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Preface

In the spring of 2010, I taught a topics graduate course on random
matrix theory, the lecture notes of which then formed the basis for
this text. This course was inspired by recent developments in the
subject, particularly with regard to the rigorous demonstration of
universal laws for eigenvalue spacing distributions of Wigner matri-
ces (see the recent survey [Gu2009b]). This course does not directly
discuss these laws, but instead focuses on more foundational topics
in random matrix theory upon which the most recent work has been
based. For instance, the first part of the course is devoted to basic
probabilistic tools such as concentration of measure and the central
limit theorem, which are then used to establish basic results in ran-
dom matrix theory, such as the Wigner semicircle law on the bulk
distribution of eigenvalues of a Wigner random matrix, or the cir-
cular law on the distribution of eigenvalues of an iid matrix. Other
fundamental methods, such as free probability, the theory of deter-
minantal processes, and the method of resolvents, are also covered in
the course.

This text begins in Chapter 1 with a review of the aspects of prob-
ability theory and linear algebra needed for the topics of discussion,
but assumes some existing familiarity with both topics, as will as a
first-year graduate-level understanding of measure theory (as covered
for instance in my books [Ta2011, Ta2010]). If this text is used
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X Preface

to give a graduate course, then Chapter 1 can largely be assigned as
reading material (or reviewed as necessary), with the lectures then
beginning with Section 2.1.

The core of the book is Chapter 2. While the focus of this chapter
is ostensibly on random matrices, the first two sections of this chap-
ter focus more on random scalar variables, in particular discussing
extensively the concentration of measure phenomenon and the cen-
tral limit theorem in this setting. These facts will be used repeatedly
when we then turn our attention to random matrices, and also many
of the proof techniques used in the scalar setting (such as the moment
method) can be adapted to the matrix context. Several of the key
results in this chapter are developed through the exercises, and the
book is designed for a student who is willing to work through these
exercises as an integral part of understanding the topics covered here.

The material in Chapter 3 is related to the main topics of this
text, but is optional reading (although the material on Dyson Brow-
nian motion from Section 3.1 is referenced several times in the main
text).
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2 1. Preparatory material

1.1. A review of probability theory

Random matriz theory is the study of matrices whose entries are ran-
dom variables (or equivalently, the study of random variables which
take values in spaces of matrices). As such, probability theory is an
obvious prerequisite for this subject. As such, we will begin by quickly
reviewing some basic aspects of probability theory that we will need
in the sequel.

We will certainly not attempt to cover all aspects of probability
theory in this review. Aside from the utter foundations, we will be
focusing primarily on those probabilistic concepts and operations that
are useful for bounding the distribution of random variables, and on
ensuring convergence of such variables as one sends a parameter n off
to infinity.

We will assume familiarity with the foundations of measure the-
ory, which can be found in any text book (including my own text
[Ta2011]). This is also not intended to be a first introduction to
probability theory, but is instead a revisiting of these topics from a
graduate-level perspective (and in particular, after one has under-
stood the foundations of measure theory). Indeed, it will be almost
impossible to follow this text without already having a firm grasp of
undergraduate probability theory.

1.1.1. Foundations. At a purely formal level, one could call prob-
ability theory the study of measure spaces with total measure one,
but that would be like calling number theory the study of strings
of digits which terminate. At a practical level, the opposite is true:
just as number theorists study concepts (e.g. primality) that have
the same meaning in every numeral system that models the natural
numbers, we shall see that probability theorists study concepts (e.g.
independence) that have the same meaning in every measure space
that models a family of events or random variables. And indeed, just
as the natural numbers can be defined abstractly without reference
to any numeral system (e.g. by the Peano azioms), core concepts of
probability theory, such as random variables, can also be defined ab-
stractly, without explicit mention of a measure space; we will return
to this point when we discuss free probability in Section 2.5.
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For now, though, we shall stick to the standard measure-theoretic
approach to probability theory. In this approach, we assume the pres-
ence of an ambient sample space €, which intuitively is supposed to
describe all the possible outcomes of all the sources of randomness
that one is studying. Mathematically, this sample space is a proba-
bility space Q = (2, B,P) - a set 2, together with a o-algebra B of
subsets of Q (the elements of which we will identify with the proba-
bilistic concept of an event), and a probability measure P on the space
of events, i.e. an assignment E — P(F) of a real number in [0, 1] to
every event E (known as the probability of that event), such that
the whole space ) has probability 1, and such that P is countably
additive.

Elements of the sample space €2 will be denoted w. However, for
reasons that will be explained shortly, we will try to avoid actually
referring to such elements unless absolutely required to.

If we were studying just a single random process, e.g. rolling
a single die, then one could choose a very simple sample space - in
this case, one could choose the finite set {1,...,6}, with the dis-
crete o-algebra 2196} .= {4 . A c {1,...,6}} and the uniform
probability measure. But if one later wanted to also study addi-
tional random processes (e.g. supposing one later wanted to roll a
second die, and then add the two resulting rolls), one would have to
change the sample space (e.g. to change it now to the product space
{1,...,6} x {1,...,6}). If one was particularly well organised, one
could in principle work out in advance all of the random variables one
would ever want or need, and then specify the sample space accord-
ingly, before doing any actual probability theory. In practice, though,
it is far more convenient to add new sources of randomness on the
fly, if and when they are needed, and extend the sample space as nec-
essary. This point is often glossed over in introductory probability
texts, so let us spend a little time on it. We say that one probability
space (2, B',P') extends' another (Q,B,P) if there is a surjective
map 7 : @ — Q which is measurable (ie. 7= 1(E) € B’ for every
E € B) and probability preserving (i.e. P'(7~1(E)) = P(E) for every

1Stlrictly speaking, it is the pair ((Q',B’,P’),7) which is the extension of
(2, B, P), not just the space (Q',B’,P’), but let us abuse notation slightly here.
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E € B). By definition, every event E in the original probability space
is canonically identified with an event 7~!(E) of the same probability
in the extension.

Example 1.1.1. As mentioned earlier, the sample space {1,...,6},
that models the roll of a single die, can be extended to the sample
space {1,...,6} x {1,...,6} that models the roll of the original die
together with a new die, with the projection map = : {1,...,6} x
{1,...,6} — {1,...,6} being given by 7(x,y) := x.

Another example of an extension map is that of a permutation -
for instance, replacing the sample space {1,...,6} by the isomorphic
space {a, ..., f} by mapping a to 1, etc. This extension is not actually
adding any new sources of randomness, but is merely reorganising the
existing randomness present in the sample space.

In order to have the freedom to perform extensions every time we
need to introduce a new source of randomness, we will try to adhere
to the following important dogma?: probability theory is only
“allowed” to study concepts and perform operations which
are preserved with respect to extension of the underlying
sample space. As long as one is adhering strictly to this dogma,
one can insert as many new sources of randomness (or reorganise
existing sources of randomness) as one pleases; but if one deviates
from this dogma and uses specific properties of a single sample space,
then one has left the category of probability theory and must now
take care when doing any subsequent operation that could alter that
sample space. This dogma is an important aspect of the probabilistic
way of thinking, much as the insistence on studying concepts and
performing operations that are invariant with respect to coordinate
changes or other symmetries is an important aspect of the modern
geometric way of thinking. With this probabilistic viewpoint, we shall
soon see the sample space essentially disappear from view altogether,
after a few foundational issues are dispensed with.

2This is analogous to how differential geometry is only “allowed” to study con-
cepts and perform operations that are preserved with respect to coordinate change, or
how graph theory is only “allowed” to study concepts and perform operations that are
preserved with respect to relabeling of the vertices, etc..
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Let us now give some simple examples of what is and what is
not a probabilistic concept or operation. The probability P(E) of
an event is a probabilistic concept; it is preserved under extensions.
Similarly, boolean operations on events such as union, intersection,
and complement are also preserved under extensions and are thus
also probabilistic operations. The emptiness or non-emptiness of an
event F is also probabilistic, as is the equality or non-equality® of two
events E, F. On the other hand, the cardinality of an event is not a
probabilistic concept; for instance, the event that the roll of a given
die gives 4 has cardinality one in the sample space {1,...,6}, but
has cardinality six in the sample space {1,...,6} x {1,...,6} when
the values of an additional die are used to extend the sample space.
Thus, in the probabilistic way of thinking, one should avoid thinking
about events as having cardinality, except to the extent that they are
either empty or non-empty.

Indeed, once one is no longer working at the foundational level,
it is best to try to suppress the fact that events are being modeled as
sets altogether. To assist in this, we will choose notation that avoids
explicit use of set theoretic notation. For instance, the union of two
events I/, F' will be denoted E V F rather than E'U F, and will often
be referred to by a phrase such as “the event that at least one of F
or F holds”. Similarly, the intersection £ N F will instead be denoted
E ANF, or “the event that ¥ and F' both hold”, and the complement
Q\E will instead be denoted FE, or “the event that E does not hold”
or “the event that F fails”. In particular the sure event {2 can now be
referred to without any explicit mention of the sample space as . We
will continue to use the subset notation E C F (since the notation
E < F may cause confusion), but refer to this statement as “F is
contained in F” or “E implies F” or “E holds only if F' holds” rather
than “F is a subset of F”, again to downplay the role of set theory
in modeling these events.

We record the trivial but fundamental union bound

(L1) P(\_/ E;) < ZP(E»

3Note how it was important here that we demanded the map 7 to be surjective
in the definition of an extension.
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for any finite or countably infinite collection of events FE;. Taking
complements, we see that if each event E; fails with probability at
most &;, then the joint event A, E; fails with probability at most
Zi €;. Thus, if one wants to ensure that all the events F; hold at once
with a reasonable probability, one can try to do this by showing that
the failure rate of the individual F; is small compared to the number
of events one is controlling. This is a reasonably efficient strategy so
long as one expects the events E; to be genuinely “different” from
each other; if there are plenty of repetitions, then the union bound is
poor (consider for instance the extreme case when F; does not even
depend on 7).

We will sometimes refer to use of the union bound to bound
probabilities as the zeroth moment method, to contrast it with the
first moment method, second moment method, exponential moment
method, and Fourier moment methods for bounding probabilities that
we will encounter later in this course.

Let us formalise some specific cases of the union bound that we
will use frequently in the course. In most of this course, there will be
an integer parameter n, which will often be going off to infinity, and
upon which most other quantities will depend; for instance, we will
often be considering the spectral properties of n x n random matrices.

Definition 1.1.2 (Asymptotic notation). We use X = O(Y), Y =
AUX), X < Y,orY > X to denote the estimate |X| < CY for
some C independent of n and all n > C. If we need C to depend on
a parameter, e.g. C' = C}, we will indicate this by subscripts, e.g.
X = 0r(Y). We write X = o(Y) if | X| < ¢(n)Y for some ¢ that goes
to zeroasn — oco. Wewrite X ~Y or X =0V) if X <V <« X.

Given an event £ = E,, depending on such a parameter n, we
have five notions (in decreasing order of confidence) that an event is
likely to hold:

(1) An event E holds surely (or is true) if it is equal to the sure
event ().

(ii) An event E holds almost surely (or with full probability) if
it occurs with probability 1: P(E) = 1.
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(iii) An event E holds with overwhelming probability if, for every
fixed A > 0, it holds with probability 1 —O4(n~?4) (i.e. one
has P(E) > 1 — Can~4 for some C4 independent of n).

(iv) An event E holds with high probability if it holds with prob-
ability 1 —O(n~°) for some ¢ > 0 independent of n (i.e. one
has P(E) > 1 — Cn~° for some C independent of n).

(v) An event F holds asymptotically almost surely if it holds
with probability 1 — o(1), thus the probability of success
goes to 1 in the limit n — oco.

Of course, all of these notions are probabilistic notions.

Given a family of events E, depending on some parameter «, we
say that each event in the family holds with overwhelming probability
uniformly in « if the constant C4 in the definition of overwhelming
probability is independent of «; one can similarly define uniformity
in the concepts of holding with high probability or asymptotic almost
sure probability.

From the union bound (1.1) we immediately have

Lemma 1.1.3 (Union bound).

(i) If E, is an arbitrary family of events that each hold surely,
then N\, Eo holds surely.

(ii) If E, is an at most countable family of events that each hold
almost surely, then N\, Eq holds almost surely.

(iil) If E, is a family of events of polynomial cardinality (i.e.
cardinality O(n®M)) ) which hold with uniformly overwhelm-
ing probability, the A\, Eo holds with overwhelming proba-
bility.

(iv) If E, is a family of events of sub-polynomial cardinality (i.e.
cardinality O(n°M)) ) which hold with uniformly high proba-
bility, the N, Eo holds with high probability. (In particular,
the cardinality can be polylogarithmic in size, O(logo(l) n).)

(v) If E, is a family of events of uniformly bounded cardinality
(i.e. cardinality O(1)) which each hold asymptotically al-
most surely, then N\, Eo holds asymptotically almost surely.
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(Note that uniformity of asymptotic almost sureness is au-
tomatic when the cardinality is bounded.)

Note how as the certainty of an event gets stronger, the num-
ber of times one can apply the union bound increases. In particular,
holding with overwhelming probability is practically as good as hold-
ing surely or almost surely in many of our applications (except when
one has to deal with the entropy of an n-dimensional system, which
can be exponentially large, and will thus require a certain amount of
caution).

1.1.2. Random variables. An event E can be in just one of two
states: the event can hold or fail, with some probability assigned to
each. But we will usually need to consider the more general class of
random variables which can be in multiple states.

Definition 1.1.4 (Random variable). Let R = (R, R) be a measur-
able space (i.e. aset R, equipped with a o-algebra of subsets of R). A
random variable taking values in R (or an R-valued random variable)

is a measurable map X from the sample space to R, i.e. a function
X : Q — R such that X~1(S) is an event for every S € R.

As the notion of a random variable involves the sample space,
one has to pause to check that it invariant under extensions before
one can assert that it is a probabilistic concept. But this is clear: if
X : Q — Ris arandom variable, and 7 : Q' — ) is an extension of (2,
then X’ := X o is also a random variable, which generates the same
events in the sense that (X')71(9) = 7=1(X~1(9)) for every S € R.

At this point let us make the convenient convention (which we
have in fact been implicitly using already) that an event is identified
with the predicate which is true on the event set and false outside of
the event set. Thus for instance the event X ~!(S) could be identified
with the predicate “X € S”; this is preferable to the set-theoretic
notation {w € Q : X(w) € S}, as it does not require explicit reference
to the sample space and is thus more obviously a probabilistic notion.
We will often omit the quotes when it is safe to do so, for instance
P(X € S) is shorthand for P(“X € S”).
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Remark 1.1.5. On occasion, we will have to deal with almost surely
defined random variables, which are only defined on a subset €' of
of full probability. However, much as measure theory and integration
theory is largely unaffected by modification on sets of measure zero,
many probabilistic concepts, in particular probability, distribution,
and expectation, are similarly unaffected by modification on events of
probability zero. Thus, a lack of definedness on an event of probability
zero will usually not cause difficulty, so long as there are at most
countably many such events in which one of the probabilistic objects
being studied is undefined. In such cases, one can usually resolve such
issues by setting a random variable to some arbitrary value (e.g. 0)
whenever it would otherwise be undefined.

We observe a few key subclasses and examples of random vari-
ables:

(i) Discrete random variables, in which R = 2% is the discrete
o-algebra, and R is at most countable. Typical examples
of R include a countable subset of the reals or complexes,
such as the natural numbers or integers. If R = {0,1},
we say that the random variable is Boolean, while if R is
just a singleton set {c} we say that the random variable is
deterministic, and (by abuse of notation) we identify this
random variable with c itself. Note that a Boolean random
variable is nothing more than an indicator function I(E) of
an event F, where F is the event that the boolean function
equals 1.

(ii) Real-valued random variables, in which R is the real line and
R is the Borel o-algebra, generated by the open sets of R.
Thus for any real-valued random variable X and any interval
I, we have the events “X € I”. In particular, we have the
upper tail event “X > X7 and lower tail event “X < \” for
any threshold A. (We also consider the events “X > A\’ and
“X < X7 to be tail events; in practice, there is very little
distinction between the two.)

(iii) Complex random variables, whose range is the complex plane
with the Borel o-algebra. A typical event associated to a
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(vi)

complex random variable X is the small ball event “| X —z| <
r” for some complex number z and some (small) radius
r > 0. We refer to real and complex random variables col-
lectively as scalar random variables.

Given a R-valued random variable X, and a measurable map
f: R — R/, the R'-valued random variable f(X) is indeed
a random variable, and the operation of converting X to
f(X) is preserved under extension of the sample space and
is thus probabilistic. This variable f(X) can also be defined
without reference to the sample space as the unique random
variable for which the identity

“f(X) €S’ =“X ¢ f_l(S)”

holds for all R’-measurable sets S.

Given two random variables X; and X5 taking values in
R1, Ry respectively, one can form the joint random variable
(X1, Xo) with range Ry X Ry with the product o-algebra, by
setting (X1, X9)(w) := (X1(w), Xa(w)) for every w € Q. One
easily verifies that this is indeed a random variable, and that
the operation of taking a joint random variable is a proba-
bilistic operation. This variable can also be defined without
reference to the sample space as the unique random variable
for which one has m1 (X7, X2) = X7 and 72 (X1, Xo) = Xo,
where 71 : (21,22) — x1 and 7w : (21,x2) — x2 are the
usual projection maps from R; X Ry to R, Ry respectively.
One can similarly define the joint random variable (X4 )aca
for any family of random variables X, in various ranges R,,
(note here that the set A of labels can be infinite or even
uncountable).

Combining the previous two constructions, given any mea-
surable binary operation f : R; X R — R’ and random vari-
ables X7, X5 taking values in R;, Ry respectively, one can
form the R’-valued random variable f(X7, X3) := f((X1, X2)),
and this is a probabilistic operation. Thus for instance one
can add or multiply together scalar random variables, and
similarly for the matrix-valued random variables that we
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(vii)

(viii)

will consider shortly. Similarly for ternary and higher or-
der operations. A technical issue: if one wants to perform
an operation (such as division of two scalar random vari-
ables) which is not defined everywhere (e.g. division when
the denominator is zero). In such cases, one has to adjoin
an additional “undefined” symbol T to the output range R'.
In practice, this will not be a problem as long as all random
variables concerned are defined (i.e. avoid T) almost surely.

Vector-valued random variables, which take values in a finite-
dimensional vector space such as R™ or C” with the Borel
o-algebra. One can view a vector-valued random variable
X =(X4,...,X,) as the joint random variable of its scalar
component random variables X1, ..., X,,.

Matriz-valued random variables or random matrices, which
take values in a space My xp(R) or Myx,(C) of n x p real
or complex-valued matrices, again with the Borel o-algebra,
where n,p > 1 are integers (usually we will focus on the
square case n = p). Note here that the shape n x p of
the matrix is deterministic; we will not consider in this
course matrices whose shapes are themselves random vari-
ables. One can view a matrix-valued random variable X =
(Xij)1<i<n;i<j<p as the joint random variable of its scalar
components X;;. One can apply all the usual matrix oper-
ations (e.g. sum, product, determinant, trace, inverse, etc.)
on random matrices to get a random variable with the ap-
propriate range, though in some cases (e.g with inverse) one
has to adjoin the undefined symbol T as mentioned earlier.

Point processes, which take values in the space 91(S) of sub-
sets A of a space S (or more precisely, on the space of multi-
sets of S, or even more precisely still as integer-valued locally
finite measures on S), with the o-algebra being generated by
the counting functions |[ANB| for all precompact measurable
sets B. Thus, if X is a point process in S, and B is a pre-
compact measurable set, then the counting function | X N B|
is a discrete random variable in {0, 1,2, ...} U{4o0c}. For us,
the key example of a point process comes from taking the
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spectrum {1, ..., A} of eigenvalues (counting multiplicity)
of a random n X nm matrix M,. Point processes are dis-
cussed further in [Ta2010b, §2.6]. We will return to point
processes (and define them more formally) later in this text.

Remark 1.1.6. A pedantic point: strictly speaking, one has to in-
clude the range R = (R, R) of a random variable X as part of that
variable (thus one should really be referring to the pair (X, R) rather
than X). This leads to the annoying conclusion that, technically,
boolean random variables are not integer-valued, integer-valued ran-
dom variables are not real-valued, and real-valued random variables
are not complex-valued. To avoid this issue we shall abuse notation
very slightly and identify any random variable X = (X, R) to any
coextension (X, R') of that random variable to a larger range space
R’ O R (assuming of course that the o-algebras are compatible).
Thus, for instance, a real-valued random variable which happens to
only take a countable number of values will now be considered a dis-
crete random variable also.

Given a random variable X taking values in some range R, we
define the distribution px of X to be the probability measure on the
measurable space R = (R, R) defined by the formula

(1.2) 1x(S) = P(X € 5),

thus py is the pushforward X.P of the sample space probability
measure P by X. This is easily seen to be a probability measure, and
is also a probabilistic concept. The probability measure px is also
known as the law for X.

We write X =Y for ux = py; we also abuse notation slightly
by writing X = ux.

We have seen that every random variable generates a probability
distribution px. The converse is also true:

Lemma 1.1.7 (Creating a random variable with a specified dis-
tribution). Let p be a probability measure on a measurable space
R = (R,R). Then (after extending the sample space Q if necessary)
there exists an R-valued random variable X with distribution p.



1.1. A review of probability theory 13

Proof. Extend Q to Q x R by using the obvious projection map
(w,r) = w from Q x R back to , and extending the probability
measure P on €2 to the product measure P x p on R. The random
variable X (w,r) := r then has distribution u. O

If X is a discrete random variable, px is the discrete probability
measure

(13) /LX(S) = me
reS

where p, := P(X = z) are non-negative real numbers that add up
to 1. To put it another way, the distribution of a discrete random
variable can be expressed as the sum of Dirac masses (defined below):

(1.4) Hx = mezsx.

TER
We list some important examples of discrete distributions:

(i) Dirac distributions d,,, in which p, = 1 for = z( and
p. = 0 otherwise;
(ii) discrete uniform distributions, in which R is finite and p, =
1/|R| for all z € R;
(iii) (Unsigned) Bernoulli distributions, in which R = {0,1},
p1 = p, and pg = 1 — p for some parameter 0 < p < 1;
(iv) The signed Bernoulli distribution, in which R = {-1,+1}
and piy =p_1 =1/2
(v) Lazy signed Bernoulli distributions, in which R = {—1,0, +1},
pr1 = p—1 = u/2, and pgp = 1 — p for some parameter
0<pu<l
(vi) Geometric distributions, in which R = {0,1,2,...} and py, =
(1 — p)*p for all natural numbers k and some parameter
0<p<1;and
(vil) Poisson distributions, in which R = {0,1,2,...} and px =

/\k;r * for all natural numbers k and some parameter A.

Now we turn to non-discrete random variables X taking values
in some range R. We say that a random variable is continuous if
P(X = z) = 0 for all x € R (here we assume that all points are
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measurable). If R is already equipped with some reference measure
dm (e.g. Lebesgue measure in the case of scalar, vector, or matrix-
valued random variables), we say that the random variable is abso-
lutely continuous if P(X € §) = 0 for all null sets S in R. By the
Radon-Nikodym theorem (see e.g. [Ta2010, §1.10]), we can thus find
a non-negative, absolutely integrable function f € L'(R,dm) with
S [ dm =1 such that

(1.5) ()= [ £ dm

s
for all measurable sets S C R. More succinctly, one has
(1.6) dux = f dm.

We call f the probability density function of the probability distribu-
tion px (and thus, of the random variable X). As usual in measure
theory, this function is only defined up to almost everywhere equiva-
lence, but this will not cause any difficulties.

In the case of real-valued random variables X, the distribution ux
can also be described in terms of the cumulative distribution function

(1.7) Fx(z) :=P(X <) = pux((—o0,z]).

Indeed, px is the Lebesque-Stieltjes measure of Fx, and (in the ab-
solutely continuous case) the derivative of Fx exists and is equal to
the probability density function almost everywhere. We will not use
the cumulative distribution function much in this text, although we
will be very interested in bounding tail events such as P(X > \) or
P(X < ).

We give some basic examples of absolutely continuous scalar dis-
tributions:

(i) wniform distributions, in which f := ﬁl 1 for some subset

I of the reals or complexes of finite non-zero measure, e.g.
an interval [a,b] in the real line, or a disk in the complex
plane.

(ii) The real normal distribution N(u,0?) = N(u,0?)r of mean
1t € R and variance 02 > 0, given by the density function
f(z) = \/2;7 exp(—(x — u)?/20?%) for x € R. We isolate in
particular the standard (real) normal distribution N(0,1).
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Random variables with normal distributions are known as
gaussian random variables.

(iii) The complex normal distribution N(p,0%)c of mean p € C
and variance o2 > 0, given by the density function f(z) :=
—L exp(—|z— p|?/o?). Again, we isolate the standard com-
plex normal distribution N(0,1)c.

Later on, we will encounter several more scalar distributions of
relevance to random matrix theory, such as the semicircular law or
Marcenko-Pastur law. We will also of course encounter many ma-
trix distributions (also known as matriz ensembles) as well as point
processes.

Given an unsigned random variable X (i.e. a random variable
taking values in [0, +00]), one can define the expectation or mean EX
as the unsigned integral

(1.8) EX = /Ooox dux(x),

which by the Fubini-Tonelli theorem (see e.g. [Ta2011, §1.7]) can
also be rewritten as

(1.9) EX = /oo P(X > \) dA.
0

The expectation of an unsigned variable lies in also [0, +o00]. If X is
a scalar random variable (which is allowed to take the value co) for
which E|X| < oo, we say that X is absolutely integrable, in which
case we can define its expectation as

(1.10) EX ::/ x dux ()
R

in the real case, or

(1.11) EX ::/ z dux(2)
c

in the complex case. Similarly for vector-valued random variables
(note that in finite dimensions, all norms are equivalent, so the pre-
cise choice of norm used to define | X| is not relevant here). If X =
(X4,...,X,) is a vector-valued random variable, then X is absolutely
integrable if and only if the components X; are all absolutely inte-
grable, in which case one has EX = (EXy,...,EX,,).
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Examples 1.1.8. A deterministic scalar random variable ¢ is its
own mean. An indicator function I(E) has mean P(F). An unsigned
Bernoulli variable (as defined previously) has mean p, while a signed
or lazy signed Bernoulli variable has mean 0. A real or complex
gaussian variable with distribution N(u,0?) has mean p. A Poisson
random variable has mean \; a geometric random variable has mean

p. A uniformly distributed variable on an interval [a, b] C R has mean
atb
7

A fundamentally important property of expectation is that it is
linear: if Xi,..., X}y are absolutely integrable scalar random vari-
ables and cy,...,ci are finite scalars, then ¢; X1 + ... + ¢ X} is also
absolutely integrable and

(1.12) Eci X1+ ...+ Xy = EXy + ... + i EXk.

By the Fubini-Tonelli theorem, the same result also applies to infinite
sums Yo, ¢;X; provided that > oo |¢;|E|X;| is finite.

We will use linearity of expectation so frequently in the sequel
that we will often omit an explicit reference to it when it is being
used. It is important to note that linearity of expectation requires no
assumptions of independence or dependence amongst the individual
random variables X;; this is what makes this property of expectation
so powerful.

In the unsigned (or real absolutely integrable) case, expectation is
also monotone: if X <Y is true for some unsigned or real absolutely
integrable X,Y, then EX < EY. Again, we will usually use this
basic property without explicit mentioning it in the sequel.

For an unsigned random variable, we have the obvious but very
useful Markov inequality

(1.13) P(X > 1) < %EX

for any A > 0, as can be seen by taking expectations of the inequality
M(X > \) < X. For signed random variables, Markov’s inequality
becomes

(1.14) P(X| > 3) < {E|X]
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Another fact related to Markov’s inequality is that if X is an un-
signed or real absolutely integrable random variable, then X > EX
must hold with positive probability, and also X < EX must also hold
with positive probability. Use of these facts or (1.13), (1.14), com-
bined with monotonicity and linearity of expectation, is collectively
referred to as the first moment method. This method tends to be par-
ticularly easy to use (as one does not need to understand dependence
or independence), but by the same token often gives sub-optimal re-
sults (as one is not exploiting any independence in the system).

Exercise 1.1.1 (Borel-Cantelli lemma). Let Ey, Es, ... be a sequence
of events such that ), P(E;) < co. Show that almost surely, at most
finitely many of the events E; occur at once. State and prove a result
to the effect that the condition ), P(E;) < oo cannot be weakened.

If X is an absolutely integrable or unsigned scalar random vari-
able, and F' is a measurable function from the scalars to the unsigned
extended reals [0, +o0], then one has the change of variables formula

(1.15) EF(X) = /R Fla) dyx (x)
when X is real-valued and
(1.16) EF(X) = /c F2) dux(2)

when X is complex-valued. The same formula applies to signed or
complex F if it is known that |F'(X)| is absolutely integrable. Impor-
tant examples of expressions such as EF(X) are moments

(1.17) E|X|

for various k > 1 (particularly k = 1,2, 4), ezponential moments
(1.18) EctX

for real t, X, and Fourier moments (or the characteristic function)
(1.19) | DL

for real ¢, X, or

(1.20) EctX
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for complex or vector-valued ¢, X, where - denotes a real inner prod-
uct. We shall also occasionally encounter the resolvents

1
X -z
for complex z, though one has to be careful now with the absolute
convergence of this random variable. Similarly, we shall also occasion-
ally encounter negative moments E|X|~* of X, particularly for k = 2.
We also sometimes use the zeroth moment E|X|° = P(X # 0), where
we take the somewhat unusual convention that z° := limy_,o+ z* for
non-negative z, thus 2% := 1 for x > 0 and 0° := 0. Thus, for in-
stance, the union bound (1.1) can be rewritten (for finitely many 4,
at least) as

(1.22) E[Y X' <) |el’ElXi[°
i A

(1.21)

for any scalar random variables X; and scalars ¢; (compare with
(1.12)).

It will be important to know if a scalar random variable X is
“usually bounded”. We have several ways of quantifying this, in de-
creasing order of strength:

(i) X is surely bounded if there exists an M > 0 such that
| X | < M surely.

(ii) X is almost surely bounded if there exists an M > 0 such
that | X| < M almost surely.

(ill) X is subgaussian if there exist C,c¢ > 0 such that P(|X]| >
A) < Cexp(—cA?) for all A > 0.

(iv) X has sub-exponential tail if there exist C, ¢, a > 0 such that
P(|X| > \) < Cexp(—cA?) for all A > 0.

(v) X has finite k'™ moment for some k > 1 if there exists C
such that E|X|* < C.

(vi) X is absolutely integrable if E|X| < oo.
(vii) X is almost surely finite if | X| < oo almost surely.
Exercise 1.1.2. Show that these properties genuinely are in decreas-

ing order of strength, i.e. that each property on the list implies the
next.
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Exercise 1.1.3. Show that each of these properties are closed under
vector space operations, thus for instance if X, Y have sub-exponential
tail, show that X + Y and ¢X also have sub-exponential tail for any
scalar c.

Examples 1.1.9. The various species of Bernoulli random variable
are surely bounded, and any random variable which is uniformly dis-
tributed in a bounded set is almost surely bounded. Gaussians and
Poisson distributions are subgaussian, while the geometric distribu-
tion merely has sub-exponential tail. Cauchy distributions are typical
examples of heavy-tailed distributions which are almost surely finite,
but do not have all moments finite (indeed, the Cauchy distribution
does not even have finite first moment).

If we have a family of scalar random variables X, depending on
a parameter «, we say that the X, are uniformly surely bounded
(resp. uniformly almost surely bounded, uniformly subgaussian, have
uniform sub-exponential tails, or uniformly bounded &'" moment)
if the relevant parameters M, C,c,a in the above definitions can be
chosen to be independent of a.

Fix k > 1. If X has finite k*" moment, say E|X|¥ < C, then from
Markov’s inequality (1.14) one has

(1.23) P(|X|>)\) <Ox 7k,

thus we see that the higher the moments that we control, the faster
the tail decay is. From the dominated convergence theorem we also
have the variant

(1.24) lim AP(|X| > \) = 0.
A— o0

However, this result is qualitative or ineffective rather than quanti-
tative because it provides no rate of convergence of N'P(|X| > \)
to zero. Indeed, it is easy to construct a family X, of random vari-
ables of uniformly bounded k*® moment, but for which the quantities
AP (| X,| > \) do not converge uniformly to zero (e.g. take X,, to be
m times the indicator of an event of probability m =% form = 1,2,...).
Because of this issue, we will often have to strengthen the property
of having a uniformly bounded moment, to that of obtaining a uni-
formly quantitative control on the decay in (1.24) for a family X, of
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random variables; we will see examples of this in later lectures. How-
ever, this technicality does not arise in the important model case of
identically distributed random variables, since in this case we trivially
have uniformity in the decay rate of (1.24).

We observe some consequences of (1.23):

Lemma 1.1.10. Let X = X, be a scalar random variable depending
on a parameter n.

(1) If | X,| has uniformly bounded expectation, then for any
e > 0 independent of n, we have |X,| = O(n®) with high
probability.

(ii) If X,, has uniformly bounded k™ moment, then for any A >
0, we have | X,,| = O(nA/*) with probability 1 — O(n=*).

(iil) If X,, has uniform sub-exponential tails, then we have | X, | =
O(logo(l) n) with overwhelming probability.

Exercise 1.1.4. Show that a real-valued random variable X is sub-
gaussian if and only if there exist C' > 0 such that Ee!X < Cexp(Ct?)
for all real ¢, and if and only if there exists C' > 0 such that E|X|* <
(CE)*/? for all k > 1.

Exercise 1.1.5. Show that a real-valued random variable X has
subexponential tails if and only if there exist C' > 0 such that E|X|* <
exp(Ck%) for all positive integers k.

Once the second moment of a scalar random variable is finite, one
can define the variance

(1.25) Var(X) := E|X — E(X)|*.

From Markov’s inequality we thus have Chebyshev’s inequality
Var(X)

(1~26) P(|X - E(X)| 2 /\) < VR

Upper bounds on P(|X — E(X)| > A) for X large are known as large
deviation inequality. Chebyshev’s inequality(1.26) gives a simple but
still useful large deviation inequality, which becomes useful once A
exceeds the standard deviation Var(X)'/?
The use of Chebyshev’s inequality, combined with a computation of
variances, is known as the second moment method.

of the random variable.
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Exercise 1.1.6 (Scaling of mean and variance). If X is a scalar
random variable of finite mean and variance, and a,b are scalars,
show that E(a + bX) = a + bE(X) and Var(a + bX) = |b|*Var(X).
In particular, if X has non-zero variance, then there exist scalars a, b
such that a + bX has mean zero and variance one.

Exercise 1.1.7. We say that a real number M(X) is a median of a
real-valued random variable X if P(X > M(X)),P(X < M(X)) <
1/2.

(i) Show that a median always exists, and if X is absolutely
continuous with strictly positive density function, then the
median is unique.

(ii) If X has finite second moment, show that M(X) = E(X) +
O(Var(X)!/?) for any median M(X).

Exercise 1.1.8 (Jensen’s inequality). Let F' : R — R be a convex
function (thus F((1—t)z+ty) > (1 —t)F(z)+tF(y) for all z,y € R
and 0 <t <1), and let X be a bounded real-valued random variable.
Show that EF(X) > F(EX). (Hint: Bound F from below using a
tangent line at EX.) Extend this inequality to the case when X takes
values in R™ (and F' has R™ as its domain.)

Exercise 1.1.9 (Paley-Zygmund inequality). Let X be a positive
random variable with finite variance. Show that

(EX)?
EX?

P(X > AE(X)) > (1 - ))?
for any 0 < A < 1.
If X is subgaussian (or has sub-exponential tails with exponent

a > 1), then from dominated convergence we have the Taylor expan-
sion

tk
'EXk

o~

(1.27) Ee'X =1+
k=1

for any real or complex ¢, thus relating the exponential and Fourier
moments with the &' moments.
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1.1.3. Independence. When studying the behaviour of a single
random variable X, the distribution px captures all the probabilistic
information one wants to know about X. The following exercise is
one way of making this statement rigorous:

Exercise 1.1.10. Let X, X’ be random variables (on sample spaces
Q, Q' respectively) taking values in a range R, such that X = X'
Show that after extending the spaces 2, Q’, the two random variables
X, X' are isomorphic, in the sense that there exists a probability
space isomorphism 7 : Q — Q' (i.e. an invertible extension map
whose inverse is also an extension map) such that X = X' o 7.

However, once one studies families (X4)aca of random variables
X, taking values in measurable spaces R, (on a single sample space
Q), the distribution of the individual variables X, are no longer
sufficient to describe all the probabilistic statistics of interest; the
joint distribution of the variables (i.e. the distribution of the tuple
(Xa)aca, which can be viewed as a single random variable taking val-
ues in the product measurable space [ [, 4 ) also becomes relevant.

Example 1.1.11. Let (X3, X5) be drawn uniformly at random from
the set {(—1,-1),(-1,4+1),(+1,-1),(+1,+1)}. Then the random
variables X7, X5, and —X; all individually have the same distribu-
tion, namely the signed Bernoulli distribution. However the pairs
(X1, X2), (X1,X1), and (X1,—X7) all have different joint distribu-
tions: the first pair, by definition, is uniformly distributed in the set

{(_17 _1)’ (_17 +1)a (+1’ _1)7 (+17 +1)}7

while the second pair is uniformly distributed in {(—1, —1), (+1,+1)},
and the third pair is uniformly distributed in {(—1,+1), (+1,—1)}.
Thus, for instance, if one is told that X,Y are two random variables
with the Bernoulli distribution, and asked to compute the probability
that X = Y, there is insufficient information to solve the problem:;
if (X,Y) were distributed as (X1, X5), then the probability would
be 1/2, while if (X,Y") were distributed as (X1, X;), the probability
would be 1, and if (X,Y") were distributed as (X7, —X7), the proba-
bility would be 0. Thus one sees that one needs the joint distribution,
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and not just the individual distributions, to obtain a unique answer
to the question.

