t),
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for 0 ≤ t < 1. The sets on the right-hand side are nonempty, so by (5), the Brunn-Minkowski
inequality (2) in R, and the arithmetic-geometric mean inequality, we obtain

∫

R
h(x) dx ≥

∫ 1

0
V1 (L(h, t)) dt

≥
∫ 1

0
V1 ((1− λ)L(f, t) + λL(g, t)) dt

≥ (1− λ)
∫ 1

0
V1 (L(f, t)) dt + λ

∫ ∞

0
V1 (L(g, t)) dt

= (1− λ)
∫

R
f(x) dx + λ

∫

R
g(x) dx

≥
(∫

R
f(x) dx

)1−λ (∫

R
g(x) dx

)λ

.

¤

Second proof. We can assume without loss of generality that∫

R
f(x) dx = F > 0 and

∫

R
g(x) dx = G > 0.

Define u, v : [0, 1] → R such that u(t) and v(t) are the smallest numbers satisfying

1
F

∫ u(t)

−∞
f(x) dx =

1
G

∫ v(t)

−∞
g(x) dx = t. (8)

Then u and v may be discontinuous, but they are strictly increasing functions and so are differ-
entiable almost everywhere. Let

w(t) = (1− λ)u(t) + λv(t).

Take the derivative of (8) with respect to t to obtain

f (u(t))u′(t)
F

=
g (v(t)) v′(t)

G
= 1.

Using this and the arithmetic-geometric mean inequality, we obtain (when f (u(t)) 6= 0 and
g (u(t)) 6= 0)

w′(t) = (1− λ)u′(t) + λv′(t)

≥ u′(t)1−λv′(t)λ

=
(

F

f (u(t))

)1−λ (
G

g (v(t))

)λ

.

Therefore∫

R
h(x) dx ≥

∫ 1

0
h (w(t))w′(t) dt

≥
∫ 1

0
f (u(t))1−λ g (v(t))λ

(
F

f (u(t))

)1−λ (
G

g (v(t))

)λ

dt = F 1−λGλ.
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¤
There are two basic ingredients in the second proof of Theorem 4.1: the introduction in (8) of

the volume parameter t, and use of the arithmetic-geometric mean inequality in estimating w′(t).
The same ingredients appear in the first proof, though the parametrization is somewhat disguised
in the use of the level sets.

Theorem 4.2. (Prékopa-Leindler inequality in Rn.) Let 0 < λ < 1 and let f , g, and h be
nonnegative integrable functions on Rn satisfying

h ((1− λ)x + λy) ≥ f(x)1−λg(y)λ, (9)

for all x, y ∈ Rn. Then
∫

Rn

h(x) dx ≥
(∫

Rn

f(x) dx

)1−λ (∫

Rn

g(x) dx

)λ

.

Proof. The proof is by induction on n. It is true for n = 1, by Theorem 4.1. Suppose that it is
true for all natural numbers less than n.

For each s ∈ R, define a nonnegative function hs on Rn−1 by hs(z) = h(z, s) for z ∈ Rn−1, and
define fs and gs analogously. Let x, y ∈ Rn−1, let a, b ∈ R, and let c = (1− λ)a + λb. Then

hc ((1− λ)x + λy) = h ((1− λ)x + λy, (1− λ)a + λb)
= h ((1− λ)(x, a) + λ(y, b))

≥ f(x, a)1−λg(y, b)λ

= fa(x)1−λgb(y)λ.

By the inductive hypothesis,
∫

Rn−1

hc(x) dx ≥
(∫

Rn−1

fa(x) dx

)1−λ (∫

Rn−1

gb(x) dx

)λ

.

Let

H(c) =
∫

Rn−1

hc(x) dx, F (a) =
∫

Rn−1

fa(x) dx, and G(b) =
∫

Rn−1

gb(x) dx.

Then
H(c) = H ((1− λ)a + λb) ≥ F (a)1−λG(b)λ.

So, by Fubini’s theorem and Theorem 4.1,∫

Rn

h(x) dx =
∫

R

∫

Rn−1

hc(z) dz dc

=
∫

R
H(c) dc

≥
(∫

R
F (a) da

)1−λ (∫

R
G(b) db

)λ

=
(∫

Rn

f(x) dx

)1−λ (∫

Rn

g(x) dx

)λ

.

¤
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Suppose that fi ∈ Lpi(Rn), pi ≥ 1, i = 1, . . . , m are nonnegative functions, where
1
p1

+ · · ·+ 1
pm

= 1. (10)

Hölder’s inequality in Rn states that
∫

Rn

m∏

i=1

fi(x) dx ≤
m∏

i=1

‖fi‖pi =
m∏

i=1

(∫

Rn

fi(x)pi dx

)1/pi

. (11)

Let 0 < λ < 1. If m = 2, 1/p1 = 1− λ, 1/p2 = λ, and we let f = fp1
1 and g = fp2

2 , we get
∫

Rn

f(x)1−λg(x)λ dx ≤
(∫

Rn

f(x) dx

)1−λ (∫

Rn

g(x) dx

)λ

.

The Prékopa-Leindler inequality in Rn can be written in the form
∫

Rn

sup{f(x)1−λg(y)λ : (1− λ)x + λy = z} dz ≥
(∫

Rn

f(x) dx

)1−λ (∫

Rn

g(x) dx

)λ

,
(12)

because we can use the supremum for h in (9). A straightforward generalization is
∫

Rn

sup

{
m∏

i=1

fi(xi) :
m∑

i=1

xi

pi
= z

}
dz ≥

m∏

i=1

‖fi‖pi , (13)

where pi ≥ 1 for each i and (10) holds. So we see that the Prékopa-Leindler inequality is a reverse
form of Hölder’s inequality and that some condition such as (7) is therefore necessary for it to
hold.

Notice that the upper Lebesgue integral is used on the left in (12) and (13). This is because
the integrands there are generally not measurable. We shall return to this point in Section 9.

5. The Brunn-Minkowski inequality

In this section the Brunn-Minkowski inequality is derived from the Prékopa-Leindler inequality.
A different and self-contained short proof can be found in Section 6.

Theorem 5.1. (General Brunn-Minkowski inequality in Rn, first form.) Let 0 < λ < 1 and let
X and Y be bounded measurable sets in Rn such that (1− λ)X + λY is also measurable. Then

Vn ((1− λ)X + λY ) ≥ Vn(X)1−λVn(Y )λ. (14)

Theorem 5.2. The Prékopa-Leindler inequality in Rn implies the general Brunn-Minkowski in-
equality in Rn.

Proof. Let h = 1(1−λ)X+λY , f = 1X , and g = 1Y . If x, y ∈ Rn, then f(x)1−λg(y)λ > 0 (and in fact
equals 1) if and only if x ∈ X and y ∈ Y . The latter implies (1−λ)x+λy ∈ (1−λ)X +λY , which
is true if and only if h ((1− λ)x + λy) = 1. Therefore (9) holds. We conclude by Theorem 4.2
that

Vn ((1− λ)X + λY ) =
∫

Rn

1(1−λ)X+λY (x) dx

≥
(∫

Rn

1X(x) dx

)1−λ (∫

Rn

1Y (x) dx

)λ

= Vn(X)1−λVn(Y )λ.
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¤

Corollary 5.3. (General Brunn-Minkowski inequality in Rn, standard form.) Let 0 < λ < 1
and let X and Y be nonempty bounded measurable sets in Rn such that (1 − λ)X + λY is also
measurable. Then

Vn ((1− λ)X + λY )1/n ≥ (1− λ)Vn(X)1/n + λVn(Y )1/n. (15)

Proof. Let

λ′ =
Vn(Y )1/n

Vn(X)1/n + Vn(Y )1/n

and let X ′ = Vn(X)−1/nX and Y ′ = Vn(Y )−1/nY . Then

1− λ′ =
Vn(X)1/n

Vn(X)1/n + Vn(Y )1/n

and Vn(X ′) = Vn(Y ′) = 1, by the positive homogeneity (of degree n) of Lebesgue measure in Rn

(Vn(rA) = rnVn(A) for r ≥ 0). Therefore (14), applied to X ′, Y ′, and λ′, yields

Vn

(
(1− λ′)X ′ + λ′Y ′) ≥ 1.

But

Vn

(
(1− λ′)X ′ + λ′Y ′) = Vn

(
X + Y

Vn(X)1/n + Vn(Y )1/n

)
=

Vn(X + Y )(
Vn(X)1/n + Vn(Y )1/n

)n .

This gives
Vn(X + Y )1/n ≥ Vn(X)1/n + Vn(Y )1/n.

To obtain (15), just replace X and Y by (1− λ)X and λY , respectively. ¤

Remark 5.4. Using the homogeneity of volume, it follows that for all s, t > 0,

Vn (sX + tY )1/n ≥ sVn(X)1/n + tVn(Y )1/n. (16)

Note the advantages of the first form (14) of the general Brunn-Minkowski inequality. One
need not assume that X and Y are nonempty, and the inequality is independent of the dimension
n. The two forms are equivalent, however; to get from the standard to the first form, just use
Jensen’s inequality for means (see (28) below with p = 0 and q = 1/n).

6. History, alternative proofs, and equality conditions

For detailed remarks and references concerning the early history of the Brunn-Minkowski in-
equality for convex bodies, see [134, p. 314]. Briefly, the inequality for convex bodies in R3 was
discovered by Brunn around 1887. Minkowski pointed out an error in the proof, which Brunn
corrected, and found a different proof himself. Both Brunn and Minkowski showed that equality
holds if and only if K and L are homothetic (i.e., K and L are equal up to translation and dilata-
tion). The proof presented in [134, Section 6.1], due to Kneser and Süss in 1932, is very similar to
the proof we gave above of the Prékopa-Leindler inequality, restricted to characteristic functions
of convex bodies; note that the case n = 1 is trivial, and the equality condition vacuous, in this
case. This is perhaps the simplest approach for the equality conditions for convex bodies.
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Another quite different proof, due to Blaschke in 1917, is worth mentioning. This uses Steiner
symmetrization. Let K be a convex body in Rn and let u ∈ Sn−1. The Steiner symmetral SuK of
K in the direction u is the convex body obtained from K by sliding each of its chords parallel to
u so that they are bisected by the hyperplane u⊥, and taking the union of the resulting chords.
Then V (SuK) = V (K) by Cavalieri’s principle, and it is not hard to show that if K and L are
convex bodies in Rn, then

Su(K + L) ⊃ SuK + SuL. (17)

One can also prove that there is a sequence of directions um ∈ Sn−1 such that if K is any convex
body and Km = SumKm−1, then Km → rKB as m → ∞, where rK is the constant such that
V (K) = V (rKB). Repeated application of (17) now gives

V (K + L)1/n ≥ V (rKB + rLB)1/n = (rR + rL)V (B)1/n

= V (rKB)1/n + V (rLB)1/n = V (K)1/n + V (L)1/n.

See [53, Chapter 5, Section 5] or [150, pp. 310–314] for more details.
The general Brunn-Minkowski inequality and its equality conditions were first proved by Lus-

ternik [94]. The equality conditions he gave were corrected by Henstock and Macbeath [78], who
basically used the method in the second proof of Theorem 4.1 to derive the inequality. Another
method, found by Hadwiger and Ohmann [76], is so beautiful that we cannot resist reproducing
it in full (see also [37, Section 8], [51, Section 6.6], [58, Theorem 3.2.41], or [150, Section 6.5]).
The idea is to prove the result first for boxes, rectangular parallelepipeds whose sides are parallel
to the coordinate hyperplanes. If X and Y are boxes with sides of length xi and yi, respectively,
in the ith coordinate directions, then

V (X) =
n∏

i=1

xi, V (Y ) =
n∏

i=1

yi, and V (X + Y ) =
n∏

i=1

(xi + yi).

Now
(

n∏

i=1

xi

xi + yi

)1/n

+

(
n∏

i=1

yi

xi + yi

)1/n

≤ 1
n

n∑

i=1

xi

xi + yi
+

1
n

n∑

i=1

yi

xi + yi
= 1,

by the arithmetic-geometric mean inequality. This gives the Brunn-Minkowski inequality for
boxes. One then uses a trick sometimes called a Hadwiger-Ohmann cut to obtain the inequality
for finite unions X and Y of boxes, as follows. By translating X, if necessary, we can assume
that a coordinate hyperplane, {xn = 0} say, separates two boxes in X. Let X+ (or X−) denote
the union of the boxes formed by intersecting the boxes in X with {xn ≥ 0} (or {xn ≤ 0},
respectively). Now translate Y so that

V (X±)
V (X)

=
V (Y±)
V (Y )

, (18)

where Y+ and Y− are defined analogously to X+ and X−. Note that X+ + Y+ ⊂ {xn ≥ 0},
X− + Y− ⊂ {xn ≤ 0}, and that the numbers of boxes in X+ ∪ Y+ and X− ∪ Y− are both smaller
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than the number of boxes in X ∪ Y . By induction on the latter number and (18), we have

V (X + Y ) ≥ V (X+ + Y+) + V (X− + Y−)

≥
(
V (X+)1/n + V (Y+)1/n

)n
+

(
V (X−)1/n + V (Y−)1/n

)n

= V (X+)

(
1 +

V (Y )1/n

V (X)1/n

)n

+ V (X−)

(
1 +

V (Y )1/n

V (X)1/n

)n

= V (X)

(
1 +

V (Y )1/n

V (X)1/n

)n

=
(
V (X)1/n + V (Y )1/n

)n
.

Now that the inequality is established for finite unions of boxes, the proof is completed by using
them to approximate bounded measurable sets. A careful examination of this proof allows one to
conclude that if Vn(X)Vn(Y ) > 0, equality holds only when

Vn ((conv X) \X) = Vn ((conv Y ) \ Y ) = 0,

where conv X denotes the convex hull of X. Putting the equality conditions above together, we
see that if Vn(X)Vn(Y ) > 0, equality holds in the general Brunn-Minkowski inequality (5.1) or
(5.3) if and only if X and Y are homothetic convex bodies from which sets of measure zero have
been removed. See [37, Section 8] and [150, Section 6.5] for more details and further comments
about the case when X or Y has measure zero.

Since Hölder’s inequality (11) in its discrete form implies the arithmetic-geometric mean in-
equality, there is a sense in which Hölder’s inequality implies the Brunn-Minkowski inequality.
The dotted arrow in Figure 1 reflects the controversial nature of this implication.

Though the Hadwiger-Ohmann proof looks quite different from the Henstock-Macbeath ap-
proach, it shares the same two basic ingredients mentioned after Theorem 4.1, since the Hadwiger-
Ohmann cut (18) is tantamount to a parametrization by volume.

The Prékopa-Leindler inequality was explicitly stated and proved by Prékopa [128], [129] and
Leindler [87]. (See also the historical remarks after Theorem 10.2, however.) The first proof of
Theorem 4.1 presented here, which follows that of Brascamp and Lieb [35, Theorem 3.1], is also
reproduced in [127, Theorem 1.1]. The parametrization idea in the second proof of Theorem 4.1
goes back to Bonnesen; see [47] and the references given there. The induction in Theorem 4.2 can
be avoided and the inequality proved at once in Rn by means of the so-called Knothe map (see
[120, p. 186]).

Quite complicated equality conditions for the Prékopa-Leindler inequality in R are given in [45]
and [146], but equality conditions in Rn seem to be unknown.

Recently, Borell found a “Brownian motion” proof of the Brunn-Minkowski inequality that
depends on a generalization of the Prékopa-Leindler inequality, too complicated to be stated
here, involving diffusion equations; see [32] and also Section 19.14.