There is however an important special class of families of ran-
dom variables in which the joint distribution is determined by the
individual distributions.

Definition 1.1.12 (Joint independence). A family (X, )oca of ran-
dom variables (which may be finite, countably infinite, or uncount-
ably infinite) is said to be jointly independent if the distribution of
(Xa)aea is the product measure of the distribution of the individual
X,

A family (X4)aca is said to be pairwise independent if the pairs
(X, Xp) are jointly independent for all distinct a, 3 € A. More
generally, (X4)aea is said to be k-wise independent if (X,,, ..., Xq,,)
are jointly independent for all 1 < k&’ < k and all distinct o, ..., ap €
A.

We also say that X is independent of YV if (X,Y) are jointly
independent.

A family of events (E,)aca is said to be jointly independent if
their indicators (I(E4))aca are jointly independent. Similarly for
pairwise independence and k-wise independence.

From the theory of product measure, we have the following equiv-
alent formulation of joint independence:

Exercise 1.1.11. Let (X,)aeca be a family of random variables, with
each X, taking values in a measurable space R,,.

(i) Show that the (X,)aca are jointly independent if and only
for every collection of distinct elements a;, ..., ag of A, and
all measurable subsets E; C R, for 1 <i <k’ one has

k/
P(X,, € E; forall 1 <i <) = [[P(Xa, € E).
i=1

(ii) Show that the necessary and sufficient condition (Xg)aca
being k-wise independent is the same, except that k' is con-
strained to be at most k.
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In particular, a finite family (X, ..., Xj) of random variables X;, 1 <
t < k taking values in measurable spaces R; are jointly independent
if and only if

k
P(X; € E; forall 1<i < k) =[] P(X; € E)

i=1

for all measurable F; C R;.

If the X, are discrete random variables, one can take the F; to
be singleton sets in the above discussion.

From the above exercise we see that joint independence implies k-
wise independence for any k, and that joint independence is preserved
under permuting, relabeling, or eliminating some or all of the X,. A
single random variable is automatically jointly independent, and so
1-wise independence is vacuously true; pairwise independence is the
first nontrivial notion of independence in this hierarchy.

Example 1.1.13. Let Fy be the field of two elements, let V C F3
be the subspace of triples (z1,22,73) € F3 with 2y + 29 + 23 = 0,
and let (X7, X2, X3) be drawn uniformly at random from V. Then
(X1, X2, X3) are pairwise independent, but not jointly independent.
In particular, X3 is independent of each of X, X5 separately, but is
not independent of (X7, X5).

Exercise 1.1.12. This exercise generalises the above example. Let
F be a finite field, and let V be a subsapce of F™ for some finite n.
Let (X1,...,X,) be drawn uniformly at random from V. Suppose
that V is not contained in any coordinate hyperplane in F”.

(i) Show that each X;, 1 < i < n is uniformly distributed in F.
(ii) Show that for any k > 2, that (Xy,...,X,) is k-wise inde-
pendent if and only if V' is not contained in any hyperplane
which is definable using at most k of the coordinate vari-
ables.
(iii) Show that (X1,...,X,) is jointly independent if and only if
V =F"
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Informally, we thus see that imposing constraints between k variables
at a time can destroy k-wise independence, while leaving lower-order
independence unaffected.

Exercise 1.1.13. Let V C F3 be the subspace of triples (z1, o, 73) €
F3 with 21 + 2 = 0, and let (X, X2, X3) be drawn uniformly at ran-
dom from V. Then X3 is independent of (X7, X2) (and in particular,
is independent of x; and z2 separately), but X7, X» are not indepen-
dent of each other.

Exercise 1.1.14. We say that one random variable Y (with values
in Ry) is determined by another random variable X (with values in
Rx) if there exists a (deterministic) function f : Rx — Ry such that
Y = f(X) is surely true (i.e. Y(w) = f(X(w)) for all w € Q). Show
that if (X4 )aca is a family of jointly independent random variables,
and (Ys)gep is a family such that each Y3 is determined by some
subfamily (Xo)aea, of the (Xo)aea, with the Ag disjoint as 3 varies,
then the (Y3)gep are jointly independent also.

Exercise 1.1.15 (Determinism vs. independence). Let X,Y be ran-
dom variables. Show that Y is deterministic if and only if it is simul-
taneously determined by X, and independent of X.

Exercise 1.1.16. Show that a complex random variable X is a
complex gaussian random variable (i.e. its distribution is a com-
plex normal distribution) if and only if its real and imaginary parts
Re(X),Im(X) are independent real gaussian random variables with
the same variance. In particular, the variance of Re(X) and Im(X)
will be half of variance of X.

One key advantage of working with jointly independent random
variables and events is that one can compute various probabilistic
quantities quite easily. We give some key examples below.

Exercise 1.1.17. If Eq,..., F; are jointly independent events, show
that

(1.28) P(/\ E:) = [ P(E)
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and

(1-P(£))

—.

(1.29) P(\/E)=1-

1
Show that the converse statement (i.e. that (1.28) and (1.29) imply
joint independence) is true for k = 2, but fails for higher k. Can one
find a correct replacement for this converse for higher k7

s
Il
—
-
Il

Exercise 1.1.18.

(i) If X1,..., X} are jointly independent random variables tak-
ing values in [0, +00], show that

k k
E H X, = H EX;.
i=1 i=1

1 1,..., Xk are jointly independent absolutely integrable

i) If X X jointly ind d bsolutely i bl
scalar random variables taking values in [0, +-00], show that
Hle X; is absolutely integrable, and

k k
E H X; = H EX;.
=1 =1

Remark 1.1.14. The above exercise combines well with Exercise
1.1.14. For instance, if X;,..., X, are jointly independent subgaus-
sian variables, then from Exercises 1.1.14, 1.1.18 we see that

k k
(1.30) E[[e™ =[] B
=1 =1

for any complex ¢t. This identity is a key component of the exponential
moment method, which we will discuss in the next set of notes.

The following result is a key component of the second moment
method.

Exercise 1.1.19 (Pairwise independence implies linearity of vari-
ance). If X;,..., X} are pairwise independent scalar random vari-
ables of finite mean and variance, show that

k k
Var(z X;) = Z Var(X;)
i=1 i=1
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and more generally

k k

Var(z i X;) = Z |ci|*Var(X;)

i=1

for any scalars ¢; (compare with (1.12), (1.22)).

The product measure construction allows us to extend Lemma
1.1.7:

Exercise 1.1.20 (Creation of new, independent random variables).
Let (Xo)aca be a family of random variables (not necessarily inde-
pendent or finite), and let (ug)gep be a collection (not necessarily
finite) of probability measures pg on measurable spaces Rg. Then,
after extending the sample space if necessary, one can find a fam-
ily (Ys)pep of independent random variables, such that each Y3 has
distribution g, and the two families (X, )aca and (Yz)gep are inde-
pendent of each other.

We isolate the important case when pg = p is independent of
B. We say that a family (X,)aca of random variables is indepen-
dently and identically distributed, or iid for short, if they are jointly
independent and all the X, have the same distribution.

Corollary 1.1.15. Let (X, )aca be a family of random variables (not
necessarily independent or finite), let p be a probability measure on
a measurable space R, and let B be an arbitrary set. Then, after
extending the sample space if necessary, one can find an iid family
(Y3)pep with distribution p which is independent of (Xo)aca-

Thus, for instance, one can create arbitrarily large iid families
of Bernoulli random variables, Gaussian random variables, etc., re-
gardless of what other random variables are already in play. We thus
see that the freedom to extend the underyling sample space allows
us access to an unlimited source of randomness. This is in contrast
to a situation studied in complexity theory and computer science, in
which one does not assume that the sample space can be extended at
will, and the amount of randomness one can use is therefore limited.
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Remark 1.1.16. Given two probability measures px,py on two
measurable spaces Rx, Ry, a joining or coupling of the these mea-
sures is a random variable (X,Y’) taking values in the product space
Rx xRy, whose individual components X, Y have distribution pux, py
respectively. Exercise 1.1.20 shows that one can always couple two
distributions together in an independent manner; but one can cer-
tainly create non-independent couplings as well. The study of cou-
plings (or joinings) is particularly important in ergodic theory, but
this will not be the focus of this text.

1.1.4. Conditioning. Random variables are inherently non-deterministic
in nature, and as such one has to be careful when applying determin-
istic laws of reasoning to such variables. For instance, consider the
law of the excluded middle: a statement P is either true or false, but
not both. If this statement is a random variable, rather than deter-
ministic, then instead it is true with some probability p and false with
some complementary probability 1 — p. Also, applying set-theoretic
constructions with random inputs can lead to sets, spaces, and other
structures which are themselves random variables, which can be quite
confusing and require a certain amount of technical care; consider, for
instance, the task of rigorously defining a Euclidean space R% when
the dimension d is itself a random variable.

Now, one can always eliminate these difficulties by explicitly
working with points w in the underlying sample space €2, and replac-
ing every random variable X by its evaluation X (w) at that point;
this removes all the randomness from consideration, making every-
thing deterministic (for fixed w). This approach is rigorous, but goes
against the “probabilistic way of thinking”, as one now needs to take
some care in extending the sample space.

However, if instead one only seeks to remove a partial amount
of randomness from consideration, then one can do this in a manner
consistent with the probabilistic way of thinking, by introducing the
machinery of conditioning. By conditioning an event to be true or
false, or conditioning a random variable to be fixed, one can turn that
random event or variable into a deterministic one, while preserving the
random nature of other events and variables (particularly those which
are independent of the event or variable being conditioned upon).
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We begin by considering the simpler situation of conditioning on
an event.

Definition 1.1.17 (Conditioning on an event). Let E be an event
(or statement) which holds with positive probability P(E). By con-
ditioning on the event E, we mean the act of replacing the underlying
sample space 2 with the subset of 2 where F holds, and replacing
the underlying probability measure P by the conditional probability
measure P(|E), defined by the formula

(1.31) P(F|E) := P(F A E)/P(E).

All events F' on the original sample space can thus be viewed as events
(F|E) on the conditioned space, which we model set-theoretically as
the set of all w in E obeying F'. Note that this notation is compatible
with (1.31).

All random variables X on the original sample space can also be
viewed as random variables X on the conditioned space, by restric-
tion. We will refer to this conditioned random variable as (X |E), and
thus define conditional distribution i (x|g) and conditional expecta-
tion E(X|E) (if X is scalar) accordingly.

One can also condition on the complementary event E, provided
that this event holds with positive probility also.

By wundoing this conditioning, we revert the underlying sample
space and measure back to their original (or unconditional) values.
Note that any random variable which has been defined both after
conditioning on FE, and conditioning on E, can still be viewed as a
combined random variable after undoing the conditioning.

Conditioning affects the underlying probability space in a manner
which is different from extension, and so the act of conditioning is not
guaranteed to preserve probabilistic concepts such as distribution,
probability, or expectation. Nevertheless, the conditioned version of
these concepts are closely related to their unconditional counterparts:

Exercise 1.1.21. If E and E both occur with positive probability,
establish the identities

(1.32) P(F) = P(F|E)P(E) + P(F|E)P(E)
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for any (unconditional) event F' and
(1.33) px = pixp)P(E) + x5 P(E)

for any (unconditional) random variable X (in the original sample
space). In a similar spirit, if X is a non-negative or absolutely in-
tegrable scalar (unconditional) random variable, show that (X|E),
(X|E) are also non-negative and absolutely integrable on their re-
spective conditioned spaces, and that

(1.34) EX = E(X|E)P(E) + E(X|E)P(E).

In the degenerate case when E occurs with full probability, condition-
ing to the complementary event E is not well defined, but show that
in those cases we can still obtain the above formulae if we adopt the

convention that any term involving the vanishing factor P(FE) should
be omitted. Similarly if E occurs with zero probability.

The above identities allow one to study probabilities, distribu-
tions, and expectations on the original sample space by conditioning
to the two conditioned spaces.

From (1.32) we obtain the inequality
(1.35) P(F|E) < P(F)/P(E),

thus conditioning can magnify probabilities by a factor of at most
1/P(FE). In particular,

(i) If F occurs unconditionally surely, it occurs surely condi-
tioning on E also.

(ii) If F occurs unconditionally almost surely, it occurs almost
surely conditioning on E also.

(iii) If F occurs unconditionally with overwhelming probability,
it occurs with overwhelming probability conditioning on F
also, provided that P(E) > c¢n~¢ for some ¢,C > 0 inde-
pendent of n.

(iv) If F occurs unconditionally with high probability, it occurs
with high probability conditioning on E also, provided that
P(E) > c¢n=® for some ¢ > 0 and some sufficiently small
a > 0 independent of n.
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(v) If F occurs unconditionally asymptotically almost surely, it
occurs asymptotically almost surely conditioning on E also,
provided that P(E) > ¢ for some ¢ > 0 independent of n.

Conditioning can distort the probability of events and the dis-
tribution of random variables. Most obviously, conditioning on E
elevates the probability of E to 1, and sends the probability of the
complementary event E to zero. In a similar spirit, if X is a random
variable uniformly distributed on some finite set S, and S’ is a non-
empty subset of S, then conditioning to the event X € S’ alters the
distribution of X to now become the uniform distribution on S’ rather
than S (and conditioning to the complementary event produces the
uniform distribution on S\S’).

However, events and random variables that are independent of the
event F being conditioned upon are essentially unaffected by condi-
tioning. Indeed, if F' is an event independent of E, then (F|E) occurs
with the same probability as F'; and if X is a random variable inde-
pendent of E (or equivalently, independently of the indicator I(F)),
then (X|E) has the same distribution as X.

Remark 1.1.18. One can view conditioning to an event E and its
complement F as the probabilistic analogue of the law of the excluded
middle. In deterministic logic, given a statement P, one can divide
into two separate cases, depending on whether P is true or false;
and any other statement () is unconditionally true if and only if it is
conditionally true in both of these two cases. Similarly, in probability
theory, given an event E, one can condition into two separate sample
spaces, depending on whether F is conditioned to be true or false; and
the unconditional statistics of any random variable or event are then
a weighted average of the conditional statistics on the two sample
spaces, where the weights are given by the probability of E and its
complement.

Now we consider conditioning with respect to a discrete random
variable Y, taking values in some range R. One can condition on any
event Y =y, y € R which occurs with positive probability. It is then
not difficult to establish the analogous identities to those in Exercise
1.1.21:
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Exercise 1.1.22. Let Y be a discrete random variable with range R.
Then we have

(1.36) P(F)= Y P(F|Y = y)P(Y = y)
yeER

for any (unconditional) event F', and

(1.37) px = pxpy—yPY =)

YyER
for any (unconditional) random variable X (where the sum of non-
negative measures is defined in the obvious manner), and for abso-
lutely integrable or non-negative (unconditional) random variables X,
one has

(1.38) EX =) EX[|Y =y)P(Y =y).

YyER
In all of these identities, we adopt the convention that any term in-
volving P(Y = y) is ignored when P(Y = y) = 0.

With the notation as in the above exercise, we define the condi-
tional probability P(F|Y") of an (unconditional) event F' conditioning
on Y to be the (unconditional) random variable that is defined to
equal P(F|Y = y) whenever Y = y, and similarly, for any absolutely
integrable or non-negative (unconditional) random variable X, we
define the conditional expectation E(X|Y) to be the (unconditional)
random variable that is defined to equal E(X|Y = y) whenever Y = y.
(Strictly speaking, since we are not defining conditional expectation
when P(Y = y) = 0, these random variables are only defined al-
most surely, rather than surely, but this will not cause difficulties in
practice; see Remark 1.1.5.) Thus (1.36), (1.38) simplify to

(1.39) P(F)=E(P(F|Y))
and
(1.40) E(X) =E(E(X|Y)).

Remark 1.1.19. One can interpret conditional expectation as a type
of orthogonal projection; see for instance [Ta2009, §2.8]. But we will
not use this perspective in this course. Just as conditioning on an
event and its complement can be viewed as the probabilistic analogue
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of the law of the excluded middle, conditioning on a discrete random
variable can be viewed as the probabilistic analogue of dividing into
finitely or countably many cases. For instance, one could condition on
the outcome Y € {1,2,3,4,5,6} of a six-sided die, thus conditioning
the underlying sample space into six separate subspaces. If the die is
fair, then the unconditional statistics of a random variable or event
would be an unweighted average of the conditional statistics of the
six conditioned subspaces; if the die is weighted, one would take a
weighted average instead.

Example 1.1.20. Let X7, X5 be iid signed Bernoulli random vari-
ables, and let Y := X7 + X5, thus Y is a discrete random variable tak-
ing values in —2,0,+42 (with probability 1/4, 1/2, 1/4 respectively).
Then X; remains a signed Bernoulli random variable when condi-
tioned to Y = 0, but becomes the deterministic variable +1 when
conditioned to Y = 42, and similarly becomes the deterministic vari-
able —1 when conditioned to Y = —2. As a consequence, the con-
ditional expectation E(X;]Y") is equal to 0 when Y = 0, +1 when
Y = +2, and —1 when Y = —2; thus E(X;]Y) = Y/2. Similarly
E(X,]Y) = Y/2; summing and using the linearity of (conditional)
expectation (which follows automatically from the unconditional ver-
sion) we obtain the obvious identity E(Y|Y) =Y.

If X,Y are independent, then (X|Y =y) = X for all y (with the
convention that those y for which P(Y = y) = 0 are ignored), which
implies in particular (for absolutely integrable X) that

E(X|Y) = E(X)

(so in this case the conditional expectation is a deterministic quan-
tity).

Example 1.1.21. Let X, Y be bounded scalar random variables (not
necessarily independent), with Y discrete. Then we have

E(XY) = E(E(XY|Y)) = E(YE(X|Y))

where the latter equality holds since Y clearly becomes deterministic
after conditioning on Y.
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We will also need to condition with respect to continuous random
variables (this is the probabilistic analogue of dividing into a poten-
tially uncountable number of cases). To do this formally, we need
to proceed a little differently from the discrete case, introducing the
notion of a disintegration of the underlying sample space.

Definition 1.1.22 (Disintegration). Let Y be a random variable with
range R. A disintegration (R',(py)yer’) of the underlying sample
space §) with respect to Y is a subset R’ of R of full measure in uy
(thus Y € R’ almost surely), together with assignment of a probability
measure P(|Y = y) on the subspace Q, := {w € Q : Y(w) = y} of
Q for each y € R, which is measurable in the sense that the map
y — P(F|Y = y) is measurable for every event F, and such that

P(F) = EP(F|Y)

for all such events, where P(F|Y) is the (almost surely defined) ran-
dom variable defined to equal P(F|Y = y) whenever Y = y.

Given such a disintegration, we can then condition to the event
Y =y for any y € R’ by replacing Q with the subspace §,, (with the
induced o-algebra), but replacing the underlying probability measure
P with P(]Y = y). We can thus condition (unconditional) events
F and random variables X to this event to create conditioned events
(F|Y = y) and random variables (X|Y = y) on the conditioned space,
giving rise to conditional probabilities P(F|Y = y) (which is consis-
tent with the existing notation for this expression) and conditional
expectations E(X|Y = y) (assuming absolute integrability in this
conditioned space). We then set E(X|Y") to be the (almost surely de-
fined) random variable defined to equal E(X|Y = y) whenever Y = y.

Example 1.1.23 (Discrete case). If Y is a discrete random variable,
one can set R’ to be the essential range of Y, which in the discrete case
is the set of all y € R for which P(Y = y) > 0. For each y € R, we
define P(|Y = y) to be the conditional probability measure relative
to the event Y = y, as defined in Definition 1.1.17. It is easy to
verify that this is indeed a disintegration; thus the continuous notion
of conditional probability generalises the discrete one.

Example 1.1.24 (Independent case). Starting with an initial sample
space (1, and a probability measure p on a measurable space R, one
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can adjoin a random variable Y taking values in R with distribution
1 that is independent of all previously existing random variables, by
extending 2 to 2 x R as in Lemma 1.1.7. One can then disintegrate
Y by taking R’ := R and letting p,, be the probability measure on
Q, = Q x {y} induced by the obvious isomorphism between Q x {y}
and §2; this is easily seen to be a disintegration. Note that if X is any
random variable from the original space €2, then (X|Y = y) has the
same distribution as X for any y € R.

Example 1.1.25. Let Q = [0,1]? with Lebesgue measure, and let
(X1, X2) be the coordinate random variables of 2, thus X7, X» are iid
with the uniform distribution on [0, 1]. Let Y be the random variable
Y := X; + Xo with range R = R. Then one can disintegrate Y by
taking R’ = [0, 2] and letting p, be normalised Lebesgue measure on
the diagonal line segment {(x1,72) € [0,1]% : 21 + 22 = y}.

Exercise 1.1.23 (Almost uniqueness of disintegrations). Let (R', (ity)yer’),
(R, (fiy) ye k) be two disintegrations of the same random variable Y.

Show that for any event F, one has P(F|Y = y) = P(F|Y = y) for
py-almost every y € R, where the conditional probabilities P(|Y = y)

and P(]Y = y) are defined using the disintegrations (R’, (tty)yer),

(R, (fiy) e ) respectively. (Hint: argue by contradiction, and con-

sider the set of y for which P(F|Y = y) exceeds P(F|Y = y) (or vice
versa) by some fixed € > 0.)

Similarly, for a scalar random variable X, show that for uy-
almost every y € R, that (X|Y = y) is absolutely integrable with
respect to the first disintegration if and only if it is absolutely inte-
grable with respect to the second integration, and one has E(X|Y =
y) = E(X|Y =) in such cases.

Remark 1.1.26. Under some mild topological assumptions on the
underlying sample space (and on the measurable space R), one can
always find at least one disintegration for every random variable Y,
by using tools such as the Radon-Nikodym theorem; see [Ta2009,
Theorem 2.9.21]. In practice, we will not invoke these general re-
sults here (as it is not natural for us to place topological conditions
on the sample space), and instead construct disintegrations by hand
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in specific cases, for instance by using the construction in Example
1.1.24.

Remark 1.1.27. Strictly speaking, disintegration is not a proba-
bilistic concept; there is no canonical way to extend a disintegration
when extending the sample space;. However, due to the (almost)
uniqueness and existence results alluded to earlier, this will not be
a difficulty in practice. Still, we will try to use conditioning on con-
tinuous variables sparingly, in particular containing their use inside
the proofs of various lemmas, rather than in their statements, due to
their slight incompatibility with the “probabilistic way of thinking”.

Exercise 1.1.24 (Fubini-Tonelli theorem). Let (R', (uy)yer’) be a
disintegration of a random variable Y taking values in a measurable
space R, and let X be a non-negative (resp. absolutely integrable)
scalar random variable. Show that for yy-almost all y € R, (X|Y =
y) is a non-negative (resp. absolutely integrable) random variable,
and one has the identity 4

(1.41) EE(X]Y)) = E(X),

where E(XY) is the (almost surely defined) random variable that
equals E(X|Y = y) whenever y € R’. More generally, show that

(1.42) EEX[Y)f(Y)) = EX[f(Y)),

whenever f : R — R is a non-negative (resp. bounded) measurable
function. (One can essentially take (1.42), together with the fact
that E(X]Y) is determined by Y, as a definition of the conditional
expectation E(X|Y), but we will not adopt this approach here.)

A typical use of conditioning is to deduce a probabilistic state-
ment from a deterministic one. For instance, suppose one has a
random variable X, and a parameter y in some range R, and an
event E(X,y) that depends on both X and y. Suppose we know that
PE(X,y) < ¢ for every y € R. Then, we can conclude that when-
ever Y is a random variable in R independent of X, we also have
PE(X,Y) < g, regardless of what the actual distribution of Y is. In-
deed, if we condition Y to be a fixed value y (using the construction

4Note that one first needs to show that E(X|Y) is measurable before one can take
the expectation.



1.1. A review of probability theory 37

in Example 1.1.24, extending the underlying sample space if neces-
sary), we see that P(E(X,Y)|Y = y) < ¢ for each y; and then one
can integrate out the conditioning using (1.41) to obtain the claim.

The act of conditioning a random variable to be fixed is occasion-
ally also called freezing.

1.1.5. Convergence. In a first course in undergraduate real analy-
sis, we learn what it means for a sequence z,, of scalars to converge
to a limit x; for every € > 0, we have |z,, — x| < e for all sufficiently
large n. Later on, this notion of convergence is generalised to metric
space convergence, and generalised further to topological space con-
vergence; in these generalisations, the sequence x,, can lie in some
other space than the space of scalars (though one usually insists that
this space is independent of n).

Now suppose that we have a sequence X, of random variables,
all taking values in some space R; we will primarily be interested
in the scalar case when R is equal to R or C, but will also need to
consider fancier random variables, such as point processes or empirical
spectral distributions. In what sense can we say that X,, “converges”
to a random variable X, also taking values in R?

It turns out that there are several different notions of convergence
which are of interest. For us, the four most important (in decreasing
order of strength) will be almost sure convergence, convergence in
probability, convergence in distribution, and tightness of distribution.

Definition 1.1.28 (Modes of convergence). Let R = (R, d) be a o-
compact® metric space (with the Borel o-algebra), and let X,, be a
sequence of random variables taking values in R. Let X be another
random variable taking values in R.

(i) X, converges almost surely to X if, for almost every w € (Q,
X, (w) converges to X (w), or equivalently

P(limsupd(X,,X) <e)=1

n—oo

for every € > 0.

5A metric space is o-compact if it is the countable union of compact sets.
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(ii) X, converges in probability to X if, for every € > 0, one has
liminf P(d(X,,X) <¢) =1,
n—oo

or equivalently if d(X,,, X) < e holds asymptotically almost
surely for every € > 0.

(iii) X, converges in distribution to X if, for every bounded con-
tinuous function F' : R — R, one has

lim EF(X,) = EF(X).
n— oo

(iv) X, has a tight sequence of distributions if, for every € > 0,
there exists a compact subset K of R such that P(X,, €
K) > 1 — ¢ for all sufficiently large n.

Remark 1.1.29. One can relax the requirement that R be a o-
compact metric space in the definitions, but then some of the nice
equivalences and other properties of these modes of convergence begin
to break down. In our applications, though, we will only need to
consider the o-compact metric space case. Note that all of these
notions are probabilistic (i.e. they are preserved under extensions of
the sample space).

Exercise 1.1.25 (Implications and equivalences). Let X,,, X be ran-
dom variables taking values in a o-compact metric space R.

(i) Show that if X,, converges almost surely to X, then X,
converges in probability to X. (Hint: use Fatou’s lemma.)

(ii) Show that if X,, converges in distribution to X, then X,
has a tight sequence of distributions.

(iii) Show that if X, converges in probability to X, then X,
converges in distribution to X. (Hint: first show tightness,
then use the fact that on compact sets, continuous functions
are uniformly continuous.)

(iv) Show that X,, converges in distribution to X if and only if
px, converges to px in the vague topology (i.e. [ f dux, —
[ f dpx for all continuous functions f : R — R of compact
support).

(v) Conversely, if X, has a tight sequence of distributions, and
ix, is convergent in the vague topology, show that X, is
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convergent in distribution to another random variable (pos-
sibly after extending the sample space). What happens if
the tightness hypothesis is dropped?

(vi) If X is deterministic, show that X,, converges in probability
to X if and only if X,, converges in distribution to X.

(vii) If X,, has a tight sequence of distributions, show that there
is a subsequence of the X,, which converges in distribution.
(This is known as Prokhorov’s theorem).

(viii) If X,, converges in probability to X, show that there is a
subsequence of the X,, which converges almost surely to X.

(ix) X, converges in distribution to X if and only if lim inf,,_, . P(X,, €
U) > P(X € U) for every open subset U of R, or equiva-
lently if limsup,_, .. P(X, € K) < P(X € K) for every
closed subset K of R.

Remark 1.1.30. The relationship between almost sure convergence
and convergence in probability may be clarified by the following ob-
servation. If E, is a sequence of events, then the indicators I(E,,)
converge in probability to zero iff P(E,) — 0 as n — oo, but con-
verge almost surely to zero iff P(|J,~ y En) = 0 as N — oo.

Example 1.1.31. Let Y be a random variable drawn uniformly from
[0,1]. For each m > 1, let FE,, be the event that the decimal ex-
pansion of Y begins with the decimal expansion of n, e.g. every
real number in [0.25,0.26) lies in Ea5. (Let us ignore the annoying
0.999... = 1.000... ambiguity in the decimal expansion here, as it
will almost surely not be an issue.) Then the indicators I(E,,) con-
verge in probability and in distribution to zero, but do not converge
almost surely.

If y,, is the n*™ digit of Y, then the ¥, converge in distribution
(to the uniform distribution on {0,1,...,9}, but do not converge in
probability or almost surely. Thus we see that the latter two notions
are sensitive not only to the distribution of the random variables, but
how they are positioned in the sample space.

The limit of a sequence converging almost surely or in probabil-
ity is clearly unique up to almost sure equivalence, whereas the limit
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of a sequence converging in distribution is only unique up to equiv-
alence in distribution. Indeed, convergence in distribution is really a
statement about the distributions ux, , ux rather than of the random
vaariables X,,, X themselves. In particular, for convergence in distri-
bution one does not care about how correlated or dependent the X,
are with respect to each other, or with X; indeed, they could even
live on different sample spaces 2,2 and we would still have a well-
defined notion of convergence in distribution, even though the other
two notions cease to make sense (except when X is deterministic,
in which case we can recover convergence in probability by Exercise
1.1.25(vi)).

Exercise 1.1.26 (Borel-Cantelli lemma). Suppose that X,,, X are
random variables such that )  P(d(X,,X) > €) < oo for every
€ > 0. Show that X,, converges almost surely to X.

Exercise 1.1.27 (Convergence and moments). Let X,, be a sequence
of scalar random variables, and let X be another scalar random vari-
able. Let k,e > 0.

(i) If sup,, E|X,|F < oo, show that X,, has a tight sequence of
distributions.

(ii) If sup,, E|X,|¥ < co and X,, converges in distribution to X,
show that E|X|* < liminf, . E|X,|*.

(iii) If sup,, E|X,|*** < oo and X, converges in distribution to
X, show that E|X|¥ = lim,,_, o, E|X,,|*.

(iv) Give a counterexample to show that (iii) fails when € = 0,
even if we upgrade convergence in distribution to almost
sure convergence.

(v) If the X,, are uniformly bounded and real-valued, and EX* =
lim,, o EXF for every k = 0,1,2, ..., then X,, converges in
distribution to X. (Hint: use the Weierstrass approzimation
theorem. Alternatively, use the analytic nature of the mo-
ment generating function Ee!X and analytic continuation.)

(vi) If the X,, are uniformly bounded and complex-valued, and

- 1
EX*X =lim,_ oo EX,’an for every k,01=0,1,2,..., then
X, converges in distribution to X. Give a counterexample
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to show that the claim fails if one only considers the cases
when [ = 0.

There are other interesting modes of convergence on random vari-
ables and on distributions, such as convergence in total variation
norm, in the Lévy-Prokhorov metric, or in Wasserstein metric, but
we will not need these concepts in this text.

1.2. Stirling’s formula

In this section we derive Stirling’s formula, which is a useful approx-
imation for n! when n is large. This formula (and related formulae
for binomial coefficients) () will be useful for estimating a number
of combinatorial quantities in this text, and also in allowing one to
analyse discrete random walks accurately.

From Taylor expansion we have z"/n! < e* for any > 0. Spe-
cialising this to z = n we obtain a crude lower bound

(1.43) nl >n"e".

In the other direction, we trivially have

(1.44) n! <n”

so we know already that n! is within® an exponential factor of n".

One can do better by starting with the identity
n
logn! = Z logm
m=1

and viewing the right-hand side as a Riemann integral approximation
to fln log z dz. Indeed a simple area comparison (cf. the integral test)
yields the inequalities

/ logz dx < ZlogmglognJr/ log x dx
1

1 m=1

which leads to the inequalities
(1.45) en"e" <nl<enxne "
60ne can also see this fact without Taylor expansion, by observing the trivial

lower bound n! > (n/2)"/2) coming from considering the second half of the product
nl=1.-...-n.
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so the lower bound in (1.43) was only off” by a factor of n or so.

One can do better by using the trapezoid rule as follows. On any
interval [m,m + 1], logz has a second derivative of O(1/m?), which
by Taylor expansion leads to the approximation

mt 1 1
/ log x dac:§logm+§log(m+l)+em

m
for some error €, = O(1/m?).
The error is absolutely convergent; by the integral test, we have
S €em = C + O(1/n) for some absolute constant C := > °_| €.
Performing this sum, we conclude that

n—1

" 1
/ logz dx = Zlogm—i—flogn—i—C—&—O(l/n)
1 m=1 2

which after some rearranging leads to the asymptotic
(1.46) n! = (1+0(1/n))e'~%/nn"e™

so we see that n! actually lies roughly at the geometric mean of the
two bounds in (1.45).

This argument does not easily reveal what the constant C actually
is (though it can in principle be computed numerically to any specified
level of accuracy by this method). To find this out, we take a different
tack, interpreting the factorial via the Gamma function I' : R — R
as follows. Repeated integration by parts reveals the identity

o0
(1.47) n! :/ t"e~" dt.
0

(The right-hand side, by definition, is I'(n + 1).) So to estimate n!,
it suffices to estimate the integral in (1.47). Elementary calculus
reveals that the integrand ¢"e~! achieves its maximum at ¢ = n, so it
is natural to make the substitution t = n + s, obtaining

n! = / (n+s)"e "% ds

—n

TThis illustrates a general principle, namely that one can often get a non-terrible
bound for a series (in this case, the Taylor series for e™) by using the largest term in
that series (which is n™/n!).
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which we can simplify a little bit as
o [T Sin
nl=n"e ”/ (1+ —=)"e™? ds,
n n

pulling out the now-familiar factors of n™e™". We combine the inte-
grand into a single exponential,

n! = n"efn/ exp(nlog(1 + %) — ) ds.

—n
From Taylor expansion we see that
2
s 5
log(l+—-)=s——+...
nlog(1l+ n) §= 5T

so we heuristically have
exp(nlog(l+ %) — 5) ~ exp(—s*/2n).

To achieve this approximation rigorously, we first scale s by /n to
remove the n in the denominator. Making the substitution s = y/nz,
we obtain

o0

x
nl = \/ﬁn"e_”/ exp(nlog(l+ —=) — v/nz) dz,
[~ exptnlog + 72 - Vi

thus extracting the factor of y/n that we know from (1.46) has to be
there.

Now, Taylor expansion tells us that for fixed x, we have the point-
wise convergence

(1.48) exp(nlog(1 + %) — Vnz) = exp(—a2/2)

as n — o0o. To be more precise, as the function nlog(1+ %) equals 0
with derivative y/n at the origin, and has second derivative m,
we see from two applications of the fundamental theorem of calculus
that
x Y (@ —y)dy
nlog(l+ —=) — vnz = —/ —_ =
vn o (L+y/vn)?

This gives a uniform lower bound

x ) — Vnx < —ca?

n log(l + %
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for some ¢ > 0 when |z| < y/n, and

nlog(1l+ %) —Vnzr < —cxy/n

for |x| > y/n. This is enough to keep the integrands exp(nlog(l +
%) — /nz) dominated by an absolutely integrable function. By
(1.48) and the Lebesgue dominated convergence theorem, we thus

have

/ exp(nlog(1l + i) —V/nx) dx — / exp(—22/2) du.
—v/n \/ﬁ —00

A classical computation (based for instance on computing | fooo / fooo exp(—(z2+
y?)/2) dxzdy in both Cartesian and polar coordinates) shows that

/Oo exp(—22/2) dx = /37

— 00

and so we conclude Stirling’s formula
(1.49) n!=(140(1))vV2rnn"e™".

Remark 1.2.1. The dominated convergence theorem does not imme-
diately give any effective rate on the decay o(1) (though such a rate
can eventually be extracted by a quantitative version of the above
argument. But one can combine (1.49) with (1.46) to show that the
error rate is of the form O(1/n). By using fancier versions of the
trapezoid rule (e.g. Simpson’s rule) one can obtain an asymptotic
expansion of the error term in 1/n; see [KeVa2007].

Remark 1.2.2. The derivation of (1.49) demonstrates some general
principles concerning the estimation of exponential integrals | e?®) dx
when ¢ is large. Firstly, the integral is dominated by the local maxima
of ¢. Then, near these maxima, e?(*) usually behaves like a rescaled
Gaussian, as can be seen by Taylor expansion (though more compli-
cated behaviour emerges if the second derivative of ¢ degenerates).
So one can often understand the asymptotics of such integrals by a
change of variables designed to reveal the Gaussian behaviour. This
technique is known as Laplace’s method. A similar set of principles
also holds for oscillatory exponential integrals | e'*(®) dz; these prin-
ciples are collectively referred to as the method of stationary phase.
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One can use Stirling’s formula to estimate binomial coefficients.
Here is a crude bound:

Exercise 1.2.1 (Entropy formula). Let n be large, let 0 < v < 1 be
fixed, and let 1 < m < n be an integer of the form m = (v 4 o(1))n.
Show that () = exp((h(v) + o(1))n), where h(y) is the entropy
Sfunction

1
h(v) :==~log— + (1 — ) log .
() ~ (1= )log

For m near n/2, one also has the following more precise bound:

Exercise 1.2.2 (Refined entropy formula). Let n be large, and let
1 < m < n be an integer of the form m = n/2+4k for some k = o(n?/3).
Show that

(1.50) <:1> - (\E + 0(1))27% exp(—2k2 /n).

Note the gaussian-type behaviour in k. This can be viewed as
an illustration of the central limit theorem (see Section 2.2) when
summing iid Bernoulli variables X, ..., X,, € {0,1}, where each X;
has a 1/2 probability of being either 0 or 1. Indeed, from (1.50) we
see that

PXi+...+X,=n/2+k) = (\/Z—i- 0(1))% exp(—2k%/n)

when k = o(n?/?), which suggests that X; + ... + X,, is distributed
roughly like the gaussian N(n/2,n/4) with mean n/2 and variance
n/4.

1.3. Eigenvalues and sums of Hermitian matrices

Let A be a Hermitian n X n matrix. By the spectral theorem for
Hermitian matrices (which, for sake of completeness, we prove below),
one can diagonalise A using a sequence®

A(A) > ... > M (4)

8The eigenvalues are uniquely determined by A, but the eigenvectors have a little
ambiguity to them, particularly if there are repeated eigenvalues; for instance, one
could multiply each eigenvector by a complex phase e'?. In this text we are arrang-
ing eigenvalues in descending order; of course, one can also arrange eigenvalues in
increasing order, which causes some slight notational changes in the results below.
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of n real eigenvalues, together with an orthonormal basis of eigenvec-
tors ui(A),...,u,(A) € C™. The set {A1(A4),..., A\, (A)} is known as
the spectrum of A.

A basic question in linear algebra asks the extent to which the
eigenvalues A1 (4), ..., An(A) and A\ (B),..., A\, (B) of two Hermitian
matrices A, B constrains the eigenvalues A\;(A+ B),..., A\ (A+ B) of
the sum. For instance, the linearity of trace

tr(A+ B) = tr(A) + tr(B),
when expressed in terms of eigenvalues, gives the trace constraint
(1.51) MA+B)+...+MA+B)=MA)+ ...+ 2 (4)
+A(B)+ ...+ M\ (B);
the identity

(1.52) A (A) = sup v*Av
|[v]=1

(together with the counterparts for B and A+ B) gives the inequality
(1.53) AM(A+ B) < A (4) + M\(B);
and so forth.

The complete answer to this problem is a fascinating one, requir-
ing a strangely recursive description (once known as Horn’s conjec-
ture, which is now solved), and connected to a large number of other
fields of mathematics, such as geometric invariant theory, intersec-
tion theory, and the combinatorics of a certain gadget known as a
“honeycomb”. See [KnTa2001] for a survey of this topic.

In typical applications to random matrices, one of the matrices
(say, B) is “small” in some sense, so that A+ B is a perturbation of A.
In this case, one does not need the full strength of the above theory,
and instead rely on a simple aspect of it pointed out in [HeR01995],
[To1994|, which generates several of the eigenvalue inequalities re-
lating A, B, and C, of which (1.51) and (1.53) are examples®. These
eigenvalue inequalities can mostly be deduced from a number of min-
imaz characterisations of eigenvalues (of which (1.52) is a typical

9Actually7 this method eventually generates all of the eigenvalue inequalities, but
this is a non-trivial fact to prove; see [KnTaWo2004]
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example), together with some basic facts about intersections of sub-
spaces. Examples include the Weyl inequalities

(1.54) Airj—1(A+ B) < XNi(A) + X(B),
valid whenever ¢,7 > 1 and ¢ + j — 1 < n, and the Ky Fan inequality
MA+B)+...+ A+ B) <

One consequence of these inequalities is that the spectrum of a Her-
mitian matrix is stable with respect to small perturbations.

We will also establish some closely related inequalities concern-
ing the relationships between the eigenvalues of a matrix, and the
eigenvalues of its minors.

Many of the inequalities here have analogues for the singular
values of non-Hermitian matrices (by exploiting the augmented ma-
trix(2.80)). However, the situation is markedly different when deal-
ing with eigenvalues of non-Hermitian matrices; here, the spectrum
can be far more unstable, if pseudospectrum is present. Because of
this, the theory of the eigenvalues of a random non-Hermitian ma-
trix requires an additional ingredient, namely upper bounds on the
prevalence of pseudospectrum, which after recentering the matrix is
basically equivalent to establishing lower bounds on least singular
values. See Section 2.8.1 for further discussion of this point.

We will work primarily here with Hermitian matrices, which can
be viewed as self-adjoint transformations on complex vector spaces
such as C™. One can of course specialise the discussion to real sym-
metric matrices, in which case one can restrict these complex vector
spaces to their real counterparts R™. The specialisation of the com-
plex theory below to the real case is straightforward and is left to the
interested reader.

1.3.1. Proof of spectral theorem. To prove the spectral theorem,
it is convenient to work more abstractly, in the context of self-adjoint
operators on finite-dimensional Hilbert spaces:

Theorem 1.3.1 (Spectral theorem). Let V' be a finite-dimensional
complex Hilbert space of some dimension n, and let T : 'V — V
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be a self-adjoint operator. Then there exists an orthonormal basis
V1,...,0, €V of V and eigenvalues A\, ..., A, € R such that Tv; =
Aiv; for all1 < i <n.

The spectral theorem as stated in the introduction then follows
by specialising to the case V = C™ and ordering the eigenvalues.

Proof. We induct on the dimension n. The claim is vacuous for
n = 0, so suppose that n > 1 and that the claim has already been
proven for n = 1.

Let v be a unit vector in C™ (thus v*v = 1) that maximises the
form Rev*T'v; this maximum exists by compactness. By the method
of Lagrange multipliers, v is a critical point of Rev*Tv — Av*v for
some A € R. Differentiating in an arbitrary direction w € C™, we
conclude that

Re(v'Tw 4+ w*Tv — Aw*w — Aw*v) = 0;
this simplifies using self-adjointness to
Re(w*(Tv — Av)) = 0.

Since w € C™ was arbitrary, we conclude that Tv = Av, thus v
is a unit eigenvector of 7. By self-adjointness, this implies that the
orthogonal complement v := {w € V : v*w = 0} of v is preserved by
T. Restricting T to this lower-dimensional subspace and applying the
induction hypothesis, we can find an orthonormal basis of eigenvectors
of T on v*. Adjoining the new unit vector v to the orthonormal basis,
we obtain the claim. O

Suppose we have a self-adjoint transformation A : C* — C",
which of course can be identified with a Hermitian matrix. Using
the orthogonal eigenbasis provided by the spectral theorem, we can
perform an orthonormal change of variables to set that eigenbasis
to be the standard basis eq,...,e,, so that the matrix of A becomes
diagonal. This is very useful when dealing with just a single matrix A -
for instance, it makes the task of computing functions of A, such as A*
or exp(tA), much easier. However, when one has several Hermitian
matrices in play (e.g. A, B,C), then it is usually not possible to
standardise all the eigenbases simultaneously (i.e. to simultaneously
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diagonalise all the matrices), except when the matrices all commute.
Nevertheless one can still normalise one of the eigenbases to be the
standard basis, and this is still useful for several applications, as we
shall soon see.

Exercise 1.3.1. Suppose that the eigenvalues A\ (A4) > ... > A\, (4)
of an n x n Hermitian matrix are distinct. Show that the associated
eigenbasis u1(A),...,u,(A) is unique up to rotating each individual
eigenvector u;(A) by a complex phase ei. In particular, the spectral
projections Pj(A) := u;j(A)*u;(A) are unique. What happens when
there is eigenvalue multiplicity?

1.3.2. Minimax formulae. The i‘" eigenvalue functional A +— \;(A)
is not a linear functional (except in dimension one). It is not even a
convex functional (except when ¢ = 1) or a concave functional (ex-
cept when ¢ = n). However, it is the next best thing, namely it is a
minimaz expression of linear functionals'®. More precisely, we have

Theorem 1.3.2 (Courant-Fischer min-max theorem). Let A be an
n X n Hermitian matriz. Then we have

(1.56) Ai(A) = sup inf v*Av
dim(V)=i v€V:|v|=1

and

1.57 Ai(A) = inf su v* Av
( ) ) dim(V)=n—i+1vev:\5|:1

for all 1 <i < n, where V ranges over all subspaces of C™ with the
indicated dimension.

Proof. It suffices to prove (1.56), as (1.57) follows by replacing A by
—A (noting that )\1(—14) = _)‘n—i-‘rl(A))-

We first verify the ¢ = 1 case, i.e. (1.52). By the spectral theorem,
we can assume that A has the standard eigenbasis e, . .., €,, in which
case we have

(1.58) v Av =Y Al
=1

10Note that a convex functional is the same thing as a max of linear functionals,
while a concave functional is the same thing as a min of linear functionals.
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whenever v = (vy,...,v,). The claim (1.52) is then easily verified.

To prove the general case, we may again assume A has the stan-
dard eigenbasis. By considering the space V spanned by ey,...,¢;,
we easily see the inequality

Ai(A) < sup inf v*Av
dim(V)=1 vEV:|v]=1
so we only need to prove the reverse inequality. In other words,
for every i-dimensional subspace V of C™", we have to show that V'
contains a unit vector v such that

v*Av < Ai(A).

Let W be the space spanned by e;, ..., e,. This space has codimension
1 — 1, so it must have non-trivial intersection with V. If we let v be
a unit vector in V' N W, the claim then follows from (1.58). O

Remark 1.3.3. By homogeneity, one can replace the restriction |v| =
1 with v # 0 provided that one replaces the quadratic form v* Av with
the Rayleigh quotient v* Av/v*v.

A closely related formula is as follows. Given an n X n Hermitian
matrix A and an m-dimensional subspace V of C™, we define the
partial trace tr(A |y ) to be the expression

tr(A |y) = vaAvi
i=1

where v1, ..., v, is any orthonormal basis of V. It is easy to see that
this expression is independent of the choice of orthonormal basis, and
so the partial trace is well-defined.

Proposition 1.3.4 (Extremal partial trace). Let A be an n x n Her-
mitian matriz. Then for any 1 < k <n, one has
MA) +...+ M (A) = sup tr(Aly)
dim(V)=k

and

)\n,kJrl(A) +...+ )\n(A) = dimi(r\l/f):k tI‘(A Lv)

As a corollary, we see that A — \(A) + ...+ A\(A) is a convex
function, and A — A\, _g41(A) + ...+ A (A) is a concave function.
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Proof. Again, by symmetry it suffices to prove the first formula.
As before, we may assume without loss of generality that A has the
standard eigenbasis e, ..., e, corresponding to A1(A4),..., A, (A) re-
spectively. By selecting V' to be the span of ej,..., e, we have the
inequality
MA) + ...+ 2 (A) < sup tr(A4 ly)
dim(V)=k

so it suffices to prove the reverse inequality. For this we induct on the
dimension n. If V has dimension k, then it has a £ — 1-dimensional
subspace V' that is contained in the span of es,...,e,. By the in-
duction hypothesis applied to the restriction of A to this span (which
has eigenvalues \y(A),..., A, (A)), we have

)\Q(A) +...+ )\k(A) > tr(A LV/).

On the other hand, if v is a unit vector in the orthogonal complement
of V/'in V, we see from (1.52) that

A1(4) > v* Av.

Adding the two inequalities we obtain the claim. O

Specialising Proposition 1.3.4 to the case when V is a coordi-
nate subspace (i.e. the span of k of the basis vectors ey, ..., e,), we
conclude the Schur-Horn inequalities

Mkt (A) 4+ .o+ 2 (4) <

forany 1 <4y < ... < i, <n, where ai1,aso,...,a,, are the diagonal
entries of A.

Exercise 1.3.2. Show that the inequalities (1.59) are equivalent to
the assertion that the diagonal entries diag(A) = (a11,a22,...,ann)
lies in the permutahedron of A1(A),..., A, (A), defined as the convex
hull of the n! permutations of (A1(4),..., . (A)) in R™.

Remark 1.3.5. It is a theorem of Schur and Horn[Ho1954] that
these are the complete set of inequalities connecting the diagonal
entries diag(A) = (a11,a99,...,0n,) of a Hermitian matrix to its
spectrum. To put it another way, the image of any coadjoint orbit
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Oy = {UAU* : U € U(n)} of a matrix A with a given spectrum
A, ..., A, under the diagonal map diag : A — diag(A) is the per-
mutahedron of A1,...,\,. Note that the vertices of this permutahe-
dron can be attained by considering the diagonal matrices inside this
coadjoint orbit, whose entries are then a permutation of the eigen-
values. One can interpret this diagonal map diag as the moment
map associated with the conjugation action of the standard maximal
torus of U(n) (i.e. the diagonal unitary matrices) on the coadjoint
orbit. When viewed in this fashion, the Schur-Horn theorem can
be viewed as the special case of the more general Atiyah convez-
ity theorem[At1982] (also proven independently by Guillemin and
Sternberg[GuSt1982]) in symplectic geometry. Indeed, the topic of
eigenvalues of Hermitian matrices turns out to be quite profitably
viewed as a question in symplectic geometry (and also in algebraic
geometry, particularly when viewed through the machinery of geo-
metric invariant theory).

There is a simultaneous generalisation of Theorem 1.3.2 and Propo-
sition 1.3.4:

Exercise 1.3.3 (Wielandt minimax formula). Let 1 < i3 < ... <
ir < n be integers. Define a partial flag to be a nested collection
Vi C ... C Vi of subspaces of C™ such that dim(V;) = i¢; for all
1 < j < k. Define the associated Schubert variety X (V1,..., V%) to
be the collection of all k-dimensional subspaces W such that dim (W N
V;) > j. Show that for any n x n matrix A,
AN o A )

1.3.3. Eigenvalue inequalities. Using the above minimax formu-
lae, we can now quickly prove a variety of eigenvalue inequalities. The
basic idea is to exploit the linearity relationship

(1.60) v*(A+ B)v =v"Av+v*Bv
for any unit vector v, and more generally
(1.61) (A + B) L) = tr(A Ly) + (B Lv)

for any subspace V.
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For instance, as mentioned before, the inequality (1.53) follows
immediately from (1.52) and (1.60). Similarly, for the Ky Fan in-
equality (1.55), one observes from (1.61) and Proposition 1.3.4 that

tr((A+ B) |lw) <tr(A lw) + M(B)+ ...+ M\(B)

for any k-dimensional subspace W. Substituting this into Proposition
1.3.4 gives the claim. If one uses Exercise 1.3.3 instead of Proposition
1.3.4, one obtains the more general Lidskii inequality

<A (A)+ .o+ A (A) +F M (B)+ ...+ A(B)

forany 1 <i; <...<ix <n.

(1.62)

In a similar spirit, using the inequality
[v*Bu| < || Bllop = max(|A1(B)], [An(B)])

for unit vectors v, combined with (1.60) and (1.56), we obtain the

eigenvalue stability inequality
(1.63) [Ai(A+ B) = Ai(A)] < [[Bllop,

thus the spectrum of A + B is close to that of A if B is small in
operator norm. In particular, we see that the map A — \;(A) is
Lipschitz continuous on the space of Hermitian matrices, for fixed
1< <n.

More generally, suppose one wants to establish the Weyl inequal-
ity (1.54). From (1.56) that it suffices to show that every i + j — 1-
dimensional subspace V' contains a unit vector v such that

v*(A+ B)v < Mi(A) + A;(B).

But from (1.56), one can find a subspace U of codimension i — 1 such
that v*Av < X;(A) for all unit vectors v in U, and a subspace W of
codimension j — 1 such that v*Bv < X;(B) for all unit vectors v in
W. The intersection U N W has codimension at most ¢ + 7 — 2 and
so has a nontrivial intersection with V'; and the claim follows.

Remark 1.3.6. More generally, one can generate an eigenvalue in-
equality whenever the intersection numbers of three Schubert varieties
of compatible dimensions is non-zero; see [HeR01995]. In fact, this
generates a complete set of inequalities; see [Klyachko].. One can
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in fact restrict attention to those varieties whose intersection num-
ber is exactly one; see [KnTaWo2004]. Finally, in those cases, the
fact that the intersection is one can be proven by entirely elementary
means (based on the standard inequalities relating the dimension of
two subspaces V, W to their intersection VNW and sum V +W); see
[BeCoDyLiTi2010]. As a consequence, the methods in this section
can, in principle, be used to derive all possible eigenvalue inequalities
for sums of Hermitian matrices.

Exercise 1.3.4. Verify the inequalities (1.62) and (1.54) by hand
in the case when A and B commute (and are thus simultaneously
diagonalisable), without the use of minimax formulae.

Exercise 1.3.5. Establish the dual Lidskii inequality

Xiy(A4+B)+ ...+ X, (A+B) > X\, (A) +...+ X\ . (4)
+)\n—k+1(B) + ... +)\n(B)

for any 1 <4y < ... < it <n and the dual Weyl inequality
Aitj-n(A+ B) = Ai(A) + A;(B)
whenever 1 <4,j5,i+7—n <n.

Exercise 1.3.6. Use the Lidskii inequality to establish the more gen-
eral inequality

ici)\i(ﬁl +B) < ici)\i(A) + Zn:CfAi(B)
i=1 i=1

i=1
whenever cj,...,c, > 0, and ¢] > ... > ¢, > 0 is the decreasing
rearrangement of ¢y, ..., ¢,. (Hint: express ¢; as the integral of I(¢; >

A) as A runs from O to infinity. For each fixed A, apply (1.62).)
Combine this with Holder’s inequality to conclude the p- Weilandt-
Hoffman inequality

(1.64) [(Ai(A + B) = Ai(A)iLiller, < [IBlls»

for any 1 < p < 0o, where

n

&= (Z |az‘\p)1/p

=1

(@ )izs
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is the usual #? norm (with the usual convention that ||(a;)™

SUp; <<, |ai]), and
(1.65) [Blls» := |(Ai(B))is

is the p-Schatten norm of B.

P
%5

Exercise 1.3.7. Show that the p-Schatten norms are indeed a norm
on the space of Hermitian matrices for every 1 < p < co.

Exercise 1.3.8. Show that for any 1 < p < oo and any Hermitian
matrix A = (a;5)1<i,j<n, One has

(1.66) [[(@ii)izy

Exercise 1.3.9. Establish the non-commutative Holder inequality

o < [ Allse.

n —

[ tr(AB)| < [|Alls» || B| s

whenever 1 < p,p’ < oo with 1/p+1/p’ =1, and A, B are n X n
Hermitian matrices. (Hint: Diagonalise one of the matrices and use
the preceding exercise.)

t11 p-Schatten norms are the co-Schatten norm

The most importan
|Allsee = || Allop, which is just the operator norm, and the 2-Schatten
norm |[Allgz = (31, Mi(A)?)Y/2, which is also the Frobenius norm

(or Hilbert-Schmidt norm)
1Alls> = [1A]l := tr(AA")"/2 = ZZ ai;|*)'?

where a;; are the coeffiicents of A. Thus we see that the p = 2 case
of the Weilandt-Hoffman inequality can be written as

n
(1.67) DA+ B) = X(A)]* < || BII-

i=1
We will give an alternate proof of this inequality, based on eigenvalue
deformation, in the next section.

117he 1-Schatten norm S*, also known as the nuclear norm or trace class norm,
is important in a number of applications, such as matrix completion, but will not be
used in this text.
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1.3.4. Eigenvalue deformation. From the Weyl inequality (1.63),
we know that the eigenvalue maps A — \;(A4) are Lipschitz contin-
uous on Hermitian matrices (and thus also on real symmetric matri-
ces). It turns out that we can obtain better regularity, provided that
we avoid repeated eigenvalues. Fortunately, repeated eigenvalues are
rare:

Exercise 1.3.10 (Dimension count). Suppose that n > 2. Show that
the space of Hermitian matrices with at least one repeated eigenvalue
has codimension 3 in the space of all Hermitian matrices, and the
space of real symmetric matrices with at least one repeated eigenvalue
has codimension 2 in the space of all real symmetric matrices. (When
n = 1, repeated eigenvalues of course do not occur.)

Let us say that a Hermitian matrix has simple spectrum if it has
no repeated eigenvalues. We thus see from the above exercise and
(1.63) that the set of Hermitian matrices with simple spectrum forms
an open dense set in the space of all Hermitian matrices, and similarly
for real symmetric matrices; thus simple spectrum is the generic be-
haviour of such matrices. Indeed, the unexpectedly high codimension
of the non-simple matrices (naively, one would expect a codimension
1 set for a collision between, say, A\;(A) and A\;11(A)) suggests a re-
pulsion phenomenon: because it is unexpectedly rare for eigenvalues
to be equal, there must be some “force” that “repels” eigenvalues
of Hermitian (and to a lesser extent, real symmetric) matrices from
getting too close to each other. We now develop some machinery to
make this more precise.

We first observe that when A has simple spectrum, the zeroes of
the characteristic polynomial A\ — det(A — AI) are simple (i.e. the
polynomial has nonzero derivartive at those zeroes). From this and
the inverse function theorem, we see that each of the eigenvalue maps
A — )\;(A) are smooth on the region where A has simple spectrum.
Because the eigenvectors u;(A) are determined (up to phase) by the
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equations (A—X;(A)I)u;(A) = 0 and u;(A)*u;(A) = 1, another appli-
cation of the inverse function theorem tells us that we can (locally'?)
select the maps A — u;(A) to also be smooth.

Now suppose that A = A(t) depends smoothly on a time variable
t, so that (when A has simple spectrum) the eigenvalues \;(t) =
Ai(A(t)) and eigenvectors u;(t) = u;(A(t)) also depend smoothly on
t. We can then differentiate the equations

and
(1.69) uiu; =1

to obtain various equations of motion for A\; and u; in terms of the
derivatives of A.

Let’s see how this works. Taking first derivatives of (1.68), (1.69)
using the product rule, we obtain

(170) Aui + Au; = /\1’(,61 + Aty
and
(1.71) ufu1+ufuz =0.

The equation (1.71) simplifies to uju; = 0, thus 4; is orthogonal to ;.
Taking inner products of (1.70) with u;, we conclude the Hadamard
first variation formula

(1.72) i = u}Au,.

This can already be used to give alternate proofs of various eigen-
value identities. For instance, If we apply this to A(t) := A+ tB, we
see that

%)\i(A 4+ ¢B) = wi(A + tB)* Bui(A + tB)

whenever A + tB has simple spectrum. The right-hand side can be
bounded in magnitude by ||B||p, and so we see that the map ¢ —
Ai(A+1tB) is Lipschitz with norm || B||,, whenever A+ ¢B has simple

12There may be topological obstructions to smoothly selecting these vectors
globally, but this will not concern us here as we will be performing a local analy-
sis only. In some applications, it is more convenient not to work with the w;(A)
at all due to their phase ambiguity, and work instead with the spectral projections
P;(A) := u; (A)u; (A)*, which do not have this ambiguity.
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spectrum, which happens for generic A, B (and all ¢) by Exercise
1.3.10. By the fundamental theorem of calculus, we thus conclude
(1.63).

Exercise 1.3.11. Use a similar argument to the one above to estab-
lish (1.67) without using minimax formulae or Lidskii’s inequality.

Exercise 1.3.12. Use a similar argument to the one above to deduce
Lidskii’s inequality (1.62) from Proposition 1.3.4 rather than Exercise
1.3.6.

One can also compute the second derivative of eigenvalues:

Exercise 1.3.13. Suppose that A = A(t) depends smoothly on t.

By differentiating (1.70), (1.71) twice, establish the Hadamard second

variation formula'3
2

dt?

|U§Auk\2

1.
(1.73) T,

A = u,’;Auk +2 Z
J#k
whenever A has simple spectrum and 1 < k < n.

Remark 1.3.7. In the proof of the four moment theorem|TaVu2009b]
on the fine spacing of Wigner matrices, one also needs the variation
formulae for the third, fourth, and fifth derivatives of the eigenvalues
(the first four derivatives match up with the four moments mentioned
in the theorem, and the fifth derivative is needed to control error
terms). Fortunately, one does not need the precise formulae for these
derivatives (which, as one can imagine, are quite complicated), but
only their general form, and in particular an upper bound for these
derivatives in terms of more easily computable quantities.

1.3.5. Minors. In the previous sections, we perturbed n xn Hermit-
ian matrices A = A,, by adding a (small) n x n Hermitian correction
matrix B to them to form a new n x n Hermitian matrix A + B.
Another important way to perturb a matrix is to pass to a principal

131 one interprets the second derivative of the eigenvalues as being proportional
to a “force” on those eigenvalues (in analogy with Newton’s second law), (1.73) is
asserting that each eigenvalue \; “repels” the other eigenvalues Ay by exerting a force
that is inversely proportional to their separation (and also proportional to the square of
the matrix coefficient of A in the eigenbasis). See [Ta2009b, §1.5] for more discussion.
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minor, for instance to the top left n — 1 x n — 1 minor A,,_; of A,.
There is an important relationship between the eigenvalues of the two
matrices:

Exercise 1.3.14 (Cauchy interlacing law). For any n x n Hermitian
matrix A, with top left n — 1 x n — 1 minor A,,_1, then

(1.74) Ait1(An) < Ai(An—1) < Ai(An)

for all 1 < i <mn. (Hint: use the Courant-Fischer min-max theorem,
Theorem 1.3.2.) Show furthermore that the space of A4, for which
equality holds in one of the inequalities in (1.74) has codimension 2
(for Hermitian matrices) or 1 (for real symmetric matrices).

Remark 1.3.8. If one takes successive minors A,,_1, Ap_2,..., 41
of an n X n Hermitian matrix A,,, and computes their spectra, then
(1.74) shows that this triangular array of numbers forms a pattern
known as a Gelfand-Tsetlin pattern.

One can obtain a more precise formula for the eigenvalues of A,
in terms of those for A,,_1:

Exercise 1.3.15 (Eigenvalue equation). Let A, be an n x n Hermit-
ian matrix with top left n — 1 x n — 1 minor A,_;. Suppose that A
is an eigenvalue of A,, distinct from all the eigenvalues of A4,,_; (and
thus simple, by (1.74)). Show that

n—1
| (An—1)" X |?

(1.75) — =y, — A

2 A oA
where a,,, is the bottom right entry of A, and X = (anj);-l:_ll eCnt
is the right column of A (minus the bottom entry). (Hint: Expand out
the eigenvalue equation A,u = Au into the C"~! and C components.)
Note the similarities between (1.75) and (1.73).

) * 3|2
Observe that the function A — Z;:ll % is a rational

function of A which is increasing away from the eigenvalues of A,,_1,
where it has a pole (except in the rare case when the inner prod-
uct u;_1(Ap—1)*X vanishes, in which case it can have a removable
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singularity). By graphing this function one can see that the interlac-
ing formula (1.74) can also be interpreted as a manifestation of the
intermediate value theorem.

The identity (1.75) suggests that under typical circumstances,
an eigenvalue A of A, can only get close to an eigenvalue \;(A4,—1)
if the associated inner product u;(A,_1)*X is small. This type of
observation is useful to achieve eigenvalue repulsion - to show that
it is unlikely that the gap between two adjacent eigenvalues is small.
We shall see examples of this in later notes.

1.3.6. Singular values. The theory of eigenvalues of n x n Hermit-
ian matrices has an analogue in the theory of singular values of p X n
non-Hermitian matrices. We first begin with the counterpart to the
spectral theorem, namely the singular value decomposition.

Theorem 1.3.9 (Singular value decomposition). Let 0 < p < n,
and let A be a linear transformation from an n-dimensional complex
Hilbert space U to a p-dimensional complex Hilbert space V. (In par-
ticular, A could be an p X n matriz with complex entries, viewed as a
linear transformation from C™ to CP.) Then there exist non-negative
real numbers

01(4) > ...>0,(A) >0

(known as the singular values of A) and orthonormal sets ui(A), ..., uy(A) €
U and v1(A),...,v,(A) € V (known as singular vectors of A), such
that

AUj = O’j?)j; A*Uj = ajuj
for all 1 < j < p, where we abbreviate u; = u;(A), etc.

Furthermore, Au = 0 whenever u is orthogonal to all of the

ui(4),...,up(4).

We adopt the convention that ;(A) = 0 for ¢ > p. The above the-
orem only applies to matrices with at least as many rows as columns,
but one can also extend the definition to matrices with more columns
than rows by adopting the convention o;(A*) := 0;(A) (it is easy to
check that this extension is consistent on square matrices). All of
the results below extend (with minor modifications) to the case when



1.3. Eigenvalues and sums 61

there are more columns than rows, but we have not displayed those
extensions here in order to simplify the notation.

Proof. We induct on p. The claim is vacuous for p = 0, so suppose
that p > 1 and that the claim has already been proven for p — 1.

We follow a similar strategy to the proof of Theorem 1.3.1. We
may assume that A is not identically zero, as the claim is obvious
otherwise. The function u + || Au||? is continuous on the unit sphere
of U, so there exists a unit vector ©; which maximises this quantity. If

we set 01 := ||Auz|| > 0, one easily verifies that wu; is a critical point of
the map u — ||Aul||?—0?%||u||?, which then implies that A* Au; = o%u;.
Thus, if we set vy := Auy /o1, then Au; = oyv; and A*v; = oyu;.

This implies that A maps the orthogonal complement ui- of u; in U to
the orthogonal complement vi- of v; in V. By induction hypothesis,
the restriction of A to ui (and vi) then admits a singular value
decomposition with singular values oo > ... > 0, > 0 and singular
vectors ug,...,Uup € ui, vg, ... ,Up € vi with the stated properties.
By construction we see that o»,..., 0, are less than or equal to o;. If
we now adjoin o1, u1,v; to the other singular values and vectors we
obtain the claim. O

Exercise 1.3.16. Show that the singular values o1(4) > ... >
op(A) > 0 of a p x n matrix A are unique. If we have o1(4) >

. > 0p(A) > 0, show that the singular vectors are unique up to
rotation by a complex phase.

By construction (and the above uniqueness claim) we see that
0;(UAV) = 0,(A) whenever A is a p X n matrix, U is a unitary p X p
matrix, and V is a unitary n x n matrix. Thus the singular spectrum
of a matrix is invariant under left and right unitary transformations.

Exercise 1.3.17. If A is a p x n complex matrix for some 1 < p < n,
show that the augmented matrix

~ 0 A
(2 9

is a p 4+ n X p+ n Hermitian matrix whose eigenvalues consist of
+01(A),...,£0,(A), together with n — p copies of the eigenvalue
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zero. (This generalises Exercise 2.3.17.) What is the relationship
between the singular vectors of A and the eigenvectors of A7

Exercise 1.3.18. If A is an n X n Hermitian matrix, show that the
singular values o1(A4),...,0,(A) of A are simply the absolute values
[A1(A)], ..., [An(A)| of A, arranged in descending order. Show that
the same claim also holds when A is a normal matriz (that is, when
A commutes with its adjoint). What is the relationship between the
singular vectors and eigenvectors of A?

Remark 1.3.10. When A is not normal, the relationship between
eigenvalues and singular values is more subtle. We will discuss this
point in later notes.

Exercise 1.3.19. If A is a p x n complex matrix for some 1 < p < n,
show that AA* has eigenvalues o1(A4)?,...,0,(A)?, and A*A has
eigenvalues o1 (A4)2, ..., 0,(A)? together with n—p copies of the eigen-
value zero. Based on this observation, give an alternate proof of the
singular value decomposition theorem using the spectral theorem for
(positive semi-definite) Hermitian matrices.

Exercise 1.3.20. Show that the rank of a p X n matrix is equal to
the number of non-zero singular values.

Exercise 1.3.21. Let A be a p x n complex matrix for some 1 < p <
n. Establish the Courant-Fischer min-max formula
(1.76) oi(A) = sup inf  |Av|

dim(V)=i vEV;|v|=1
for all 1 < ¢ < p, where the supremum ranges over all subspaces of
C" of dimension 1.

One can use the above exercises to deduce many inequalities
about singular values from analogous ones about eigenvalues. We
give some examples below.

Exercise 1.3.22. Let A, B be p x n complex matrices for some 1 <
p<n.

(i) Establish the Weyl inequality o;4+,_1(A + B) < 0;(A) +
0j(B) whenever 1 <14,j,i+j—1<p.
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(i)

Establish the Lidskii inequality

ci,(A+B)+...40;,,(A+ B) <0, (A)+...+0;.(4)

(iii)

(iv)

+01(B) + ...+ ox(B)
whenever 1 <4y < ... <1 <p.

Show that for any 1 < k < p, the map A — o1(4) +... +
ok (A) defines a norm on the space CP*™ of complex p X n
matrices (this norm is known as the k' Ky Fan norm).
Establish the Weyl inequality |o;(A + B) — 0i(A)| < ||Bllop
forall 1 <i <p.

More generally, establish the g-Weilandt-Hoffman inequality
[(0i(A+ B) — 0i(A))1<i<pllez < [ Bl|sq for any 1 < ¢ < o0,
where || B||sa := |[(07(B))1<i<plleg is the g-Schatten norm of
B. (Note that this is consistent with the previous definition
of the Schatten norms.)

Show that the g-Schatten norm is indeed a norm on CP*"
for any 1 < ¢ < o0.

If A’ is formed by removing one row from A, show that
Ait1(A4) < N(A) < A(A) forall 1 <i < p.

If p < n and A’ is formed by removing one column from A,
show that A;11(A4) < A\(A") < A(A) for all 1 < i < p and
Ap(A’) < Xp(A). What changes when p = n?

Exercise 1.3.23. Let A be a p X n complex matrix for some 1 < p <
n. Observe that the linear transformation A : C™ — CP naturally
induces a linear transformation A"F : /\k c" — /\k CP from k-forms
on C" to k-forms on CP. We give /\k C" the structure of a Hilbert
space by declaring the basic forms e;; A...Ae;, for 1 <3 < ... <

1 < n to be orthonormal.

For any 1 < k < p, show that the operator norm of A"F is equal
to 01(A)...or(4).

Exercise 1.3.24. Let A be a p X n matrix for some 1 < p < n, let
B be a r x p matrix, and let C' be a n X s matrix for some r,s > 1.

Show that ¢;(BA) < ||Bllopoi(A) and o;(AC) < 0;(A)||C| op for
any 1 <17 <np.
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DIEPy AT

some 1 < p < n, let iy,...,i € {1,...,p} be distinct, and let

J1y--,dk € {1,...,n} be distinct. Show that
iy oo+ i, < o1(A)+ ...+ ok(4).
Using this, show that if ji,...,j, € {1,...,n} are distinct, then
1(aij, )i=1lleg < | Allse
for every 1 < g < o0.
Exercise 1.3.26. Establish the Holder inequality
| tr(AB")| < [|Al[sa | Bl g0

whenever A, B are p x n complex matrices and 1 < ¢, ¢’ < oo are such
that 1/¢+1/¢ = 1.



Chapter 2

Random matrices
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2.1. Concentration of measure

Suppose we have a large number of scalar random variables X7, ..., X,
which each have bounded size on average (e.g. their mean and vari-
ance could be O(1)). What can one then say about their sum S, :=
X1+ ...+ X,,7? If each individual summand X; varies in an interval
of size O(1), then their sum of course varies in an interval of size
O(n). However, a remarkable phenomenon, known as concentration
of measure, asserts that assuming a sufficient amount of indepen-
dence between the component variables X1, ..., X,,, this sum sharply
concentrates in a much narrower range, typically in an interval of size
O(y/n). This phenomenon is quantified by a variety of large deviation
inequalities that give upper bounds (often exponential in nature) on
the probability that such a combined random variable deviates sig-
nificantly from its mean. The same phenomenon applies not only to
linear expressions such as S, = X; + ...+ X, but more generally
to nonlinear combinations F(Xy,...,X,) of such variables, provided
that the nonlinear function F' is sufficiently regular (in particular,
if it is Lipschitz, either separately in each variable, or jointly in all
variables).

The basic intuition here is that it is difficult for a large number
of independent variables X1,..., X, to “work together” to simulta-
neously pull a sum X; 4+ ...+ X,, or a more general combination
F(Xy,...,X,) too far away from its mean. Independence here is the
key; concentration of measure results typically fail if the X; are too
highly correlated with each other.

There are many applications of the concentration of measure phe-
nomenon, but we will focus on a specific application which is useful
in the random matrix theory topics we will be studying, namely on
controlling the behaviour of random n-dimensional vectors with inde-
pendent components, and in particular on the distance between such
random vectors and a given subspace.

Once one has a sufficient amount of independence, the concentra-
tion of measure tends to be sub-gaussian in nature; thus the proba-
bility that one is at least A standard deviations from the mean tends
to drop off like Cexp(—cA?) for some C,c > 0. In particular, one
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is O(logl/ 2 n) standard deviations from the mean with high prob-
ability, and O(log"/?**n) standard deviations from the mean with
overwhelming probability. Indeed, concentration of measure is our
primary tool for ensuring that various events hold with overwhelming
probability (other moment methods can give high probability, but
have difficulty ensuring overwhelming probability).

This is only a brief introduction to the concentration of mea-
sure phenomenon. A systematic study of this topic can be found in
[Le2001].

2.1.1. Linear combinations, and the moment method. We be-
gin with the simple setting of studying a sum S,, :== X; +...+ X, of
random variables. As we shall see, these linear sums are particularly
amenable to the moment method, though to use the more powerful
moments, we will require more powerful independence assumptions
(and, naturally, we will need more moments to be finite or bounded).
As such, we will take the opportunity to use this topic (large deviation
inequalities for sums of random variables) to give a tour of the mo-
ment method, which we will return to when we consider the analogous
questions for the bulk spectral distribution of random matrices.