7. Minkowski’s first inequality and the isoperimetric inequality

For some classes of sets such as convex bodies, the Brunn-Minkowski inequality is equivalent
to another inequality of Minkowski that immediately yields the isoperimetric inequality. This
involves a quantity V1(K,L) depending on two convex bodies K and L in Rn that can be defined
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by

nV1(K, L) = lim
ε→0+

V (K + εL)− V (K)
ε

. (19)

Note that if L = B, then S(K) = nV1(K,B); it is this relationship that will quickly lead us to the
isoperimetric inequality and its equality condition. An even shorter path (see [67, Theorem B.2.1])
yields the inequality but without the equality condition.

The quantity V1(K, L) is a special mixed volume, and its existence requires just a little of the
theory of mixed volumes to establish; see [150, Section 6.4]. In fact, Minkowski showed that
if K1, . . . , Km are compact convex sets in Rn, and t1, . . . , tm ≥ 0, the volume V (

∑{tiKi : i =
1, . . . , m}) is a polynomial of degree n in the variables t1, . . . , tm. The coefficient V (Kj1 , . . . , Kjn)
of tj1 · · · tjn in this polynomial is called a mixed volume. Then V1(K, L) = V (K, n− 1;L), where
the notation means that K appears (n− 1) times and L appears once. See [67, Appendix A] for
a gentle introduction to mixed volumes.

Theorem 7.1. (Minkowski’s first inequality for convex bodies in Rn.) Let K and L be convex
bodies in Rn. Then

V1(K, L) ≥ V (K)(n−1)/nV (L)1/n, (20)

with equality if and only if K and L are homothetic.

Minkowski’s first inequality plays a role in the solution of Shephard’s problem: If the projection
of a centrally symmetric (i.e., −K is a translate of K) convex body onto any given hyperplane is
always smaller in volume than that of another such body, is its volume also smaller? The answer
is no in general in three or more dimensions; see [67, Chapter 4] and [99, p. 255].

Theorem 7.2. The Brunn-Minkowski inequality for convex bodies in Rn (and its equality condi-
tion) implies Minkowski’s first inequality for convex bodies in Rn (and its equality condition).

Proof. Substituting ε = t/(1− t) in (19) and using the homogeneity of volume, we obtain

nV1(K, L) = lim
ε→0+

V (K + εL)− V (K)
ε

= lim
t→0+

V ((1− t)K + tL)− (1− t)nV (K)
t(1− t)n−1

= lim
t→0+

V ((1− t)K + tL)− V (K)
t

+ lim
t→0+

(1− (1− t)n))V (K)
t

= lim
t→0+

V ((1− t)K + tL)− V (K)
t

+ nV (K).

Using this new expression for V1(K, L) (see [107, p. 7]) and letting f(t) = V ((1− t)K + tL)1/n,
for 0 ≤ t ≤ 1, we see that

f ′(0) =
V1(K, L)− V (K)

V (K)(n−1)/n
.

Therefore (20) is equivalent to f ′(0) ≥ f(1) − f(0). Since the Brunn-Minkowski inequality says
that f is concave, Minkowski’s first inequality follows.
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Suppose that equality holds in (20). Then f ′(0) = f(1)− f(0). Since f is concave, we have

f(t)− f(0)
t

= f(1)− f(0)

for 0 < t ≤ 1, and this is just equality in the Brunn-Minkowski inequality. The equality condition
for (20) follows immediately. ¤

The following corollary is obtained by taking L = B in Theorem 7.1.

Corollary 7.3. (Isoperimetric inequality for convex bodies in Rn.) Let K be a convex body in
Rn. Then

(
V (K)
V (B)

)1/n

≤
(

S(K)
S(B)

)1/(n−1)

, (21)

with equality if and only if K is a ball.

It can be shown (see [152]) that if M is a compact domain in Rn with piecewise C1 boundary
and L is a convex body in Rn, the quantity V1(M, L) defined by (19) with K replaced by M exists.
From the Brunn-Minkowski inequality for compact domains in Rn with piecewise C1 boundary
and the above argument, one obtains Minkowski’s first inequality when the convex body K is
replaced by such a domain. Taking L = B, this immediately gives the isoperimetric inequality
for compact domains in Rn with piecewise C1 boundary.

Essentially the most general class of sets for which the isoperimetric inequality in Rn is known
to hold comprises the sets of finite perimeter; see, for example, the book of Evans and Gariepy
[57, p. 190], where the rather technical setting, sometimes called the BV theory, is expounded. It
is still possible to base the proof on the Brunn-Minkowski inequality, as Fonseca [62, Theorem 4.2]
demonstrates, by first obtaining the isoperimetric inequality for suitably smooth sets and then
applying various measure-theoretic approximation arguments. In fact, Fonseca’s result is more
general (see the material in Section 19.14 on Wulff shape of crystals). A strong form of the
Brunn-Minkowski inequality is also used by Fonseca and Müller [63], again in the more general
context of Wulff shape, to establish the corresponding equality conditions (the same as for (21)).

There is (see [134, Theorem 5.1.6] and [152]) an integral representation for mixed volumes, and
in particular,

V1(M, L) =
1
n

∫

∂M
hL(ux) dx, (22)

where hL is the support function of L and ux is the outer unit normal vector to ∂M at x. (If
we replace hL by an arbitrary function f on Sn−1, then up to a constant, this integral represents
the surface energy of a crystal with shape M , where f is the surface tension; see Section 19.14.)
When M = K is a sufficiently smooth convex body, (22) can be written

V1(K, L) =
1
n

∫

Sn−1

hL(u)fK(u) du, (23)

where fK is the reciprocal of the Gauss curvature of K at the point on ∂K where the outer unit
normal is u; for general convex bodies, fK(u) du must be replaced by dS(K,u), where S(K, ·)
is the surface area measure of K. Minkowski’s existence theorem gives necessary and sufficient
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conditions for a measure µ in Sn−1 to be the surface area measure of some convex body. Now
(20) and (23) imply that if S(K, ·) = µ, then K minimizes the functional

L →
∫

Sn−1

hL(u) dµ

under the condition that V (L) = 1, and this fact motivates the proof of Minkowski’s existence
theorem. See [134, Section 7.1], where pointers can also be found to the vast literature surrounding
the so-called Minkowski problem, which deals with existence, uniqueness, regularity, and stability
of a closed convex hypersurface whose Gauss curvature is prescribed as a function of its outer
normals.

8. The Sobolev inequality

Theorem 8.1. (Sobolev inequality.) Let f be a C1 function on Rn with compact support. Then∫

Rn

‖∇f(x)‖ dx ≥ nκ1/n
n ‖f‖n/(n−1). (24)

The previous inequality is only one of a family, all called Sobolev inequalities. See [91, Chap-
ter 8], where it is pointed out that such inequalities bound averages of gradients from below by
weighted averages of the function, and can thus be considered as uncertainty principles.

Theorem 8.2. The Sobolev inequality is equivalent to the isoperimetric inequality for compact
domains with C1 boundaries.

Proof. Suppose that the isoperimetric inequality holds, and let f be a C1 function on Rn with
compact support. The coarea formula (a sort of curvilinear Fubini theorem; see [57, p. 112])
implies that ∫

Rn

‖∇f(x)‖ dx =
∫

R
Vn−1(f−1{t}) dt

=
∫ ∞

0
S (L(|f |, t)) dt,

where L(|f |, t) is a level set of |f |, as in (4). Applying the the isoperimetric inequality for compact
domains with C1 boundaries to these level sets, we obtain∫

Rn

‖∇f(x)‖ dx ≥ nκ1/n
n

∫ ∞

0
V (L(|f |, t))(n−1)/n dt.

On the other hand, by (6) and Minkowski’s inequality for integrals (see [77, (6.13.9), p. 148]), we
have

(∫

Rn

|f(x)|n/(n−1) dx

)(n−1)/n

=

(∫

Rn

(∫ ∞

0
1L(|f |,t)(x) dt

)n/(n−1)

dx

)(n−1)/n

≤
∫ ∞

0

(∫

Rn

1L(|f |,t)(x)n/(n−1) dx

)(n−1)/n

dt

=
∫ ∞

0
V (L(|f |, t))(n−1)/n dt.



16 R. J. GARDNER

Therefore (24) is true.
Suppose that (24) holds, let M be a compact domain in Rn with C1 boundary ∂M , and let

ε > 0. Define fε(x) = 1 if x ∈ M , fε(x) = 0 if x 6∈ M + εB, and fε(x) = 1 − d(x, M)/ε if
x ∈ (M + εB) \M , where d(x,M) is the distance from x to M . Since fε can be approximated
by C1 functions on Rn with compact support, we can assume that (24) holds for fε. Note that
fε → 1M as ε → 0. Also, ‖∇fε(x)‖ = 1/ε if x ∈ (M + εB) \M and is zero otherwise. Therefore,
by (3),

S(M) = lim
ε→0+

V (M + εB)− V (M)
ε

= lim
ε→0+

∫

Rn

‖∇fε(x)‖ dx

≥ lim
ε→0+

nκ1/n
n

(∫

Rn

|fε(x)|n/(n−1) dx

)(n−1)/n

= nκ1/n
n

(∫

Rn

1M (x) dx

)(n−1)/n

= nκ1/n
n V (M)(n−1)/n,

which is just a reorganization of the isoperimetric inequality (21) . ¤

As for the isoperimetric inequality, there is a more general version of the Sobolev inequality in
the BV theory. This is called the Gagliardo-Nirenberg-Sobolev inequality and it is equivalent to
the isoperimetric inequality for sets of finite perimeter; see [57, pp. 138 and 192].

The Prékopa-Leindler inequality can also be used to obtain logarithmic Sobolev inequalities;
see Section 19.14.

9. Measurability in Brunn-Minkowski and Prékopa-Leindler

If X and Y are Borel sets, then (1 − λ)X + λY , being a continuous image of their product,
is analytic and hence measurable. (Erdös and Stone [56] proved that this set need not itself be
Borel.) However, an old example of Sierpiński [137] shows that the set (1− λ)X + λY may not
be measurable when X and Y are measurable.

There are a couple of ways around the measurability problem. One can simply replace the
measure on the left of the Brunn-Minkowski inequality by inner Lebesgue measure Vn∗, the
supremum of the measures of compact subsets, thus:

Vn∗ ((1− λ)X + λY )1/n ≥ (1− λ)Vn(X)1/n + λVn(Y )1/n.

A better solution is to obtain a slightly improved version of the Prékopa-Leindler inequality, and
then deduce a corresponding improved Brunn-Minkowski inequality, as follows.

Recall that the essential supremum of a measurable function f on Rn is defined by

ess sup
x∈Rn

f(x) = inf{t : f(x) ≤ t for almost all x ∈ Rn}.

Brascamp and Lieb [35] proved the following result. (According to Uhrin [146], the idea of
using the essential supremum in connection with our topic occurred independently to S. Dancs.)
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Theorem 9.1. (Prékopa-Leindler inequality in Rn, essential form.) Let 0 < λ < 1 and let
f, g ∈ L1(Rn) be nonnegative. Let

s(x) = ess sup
y

f

(
x− y

1− λ

)1−λ

g
(y

λ

)λ
. (25)

Then s is measurable and
‖s‖1 ≥ ‖f‖1−λ

1 ‖g‖λ
1 .

Proof. First note that s is measurable. Indeed,

s(x) = sup
φ∈D

∫

Rn

f

(
x− y

1− λ

)1−λ

g
(y

λ

)λ
φ(y) dy,

where D is a countable dense subset of the unit ball of L1(Rn). Therefore s is the supremum of
a countable family of measurable functions.

With the measurability of s in hand, the proof follows that of the usual Prékopa-Leindler
inequality presented in Section 4. ¤

The essential form of the Prékopa-Leindler inequality inRn implies the usual form, Theorem 4.2.
To see this, replace x by z and y by λy′ in (25) and then let x = (z − λy′)/(1− λ) to obtain

s(z) = ess sup
y′

f

(
z − λy′

1− λ

)1−λ

g(y′)λ

= ess sup{f(x)1−λg(y)λ : z = (1− λ)x + λy}.
Now if h is any integrable function satisfying

h ((1− λ)x + λy) ≥ f(x)1−λg(y)λ,

we must have h ≥ s almost everywhere. It follows from Theorem 9.1 that

‖h‖1 ≥ ‖s‖1 ≥ ‖f‖1−λ
1 ‖g‖λ

1 .

The corresponding improvement of the Brunn-Minkowski inequality requires one new concept.
Note that the usual Minkowski sum of X and Y can be written

X + Y = {z : X ∩ (z − Y )} 6= ∅.
Adjust this by defining the essential sum of X and Y by

X +e Y = {z : Vn (X ∩ (z − Y )) > 0}.
While

1X+Y (z) = sup
x∈Rn

1X(x)1Y (z − x),

it is easy to see that

1X+eY (z) = ess sup
x∈Rn

1X(x)1Y (z − x). (26)

Theorem 9.2. (General Brunn-Minkowski inequality in Rn, essential form.) Let 0 < λ < 1 and
let X and Y be nonempty bounded measurable sets in Rn. Then

Vn ((1− λ)X +e λY )1/n ≥ (1− λ)Vn(X)1/n + λVn(Y )1/n. (27)
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Proof. In Theorem 9.1, let f = 1(1−λ)X and g = 1λY . Then, by (26),

1(1−λ)X+eλY (z) = ess sup
x∈Rn

1(1−λ)X(x)1λY (z − x)

= ess sup
x∈Rn

1X

(
x

1− λ

)
1Y

(
z − x

λ

)

= ess sup
y∈Rn

1X

(
z − y

1− λ

)
1Y

(y

λ

)
= s(z).

The inequality

Vn ((1− λ)X +e λY ) ≥ Vn(X)1−λVn(Y )λ,

and hence (27), now follow exactly as in Section 5. ¤

A direct proof of the previous theorem is given in [35, Appendix]. Here is a sketch. One first
shows that X +e Y is measurable (indeed, open). This is proved using the set A∗ of density points
of a measurable set A, that is,

A∗ =
{

x ∈ Rn : lim
ε→0+

Vn (A ∩B(x, ε))
Vn(B(x, ε))

= 1
}

,

where B(x, ε) is a ball with center at x and radius ε. Then Vn(A4A∗) = 0, where 4 denotes
symmetric difference, and this implies that

X +e Y = X∗ +e Y ∗.

Now it can be shown that X∗ +e Y ∗ is open and

X∗ +e Y ∗ = X∗ + Y ∗.

The Brunn-Minkowski inequality (15) in Rn then implies (27).

10. p-concave functions and measures

If f is a nonnegative integrable function defined on a measurable subset A of Rn, and µ is
defined by

µ(X) =
∫

A∩X
f(x) dx,

for all measurable subsets X of Rn, we say that µ is generated by f and A.
The Prékopa-Leindler inequality implies that if f is log concave and C is an open convex subset

of its support, then the measure µ generated by f and C is also log concave. Indeed, if 0 < λ < 1,
X and Y are measurable sets, and z = (1− λ)x + λy, then the log concavity of f implies

f(z)1C∩((1−λ)X+λY )(z) ≥ (f(x)1C∩X(x))1−λ (f(y)1C∩Y (y))λ ,
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so we can apply Theorem 4.2 to obtain

µ ((1− λ)X + λY ) =
∫

C∩((1−λ)X+λY )
f(z) dz

=
∫

Rn

f(z)1C∩((1−λ)X+λY )(z) dz

≥
(∫

Rn

f(x)1C∩X(x) dx

)1−λ (∫

Rn

f(x)1C∩Y (x) dx

)λ

=
(∫

C∩X
f(x) dx

)1−λ (∫

C∩Y
f(x) dx

)λ

= µ(X)1−λµ(Y )λ.