In this section we shall concern ourselves primarily with bounded
random variables; in the next section we describe the basic truncation
method that can allow us to extend from the bounded case to the
unbounded case (assuming suitable decay hypotheses).

The zeroth moment method gives a crude upper bound when S
is non-zero,

n

(2.1) P(S, #0) < Z (X; #0)

but in most cases this bound is worse than the trivial bound P(S,, #
0) < 1. This bound, however, will be useful when performing the
truncation trick, which we will discuss below.

The first moment method is somewhat better, giving the bound

E|S,| <) E[X;|

i=1
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which when combined with Markov’s inequality(1.14) gives the rather
weak large deviation inequality

1n
(22) P, =0 < 3 Do BIx|

As weak as this bound is, this bound is sometimes sharp. For in-
stance, if the X; are all equal to a single signed Bernoulli variable
X € {-1,+1}, then S, = nX, and so |S,| = n, and so (2.2) is
sharp when A = n. The problem here is a complete lack of inde-
pendence; the X; are all simultaneously positive or simultaneously
negative, causing huge fluctuations in the value of S,.

Informally, one can view (2.2) as the assertion that S, typically
has size S, = O(> 1 | Xi).

The first moment method also shows that
n
ES, = Z EX;
i=1
and so we can normalise out the means using the identity
n
S, —ES, = in —EX;.
i=1

Replacing the X; by X; — EX; (and S,, by S,, — ES,,) we may thus
assume for simplicity that all the X; have mean zero.

Now we consider what the second moment method gives us. We
square S,, and take expectations to obtain

n n

E|S,|? = Z ZEXin.

i=1 j=1

If we assume that the X, are pairwise independent (in addition to
having mean zero), then EXin vanishes unless ¢ = 7, in which case
this expectation is equal to Var(X;). We thus have

(2.3) Var(S,) = ZVar(Xi)
i=1
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which when combined with Chebyshev’s inequality(1.26) (and the
mean zero normalisation) yields the large deviation inequality

1 n
(2.4) P(|Sa| > ) < 15 ;Var(Xi).

Without the normalisation that the X; have mean zero, we obtain

(2.5) P(|S, —ES,| >\ < % > Var(X;).

i=1
Informally, this is the assertion that S, typically has size S, =
ES,+0((X1, Var(X;))'/?), if we have pairwise independence. Note
also that we do not need the full strength of the pairwise indepen-
dence assumption; the slightly weaker hypothesis of being pairwise
uncorrelated! would have sufficed.

The inequality (2.5) is sharp in two ways. Firstly, we cannot
expect any significant concentration in any range narrower than the
standard deviation O((3}; Var(X;))/?), as this would likely con-
tradict (2.3). Secondly, the quadratic-type decay in A in (2.5) is sharp
given the pairwise independence hypothesis. For instance, suppose
that n = 2™—1, and that X; := (—1)%"Y, where Y is drawn uniformly
at random from the cube {0,1}™, and aq, ..., a, are an enumeration
of the non-zero elements of {0,1}™. Then a little Fourier analysis
shows that each X; for 1 < j < n has mean zero, variance 1, and are
pairwise independent in j; but S is equal to (n+1)I(Y = 0)—1, which
is equal to m with probability 1/(n + 1); this is despite the standard
deviation of S being just y/n. This shows that (2.5) is essentially (i.e.
up to constants) sharp here when A = n.

Now we turn to higher moments. Let us assume that the X; are
normalised to have mean zero and variance at most 1, and are also
almost surely bounded in magnitude by some? K: |X;| < K. To
simplify the exposition very slightly we will assume that the X; are
real-valued; the complex-valued case is very analogous (and can also
be deduced from the real-valued case) and is left to the reader.

1In other words, we only need to assume that Cov(X;, X;) =E(X; —EX;)(X; —
EXj;) for all distinct 4, j.
2Note that we must have K > 1 to be consistent with the unit variance hypothesis.



70 2. Random matrices

Let us also assume that the Xi,..., X, are k-wise independent
for some even positive integer k. With this assumption, we can now
estimate the k" moment

E|S,|* = Z EX; ... X;

1§i1,...,ik§n

ke

To compute the expectation of the product, we can use the k-wise
independence, but we need to divide into cases (analogous to the i # j
and ¢ = j cases in the second moment calculation above) depending
on how various indices are repeated. If one of the X, only appear
once, then the entire expectation is zero (since X;, has mean zero),
so we may assume that each of the X;, appear at least twice. In
particular, there are at most k/2 distinct X; which appear. If exactly
k/2 such terms appear, then from the unit variance assumption we
see that the expectation has magnitude at most 1; more generally, if
k/2 — r terms appear, then from the unit variance assumption and
the upper bound by K we see that the expectation has magnitude at
most K27, This leads to the upper bound

k/2
E|[S,|* < ZKQ”NT
r=0
where N, is the number of ways one can assign integers i1, ..., in
{1,...,n} such that each i; appears at least twice, and such that

exactly k/2 — r integers appear.

We are now faced with the purely combinatorial problem of es-
timating N,.. We will use a somewhat crude bound. There are
(k/;’_T) < k277 /(k/2 — r)! ways to choose k/2 — r integers from
{1,...,n}. Each of the integers i; has to come from one of these
k/2 — r integers, leading to the crude bound

nk/277‘ .
N, < m(k/2 —)

which after using a crude form n! > n"™e™™ of Stirling’s formula (see
Section 1.2) gives

Nr < (en)k/277ﬂ(1€/2)16/2+r7
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and so
k/2

E|S,[" < (enk/2)** (
r=0
If we make the mild assumption

(2.6) K* <n/k

K%,
en

then from the geometric series formula we conclude that
E|S,[* < 2(enk/2)*/?

(say), which leads to the large deviation inequality

(27) P(1S.| > Avi) < 2V

This should be compared with (2.2), (2.5). As k increases, the rate of
decay in the A parameter improves, but to compensate for this, the
range that S, concentrates in grows slowly, to O(v/nk) rather than

O(vn).

Remark 2.1.1. Note how it was important here that k& was even.
Odd moments, such as ES2, can be estimated, but due to the lack

no

of the absolute value sign, these moments do not give much usable
control on the distribution of the .S,,. One could be more careful in
the combinatorial counting than was done here, but the net effect of
such care is only to improve the unspecified constant C' (which can
easily be made explicit, but we will not do so here).

Now suppose that the X, ..., X,, are not just k-wise independent
for any fixed k, but are in fact jointly independent. Then we can apply
(2.7) for any k obeying (2.6). We can optimise in k by setting v/nk
to be a small multiple of A, and conclude the gaussian-type bound?

(2.8) P(|Sn| > AVn) < Cexp(—cA?)

for some absolute constants C,c > 0, provided that || < ey/n/VEK
for some small ¢. Thus we see that while control of each individual
moment E|S,|¥ only gives polynomial decay in ), by using all the
moments simultaneously one can obtain square-exponential decay (i.e.
subgaussian type decay).

3Note that the bound (2.8) is trivial for |[A| > y/n, so we may assume that X is
small compared to this quantity.
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By using Stirling’s formula (see Exercise 1.2.2) one can show that
the quadratic decay in (2.8) cannot be improved; see Exercise 2.1.2
below.

It was a little complicated to manage such large moments E|S,, |¥.
A slicker way to proceed (but one which exploits the joint indepen-
dence and commutativity more strongly) is to work instead with the
exponential moments Eexp(tS,), which can be viewed as a sort of
generating function for the power moments. A useful lemma in this
regard is

Lemma 2.1.2 (Hoeffding’s lemma). Let X be a scalar variable taking
values in an interval [a,b]. Then for any t >0,

(2.9) Ee'X < X (1 + O(t*Var(X) exp(O(t(b — a)))).
In particular

(2.10) Ee'X < "B X exp(O(t2(b — a)?)).

Proof. It suffices to prove the first inequality, as the second then fol-
lows using the bound Var(X) < (b—a)? and from various elementary
estimates.

By subtracting the mean from X, a,b we may normalise E(X) =
0. By dividing X, a,b (and multiplying ¢ to balance) we may assume
that b — a = 1, which implies that X = O(1). We then have the
Taylor expansion

e =14+tX +O0(t* X2 exp(O(t)))
which on taking expectations gives
Ee'™ =1+ O(t*Var(X) exp(O(t))
and the claim follows. O

Exercise 2.1.1. Show that the O(t?(b — a)?) factor in (2.10) can be
replaced with t2(b—a)?/8, and that this is sharp. (Hint: use Jensen’s
inequality, Exercise 1.1.8.)

We now have the fundamental Chernoff bound:
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Theorem 2.1.3 (Chernoff inequality). Let Xi,...,X, be indepen-
dent scalar random variables with | X;| < K almost surely, with mean
wi and variance o2. Then for any X\ > 0, one has

(2.11)  P(|S, — u| > Ao) < Cmax(exp(—cA?), exp(—cho/K))

for some absolute constants C,c > 0, where pn:= > | ji; and 0 :=

Z?:1U¢2~

Proof. By taking real and imaginary parts we may assume that the
X; are real. By subtracting off the mean (and adjusting K appropri-
ately) we may assume that p; = 0 (and so g = 0); dividing the X;
(and o0;) through by K we may assume that K = 1. By symmetry it
then suffices to establish the upper tail estimate

P (S, > \o) < Cmax(exp(—cA?), exp(—cAa))
(with slightly different constants C, ¢).

To do this, we shall first compute the exponential moments
Eexp(tSy)

where 0 < ¢ < 1 is a real parameter to be optimised later. Expand-
ing out the exponential and using the independence hypothesis, we
conclude that .

Eexp(tS,) = H E exp(tX;).

i=1

To compute E exp(tX), we use the hypothesis that | X| < 1 and (2.9)
to obtain

Eexp(tX) < exp(O(t*0?)).
Thus we have

E exp(tS,) = exp(O(t?*0?))
and thus by Markov’s inequality(1.13)

P(S, > o) < exp(O(t?0?) — tAo).

If we optimise this in ¢, subject to the constraint 0 < ¢ < 1, we obtain
the claim. g

Informally, the Chernoff inequality asserts that .S,, is sharply con-
centrated in the range nu+0O(o+/n). The bounds here are fairly sharp,
at least when ) is not too large:
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Exercise 2.1.2. Let 0 < p < 1/2 be fixed independently of n, and let
X1,...,X, beiid copies of a Bernoulli random variable that equals
1 with probability p, thus u; = p and 02 = p(1 — p), and so u = np
and 02 = np(1 — p). Using Stirling’s formula (Section 1.2), show that

P(|Sy — ul > Aa) > cexp(—CA?)

for some absolute constants C,c > 0 and all A < co. What happens
when A is much larger than o7

Exercise 2.1.3. Show that the term exp(—cAo/K) in (2.11) can
be replaced with (AK/o)~*?/K (which is superior when AK > o).
(Hint: Allow t to exceed 1.) Compare this with the results of Exercise
2.1.2.

Exercise 2.1.4 (Hoeffding’s inequality). Let X, ..., X,, be indepen-
dent real variables, with X; taking values in an interval [a;, b;], and
let S, := X1 + ...+ X,,. Show that one has

P(|S, — ES,| > Ao) < CeXp(—C/\Z)

for some absolute constants C,c > 0, where 2 := >""" | |b; — a;|*.

Remark 2.1.4. As we can see, the exponential moment method is
very slick compared to the power moment method. Unfortunately,
due to its reliance on the identity eX+Y = eXeY, this method relies
very strongly on commutativity of the underlying variables, and as
such will not be as useful when dealing with noncommutative random
variables, and in particular with random matrices. Nevertheless, we
will still be able to apply the Chernoff bound to good effect to various
components of random matrices, such as rows or columns of such
matrices.

The full assumption of joint independence is not completely nec-
essary for Chernoff-type bounds to be present. It suffices to have a
martingale difference sequence, in which each X; can depend on the
preceding variables X7,...,X;_1, but which always has mean zero
even when the preceding variables are conditioned out. More pre-
cisely, we have Azuma’s inequality:
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Theorem 2.1.5 (Azuma’s inequality). Let X1,...,X,, be a sequence
of scalar random variables with | X;| < 1 almost surely. Assume also
that we have* the martingale difference property

(2.12) E(X;|X1,...,X;-1)=0

almost surely for all i = 1,...,n. Then for any A > 0, the sum
Sp = X1+ ...+ X, obeys the large deviation inequality

(2.13) P(S.] > M/n) < Cexp(—cA?)

for some absolute constants C,c > 0.

A typical example of S, here is a dependent random walk, in
which the magnitude and probabilities of the i*" step are allowed to
depend on the outcome of the preceding ¢ — 1 steps, but where the
mean of each step is always fixed to be zero.

Proof. Again, we can reduce to the case when the X; are real, and
it suffices to establish the upper tail estimate

P(S, > \/n) < Cexp(—c)?).
Note that |S,,| < n almost surely, so we may assume without loss of
generality that A < /n.

Once again, we consider the exponential moment E exp(tS,,) for
some parameter ¢t > 0. We write S,, = S,,_1 + X,,, so that

Eexp(tS,) = Eexp(tS,—1) exp(tX,,).

We do not have independence between S;,_; and X,,, so cannot split
the expectation as in the proof of Chernoff’s inequality. Nevertheless
we can use conditional expectation as a substitute. We can rewrite
the above expression as

EE(eXp(tSn—l) exp(tXn)|Xla s aXn—l)'

The quantity S,,_1 is deterministic once we condition on Xy, ..., X, _1,
and so we can pull it out of the conditional expectation:

Eexp(tSn_l)E(eXp(tXn)|X1, ce ,Xn_l).

4flere we assume the existence of a suitable disintegration in order to define
the conditional expectation, though in fact it is possible to state and prove Azuma’s
inequality without this disintegration.
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Applying (2.10) to the conditional expectation, we have
E(exp(tX,)|X1,..., X0 1) < exp(O(t?))

and
E exp(tS,) < exp(O(t?))E exp(tSy, 1)

Iterating this argument gives
E exp(tS,) < exp(O(nt?))
and thus by Markov’s inequality(1.13)
P(S, > \Vi) < exp(O(nt?) — thy/n).
Optimising in ¢ gives the claim. O

Exercise 2.1.5. Suppose we replace the hypothesis |X;| < 1 in
Azuma’s inequality with the more general hypothesis | X;| < ¢; for
some scalars ¢; > 0. Show that we still have (2.13), but with /n
replaced by (3210, ¢2)'/2.

i=1"1

Remark 2.1.6. The exponential moment method is also used fre-
quently in harmonic analysis to deal with lacunary exponential sums,
or sums involving Radamacher functions (which are the analogue of
lacunary exponential sums for characteristic 2). Examples here in-
clude Khintchine’s inequality (and the closely related Kahane’s in-
equality); see e.g. [Wo02003], [Kal985]. The exponential moment
method also combines very well with log-Sobolev inequalities, as we
shall see below (basically because the logarithm inverts the exponen-
tial), as well as with the closely related hypercontractivity inequalities.

2.1.2. The truncation method. To summarise the discussion so
far, we have identified a number of large deviation inequalities to
control a sum S,, = X1 + ...+ X,:

(i) The zeroth moment method bound (2.1), which requires no
moment assumptions on the X; but is only useful when X;
is usually zero, and has no decay in A.

(ii) The first moment method bound (2.2), which only requires
absolute integrability on the X;, but has only a linear decay
in A
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(iii) The second moment method bound (2.5), which requires
second moment and pairwise independence bounds on X;,
and gives a quadratic decay in A.

(iv) Higher moment bounds (2.7), which require boundedness
and k-wise independence, and give a k™ power decay in A
(or quadratic-exponential decay, after optimising in k).

(v) Exponential moment bounds such as (2.11) or (2.13), which
require boundedness and joint independence (or martingale
behaviour), and give quadratic-exponential decay in A.

We thus see that the bounds with the strongest decay in A require
strong boundedness and independence hypotheses. However, one can
often partially extend these strong results from the case of bounded
random variables to that of unbounded random variables (provided
one still has sufficient control on the decay of these variables) by
a simple but fundamental trick, known as the truncation method.
The basic idea here is to take each random variable X; and split it
as X; = X; <~ + X; >N, where NV is a truncation parameter to be
optimised later (possibly in manner depending on n),

Xi<n = X;I(|X;| < N)

is the restriction of X; to the event that |X;| < N (thus X; <y van-
ishes when X; is too large), and

Xi>n = XI(|Xi] > N)

is the complementary event. One can similarly split S,, = Sy, <y +
Sn,>n where

Sp<n=X1<v+...+Xn<n
and

Sn,>N = X1,>N + ...+ Xn,>N~
The idea is then to estimate the tail of S, <y and S, ~n by two
different means. With S, <n, the point is that the variables X; <
have been made bounded by fiat, and so the more powerful large

deviation inequalities can now be put into play. With S, >, in
contrast, the underlying variables X; - n are certainly not bounded,
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but they tend to have small zeroth and first moments, and so the
bounds based on those moment methods tend to be powerful here®.

Let us begin with a simple application of this method.

Theorem 2.1.7 (Weak law of large numbers). Let X1, Xo,... be iid
scalar random variables with X; = X for all i, where X is absolutely
integrable. Then S, /n converges in probability to EX .

Proof. By subtracting EX from X we may assume without loss of
generality that X has mean zero. Our task is then to show that
P(|Sn| > en) = o(1) for all fixed € > 0.

If X has finite variance, then the claim follows from (2.5). If
X has infinite variance, we cannot apply (2.5) directly, but we may
perform the truncation method as follows. Let N be a large parameter
to be chosen later, and split X; = X; <nv+X; >N, Sn = Sn,<n+Sn >N
(and X = X<y + X>n) as discussed above. The variable X<y is
bounded and thus has bounded variance; also, from the dominated
convergence theorem we see that |[EX<y| < ¢/4 (say) if N is large
enough. From (2.5) we conclude that

P(|Sn,<n| > en/2) = o(1)

(where the rate of decay here depends on N and ¢). Meanwhile, to
deal with the tail X<y we use (2.2) to conclude that

2

But by the dominated convergence theorem (or monotone convergence
theorem), we may make E|Xs x| as small as we please (say, smaller
than 6 > 0) by taking N large enough. Summing, we conclude that

2
P(|Sp| > en) = =6 + o(1);
€
since ¢ is arbitrary, we obtain the claim. O

A more sophisticated variant of this argument® gives

5Readers who are familiar with harmonic analysis may recognise this type of
“divide and conquer argument” as an interpolation argument; see [Ta2010, §1.11].

6Sce [Ta2009, §1.4] for a more detailed discussion of this argument.
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Theorem 2.1.8 (Strong law of large numbers). Let X7, Xo, ... be iid
scalar random variables with X; = X for all i, where X is absolutely
integrable. Then S, /n converges almost surely to EX.

Proof. We may assume without loss of generality that X is real,
since the complex case then follows by splitting into real and imagi-
nary parts. By splitting X into positive and negative parts, we may
furthermore assume that X is non-negative’. In particular, S, is now
non-decreasing in n.

Next, we apply a sparsification trick. Let 0 < € < 1. Suppose that
we knew that, almost surely, S, /1, converged to EX for n = n,,
of the form n,, := | (1 +¢)™] for some integer m. Then, for all other
values of n, we see that asymptotically, S, /n can only fluctuate by a
multiplicative factor of 1 + O(e), thanks to the monotone nature of
Sy. Because of this and countable additivity, we see that it suffices
to show that S, /n., converges to EX. Actually, it will be enough
to show that almost surely, one has |S,,, /n, — EX| < ¢ for all but
finitely many m.

Fix e. As before, we split X = Xsn,, + X<n,, and Sp,, =
Sn,p, >N, + S, ,<N,,, but with the twist that we now allow N = Ny,
to depend on m. Then for N, large enough we have |[EX<y, —EX| <
€/2 (say), by dominated convergence. Applying (2.5) as before, we
see that

C.
P(|Sn,, <N, /tm —EX|>¢) < — E| X<y, |?
m

for some C. depending only on ¢ (the exact value is not important
here). To handle the tail, we will not use the first moment bound
(2.2) as done previously, but now turn to the zeroth-moment bound
(2.1) to obtain

P(S,, >n, #0) <n,P(|X|> N,);

summing, we conclude

C
P(|Sn,, /nm — EX| > ¢) < n—EE|X§Nm\2 +nnP(IX| > Npy).

m

e} course, by doing so, we can no longer normalise X to have mean zero, but
for us the non-negativity will be more convenient than the zero mean property.
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Applying the Borel-Cantelli lemma (Exercise 1.1.1), we see that we
will be done as long as we can choose N,, such that

o0

1
> —E|X<y,|?
n

m=1 "

and
> nnP(IX] > Npy)
m=1
are both finite. But this can be accomplished by setting N, := n,,

and interchanging the sum and expectations (writing P(|X| > N,,)
as EI(|X| > N,,)) and using the lacunary nature of the n,,. O

To give another illustration of the truncation method, we extend
a version of the Chernoff bound to the subgaussian case.

Proposition 2.1.9. Let X1,...,X,, = X be iid copies of a subgaus-
sian random variable X, thus X obeys a bound of the form

(2.14) P(|X]| >t) < Cexp(—ct?)

for allt >0 and some C,c > 0. Let S, := X1+ ...+ X,,. Then for
any sufficiently large A (independent of n) we have

P(|S, —nEX| > An) < C4exp(—cyn)
for some constants Ca,ca depending on A,p,C,c. Furthermore, ca

grows linearly in A as A — oo.

Proof. By subtracting the mean from X we may normalise EX = 0.
We perform a dyadic decomposition

Xi=Xio+ i Xim

m=1

where Xi’() = XZI(XZ < 1) and Xi,m = XZI(2m71 < X; < 2m) We
similarly split

oo
Sn: n,O"’ g Sn,m
m=1
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where S, , = Z?:l Xi m. Then by the union bound and the pigeon-
hole principle we have

o A
P(ISu| > An) < Y P ('SW”' - 100<m+1>">

m=0
(say). Each X;,, is clearly bounded in magnitude by 2™; from the
subgaussian hypothesis one can also verify that the mean and variance
of X;m are at most C’exp(—c'2*™) for some C’,¢’ > 0. If A is
large enough, an application of the Chernoff bound (2.11) (or more
precisely, the refinement in Exercise 2.1.3) then gives (after some
computation)

P(|Snm| > 27m71An) < C'2 M exp(—c An)
(say) for some C’, ¢’ > 0, and the claim follows. O

Exercise 2.1.6. Show that the hypothesis that A is sufficiently large
can be replaced by the hypothesis that A > 0 is independent of n.
Hint: There are several approaches available. One can adapt the
above proof; one can modify the proof of the Chernoff inequality
directly; or one can figure out a way to deduce the small A case from
the large A case.

Exercise 2.1.7. Show that the subgaussian hypothesis can be gen-
eralised to a sub-exponential tail hypothesis

P(1X| > ) < Cexp(—ct?)

provided that p > 1. Show that the result also extends to the
case 0 < p < 1, except with the exponent exp(—can) replaced by
exp(—canP~¢) for some ¢ > 0. (I do not know if the € loss can be
removed, but it is easy to see that one cannot hope to do much better
than this, just by considering the probability that X; (say) is already
as large as An.)

2.1.3. Lipschitz combinations. In the preceding discussion, we
had only considered the linear combination Xi,..., X, of indepen-
dent variables Xi,...,X,,. Now we consider more general combina-
tions F(X), where we write X := (Xy,...,X,) for short. Of course,
to get any non-trivial results we must make some regularity hypothe-
ses on F. It turns out that a particularly useful class of regularity
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hypothesis here is a Lipschitz hypothesis - that small variations in
X lead to small variations in F(X). A simple example of this is
McDiarmid’s inequality:

Theorem 2.1.10 (McDiarmid’s inequality). Let Xi,..., X, be in-
dependent random variables taking values in ranges Ry, ..., R,, and
let F': Ry X...x R, — C be a function with the property that if one
freezes all but the it" coordinate of F(x1,...,x,) for some 1 <i<mn,
then F only fluctuates by most ¢; > 0, thus
|F(.’L'1, ey Lj—1y Ty $i+1; .o 7:[:77,)_
F(xh ey Li—1, "E;, Lit1ye-- 7xn)‘ S (&
forallz; € X;, o € X; for 1 <j <n. Then for any A >0, one has
P(|F(X) — EF(X)| > Ao) < Cexp(—cA?)
no 2

for some absolute constants C,c > 0, where o* := Y | .

Proof. We may assume that F' is real. By symmetry, it suffices to
show the one-sided estimate

(2.15) P(F(X) —EF(X) > Mo?) < Cexp(—cA?).
To compute this quantity, we again use the exponential moment

method. Let ¢ > 0 be a parameter to be chosen later, and consider
the exponential moment

(2.16) E exp(tF(X)).

To compute this, let us condition X,..., X,,_1 to be fixed, and look
at the conditional expectation

E(exp(tF(X)”Xla cee 7Xn—1)'
We can simplify this as
E(exp(tY”Xla ey anl) exp(tE(F(X)|Xla AR anl))

where

Y =F(X)-EFX)|X1,...,Xn-1)
For X;,...,X,_1 fixed, tY only fluctuates by at most tc, and has
mean zero. Applying (2.10), we conclude that

E(exp(tY)|X1,..., X, 1) < exp(O(t3c2)).
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Integrating out the conditioning, we see that we have upper bounded
(2.16) by

exp(O(t2 ) E exp(t(E(F(X)|X1,..., X 1)).

We observe that (E(F(X)|X1, ..., X,—1) isafunction F},_1 (X1, ..., Xn_1)
of Xi,...,X,_1, where F,,_; obeys the same hypotheses as F (but

for n — 1 instead of n). We can then iterate the above computation

n times and eventually upper bound (2.16) by

n

exp()_ O(#¢7)) exp(tEF (X)),

i=1
which we rearrange as
Eexp(t(F(X) — EF(X))) < exp(O(t*0?)),
and thus by Markov’s inequality(1.13)
P(F(X) - EF(X) > \o) < exp(O(t*0?) — tAo).
Optimising in ¢ then gives the claim. O

Exercise 2.1.8. Show that McDiarmid’s inequality implies Hoeffd-
ing’s inequality (Exercise 2.1.4).

Remark 2.1.11. One can view McDiarmid’s inequality as a tensori-
sation of Hoeffding’s lemma, as it leverages the latter lemma for a
single random variable to establish an analogous result for n random
variables. It is possible to apply this tensorisation trick to random
variables taking values in more sophisticated metric spaces than an
interval [a, b], leading to a class of concentration of measure inequali-
ties known as transportation cost-information inequalities, which will
not be discussed here.

The most powerful concentration of measure results, though, do
not just exploit Lipschitz type behaviour in each individual variable,
but joint Lipschitz behaviour. Let us first give a classical instance of
this, in the special case when the Xi,..., X, are gaussian variables.
A key property of gaussian variables is that any linear combination
of independent gaussians is again an independent gaussian:
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Exercise 2.1.9. Let Xq,..., X, be independent real gaussian vari-
ables with X; = N(u;,0?)Rr, and let ci,...,c, be real constants.
Show that ¢y X7 4+ ...+ ¢, X, is a real gaussian with mean Z?:l Ci g
and variance Y i, |c;[?0?.

Show that the same claims also hold with complex gaussians and
complex constants c;.

Exercise 2.1.10 (Rotation invariance). Let X = (X1,...,X,) be an
R"-valued random variable, where X1, ..., X,, = N(0, 1)gr are iid real
gaussians. Show that for any orthogonal matrix U € O(n), UX = X.

Show that the same claim holds for complex gaussians (so X is
now C"-valued), and with the orthogonal group O(n) replaced by the
unitary group U(n).

Theorem 2.1.12 (Gaussian concentration inequality for Lipschitz
functions). Let Xi,..., X, = N(0,1)r be iid real gaussian variables,
and let F : R™ — R be a 1-Lipschitz function (i.e. |F(x) — F(y)| <
|z —y| for all z,y € R™, where we use the Euclidean metric on R™).
Then for any A one has

P(|F(X) - EF(X)| 2 \) < Cexp(—cA?)

for some absolute constants C,c > 0.

Proof. We use the following elegant argument of Maurey and Pisier.
By subtracting a constant from F', we may normalise EF(X) = 0.
By symmetry it then suffices to show the upper tail estimate

P(F(X) > \) < Cexp(—cA?).

By smoothing F’ slightly we may assume that F' is smooth, since the
general case then follows from a limiting argument. In particular, the
Lipschitz bound on F now implies the gradient estimate

(2.17) IVF(z)| <1

for all z € R™.

Once again, we use the exponential moment method. It will suf-
fice to show that

Eexp(tF(X)) < exp(Ct?)
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for some constant C > 0 and all ¢ > 0, as the claim follows from
Markov’s inequality(1.13) and optimisation in ¢ as in previous argu-
ments.

To exploit the Lipschitz nature of F, we will need to introduce
a second copy of F(X). Let Y be an independent copy of X. Since
EF(Y) =0, we see from Jensen’s inequality (Exercise 1.1.8) that

Eexp(—tF(Y)) > 1
and thus (by independence of X and Y)
Eexp(tF(X)) < Eexp(t(F(X) — F(Y))).

It is tempting to use the fundamental theorem of calculus along a line
segment,
'd
F(X)-F( )= /o %F((l —t)Y +tX) dt,

to estimate F/(X)— F(Y), but it turns out for technical reasons to be
better to use a circular arc instead,

/2
F(X)-F(Y)= / iF(Y cosf 4+ X sin6) db,
0

db
The reason for this is that Xy := Y cos 6+ X sin 6 is another gaussian
random variable equivalent to X, as is its derivative X := —Y sin 6+

X cos 0 (by Exercise 2.1.9); furthermore, and crucially, these two ran-

dom variables are independent (by Exercise 2.1.10).
To exploit this, we first use Jensen’s inequality (Exercise 1.1.8)
to bound
2 [T/ 2t d
exp(t(F(X)—F(Y))) < = exp —@F(Xg) do.
0 ™

™

Applying the chain rule and taking expectations, we have

™

/2
Eexp(t(F(X) — F(Y))) < 3/0 Eexp (itVF(Xg) -Xg> do.

Let us condition Xy to be fixed, then Xy = X; applying Exercise 2.1.9
and (2.17), we conclude that 22V F(Xy) - X{ is normally distributed
with standard deviation at most % As such we have

2
Eexp (tVF(Xg) -Xé) < exp(Ct?)
™
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for some absolute constant C'; integrating out the conditioning on Xy
we obtain the claim. g

Exercise 2.1.11. Show that Theorem 2.1.12 is equivalent to the
inequality
P(X € A)P(X ¢ Ay) < Cexp(—c)?)

holding for all A > 0 and all measurable sets A, where X = (X1,...,X,)
is an R™-valued random variable with iid gaussian components X1, ..., X, =
N(0,1)r, and Ay is the A-neighbourhood of A.

Now we give a powerful concentration inequality of Talagrand,
which we will rely heavily on later in this text.

Theorem 2.1.13 (Talagrand concentration inequality). Let K >
0, and let X4,...,X, be independent complezx variables with | X;| <
K foralll <i<n. Let F: C" — R be a 1-Lipschitz convex
function (where we identify C™ with R?™ for the purposes of defining
“Lipschitz” and “convex”). Then for any \ one has

(2.18) P(|F(X) - MF(X)| > AK) < Cexp(—cA?)
and
(2.19) P(|F(X) —EF(X)| > AK) < Cexp(—cA?)

for some absolute constants C,c > 0, where MF(X) is a median of
F(X).

We now prove the theorem, following the remarkable argument
of Talagrand[Ta1995].

By dividing through by K we may normalise K = 1. X now
takes values in the convex set Q2™ C C™, where €2 is the unit disk in
C. It will suffice to establish the inequality

1
D
“P(XeA
for any convex set A in 2™ and some absolute constant ¢ > 0, where

d(X,A) is the Euclidean distance between X and A. Indeed, if one
obtains this estimate, then one has

(2.20) Eexp(cd(X, A)%)

P(F(X) < 2)P(F(X) > y) < exp(—c|z — y|?)
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for any y > x (as can be seen by applying (2.20) to the convex set
A:={z€ Q": F(2) < z}). Applying this inequality of one of z,y
equal to the median MF(X) of F(X) yields (2.18), which in turn
implies that

EF(X)=MF(X)+0(1),
which then gives (2.19).

We would like to establish (2.20) by induction on dimension n. In
the case when X1,...,X,, are Bernoulli variables, this can be done;
see [Ta2010b, §1.5]. In the general case, it turns out that in order
to close the induction properly, one must strengthen (2.20) by replac-
ing the Euclidean distance d(X, A) by an essentially larger quantity,
which T will call the combinatorial distance d.(X,A) from X to A.
For each vector z = (z1,...,2,) € C" and w = (w1, ...,w,) € {0,1}",
we say that w supports z if z; is non-zero only when w; is non-zero.
Define the combinatorial support Ua(X) of A relative to X to be all
the vectors in {0, 1}" that support at least one vector in A — X. De-
fine the combinatorial hull V4(X) of A relative to X to be the convex
hull of Ua(X), and then define the combinatorial distance d.(X, A)
to be the distance between V4(X) and the origin.

Lemma 2.1.14 (Combinatorial distance controls Euclidean distance).
Let A be a convex subset of Q™. d(X,A) < 2d.(X, A).

Proof. Suppose d.(X,A) < r. Then there exists a convex combi-
nation t = (ti1,...,t,) of elements w € Ua(X) C {0,1}" which has
magnitude at most . For each such w € Uy (X), we can find a vector
zw € X — A supported by w. As A, X both lie in 2", every coefficient
of z, has magnitude at most 2, and is thus bounded in magnitude
by twice the corresponding coefficent of w. If we then let z; be the
convex combination of the z,, indicated by ¢, then the magnitude of
each coefficient of z; is bounded by twice the corresponding coefficient
of ¢, and so |z:| < 2r. On the other hand, as A is convex, z; lies in
X — A, and so d(X, A) < 2r. The claim follows. O

Thus to show (2.20) it suffices (after a modification of the con-
stant ¢) to show that
1

(2.21) E exp(cd. (X, A)?) < PXcA)
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We first verify the one-dimensional case. In this case, d.(X, A)
equals 1 when X ¢ A, and 0 otherwise, and the claim follows from
elementary calculus (for ¢ small enough).

Now suppose that n > 1 and the claim has already been proven
for n — 1. We write X = (X, X,,), and let Ax, = {z/ € Q"1 :
(2', X,) € A} be a slice of A. We also let B := {2’ € Q"' : (2/|t) €
A for some t € Q}. We have the following basic inequality:

Lemma 2.1.15. For any 0 < A <1, we have

de(X,A)? < (1 = N2+ Mo(X', Ax,)? + (1 = N)de(X', B)?.

Proof. Observe that U4 (X) contains both U, (X')x{0} and Up(X')x
{1}, and so by convexity, V4 (X) contains (At + (1 —A)u,1—X) when-
ever t € Va, (X’) and u € Vp(X’). The claim then follows from
Pythagoras’ theorem and the Cauchy-Schwarz inequality. O

Let us now freeze X,, and consider the conditional expectation
E(exp(cd.(X, A)?)| X,).

Using the above lemma (with some A depending on X,, to be chosen
later), we may bound the left-hand side of (2.21) by

ec(lf)\)2E((6cdc(X',Axn))A(ecdc(X',B))lf/\LXn);
applying Hoélder’s inequality and the induction hypothesis (2.21), we
can bound this by

c(1-X)2 1

‘ P(X' € Ay | X, P(X' € B[X,)—>

which we can rearrange as

1 2
c(1-=X)%, . —X
P(X' €B)" "
where r := P(X’ € Ax, |X,)/P(X' € B) (here we note that the
event X’ € B is independent of X,,). Note that 0 < r < 1. We then
apply the elementary inequality

: 1-20)2% =X
inf ec=N A <9y
0<A<1
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which can be verified by elementary calculus if ¢ is small enough (in
fact one can take ¢ = 1/4). We conclude that

1 P(X' € Ax,|X,)
P(X/eB)( ~ P(X'eB) >

E(exp(cde(X, A)*)|Xn) <

Taking expectations in n we conclude that

E(exp(edo (X, A)2)) < ——— (2 - P(XEA)> .

P(X' € B) P(X' € B)
Using the inequality (2 — z) < 1 with z := Plf(())((/ee%)) we conclude

(2.21) as desired.

The above argument was elementary, but rather “magical” in na-
ture. Let us now give a somewhat different argument of Ledoux[Le1995],
based on log-Sobolev inequalities, which gives the upper tail bound

(2.22) P(F(X) - EF(X) > AK) < Cexp(—cA?),

but curiously does not give the lower tail bound®.

Once again we can normalise K = 1. By regularising F' we may
assume that F' is smooth. The first step is to establish the following
log-Sobolev inequality:

Lemma 2.1.16 (Log-Sobolev inequality). Let F' : C™ — R be a
smooth convex function. Then

EF(X)el'™) < (Ee" X)) (log EeP X)) 4+ CE X |VE(X))?
for some absolute constant C' (independent of n).

Remark 2.1.17. If one sets f := /2 and normalises Ef(X)? = 1,
this inequality becomes

E|f(X)P*log | f(X)]* < 4CE|Vf(X)[?

which more closely resembles the classical log-Sobolev inequality (see
[Gr1975] or [Fe1969]). The constant C' here can in fact be taken to
be 2; see [Lel995].

8The situation is not symmetric, due to the convexity hypothesis on F'.
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Proof. We first establish the 1-dimensional case. If we let Y be
an independent copy of X, observe that the left-hand side can be
rewritten as

%E((F(X) — F(Y))(e"X) — ")) + (BF(X))((Be"™)).

From Jensen’s inequality (Exercise 1.1.8), EF(X) < log Ee"(X) | 50 it
will suffice to show that

E((F(X) — F(Y))(e"®) = ¢F0)) < 2CBF OV (X)[2.
From convexity of F' (and hence of ef") and the bounded nature of
X,Y, we have

F(X) = F(Y) = O(IVF(X)])
and
X _ eFY) — O(|IVF(X)[eF X))
when F(X) > F(Y'), which leads to
(F(X) = F())(e") — ")) = O(e" IV F(X)?)
in this case. Similarly when F(X) < F(Y) (swapping X and Y'). The
claim follows.

To show the general case, we induct on n (keeping care to en-
sure that the constant C' does not change in this induction process).
Write X = (X', X,,), where X’ := (X3,...,X,,—1). From induction
hypothesis, we have

E(F(X)e"™|X,) < f(Xn)e! &) + CE(" ™|V F(X)?|X,,)
where V' is the n—1-dimensional gradient and f(X,,) := log E(e"(X)|X,,).
Taking expectations, we conclude that
(2.23)  EF(X)ef'™ <Ef(X,)ef/E) 4 CEL |V F(X)2.

From the convexity of F' and Holder’s inequality we see that f is
also convex, and Ee/(X») = Eef(X). By the n = 1 case already
established, we have

(2.24) Ef(X,)e! &) < (BeP X)) (log EeP X)) +CEe! X0 £/(X,) |2

Now, by the chain rule
/(X)) = e T B O R, (X))



2.1. Concentration of measure 91

where F,  is the derivative of F' in the z,, direction. Applying Cauchy-
Schwarz, we conclude

e/ | f1(X)|? < BBy, (X,
Inserting this into (2.23), (2.24) we close the induction. O

Now let F' be convex and 1-Lipschitz. Applying the above lemma
to tF for any ¢t > 0, we conclude that

EtF(X)e!TX) < (EetT X)) (log Ee!T X)) 4+ Ct?Ee! P (X,

setting H(t) := Be!* X we can rewrite this as a differential inequal-

ity
tH'(t) < H(t)log H(t) + Ct*H(t)

which we can rewrite as

d 1
(= < C.
dt(t logH(t)) < C

From Taylor expansion we see that
1
;logH(t) — EF(X)
as t — 0, and thus
1
glogH(t) <EF(X)+Ct
for any ¢ > 0. In other words,
Ee!f'X) < exp(tEF(X) 4 Ct?).
By Markov’s inequality(1.13), we conclude that
P(F(X)—-EF(X) > \) < exp(Ct? —t)\);
optimising in ¢ gives (2.22).
Remark 2.1.18. The same argument, starting with Gross’s log-
Sobolev inequality for the gaussian measure, gives the upper tail
component of Theorem 2.1.12, with no convexity hypothesis on F.
The situation is now symmetric with respect to reflections F — —F,
and so one obtains the lower tail component as well. The method of
obtaining concentration inequalities from log-Sobolev inequalities (or

related inequalities, such as Poincaré-type inequalities) by combining
the latter with the exponential moment method is known as Herbst’s
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argument, and can be used to establish a number of other functional
inequalities of interest.

We now close with a simple corollary of the Talagrand concen-
tration inequality, which will be extremely useful in the sequel.

Corollary 2.1.19 (Distance between random vector and a subspace).
Let Xq,...,X, be independent complex-valued random variables with
mean zero and variance 1, and bounded almost surely in magnitude by
K. Let V be a subspace of C™ of dimension d. Then for any A > 0,
one has

P(|d(X,V) —Vn —d| > AK) < Cexp(—c\?)

for some absolute constants C,c > 0.

Informally, this corollary asserts that the distance between a ran-
dom vector X and an arbitrary subspace V is typically equal to

Vvn—dim(V) + O(1).

Proof. The function z — d(z,V) is convex and 1-Lipschitz. From
Theorem 2.1.13, one has

P(|d(X,V) = Md(X,V)| > AK) < Cexp(—cA?).
To finish the argument, it then suffices to show that
Md(X,V) =vn—d+ O(K).
We begin with a second moment calculation. Observe that

dX, V) =rX)P= Y pyXiX;,

1<ij<n

where 7 is the orthogonal projection matrix to the complement V -+ of
V, and p;; are the components of 7. Taking expectations, we obtain

(2.25) Ed(X,V)? = Zn:pii =tr(n)=n—d

where the latter follows by representing 7 in terms of an orthonormal
basis of V. This is close to what we need, but to finish the task we
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need to obtain some concentration of d(X,V)? around its mean. For
this, we write

d(X, V)2 — Ed(X, V)2 = Z Dij (Xzfj - 5”)
1<i,j<n
where §;; is the Kronecker delta. The summands here are pairwise
independent (hence also pairwise uncorrelated) for 1 <i < j < n, and
the ¢ > j cases can be combined with the ¢ < j cases by symmetry.
Each summand also has a variance of O(K?). We thus have the
variance bound

Var(d(X,V)?) = O(K* | |pi;|*) = O(K*(n — d)),
1<i,j<n
where the latter bound comes from representing 7 in terms of an
orthonormal basis of V. From this, (2.25), and Chebyshev’s in-
equality(1.26), we see that the median of d(X,V)? is equal to n —
d+ O(y/K?(n —d)), which implies on taking square roots that the
median of d(X,V) is vn — d + O(K), as desired. O

2.2. The central limit theorem

Consider the sum S,, := X1 + ...+ X,, of iid real random variables
Xi1,...,X, = X of finite mean p and variance o2 for some o >
0. Then the sum S, has mean nu and variance no?, and so (by
Chebyshev’s inequality(1.26)) we expect S, to usually have size ny+
O(yv/no). To put it another way, if we consider the normalised sum

_ Sp—np
- no

then Z, has been normalised to have mean zero and variance 1, and
is thus usually of size O(1).

(2.26) Zy

In Section 2.1, we were able to establish various tail bounds on
Z,. For instance, from Chebyshev’s inequality(1.26) one has

(2.27) P(|Z,| > \) <272,

and if the original distribution X was bounded or subgaussian, we
had the much stronger Chernoff bound

(2.28) P(|Z,] > \) < Cexp(—cA?)
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for some absolute constants C,c > 0; in other words, the Z, are
uniformly subgaussian.

Now we look at the distribution of Z,,. The fundamental central
limit theorem tells us the asymptotic behaviour of this distribution:

Theorem 2.2.1 (Central limit theorem). Let Xi,..., X, = X be
iid real random variables of finite mean p and variance o? for some
o > 0, and let Z, be the normalised sum (2.26). Then as n —
00, Zy, converges in distribution to the standard normal distribution
N(0,g.

Exercise 2.2.1. Show that Z,, does not converge in probability or in
the almost sure sense. (Hint: the intuition here is that for two very

different values ny < ng of n, the quantities Z,,, and Z,, are almost

1
independent of each other, since the bulk of the sum S, is determined

by those X,, with n > n;. Now make this intuition precise.)

Exercise 2.2.2. Use Stirling’s formula (Section 1.2) to verify the
central limit theorem in the case when X is a Bernoulli distribution,
taking the values 0 and 1 only. (This is a variant of Exercise 1.2.2
or Exercise 2.1.2. It is easy to see that once one does this, one can
rescale and handle any other two-valued distribution also.)

Exercise 2.2.3. Use Exercise 2.1.9 to verify the central limit theorem
in the case when X is gaussian.

Note we are only discussing the case of real iid random variables.
The case of complex random variables (or more generally, vector-
valued random variables) is a little bit more complicated, and will be
discussed later in this post.

The central limit theorem (and its variants, which we discuss be-
low) are extremely useful tools in random matrix theory, in particular
through the control they give on random walks (which arise naturally
from linear functionals of random matrices). But the central limit
theorem can also be viewed as a “commutative” analogue of various
spectral results in random matrix theory (in particular, we shall see in
later sections that the Wigner semicircle law can be viewed in some
sense as a “‘noncommutative” or “free” version of the central limit the-
orem). Because of this, the techniques used to prove the central limit
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theorem can often be adapted to be useful in random matrix theory.
Because of this, we shall use these notes to dwell on several different
proofs of the central limit theorem, as this provides a convenient way
to showcase some of the basic methods that we will encounter again
(in a more sophisticated form) when dealing with random matrices.

2.2.1. Reductions. We first record some simple reductions one can
make regarding the proof of the central limit theorem. Firstly, we
observe scale invariance: if the central limit theorem holds for one
random variable X, then it is easy to see that it also holds for a X +b
for any real a,b with a # 0. Because of this, one can normalise to
the case when X has mean y = 0 and variance 02 = 1, in which case
Z,, simplifies to

Xi+...+ X,

The other reduction we can make is truncation: to prove the
central limit theorem for arbitrary random variables X of finite mean
and variance, it suffices to verify the theorem for bounded random
variables. To see this, we first need a basic linearity principle:

(2.29) Ty =

Exercise 2.2.4 (Linearity of convergence). Let V' be a finite-dimensional
real or complex vector space, X,,Y, be sequences of V-valued ran-
dom variables (not necessarily independent), and let X, Y be another
pair of V-valued random variables. Let ¢,,d, be scalars converging

to ¢, d respectively.

(i) If X,, converges in distribution to X, and Y,, converges in
distribution to Y, and at least one of X, Y is deterministic,
show that ¢, X,,+d, Y, converges in distribution to cX+dY .

(ii) If X,, converges in probability to X, and Y,, converges in

probability to Y, show that ¢, X,, +d, Y, converges in prob-
ability to cX 4+ dY.
(iii) If X,, converges almost surely to X, and Y,, converges almost

surely Y, show that ¢, X,, + d,Y,, converges almost surely
to cX +dY.

Show that the first part of the exercise can fail if X,Y are not deter-
ministic.
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Now suppose that we have established the central limit theorem
for bounded random variables, and want to extend to the unbounded
case. Let X be an unbounded random variable, which we can nor-
malise to have mean zero and unit variance. Let N = N, > 0 be
a truncation parameter depending on n which, as usual, we shall
optimise later, and split X = X<y + X5 in the usual fashion
(X<nv = XI(|X] < N); Xony = XI(|X| > N)). Thus we have
Sn = Sn,<n + Sp,>n~ as usual.

Let u<n, 02y be the mean and variance of the bounded random
variable X< . “As we are assuming that the central limit theorem
is already true in the bounded case, we know that if we fix NV to be
independent of n, then

7 . SnsN —nu<N
msN \/’EUSN
converges in distribution to N (0, 1)gr. By a diagonalisation argument,
we conclude that there exists a sequence N,, going (slowly) to infinity
with n, such that Z,, <, still converges in distribution to N(0,1)g.

For such a sequence, we see from dominated convergence that
o<n, converges to 0 = 1. As a consequence of this and Exercise
2.2.4, we see that

Sn,<N, — Np<N,

n

converges in distribution to N(0,1)g.

Meanwhile, from dominated convergence again, oy, converges
to 0. From this and (2.27) we see that

Sp, >N, — NI>N,
Vn
converges in distribution to 0. Finally, from linearity of expectation
we have p<n, + p>n, = p = 0. Summing (using Exercise 2.2.4), we
obtain the claim.

Remark 2.2.2. The truncation reduction is not needed for some
proofs of the central limit (notably the Fourier-analytic proof), but
is very convenient for some of the other proofs that we will give here,
and will also be used at several places in later notes.



2.2. The central limit theorem 97

By applying the scaling reduction after the truncation reduction,
we observe that to prove the central limit theorem, it suffices to do so
for random variables X which are bounded and which have mean zero
and unit variance. (Why is it important to perform the reductions in
this order?)

2.2.2. The Fourier method. Let us now give the standard Fourier-
analytic proof of the central limit theorem. Given any real random
variable X, we introduce the characteristic function Fx : R — C,
defined by the formula

(2.30) Fx(t) := Ee''¥.

Equivalently, F'x is the Fourier transform of the probability measure
HX-

Example 2.2.3. The signed Bernoulli distribution has characteristic
function F'(t) = cos(t).

Exercise 2.2.5. Show that the normal distribution N(u,o?)r has
characteristic function F(t) = ettre=o"t"/2,

More generally, for a random variable X taking values in a real
vector space R¢, we define the characteristic function Fx : R* — C
by

(2.31) Fx(t) := Ee"¥

where - denotes the Euclidean inner product on R%. One can similarly
define the characteristic function on complex vector spaces C?% by
using the complex inner product

(z1,--+,2a) - (w1, ..., wa) := Re(z1W01 + . .. + 24Wa)

(or equivalently, by identifying C? with R?? in the usual manner.)

More generally®, one can define the characteristic function on any
finite dimensional real or complex vector space V, by identifying V'
with R? or C?.

9Strictly speaking, one either has to select an inner product on V to do this,
or else make the characteristic function defined on the dual space V* instead of on
V itself; see for instance [Ta2010, §1.12]. But we will not need to care about this
subtlety in our applications.
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The characteristic function is clearly bounded in magnitude by 1,
and equals 1 at the origin. By the Lebesgue dominated convergence
theorem, F'x is continuous in .

Exercise 2.2.6 (Riemann-Lebesgue lemma). Show that if X is an
absolutely continuous random variable taking values in R¢ or C¢,
then Fx(t) — 0 as t — oo. Show that the claim can fail when the
absolute continuity hypothesis is dropped.

Exercise 2.2.7. Show that the characteristic function Fx of a ran-
dom variable X taking values in R? or C? is in fact uniformly con-
tinuous on its domain.

Let X be a real random variable. If we Taylor expand e**X
and formally interchange the series and expectation, we arrive at the
heuristic identity

— (it)" i
(2.32) Fx(t)=)» ~“EX

which thus interprets the characteristic function of a real random
variable X as a kind of generating function for the moments. One
rigorous version of this identity is as follows.

Exercise 2.2.8 (Taylor expansion of characteristic function). Let X
be a real random variable with finite &*" moment for some k > 1.
Show that F'x is k times continuously differentiable, and one has the
partial Taylor expansion

"oty
Fx(t)=> —EX7 + o(|1[*)
— ]
7=0
where o([t|¥) is a quantity that goes to zero as t — 0, times |t|*. In
particular, we have
d R
i — JRXI
dthX(t) ="EX
forall 0 < j < k.

Exercise 2.2.9. Establish (2.32) in the case that X is subgaussian,
and show that the series converges locally uniformly in ¢.
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Note that the characteristic function depends only on the distri-
bution of X: if X =Y, then Fx = Fy. The converse statement is
true also: if Fx = Fy, then X =Y. This follows from a more general
(and useful) fact, known as Lévy’s continuity theorem.

Theorem 2.2.4 (Lévy continuity theorem, special case). Let V' be
a finite-dimensional real or complex vector space, and let X, be a
sequence of V -valued random variables, and let X be an additional V -
valued random variable. Then the following statements are equivalent:

(i) Fx, converges pointwise to Fx.

(ii) X,, converges in distribution to X.

Proof. Without loss of generality we may take 1V = R%,
The implication of (i) from (ii) is immediate from (2.31) and the
definition of convergence in distribution (see Definition 1.1.28), since

the function z — e®* is bounded continuous.

Now suppose that (i) holds, and we wish to show that (ii) holds.
By Exercise 1.1.25(iv), it suffices to show that
Ep(X5) = Ep(X)

whenever ¢ : V — R is a continuous, compactly supported function.
By approximating ¢ uniformly by Schwartz functions (e.g. using the
Stone-Weierstrass theorem, see [Ta2010]), it suffices to show this for
Schwartz functions ¢. But then we have the Fourier inversion formula

o) = [ et a

where
1

o(t) == W/Rd o(z)e= " dx

is a Schwartz function, and is in particular absolutely integrable (see
e.g. [Ta2010, §1.12]). From the Fubini-Tonelli theorem, we thus have

(2.33) Ep(X,) = /R B0, (1) dr

and similarly for X. The claim now follows from the Lebesgue domi-
nated convergence theorem. 0
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Remark 2.2.5. Setting X, := Y for all n, we see in particular the
previous claim that Fx = Fy if and only if X =Y. It is instructive
to use the above proof as a guide to prove this claim directly.

Exercise 2.2.10 (Lévy’s continuity theorem, full version). Let V be
a finite-dimensional real or complex vector space, and let X,, be a
sequence of V-valued random variables. Suppose that F'x, converges
pointwise to a limit F. Show that the following are equivalent:

(i) F is continuous at 0.
(ii) X, is a tight sequence.

(iii) F' is the characteristic function of a V-valued random vari-
able X (possibly after extending the sample space).

(iv) X, converges in distribution to some V-valued random vari-
able X (possibly after extending the sample space).

Hint: To get from (ii) to the other conclusions, use Prokhorov’s the-
orem (see Exercise 1.1.25) and Theorem 2.2.4. To get back to (ii)
from (i), use (2.33) for a suitable Schwartz function ¢. The other
implications are easy once Theorem 2.2.4 is in hand.

Remark 2.2.6. Lévy’s continuity theorem is very similar in spirit to
Weyl’s criterion in equidistribution theory (see e.g. [KulNi2006)).

Exercise 2.2.11 (Esséen concentration inequality). Let X be a ran-
dom variable taking values in R%. Then for any r > 0, ¢ > 0, show
that

(2.34) sup P(| X —zo| <7r) < Cdﬁrd/ |F'x (t)] dt
zo€R teR%:|t|<e/r

for some constant Cy . depending only on d and . (Hint: Use (2.33)

for a suitable Schwartz function ¢.) The left-hand side of (2.34) is

known as the small ball probability of X at radius r.

In Fourier analysis, we learn that the Fourier transform is a par-
ticularly well-suited tool for studying convolutions. The probability
theory analogue of this fact is that characteristic functions are a par-
ticularly well-suited tool for studying sums of independent random
variables. More precisely, we have
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Exercise 2.2.12 (Fourier identities). Let V be a finite-dimensional
real or complex vector space, and let X,Y be independent random
variables taking values in V. Then

(2.35) Fxivy(t) = Fx(t)Fy(t)
for all t € V. Also, for any scalar ¢, one has
ch(t) = FX(Et)

and more generally, for any linear transformation T : V — V., one
has

Frx(t) = Fx(T*t).

Remark 2.2.7. Note that this identity (2.35), combined with Exer-
cise 2.2.5 and Remark 2.2.5, gives a quick alternate proof of Exercise
2.1.9.

In particular, in the normalised setting (2.29), we have the simple
relationship

(2.36) Fyz, (t) = Fx(t/vn)"
that describes the characteristic function of Z,, in terms of that of X.

We now have enough machinery to give a quick proof of the cen-
tral limit theorem:

Proof of Theorem 2.2.1. We may normalise X to have mean zero
and variance 1. By Exercise 2.2.8, we thus have
Fx(t) =1—1*/2+o(|t]*)
for sufficiently small ¢, or equivalently
Fx(t) = exp(—t?/2 + o([t]*))
for sufficiently small ¢. Applying (2.36), we conclude that
Fy (t) — exp(—t%/2)

as n — oo for any fixed t. But by Exercise 2.2.5, exp(—t%/2) is
the characteristic function of the normal distribution N(0,1)g. The
claim now follows from the Lévy continuity theorem. 0
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Exercise 2.2.13 (Vector-valued central limit theorem). Let X =
(X1,...,Xq) be a random variable taking values in R? with finite
second moment. Define the covariance matriz E()Z ) to be the d x d
matrix ¥ whose ij*® entry is the covariance E(X; — E(X;))(X; —

E(Xj)).

(i) Show that the covariance matrix is positive semi-definite
real symmetric.

(ii) Conversely, given any positive definite real symmetric d X d
matrix ¥ and p € R?, show that the normal distribution
N(p, X)Ra, given by the absolutely continuous measure

1

@I e-m)/2 g
(2m)d det £)172° “

has mean p and covariance matrix o, and has a character-
istic function given by

F(t) = eittetTt/2,

How would one define the normal distribution N (u, X)ga if
> degenerated to be merely positive semi-definite instead of
positive definite?

(iii) If S, =X, +...+ X, is the sum of n iid copies of X, show

that S;\/En“ converges in distribution to N(0,3(X))ga.

Exercise 2.2.14 (Complex central limit theorem). Let X be a com-
plex random variable of mean u € C, whose real and imaginary parts
have variance 02/2 and covariance 0. Let Xi,...,X, = X be iid
copies of X. Show that as n — oo, the normalised sums (2.26) con-
verge in distribution to the standard complex gaussian N (0, 1)c.

Exercise 2.2.15 (Lindeberg central limit theorem). Let X7, Xo,. ..
be a sequence of independent (but not necessarily identically dis-
tributed) real random variables, normalised to have mean zero and
variance one. Assume the (strong) Lindeberg condition

N—=oco pooo M4

1 n
lim limsup — ZE\X]',>N|2 =0
7j=1
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where X, >n = X;I(|X;| > N) is the truncation of X; to large
values. Show that as n — oo, w converges in distribution to

N(0,1)r. (Hint: modify the truncation argument.)

A more sophisticated version of the Fourier-analytic method gives
a more quantitative form of the central limit theorem, namely the
Berry-Esséen theorem.

Theorem 2.2.8 (Berry-Esséen theorem). Let X have mean zero, unit
variance, and finite third moment. Let Z, := (X1 + ...+ X,)/v/n,
where X1, ..., X, are iid copies of X. Then we have

1
(2.37) P(Z,<a)=P(G<a)+ O(ﬁ(E|X|3))
uniformly for all a € R, where G = N(0,1)r, and the implied con-
stant is absolute.

Proof. (Optional) Write € := E|X|3/,/n; our task is to show that
P(Z, <a)=P(G <a)+O0(e)

for all a. We may of course assume that ¢ < 1, as the claim is trivial
otherwise.

Let ¢ > 0 be a small absolute constant to be chosen later. Let
7 : R — R be an non-negative Schwartz function with total mass 1
whose Fourier transform is supported in [—c¢, ], and let ¢ : R =+ R
be the smoothed out version of 1(_ o], defined as

o(@) = [ 1o (a = eyl dy
R
Observe that ¢ is decreasing from 1 to 0.
We claim that it suffices to show that
(2.38) Ep(Z, —a) = E@(G —a) + Oy(e)

for every a, where the subscript means that the implied constant
depends on 7. Indeed, suppose that (2.38) held. Define

(2.39) o:=sup|P(Z, <a)—P(G < a)|

thus our task is to show that o = O(e).
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Let a be arbitrary, and let K > 0 be a large absolute constant to
be chosen later. We write

P(Z, <a) <Ep(Z, —a— Ke)
+E(1—-9(Z,—a—Ke)I(Z, < a)
and thus by (2.38)
P(Z, <a) <Ep(G—a— Ke)
+E(1 —¢(Z, —a— Ke)I(Z, < a) + Oy(e).
Meanwhile, from (2.39) and an integration by parts we see that
E(1-9(Z,—a—Ke)I(Z, <a)=E(l —p(G—a—Ke))I(G < a)
+O((1 - p(~K2))o).
From the bounded density of G and the rapid decrease of  we have
Po(G—a—Ke)+E(1—p(G—a—Ke))I(G < a)
=P(G <a)+ Oy, k(e).
Putting all this together, we see that
P(Z, <a)<P(G<a)+ 0, k(e)+ 01— p(—Ke))o).
A similar argument gives a lower bound
P(Z, <a)>P(G <a)— 0, k() — O(p(Ke)o),
and so
[P(Z, < a)~P(G < )| < 0y k() +O((1—p(~K2))o)+O(¢(Ke)o).
Taking suprema over a, we obtain
0 < Opic(e) + O((1 — p(~Ke))o) + O(¢(Ke)o).

If K is large enough (depending on ¢), we can make 1 — p(—Ke) and
p(Ke) small, and thus absorb the latter two terms on the right-hand
side into the left-hand side. This gives the desired bound o = O(e).

It remains to establish (2.38). Applying (2.33), it suffices to show
that

(2.40) |A@mw%@—nw»m§0@.
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Now we estimate each of the various expressions. Standard Fourier-
analytic computations show that

P(t) = 1(—co,a(D)(t/2)

and that
1

1(—oo,a] (t) = O(m

).

Since 7) was supported in [—c¢, ], it suffices to show that

(2.41) /MSC/E W dt < O(e).

From Taylor expansion we have
X =14 itX — g)(? +O(|t)P|X)?)
for any t; taking expectations and using the definition of € we have
Fx(t) =1-1t*/2+ O(ev/nlt[’)
and in particular
Fx(t) = exp(—t?/2 + O(ev/n|t))

if |t| < ¢/E|X|? and c is small enough. Applying (2.36), we conclude
that

Fz,(t) = exp(—t*/2 + O(e[t]*))

if |t| < ce. Meanwhile, from Exercise 2.2.5 we have Fg(t) = exp(—t?/2).
Elementary calculus then gives us

|Fz,(t) = Fa(t)] < O(elt] exp(~1*/4))

(say) if ¢ is small enough. Inserting this bound into (2.41) we obtain
the claim. 0

Exercise 2.2.16. Show that the error terms here are sharp (up to
constants) when X is a signed Bernoulli random variable.
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2.2.3. The moment method. The above Fourier-analytic proof of
the central limit theorem is one of the quickest (and slickest) proofs
available for this theorem, and is accordingly the “standard” proof
given in probability textbooks. However, it relies quite heavily on the
Fourier-analytic identities in Exercise 2.2.12, which in turn are ex-
tremely dependent on both the commutative nature of the situation
(as it uses the identity eA*? = e4eP) and on the independence of the
situation (as it uses identities of the form E(e“ef) = (Eet)(Ee?)).
When we turn to random matrix theory, we will often lose (or be
forced to modify) one or both of these properties, which often causes
the Fourier-analytic methods to fail spectacularly. Because of this,
it is also important to look for non-Fourier based methods to prove
results such as the central limit theorem. These methods often lead to
proofs that are lengthier and more technical than the Fourier proofs,
but also tend to be more robust, and in particular can often be ex-
tended to random matrix theory situations. Thus both the Fourier
and non-Fourier proofs will be of importance in this course.

The most elementary (but still remarkably effective) method avail-
able in this regard is the moment method, which we have already used
in Section 2.1. This method to understand the distribution of a ran-
dom variable X via its moments X*. In principle, this method is
equivalent to the Fourier method, through the identity (2.32); but in
practice, the moment method proofs tend to look somewhat different
than the Fourier-analytic ones, and it is often more apparent how to
modify them to non-independent or non-commutative settings.

We first need an analogue of the Lévy continuity theorem. Here
we encounter a technical issue: whereas the Fourier phases z — e?®
were bounded, the moment functions z — z* become unbounded at
infinity. However, one can deal with this issue as long as one has
sufficient decay:

Theorem 2.2.9 (Carleman continuity theorem). Let X,, be a se-
quence of uniformly subgaussian real random variables, and let X be
another subgaussian random variable. Then the following statements
are equivalent:

(i) For every k =0,1,2,..., EXF converges pointwise to EX*.
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(ii) X, converges in distribution to X .

Proof. We first show how (ii) implies (i). Let N > 0 be a truncation
parameter, and let ¢ : R — R be a smooth function that equals
1 on [—1,1] and vanishes outside of [—2,2]. Then for any k, the
convergence in distribution implies that EX*¢(X,,/N) converges to
EX*p(X/N). On the other hand, from the uniform subgaussian
hypothesis, one can make EX*(1—¢(X,,/N)) and EX*(1—p(X/N))
arbitrarily small for fixed £ by making N large enough. Summing,
and then letting N go to infinity, we obtain (i).

Conversely, suppose (i) is true. From the uniform subgaussian
hypothesis, the X,, have (k 4+ 1) moment bounded by (Ck)*/? for
all £ > 1 and some C independent of k (see Exercise 1.1.4). From
Taylor’s theorem with remainder (and Stirling’s formula, Section 1.2)
we conclude

it)J

k

EX] + O((Ck)~F/2[¢|F 1)

uniformly in ¢ and n. Similarly for X. Taking limits using (i) we see
that
limsup |Fyx, (t) — Fx (t)| = O((Ck)~*/2[¢|+1).

n—oQ
Then letting &k — oo, keeping ¢ fixed, we see that Fx, (t) converges
pointwise to Fx(t) for each t, and the claim now follows from the
Lévy continuity theorem. 0

Remark 2.2.10. One corollary of Theorem 2.2.9 is that the distri-
bution of a subgaussian random variable is uniquely determined by
its moments (actually, this could already be deduced from Exercise
2.2.9 and Remark 2.2.5). The situation can fail for distributions with
slower tails, for much the same reason that a smooth function is not
determined by its derivatives at one point if that function is not an-
alytic.

The Fourier inversion formula provides an easy way to recover the
distribution from the characteristic function. Recovering a distribu-
tion from its moments is more difficult, and sometimes requires tools
such as analytic continuation; this problem is known as the inverse
moment problem and will not be discussed here.
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To prove the central limit theorem, we know from the truncation
method that we may assume without loss of generality that X is
bounded (and in particular subgaussian); we may also normalise X
to have mean zero and unit variance. From the Chernoff bound (2.28)
we know that the Z,, are uniformly subgaussian; so by Theorem 2.2.9,
it suffices to show that

EZF - EGF
for all k = 0,1,2,..., where G = N(0,1)r is a standard gaussian
variable.

The moments EG¥ are easy to compute:

Exercise 2.2.17. Let k be a natural number, and let G = N(0,1)g.
Show that EGF vanishes when & is odd, and equal to #}Lp)' when k
is even. (Hint: This can either be done directly by using the Gamma

function, or by using Exercise 2.2.5 and Exercise 2.2.9.)

So now we need to compute EZ¥. Using (2.29) and linearity of
expectation, we can expand this as

EZf=n"*? > EX; ..X;.

1§i1,...,ik§n

To understand this expression, let us first look at some small values
of k.
(i) For k = 0, this expression is trivially 1.
(ii) For k = 1, this expression is trivially 0, thanks to the mean
zero hypothesis on X.
(iii) For k = 2, we can split this expression into the diagonal and
off-diagonal components:

n ' YT EX? 40T > E2X,X;.

1<i<n 1<i<j<n

Each summand in the first sum is 1, as X has unit variance.
Each summand in the second sum is 0, as the X; have mean
zero and are independent. So the second moment EZ? is 1.
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(iv) For k = 3, we have a similar expansion

n2 N BXP 4072 Y E3XTX; 4+ 3X,X]
1<i<n 1<i<j<n
+n7¥2 3" E6X X, X

1<i<j<k<n

The summands in the latter two sums vanish because of the
(joint) independence and mean zero hypotheses. The sum-
mands in the first sum need not vanish, but are O(1), so the
first term is O(n~'/?), which is asymptotically negligible, so
the third moment EZ2 goes to 0.

(v) For k = 4, the expansion becomes quite complicated:

n? Y EX] 4070 ) BAXPX; +6X7X7 +4X, X
1<i<n 1<i<j<n
+n7 Y BI2XIX X 4 12X X7 X + 12X, X, X7
1<i<j<k<n
+n7? Y E24XX, XX

1<i<j<k<l<n

Again, most terms vanish, except for the first sum, which
is O(n~!) and is asymptotically negligible, and the sum
n=2 Pi<icj<n E6X?X?, which by the independence and
unit variance assumptions works out to n=26(%) = 3+ o(1).
Thus the fourth moment EZ} goes to 3 (as it should).

Now we tackle the general case. Ordering the indices i1, ...,
as j1 < ... < Jm, for some 1 < m < k, with each j,. occuring with
multiplicity a, > 1 and using elementary enumerative combinatorics,
we see that EZ¥ is the sum of all terms of the form

—k/2 m
(2.42) n=k/ > hara, BXI X
1<j1 <o <jm<n
where 1 < m < k, aq,...,a,, are positive integers adding up to k,
and c¢k.q,,....q,, 15 the multinomial coefficient
k!

C = —
Raar,am = ]
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The total number of such terms depends only on k. More pre-
cisely, it is 2#~! (exercise!), though we will not need this fact.

As we already saw from the small k& examples, most of the terms
vanish, and many of the other terms are negligible in the limit n — oc.
Indeed, if any of the a, are equal to 1, then every summand in (2.42)
vanishes, by joint independence and the mean zero hypothesis. Thus,
we may restrict attention to those expressions (2.42) for which all the
a, are at least 2. Since the a, sum up to k, we conclude that m is at
most k/2.

On the other hand, the total number of summands in (2.42) is
clearly at most n™ (in fact it is (! )), and the summands are bounded
(for fixed k) since X is bounded. Thus, if m is strictly less than k/2,

m=k/2) and goes to zero as n — co.

then the expression in (2.42) is O(n
So, asymptotically, the only terms (2.42) which are still relevant are
those for which m is equal to k/2. This already shows that EZ¥ goes
to zero when k is odd. When k is even, the only surviving term in
the limit is now when m = k/2 and a; = ... = a,,, = 2. But then by
independence and unit variance, the expectation in (2.42) is 1, and

so this term is equal to

7k/2 n o 1 k'
n <m> Ck,2,...,.2 = (kj/Q)' 2k/2 + 0(1)3

and the main term is happily equal to the moment EG* as computed
in Exercise 2.2.17.

2.2.4. The Lindeberg swapping trick. The moment method proof
of the central limit theorem that we just gave consisted of four steps:

(i) (Truncation and normalisation step) A reduction to the case
when X was bounded with zero mean and unit variance.

(ii) (Inverse moment step) A reduction to a computation of as-
ymptotic moments lim,, EZT’f.

(iii) (Analytic step) Showing that most terms in the expansion
of this asymptotic moment were zero, or went to zero as
n — o0.

(iv) (Algebraic step) Using enumerative combinatorics to com-
pute the remaining terms in the expansion.
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In this particular case, the enumerative combinatorics was very
classical and easy - it was basically asking for the number of ways one
can place k balls in m boxes, so that the r! box contains a, balls,
and the answer is well known to be given by the multinomial ﬁ

By a small algebraic miracle, this result matched up nicely with the
computation of the moments of the gaussian N(0,1)g.

However, when we apply the moment method to more advanced
problems, the enumerative combinatorics can become more non-trivial,
requiring a fair amount of combinatorial and algebraic computation.
The algebraic miracle that occurs at the end of the argument can
then seem like a very fortunate but inexplicable coincidence, making
the argument somehow unsatisfying despite being rigorous.

In [Li1922], Lindeberg observed that there was a very simple way
to decouple the algebraic miracle from the analytic computations,
so that all relevant algebraic identities only need to be verified in
the special case of gaussian random variables, in which everything is
much easier to compute. This Lindeberg swapping trick (or Lindeberg
replacement trick) will be very useful in the later theory of random
matrices, so we pause to give it here in the simple context of the
central limit theorem.

The basic idea is follows. We repeat the truncation-and-normalisation
and inverse moment steps in the preceding argument. Thus, X1,..., X,
are iid copies of a boudned real random variable X of mean zero
and unit variance, and we wish to show that EZ* — EG*, where
G = N(0,1)R, where k > 0 is fixed.

Now let Y7, ...,Y,, beiid copies of the gaussian itself: Y7,...,Y, =
N(0,1)r. Because the sum of independent gaussians is again a gauss-
ian (Exercise 2.1.9), we see that the random variable

Yi+...4+Y,
W, =L T°n te
vn
already has the same distribution as G: W,, = G. Thus, it suffices to
show that
EZF = EWF +o(1).
Now we perform the analysis part of the moment method argument
again. We can expand EZF into terms (2.42) as before, and discard
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all terms except for the a; = ... = a,, = 2 term as being o(1).
Similarly, we can expand EW} into very similar terms (but with the
X; replaced by Y;) and again discard all but the a; = ... = a,, term.

But by hypothesis, the second moments of X and Y match:
EX? = EY? = 1. Thus, by joint independence, the a; = ... =
am = 2 term (2.42) for X is exactly equal to that of Y. And the
claim follows.

This is almost exactly the same proof as in the previous section,
but note that we did not need to compute the multinomial coefficient
Ck,a1,....am+ DOT did we need to verify the miracle that this coefficient
matched (up to normalising factors) to the moments of the gaussian.
Instead, we used the much more mundane “miracle” that the sum of
independent gaussians was again a gaussian.

To put it another way, the Lindeberg replacement trick factors a
universal limit theorem, such as the central limit theorem, into two
components:

(i) A wuniversality or invariance result, which shows that the
distribution (or other statistics, such as moments) of some
random variable F/(X7, ..., X, ) is asymptotically unchanged
in the limit n — oo if each of the input variables X; are re-
placed by a gaussian substitute Y;; and

(ii) The gaussian case, which computes the asymptotic distri-
bution (or other statistic) of F(Y7,...,Y,) in the case when
Yi1,...,Y, are all gaussians.

The former type of result tends to be entirely analytic in nature (ba-
sically, one just needs to show that all error terms that show up when
swapping X with Y are o(1)), while the latter type of result tends
to be entirely algebraic in nature (basically, one just needs to exploit
the many pleasant algebraic properties of gaussians). This decoupling
of the analysis and algebra steps tends to simplify both, both at a
technical level and at a conceptual level.