This observation has been generalized considerably, as follows. If 0 < λ < 1 and p 6= 0, we
define

Mp(a, b, λ) = ((1− λ)ap + λbp)1/p

if ab 6= 0 and Mp(a, b, λ) = 0 if ab = 0; we also define

M0(a, b, λ) = a1−λbλ,

M−∞(a, b, λ) = min{a, b}, and M∞(a, b, λ) = max{a, b}. These quantities and their natural
generalizations for more than two numbers are called pth means. The classic text of Hardy, Lit-
tlewood, and Pólya [77] is still the best general reference. (Note, however, the different convention
here when p > 0 and ab = 0.) Jensen’s inequality for means (see [77, Section 2.9]) implies that if
−∞ ≤ p < q ≤ ∞, then

Mp(a, b, λ) ≤ Mq(a, b, λ), (28)

with equality if and only if a = b or ab = 0.
A nonnegative function f on Rn is called p-concave on a convex set C if

f ((1− λ)x + λy) ≥ Mp(f(x), f(y), λ),

for all x, y ∈ C and 0 < λ < 1. Analogously, we say that a finite (nonnegative) measure µ defined
on (Lebesgue) measurable subsets of Rn is p-concave if

µ ((1− λ)X + λY ) ≥ Mp(µ(X), µ(Y ), λ),

for all measurable sets X and Y in Rn and 0 < λ < 1.
Thus 1-concave is just concave in the usual sense and 0-concave is log concave. The term

quasiconcave is sometimes used for −∞-concave. Also, if p > 0 (or p < 0), then f is p-concave if
and only if fp is concave (or convex, respectively). It follows from Jensen’s inequality (28) that
a p-concave function or measure is q-concave for all q ≤ p.

Probability density functions of some important probability distributions are p-concave for
some p. Consider, for example, the multivariate normal distribution on Rn with mean m ∈ Rn

and n× n positive definite symmetric covariance matrix A. This has probability density

f(x) = c exp
(
−(x−m) ·A−1(x−m)

2

)
,
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where c = (2π)−n/2(detA)−1/2. Since A is positive definite, the function (x−m) ·A−1(x−m) is
convex and so f is log concave. The probability density functions of the Wishart, multivariate β,
and Dirichlet distributions are also log concave; see [128]. The argument above then shows that
the corresponding probability measures are log concave. Prékopa [128] explains how a problem
from stochastic programming motivates this result.

However, Borell [28] noted that the density functions of the multivariate Pareto (the Cauchy
distribution is a special case), t, and F distributions are not log concave, but are p-concave for
some p < 0. To obtain similar concavity conditions for the corresponding probability measures,
a technical lemma is required.

Lemma 10.1. Let 0 < λ < 1 and let a, b, c, and d be nonnegative real numbers. If p + q ≥ 0,
then

Mp(a, b, λ)Mq(c, d, λ) ≥ Ms(ac, bd, λ),
where s = pq/(p + q) if p and q are not both zero, and s = 0 if p = q = 0.

Proof. A general form of Hölder’s inequality (see [77, p. 24]) states that when 0 < λ < 1,
p1, p2, r > 0 with 1/p1 + 1/p2 = 1, and a, b, c, and d are nonnegative real numbers, then

Mr(ac, bd, λ) ≤ Mrp1(a, b, λ)Mrp2(c, d, λ),

and that the inequality reverses when r < 0. Suppose that p+ q > 0. If p, q > 0, we can let r = s,
p1 = p/s, and p2 = q/s, and the desired inequality follows immediately. If p < 0, then q > 0
and we let r = p, p1 = s/p, and p2 = −q/p; then replace a, b, c, and d, by ac, bd, 1/c, and 1/d,
respectively. The remaining cases follow by continuity. ¤

The following theorem generalizes the Prékopa-Leindler inequality in Rn, which is just the case
p = 0. The number p/(np+1) is interpreted in the obvious way; it is equal to −∞ when p = −1/n
and to 1/n when p = ∞.

Theorem 10.2. (Borell-Brascamp-Lieb inequality.) Let 0 < λ < 1, let −1/n ≤ p ≤ ∞, and let
f , g, and h be nonnegative integrable functions on Rn satisfying

h ((1− λ)x + λy) ≥ Mp (f(x), g(y), λ) ,

for all x, y ∈ Rn. Then∫

Rn

h(x) dx ≥ Mp/(np+1)

(∫

Rn

f(x) dx,

∫

Rn

g(x) dx, λ

)
.

Proof. This is very similar to the proof of the Prékopa-Leindler inequality. To deal with the case
n = 1, follow the second proof of Theorem 4.1, defining F , G, u, v, and w as in that theorem.
Then, by Lemma 10.1 with q = 1,

∫

R
h(x) dx ≥

∫ 1

0
h (w(t))w′(t) dt

≥
∫ 1

0
Mp (f (u(t)) , g (v(t)) , λ) M1

(
F

f (u(t))
,

G

g (v(t))
, λ

)
dt

≥
∫ 1

0
Mp/(p+1)(F, G, λ) dt = Mp/(p+1)(F, G, λ).

The general case follows as in Theorem 4.2 by induction on n. ¤
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Theorem 10.2 was proved (in slightly modified form) for p > 0 by Henstock and Macbeath [78]
(when n = 1) and Dinghas [50]. The limiting case p = 0, as we noted above, was also proved by
Prékopa and Leindler, and rediscovered by Brascamp and Lieb [33]. In general form Theorem 10.2
is stated and proved by Brascamp and Lieb [35, Theorem 3.3] and by Borell [28, Theorem 3.1] (but
with a much more complicated proof; see also the paper of Rinott [130]). The proof above may
be found in [44] and [47] (see also [49, Theorem 3.15]), but still draws on methods introduced by
Henstock, Macbeath, and Dinghas. Das Gupta’s survey [47] contains a very thorough examination
and assessment of the various contributions and proofs before 1980. Brascamp and Lieb [35] obtain
an “essential” form of Theorem 10.2, as in the case p = 0 (Theorem 9.1 above). Dancs and Uhrin
[44] also offer a version of Theorem 10.2 for −∞ ≤ p < −1/n.

In calling Theorem 10.2 the Borell-Brascamp-Lieb inequality we are following the authors of
[42] (who also generalize it to a Riemannian manifold setting; see Section 19.13) and placing
the emphasis on the negative values of p. In fact, the proof of [42, Corollary 1.1] shows that the
strongest inequality in this family is that for p = −1/n; that is, Theorem 10.2 for p = −1/n implies
Theorem 10.2 for all p > −1/n. This follows from a suitable rescaling of the functions f , g, and
h, Lemma 10.1 with q = −p/(np+1), and the observation that Mp(a, b, λ)−1 = M−p(1/a, 1/b, λ).
The approach of Brascamp and Lieb [35], incidentally, was to observe that Theorem 10.2 also
holds for n = 1 and p = −∞ (the argument is contained in the first proof of Theorem 4.1), and
then to derive Theorem 10.2 for n = 1 and p ≥ −1 from this and Lemma 10.1.

Corollary 10.3. Let −1/n ≤ p ≤ ∞ and let f be an integrable function that is p-concave on an
open convex set C in Rn contained in its support. Then the measure generated by f and C is
p/(np + 1)-concave.

Proof. This follows from Theorem 10.2 in exactly the same way as the special case p = 0 follows
from the Prékopa-Leindler inequality (see the beginning of this section). ¤

The Brunn-Minkowski inequality says that Lebesgue measure in Rn is 1/n-concave, and The-
orem 10.2 supplies plenty of measures that are p-concave for −1/n ≤ p ≤ ∞. Borell [28] (see
also [49, Theorem 3.17]) proves a sort of converse to Corollary 10.3: Given −∞ ≤ p ≤ 1/n and
a p-concave measure µ with n-dimensional support S, there is a p/(1 − np)-concave function on
S that generates µ. Borell also observed that when p > 1/n, no nontrivial p-concave measures
exist in Rn, and that any 1/n-concave measure is a multiple of Lebesgue measure; see [49, The-
orem 3.14]. Dancs and Uhrin [44, Theorem 3.4] find a generalization of Theorem 10.2 in which
Lebesgue measure is replaced by a q-concave measure for some −∞ ≤ q ≤ 1/n.

It is convenient to mention here a sharpening of the Brunn-Minkowski theorem proved by
Bonnesen in 1929 (see [44] and [134, p. 314]). If X is a bounded measurable set in Rn, the inner
section function mX of X is defined by

mX(u) = sup
t∈R

Vn−1

(
X ∩ (u⊥ + tu)

)
,

for u ∈ Sn−1. (In 1926, Bonnesen asked if this function determines a convex body in Rn, n ≥
3, up to translation and reflection in the origin, a question that remains unanswered; see [67,
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Problem 8.10].) Bonnesen proved that if 0 < λ < 1 and u ∈ Sn−1, then

Vn ((1− λ)X + λY ) ≥ M1/(n−1) (mX(u),mY (u), λ)
(

(1− λ)
Vn(X)
mX(u)

+ λ
Vn(Y )
mY (u)

)
.

(29)

Lemma 10.1 with p = 1/(n − 1) and q = 1 shows that this is indeed stronger than (15). As
Dancs and Uhrin [44, Theorem 3.2] show, an integral version of (29), in a general form similar to
Theorem 10.2, can be constructed from the ideas already presented here.

At present the most general results in this direction are contained in the papers of Uhrin;
see [146], [147], and the references given there. In particular, Uhrin states in [147, p. 306] that
all previous results of this type are contained in [147, (3.42)]. The latter inequality has as an
ingredient a “curvilinear Minkowski addition,” and its proof reintroduces geometrical methods.

11. Convolutions

The convolution of measurable functions f and g on Rn is

f ∗ g(x) =
∫

Rn

f(x− y)g(y) dy.

The next two theorems, on concavity of products and sections of functions, are useful in obtaining
a result on the concavity of convolutions.

Theorem 11.1. Let p1 + p2 ≥ 0, and let p = p1p2/(p1 + p2) if p1 and p2 are not both zero, and
p = 0 if p1 = p2 = 0. For i = 1, 2, let fi be a pi-concave function on a convex set Ci in Rn. Then
the function f(x, y) = f1(x)f2(y) is p-concave on C1 × C2.

Proof. Suppose that 0 < λ < 1, and let xi ∈ C1 and yi ∈ C2 for i = 0, 1. By Lemma 10.1,

f ((1− λ)(x0, y0) + λ(x1, y1)) = f1 ((1− λ)x0 + λx1) f2 ((1− λ)y0 + λy1)
≥ Mp1 (f1(x0), f1(x1), λ) Mp2 (f2(y0), f2(y1), λ)
≥ Mp (f1(x0)f2(y0), f1(x1)f2(y1), λ)
= Mp (f(x0, y0), f(x1, y1), λ) .

¤
Theorem 11.2. Let p ≥ −1/n and let f be an integrable p-concave function on an open convex set
C in Rm+n. For each x in the projection C|Rm of C onto Rm, let C(x) = {y ∈ Rn : (x, y) ∈ C}.
Then

F (x) =
∫

C(x)
f(x, y) dy

is p/(np + 1)-concave on C|Rm.

Proof. For i = 0, 1, let xi ∈ C|Rm and let gi(y) = f(xi, y) for y ∈ C(xi). Suppose that 0 < λ < 1
and that x = (1− λ)x0 + λx1, and let g(y) = f(x, y) for y ∈ C(x). The p-concavity of f implies
that

g ((1− λ)y0 + λy1) ≥ Mp (g0(y0), g1(y1), λ)
whenever yi ∈ C(xi), i = 0, 1. Also,

C(x) ⊃ (1− λ)C(x0) + λC(x1).
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Then Theorem 10.2 yields
∫

C(x)
g(y) dy ≥ Mp/(np+1)

(∫

C(x0)
g0(y) dy,

∫

C(x1)
g1(y) dy, λ

)
.

This shows that F is p/(np + 1)-concave on C|Rm. ¤

If we apply the previous theorem with n = 1 and f = 1C when C is the interior of a convex
body K in Rm+1, and let p →∞, we see that the function giving volumes of parallel hyperplane
sections of K is 1/n-concave. This statement is equivalent to the Brunn-Minkowski inequality for
convex bodies.

Theorem 11.3. Let p1 + p2 ≥ 0, and let p = p1p2/(p1 + p2) if p1 and p2 are not both zero,
and p = 0 if p1 = p2 = 0. Suppose further that p ≥ −1/n. For i = 1, 2, let fi be an integrable
pi-concave function on an open convex set Ci in Rn. Then f1∗f2 is p/(np+1)-concave on C1+C2.

Proof. By Theorem 11.1, the function f1(x− y)f2(y) is p-concave for (x− y, y) ∈ C1×C2 ⊂ R2n,
that is, for x ∈ C1 + C2. The result follows from Theorem 11.2. ¤

For extensions to measures and some examples that limit the possibility of weakening the
conditions on p1, p2, and p in Theorem 11.3, see [49, Section 3.3], whose general approach we
have followed in this section. Theorem 11.2 can be found in [28] and [35]. The early history of
Theorem 11.3 (when p = 0, this says that the convolution of two log concave functions is also log
concave) is discussed by Das Gupta [47, p. 313].

12. The covariogram

Theorem 12.1. Let K and L be convex bodies in Rn. Then the function

gK,L(x) = V (K ∩ (L + x))1/n ,

for x ∈ Rn, is concave on its support.

Proof. For x, y ∈ Rn and 0 < λ < 1, we have

K ∩ (L + (1− λ)x + λy) = K ∩ ((1− λ)(L + x) + λ(L + y))
⊃ (1− λ) (K ∩ (L + x)) + λ (K ∩ (L + y)) .

Using the Brunn-Minkowski inequality (15), we obtain

gK,L ((1− λ)x + λy) ≥ V ((1− λ) (K ∩ (L + x)) + λ (K ∩ (L + y)))1/n

≥ (1− λ)V (K ∩ (L + x))1/n + λV (K ∩ (L + y))1/n

= (1− λ)gK,L(x) + λgK,L(y),

as required. ¤

As a corollary, we conclude that the covariogram gK of a convex body K in Rn, defined for
x ∈ Rn by

gK(x) = V (K ∩ (K + x)) ,
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is 1/n-concave (and hence log concave) on its support, which, it is easy to check, is the difference
body DK = K + (−K) of K. Obviously gK is unchanged when K is translated or replaced by its
reflection −K in the origin. Note that

gK(x) =
∫

Rn

1K∩(K+x)(y) dy

=
∫

Rn

1K(y)1K+x(y) dy

=
∫

Rn

1K(y)1K(y − x) dy = 1−K ∗ 1K(x).

The name “covariogram” stems from the theory of random sets, where the covariance is defined
for x ∈ Rn as the probability that both o and x lie in the random set. The covariogram is also useful
in mathematical morphology. See [135, Chapter 9]) and [140, Section 6.2]. In 1986, G. Mathéron
(see the references in [132]) asked if the covariogram determines convex bodies, up to translation
and reflection in the origin. Remarkably, this question is open even for n = 2! Nagel [121] proved
that the answer is affirmative when K and L are convex polygons in the plane. Bianchi [23]
has shown that the answer is affirmative for much larger class of planar convex bodies. He has
also found pairs of convex polyhedra that represent counterexamples in R4, but these are still
reflections of each other in a plane. See also [70, Section 6], and the references given in connection
with chord-power integrals in [67, p. 267].