2.2.5. Individual swapping. In the above argument, we swapped
all the original input variables X7, ..., X, with gaussians Y7,...,Y,
en masse. There is also a variant of the Lindeberg trick in which the
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swapping is done individually. To illustrate the individual swapping
method, let us use it to show the following weak version of the Berry-
Esséen theorem:

Theorem 2.2.11 (Berry-Esséen theorem, weak form). Let X have
mean zero, unit variance, and finite third moment, and let ¢ be
smooth with uniformly bounded derivatives up to third order. Let
Zn = (X1 4+ ...+ Xpn)//n, where Xq,..., X, are iid copies of X.
Then we have

1

n

(2.43) Ep(Zn) = Ep(G) + O(—=(E[X]*) sup " (2)1)

Bl

where G = N(0,1)Rr.

Proof. Let Y7,...,Y,, and W,, be in the previous section. As W,, =
G, it suffices to show that

Ep(Zn) — o(Wn) = o(1).
We telescope this (using linearity of expectation) as

n—1

Ep(Zn) —¢(Wo) = =Y Bp(Zyi) = ¢(Znit1)
=0

where
Xi4+..+Xi+Y1+...4+Y,

vn

is a partially swapped version of Z,,. So it will suffice to show that

Ep(Zni) = o(Zni41) = O((E|X ) sup " ()| /n*?)

Zn,i =

uniformly for 0 <1 < n.

We can write Znﬂ' = Sn,i+)/i+1/\/ﬁ and Zn,1'+1 = Sn7i+X¢+1/\/’f>l,
where

Xi+...+X;+Y; e
(2.44) Sppim e B At Yoo W
) \/ﬁ
To exploit this, we use Taylor expansion with remainder to write

‘P(Zn,i) = ‘P(Sn,i) + ‘P/(Sn,i)yi-&-l/\/ﬁ

1
+ 5" (i)Y /n+ O(Yiga [P/l sup " (2)])
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and
O(Zniv1) = ©(Sni) + @' (Sn.i) Xig1/Vn

1
+ 50" (Sn,) X1 /n+ O(IXipa [P /02 sup | (2)])
2 ze€R

where the implied constants depend on ¢ but not on n. Now, by
construction, the moments of X;; and Y;;; match to second order,
thus

Ep(Zni) = o(Zpi41) = OEYip |’ sup " ()| /n®/?)
S

+ O(E[ X4’ sup " (2)|/n?),

and the claim follows!. O

Remark 2.2.12. The above argument relied on Taylor expansion,
and the hypothesis that the moments of X and Y matched to second
order. It is not hard to see that if we assume more moments matching
(e.g. EX3 = EY? = 3), and more smoothness on ¢, we see that we
can improve the ﬁ factor on the right-hand side. Thus we see that
we expect swapping methods to become more powerful when more
moments are matching. We will see this when we discuss the four
moment theorem of Van Vu and myself in later lectures, which (very)
roughly speaking asserts that the spectral statistics of two random
matrices are asymptotically indistinguishable if their coefficients have
matching moments to fourth order.

Theorem 2.2.11 is easily implied by Theorem 2.2.8 and an inte-
gration by parts. In the reverse direction, let us see what Theorem
2.2.11 tells us about the cumulative distribution function

P(Z, <a)
of Z,. For any € > 0, one can upper bound this expression by
Ep(Z,)

where ¢ is a smooth function equal to 1 on (—o0,a] that vanishes
outside of (—oo, a+¢], and has third derivative O(¢~3). By Theorem

10Note from Hélder’s inequality that E|X|3 > 1
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2.2.11, we thus have

1
Vn
On the other hand, as G has a bounded probability density function,
we have

P(Z, < a) < Bp(G) + O(—=(BIX[*)e ).

Ep(G) =P(G < a)+ O(e)

and so
P(Z, <a) <P(G <a)+0()+ O(%(E|X|3)a‘3).

A very similar argument gives the matching lower bound, thus

P(Z,<a)=P(G <a)+0(e) + O(%(E|X|g)5*3).

Optimising in € we conclude that
(2.45) P(Z, <a)=P(G <a)+ O(L(E|X|3))1/4

Comparing this with Theorem 2.2.8 we see that we have lost an ex-
ponent of 1/4. In our applications to random matrices, this type of
loss is acceptable, and so the swapping argument is a reasonable sub-
stitute for the Fourier-analytic one in this case. Also, this method
is quite robust, and in particular extends well to higher dimensions;
we will return to this point in later lectures, but see for instance
[TaVuKr2010, Appendix D] for an example of a multidimensional
Berry-Esséen theorem proven by this method.

On the other hand there is another method that can recover this
loss while still avoiding Fourier-analytic techniques; we turn to this
topic next.

2.2.6. Stein’s method. Stein’s method, introduced by Charles Stein[St1970],
is a powerful method to show convergence in distribution to a spe-

cial distribution, such as the gaussian. In several recent papers, this

method has been used to control several expressions of interest in

random matrix theory (e.g. the distribution of moments, or of the

Stieltjes transform.) We will not use Stein’s method in this text, but

the method is of independent interest nonetheless.
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1 —z?/2

The probability density function p(z) := ok of the stan-

dard normal distribution N (0, 1)g can be viewed as a solution to the
ordinary differential equation

(2.46) p'(z) +zp(z) = 0.

One can take adjoints of this, and conclude (after an integration by
parts) that p obeys the integral identity

[ o@)r'@) - wp(a)) dz =0
R

for any continuously differentiable f with both f and f/ bounded
(one can relax these assumptions somewhat). To put it another way,
if G = N(0,1), then we have
(2.47) Ef (G) - Gf(G)=0
whenever f is continuously differentiable with f, f/ both bounded.

It turns out that the converse is true: if X is a real random
variable with the property that

Ef(X)-Xf(X)=0

whenever f is continuously differentiable with f, f/ both bounded,
then X is Gaussian. In fact, more is true, in the spirit of Theorem
2.2.4 and Theorem 2.2.9:

Theorem 2.2.13 (Stein continuity theorem). Let X,, be a sequence
of real random variables with uniformly bounded second moment, and
let G=N(0,1). Then the following are equivalent:

(i) Ef'(X,) — X, f(X,) converges to zero whenever f : R — R
is continuously differentiable with f, f both bounded.

(ii) X, converges in distribution to G.

Proof. To show that (ii) implies (i), it is not difficult to use the uni-
form bounded second moment hypothesis and a truncation argument
to show that Ef'(X,,) — X, f(X,) converges to Ef'(G) — G f(G) when
f is continuously differentiable with f, f/ both bounded, and the claim
then follows from (2.47).

Now we establish the converse. It suffices to show that

Ep(X,) — Ep(G) =0
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whenever ¢ : R — R is a bounded continuous function. We may
normalise ¢ to be bounded in magnitude by 1.

Trivially, the function ¢(-) — E¢(G) has zero expectation when
one substitutes G for the argument -, thus

(2.48) V2 (p(y) — Ep(Q)) dy = 0.

1 (oo}
— e
\Y 2T /;oo
Comparing this with (2.47), one may thus hope to find a representa-
tion of the form

(2.49) p(x) - Be(G) = f'(z) — zf(2)

for some continuously differentiable f with f, f both bounded. This
is a simple ODE and can be easily solved (by the method of integrating
factors) to give a solution f, namely

(250)  fla) =€/ / " V2 (p(y) — Bp(G)) dy.

(One could dub f the Stein transform of ¢, although this term does
not seem to be in widespread use.) By the fundamental theorem
of calculus, f is continuously differentiable and solves (2.49). Using
(2.48), we may also write f as

(2.51) fla) = —e”/? / T eV (oly) - Bo(G)) dy.

By completing the square, we see that eV’ /2 < e~ /2e—(y=2) Iy
serting this into (2.50) and using the bounded nature of ¢, we con-
clude that f(z) = O,(1/|z|) for « < —1; inserting it instead into
(2.51), we have f(z) = O,(1/|z|) for z > 1. Finally, easy estimates
give f(x) = O, (1) for |z| < 1. Thus for all 2 we have

1

)

which when inserted back into (2.49) gives the boundedness of f’ (and
also of course gives the boundedness of f). In fact, if we rewrite (2.51)
as

fl@) == /000 e 2e 0 (p(z + 5) — B(@)) ds,
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we see on differentiation under the integral sign (and using the Lip-
schitz nature of ¢) that f/'(z) = O,(1/x) for x > 1; a similar ma-
nipulation (starting from (2.50)) applies for z < —1, and we in fact

conclude that f/(z) = Og( 1+1\z|) for all x.

Applying (2.49) with = X,, and taking expectations, we have

‘P(Xn) - E")O(G) = f/(Xn) - an(Xn)

By the hypothesis (i), the right-hand side goes to zero, hence the
left-hand side does also, and the claim follows. O

The above theorem gave only a qualitative result (convergence
in distribution), but the proof is quite quantitative, and can be used
to in particular to give Berry-Esséen type results. To illustrate this,
we begin with a strengthening of Theorem 2.2.11 that reduces the
number of derivatives of ¢ that need to be controlled:

Theorem 2.2.14 (Berry-Esséen theorem, less weak form). Let X
have mean zero, unit variance, and finite third moment, and let
be smooth, bounded in magnitude by 1, and Lipschitz. Let Z, =
(X1+...+X,)/v/n, where Xy, ..., X, are iid copies of X. Then we
have

L (BIX[*)(1 + sup |/ ()

(252)  Ep(Za) =Ep(G) + O(—= eR

Bl

where G = N(0,1)Rr.

Proof. Set A :=1+4sup,cg |¢'(z)].
Let f be the Stein transform (2.50) of ¢, then by (2.49) we have
Ep(Zn) — E(G) = Ef'(Z,) = Znf(Zn).
We expand Z,, f(Z,) = ﬁ St Xif(Zy,). For each i, we then split
Zn = Zni + ﬁXZ—, where Z,.; == (X1 + ...+ X; 1+ Xig1 +... +
Xn)/v/n (cf. (2.44)). By the fundamental theorem of calculus, we

have

1 t
EX,f(Zy) = EX;f(Znii) + —=X2f'(Znii + —
F(20) = BXuf (Zua) + X2 i+
where ¢ is uniformly distributed in [0, 1] and independent of all of the
Xi,...,X,. Now observe that X; and Z,; are independent, and X;

X)
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has mean zero, so the first term on the right-hand side vanishes. Thus

1 x).

(2.53) Ep(Z,) — Ep(G) = % ZEf/(Zn) — X2 [ (Znsi + NG

Another application of independendence gives

Ef/(Zn;i) = EX?fI(Zn;i)
so we may rewrite (2.53) as
t
ﬁXi) = 1'(Znii))-
Recall from the proof of Theorem 2.2.13 that f(z) = O(1/(1 + |z|))
and f'(x) = O(A/(1 + |z|)). By the product rule, this implies that
xf(z) has a Lipschitz constant of O(A). Applying (2.49) and the

definition of A, we conclude that f’ has a Lipschitz constant of O(A).
Thus we can bound the previous expression as

% Z E(f/(Zn) - f,(Zn;i)) - XiQ(f,(Z"ﬂ +

1 — 1
N E—O(A|X;| + AlX; ]
w 2B O + A P)

and the claim follows from Holder’s inequality. 0

This improvement already reduces the 1/4 loss in (2.45) to 1/2.
But one can do better still by pushing the arguments further. Let us
illustrate this in the model case when the X; not only have bounded
third moment, but are in fact bounded:

Theorem 2.2.15 (Berry-Esséen theorem, bounded case). Let X have
mean zero, unit variance, and be bounded by O(1). Let Z,, := (X1 +
oo+ X)) /0, where Xy, ..., X, are iid copies of X. Then we have

2

(2.54) P(Z,<a)=P(G<a)+ O(\/ﬁ

whenever a = O(1), where G = N(0,1)R.
Proof. Write ¢ := 1(_,q), thus we seek to show that
E¢(Z,) — 6(G) = O(—=)-

Let f be the Stein transform (2.50) of ¢. ¢ is not continuous, but it is
not difficult to see (e.g. by a limiting argument) that we still have the
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estimates f(z) = O(1/(1 + |z|)) and f'(z) = O(1) (in a weak sense),
and that = f has a Lipschitz norm of O(1) (here we use the hypothesis
a = 0(1)). A similar limiting argument gives

E¢(Z7L) - d)(G) = Ef/(Zn) - an(Zn)

and by arguing as in the proof of Theorem 2.2.14, we can write the
right-hand side as

n

% ;E(f/(zn) a f,(Znﬂ)) o XiZ(f,(Zn;i + %

From (2.49), f’ is equal to ¢, plus a function with Lipschitz norm
O(1). Thus, we can write the above expression as

Xi) = f'(Zna))-

t

—Xi)—é(Zni))+0(1 .
T2 X0~ 0(Z)) + 001/ Vi)
The ¢(Z,;) terms cancel (due to the independence of X; and Z,.,
and the normalised mean and variance of X;), so we can simplify this
as

=S BO(Zn) — 6 Zui)) XD Z+
i=1

L x)

Bo(Z,) 3 EXP0(Zus + =
=1

and so we conclude that

S BXIO(Zys + J=X) = BO(G) + O(1/ V).

Since t and X; are bounded, and ¢ is non-increasing, we have

t
Vvn
applying the second inequality and using independence to once again
eliminate the X? factor, we see that

S Bo(Zus - 0(/V) > BH(G) + O(1/v)
i=1

which implies (by another appeal to the non-increasing nature of ¢
and the bounded nature of X;) that

E¢(Z, — O(1/v/n)) = E¢(G) + O(1/+/n)
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or in other words that
P(Z, <a+0(1/y/n)) >P(G < a)+O0(1/vn).
Similarly, using the lower bound inequalities, one has
P(Z, <a—-0(1/yn)) <P(G <a)+0(1/y/n).

Moving a up and down by O(1/4/n), and using the bounded density
of GG, we obtain the claim. O

Actually, one can use Stein’s method to obtain the full Berry-
Esséen theorem, but the computations get somewhat technical, re-
quiring an induction on n to deal with the contribution of the excep-
tionally large values of X;: see [BaHa1984].

2.2.7. Predecessor comparison. Suppose one had never heard of
the normal distribution, but one still suspected the existence of the
central limit theorem - thus, one thought that the sequence Z, of
normalised distributions was converging in distribution to something,
but was unsure what the limit was. Could one still work out what
that limit was?

Certainly in the case of Bernoulli distributions, one could work ex-
plicitly using Stirling’s formula (see Exercise 2.2.2), and the Fourier-
analytic method would also eventually work. Let us now give a third
way to (heuristically) derive the normal distribution as the limit of the
central limit theorem. The idea is to compare Z,, with its predecessor
Zy_1, using the recursive formula
vn-l, 1y

vn vn
(normalising X,, to have mean zero and unit variance as usual; let us
also truncate X, to be bounded, for simplicity). Let us hypothesise
that Z, and Z,_; are approximately the same distribution; let us
also conjecture that this distribution is absolutely continuous, given
as p(z) dz for some smooth p(z). (If we secretly knew the central

(2.55) T =

limit theorem, we would know that p(z) is in fact \/%6_12/2, but let
us pretend that we did not yet know this fact.) Thus, for any test
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function ¢, we expect
(256)  Be(Z)~Bp(Zun)~ | plalpla) d

Now let us try to combine this with (2.55). We assume ¢ to be
smooth, and Taylor expand to third order:
vn—1 1 vn—1
<P(Zn) =@ (Zn—l) + 7Xn30, <Zn—1>
1 oy (V=1 1
+%Xn<ﬂ ( NG Zn-1 +O(W)

Taking expectations, and using the independence of X,, and Z,,_1,

together with the normalisations on X,,, we obtain

Ep(Z,) = Ep (‘/?Zn_l) + ingp” (\/?Zn_l) + O(#).

2
Up to errors of O(ns%)7 one can approximate the second term here
by 5¢"(Zn—1). We then insert (2.56) and are led to the heuristic
equation

[ etontar = [ o (Yo=te) pla) + s @holo) di+O().

Changing variables for the first term on the right hand side, and
integrating by parts for the second term, we have

[ @t~ [ ot %p( w%x)

1 1 1
+%<p(a:)p (z) dz + O(W)

Since ¢ was an arbitrary test function, this suggests the heuristic

equation
L _Vn ( vn )
P~ m=r\ a1t
Taylor expansion gives
Vn vn _ 1 1,

which leads us to the heuristic ODE
Lp(x) =0
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where L is the Ornstein-Uhlenbeck operator

Lp(x) := p(x) + zp'(z) + p" ().
Observe that Lp is the total derivative of zp(z) + p/(x); integrating
from infinity, we thus get

zp(x) + p'(x) =0

which is (2.46), and can be solved by standard ODE methods as
2 . - .
plx) = ce ™ /2 for some ¢; the requirement that probability density

. . 1
functions have total mass 1 then gives the constant ¢ as Word

as we
knew it must.

The above argument was not rigorous, but one can make it so
with a significant amount of PDE machinery. If we view n (or more
precisely, logn) as a time parameter, and view ¢ as depending on
time, the above computations heuristically lead us eventually to the
Fokker-Planck equation for the Ornstein-Uhlenbeck process,

Oep(t,x) = Lp

which is a linear parabolic equation that is fortunate enough that
it can be solved exactly (indeed, it is not difficult to transform this
equation to the linear heat equation by some straightforward changes
of variable). Using the spectral theory of the Ornstein-Uhlenbeck
operator L, one can show that solutions to this equation starting from
an arbitrary probability distribution, are attracted to the gaussian

density function %e*“‘j/ 2

, which as we saw is the steady state for
this equation. The stable nature of this attraction can eventually be
used to make the above heuristic analysis rigorous. However, this
requires a substantial amount of technical effort (e.g. developing the
theory of Sobolev spaces associated to L) and will not be attempted
here. One can also proceed by relating the Fokker-Planck equation
to the associated stochastic process, namely the Ornstein-Uhlenbeck
process, but this requires one to first set up stochastic calculus, which
we will not do here!!. Stein’s method, discussed above, can also be
interpreted as a way of making the above computations rigorous (by
not working with the density function p directly, but instead testing
the random variable Z,, against various test functions o).

11(The various Taylor expansion calculations we have performed in this section,
though, are closely related to stochastic calculus tools such as Ito’s lemma.
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This argument does, though highlight two ideas which we will
see again in later notes when studying random matrices. Firstly,
that it is profitable to study the distribution of some random object
Z, by comparing it with its predecessor Z,_1, which one presumes
to have almost the same distribution. Secondly, we see that it may
potentially be helpful to approximate (in some weak sense) a discrete
process (such as the iteration of the scheme (2.55)) with a continuous
evolution (in this case, a Fokker-Planck equation) which can then be
controlled using PDE methods.

2.3. The operator norm of random matrices

Now that we have developed the basic probabilistic tools that we will
need, we now turn to the main subject of this text, namely the study
of random matrices. There are many random matrix models (aka
matrix ensembles) of interest - far too many to all be discussed here.
We will thus focus on just a few simple models. First of all, we shall
restrict attention to square matrices M = (&;)1<i,j<n, Where n is a
(large) integer and the &;; are real or complex random variables. (One
can certainly study rectangular matrices as well, but for simplicity we
will only look at the square case.) Then, we shall restrict to three
main models:

(i) Iid matrix ensembles, in which the coefficients ;; are iid
random variables with a single distribution &; = £. We
will often normalise £ to have mean zero and unit vari-
ance. Examples of iid models include the Bernoulli ensem-
ble (aka random sign matrices) in which the &;; are signed
Bernoulli variables, the real gaussian matriz ensemble in
which &;; = N(0,1)g, and the complez gaussian matriz en-
semble in which &;; = N(0,1)c.

(ii) Symmetric Wigner matrix ensembles, in which the up-
per triangular coefficients &;;, 7 > ¢ are jointly independent
and real, but the lower triangular coefficients ;;, 7 < ¢ are
constrained to equal their transposes: §;; = £;;. Thus M by
construction is always a real symmetric matrix. Typically,
the strictly upper triangular coefficients will be iid, as will
the diagonal coeflicients, but the two classes of coeflicients
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may have a different distribution. One example here is the
symmetric Bernoulli ensemble, in which both the strictly up-
per triangular and the diagonal entries are signed Bernoulli
variables; another important example is the Gaussian Or-
thogonal Ensemble (GOE), in which the upper triangular
entries have distribution N(0,1)r and the diagonal entries
have distribution N(0,2)g. (We will explain the reason for
this discrepancy later.)

(iii) Hermitian Wigner matrix ensembles, in which the up-
per triangular coefficients are jointly independent, with the
diagonal entries being real and the strictly upper triangu-
lar entries complex, and the lower triangular coefficients &;;,
j < i are constrained to equal their adjoints: &;; = &;;. Thus
M by construction is always a Hermitian matrix. This class
of ensembles contains the symmetric Wigner ensembles as a
subclass. Another very important example is the Gaussian
Unitary Ensemble (GUE), in which all off-diagional entries
have distribution N(0,1)c, but the diagonal entries have
distribution N(0,1)g.

Given a matrix ensemble M, there are many statistics of M that
one may wish to consider, e.g. the eigenvalues or singular values of
M, the trace and determinant, etc. In these notes we will focus on a
basic statistic, namely the operator norm

(2.57) | M|op == sup |Mz|

zeCm:|z|=1

of the matrix M. This is an interesting quantity in its own right, but
also serves as a basic upper bound on many other quantities. (For
instance, || M||op is also the largest singular value oq(M) of M and
thus dominates the other singular values; similarly, all eigenvalues
Ai(M) of M clearly have magnitude at most || M||op.) Because of
this, it is particularly important to get good upper tail bounds

P([M]lop = N) < ...

on this quantity, for various thresholds A. (Lower tail bounds are also
of interest, of course; for instance, they give us confidence that the
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upper tail bounds are sharp.) Also, as we shall see, the problem of up-
per bounding || M||op can be viewed as a non-commutative analogue'?
of upper bounding the quantity |S,| studied in Section 2.1.

An n x n matrix consisting entirely of 1s has an operator norm
of exactly n, as can for instance be seen from the Cauchy-Schwarz
inequality. More generally, any matrix whose entries are all uni-
formly O(1) will have an operator norm of O(n) (which can again
be seen from Cauchy-Schwarz, or alternatively from Schur’s test (see
e.g. [Ta2010, §1.11]), or from a computation of the Frobenius norm
(see (2.63))). However, this argument does not take advantage of pos-
sible cancellations in M. Indeed, from analogy with concentration of
measure, when the entries of the matrix M are independent, bounded
and have mean zero, we expect the operator norm to be of size O(y/n)
rather than O(n). We shall see shortly that this intuition is indeed

correct!3.

As mentioned before, there is an analogy here with the concen-
tration of measure'* phenomenon, and many of the tools used in the
latter (e.g. the moment method) will also appear here. Similarly, just
as many of the tools from concentration of measure could be adapted
to help prove the central limit theorem, several the tools seen here
will be of use in deriving the semicircular law in Section 2.4.

The most advanced knowledge we have on the operator norm is
given by the Tracy-Widom law, which not only tells us where the
operator norm is concentrated in (it turns out, for instance, that for
a Wigner matrix (with some additional technical assumptions), it is
concentrated in the range [2y/n — O(n=1%),2\/n + O(n='/9)]), but
what its distribution in that range is. While the methods in this
section can eventually be pushed to establish this result, this is far
from trivial, and will only be briefly discussed here. We will however
discuss the Tracy-Widom law at several later points in the text.

127phe analogue of the central limit theorem studied in Section 2.2 is the Wigner
semicircular law, which will be studied in Section 2.4.)

130ne can see, though, that the mean zero hypothesis is important; from the
triangle inequality we see that if we add the all-ones matrix (for instance) to a random
matrix with mean zero, to obtain a random matrix whose coefficients all have mean 1,
then at least one of the two random matrices necessarily has operator norm at least
n/2.

141ndeed, we will be able to use some of the concentration inequalities from Section
2.1 directly to help control ||[M||op and related quantities.
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2.3.1. The epsilon net argument. The slickest way to control
| M||op is via the moment method. But let us defer using this method
for the moment, and work with a more “naive” way to control the
operator norm, namely by working with the definition (2.57). From
that definition, we see that we can view the upper tail event ||M||op >
A as a union of many simpler events:
(2.58) P([|M]lop > A) < P(\/ [Mz| > \)
€S

where S := {x € C?: || = 1} is the unit sphere in the complex space
(oL

The point of doing this is that the event |Mx| > X is easier to
control than the event || M||op, > A, and can in fact be handled by the
concentration of measure estimates we already have. For instance:

Lemma 2.3.1. Suppose that the coefficients &;; of M are indepen-
dent, have mean zero, and uniformly bounded in magnitude by 1. Let
x be a unit vector in C™. Then for sufficiently large A (larger than
some absolute constant), one has

P(|Mz| > Ay/n) < Cexp(—cAn)

for some absolute constants C,c > 0.

Proof. Let Xi,...,X,, be the n rows of M, then the column vector
Mz has coefficients X; - x for i =1,...,n. if we let x1,...,x, be the
coefficients of z, so that 37, |a;|* = 1, then X, -z is just Y7, &;;.
Applying standard concentration of measure results (e.g. Exercise
2.1.4, Exercise 2.1.5, or Theorem 2.1.13, we see that each X; - x is
uniformly subgaussian, thus
P(1X; -z > \) < Cexp(—cA?)
for some absolute constants C, ¢ > 0. In particular, we have

EccXiel® < ¢

for some (slightly different) absolute constants C,c¢ > 0. Multiplying
these inequalities together for all ¢, we obtain

Eec\Ma:|2 < cn

and the claim then follows from Markov’s inequality(1.14). O
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Thus (with the hypotheses of Proposition 2.3.1), we see that for
each individual unit vector x, we have |Mxz| = O(y/n) with over-
whelming probability. It is then tempting to apply the union bound
and try to conclude that | M|lop = O(v/n) with overwhelming prob-
ability also. However, we encounter a difficulty: the unit sphere S
is uncountable, and so we are taking the union over an uncountable
number of events. Even though each event occurs with exponentially
small probability, the union could well be everything.

Of course, it is extremely wasteful to apply the union bound to
an uncountable union. One can pass to a countable union just by
working with a countable dense subset of the unit sphere S instead of
the sphere itself, since the map x +— |Mz| is continuous. Of course,
this is still an infinite set and so we still cannot usefully apply the
union bound. However, the map x — |Mz| is not just continuous;
it is Lipschitz continuous, with a Lipschitz constant of || M||op. Now,
of course there is some circularity here because | M||op is precisely
the quantity we are trying to bound. Nevertheless, we can use this
stronger continuity to refine the countable dense subset further, to a
finite dense subset of S, at the slight cost of modifying the threshold
A by a constant factor. Namely:

Lemma 2.3.2. Let ¥ be a maximal 1/2-net of the sphere S, i.e. a
set of points in S that are separated from each other by a distance of
at least 1/2, and which is maximal with respect to set inclusion. Then
for any n x n matrix M with complex coefficients, and any A > 0, we
have
P([M]op > A) <P(\/ [My| > \/2).
yey

Proof. By (2.57) (and compactness) we can find « € S such that
|Mz| = [|[M|lop-

This point « need not lie in X. However, as 3 is a maximal 1/2-net
of S, we know that x lies within 1/2 of some point y in ¥ (since
otherwise we could add = to ¥ and contradict maximality). Since
|z — y| < 1/2, we have

[M(z —y)| < [|M]lop/2-
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By the triangle inequality we conclude that
|My| = || M|lop/2-

In particular, if |M|lop, > A, then |[My| > A/2 for some y € X, and
the claim follows. 0

Remark 2.3.3. Clearly, if one replaces the maximal 1/2-net here
with an maximal e-net for some other 0 < ¢ < 1 (defined in the
obvious manner), then we get the same conclusion, but with A/2
replaced by A/(1 — ¢).

Now that we have discretised the range of points y to be finite,
the union bound becomes viable again. We first make the following
basic observation:

Lemma 2.3.4 (Volume packing argument). Let 0 < ¢ < 1, and let
Y be a e-net of the sphere S. Then X has cardinality at most (C/e)™
for some absolute constant C' > 0.

Proof. Consider the balls of radius €/2 centred around each point
in X; by hypothesis, these are disjoint. On the other hand, by the
triangle inequality, they are all contained in the ball of radius 3/2
centred at the origin. The volume of the latter ball is at most (C/e)”
the volume of any of the small balls, and the claim follows. O

Exercise 2.3.1. Conversely, if ¥ is a mazimal e-net, show that X
has cardinality at least (¢/e)™ for some absolute constant ¢ > 0.

And now we get an upper tail estimate:

Corollary 2.3.5 (Upper tail estimate for iid ensembles). Suppose
that the coefficients &; of M are independent, have mean zero, and
uniformly bounded in magnitude by 1. Then there exists absolute
constants C,c > 0 such that

P(|Mop > Av/) < Cexp(~cAn)

for all A > C. In particular, we have |M||op = O(y/n) with over-
whelming probability.
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Proof. From Lemma 2.3.2 and the union bound, we have

P(|M|lop > Avn) < > P(IMy| > Av/n/2)
yeD
where ¥ is a maximal 1/2-net of S. By Lemma 2.3.1, each of the
probabilities P(|My| > Ay/n/2) is bounded by Cexp(—cAn) if A
is large enough. Meanwhile, from Lemma 2.3.4, ¥ has cardinality
O(1)™. If A is large enough, the entropy loss of O(1)™ can be absorbed
into the exponential gain of exp(—cAn) by modifying c slightly, and
the claim follows. O

Exercise 2.3.2. If ¥ is a maximal 1/4-net instead of a maximal
1/2-net, establish the following variant

P([Mop > A) <P(\/ [z My| > A/4)
T,YyeX

of Lemma 2.3.2. Use this to provide an alternate proof of Corollary
2.3.5.

The above result was for matrices with independent entries, but
it easily extends to the Wigner case:

Corollary 2.3.6 (Upper tail estimate for Wigner ensembles). Sup-
pose that the coefficients &5 of M are independent for j > i, mean
zero, and uniformly bounded in magnitude by 1, and let &; := 5 for
j <. Then there ezists absolute constants C,c > 0 such that

P(|[M]op > AV) < Cexp(—cAn)

for all A > C. In particular, we have |M||op = O(y/n) with over-
whelming probability.

Proof. From Corollary 2.3.5, the claim already holds for the upper-
triangular portion of M, as well as for the strict lower-triangular
portion of M. The claim then follows from the triangle inequality
(adjusting the constants C, ¢ appropriately). O

Exercise 2.3.3. Generalise Corollary 2.3.5 and Corollary 2.3.6 to the
case where the coefficients &;; have uniform subgaussian tails, rather
than being uniformly bounded in magnitude by 1.
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Remark 2.3.7. What we have just seen is a simple example of an
epsilon net argument, which is useful when controlling a supremum
of random variables sup,cg X, such as (2.57), where each individual
random variable X, is known to obey a large deviation inequality (in
this case, Lemma 2.3.1). The idea is to use metric arguments (e.g. the
triangle inequality, see Lemma 2.3.2) to refine the set of parameters
S to take the supremum over to an e-net ¥ = Y. for some suitable
e, and then apply the union bound. One takes a loss based on the
cardinality of the e-net (which is basically the covering number of the
original parameter space at scale ¢), but one can hope that the bounds
from the large deviation inequality are strong enough (and the metric
entropy bounds sufficiently accurate) to overcome this entropy loss.

There is of course the question of what scale £ to use. In this
simple example, the scale € = 1/2 sufficed. In other contexts, one has
to choose the scale € more carefully. In more complicated examples
with no natural preferred scale, it often makes sense to take a large
range of scales (e.g. ¢ =277 for j = 1,...,J) and chain them together
by using telescoping series such as X, = X,, + ijl Kejp — Xa,
(where x; is the nearest point in ¥; tox for j =1,...,J, and 41 is
x by convention) to estimate the supremum, the point being that one
can hope to exploit cancellations between adjacent elements of the
sequence X, . This is known as the method of chaining. There is an
even more powerful refinement of this method, known as the method
of generic chaining, which has a large number of applications; see
[Ta2005] for a beautiful and systematic treatment of the subject.
However, we will not use this method in this course.

2.3.2. A symmetrisation argument (optional). We pause here
to record an elegant symmetrisation argument that exploits convexity
to allow us to reduce without loss of generality to the symmetric case
M = —M, albeit at the cost of losing a factor of 2. We will not
use this type of argument directly in this text, but it is often used
elsewhere in the literature.

Let M be any random matrix with mean zero, and let M be an
independent copy of M. Then, conditioning on M, we have

E(M — M|M) = M.
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As the operator norm M — ||M||op is convex, we can then apply
Jensen’s inequality (Exercise 1.1.8) to conclude that

E(|M — M||op| M) 2 || M]|op-
Undoing the conditioning over M, we conclude that
(2.59) E||M — M||op = E||M|op-

Thus, to upper bound the expected operator norm of M, it suffices
to upper bound the expected operator norm of M — M. The point is
that even if M is not symmetric (M % —M), M — M is automatically
symmetric.

One can modify (2.59) in a few ways, given some more hypothe-
ses on M. Suppose now that M = (&;;)1<; j<n 1S a matrix with
independent entries, thus M — M has coefficients & — éij where
gij is an independent copy of &;;. Introduce a random sign matrix
E = (€ij)1<i,j<n which is (jointly) independent of M, M. Observe
that as the distribution of §;; — éij is symmetric, that

(&5 — &ij) = (&5 — &ij)eiss
and thus

M-M)Y=(M-M)-E
where A - B = (a;jbij)1<ij<n is the Hadamard product of A =
(@ij)1<ij<n and B = (bij)1<i,j<n. We conclude from (2.59) that

E|M|lop < E[[(M — M) - Ellop.
By the distributive law and the triangle inequality we have
I(M = M) - Ellop < ||M - Ellop + [|M - Ellop-

But as M - E = M - E, the quantities | M - E||op and || M - E||op have
the same expectation. We conclude the symmetrisation inequality

(2.60) E|| M |op < 2B M - Eop.

Thus, if one does not mind losing a factor of two, one has the
freedom to randomise the sign of each entry of M independently (as-
suming that the entries were already independent). Thus, in proving
Corollary 2.3.5, one could have reduced to the case when the &;; were
symmetric, though in this case this would not have made the argu-
ment that much simpler.
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Sometimes it is preferable to multiply the coefficients by a Gauss-
ian rather than by a random sign. Again, let M = (&;)i<ij<n
have independent entries with mean zero. Let G = (g;5)1<i j<n be
a real gaussian matrix independent of M, thus the g;; = N(0,1)r
are iild. We can split G = E - |G|, where E := (sgn(gi;))i<i,j<n and
|G| = (|9i5|)1<i,j<n- Note that E, M, |G| are independent, and F is
a random sign matrix. In particular, (2.60) holds. We now use

Exercise 2.3.4. If g = N(0, 1)r, show that E|g| = \/%

From this exercise we see that

E(M-E-|G|M,E):\/5M-E
™

and hence by Jensen’s inequality (Exercise 1.1.8) again

2
E([|M - E-[Glllop|M, E) > \/;IIM'Elop-

Undoing the conditional expectation in M, E and applying (2.60) we
conclude the gaussian symmetrisation inequality

(2.61) E[|M|lop < V27E[|M - G|lop-

Thus, for instance, when proving Corollary 2.3.5, one could have
inserted a random gaussian in front of each coefficient. This would
have made the proof of Lemma 2.3.1 marginally simpler (as one could
compute directly with gaussians, and reduce the number of appeals
to concentration of measure results) but in this case the improvement
is negligible. In other situations though it can be quite helpful to
have the additional random sign or random gaussian factor present.
For instance, we have the following result of Latala[La2005]:

Theorem 2.3.8. Let M = (&)1<i,j<n be a matriz with independent
mean zero entries, obeying the second moment bounds
n
sup Y E[g;[° < K*n

)

n
sup Y El;[° < K*n
J =1
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and the fourth moment bound

n n
DO Elglt < K'n?
i=1 j=1

for some K > 0. Then E||M||o, = O(K+/n).

Proof. (Sketch only) Using (2.61) one can replace &; by & - ¢ij
without much penalty. One then runs the epsilon-net argument with
an explicit net, and uses concentration of measure results for gaussians
(such as Theorem 2.1.12) to obtain the analogue of Lemma 2.3.1.
The details are rather intricate, and we refer the interested reader to
[La2005]. O

As a corollary of Theorem 2.3.8, we see that if we have an iid
matrix (or Wigner matrix) of mean zero whose entries have a fourth
moment of O(1), then the expected operator norm is O(y/n). The
fourth moment hypothesis is sharp. To see this, we make the trivial
observation that the operator norm of a matrix M = (&;)1<i j<n
bounds the magnitude of any of its coefficients, thus

sup €651 < 1M ][op

1<i,j<n
or equivalently that
P([Mlop <X <P(\/ el < N).
1<i,j<n

In the iid case &; = &, and setting A = Ay/n for some fixed A inde-
pendent of n, we thus have

(2.62) P(|M]lop < AVn) < P(I€] < AVR)™

With the fourth moment hypothesis, one has from dominated conver-
gence that
P(|¢] < AVn) 21— o0a(1/n?),

and so the right-hand side of (2.62) is asymptotically trivial. But
with weaker hypotheses than the fourth moment hypothesis, the rate
of convergence of P(|{] < Ay/n) to 1 can be slower, and one can
easily build examples for which the right-hand side of (2.62) is 04(1)
for every A, which forces || M]|op to typically be much larger than \/n
on the average.
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Remark 2.3.9. The symmetrisation inequalities remain valid with
the operator norm replaced by any other convex norm on the space
of matrices. The results are also just as valid for rectangular matrices
as for square ones.

2.3.3. Concentration of measure. Consider a random matrix M
of the type considered in Corollary 2.3.5 (e.g. a random sign ma-
trix). We now know that the operator norm [|M||,}, is of size O(y/n)
with overwhelming probability. But there is much more that can be
said. For instance, by taking advantage of the convexity and Lips-
chitz properties of ||M||op, we have the following quick application of
Talagrand’s inequality (Theorem 2.1.13):

Proposition 2.3.10. Let M be as in Corollary 2.3.5. Then for any
A >0, one has

P(|||MHOP - M”MHOP‘ >A) < Cexp(—c)\Q)

for some absolute constants C,c > 0, where M| M|op is a median
value for || M||op. The same result also holds with M||M||op replaced
by the expectation E|| M ||op.

Proof. We view || M||op as a function F((§;;)1<i,j<n) of the indepen-
dent complex variables ;;, thus F' is a function from C" to R. The
convexity of the operator norm tells us that F is convex. The triangle
inequality, together with the elementary bound

(2.63) M [lop < [[M]|£

(easily proven by Cauchy-Schwarz), where

(2.64) Iarle = (33 6

is the Frobenius norm (also known as the Hilbert-Schmidt norm or 2-
Schatten norm), tells us that F is Lipschitz with constant 1. The
claim then follows directly from Talagrand’s inequality (Theorem
2.1.13). O

Exercise 2.3.5. Establish a similar result for the matrices in Corol-
lary 2.3.6.
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From Corollary 2.3.5 we know that the median or expectation
of || M||op is of size O(y/n); we now know that ||M||o, concentrates
around this median to width at most O(1). (This turns out to be
non-optimal; the Tracy-Widom law actually gives a concentration of
O(n~1/9), under some additional assumptions on M. Nevertheless
this level of concentration is already non-trivial.)

However, this argument does not tell us much about what the
median or expected value of | M ||op actually s. For this, we will need
to use other methods, such as the moment method which we turn to
next.

Remark 2.3.11. Talagrand’s inequality, as formulated in Theorem
2.1.13, relies heavily on convexity. Because of this, we cannot apply
this argument directly to non-convex matrix statistics, such as singu-
lar values o;(M) other than the largest singular value o (M). Nev-
ertheless, one can still use this inequality to obtain good concentra-
tion results, by using the convexity of related quantities, such as the
partial sums Z;-]:l 0;(M); see [Me2004]. Other approaches include
the use of alternate large deviation inequalities, such as those arising
from log-Sobolev inequalities (see e.g. [Gu2009]), or by using more
abstract versions of Talagrand’s inequality (see [AIKrVu2002]).

2.3.4. The moment method. We now bring the moment method
to bear on the problem, starting with the easy moments and working
one’s way up to the more sophisticated moments. It turns out that
it is easier to work first with the case when M is symmetric or Her-
mitian; we will discuss the non-symmetric case near the end of these
notes.

The starting point for the moment method is the observation that

for symmetric or Hermitian M, the operator norm ||M]||op is equal to
the £°° norm

(2.65) |Mlop = max ||

1<i<n
of the eigenvalues A1,..., A, € R of M. On the other hand, we have
the standard linear algebra identity
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and more generally
tr(M*) => Ak,
i=1

In particular, if kK = 2,4, ... is an even integer, then tr(Mk)l/k is just
the £ norm of these eigenvalues, and we have the inequalities

(2.66) IMI5, < tr(M*) < nf|M]|E,.

op
To put this another way, knowledge of the k" moment tr(M*) con-
trols the operator norm up to a multiplicative factor of n!/*. Taking
larger and larger k, we should thus obtain more accurate control on

the operator norm?'®.

Remark 2.3.12. In most cases, one expects the eigenvalues to be
reasonably uniformly distributed, in which case the upper bound in
(2.66) is closer to the truth than the lower bound. One scenario in
which this can be rigorously established is if it is known that the
eigenvalues of M all come with a high multiplicity. This is often the
case for matrices associated with group actions (particularly those
which are quasirandom in the sense of Gowers[Go2008]). However,
this is usually not the case with most random matrix ensembles, and
we must instead proceed by increasing k as described above.

Let’s see how this method works in practice. The simplest case
is that of the second moment tr(M?), which in the Hermitian case

works out to .

n
w(M?) =3 Y&l = M]3
i=1 j=1
Note that (2.63) is just the k = 2 case of the lower inequality in (2.66),
at least in the Hermitian case.

The expression ;" 77, [€i;]* is easy to compute in practice.
For instance, for the symmetric Bernoulli ensemble, this expression
is exactly equal to n?. More generally, if we have a Wigner matrix in
which all off-diagonal entries have mean zero and unit variance, and
the diagonal entries have mean zero and bounded variance (this is the
case for instance for GOE), then the off-diagonal entries have mean

15This is also the philosophy underlying the power method in numerical linear
algebra.
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1, and by the law of large numbers'® we see that this expression is
almost surely asymptotic to n2.

From the weak law of large numbers, we see in particular that
one has

(2.67) DD l6sF = L+ o(1)n?

i=1 j=1

asymptotically almost surely.

Exercise 2.3.6. If the &; have uniformly sub-exponential tail, show
that we in fact have (2.67) with overwhelming probability.

Applying (2.66), we obtain the bounds
(2.68) (1 +oM)vn < [[M[lop < (1 +o(1))n
asymptotically almost surely. This is already enough to show that the
median of || M||op is at least (1 4 o(1))y/n, which complements (up
to constants) the upper bound of O(y/n) obtained from the epsilon

net argument. But the upper bound here is terrible; we will need to
move to higher moments to improve it.

Accordingly, we now turn to the fourth moment. For simplicity
let us assume that all entries &;; have zero mean and unit variance.
To control moments beyond the second moment, we will also assume
that all entries are bounded in magnitude by some K. We expand

tr(M*) = Z &ivia Sizis Cigia Ciain -

1<y ,i2,13,54<n

To understand this expression, we take expectations:
Etr(M*) = Z E&i i izig&iiaigin -

1<i1,42,13,14<n
One can view this sum graphically, as a sum over length four cycles in
the vertex set {1, ..., n}; note that the four edges {i1, 2}, {42,435}, {i3,94}, {ia, %1}
are allowed to be degenerate if two adjacent & are equal. The value
of each term

(2.69) E&i iy 8inisCigiainin

16 here is of course a dependence between the upper triangular and lower tri-
angular entries, but this is easy to deal with by folding the sum into twice the upper
triangular portion (plus the diagonal portion, which is lower order).
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in this sum depends on what the cycle does.
Firstly, there is the case when all the four edges {i1, 2}, {i2, i3}, {is, 44}, {14,791}

are distinct. Then the four factors &;,i,,...,&,i, are independent;

since we are assuming them to have mean zero, the term (2.69) van-

ishes. Indeed, the same argument shows that the only terms that do

not vanish are those in which each edge is repeated at least twice. A

short combinatorial case check then shows that, up to cyclic permu-

tations of the i1,19,13,74 indices there are now only a few types of

cycles in which the term (2.69) does not automatically vanish:

(i) i1 = i3, but is,44 are distinct from each other and from ;.
(11) le = ig and iQ = i4.

(iii) 41 = o = i3, but iy is distinct from ;.

(IV) il = ig = ’ig = i4.

In the first case, the independence and unit variance assumptions
tells us that (2.69) is 1, and there are O(n?) such terms, so the total
contribution here to Etr(M?) is at most O(n?). In the second case,
the unit variance and bounded by K tells us that the term is O(K?),
and there are O(n?) such terms, so the contribution here is O(n?K?).
Similarly, the contribution of the third type of cycle is O(n?), and the
fourth type of cycle is O(nK?), so we can put it all together to get

Etr(M*) < 0(n?) + O(n*K?).
In particular, if we make the hypothesis K = O(y/n), then we have
Etr(M*) < 0(n?),

and thus by Markov’s inequality(1.13) we see that for any £ > 0,
tr(M*) < O.(n®) with probability at least 1 —e. Applying (2.66),
this leads to the upper bound

1M lop < Oc(n*'*)

with probability at least 1 —&; a similar argument shows that for any
fixed € > 0, one has

1Mo < 4+

with high probability. This is better than the upper bound obtained
from the second moment method, but still non-optimal.
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Exercise 2.3.7. If K = o(y/n), use the above argument to show that
(BIIMI5,) " = (21 + o(1)v/n

which in some sense improves upon (2.68) by a factor of 2'/4. In
particular, if K = O(1), conclude that the median of ||M]|op is at
least (21/4 + o(1))y/n.

Now let us take a quick look at the sixth moment, again with
the running assumption of a Wigner matrix in which all entries have
mean zero, unit variance, and bounded in magnitude by K. We have

Etr(M°) = Z E&i iy - - &isicigins
1<it,eic<n
a sum over cycles of length 6 in {1,...,n}. Again, most of the sum-
mands here vanish; the only ones which do not are those cycles in
which each edge occurs at least twice (so in particular, there are at
most three distinct edges).

Classifying all the types of cycles that could occur here is some-
what tedious, but it is clear that there are going to be O(1) different
types of cycles. But we can organise things by the multiplicity of each
edge, leaving us with four classes of cycles to deal with:

(i) Cycles in which there are three distinct edges, each occuring
two times.

(ii) Cycles in which there are two distinct edges, one occuring
twice and one occuring four times.

(iii) Cyecles in which there are two distinct edges, each occuring

three times!”.

(iv) Cycles in which a single edge occurs six times.

It is not hard to see that summands coming from the first type of
cycle give a contribution of 1, and there are O(n?*) of these (because
such cycles span at most four vertices). Similarly, the second and
third types of cycles give a contribution of O(K?) per summand, and
there are O(n?) summands; finally, the fourth type of cycle gives a

17Actually, this case ends up being impossible, due to a “bridges of Kénigsberg”
type of obstruction, but we will retain it for this discussion.
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contribution of O(K*), with O(n?) summands. Putting this together
we see that

Etr(M%) < O(n*) + O(n*K?) + O(n*K*);
so in particular if we assume K = O(y/n) as before, we have
Etr(M%) < O(n*)
and if we then use (2.66) as before we see that
1M lop < O(n*?)

with probability 1 — ¢, for any € > 0; so we are continuing to make
progress towards what we suspect (from the epsilon net argument) to

be the correct bound of nl/2.

Exercise 2.3.8. If K = o(y/n), use the above argument to show that
(ElIM|5,)"° = (5% + o(1))V/n.

In particular, if K = O(1), conclude that the median of ||M]||op is
at least (5'/6 4 0(1))y/n. Thus this is a (slight) improvement over
Exercise 2.3.7.

Let us now consider the general k" moment computation under
the same hypotheses as before, with k an even integer, and make
some modest attempt to track the dependency of the constants on k.
Again, we have

(2.70) Etr(M*) = > By S

1<i1,...,ix<n
which is a sum over cycles of length k. Again, the only non-vanishing
expectations are those for which each edge occurs twice; in particular,
there are at most k/2 edges, and thus at most k/2 + 1 vertices.

We divide the cycles into various classes, depending on which
edges are equal to each other. (More formally, a class is an equiv-
alence relation ~ on a set of k labels, say {1,...,k} in which each
equivalence class contains at least two elements, and a cycle of k edges
{i1,i2}, ..., {ix, 41} lies in the class associated to = when we have that
{3,4j41} = {i;s, 15741} iff j ~ 5/, where we adopt the cyclic notation
ka1 i=11.)
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How many different classes could there be? We have to assign up
to k/2 labels to k edges, so a crude upper bound here is (k/2)*.

Now consider a given class of cycle. It has j edges e1,...,e; for
some 1 < j < k/2, with multiplicities a1, ...,a;, where a1,...,q;
are at least 2 and add up to k. The j edges span at most j + 1
vertices; indeed, in addition to the first vertex 71, one can specify all
the other vertices by looking at the first appearance of each of the
Jj edges e1,...,e; in the path from 4; to i, and recording the final
vertex of each such edge. From this, we see that the total number
of cycles in this particular class is at most n/*1. On the other hand,
because each ¢;; has mean zero, unit variance and is bounded by K,
the a'™ moment of this coefficient is at most K% 2 for any a > 2.
Thus each summand in (2.70) coming from a cycle in this class has
magnitude at most

Kau—2  fai—2 _ faiteta;—2j _ fk-2j
Thus the total contribution of this class to (2.70) is n/*1 K*=2/ which
we can upper bound by
max(n? ! n?K*2) = n*/2t max(1, K /v/n)*2

Summign up over all classes, we obtain the (somewhat crude) bound

Etr(M") < (k/2)Fn*/? max(1, K //n)F2
and thus by (2.66)

B[ M5, < (k/2)5n"/ 2 max(1, & /v/n)~2
and so by Markov’s inequality(1.13) we have

P(|M]lop > A) < A~ (k/2) 0> max(1, K /v/n)* 2

for all A > 0. This, for instance, places the median of || M|, at
O(n'/*ky/nmax(1, K/ /n)). We can optimise this in k by choosing
k to be comparable to logn, and so we obtain an upper bound of
O(yv/nlognmax(1, K/y/n)) for the median; indeed, a slight tweaking
of the constants tells us that ||M| o, = O(y/nlognmax(1l, K/\/n))
with high probability.

The same argument works if the entries have at most unit variance
rather than unit variance, thus we have shown
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Proposition 2.3.13 (Weak upper bound). Let M be a random Her-
mitian matriz, with the upper triangular entries &, © < j being in-
dependent with mean zero and wariance at most 1, and bounded in
magnitude by K. Then |M|op = O(v/nlognmax(1l, K/\/n)) with
high probability.

When K < /n, this gives an upper bound of O(y/nlogn), which
is still off by half a logarithm from the expected bound of O(y/n). We
will remove this half-logarithmic loss later in these notes.

2.3.5. Computing the moment to top order. Now let us con-
sider the case when K = o(y/n), and each entry has variance exactly
1. We have an upper bound

Etr(M") < (k/2)kn*/2+1,

let us try to get a more precise answer here (as in Exercises 2.3.7,
2.3.8). Recall that each class of cycle contributed a bound of n/ Tt K*~2
to this expression. If K = o(y/n), we see that such expressions are
ox(n®/?t1) whenever j < k/2, where the og() notation means that
the decay rate as n — oo can depend on k. So the total contribution
of all such classes is oy (n/?t1).

Now we consider the remaining classes with j = k/2. For such
classes, each equivalence class of edges contains exactly two represen-
tatives, thus each edge is repeated exactly once. The contribution
of each such cycle to (2.70) is exactly 1, thanks to the unit vari-
ance and independence hypothesis. Thus, the total contribution of
these classes to E tr(M*) is equal to a purely combinatorial quantity,
namely the number of cycles of length k on {1,...,n} in which each
edge is repeated exactly once, yielding k/2 unique edges. We are thus
faced with the enumerative combinatorics problem of bounding this
quantity as precisely as possible.

With k/2 edges, there are at most k/2 4+ 1 vertices traversed by
the cycle. If there are fewer than k/2+1 vertices traversed, then there
are at most Oy, (n*/2) = oy (n*/?*1) cycles of this type, since one can
specify such cycles by identifying up to k/2 vertices in {1,...,n} and
then matching those coordinates with the k vertices of the cycle. So
we set aside these cycles, and only consider those cycles which traverse
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exactly k/2+ 1 vertices. Let us call such cycles (i.e. cycles of length &k
with each edge repeated exactly once, and traversing exactly k/2 + 1
vertices) non-crossing cycles of length kin {1,...,n}. Our remaining
task is then to count the number of non-crossing cycles.

Example 2.3.14. Let a,b,¢,d be distinct elements of {1,...,n}.
Then (i1,...,i5) = (a,b,¢,d, ¢,b) is a non-crossing cycle of length k,
as is (a,b,a,c¢,a,d). Any cyclic permutation of a non-crossing cycle
is again a non-crossing cycle.

Exercise 2.3.9. Show that a cycle of length k is non-crossing if and
only if there exists a tree'® in {1,...,n} of k/2 edges and k/2 + 1
vertices, such that the cycle lies in the tree and traverses each edge
in the tree exactly twice.

Exercise 2.3.10. Let iy,...,i; be a cycle of length k. Arrange the
integers 1,...,k around a circle, and draw a line segment between
two distinct integers 1 < a < b < k whenever i, = i,. Show that
the cycle is non-crossing if and only if the number of line segments is
exactly k/2 — 1, and the line segments do not cross each other. This
may help explain the terminology “non-crossing”.

Now we can complete the count. If k is a positive even integer,
define a Dyck word'® of length k to be the number of words consisting
of left and right parentheses (, ) of length &, such that when one reads
from left to right, there are always at least as many left parentheses
as right parentheses (or in other words, the parentheses define a valid
nesting). For instance, the only Dyck word of length 2 is (), the two
Dyck words of length 4 are (()) and ()(), and the five Dyck words of
length 6 are

000 ()0, 00), (O0), (O,

and so forth.

Lemma 2.3.15. The number of non-crossing cycles of length k in
{1,...,n} is equal to Cyon(n —1)...(n — k/2), where Cy 5 is the
number of Dyck words of length k. (The number Cy, 5 is also known
as the (k/2)™ Catalan number.)

181y graph theory, a tree is a finite collection of vertices and (undirected) edges
between vertices, which do not contain any cycles.
19Dyck words are also closely related to Dyck paths in enumerative combinatorics.
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Proof. We will give a bijective proof. Namely, we will find a way to
store a non-crossing cycle as a Dyck word, together with an (ordered)
sequence of k/2 + 1 distinct elements from {1,...,n}, in such a way
that any such pair of a Dyck word and ordered sequence generates
exactly one non-crossing cycle. This will clearly give the claim.

So, let us take a non-crossing cycle i1, ...,7;. We imagine travers-
ing this cycle from 4; to i9, then from s to 43, and so forth until we
finally return to ¢; from i;. On each leg of this journey, say from i;
to 741, we either use an edge that we have not seen before, or else
we are using an edge for the second time. Let us say that the leg
from ¢; to ¢j41 is an innovative leg if it is in the first category, and
a returning leg otherwise. Thus there are k/2 innovative legs and
k/2 returning legs. Clearly, it is only the innovative legs that can
bring us to vertices that we have not seen before. Since we have to
visit k/2 + 1 distinct vertices (including the vertex i; we start at),
we conclude that each innovative leg must take us to a new vertex.
We thus record, in order, each of the new vertices we visit, starting
at 47 and adding another vertex for each innovative leg; this is an
ordered sequence of k/2 + 1 distinct elements of {1,...,n}. Next,
traversing the cycle again, we write down a ( whenever we traverse
an innovative leg, and an ) otherwise. This is clearly a Dyck word.
For instance, using the examples in Example 2.3.14, the non-crossing
cycle (a,b,c,d,c,b) gives us the ordered sequence (a,b,c,d) and the
Dyck word ((())), while (a, b, a,c,a,d) gives us the ordered sequence
(a,b,c,d) and the Dyck word ()()().

We have seen that every non-crossing cycle gives rise to an ordered
sequence and a Dyck word. A little thought shows that the cycle can
be uniquely reconstructed from this ordered sequence and Dyck word
(the key point being that whenever one is performing a returning leg
from a vertex v, one is forced to return along the unique innovative
leg that discovered v). A slight variant of this thought also shows
that every Dyck word of length k and ordered sequence of k/2 + 1
distinct elements gives rise to a non-crossing cycle. This gives the
required bijection, and the claim follows. O

Next, we recall the classical formula for the Catalan number:
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Exercise 2.3.11. Establish the recurrence
n

Cnt1 = Z CiCpn—i
i=0

for any n > 1 (with the convention Cy = 1), and use this to deduce
that

2.71 C —k!
(2.71) M2 k2 + D)I(k/2)!

for all k = 2,4,6,....

Exercise 2.3.12. Let k be a positive even integer. Given a string of
k/2 left parentheses and k/2 right parentheses which is not a Dyck
word, define the reflection of this string by taking the first right paren-
thesis which does not have a matching left parenthesis, and then re-
versing all the parentheses after that right parenthesis. Thus, for
instance, the reflection of ())(() is ())))(. Show that there is a bi-
jection between non-Dyck words with k/2 left parentheses and k/2
right parentheses, and arbitrary words with k/2 — 1 left parentheses
and k/2 + 1 right parentheses. Use this to give an alternate proof of
(2.71).

Note that n(n —1)...(n —k/2) = (1 + ox(1))n*/>*1. Putting all
the above computations together, we conclude

Theorem 2.3.16 (Moment computation). Let M be a real symmet-
ric random matriz, with the upper triangular elements &;;, © < j
jointly independent with mean zero and variance one, and bounded in
magnitude by o(y/n). Let k be a positive even integer. Then we have

Etr(M*) = (O + or(1))nF/>
where Cy 9 is given by (2.71).

Remark 2.3.17. An inspection of the proof also shows that if we
allow the &;; to have variance at most one, rather than equal to one,
we obtain the upper bound

Etr(M*) < (Cya + 0r(1))nF/*

Exercise 2.3.13. Show that Theorem 2.3.16 also holds for Hermitian
random matrices. (Hint: The main point is that with non-crossing
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cycles, each non-innovative leg goes in the reverse direction to the
corresponding innovative leg - why?)

Remark 2.3.18. Theorem 2.3.16 can be compared with the formula
ES* = (Cjjy + 0x(1))n*/?

derived in Notes 1, where S = X; + ... + X,, is the sum of n iid
random variables of mean zero and variance one, and

;o k!

b2 = g
Exercise 2.3.10 shows that Cy /5 can be interpreted as the number of
ways to join k points on the circle by k/2 — 1 non-crossing chords.
In a similar vein, C}, /o can be interpreted as the number of ways to
join k points on the circle by k/2 chords which are allowed to cross
each other (except at the endpoints). Thus moments of Wigner-type
matrices are in some sense the “non-crossing” version of moments of
sums of random variables. We will discuss this phenomenon more
when we turn to free probability in Section 2.5.

Combining Theorem 2.3.16 with (2.66) we obtain a lower bound
E||M|l5, > (Ciyz + o (1))n"/2.

In the bounded case K = O(1), we can combine this with Exercise

2.3.5 to conclude that the median (or mean) of | M||op is at least

(C;;];—i—ok(l))\/ﬁ. On the other hand, from Stirling’s formula (Section

1.2) we see that C;;IS

slowly growing function of n, we conclude

converges to 2 as k — oo. Taking k to be a

Proposition 2.3.19 (Lower Bai-Yin theorem). Let M be a real sym-
metric random matriz, with the upper triangular elements &;;, i < j
jointly independent with mean zero and variance one, and bounded in
magnitude by O(1). Then the median (or mean) of | M ||op is at least

(2 - o(1))v/n.

Remark 2.3.20. One can in fact obtain an exact asymptotic expan-
sion of the moments Etr(M*) as a polynomial in n, known as the
genus expansion of the moments. This expansion is however some-
what difficult to work with from a combinatorial perspective (except
at top order) and will not be used here.
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2.3.6. Removing the logarithm. The upper bound in Proposition
2.3.13 loses a logarithm in comparison to the lower bound coming from
Theorem 2.3.16. We now discuss how to remove this logarithm.

Suppose that we could eliminate the og(1) error in Theorem
2.3.16. Then from (2.66) we would have

E|M||}, < Cyjon*/?H!
and hence by Markov’s inequality(1.13)
P([|[Mllop > A) < ATFCy jon*/2H1.

Applying this with A = (2 + €)y/n for some fixed € > 0, and setting
k to be a large multiple of log n, we see that [|[M|op < (24 O(e))vn
asymptotically almost surely, which on selecting € to grow slowly in
n gives in fact that [|[M|op < (2 + o(1))y/n asymptotically almost
surely, thus complementing the lower bound in Proposition 2.3.19.

This argument was not rigorous because it did not address the
o (1) error. Without a more quantitative accounting of this error, one
cannot set k as large as log n without losing control of the error terms;
and indeed, a crude accounting of this nature will lose factors of k*
which are unacceptable. Nevertheless, by tightening the hypotheses
a little bit and arguing more carefully, we can get a good bound, for
k in the region of interest:

Theorem 2.3.21 (Improved moment bound). Let M be a real sym-
metric random matriz, with the upper triangular elements &;;, i < j
jointly independent with mean zero and variance one, and bounded in
magnitude by O(n®*9) (say). Let k be a positive even integer of size
k = O(log®n) (say). Then we have

Etr(Mk) _ Ck/znk/2+1 + O(k0(1)2knk/2+0.98)

where Cy, /o is given by (2.71). In particular, from the trivial bound
Cr2 < 2k (which is obvious from the Dyck words definition) one has

(2.72) Etr(M") < (24 o(1))knk/?+1,
One can of course adjust the parameters n°4° and log®n in the

above theorem, but we have tailored these parameters for our appli-
cation to simplify the exposition slightly.
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Proof. We may assume n large, as the claim is vacuous for bounded
n.

We again expand using (2.70), and discard all the cycles in which
there is an edge that only appears once. The contribution of the

non-crossing cycles was already computed in the previous section to
be

Crjon(n—1)...(n—k/2),
which can easily be computed (e.g. by taking logarithms, or using
Stirling’s formula) to be (Cj /2 + o(1))n*/?*1. So the only task is to
show that the net contribution of the remaining cycles is O(k© (1) 2Fn*/2),

Consider one of these cycles (i1,...,14); it has j distinct edges
for some 1 < j < k/2 (with each edge repeated at least once).

We order the j distinct edges eq,...,e; by their first appearance
in the cycle. Let ai,...,a; be the multiplicities of these edges, thus
the aq,...,a; are all at least 2 and add up to k. Observe from the mo-
ment hypotheses that the moment E|¢;;|* is bounded by O(n%49)2=2
for @ > 2. Since a1 + ...+ a; = k, we conclude that the expression

Egilig cee gikil

0-49)k=2J " and so the net contri-

in (2.70) has magnitude at most O(n
bution of the cycles that are not non-crossing is bounded in magnitude

by

k/2
(2.73) >0 NT Ny,

7=1 at,...,a;
where aq,...,a; range over integers that are at least 2 and which
add up to k, and Nay,..a; 18 the number of cycles that are not
non-crossing and have j distinct edges with multiplicity ai,...,q;

(in order of apeparance). It thus suffices to show that (2.73) is
O (KO 2ok /2+0.98).

Next, we estimate Ny, . 4, for a fixed aq,...,a;. Given a cycle
(1,...,1k), we traverse its k legs (which each traverse one of the edges
é1,...,e;) one at a time and classify them into various categories:

(i) High-multiplicity legs, which use an edge e; whose multiplic-
ity a; is larger than two.
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(ii) Fresh legs, which use an edge e; with a; = 2 for the first
time.

(iii) Return legs, which use an edge e; with a; = 2 that has
already been traversed by a previous fresh leg.

We also subdivide fresh legs into innovative legs, which take one
to a vertex one has not visited before, and non-innovative legs, which
take one to a vertex that one has visited before.

At any given point in time when traversing this cycle, we define an
available edge to be an edge e; of multiplicity a; = 2 that has already
been traversed by its fresh leg, but not by its return leg. Thus, at any
given point in time, one travels along either a high-multiplicity leg,
a fresh leg (thus creating a new available edge), or one returns along
an available edge (thus removing that edge from availability).

Call a return leg starting from a vertex v forced if, at the time
one is performing that leg, there is only one available edge from v,
and unforced otherwise (i.e. there are two or more available edges to
choose from).

We suppose that there are I := #{1 < i < j : a; > 2} high-
multiplicity edges among the ey, ..., ¢e;, leading to j —1{ fresh legs and
their j — [ return leg counterparts. In particular, the total number of
high-multiplicity legs is

(2.74) Y ai=k—2(j 1)

Since , ., a; > 3l, we conclude the bound

(2.75) 1< k—2j

We assume that there are m non-innovative legs among the 5 — 1
fresh legs, leaving j — I — m innovative legs. As the cycle is not
non-crossing, we either have j < k/2 or m > 0.

Similarly, we assume that there are r unforced return legs among

the 7 — [ total return legs. We have an important estimate:

Lemma 2.3.22 (Not too many unforced return legs). We have

r<2(m+ Z a;).

a;>2
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In particular, from (2.74), (2.75), we have
r < O(k —2j) + O(m).

Proof. Let v be a vertex visited by the cycle which is not the initial
vertex 71. Then the very first arrival at v comes from a fresh leg,
which immediately becomes available. Each departure from v may
create another available edge from v, but each subsequent arrival at
v will delete an available leg from v, unless the arrival is along a non-
innovative or high-multiplicity edge®. Finally, any returning leg that
departs from v will also delete an available edge from v.

This has two consequences. Firstly, if there are no non-innovative
or high-multiplicity edges arriving at v, then whenever one arrives at
v, there is at most one available edge from v, and so every return
leg from v is forced. (And there will be only one such return leg.)
If instead there are non-innovative or high-multiplicity edges arriving
at v, then we see that the total number of return legs from v is at
most one plus the number of such edges. In both cases, we conclude
that the number of unforced return legs from v is bounded by twice
the number of non-innovative or high-multiplicity edges arriving at v.
Summing over v, one obtains the claim. O

Now we return to the task of counting Na,,...a;, by recording
various data associated to any given cycle (i1,...,4x) contributing
to this number. First, fix m,r. We record the initial vertex iy of
the cycle, for which there are n possibilities. Next, for each high-
multiplicity edge e; (in increasing order of i), we record all the a;
locations in the cycle where this edge is used; the total number of
ways this can occur for each such edge can be bounded above by k%,
so the total entropy cost here is k2>=i>2 % = kk=2(=0_ We also record
the final endpoint of the first occurrence of the edge e; for each such
i; this list of [ vertices in {1,...,n} has at most n' possibilities.

For each innovative leg, we record the final endpoint of that leg,
leading to an additional list of j — I —m vertices with at most n/ /=™
possibilities.

20Note that one can loop from v to itself and create an available edge, but this is
along a non-innovative edge and so is not inconsistent with the previous statements.
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For each non-innovative leg, we record the position of that leg,
leading to a list of m numbers from {1, ...k}, which has at most k™
possibilities.

For each unforced return leg, we record the position of the cor-
responding fresh leg, leading to a list of » numbers from {1,...,k},
which has at most k£" possibilities.

Finally, we record a Dyck-like word of length &, in which we place
a ( whenever the leg is innovative, and ) otherwise (the brackets need
not match here). The total entropy cost here can be bounded above
by 2F.

We now observe that all this data (together with I, m,r) can be
used to completely reconstruct the original cycle. Indeed, as one
traverses the cycle, the data already tells us which edges are high-
multiplicity, which ones are innovative, which ones are non-innovative,
and which ones are return legs. In all edges in which one could possi-
bly visit a new vertex, the location of that vertex has been recorded.
For all unforced returns, the data tells us which fresh leg to backtrack
upon to return to. Finally, for forced returns, there is only one avail-
able leg to backtrack to, and so one can reconstruct the entire cycle
from this data.

As a consequence, for fixed [, m and r, there are at most

nkk72(jfl)nlnjfl7mkmkr2k

,,,,, a;; using (2.75), (2.3.22) we can bound this by
kO(k72j)+O(m)nj7m+12k.

contributions to Ny,

Summing over the possible values of m,r (recalling that we either
have j < k/2 or m > 0, and also that k = O(log®n)) we obtain
N, 0 < kO(k72j)+O(1)nmax(j+1,k/2)2k'
Loty S

The expression (2.73) can then be bounded by

k/2
ok Z O(n0.49)k72jkO(k72j)+O(1)nmax(j+1,k:/2) Z 1
j:1 Al,y...5Q5

When j is exactly k/2, then all the a4, . . ., a; must equal 2, and so the
contribution of this case simplifies to 28kOMnk/2. For j < k/2, the
numbers a; —2,...,a; —2 are non-negative and add up to k — 27, and
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so the total number of possible values for these numbers (for fixed j)
can be bounded crudely by j¥~27 < k*~27 (for instance). Putting all
this together, we can bound (2.73) by

k/2-1
2k[k0(1)nlc/2+ Z O(n0.49)k72jkO(Icf2j)+O(1)nj+lklcf2j]
j=1

which simplifies by the geometric series formula (and the hypothesis
k = O(log®n)) to
O(2* kO(l)nk/2+0.98)

as required. O

We can use this to conclude the following matching upper bound
to Proposition 2.3.19, due to Bai and Yin[BaYil1988]:

Theorem 2.3.23 (Weak Bai-Yin theorem, upper bound). Let M =
(fz‘j)lgi,jgn be a real symmetric matrix whose entries all have the
same distribution &, with mean zero, variance one, and fourth moment
O(1). Then for every ¢ > 0 independent of n, one has |M|op <
(2 + €)y/n asymptotically almost surely. In particular, ||M|lop < (2+
o(1))\/n asymptotically almost surely; as another consequence, the
median of || M||op is at most (2 + o(1))y/n. (If € is bounded, we see
in particular from Proposition 2.3.19 that the median is in fact equal

to (24 0(1))y/n.)

The fourth moment hypothesis is best possible, as seen in the
discussion after Theorem 2.3.8. We will discuss some generalisations
and improvements of this theorem in other directions below.

Proof. To obtain Theorem 2.3.23 from Theorem 2.3.21 we use the
truncation method. We split each &;; as &;; <,0.40 + & 5p0.49 in the
usual manner, and split M = Mc, 040 + M ,040 accordingly. We
would like to apply Theorem 2.3.21 to M<,0.40, but unfortunately the
truncation causes some slight adjustment to the mean and variance
of the &;; <po.49. The variance is not much of a problem; since &;; had
variance 1, it is clear that ;; <040 has variance at most 1, and it
is easy to see that reducing the variance only serves to improve the
bound (2.72). As for the mean, we use the mean zero nature of &;; to
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write
E&j)gno.w == _Eé-ij,>n0-49~

To control the right-hand side, we use the trivial inequality |£;; <,,0.40]
n73><0‘49|&j|4 N

that

IN

and the bounded fourth moment hypothesis to conclude

_ —1.47
Egij7§n0,49 = O(TL )
Thus we can write M<,0.40 = Mcpo.40 + EMcp0.40, where M<j0.40 is
the random matrix with coefficients
fij’gno.w = Eij7gn0.49 — Efij,gno-“g

and EM < 0.4 is a matrix whose entries have magnitude O(n=147). In
particular, by Schur’s test this matrix has operator norm O(n~=%47),
and so by the triangle inequality

HM”op < ||M§n0'49||op + ||M>n0-49||op + O(n70.47).

The error term O(n~%47) is clearly negligible for n large, and it will
suffice to show that

(2.76) | Moo lop < (24¢/3)vn
and
(2.77) [ M 0.9 |op < g\/ﬁ

asymptotically almost surely.
We first show (2.76). We can now apply Theorem 2.3.21 to con-
clude that
E|[Ncponllfy < (2+ o(1))ent/2+!
for any k = O(log2 n). In particular, we see from Markov’s inequal-
ity(1.13) that (2.76) holds with probability at most

2+ 0(1)\" .
2+4+¢/3
Setting k to be a large enough multiple of logn (depending on &),

we thus see that this event (2.76) indeed holds asymptotically almost
surely?!.

21Indeed, one can ensure it happens with overwhelming probability, by letting
k/logn grow slowly to infinity.
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Now we turn to (2.77). The idea here is to exploit the sparseness
of the matrix Ms,0.49. First let us dispose of the event that one of
the entries &;; has magnitude larger than %\/ﬁ (which would certainly
cause (2.77) to fail). By the union bound, the probability of this event
is at most

n?P (¢] = Svin) .

By the fourth moment bound on ¢ and dominated convergence, this
expression goes to zero as n — oo. Thus, asymptotically almost
surely, all entries are less than $+/n.

Now let us see how many non-zero entries there are in M- ,0.40.
By Markov’s inequality(1.13) and the fourth moment hypothesis, each
entry has a probability O(n=**%4%) = O(n=1%) of being non-zero;
by the first moment method, we see that the expected number of
entries is O(n%%). As this is much less than n, we expect it to be
unlikely that any row or column has more than one entry. Indeed,
from the union bound and independence, we see that the probability
that any given row and column has at least two non-zero entries is at
most

n2 X O(n—1.96)2 — O(n—1.92)

and so by the union bound again, we see that with probability at least
1—0(n=%9%) (and in particular, asymptotically almost surely), none
of the rows or columns have more than one non-zero entry. As the
entries have magnitude at most £+/n, the bound (2.77) now follows
from Schur’s test, and the claim follows. O

We can upgrade the asymptotic almost sure bound to almost sure
boundedness:

Theorem 2.3.24 (Strong Bai-Yin theorem, upper bound). Let £ be
a real random variable with mean zero, variance 1, and finite fourth
moment, and for all 1 < i < j, let &§; be an iid sequence with distri-
bution &, and set &;; = &j. Let My, := (&j)1<i,j<n be the random
matriz formed by the top left n x n block. Then almost surely one has
limsup,, o [[Mnlop/v/1 < 2.
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Exercise 2.3.14. By combining the above results with Proposition
2.3.19 and Exercise 2.3.5, show that with the hypotheses of Theo-
rem 2.3.24 with  bounded, one has lim,, o || My, |lop/+/1 = 2 almost
surely?2.

Proof. We first give ourselves an epsilon of room (cf. [Ta2010,
§2.7]). It suffices to show that for each ¢ > 0, one has
(2.78) limsup || My, |lop/vn <2+¢

n— oo
almost surely.

Next, we perform dyadic sparsification (as was done in the proof
of the strong law of large numbers, Theorem 2.1.8). Observe that
any minor of a matrix has its operator norm bounded by that of the
larger matrix; and so ||M,||op is increasing in n. Because of this, it
will suffice to show (2.78) almost surely for n restricted to a lacunary
sequence, such as n = n,, := |[(1 4+ ¢&)™] for m = 1,2,..., as the
general case then follows by rounding n upwards to the nearest n,,
(and adjusting ¢ a little bit as necessary).