13. Anderson’s theorem

Anderson [2] used the Brunn-Minkowski theorem in his work on multivariate unimodality. He
began with the following simple observation. If f is a (i) symmetric (f(x) = f(−x)) and (ii)
unimodal (f(cx) ≥ f(x) for 0 ≤ c ≤ 1) function on R, and I is an interval centered at the origin,
then

∫

I+y
f(x) dx

is maximized when y = 0. In probability language, if a random variable X has probability density
f and Y is an independent random variable, then

Prob {X ∈ I} ≥ Prob {X + Y ∈ I}.
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To see this, recall that if g is the probability density of Y , then f ∗ g is the probability density of
X + Y ; see [82, Section 11.5]. So, by Fubini’s theorem,

Prob {X + Y ∈ I} =
∫

I

∫

R
f(z − y)g(y) dy dz

=
∫

R

∫

I
f(z − y)g(y) dz dy

=
∫

R

∫

I−y
f(x)g(y) dx dy

≤
∫

R

∫

I
f(x)g(y) dx dy

=
∫

I
f(x) dx = Prob {X ∈ I}.

Anderson generalized this, as follows. If f is a nonnegative function on Rn, call f unimodal if
the level sets L(f, t) (see (4)) are convex for each t ≥ 0. Note that every quasiconcave function
and hence all p-concave functions are unimodal.

Theorem 13.1. (Anderson’s theorem.) Let K be an origin-symmetric (i.e., K = −K) convex
body in Rn and let f be a nonnegative, symmetric, and unimodal function integrable on Rn. Then

∫

K
f(x + cy) dx ≥

∫

K
f(x + y) dx,

for 0 ≤ c ≤ 1 and y ∈ Rn.

Proof. Suppose initially that f(x) = 1L(x), where L is an origin-symmetric convex body in Rn.
Then f(x + y) = 1L(x + y) = 1L−y(x) and

∫

K
f(x + y) dx =

∫

K
1L−y(x) dx = V (K ∩ (L− y)) = gK,L(−y) = gK,L(y).

Theorem 12.1 implies that gK,L is log concave. Let λ = (1− c)/2. Since

gK,L(cy) = gK,L ((1− 2λ)y)
= gK,L ((1− λ)y + λ(−y))

≥ gK,L(y)1−λgK,L(−y)λ

= gK,L(y)1−λgK,L(y)λ = gK,L(y),
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the theorem follows. In the general case, L(f, t) is an origin-symmetric convex body, so by (6),
Fubini’s theorem, and the special case just proved,∫

K
f(x + cy) dx =

∫

K

∫ ∞

0
1L(f,t)(x + cy) dt dx

=
∫ ∞

0

∫

K
1L(f,t)(x + cy) dx dt

≥
∫ ∞

0

∫

K
1L(f,t)(x + y) dx dt

=
∫

K
f(x + y) dx.

¤
Anderson’s theorem says that the integral of a symmetric unimodal function f over an n-

dimensional centrally symmetric convex body K does not decrease when K is translated towards
the origin. Since the graph of f forms a hill whose peak is over the origin, this is intuitively clear.
However, it is no longer obvious, as it was in the 1-dimensional case! There may be points x ∈ K
at which the value of f is larger than it is at the corresponding translate of x.

As above, we can conclude from Anderson’s theorem that if a random variable X has probability
density f on Rn and Y is an independent random variable, then

Prob {X ∈ K} ≥ Prob {X + Y ∈ K},
where K is any origin-symmetric convex body in Rn. We noted above that density functions of
some well-known probability distributions are p-concave for some p, and hence unimodal. If they
are also symmetric, Anderson’s theorem applies.

Suppose K is a convex body in Rn, y ∈ Rn, p ≥ −1/n, and f is an integrable p-concave function
on Rn. Corollary 10.3 implies that the measure µ generated by f and Rn is p/(np + 1)-concave
on Rn. Let

h(y) = µ(K − y) =
∫

K−y
f(x) dx =

∫

K
f(x + y) dx.

Since
K − (1− λ)y0 − λy1 = (1− λ)(K − y0) + λ(K − y1),

we have

h ((1− λ)y0 + λy1) = µ (K − (1− λ)y0 − λy1)
= µ ((1− λ)(K − y0) + λ(K − y1))
≥ Mp/(np+1) (µ(K − y0), µ(K − y1), λ)
= Mp/(np+1) (h(y0), h(y1), λ) .

Therefore h is p/(np + 1)-concave on Rn and hence unimodal. In particular, h(cy) is unimodal in
c for a fixed y. This shows that Corollary 10.3 and Anderson’s theorem are related. Anderson’s
theorem replaces the restriction p ≥ −1/n with a much weaker condition, but requires in exchange
the symmetry of f and K.

Anderson’s theorem has many applications in probability and statistics, where, for example, it
can be applied to show that certain statistical tests are unbiased. See [2], [36], [49], and [144].
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14. Young’s inequality

We saw in the previous sections how the Brunn-Minkowski inequality and convolutions come
together naturally. The next theorem provides two convolution inequalities with sharp constants,
the first proved independently by Beckner [21] and Brascamp and Lieb [34], and the second by
Brascamp and Lieb [34]. (See Section 17 for more information.) We shall soon see that the second
inequality actually implies the Brunn-Minkowski inequality.

Theorem 14.1. Let 0 < p, q, r satisfy
1
p

+
1
q

= 1 +
1
r
, (30)

and let f ∈ Lp(Rn) and g ∈ Lq(Rn) be nonnegative. Then

(Young′s inequality) ‖f ∗ g‖r ≤ Cn‖f‖p‖g‖q, for p, q, r ≥ 1, (31)

and

(Reverse Young inequality) ‖f ∗ g‖r ≥ Cn‖f‖p‖g‖q, for p, q, r ≤ 1. (32)

Here C = CpCq/Cr, where

C2
s =

|s|1/s

|s′|1/s′ (33)

for 1/s + 1/s′ = 1 (that is, s and s′ are Hölder conjugates).

The inequality (31), when expanded, reads as follows:
(∫

Rn

(∫

Rn

f(x− y)g(y) dy

)r

dx

)1/r

≤ Cn

(∫

Rn

f(x)p dx

)1/p (∫

Rn

g(x)q dx

)1/q

.

Inequalities (31) and (32) together show that equality holds in both when p = q = r = 1. In fact,
since Cp → 1 as p → 1, when p = q = r = 1 we have C = 1, and substituting u = x− y, v = y in
the left-hand side of (31), we obtain∫

Rn

∫

Rn

f(u)g(v) dv du ≤
∫

Rn

f(x) dx

∫

Rn

g(x) dx.

But equality holds here and therefore also in (31), and similarly in (32).

Theorem 14.2. The limiting case r → 0 of the reverse Young inequality is the essential form of
the Prékopa-Leindler inequality in Rn (Theorem 9.1).

Proof. Let fm and gm be sequences of bounded measurable functions with compact support
converging in L1(Rn) to f and g, respectively, as m →∞ and satisfying fm ≤ f and gm ≤ g. Let

sm(x) = ess sup
y

fm

(
x− y

1− λ

)1−λ

gm

(y

λ

)λ
. (34)

Let s(x) be defined by replacing fm by f and gm by g in (34). As in the proof of Theorem 9.1, s
and each sm is measurable. Also, ‖s‖1 ≥ ‖sm‖1, so if

‖sm‖1 ≥ ‖fm‖1−λ
1 ‖gm‖λ

1
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for each m we have
‖s‖1 ≥ ‖f‖1−λ

1 ‖g‖λ
1 .

Therefore it suffices to prove the theorem when f and g are bounded measurable functions with
compact support.

Assuming this, note that s(x) = limm→∞ Sm(x), where

Sm(x) =

(∫

Rn

f

(
x− y

1− λ

)(1−λ)m

g
(y

λ

)λm
dy

)1/(m−1)

.

(If we replaced the exponent, 1/(m − 1) by 1/m, this would follow from the fact that the mth
mean tends to the supremum as m →∞; compare [77, p. 143]. But this replacement is irrelevant
in the limit.) Note also that ‖s‖1 = limm→∞ ‖Sm‖1 (we can interchange the limit and integral
because the Sm’s are uniformly bounded and have supports lying in some common compact set).

Applying the reverse Young inequality to Sm with m > max{(1− λ)−1, λ−1},
p = 1/((1− λ)m), q = 1/(λm), and r = 1/(m− 1), we obtain

‖Sm‖1 =
∫

Rn

Sm(x) dx

=
∫

Rn

(∫

Rn

f

(
x− y

1− λ

)(1−λ)m

g
(y

λ

)λm
dy

)1/(m−1)

dx

≥
(

Cn

(∫

Rn

f

(
x− y

1− λ

)
dx

)(1−λ)m (∫

Rn

g
(y

λ

)
dy

)λm
)1/(m−1)

= Cn/(m−1) ((1− λ)n‖f‖1)
(1−λ)m/(m−1) (λn‖g‖1)

λm/(m−1) .

Therefore
‖s‖1 = lim

m→∞ ‖Sm‖1 ≥
(
(1− λ)1−λλλ lim

m→∞C1/(m−1)
)n
‖f‖1−λ

1 ‖g‖λ
1 .

It remains only to check that

lim
m→∞C1/(m−1) = (1− λ)−(1−λ)λ−λ.

¤

15. The Brascamp-Lieb inequality and Barthe’s inequality

The inequalities presented in this section approach the most general known in the direction of
Young’s inequality and its reverse form, and represent a research frontier that can be expected to
move before too long.

Each m × n matrix A defines a linear transformation from Rn to Rm, and this linear map
can also be denoted by A. The Euclidean adjoint A∗ of A is then an n × m matrix or linear
transformation from Rm to Rn satisfying Ax · y = x ·A∗y for each y ∈ Rm and x ∈ Rn.

Theorem 15.1. Let ci > 0 and ni ∈ N, i = 1, . . . ,m, with
∑

i cini = n. Let fi ∈ L1(Rni) be
nonnegative and let Bi : Rn → Rni be a linear surjection, i = 1, . . . , m. Then
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(Brascamp-Lieb inequality)
∫

Rn

m∏

i=1

fi(Bix)ci dx ≤ D−1/2
m∏

i=1

(∫

Rni

fi(x) dx

)ci

(35)

and
(Barthe’s inequality)

∫

Rn

sup

{
m∏

i=1

fi(zi)ci : x =
∑

i

ciB
∗
i zi, zi ∈ Rni

}
dx ≥ D1/2

m∏

i=1

(∫

Rni

fi(x) dx

)ci

,
(36)

where

D = inf
{

det (
∑m

i=1 ciB
∗
i AiBi)∏m

i=1(detAi)ci
: Ai is a positive definite ni × ni matrix

}
. (37)

For comments on equality conditions and ideas of proof, including a proof of an important
special case of (36), see Section 17.

We can begin to understand (35) by taking ni = n, Bi = In, the identity map on Rn, replacing
fi by f

1/ci

i , and letting ci = 1/pi, i = 1, . . . , m. Then
∑

i 1/pi = 1 and the log concavity of the
determinant of a positive definite matrix (see, for example, [20, p. 63]) yields D = 1. Therefore

∫

Rn

m∏

i=1

fi(x) dx ≤
m∏

i=1

‖fi‖pi ,

Hölder’s inequality in Rn.
Next, take m = 2, n1 = n2 = n, B1 = B2 = In, c1 = 1− λ, and c2 = λ in (36). Again we have

D = 1, so
∫

Rn

sup
{

f1(z1)1−λf2(z2)λ : x = (1− λ)z1 + λz2

}
dx ≥

(∫

Rn

f1(x) dx

)1−λ (∫

Rn

f2(x) dx

)λ

,

the Prékopa-Leindler inequality (12) in Rn.

Theorem 15.2. (Young’s inequality in Rn, second form.) Let 0 < p, q, r satisfy

1
p

+
1
q

+
1
r

= 2,

and let f ∈ Lp(Rn), g ∈ Lq(Rn), and h ∈ Lr(Rn) be nonnegative. Then
∫

Rn

∫

Rn

f(x)g(x− y)h(y) dy dx ≤ C
n‖f‖p‖g‖q‖h‖r, (38)

where C = CpCqCr is defined using (33).

Theorem 15.3. The second form of Young’s inequality in Rn is equivalent to the first (31).
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Proof. Let p, q, r ≥ 1 satisfy (30). By Hölder’s inequality (11),

sup
{ ‖f ∗ g‖r

‖f‖p‖g‖q
: f ∈ Lp(Rn), g ∈ Lq(Rn)

}
=

= sup
{∫

Rn(f ∗ g)(x)h(x) dx

‖f‖p‖g‖q‖h‖r′
: f ∈ Lp(Rn), g ∈ Lq(Rn), h ∈ Lr′(Rn)

}

= sup
{∫

Rn

∫
Rn f(x− y)g(y)h(x) dx dy

‖f‖p‖g‖q‖h‖r′
: f ∈ Lp(Rn), g ∈ Lq(Rn), h ∈ Lr′(Rn)

}

= sup
{∫

Rn

∫
Rn f(x)g(x− y)h(y) dy dx

‖f‖p‖g‖q‖h‖r
: f ∈ Lp(Rn), g ∈ Lq(Rn), h ∈ Lr(Rn)

}
,

where the last equality is obtained by replacing f , g, h, p, q, and r′, by g, h, f , q, r, and p,
respectively, so that

1
p

+
1
q

+
1
r

= 2.

¤

Theorem 15.4. The Brascamp-Lieb inequality (35) implies Young’s inequality in Rn.

Proof. In (35), let m = 3, n1 = n2 = n3 = n, and let Bi : R2n → Rn, i = 1, 2, 3 be the linear maps
taking (z1, . . . , z2n) to (z1, . . . , zn), (z1−zn+1, . . . , zn−z2n), and (zn+1, . . . , z2n), respectively; then
replace fi by f

1/ci

i , i = 1, 2, 3 and let c1 = 1/p, c2 = 1/q, and c3 = 1/r. In this case D = C−2,
where C is as in Theorem 14.1; see [34, Theorem 5]. This gives

∫

Rn

∫

Rn

f1(x)f2(x− y)f3(y) dy dx ≤ C‖f1‖p‖f2‖q‖f3‖r,

which is (38). ¤

As a side remark, we note that there is a version of Young’s inequality in its second form (38),
called the weak Young inequality, which only requires that g ∈ Lq

w(Rn), the weak Lq space. See
[91, Section 4.3] for details. This allows one to conclude in particular that under the (slightly
weakened) hypotheses of Theorem 15.2, with q = n/λ,

∫

Rn

∫

Rn

f(x)‖x− y‖−λh(y) dy dx ≤ k(n, λ, p)‖f‖p‖h‖r. (39)

This was proved in Lieb [89] with a sharp constant k(n, λ, p). The classical form without the sharp
constant is called the Hardy-Littlewood-Sobolev inequality. The case λ = n − 2 is of particular
interest in potential theory, as is explained in [91, Chapter 9].

16. Back to geometry

As Ball [13] remarks, some geometry comes back into view if we replace f(x) in Young’s
inequality (38) by f(−x):

∫

R

∫

R
f(−x1)g(x1 − x2)h(x2) dx2 dx1 ≤ C‖f‖p‖g‖q‖h‖r. (40)
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Define φ : R2 → R3 by φ(x1, x2) = z = (z1, z2, z3), where z1 = −x1, z2 = x1 − x2, and z3 = x2.
Then φ(R2) = S, where S is the plane {(z1, z2, z3) : z1 + z2 + z3 = 0} through the origin. Let
f = g = h = 1[−1,1] and C0 = [−1, 1]3. By (40),

V2(C0 ∩ S) =
∫

S
1C0(z) dz

=
∫

S
f(z1)g(z2)h(z3) dz

= J(φ)−1

∫

R

∫

R
f(−x1)g(x1 − x2)h(x2) dx2 dx1,

where J(φ) is the Jacobian of φ. So Young’s inequality might be used to provide upper bounds
for volumes of central sections of cubes. In fact, Ball [9] used the following special case of the
Brascamp-Lieb inequality to do just this.

Suppose that ci > 0 and ui ∈ Sn−1, i = 1, . . . , m satisfy

x =
m∑

i=1

ci(x · ui)ui,

for all x ∈ Rn. This says that the ui’s are acting like an orthonormal basis for Rn. The condition
is often written

m∑

i=1

ciui ⊗ ui = In, (41)

where u⊗ u denotes the rank one orthogonal projection onto the span of u, the map that sends
x to (x · u)u. Taking traces in (41), we see that

m∑

i=1

ci = n. (42)

Theorem 16.1. Let ci > 0 and ui ∈ Sn−1, i = 1, . . . , m be such that (41) and hence (42) holds.
If fi ∈ L1(R) is nonnegative, i = 1, . . . , m, then
(Geometric Brascamp-Lieb inequality)

∫

Rn

m∏

i=1

fi(x · ui)ci dx ≤
m∏

i=1

(∫

R
fi(x) dx

)ci

(43)

and
(Geometric Barthe inequality)

∫

Rn

sup

{
m∏

i=1

fi(zi)ci : x =
∑

i

ciziui, zi ∈ R
}

dx ≥
m∏

i=1

(∫

R
fi(x) dx

)ci

. (44)

Proof. Let ni = 1 and for x ∈ Rn, let Bix = x · ui, i = 1, . . . ,m. Then B∗
i zi = ziui ∈ Rn for

zi ∈ R. The inequalities (35) and (36) become (43) and (44), respectively, because the hypotheses
of the theorem and (37) imply that D = 1 (see [17, Proposition 9] for the details). ¤
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Note that the geometric Barthe inequality (44) still implies the Prékopa-Leindler inequality in
R, with the geometric consequences explained above.

Ball [9] used (43) to obtain the best-possible upper bound

Vk(C0 ∩ S) ≤ (
√

2)n−k

for sections of the cube C0 = [−1, 1]n by k-dimensional subspaces S, 1 ≤ k ≤ n−1, when 2k ≥ n.
(For smaller values of k, the best-possible bound is not known except for some special cases; see
[9].) He also showed that (43) provides best-possible upper bounds for the volume ratio vr(K) of
a convex body K in Rn, defined by

vr(K) =
(

V (K)
V (E)

)1/n

,

where E is the ellipsoid of maximal volume contained in K. The ellipsoid E is called the John
ellipsoid of K. The following theorem is a refinement of Ball [12] of a theorem proved by Fritz
John.

Theorem 16.2. The John ellipsoid of a convex body K in Rn is B if and only if B ⊂ K and
there is an m ≥ n, ci > 0 and ui ∈ Sn−1∩∂K, i = 1, . . . ,m such that (41) holds and

∑
i ciui = o.

Ball’s argument is as follows. Let K be a convex body in Rn. Since vr(K) is affine invariant,
we may assume that the John ellipsoid of K is B. If we can show that V (K) ≤ 2n, then
vr(K) ≤ vr(C0), where C0 = [−1, 1]n. Let ci and ui be as in John’s theorem, and note that
the points ui are contact points, points where the boundaries of K and B meet. If K is origin-
symmetric and ui is a contact point, then so is −ui; therefore K ⊂ L, where

L = {x ∈ Rn : |x · ui| ≤ 1, i = 1, . . . , m}
is the closed slab bounded by the hyperplanes {x : x · ui = ±1}. Also, if fi = 1[−1,1], then

1L(x) =
m∏

i=1

fi(x · ui)ci .

By (43) and (42),

V (K) ≤ V (L) =
∫

Rn

m∏

i=1

fi(x · ui)ci dx

≤
m∏

i=1

(∫

R
fi(x) dx

)ci

=
m∏

i=1

2ci = 2n.

This argument shows that vr(K) is maximal for centrally symmetric K when K is a parallelotope.
One consequence of this estimate is the following result of Ball [11] (Behrend [22] proved the

result for n = 2).

Theorem 16.3. (Reverse isoperimetric inequality for centrally symmetric convex bodies in Rn.)
Let K be a centrally symmetric convex body in Rn and let C0 = [−1, 1]n. There is an affine
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transformation φ such that
(

S(φK)
S(C0)

)1/(n−1)

≤
(

V (φK)
V (C0)

)1/n

. (45)

Proof. Choose φ so that the John ellipsoid of φK is B. The above argument shows that V (φK) ≤
2n. Since B ⊂ φK, we have, by (3),

S(φK) = lim
ε→0+

V (φK + εB)− V (φK)
ε

≤ lim
ε→0+

V (φK + εφK)− V (φK)
ε

= V (φK) lim
ε→0+

(1 + ε)n − 1
ε

= nV (φK) = nV (φK)(n−1)/nV (φK)1/n ≤ 2nV (φK)(n−1)/n.

This is equivalent to (45). ¤

Of course, one cannot expect a reverse isoperimetric inequality without use of an affine trans-
formation, since we can find convex bodies of any prescribed volume that are very flat and so
have large surface area.

In [11], Ball used the same methods to show that for arbitrary convex bodies, the volume ratio
is maximal for simplices, and to obtain a corresponding reverse isoperimetric inequality. The
fact that the volume ratio is only maximal for parallelotopes (in the centrally symmetric case) or
simplices was shown by Barthe [17] as a corollary of his study of the equality conditions in the
Brascamp-Lieb inequality.

For other results of this type that employ Theorem 16.1, see [10], [16], and [133]. Barthe [17]
states a multidimensional generalization of Theorem 16.1, also derived from Theorem 15.1, that
leads to a multidimensional Brunn-Minkowski-type theorem.

17. More on history, proofs, and equality conditions

The classical Young inequality is

‖f ∗ g‖r ≤ ‖f‖p‖g‖q, for p, q, r ≥ 1,

that is, (31) with the better constant Cn there replaced by 1, under the same assumptions. This
can be proved in a few lines using Hölder’s inequality (11); see [91, p. 99]. It was proved by
W. H. Young in 1912–13 (see [77, Sections 8.3 and 8.4] and the references given there), and is
related to the classical Hausdorff-Young inequality: If 1 ≤ p ≤ 2 and f ∈ Lp(Rn), then

‖f̂‖p′ ≤ ‖f‖p, (46)

where f̂ denotes the Fourier transform

f̂(x) =
∫

Rn

f(y)e2πix·y dy
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of f , and p and p′ are Hölder conjugates. This was proved by Hausdorff and Young for Fourier
series, and extended to integrals by Titchmarsh in 1924. Beckner [21], improving earlier partial
results of Babenko, showed that when 1 ≤ p ≤ 2,

‖f̂‖p′ ≤ Cn
p ‖f‖p, (47)

where Cp is given by (33). (Lieb [90] proved that equality holds only for Gaussians.) This
improvement on (46) is related to Young’s inequality (31); in fact, the classical Young inequality
was motivated by (46). To see the connection, suppose that (47) holds, n = 1, and 1 ≤ p, q, r′ ≤ 2.
If p, q, r satisfy (30), then their Hölder conjugates satisfy 1/p′+1/q′ = 1/r′. Using this and Hölder’s
inequality (11), we obtain

‖f ∗ g‖r ≤ Cr′‖f̂ ĝ‖r′

≤ Cr′‖f̂‖p′‖ĝ‖q′

≤ Cr′(Cp‖f‖p)(Cq‖g‖q) = C‖f‖p‖g‖q.

A similarly easy argument (see [21, pp.169–70]) shows that Young’s inequality (31) yields (46)
when p′ is an even integer.

Young’s inequality in the sharp form (31) was proved independently by Beckner [21] and Bras-
camp and Lieb [34]. The reverse Young inequality without the sharp constant (that is, with C
replaced by 1) is due to Leindler [87]; the sharp version was obtained by Brascamp and Lieb
[34]. The latter also found the connection to the Prékopa-Leindler inequality, Theorem 14.2, and
established the following equality conditions: When n = 1 and p, q 6= 1, equality holds in (31) or
(32) if and only if f and g are Gaussians:

f(x) = ae−c|p′|(x−α)2 , g(x) = be−c|q′|(x−β)2 ,

for some a, b, c, α, β with a, b ≥ 0 and c > 0.
The simplest known proof of Young’s inequality and its reverse form, with the above equality

conditions, was found by Barthe [18].
The Brascamp-Lieb inequality in the general form (35), with equality conditions, was proved

by Lieb [90]. The special case ni = 1 and Bix = x · vi, where x ∈ Rn and vi ∈ Rn, i = 1, . . . , m is
the main result of Brascamp and Lieb [34].

Let A be an n× n positive definite symmetric matrix, and let

GA(x) = exp(−Ax · x),

for x ∈ Rn. The function GA is called a centered Gaussian. Lieb [90] proved that the supremum
of the left-hand side of (35) for functions fi of norm one is the same as the supremum of the
left-hand side of (35) for centered Gaussians of norm one; in other words, the constant D can be
computed using centered Gaussians.

There is also a version of (35) in which a fixed centered Gaussian appears in the integral on the
left-hand side and the constant is again determined by taking the functions fi to be Gaussians;
see [34, Theorem 6], where an application to statistical mechanics is given, and [90, Theorem 6.2].

Barthe [17] proved (36), giving at the same time a simpler approach to (35) and its equality
conditions.
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The fact that the constant D in the geometric Brascamp-Lieb inequality (43) becomes 1 was
observed by Ball [9]. Inequality (44) was first proved by Barthe [14]. As in the general case,
equality holds in (43) and (44) for centered Gaussians.

The main idea behind Barthe’s approach is the use of a familiar construction from measure
theory. Let µ be a finite Borel measure in Rn and T : Rn → Rn a Borel-measurable map defined
µ-almost everywhere. For Borel sets M in Rn, let

ν(M) = (Tµ)(M) = µ(T−1(M)).

The Borel measure ν = Tµ is sometimes called the push-forward of µ by T , and T is said to
push forward or transport the measure µ to ν. Suppose for simplicity that µ and ν are absolutely
continuous with respect to Lebesgue measure, so that

µ(M) =
∫

M
f(x) dx and ν(M) =

∫

M
g(x) dx

for Borel sets M in Rn, and T is a differentiable bijection. Then

f(x) = g(T (x))J(T )(x),

where J(T ) is the Jacobian of T , and we can talk of T transporting f to g. If µ and ν are measures
on R, absolutely continuous with respect to Lebesgue measure and with µ(R) = ν(R), then we
can always find a T that transports µ to ν, by defining T (t) to be the smallest number such that

∫ t

−∞
f(x) dx =

∫ T (t)

−∞
g(x) dx.

Moreover, if f and g are continuous and positive, then T is strictly increasing and C1, and

f(x) = g(T (x))T ′(x).

In fact, the same parametrization was used in proving the Prékopa-Leindler inequality in R.
To see this, replace the functions f and g in the second proof of Theorem 4.1 with g1 and g2,
respectively. If fi = Fi1[0,1], i = 1, 2, then

1
Gi

∫ Ti(t)

−∞
gi(x) dx =

∫ t

−∞
1[0,1](x) dx = t,

so the functions u and v in the second proof of Theorem 4.1 are just T1 and T2, respectively.
In other words, u and v transport a suitable multiple of the characteristic function of the unit
interval to g1 and g2, respectively.

Barthe saw that this is all that is needed to prove (35) and (36) simultaneously in the special
case ni = 1 and Bix = x · vi, where x ∈ Rn and vi ∈ Rn, i = 1, . . . , m. To see this, let ci > 0
satisfy

∑
i ci = n and let fi and gi be nonnegative functions in L1(R) with∫

R
fi(x) dx = Fi and

∫

R
gi(x) dx = Gi,

for i = 1, . . . ,m. Standard approximation arguments show that there is no loss of generality in
assuming fi and gi are positive and continuous. Define strictly increasing maps Ti as above, so
that

1
Fi

∫ t

−∞
fi(x) dx =

1
Gi

∫ Ti(t)

−∞
gi(x) dx
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and hence
fi(x)
Fi

=
gi(Ti(x))T ′i (x)

Gi
,

for i = 1, . . . ,m. For x ∈ Rn, let

V (x) =
m∑

i=1

ciTi(x · vi)vi,

so that

dV (x) =
m∑

i=1

ciT
′
i (x · vi)(vi ⊗ vi)(dx).

Finally, note that if Bix = x ·vi for x ∈ R, then B∗
i = xvi, so B∗

i Bx = vi⊗vi(x), and the constant
D in (37) becomes

D = inf
{

det (
∑m

i=1 ciaivi ⊗ vi)∏m
i=1 aci

i

: ai > 0
}

.

In the following, we can assume that D 6= 0. Using the expression for D with ai = T ′i (x · vi),
i = 1, . . . , m to provide a lower bound for the Jacobian of the injective map V , we obtain

D

(
m∏

i=1

(
Gi

Fi

)ci
) ∫

Rn

m∏

i=1

fi(x · vi)ci dx = D

∫

Rn

m∏

i=1

(
gi(Ti(x · vi))T ′i (x · vi)

)ci dx

≤
∫

Rn

m∏

i=1

gi(Ti(x · vi))ci det

(
m∑

i=1

ciT
′
i (x · vi)(vi ⊗ vi)

)
dx

≤
∫

Rn

sup

{
m∏

i=1

gi(zi)ci : V =
∑

i

cizivi, zi ∈ R
}

dV

≤
∫

Rn

sup

{
m∏

i=1

gi(zi)ci : x =
∑

i

cizivi, zi ∈ R
}

dx.

To see how centered Gaussians play a role in the equality conditions, note that if fi(x) =
exp(−aix

2), then since
∑

i ci = n,

m∏

i=1

(∫

R
fi(x) dx

)ci

=
m∏

i=1

(∫

R
e−aix

2
dx

)ci

=
m∏

i=1

a
−ci/2
i

(∫

R
e−x2

dx

)ci

=
m∏

i=1

(
π

ai

)ci/2

=
(

πn

∏m
i=1 aci

i

)1/2

,
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while
∫

Rn

m∏

i=1

fi(x · vi)ci dx =
∫

Rn

m∏

i=1

(
e−ai(x·vi)

2
)ci

dx

=
∫

Rn

e−(
∑m

i=1 ciai(x·vi)vi)·x dx

=
(

πn

det (
∑m

i=1 ciaivi ⊗ vi)

)1/2

.

(The last equality follows from
∫

Rn

e−Ax·x dx =
(

πn

detA

)1/2

,

where A is a positive definite symmetric n× n matrix.)
To summarize, we have shown that in the special case under consideration, the left-hand side

of (36) is greater than or equal to the left-hand side of (35), and that equality holds in (35) for
centered Gaussians. This is already enough to prove (36). One more computation is needed to
prove (35), but we shall omit it, since it needs some (quite basic) tools of geometry, and refer the
reader to [14].

If one wants to apply the same sort of argument in the general situation of Theorem 15.1, one
needs an answer to the following question: If µ and ν are measures on Rn, absolutely continuous
with respect to Lebesgue measure and with µ(Rn) = ν(Rn), can we find a T with some suitable
monotonicity property that transports µ to ν? It turns out that an ideal answer has recently
been found, called the Brenier map: Providing µ vanishes on Borel sets of Rn with Hausdorff
dimension n − 1, there is a convex map ψ : Rn → R such that if T = ∇ψ, then T transports µ
to ν. See [17] for more details and references. It is appropriate to highlight the contribution of
McCann, whose 1994 PhD thesis [113] shows the relevance of measure-preserving convex gradients
to geometric inequalities and helped attract the attention of the convex geometry community to
Brenier’s result. In [113] and [114], the Brenier map is exploited as a localization technique to
derive new global convexity inequalities which imply the Brunn-Minkowski and Prékopa-Leindler
inequalities as special cases.

Barthe [15, Section 2.4] also discovered a generalization of Young’s inequality in Rn that con-
tains the geometric Brascamp-Lieb and geometric Barthe inequalities as limiting cases.

18. The entropy power inequality and physics

Suppose that X is a discrete random variable taking possible values x1, . . . , xm with probabili-
ties p1, . . . , pm, respectively, where

∑
i pi = 1. Shannon [136] introduced a measure of the average

uncertainty removed by revealing the value of X. This quantity,

Hm(p1, . . . , pm) = −
m∑

i=1

pi log pi,

is called the entropy of X. It can also be regarded as a measure of the missing information; indeed,
the function Hm is concave and achieves its maximum when p1 = · · · = pm = 1/m, that is, when
all outcomes are equally likely. The words “uncertainty” and “information” already suggest a
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connection with physics, and a derivation of the function Hm from a few natural assumptions can
be found in textbooks on statistical mechanics; see, for example, [6, Chapter 3].

If X is a random vector in Rn with probability density f , the entropy h1(X) of X is defined
analogously:

h1(X) = h1(f) = −
∫

Rn

f(x) log f(x) dx.

The notation we use is convenient when h1(X) is regarded as a limit as p → 1 of the pth Rényi
entropy hp(X) of X, defined for p > 1 by

hp(X) = hp(f) =
p

1− p
log ‖f‖p.

The entropy of X may not be well defined. However, if f ∈ L1(Rn) ∩ Lp(Rn) for some p > 1,
then h1(X) = h1(f) is well defined, though its value may be +∞.

The entropy power N(X) of X is

N(X) =
1

2πe
exp

(
2
n

h1(X)
)

.

Theorem 18.1. (Entropy power inequality.) Let X and Y be independent random vectors in Rn

with probability densities in Lp(Rn) for some p > 1. Then

N(X + Y ) ≥ N(X) + N(Y ). (48)

The entropy power inequality was proved by Shannon [136, Theorem 15 and Appendix 6]
and applied by him to obtain a lower bound [136, Theorem 18] for the capacity of a channel.
(Via the web site at http://www.math.washington.edu/~hillman/Entropy/infcode.html this
paper can be downloaded.) Shannon’s proof shows that equality holds in (48) if X and Y are
multivariate normal with proportional covariances. In fact equality holds only for such X and Y ,
as Stam’s different proof [138] (simplified in [24] and [48]) of (48) shows.

The most accessible direct proof of (48) seems to be that of Blachman [24]. We present a
derivation from Young’s inequality and the following lemma, due to Lieb [88].

Lemma 18.2. Let f and g be nonnegative functions in Ls(Rn) for some s > 1, such that
∫

Rn

f(x) dx =
∫

Rn

g(x) dx = 1.

Then for 0 < λ < 1,

h1(f ∗ g)− (1− λ)h1(f)− λh1(g) ≥ −n

2
((1− λ) log(1− λ) + λ log λ) . (49)

Proof. For r ≥ 1, let

p = p(r) =
r

(1− λ) + λr
and q = q(r) =

r

λ + (1− λ)r
. (50)

Then p, q ≥ 1,
1
p

+
1
q

= 1 +
1
r
,
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and p(1) = q(1) = 1. If r < s is close to 1, then p, q < s, and since f, g ∈ L1(Rn) ∩ Ls(Rn), we
have f ∈ Lp(Rn) and g ∈ Lq(Rn). Let

F (r) =
‖f ∗ g‖r

‖f‖p‖g‖q
and G(r) = Cn,

where C is as Theorem 14.1. By Young’s inequality (31), f ∗g ∈ L1(Rn)∩Lr(Rn) and F (r) ≤ G(r)
for r close to 1. As we noted after Theorem 14.1, the equation F (1) = G(1+) holds. Therefore

F (r)− F (1)
r − 1

≤ G(r)−G(1+)
r − 1

,

for r close to 1, which implies that F ′(1+) ≤ G′(1+). We can assume that h1(f ∗ g) < ∞ and
therefore that h1(f) < ∞ and h1(g) < ∞. Now if φ ∈ Lr(Rn), ‖φ‖1 = 1, and h1(φ) < ∞, then

d

dr
‖φ‖r =

1
r
‖φ‖1−r d

dr

∫

Rn

φ(x)r dx

=
1
r
‖φ‖1−r

∫

Rn

φ(x)r log φ(x) dx

→
∫

Rn

φ(x) log φ(x) dx = −h1(φ)

as r → 1. Using this and (50), we see that

F ′(1+) = −h1(f ∗ g) + (1− λ)h1(f) + λh1(g).

A calculation, helped by the fact that p′ = r′/(1 − λ) and q′ = r′/λ, where p′, q′, r′ denote as
usual the Hölder conjugates of p, q, r, respectively, shows that

G′(1+) =
n

2
((1− λ) log(1− λ) + λ log λ) .

Finally, (49) follows from the inequality F ′(1+) ≤ G′(1+). ¤

Corollary 18.3. Young’s inequality (31) implies the entropy power inequality (48).

Proof. In (49), put

λ =
N(Y )

N(X) + N(Y )
.

Simplification of the resulting inequality leads directly to (48). ¤

Presumably Lieb, via his papers [34] and [88], first saw the connection between the entropy
power inequality (48) and the Brunn-Minkowski inequality (15), the former being a limiting case
of Young’s inequality (31) as r → 1 and the latter a limiting case of the reverse Young inequality
(32) as r → 0. Later, Costa and Cover [43] specifically drew attention to the analogy between
the two inequalities, apparently unaware of the work of Brascamp and Lieb. Dembo, Cover, and
Thomas [48] explore further connections with other inequalities. These include some involving
Fisher information and various uncertainty inequalities.

Fisher information was employed by Stam [138] in his proof of (48). Named after the statistician
R. A. Fisher, Fisher information is claimed in a recent book [64] by Frieden to be at the heart of
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a unifying principle for all of physics! If X is a random variable with probability density f on R,
the Fisher information I(X) of X is

I(X) = I(f) = −
∫

R
f(x)(log f(x))′′ dx =

∫

R

f ′(x)2

f(x)
dx,

assuming these integrals exist. The multivariable form of I is a matrix, the natural extension
of this definition. The quantity I is another measure of the “sharpness” of f or the missing
information in X; see [64, Section 1.3] for a comparison of I and h1. Stam [138] (see also
[48]) showed that I can be used to obtain the Weyl-Heisenberg uncertainty inequality, and this
inspired Frieden’s work. Frieden’s idea is that for any physical system, I represents how much
information can possibly be obtained by measurements, while another quantity, J , is the amount
of information bound up in the system. Then I−J leads to a Lagrangian, and the corresponding
law of physics arises from its minimization, the second derivative usually present in such a law
arising from the first derivative present in I.

Needless to say, Frieden’s claim has stirred some controversy. Some opinions can be found
on the web site at http://members.home.net/stephenk1/Outlaw/fisherinfo.html and in the
Mathematical Reviews review.

The many related inequalities involving entropy and Fisher information are also connected
to other consequences of Young’s inequality, such as Nelson’s hypercontractive inequality and
various logarithmic Sobolev inequalities; see [48] and Section 19.14. The papers [74], [106], and
[108] provide still more connections between information theory and convex geometry.

19. A survey

In the subsections below we attempt an overview of the various known extensions and analogs
of the Brunn-Minkowski inequality not covered above. Without being comprehensive, it should
alert the reader to the main developments.

19.1. The Aleksandrov-Fenchel inequality.

Theorem 19.1. (Aleksandrov-Fenchel inequality.) Let K1, . . . ,Kn be compact convex sets in Rn

and let 1 ≤ i ≤ n. Then

V (K1, K2, . . . ,Kn)i ≥
i∏

j=1

V (Kj , i; Ki+1, . . . , Kn) . (51)

See [37, p. 143] and [134, (6.8.7)]. The quantities V (K1,K2, . . . , Kn) and V (Kj , i; Ki+1, . . . , Kn)
(where the notation means that Kj appears i times) are mixed volumes, like the quantity V1(K, L)
we met in Section 7. In fact, if we put i = n in (51) and then let K1 = L and K2 = · · · = Kn = K,
we retrieve Minkowski’s first inequality (20) for compact convex sets. Therefore the Aleksandrov-
Fenchel inequality implies the Brunn-Minkowski inequality for compact convex sets. In fact, there
is a more general version of the latter that is equivalent to (51):

Theorem 19.2. (Generalized Brunn-Minkowski inequality for compact convex sets.) Let
K1, . . . , Kn be compact convex sets in Rn and let 1 ≤ i ≤ n. For 0 ≤ λ ≤ 1, let

f(λ) = V ((1− λ)K0 + λK1, i; Ki+1, . . . , Kn)1/i .

Then f is a concave function on [0, 1].
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See [37, p. 146] and [134, Theorem 6.4.3]. The Brunn-Minkowski inequality for compact convex
sets is the case i = n of Theorem 19.2. Readers familiar with the basic properties of mixed volumes
can derive (51) by setting i = 2 in Theorem 19.2 and expanding the resulting inequality to extract
the constants (1 − λ) and λ. Inequality (51) with i = 2 results, and the general case follows by
induction on i.

For compact convex sets, (51) is essentially the most powerful extension of the Brunn-Minkowski
inequality known. Proofs of Theorems 19.1 and 19.2, discovered by A. D. Aleksandrov and by
W. Fenchel and B. Jessen independently around 1937, can be found in [134, Theorems 6.3.1
and 6.4.3]. Equality conditions are not fully settled even today. An analog of the Aleksandrov-
Fenchel inequality for mixed discriminants (see [134, Theorem 6.8.1]) was used by G. P. Egorychev
in 1981 to solve the van der Waerden conjecture concerning the permanent of a doubly stochastic
matrix. See [134, Chapter 6] for a wealth of information and references.

Khovanskii, who with Teissier independently discovered that the Aleksandrov-Fenchel inequal-
ity can be deduced from the Hodge index theorem, wrote a readable account of this surprising
development in [37, Section 27]. The connection originates in the fact (due to D. M. Bernstein)
that the number of complex roots of a generic system of n polynomial equations in n variables
equals n! times the mixed volume of the corresponding Newton polytopes, P1, P2, . . . Pn, say. (The
Newton polytope is the smallest convex polytope in Rn containing each point (m1, . . . ,mn) for
which czm1

1 · · · zmn
n is a term of the polynomial.) The (n − 2) of these n polynomial equations

corresponding to P3, . . . , Pn define an algebraic surface in Cn on which the remaining polynomial
equations describe two complex curves. The number of intersection points of these two curves is
the number of roots of the system of n equations. Roughly speaking, the Hodge index theorem
is an inequality involving the number of intersections of two complex curves Γ1, Γ2 in a compact
complex algebraic surface and those of each curve with a slightly deformed copy of itself:

〈Γ1, Γ2〉2 ≥ 〈Γ1, Γ1〉〈Γ2,Γ2〉.
Using the above observations, this can be translated into

V (P1, P2, P3, . . . , Pn)2 ≥ V (P1, P1, P3, . . . , Pn)V (P2, P2, P3, . . . , Pn).

The case i = 2 of (19.1) (and hence, by induction, (19.1) itself) can be shown to follow by
approximation by polytopes with rational coordinates. See [37, Section 27] for many more details
and also [72] and [123] for more recent advances in this direction.

Alesker, Dar, and Milman [1] are able to use the Brenier map (see the end of Section 17)
to prove some of the inequalities that follow from the Aleksandrov-Fenchel inequality, but the
method does not seem to yield a new proof of (51) itself.

In contrast to the Brunn-Minkowski inequality, the Aleksandrov-Fenchel inequality and some of
its weaker forms, and indeed mixed volumes themselves, have only partially successful extensions
to nonconvex sets. See [37, pp. 177–181], [134, p. 343], and [145].

19.2. Minkowski-concave functions. A real-valued function φ defined on a class of sets in Rn

closed under Minkowski addition and dilatation is called Minkowski concave if

φ((1− λ)X + λY ) ≥ (1− λ)φ(X) + λφ(Y ), (52)

for 0 < λ < 1 and sets X,Y in the class. For example, the Brunn-Minkowski inequality implies
that V

1/n
n is Minkowski concave on the class of convex bodies. When Hadwiger published his
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extraordinary book [75] in 1957, many other Minkowski-concave functions had already been found,
and several more have been discovered since. We shall present some of these; all the functions
have the required degree of positive homogeneity to allow the coefficients (1 − λ) and λ to be
deleted in (52). Other examples can be found in [75, Section 6.4] and in Lutwak’s papers [96] and
[102].

Knothe [83] gave a proof of the Brunn-Minkowski inequality for convex bodies, sketched in
[134, pp. 312–314], and the following generalization. For each convex body K in Rn, let F (K, x),
x ∈ K, be a nonnegative real-valued function continuous in K and x. Suppose also that for some
m > 0,

F (λK + a, λx + a) = λmF (K, x)
for all λ > 0 and a ∈ Rn, and that

log F ((1− λ)K + λL, (1− λ)x + λy) ≥ (1− λ) log F (K, x) + λ log F (L, y)

whenever x ∈ K, y ∈ L, and 0 ≤ λ ≤ 1. For each convex body K in Rn, define

G(K) =
∫

K
F (K, x) dx.

Then

G(K + L)1/(n+m) ≥ G(K)1/(n+m) + G(L)1/(n+m), (53)

for all convex bodies K and L in Rn and 0 < λ < 1. This is a consequence of the Prékopa-Leindler
inequality. Indeed, taking f = F ((1 − λ)K + λL, ·), g = F (K, ·), and h = F (L, ·), Theorem 4.2
implies that G is log concave. The method of Section 5 can then be used to derive the 1/(n+m)-
concavity (53) of G from its log concavity. The Brunn-Minkowski inequality for convex bodies is
obtained by taking F (K, x) = 1 for x ∈ K. Dinghas [50] found further results of this type.

Let 0 ≤ i ≤ n. The mixed volume V (K, n − i; B, i) is denoted by Wi(K), and called the ith
quermassintegral of a compact convex set K in Rn. Then W0(K) = Vn(K). It can be shown (see
[134, (5.3.27), p. 295]) that if K is a convex body and 1 ≤ i ≤ n− 1, then

Wi(K) =
κn

κn−i

∫

G(n,n−i)
V (K|S) dS, (54)

where dS denotes integration with respect to the usual rotation-invariant probability measure on
the Grassmannian G(n, n− i) of (n− i)-dimensional subspaces of Rn. Thus the quermassintegrals
are averages of volumes of projections on subspaces.

Letting Ki+1 = · · · = Kn = B in Theorem 19.2 yields:

Theorem 19.3. (Brunn-Minkowski inequality for quermassintegrals.) Let K and L be convex
bodies in Rn and let 0 ≤ i ≤ n− 1. Then

Wi(K + L)1/(n−i) ≥ Wi(K)1/(n−i) + Wi(L)1/(n−i), (55)

with equality for 0 < i < n− 1 if and only if K and L are homothetic.

See [134, (6.8.10), p. 385]. The special case i = 0 is the usual Brunn-Minkowski inequality for
convex bodies. The quermassintegral W1(K) equals the surface area S(K), up to a constant, so
the case i = 1 of (55) is a Brunn-Minkowski-type inequality for surface area. When i = n − 1,
(55) becomes an identity. The equality conditions for 0 < i < n− 1 follow from those known for
the corresponding special case of Theorem 19.2.
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Let K be a convex body in Rn, define Ŵ0(K) = V (K) and for 1 ≤ i ≤ n− 1, define

Ŵi(K) =
κn

κn−i

(∫

G(n,n−i)
V (K|S)−1 dS

)−1

,

the ith harmonic quermassintegral of K. Similarly, define Φ0(K) = V (K) and for 1 ≤ i ≤ n− 1,
define

Φi(K) =
κn

κn−i

(∫

G(n,n−i)
V (K|S)−n dS

)−1/n

,

the ith affine quermassintegral of K. Note the similarity to (54); the ordinary mean has been
replaced by the −1- and −n-means, respectively. As its name suggests, Φi(K) is invariant under
volume-preserving affine transformations. Hadwiger [75, p. 268] proved the following inequality.

Theorem 19.4. (Hadwiger’s inequality for harmonic quermassintegrals.) If K and L are convex
bodies in Rn and 0 ≤ i ≤ n− 1, then

Ŵi(K + L)1/(n−i) ≥ Ŵi(K)1/(n−i) + Ŵi(L)1/(n−i).

Lutwak [97] showed that the same inequality holds for affine quermassintegrals.

Theorem 19.5. (Lutwak’s inequality for affine quermassintegrals.) If K and L are convex bodies
in Rn and 0 ≤ i ≤ n− 1, then

Φi(K + L)1/(n−i) ≥ Φi(K)1/(n−i) + Φi(L)1/(n−i). (56)

Let K be a convex body in Rn, n ≥ 3. The capacity Cap (K) of K is defined by

Cap (K) = inf
{∫

Rn

‖∇f‖2 dx : f ∈ C∞
c (Rn), f ≥ 1K

}
,

where C∞
c (Rn) denotes the infinitely differentiable functions on Rn with compact support. Here

we are following Evans and Gariepy [57, p. 147], where Cap (K) = Cap n−2(K) in their notation.
Several definitions are possible; see [79] and [111, pp. 110–116]. The notion of capacity has its
roots in electrostatics and is fundamental in potential theory. Note that capacity is an outer
measure but is not a Borel measure, though it enjoys some convenient properties listed in [57,
p. 151].

Borell [29] proved the following theorem.

Theorem 19.6. (Borell’s inequality for capacity.) If K and L are convex bodies in Rn, n ≥ 3,
then

Cap (K + L)1/(n−2) ≥ Cap (K)1/(n−2) + Cap (L)1/(n−2). (57)

Caffarelli, Jerison, and Lieb [39] showed that equality holds if and only if K and L are homo-
thetic. Jerison [79] employed the inequality and its equality conditions in solving the correspond-
ing Minkowski problem (see Section 7).
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19.3. Blaschke addition. If K and L are convex bodies in Rn, then there is a convex body
K u L such that

S(K u L, ·) = S(K, ·) + S(L, ·),
where S(K, ·) denotes the surface area measure of K. This is a consequence of Minkowski’s
existence theorem; see [67, Theorem A.3.2] or [134, Section 7.1]. The operation u is called
Blaschke addition.

Theorem 19.7. (Kneser-Süss inequality.) If K and L are convex bodies in Rn, then

V (K u L)(n−1)/n ≥ V (K)(n−1)/n + V (L)(n−1)/n, (58)

with equality if and only if K and L are homothetic.

See [134, Theorem 7.1.3] for a proof.
Using Blaschke addition, a convex body called a mixed body can be defined from (n− 1) other

convex bodies in Rn. Lutwak [98, Theorem 4.2] exploits this idea, due to Blaschke and Firey, to
produce another strengthening of the Brunn-Minkowski inequality for convex bodies.

19.4. The Lp-Brunn-Minkowski theory. For convex bodies K and L in Rn, Minkowski addi-
tion can be defined by

hK+L(u) = hK(u) + hL(u),

for u ∈ Sn−1, where hK denotes the support function of K. If p ≥ 1 and K and L contain the
origin in their interiors, a convex body K +p L can be defined by

hK+pL(u)p = hK(u)p + hL(u)p,

for u ∈ Sn−1. The operation +p is called p-Minkowski addition. Firey [60] proved the following
inequality. (Both the definition of p-Minkowski addition and the case i = 0 of Firey’s inequality
are extended to nonconvex sets by Lutwak, Yang, and Zhang [105].)

Theorem 19.8. (Firey’s inequality.) If K and L are convex bodies in Rn containing the origin
in their interiors, 0 ≤ i ≤ n− 1 and p ≥ 1, then

Wi(K +p L)p/(n−i) ≥ Wi(K)p/(n−i) + Wi(L)p/(n−i), (59)

with equality when p > 1 if and only if K and L are equivalent by dilatation.

The Brunn-Minkowski inequality for quermassintegrals (55) is the case p = 1. Note that
translation invariance is lost for p > 1.

Firey’s ideas were transformed into a remarkable extension of the Brunn-Minkowski theory
by Lutwak [101], [104], who also calls it the Brunn-Minkowski-Firey theory. Lutwak found the
appropriate p-analog Sp(K, ·), p ≥ 1, of the surface area measure of a convex body K in Rn

containing the origin in its interior. In [101], Lutwak generalized Firey’s inequality (59). He also
generalized Minkowski’s existence theorem, deduced the existence of a convex body K up L for
which

Sp(K up L, ·) = Sp(K, ·) + Sp(L, ·)
(when K and L are origin-symmetric convex bodies), and proved the following result.
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Theorem 19.9. (Lutwak’s p-surface area measure inequality.) If K and L are origin-symmetric
convex bodies in Rn and n 6= p ≥ 1, then

V (K up L)(n−p)/n ≥ V (K)(n−p)/n + V (L)(n−p)/n,

with equality when p > 1 if and only if K and L are equivalent by dilatation.

Note that the Kneser-Süss inequality (58) corresponds to p = 1.
Lutwak, Yang, and Zhang [107] study the Lp version of the Minkowski problem (see Section 7).

A version corresponding to p = 0 is treated by Stancu [139].

19.5. Random and integral versions. Let X be a random set in Rn, that is, a Borel measurable
map from a probability space Ω to the space of nonempty compact sets in Rn with the Hausdorff
metric. A random vector X : Ω → Rn is called a selection of X if Prob (X ∈ X ) = 1. If C is a
nonempty compact set in Rn, let ‖C‖ = max{‖x‖ : x ∈ C}. Then the expectation EX of X is
defined by

EX = {EX : X is a selection of X and E‖X‖ < ∞}.
It turns out that if E‖X‖ < ∞, then EX is a nonempty compact set.

Theorem 19.10. (Vitale’s random Brunn-Minkowski inequality.) Let X be a random set in Rn

with E‖X‖ < ∞. Then

Vn(EX )1/n ≥ EVn(X )1/n. (60)

See [148] (and [149] for a stronger version). By taking X to be a random set that realizes
values (nonempty compact sets) K and L with probabilities (1 − λ) and λ, respectively, we see
that Theorem 19.10 generalizes the Brunn-Minkowski inequality for compact sets.

A version of (60) for intrinsic volumes (weighted quermassintegrals) of random convex bodies,
and applications to stationary random hyperplane processes, are given by Mecke and Schwella
[117].

Earlier integral forms of the Brunn-Minkowski inequality, using a Riemann approach to pass
from a Minkowski sum to a “Minkowski integral,” were formulated by A. Dinghas; see [37, p. 76].

19.6. Other strong forms of the Brunn-Minkowski inequality for convex sets. McMullen
[116] defines a natural generalization of Minkowski addition of convex sets that he calls fibre
addition, and proves a corresponding Brunn-Minkowski inequality.

Several strong forms of the Brunn-Minkowski inequality hold in special circumstances, for
example, the stability estimates due to V. Diskant, H. Groemer, and R. Schneider referred to in
[71, Section 3] and [134, p. 314], and an inequality of Ruzsa [131].

Dar [46] conjectures that if K and L are convex bodies in Rn and m = maxx∈Rn V (K∩(L+x)),
then

V (K + L)1/n ≥ m1/n +
(

V (K)V (L)
m

)1/n

. (61)

He shows that (61) implies the Brunn-Minkowski inequality for convex bodies and proves that it
holds in some special cases.
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19.7. Related affine inequalities. A wide variety of fascinating inequalities lie (for the present)
one step removed from the Brunn-Minkowski inequality. The survey paper [124] of Osserman
indicates connections between the isoperimetric inequality and inequalities of Bonnesen, Poincaré,
and Wirtinger, and since then many other inequalities have been found that lie in a complicated
web around the Brunn-Minkowski inequality.

Some of these related inequalities are affine inequalities in the sense that they are unchanged
under a volume-preserving linear transformation. The Brunn-Minkowski and Prékopa-Leindler
inequalities are clearly affine inequalities. Young’s inequality and its reverse are affine inequalities,
since if φ ∈ SL(n), we have

φ(f ∗ g) = (φf) ∗ (φg) and ‖φf‖p = ‖f‖p.

The Brascamp-Lieb and Barthe inequalities are also affine inequalities.
The sharp Hardy-Littlewood-Sobolev inequality (39) is not affine invariant, but it is invariant

under conformal transformations; see [91, Theorem 4.5]. The isoperimetric inequality is also not
an affine inequality (if it were, the equality for balls would imply that equality also held for
ellipsoids), and neither is the Sobolev inequality (24).

There is a remarkable affine inequality that is much stronger than the isoperimetric inequality
for convex bodies. The Petty projection inequality states that

V (K)n−1V (Π∗K) ≤
(

κn

κn−1

)n

, (62)

where K is a convex body in Rn, and Π∗K denotes the polar body of the projection body ΠK
of K. (The support function of ΠK at u ∈ Sn−1 equals V (K|u⊥).) Equality holds if and only if
K is an ellipsoid. See [67, Chapter 9] for background information, a proof, several other related
inequalities, and a reverse form due to Zhang. Zhang [152] has also recently found an astounding
affine Sobolev inequality, a common generalization of the Sobolev inequality (24) and the Petty
projection inequality (62): If f ∈ C1(Rn) has compact support, then

(∫

Sn−1

‖Duf‖−n
1 du

)−1/n

≥ 2κn−1

n1/nκn
‖f‖n/(n−1), (63)

where Duf is the directional derivative of f in the direction u.
This is only a taste of a banquet of known affine isoperimetric inequalities. Lutwak [103] wrote

an excellent survey. For still more recent progress, the reader can do no better than consult the
work of Lutwak, Yang, and Zhang, for example, [109] and [110].

19.8. A restricted Brunn-Minkowski inequality. Let X and Y be measurable sets in Rn,
and let E be a measurable subset of X × Y . Define the restricted Minkowski sum of X and Y by

X +E Y = {x + y : (x, y) ∈ E}.
Theorem 19.11. (Restricted Brunn-Minkowski inequality.) There is a c > 0 such that if X and
Y are nonempty measurable subsets of Rn, 0 < t < 1,

t ≤
(

Vn(X)
Vn(Y )

)1/n

≤ 1
t
, and

Vn(E)
Vn(X)Vn(Y )

≥ 1− c min{t√n, 1},

then
Vn(X +E Y )2/n ≥ Vn(X)2/n + Vn(Y )2/n.
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Szarek and Voiculescu [142] proved Theorem 19.11 in the course of establishing an analog of
the entropy power inequality in Voiculescu’s free probability theory. (Voiculescu has also found
analogs of Fisher information within this noncommutative probability theory with applications
to physics.) Barthe [19] also gives a proof via restricted versions of Young’s inequality and the
Prékopa-Leindler inequality.

19.9. Milman’s reverse Brunn-Minkowski inequality. At first such an inequality seems
impossible, since if K and L are convex bodies in Rn of volume 1, the volume of K + L can be
arbitrarily large. As with the reverse isoperimetric inequality (45), however, linear transformations
come to the rescue.

Theorem 19.12. (Milman’s reverse Brunn-Minkowski inequality.) There is a constant c in-
dependent of n such that if K and L are centrally symmetric convex bodies in Rn, there are
volume-preserving linear transformations φ and ψ for which

V (φK + ψL)1/n ≤ c
(
V (φK)1/n + V (ψL)1/n

)
. (64)

First proved by V. Milman in 1986, this result is important in the local theory of Banach
spaces. See [92, Section 4.3] and [127, Chapter 7].

19.10. Discrete versions. The Cauchy-Davenport theorem, proved by Cauchy in 1813 and re-
discovered by Davenport in 1935, states that if p is prime and X and Y are nonempty finite
subsets of Z/pZ, then

|X + Y | ≥ min{p, |X|+ |Y | − 1}.
Here |X| is the cardinality of X. Many generalizations of this result, including Kneser’s extension
to Abelian groups, are surveyed in [122]. The lower bound for a vector sum is in the spirit of the
Brunn-Minkowski inequality. We now describe a closer analog.

Let Y be a finite subset of Zn with |Y | ≥ n + 1. For x = (x1, . . . , xn) ∈ Zn, let

wY (x) =
x1

|Y | − n
+

n∑

i=2

xi.

Define the Y -order on Zn by setting x <Y y if either wY (x) < wY (y) or wY (x) = wY (y) and for
some j we have xj > yj and xi = yi for all i < j. For m ∈ N, let DY

m be the union of the first
m points in Zn

+ (the points in Zn with nonnegative coordinates) in the Y -order. The set DY
m is

called a Y -initial segment. The points of DY
|Y | are

o <Y e1 <Y 2e1 <Y · · · <Y (|Y | − n)e1 <Y e2 <Y · · · <Y en,

where e1, . . . , en is the standard orthonormal basis for Rn. Note that the convex hull of DY
|Y | is a

simplex. Roughly speaking, Y -initial segments are as close as possible to being the set of points
in Zn

+ that are contained in a dilatate of this simplex.

Theorem 19.13. (Brunn-Minkowski inequality for the integer lattice.) Let X and Y be finite
subsets of Zn with dimY = n. Then

|X + Y | ≥
∣∣∣DY

|X| + DY
|Y |

∣∣∣ . (65)
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See [68], and also [26] for a similar result in finite subgrids of Zn. That (65) is indeed a
Brunn-Minkowski-type inequality is clear by comparing

V (K + L) ≥ V (rKB + rLB),

the consequence of (17) given above. Indeed, (65) is proved by means of a discrete version, called
compression, of an anti-symmetrization process related to Steiner symmetrization.

19.11. The dual Brunn-Minkowski theory. Let M be a body in Rn containing the origin in
its interior and star-shaped with respect to the origin. The radial function of M is defined by

ρM (u) = max{c : cu ∈ M},
for u ∈ Sn−1. Call M a star body if ρM is positive and continuous on Sn−1.

Let M and N be star bodies in Rn, let p 6= 0, and define a star body M+̃pN by

ρM+̃pN (u)p = ρM (u)p + ρN (u)p.

The operation +̃p is called p-radial addition.

Theorem 19.14. (p-dual Brunn-Minkowski inequality.) If M and N are star bodies in Rn, and
0 < p ≤ n, then

V (M+̃pN)p/n ≤ V (M)p/n + V (N)p/n. (66)

The reverse inequality holds when p > n or when p < 0. Equality holds when p 6= n if and only if
M and N are equivalent by dilatation.

The inequality (66) follows from the polar coordinate formula for volume and Minkowski’s
integral inequality (see [77, Section 6.13]). It was found by Firey [59] for convex bodies and
p ≤ −1. The general inequality forms part of Lutwak’s highly successful dual Brunn-Minkowski
theory, in which the intersections of star bodies with subspaces replace the projections of convex
bodies onto subspaces in the classical theory; see, for example, [67]. The cases p = 1 and p = n−1
are called the dual Brunn-Minkowski inequality and dual Kneser-Süss inequality, respectively. A
renormalized version of the case p = n+1 of (66) was used by Lutwak [100] in his work on centroid
bodies (see also [67, Section 9.1]).

There is an inequality equivalent to the dual Brunn-Minkowski inequality called the dual
Minkowski inequality, the analog of Minkowski’s first inequality (20); see [67, p. 373]. This
plays a role in the solution of the Busemann-Petty problem (the analog of Shephard’s problem
mentioned after Theorem 7.1): If the intersection of an origin-symmetric convex body with any
given hyperplane containing the origin is always smaller in volume than that of another such
body, is its volume also smaller? The answer is no in general in five or more dimensions, but yes
in less than five dimensions. See [65], [66], [69], [151], and [153].

Lutwak [95] also discovered that integrals over Sn−1 of products of radial functions behave
like mixed volumes, and called them dual mixed volumes. In the same paper, he showed that
a suitable version of Hölder’s inequality in Sn−1 then becomes a dual form of the Aleksandrov-
Fenchel inequality (51), in which mixed volumes are replaced by dual mixed volumes (and the
inequality is reversed). Special cases of dual mixed volumes analogous to the quermassintegrals
are called dual quermassintegrals, and it can be shown that an expression similar to (54) holds for
these; instead of averaging volumes of projections, this involves averaging volumes of intersections
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with subspaces. Dual affine quermassintegrals can also be defined (see [67, p. 332]), but apparently
an inequality for these corresponding to (56) is not known.

19.12. Busemann’s theorem. Let S be an (n− 2)-dimensional subspace of Rn, let u ∈ Sn−1 ∩
S⊥, and let Su denote the closed (n − 1)-dimensional half-subspace containing u and with S as
boundary. Let u, v ∈ Sn−1 ∩ S⊥, and let X and Y be subsets of Su and Sv, respectively. If
0 < λ < 1, let u(λ) be the unit vector in the direction (1− λ)u + λv, and let (1− λ)X +h λY be
the set of points in Su(λ) lying on a line segment with one endpoint in X and the other in Y . We
call the operation +h harmonic addition.

Theorem 19.15. (Busemann-Barthel-Franz inequality.) In the notation introduced above, let X
and Y be compact subsets of Su and Sv, respectively, of positive Vn−1-measure. If 0 < λ < 1, then

Vn−1 ((1− λ)X +h λY )
‖u(λ)‖ ≥ M−1(Vn−1(X), Vn−1(Y ), λ). (67)

Though Theorem 19.15 looks strange, it has the following nice geometrical consequence called
Busemann’s theorem. If K is a convex body in Rn containing the origin in its interior and S is an
(n− 2)-dimensional subspace, the curve r = r(θ) in S⊥ such that r(θ) is the (n− 1)-dimensional
volume of the intersection of K with the half-space Sθ forms the boundary of a convex body in
S⊥. Proved in this form by H. Busemann in 1949 and motivated by his theory of area in Finsler
spaces, it is also important in geometric tomography (see [67, Theorem 8.1.10]). As stated,
Theorem 19.15 and precise equality conditions were proved by W. Barthel and G. Franz in 1961;
see [67, Note 8.1] for more details and references.

Milman and Pajor [119, Theorem 3.9] found a proof of Busemann’s theorem similar to the
second proof of Theorem 4.1 given above. Generalizations along the lines of Theorem 10.2 are
possible, such as the following (stated and proved in [15, p. 9]).

Theorem 19.16. Let 0 < λ < 1, let p > 0, and let f , g, and h be nonnegative integrable functions
on [0,∞) satisfying

h (M−p(x, y, λ)) ≥ f(x)
(1−λ)yp

(1−λ)yp+λxp g(y)
λxp

(1−λ)yp+λxp , (68)

for all nonnegative x, y ∈ R. Then∫ ∞

0
h(x) dx ≥ M−p

(∫ ∞

0
f(x) dx,

∫ ∞

0
g(x) dx, λ

)
.

The previous inequality is very closely related to one found earlier by Ball [8]. For other
associated inequalities, see [70, Theorem 4.1] and [118, Lemma 1].

19.13. Brunn-Minkowski and Prékopa-Leindler inequalities in other spaces. Let X be
a measurable subset of Rn and let rX be the radius of a ball of the same volume as X. If ε > 0,
the Brunn-Minkowski inequality (16) implies that

Vn(X + εB) ≥
(
Vn(X)1/n + εVn(B)1/n

)n
=

(
Vn(rXB)1/n + εVn(B)1/n

)n
= Vn(rXB + εB).

(69)

For any set A, write

Aε = A + εB = {x : d(x,A) ≤ ε}. (70)
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Then we can rewrite (69) as

Vn(Xε) ≥ Vn((rXB)ε). (71)

Notice that (71), by virtue of (70), is now free of the addition and involves only a measure and a
metric.

With the appropriate measure and metric replacing Vn and the Euclidean metric, (71) remains
true in the sphere Sn−1 and hyperbolic space, equality holding if and only if X is a ball of radius
rX . (Of course, in these spaces, the ball B(x, r) centered at x and with radius r > 0 is the set
of all points whose distance from x is at most r. In Sn−1, balls are just spherical caps.) Though
in Rn (71) is only a special case of (16), in Sn−1 and hyperbolic space, (71) is called the Brunn-
Minkowski inequality. According to Dudley [52, p. 184], (71) was first proved in Sn−1 under extra
assumptions by P. Lévy in 1922, with weaker assumptions by E. Schmidt in the 1940’s, and in
full generality by Figiel, Lindenstrauss, and Milman in 1977. In hyperbolic space, (71) is due to
E. Schmidt. A proof using symmetrization techniques for both Sn−1 and hyperbolic space can be
found in [37, Section 9].

Perhaps more significant than (71) for recent developments is a surprising result that holds
in Sn−1, n ≥ 3, with the chordal metric. It can be shown that if Vn−1(X)/Vn−1(B) ≥ 1/2 and
0 < ε < 1, then

Vn−1(Xε)
Vn−1(B)

≥ 1−
(π

8

)1/2
e−(n−2)ε2/2. (72)

Results of the form (72) are called approximate isoperimetric inequalities, and can be derived
from the general Brunn-Minkowski inequality in Rn, as in [4, Theorem 2]. In particular, by
taking X to be a hemisphere, we see that for large n, almost all the measure is concentrated
near the equator! This result, which again goes back to P. Lévy, is proved in [120, p. 5]. It is an
example of the concentration of measure phenomenon that Milman applied in his 1971 proof of
Dvoretzky’s theorem, and that with contributions by Talagrand and others has quickly generated
an extensive literature surveyed by Ledoux [85]. An excellent, but more selective, introduction is
Ball’s elegant and insightful expository article [13, Lecture 8].

Analogous results hold in Gauss space, Rn with the usual metric but with the standard Gauss
measure γn in Rn with density

dγn(x) = (2π)−n/2e−‖x‖
2/2 dx.

Indeed, for bounded Lebesgue measurable sets X and Y in Rn for which (1−λ)X+λY is Lebesgue
measurable, we have the inequality

γn((1− λ)X + λY ) ≥ γn(X)1−λγn(Y )λ (73)

corresponding to (14). This follows from the Prékopa-Leindler inequality (because the density
function is log concave); see, for example, [33]. It can also be derived directly from the general
Brunn-Minkowski inequality in Rn by means of the “Poincaré limit,” a limit of projections of
Lebesgue measure in balls of increasing radius; this and an abundance of additional information
and references can be found in Ledoux and Talagrand’s book [86, Section 1.1]. To describe some
of this work briefly, let Φ(r) = γ1((−∞, r)) for r ∈ R. Borell [27] and Sudakov and Tsirel’son
[141] independently showed that if X is a measurable subset of Rn and γn(X) = Φ(rX), then
γn(Xε) ≥ Φ(rX + ε), with equality if X is a half-space. Ehrhard [54], [55] gave a new proof using
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symmetrization techniques that also yields the following Brunn-Minkowski-type inequality. If K
and L are convex bodies in Rn and 0 < λ < 1, then

Φ−1 (γn((1− λ)K + λL)) ≥ (1− λ)Φ−1 (γn(K)) + λΦ−1 (γn(L)) . (74)

While (74) is stronger than (73) for convex bodies, it is unknown whether it holds for Borel sets;
see [84] and [86, Problem 1]. An approximate isoperimetric inequality similar to (72) also holds
in Gauss space; Maurey [112] (see also see [13, Theorem 8.1]) found a simple proof employing
the Prékopa-Leindler inequality. As in Sn−1, there is a concentration of measure in Gauss space,
this time in spherical shells of thickness approximately 1 and radius approximately

√
n. Closely

related work on logarithmic Sobolev inequalities is outlined in the next section.
Bahn and Ehrlich [5] find an inequality that can be interpreted as a reversed form of the Brunn-

Minkowski inequality in Minkowski spacetime, that is, Rn+1 with a scalar product of index 1.
Cordero-Erausquin [41] utilizes results of R. McCann to prove a version of the Prékopa-Leindler

inequality on the sphere, remarking that a similar version can be obtained for hyperbolic space.
These results are generalized in a remarkable paper [42] by Cordero-Erausquin, McCann, and
Schmuckenschläger, who establish a beautiful Riemannian version of Theorem 10.2.

19.14. Further applications. The Brunn-Minkowski inequality has been used in the study of
crystals. A crystal in contact with its melt (or a liquid in contact with its vapor) is modeled
by a bounded Borel subset M of Rn of finite surface area and fixed volume. (We shall ignore
measure-theoretic subtleties in this description.) The surface energy is given by

F (M) =
∫

∂M
f(ux) dx,

where ux is the outer unit normal to M at x and f is a nonnegative function on Sn−1 representing
the surface tension, assumed known by experiment or theory. By the Gibbs-Curie principle, the
equilibrium shape of such a crystal minimizes this surface energy among all sets of the same
volume. This shape is called the Wulff shape. For a soapy liquid drop in air, f is a constant (we are
neglecting external potentials such as gravity) and the Wulff shape is a ball, by the isoperimetric
inequality. For crystals, however, f will generally reflect certain preferred directions. In 1901,
Wulff gave a construction of the Wulff shape W :

W = ∩u∈Sn−1{x ∈ Rn : x · u ≤ f(u)};
each set in the intersection is a half-space containing the origin with bounding hyperplane orthog-
onal to u and containing the point f(u)u at distance f(u) from the origin. The Brunn-Minkowski
inequality can be used to prove that, up to translation, W is the unique shape among all with the
same volume for which F is minimum; see, for example, [143, Theorem 1.1]. This was done first
by A. Dinghas in 1943 for convex polygons and polyhedra and then by various people in greater
generality. In particular, Busemann [38] solved the problem when f is continuous, and Fonseca
[62] and Fonseca and Müller [63] extend the results to include sets M of finite perimeter in Rn.
Good introductions with more details and references are provided by Taylor [143] and McCann
[115].

In fact, McCann [115] also proves more general results that incorporate a convex external
potential, by a technique developed in his paper [114] on interacting gases. A gas of particles
in Rn is modeled by a nonnegative mass density ρ(x) of total integral 1, that is, a probability
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density on Rn, or, equivalently, by an absolutely continuous probability measure in Rn. To each
state corresponds an energy

E(ρ) = U(ρ) +
G(ρ)

2

=
∫

Rn

A(ρ(x)) dx +
1
2

∫

Rn

∫

Rn

V (x− y) dρ(x) dρ(y).

Here U represents the internal energy with A a convex function defined in terms of the pressure,
and G(ρ)/2 is the potential energy defined by a strictly convex interaction potential V . The
problem is that E(ρ) is not generally convex, making it nontrivial to prove the uniqueness of an
energy minimizer. McCann gets around this by defining for each pair ρ, ρ′ of probability densities
on Rn and 0 < t < 1 an interpolant probability density ρt such that

U(ρt) ≤ (1− t)U(ρ) + tU(ρ′) (75)

(and similarly for G and hence for E). McCann calls (75) the displacement convexity of U ; ρt

is not (1 − t)ρ + tρ′, but rather is defined in the natural way by means of the Brenier map
that transports ρ to ρ′ (see the last paragraph of Section 17). McCann is also able to recover
the Brunn-Minkowski inequality from (75) by taking A(ρ) = −ρ(n−1)/n and ρ and ρ′ to be the
densities corresponding to the uniform probability measures on the two sets.

Next we turn to applications to diffusion equations. Let V be a nonnegative continuous poten-
tial defined on a convex domain C in Rn and consider the diffusion equation

∂ψ

∂t
=

1
2
4ψ − V (x)ψ(x, t) (76)

with zero Dirichlet boundary condition (i.e., ψ tends to zero as x approaches the boundary of C
for each fixed t). Denote by f(t, x, y) the fundamental solution of (76); that is, ψ(t, x) = f(t, x, y)
satisfies (76) and its boundary condition, and

lim
t→0+

f(t, x, y) = δ(x− y).

For example, if V = 0 and C = Rn, then

f(t, x, y) = (2πt)−n/2e−|x−y|2/2t.

Brascamp and Lieb [35] proved that if V is convex, then f(t, x, y) is log concave on C2. This is
an application of the Prékopa-Leindler inequality, via Theorem 11.3 with p = 0; basically, it is
shown that f is given as a pointwise limit of convolutions of log concave functions (Gaussians or
exp(−tV (x))). Borell [30] uses a version of Theorem 10.2 to show that the stronger assumption
that V is −1/2-concave implies that t log(tnf(t2, x, y)) is concave on R+×C2. In a further study,
Borell [32] generalizes all of these results (and the Prékopa-Leindler inequality) by considering
potentials V (σ, x) that depend also on a parameter σ.

Another rich area of applications surrounds the logarithmic Sobolev inequality proved by Gross
[73]:

Entγn(f) ≤ 1
2
Iγn(f), (77)
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where f is a suitably smooth nonnegative function on Rn, γn is the Gauss measure defined in the
previous subsection,

Entγn(f) =
∫

Rn

f log f dγn −
(∫

Rn

f dγn

)(∫

Rn

log f dγn

)
,

and

Iγn(f) =
∫

Rn

‖∇f‖2

f
dγn.

Note (see Section 18) that Entγn(f) and Iγn(f) are essentially the negative entropy −h1(f) and
Fisher information, respectively, of f , defined with respect to Gauss measure. Bobkov and Ledoux
[25] derive (77) from the Prékopa-Leindler inequality (the “Brascamp-Lieb” in the title of [25]
refers to a different inequality of Brascamp and Lieb proved in [35]). Cordero-Erausquin [40]
proves (77) directly using the transportation of mass idea seen in action above.

McCann’s displacement convexity (75) plays an essential role in very recent work involving
several of the above topics. Otto [125] observed that various diffusion equations can be viewed
as gradient flows in the space of probability measures with the Wasserstein metric (formally, at
least, an infinite-dimensional Riemannian structure). McCann’s interpolation using the Brenier
map gives the geodesics in this space, and Otto uses the displacement convexity to derive rates
of convergence to equilibrium. The same ideas are utilized by Otto and Villani [126], who find
a new proof of an inequality of Talagrand for the Wasserstein distance between two probability
measures in an n-dimensional Riemannian manifold, and show that Talagrand’s inequality is very
closely related to the logarithmic Sobolev inequality (77). The interested reader may also consult
Ledoux’s survey [85].

The Brunn-Minkowski inequality was used by Firey [61] in an investigation of the shapes of
worn stones, related to the p = 0 version of the Lp-Minkowski problem (see Section 19.4). There
is a connection here (as well as for the topic of shapes of crystals described above) with an active
area concerning curvature-driven flows; see, in particular, Andrews’ solution [3] of a conjecture
of Firey in [61]. Borell [31] applies Theorem 11.2 and his Brunn-Minkowski inequality in Gauss
space (see the previous subsection) to option pricing, assuming that underlying stock prices are
governed by a joint Brownian motion. Kannan, Lovász, and Simonovits [81] obtain some inequal-
ities involving log-concave functions by means of a “localization lemma” that reduces certain
inequalities involving integrals over convex bodies in Rn to integral inequalities over “infinitesi-
mal truncated cones”—line segments with associated linear functions—and hence to inequalities
in a single variable. The proof of this localization lemma uses the Brunn-Minkowski inequality;
see [93, Lemma 2.5], where an application to the algorithmic computation of volume is discussed.
Other applications of the Brunn-Minkowski inequality include elliptic partial differential equations
[7] and combinatorics [80].
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