Once we sparsified, it is now safe to apply the Borel-Cantelli
lemma (Exercise 1.1.1), and it will suffice to show that

Y P(IMa, llop = (2 +€)y/m) < oo

m=1
To bound the probabilities P(||My,,, [lop > (2+€)+/Tim ), we inspect the
proof of Theorem 2.3.23. Most of the contributions to this probability
decay polynomially in n,, (i.e. are of the form O(n,°) for some

¢ > 0) and so are summable. The only contribution which can cause
difficulty is the contribution of the event that one of the entries of
M, exceeds £,/ny, in magnitude; this event was bounded by

n2 P > < v/im).

But if one sums over m using Fubini’s theorem and the geometric
series formula, we see that this expression is bounded by O.(E||?),
which is finite by hypothesis, and the claim follows. d

22The same claim is true without the boundedness hypothesis; we will see this in
Section 2.4.
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Now we discuss some variants and generalisations of the Bai-Yin
result.

Firstly, we note that the results stated above require the diago-
nal and off-diagonal terms to have the same distribution. This is not
the case for important ensembles such as the Gaussian Orthogonal
Ensemble (GOE), in which the diagonal entries have twice as much
variance as the off-diagonal ones. But this can easily be handled by
considering the diagonal separately. For instance, consider a diago-
nal matrix D = diag(&11,-..,&wm) where the &; = £ are identically
distributed with finite second moment. The operator norm of this
matrix is just sup;<;<,, |&:l, and so by the union bound

P(|[Dllop > £v/) < nP(I€] > ev/n).

From the finite second moment and dominated convergence, the right-
hand side is 0.(1), and so we conclude that for for every fixed & > 0,
IDllop < ev/n asymptotically almost surely; diagonalising, we con-
clude that ||Dl|lop = o(v/n) asymptotically almost surely. Because
of this and the triangle inequality, we can modify the diagonal by
any amount with identical distribution and bounded second moment
(a similar argument also works for non-identical distributions if one
has uniform control of some moment beyond the second, such as the
fourth moment) while only affecting all operator norms by o(y/n).

Exercise 2.3.15. Modify this observation to extend the weak and
strong Bai-Yin theorems to the case where the diagonal entries are
allowed to have different distribution than the off-diagonal terms, and
need not be independent of each other or of the off-diagonal terms,
but have uniformly bounded fourth moment.

Secondly, it is a routine matter to generalise the Bai-Yin result
from real symmetric matrices to Hermitian matrices, basically for the
same reasons that Exercise 2.3.13 works. We leave the details to the
interested reader.

The Bai-Yin results also hold for iid random matrices, where
&; = & has mean zero, unit variance, and bounded fourth moment;
this is a result of Yin, Bai, and Krishnaiah[YiBaKr1988]. Because
of the lack of symmetry, the eigenvalues need not be real, and the
bounds (2.66) no longer apply. However, there is a substitute, namely
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the bound
(2.79) M5, < te((MM*)*/2) < n||M]|E,,

valid for any n x n matrix M with complex entries and every even
positive integer k.

Exercise 2.3.16. Prove (2.79).

It is possible to adapt all of the above moment calculations for
tr(M*) in the symmetric or Hermitian cases to give analogous results
for tr((MM*)*/?) in the non-symmetric cases; we do not give the
details here, but mention that the cycles now go back and forth along
a bipartite graph with n vertices in each class, rather than in the
complete graph on n vertices, although this ends up not to affect the
enumerative combinatorics significantly. Another way of viewing this
is through the simple observation that the operator norm of a non-
symmetric matrix M is equal to the operator norm of the augmented
matrix

(2.80) M = (1\3 z\04>

which is a 2n x 2n Hermitian matrix. Thus one can to some extent
identify an n x n iid matrix M with a 2n x 2n Wigner-type matrix
M, in which two n x n blocks of that matrix are set to zero.

Exercise 2.3.17. If M has singular values o1, ..., 0,, show that M
has eigenvalues +o71,...,+0,. This suggests that the theory of the
singular values of an iid matrix should resemble to some extent the
theory of eigenvalues of a Wigner matrix; we will see several examples
of this phenomenon in later notes.

When one assumes more moment conditions on £ than bounded
fourth moment, one can obtain substantially more precise asymptotics
on tr(M*) than given by results such as Theorem 2.3.21, particularly
if one also assumes that the underlying random variable £ is symmet-
ric (i.e. £ = —&). At a practical level, the advantage of symmetry is
that it allows one to assume that the high-multiplicity edges in a cycle
are traversed an even number of times; see the following exercise.
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Exercise 2.3.18. Let X be a bounded real random variable. Show
that X is symmetric if and only if EX* = 0 for all positive odd
integers k.

Next, extend the previous result to the case when X is subgaus-
sian rather than bounded. (Hint: The slickest way to do this is via
itX

the characteristic function e and analytic continuation; it is also

“real-variable” proof that avoids the use of this

instructive to find a
function.)

By using these methods, it is in fact possible to show that un-
der various hypotheses, ||M]||op is concentrated in the range [24/n —
O(n=16),2y/n + O(n=1/9)], and even to get a universal distribu-
tion for the normalised expression (||[M|op — 2v/n)n'/%, known as
the Tracy-Widom law. See this [S01999] for details. There has also
been a number of subsequent variants and refinements of this result
(as well as counterexamples when not enough moment hypotheses are
assumed); see?® [S02004, SoFy2005, Ru2007, Pe2006, Vu2007,
PeS02007, Pe2009, Kh2009, TaVu2009c].

2.4. The semicircular law

We can now turn attention to one of the centerpiece universality re-
sults in random matrix theory, namely the Wigner semicircle law for
Wigner matrices. Recall from Section 2.3 that a Wigner Hermitian
matriz ensemble is a random matrix ensemble M,, = (&;;)1<s, j<n Of
Hermitian matrices (thus &;; = £;;; this includes real symmetric ma-
trices as an important special case), in which the upper-triangular
entries &;;, ¢ > j are iid complex random variables with mean zero
and unit variance, and the diagonal entries &;; are iid real variables,
independent of the upper-triangular entries, with bounded mean and
variance. Particular special cases of interest include the Gaussian Or-
thogonal Ensemble (GOE), the symmetric random sign matrices (aka
symmetric Bernoulli ensemble), and the Gaussian Unitary Ensemble

(GUE).

23Similar results for some non-independent distributions are also available, see
e.g. the paper [DeGi2007], which (like many of the other references cited above)
builds upon the original work of Tracy and Widom[TrWi2002] that handled special
ensembles such as GOE and GUE.)
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In Section 2.3 we saw that the operator norm of M, was typ-
ically of size O(y/n), so it is natural to work with the normalised
matrix ﬁMn Accordingly, given any n x n Hermitian matrix M,
we can form the (normalised) empirical spectral distribution (or ESD
for short)

O (M) /i
1

KL p, 2=

n

1
1 -
v n 4

J

of M,, where \i(M,,) < ... < A\, (M,) are the (necessarily real)
eigenvalues of M,,, counting multiplicity. The ESD is a probability
measure, which can be viewed as a distribution of the normalised
eigenvalues of M,,.

When M,, is a random matrix ensemble, then the ESD K,

is now a random measure - i.e. a random variable?* taking values in
the space Pr(R) of probability measures on the real line.

Now we consider the behaviour of the ESD of a sequence of Her-
mitian matrix ensembles M, as n — oo. Recall from Section 1.1
that for any sequence of random variables in a o-compact metrisable
space, one can define notions of convergence in probability and con-
vergence almost surely. Specialising these definitions to the case of
random probability measures on R, and to deterministic limits, we
see that a sequence of random ESDs p LM, converge in probability

(resp. converge almost surely) to a deterministic limit 4 € Pr(R)
(which, confusingly enough, is a deterministic probability measure!)
if, for every test function ¢ € C.(R), the quantities fR<p dlf'ﬁMn

converge in probability (resp. converge almost surely) to [, ¢ dp.

Remark 2.4.1. As usual, convergence almost surely implies conver-
gence in probability, but not vice versa. In the special case of random
probability measures, there is an even weaker notion of convergence,
namely convergence in expectation, defined as follows. Given a ran-
dom ESD M, One can form its expectation E“ﬁMW € Pr(R),

24Thus, the distribution of B, is a probability measure on probability
vn

measures!
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defined via duality (the Riesz representation theorem) as

/Rw dBp Ly, = E/Rso dfi L s

this probability measure can be viewed as the law of a random eigen-
value ﬁ)\l(Mn) drawn from a random matrix M,, from the ensem-
ble. We then say that the ESDs converge in expectation to a limit
w € Pr(R) if Eu% M, converges the vague topology to u, thus

E/RSOd:U'ﬁMn_)‘/R(Pd/‘
for all ¢ € C.(R).

In general, these notions of convergence are distinct from each
other; but in practice, one often finds in random matrix theory that
these notions are effectively equivalent to each other, thanks to the
concentration of measure phenomenon.

Exercise 2.4.1. Let M, be a sequence of n X n Hermitian matrix
ensembles, and let u be a continuous probability measure on R.

(i) Show that u 2, converges almost surely to p if and only
if ,uﬁ(—oo, A) converges almost surely to u(—oo, A) for all
AeR.

(ii) Show that u 2, converges in probability to p if and only
if uﬁ(—oo, A) converges in probability to pu(—oo, A) for all
AeR.

(iii) Show that L, converges in expectation to p if and only

if Eu%(foo, A) converges to u(—oo, A) for all A € R.

We can now state the Wigner semicircular law.

Theorem 2.4.2 (Semicircular law). Let M,, be the top left n x n mi-
nors of an infinite Wigner matric (€;;); j>1. Then the ESDs B,
converge almost surely (and hence also in probability and in expecta-
tion) to the Wigner semicircular distribution

1
(2.81) o = 5-(4— 22)Y? da.



162 2. Random matrices

The semicircular law nicely complements the upper Bai-Yin theo-
rem (Theorem 2.3.24), which asserts that (in the case when the entries
have finite fourth moment, at least), the matrices %Mn almost surely
has operator norm at most 2 + o(1). Note that the operator norm is
the same thing as the largest magnitude of the eigenvalues. Because
the semicircular distribution (2.81) is supported on the interval [—2, 2]
with positive density on the interior of this interval, Theorem 2.4.2
easily supplies the lower Bai-Yin theorem, that the operator norm of
ﬁMn is almost surely at least 2 —o0(1), and thus (in the finite fourth
moment case) the norm is in fact equal to 2 4+ o(1). Indeed, we have
just shown that the circular law provides an alternate proof of the
lower Bai-Yin bound (Proposition 2.3.19).

As will become clearer in the Section 2.5, the semicircular law is
the noncommutative (or free probability) analogue of the central limit
theorem, with the semicircular distribution (2.81) taking on the role
of the normal distribution. Of course, there is a striking difference
between the two distributions, in that the former is compactly sup-
ported while the latter is merely subgaussian. One reason for this
is that the concentration of measure phenomenon is more powerful
in the case of ESDs of Wigner matrices than it is for averages of iid
variables; compare the concentration of measure results in Section 2.3
with those in Section 2.1.

There are several ways to prove (or at least to heuristically jus-
tify) the circular law. In this section we shall focus on the two most
popular methods, the moment method and the Stieltjes transform
method, together with a third (heuristic) method based on Dyson
Brownian motion (see Section 3.1). In Section 2.5 we shall study the
free probability approach, and in Section 2.6 we will study the the
determinantal processes method approach (although this method is
initially only restricted to highly symmetric ensembles, such as GUE).

2.4.1. Preliminary reductions. Before we begin any of the proofs
of the circular law, we make some simple observations which will
reduce the difficulty of the arguments in the sequel.

The first observation is that the Cauchy interlacing law (Exercise

1.3.14) shows that the ESD of ﬁMn is very stable in n. Indeed, we
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see from the interlacing law that

n n—m
— 1 — — <u_ - RV
mﬂﬁMn( OO,/\/\/E) m —/LﬁMW( 00, A/v/m)
n
< —u_1 —
S mHﬁMn( Ooa)\/\/ﬁ)

for any threshold A and any n > m > 0.

Exercise 2.4.2. Using this observation, show that to establish the
circular law (in any of the three senses of convergence), it suffices to do
so for an arbitrary lacunary sequence ni, no, ... of n (thus njy1/n; > ¢
for some ¢ > 1 and all j).

The above lacunary reduction does not help one establish conver-
gence in probability or expectation, but will be useful®® when estab-
lishing almost sure convergence, as it significantly reduces the ineffi-
ciency of the union bound.

Next, we exploit the stability of the ESD with respect to pertur-
bations, by taking advantage of the Weilandt-Hoffmann inequality

n
(2.82) D NA+B) = NP < |1BIE
j=1
for Hermitian matrices A, B, where || B||r := (tr B?)'/? is the Frobe-
nius norm(2.64) of B; see Exercise 1.3.6 or Exercise 1.3.4. We convert
this inequality into an inequality about ESDs:

Lemma 2.4.3. For any n X n Hermitian matrices A, B, any X\, and
any € > 0, we have

1
1 — < 1 _ - 2
”ﬁ(A+B)( 00, A) S pu 1 (a)(—00, A +¢) + 3,2 | Bl

and similarly
1
1 — > 1 — — - 55 2 .
:uﬁ(AJrB)( 00, A) > NW(A)( 00, A —¢) ) 1Bl

Proof. We just prove the first inequality, as the second is similar
(and also follows from the first, by reversing the sign of A, B).

25Note that a similar lacunary reduction was also used to prove the strong law
of large numbers, Theorem 2.1.8.
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Let \;(A + B) be the largest eigenvalue of A+ B less than A\/n,
and let \;(A) be the largest eigenvalue of A less than (A+¢)y/n. Our
task is to show that )

. . 2
i<J+ 5TnHB”F-
If i < j then we are clearly done, so suppose that ¢ > j. Then we
have [Aj(A+ B) — N\(A)| > ey/n for all j < <4, and hence
DA+ B) =M (A 2 €2 —i)n.
j=1
The claim now follows from (2.82). O

This has the following corollary:

Exercise 2.4.3 (Stability of ESD laws wrt small perturbations). Let
M,, be a sequence of random Hermitian matrix ensembles such that
K, converges almost surely to a limit u. Let N, be another

sequence of Hermitian random matrix ensembles such that || N, [|%
converges almost surely to zero. Show that p 2 (M, +N,,) COnVerges

almost surely to p.

Show that the same claim holds if “almost surely” is replaced by
“in probability” or “in expectation” throughout.

Informally, this exercise allows us to discard any portion of the
matrix which is o(n) in the Frobenius norm(2.64). For instance, the
diagonal entries of M,, have a Frobenius norm of O(y/n) almost surely,
by the strong law of large numbers (Theorem 2.1.8). Hence, without
loss of generality, we may set the diagonal equal to zero for the pur-
poses of the semicircular law.

One can also remove any component of M,, that is of rank o(n):

Exercise 2.4.4 (Stability of ESD laws wrt small rank perturbations).
Let M, be a sequence of random Hermitian matrix ensembles such
that p LM, converges almost surely to a limit p. Let N, be an-
other sequence of random matrix ensembles such that %rank(]\fn)
converges almost surely to zero. Show that pu 2 (M, +N,,) CODVerges

almost surely to pu. (Hint: use the Weyl inequalities instead of the
Wielandt-Hoffman inequality.)
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Show that the same claim holds if “almost surely” is replaced by
“in probability” or “in expectation” throughout.

In a similar vein, we may apply the truncation argument (much
as was done for the central limit theorem in Section 2.2) to reduce
the semicircular law to the bounded case:

Exercise 2.4.5. Show that in order to prove the semicircular law
(in the almost sure sense), it suffices to do so under the additional
hypothesis that the random variables are bounded. Similarly for the
convergence in probability or in expectation senses.

Remark 2.4.4. These facts ultimately rely on the stability of eigen-
values with respect to perturbations. This stability is automatic in the
Hermitian case, but for non-symmetric matrices, serious instabilities
can occur due to the presence of pseudospectrum. We will discuss this
phenomenon more in later sections (but see also [Ta2009b, §1.5]).

2.4.2. The moment method. We now prove the semicircular law
via the method of moments, which we have already used several times
in the previous notes. In order to use this method, it is convenient
to use the preceding reductions to assume that the coefficients are
bounded, the diagonal vanishes, and that n ranges over a lacunary
sequence. We will implicitly assume these hypotheses throughout the
rest of the section.

As we have already discussed the moment method extensively,
much of the argument here will be delegated to exercises. A full
treatment of these computations can be found in [BaSi2010].

The basic starting point is the observation that the moments of

the ESD K, can be written as normalised traces of powers of M,,:
(2.83) / 2Fduay, (2) = ltr(LM )k
' R 7 Mn no yno

In particular, on taking expectations, we have
1 1
k k
z" dE z) =E—tr(—=M,)".
[ o B (@) = B (=)
From concentration of measure for the operator norm of a random
matrix (Proposition 2.3.10), we see that the E,u\%Mn are uniformly
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subgaussian, indeed we have
2, 2
Eu_yy {|z| > A} < Ce e

for A > C, where C, ¢ are absolute (so the decay in fact improves
quite rapidly with n). From this and the Carleman continuity theo-
rem (Theorem 2.2.9), we can now establish the circular law through
computing the mean and variance of moments:

Exercise 2.4.6. (i) Show that to prove convergence in expec-
tation to the semicircular law, it suffices to show that
1 1
(2.84) EE tr(%Mn)’C = /Ra:k dpse(x) + 0r (1)
for kK = 1,2,..., where ox(1) is an expression that goes to

zero as n — oo for fixed k (and fixed choice of coeflicient
distribution &).

(ii) Show that to prove convergence in probability to the semi-
circular law, it suffices to show (2.84) together with the vari-
ance bound

(2.85) Var(%tr( ! M,)*) = or(1)

NG
for k=1,2,....

(iii) Show that to prove almost sure convergence to the semicir-
cular law, it suffices to show (2.84) together with the vari-
ance bound

1 1
(2.86) Var(ﬁ tr(%
for k =1,2,... and some ¢, > 0. (Note here that it is useful
to restrict n to a lacunary sequence!)

M,)%) = Oln ™)

Ordinarily, computing second-moment quantities such as the left-
hand side of (2.85) is harder than computing first-moment quantities
such as (2.84). But one can obtain the required variance bounds from
concentration of measure:

Exercise 2.4.7. (i) When k is a positive even integer, Use Ta-
lagrand’s inequality (Theorem 2.1.13) and convexity of the
Schatten norm || A||gx = (tr(A*))Y/* to establish (2.86) (and
hence (2.85)) when k is even.
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(ii) For k odd, the formula ||A|gx = (tr(A*))'/* still applies as
long as A is positive definite. Applying this observation,
the Bai-Yin theorem, and Talagrand’s inequality to the S*
norms of ﬁMn + cl,, for a constant ¢ > 2, establish (2.86)
(and hence (2.85)) when k is odd also.

Remark 2.4.5. More generally, concentration of measure results
(such as Talagrand’s inequality, Theorem 2.1.13) can often be used
to automatically upgrade convergence in expectation to convergence
in probability or almost sure convergence. We will not attempt to
formalise this principle here.

It is not difficult to establish (2.86), (2.85) through the moment
method as well. Indeed, recall from Theorem 2.3.16 of that we have
the expected moment

(2.87) E% tr(%Mn)k = Cl2 + ox(1)
for all k = 1,2,..., where the Catalan number Cj, /o is zero when k is
odd, and is equal to
k!
(2.88) Crj2 =

(k/2+ 1)!(k/2)!
for k even.

Exercise 2.4.8. By modifying the proof of Theorem 2.3.16, show
that

1 1 k|2 2
and deduce (2.85). By refining the error analysis (e.g. using Theorem
2.3.21), also establish (2.86).

In view of the above computations, the establishment of the semi-
circular law now reduces to computing the moments of the semicir-
cular distribution:

Exercise 2.4.9. Show that for any kK =1,2,3,..., one has

[ o dincla) = Cia
R

(Hint: use a trigonometric substitution z = 2 cosf, and then express

the integrand in terms of Fourier phases ¢?.)
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This concludes the proof of the semicircular law (for any of the
three modes of convergence).

Remark 2.4.6. In the spirit of the Lindeberg exchange method, ob-
serve that Exercise (2.4.9) is unnecessary if one already knows that
the semicircular law holds for at least one ensemble of Wigner matri-
ces (e.g. the GUE ensemble). Indeed, Exercise 2.4.9 can be deduced
from such a piece of knowledge. In such a situation, it is not neces-
sary to actually compute the main term Cj, /o on the right of (2.84);
it would be sufficient to know that that limit is universal, in that
it does not depend on the underlying distribution. In fact, it would
even suffice to establish the slightly weaker statement

Bla( Ly k—Eltr Yy k+o(1)
n N N b

whenever M,,, M/ are two ensembles of Wigner matrices arising from
different underlying distributions (but still normalised to have mean
zero, unit variance, and to be bounded (or at worst subgaussian)).
We will take advantage of this perspective later in these notes.

2.4.3. The Stieltjes transform method. The moment method
was computationally intensive, but straightforward. As noted in Re-
mark 2.4.6, even without doing much of the algebraic computation, it
is clear that the moment method will show that some universal limit
for Wigner matrices exists (or, at least, that the differences between
the distributions of two different Wigner matrices converge to zero).
But it is not easy to see from this method why the limit should be
given by the semicircular law, as opposed to some other distribution
(although one could eventually work this out from an inverse moment
computation).

When studying the central limit theorem, we were able to use the
Fourier method to control the distribution of random matrices in a
cleaner way than in the moment method. Analogues of this method
exist, but require non-trivial formulae from noncommutative Fourier
analysis, such as the Harish-Chandra integration formula (and also
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only work for highly symmetric ensembles, such as GUE or GOE),
and will not be discussed in this text?°.

We now turn to another method, the Stieltjes transform method,
which uses complex-analytic methods rather than Fourier-analytic
methods, and has turned out to be one of the most powerful and
accurate tools in dealing with the ESD of random Hermitian matrices.
Whereas the moment method started from the identity (2.83), the
Stieltjes transform method proceeds from the identity

/ L 4 ()—lt L v 1_1
= —1ir = n -
RYT—Z 'u\/lnMnaj n \/71 :

for any complex z not in the support of u LM, We refer to the

expression on the left-hand side as the Stieltjes transform of M, or of
B, and denote it by s, , ar,, or as s, for short. The expression

(ﬁMn — 2I)~1 is the normalised resolvent of M, and plays an im-
portant role in the spectral theory of that matrix. Indeed, in contrast
to general-purpose methods such as the moment method, the Stielt-
jes transform method draws heavily on the specific linear-algebraic
structure of this problem, and in particular on the rich structure of
resolvents.

On the other hand, the Stieltjes transform can be viewed as a
generating function of the moments via the Taylor series expansion
1 11 11 9
valid for z sufficiently large. This is somewhat (though not exactly)
itX

analogous to how the characteristic function Ee*** of a scalar random

variable can be viewed as a generating function of the moments EX*.
Now let us study the Stieltjes transform method more systemat-

ically. Given any probability measure p on the real line, we can form
its Stieltjes transform

u(2) = [ = duto)

r— =z

for any z outside of the support of p; in particular, the Stieltjes
transform is well-defined on the upper and lower half-planes in the

263ection 2.6, however, will contain some algebraic identities related in some ways
to the noncommutative Fourier-analytic approach.
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complex plane. Even without any further hypotheses on p other than
it is a probability measure, we can say a remarkable amount about
how this transform behaves in z. Applying conjugations we obtain
the symmetry

(2.90) su(2) = s5u(2)
so we may as well restrict attention to z in the upper half-plane (say).
Next, from the trivial bound
S
x—z ~ |[Im(z)]

one has the pointwise bound

1
[Tm(2)|

In a similar spirit, an easy application of dominated convergence gives

(2.91) ls,(2)] <

the asymptotic

(2.92) su(2) = H%“(l)

where 0,(1) is an expression that, for any fixed p, goes to zero as
z goes to infinity non-tangentially in the sense that |Re(z)|/|Im(z)|
is kept bounded, where the rate of convergence is allowed to depend
on u. From differentiation under the integral sign (or an application
of Morera’s theorem and Fubini’s theorem) we see that s,(z) is com-
plex analytic on the upper and lower half-planes; in particular, it is
smooth away from the real axis. From the Cauchy integral formula
(or differentiation under the integral sign) we in fact get some bounds
for higher derivatives of the Stieltjes transform away from this axis:

(2.99 L @l =0,
' dzi T Y m(z)p )
Informally, s, “behaves like a constant” at scales significantly less

than the distance |Im(z)| to the real axis; all the really interesting
action here is going on near that axis.

The imaginary part of the Stieltjes transform is particularly in-
teresting. Writing z = a + ib, we observe that

Im LI b >
r—z (z—a)?+b?

0
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and so we see that
Im(s,(2)) >0

for z in the upper half-plane; thus s, is a complex-analytic map from
the upper half-plane to itself, a type of function known as a Herglotz

function®".

One can also express the imaginary part of the Stieltjes transform
as a convolution

(2.94) Im(s,(a+ b)) = mp* Py(a)
where P, is the Poisson kernel
1 b 1 x
Py(z) =~ —— = — P (D).
b(0) = 2o = 1)

As is well known, these kernels form a family of approzimations to
the identity, and thus p* P, converges in the vague topology to u (see
e.g. [Ta2010, §1.13]). Thus we see that

Ims, (- +ib) = 7p
as b — 0T in the vague topology,or equivalently (by (2.90)) that?®

(- 4 ib) — 5,(- — ib)
211

(2.95) —pu
as b — 0. Thus we see that a probability measure p can be recovered
in terms of the limiting behaviour of the Stieltjes transform on the

real axis.

A variant of the above machinery gives us a criterion for conver-
gence:

Exercise 2.4.10 (Stieltjes continuity theorem). Let u, be a sequence
of random probability measures on the real line, and let p be a de-
terministic probability measure.

2T, fact, all complex-analytic maps from the upper half-plane to itself that obey
the asymptotic (2.92) are of this form; this is a special case of the Herglotz repre-
sentation theorem, which also gives a slightly more general description in the case
when the asymptotic (2.92) is not assumed. A good reference for this material and its
consequences is [Ga2007].

28The limiting formula (2.95) is closely related to the Plemelj formula in potential
theory.
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(i) wn converges almost surely to p in the vague topology if and
only if s, (2) converges almost surely to s,(z) for every z
in the upper half-plane.

(ii) pn converges in probability to u in the vague topology if and
only if s,,, (#) converges in probability to s,(z) for every z
in the upper half-plane.

(iii) pn converges in expectation to p in the vague topology if
and only if Es, (z) converges to s,(z) for every z in the
upper half-plane.

(Hint: The “only if” parts are fairly easy. For the “if” parts, take a
test function ¢ € C.(R) and approximate [ ¢ du by [g ¢ * Py du =
1 Jr su(a+ib)¢(a) da. Then approximate this latter integral in turn
by a Riemann sum, using (2.93).)

Thus, to prove the semicircular law, it suffices to show that for
each z in the upper half-plane, the Stieltjes transform

B 1 Lr -t
sn(z)—suﬁM”(z)—gtr % n— 2

converges almost surely (and thus in probability and in expectation)
to the Stieltjes transform s, (z) of the semicircular law.

It is not difficult to compute the Stieltjes transform s, of the
semicircular law, but let us hold off on that task for now, because
we want to illustrate how the Stieltjes transform method can be used
to find the semicircular law, even if one did not know this law in
advance, by directly controlling s,,(z). We will fix z = a + ib to be a
complex number not on the real line, and allow all implied constants
in the discussion below to depend on a and b (we will focus here only
on the behaviour as n — o).

The main idea here is predecessor comparison: to compare the
transform s, (z) of the n x n matrix M,, with the transform s,,_1(z) of
the top left n—1xn—1 minor M, _, or of other minors. For instance,
we have the Cauchy interlacing law (Exercise 1.74), which asserts that
the eigenvalues A\;(My,—1),..., An—1(Mp—_1) of M, _; intersperse that
of A\i(My), ..., An(M,,). This implies that for a complex number a+ib



2.4. The semicircular law 173

with b > 0, the difference

— b " b
g My —1)/v/n—a)? +b? _;(Aj(Mn)/\/ﬁ—a)QﬂLbQ

b
(z—a)?+0%"
The total variation of this function is O(1) (recall that we are sup-
pressing dependence of constaants on a,b), and so the alternating
sum above is O(1). Writing this in terms of the Stieltjes transform,

we conclude that

is an alternating sum of evaluations of the function =

n(n — 1)3,11(\/%(& + b)) — ns,(a+ib) = O(1).
Vn

Applying (2.93) to approximate s,_1( \/7(@ + b)) by sn—1(a+ ib),
we conclude that

(2.96) sn(a+ib) = sn_1(a+ib) +0(%).

So for fixed z = a+ib away from the real axis, the Stieltjes transform
sn(z) is quite stable in n.

This stability has the following important consequence. Observe
that while the left-hand side of (2.96) depends on the n x n matrix
M, the right-hand side depends only on the top left minor M,,_,
of that matrix. In particular, it is independent of the n'" row and
column of M,,. This implies that this entire row and column has only
a limited amount of influence on the Stieltjes transform s, (a + b):
no matter what value one assigns to this row and column (including
possibly unbounded values, as long as one keeps the matrix Hermitian
of course), the transform s, (a + ib) can only move by O(%).

By permuting the rows and columns, we obtain that in fact any
row or column of M, can influence s, (a + ib) is at most O(X). (This
is closely related to the observation in Exercise 2.4.4 that low rank
perturbations do not significantly affect the ESD.) On the other hand,
the rows of (the upper triangular portion of) M, are jointly indepen-
dent. When M, is a Wigner random matrix, we can then apply a
standard concentration of measure result, such as McDiarmid’s in-
equality (Theorem 2.1.10) to conclude concetration of s, around its
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mean:
(2.97) P(|sn(a+ ib) — Bsy(a +ib)| > A/v/n) < Ce™

for all A > 0 and some absolute constants C,c¢ > 0. (This is not
necessarily the strongest concentration result one can establish for the
Stieltjes transform, but it will certainly suffice for our discussion here.)
In particular, we see from the Borel-Cantelli lemma (Exercise 1.1.1)
that for any fixed z away from the real line, s,,(z) — Es,(z) converges
almost surely (and thus also in probability) to zero. As a consequence,
convergence of s, (z) in expectation automatically implies convergence
in probability or almost sure convergence.

However, while concentration of measure tells us that s,(z) is
close to its mean, it does not shed much light as to what this mean
is. For this, we have to go beyond the Cauchy interlacing formula
and deal with the resolvent (ﬁMn — 2I,,)~! more directly. Firstly,
we observe from the linearity of trace that

Esn(2) = iéE {(\}ﬁMn - zIn)_l]

where [A];; denotes the jj component of a matrix A. Because M, is

a Wigner matrix, it is easy to see on permuting the rows and columns

that all of the random variables [(%Mn — zI,)7'];; have the same
n

Jj

distribution. Thus we may simplify the above formula as

(2.98) Es,(2) =E {(1Mn — zIn)_l} .

Vn
So now we have to compute the last entry of an inverse of a matrix.
There are of course a number of formulae for this, such as Cramer’s
rule. But it will be more convenient here to use a formula based
instead on the Schur complement:

Exercise 2.4.11. Let A, be a n x n matrix, let A,,_1 be the top
left n — 1 x n — 1 minor, let a,, be the bottom right entry of A,
let X € C"~! be the right column of A4,, with the bottom right entry
removed, and let (X’)* € (C"~1)* be the bottom row with the bottom
right entry removed. In other words,

(A X
A"‘((X')* )
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Assume that A,, and A,,_1 are both invertible. Show that
1
n— (XA X

(Hint: Solve the equation A,v = e,,, where e, is the nt" basis vector,
using the method of Schur complements (or from first principles).)

The point of this identity is that it describes (part of) the inverse
of A, in terms of the inverse of A, _1, which will eventually pro-
vide a non-trivial recursive relationship between s, (z) and s,_1(z2),
which can then be played off against (2.96) to solve for s,(z) in the
asymptotic limit n — oo.

In our situation, the matrix ﬁMn—zln and its minor ﬁan —
zI,_1 is automatically invertible. Inserting the above formula into
(2.98) (and recalling that we normalised the diagonal of M,, to van-
ish), we conclude that

1

2t X (GsMp—1 — 2lp1) 71X

where X € C"! is the top right column of M, with the bottom
entry &, removed.

(2.99) Es,(z) = -E

One may be concerned that the denominator here could vanish.
However, observe that z has imaginary part b if z = a + ib. Fur-
thermore, from the spectral theorem we see that the imaginary part
of (ﬁMn_l — zI,,_1)7! is positive definite, and so X*(ﬁan -
2I,,_1)7'X has non-negative imaginary part. As a consequence the
magnitude of the denominator here is bounded below by |b|, and so
its reciprocal is O(1) (compare with (2.91)). So the reciprocal here is
not going to cause any discontinuity, as we are considering b is fixed
and non-zero.

Now we need to understand the expression X*(ﬁMn_l—zIn_l)‘lX.
We write this as X*RX, where R is the resolvent matrix R :=
(ﬁMn,l —zI,,_1)~!. The distribution of the random matrix R could
conceivably be quite complicated. However, the key point is that the
vector X only involves the entries of M,, that do not lie in M,,_1, and
so the random matrix R and the vector X are independent. Because

of this, we can use the randomness of X to do most of the work in
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understanding the expression X*RX, without having to know much
about R at all.

To understand this, let us first condition R to be a determin-
istic matrix R = (r;j)1<i,j<n—1, and see what we can do with the
expression X*RX.

Firstly, observe that R will not be arbitrary; indeed, from the
spectral theorem we see that R will have operator norm at most
O(1). Meanwhile, from the Chernoff inequality (Theorem 2.1.3) or
Hoeffding inequality (Exercise 2.1.4) we know that X has magnitude
O(y/n) with overwhelming probability. So we know that X*RX has
magnitude O(n) with overwhelming probability.

Furthermore, we can use concentration of measure as follows.
Given any positive semi-definite matrix A of operator norm O(1),
the expression (X*AX)Y2 = ||AY2X|| is a Lipschitz function of X
with operator norm O(1). Applying Talagrand’s inequality (Theorem
2.1.13) we see that this expression concentrates around its median:

P(|(X*AX)/? - M(X*AX)/?| > \) < Ce

for any A > 0. On the other hand, ||AY/2X || = O(|| X||) has magnitude
O(y/n) with overwhelming probability, so the median M(X*AX)/2
must be O(y/n). Squaring, we conclude that

P(|X*AX - MX*AX| > \/n) < Ce~N
(possibly after adjusting the absolute constants C,c). As usual, we
may replace the median with the expectation:

P(|X*AX —EX*AX| > A\/n) < Ce~

This was for positive-definite matrices, but one can easily use the
triangle inequality to generalise to self-adjoint matrices, and then to
arbitrary matrices, of operator norm 1, and conclude that

(2.100) P(|X*RX —EX*RX| > A\/n) < Ce "
for any deterministic matrix R of operator norm O(1).

But what is the expectation EX*RX7? This can be expressed in

components as
n—1n—1

EX'RX =Y > E&urijén

i=1 j=1
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where &;,, are the entries of X, and r;; are the entries of R. But the
&in are iid with mean zero and variance one, so the standard second
moment computation shows that this expectation is nothing more

than the trace
n—1
tr(R) = Z T
i=1

of R. We have thus shown the concentration of measure result
(2.101) P(|X*RX — tr(R)| > \Wn) < Ce™N
for any deterministic matrix R of operator norm O(1), and any A > 0.
Informally, X*RX is typically tr(R) + O(y/n).

The bound (2.101) was proven for deterministic matrices, but by
using conditional expectation it also applies for any random matrix

R, so long as that matrix is independent of X. In particular, we may
apply it to our specific matrix of interest

1 -1
R := <\/ﬁMn_l - ZIn_l) .

The trace of this matrix is essentially just the Stieltjes transform

sn—1(2) at z. Actually, due to the normalisation factor being slightly
off, we actually have

tr(R):n%snl(%,z),

but by using the smoothness (2.93) of the Stieltjes transform, together
with the stability property (2.96) we can simplify this as

tr(R) = n(sn(z) + o(1)).
In particular, from (2.101) and (2.97), we see that
X*RX =n(Esy(z) +0(1))

with overwhelming probability. Putting this back into (2.99), and
recalling that the denominator is bounded away from zero, we have
the remarkable equation

1

(2.102) Es,(z) = T Ee ()

+o(1).

Note how this equation came by playing off two ways in which the
spectral properties of a matrix M,, interacted with that of its minor



178 2. Random matrices

M,,_q; firstly via the Cauchy interlacing inequality, and secondly via
the Schur complement formula.

This equation already describes the behaviour of Es,(z) quite
well, but we will content ourselves with understanding the limiting
behaviour as n — co. From (2.93) and Fubini’s theorem we know
that the function Es,, is locally uniformly equicontinuous and locally
uniformly bounded away from the real line. Applying the Arzeld-
Ascoli theorem, we thus conclude that on a subsequence at least, Es,,
converges locally uniformly to a limit s. This will be a Herglotz
function (i.e. an analytic function mapping the upper half-plane to
the upper half-plane), and taking limits in (2.102) (observing that the
imaginary part of the denominator here is bounded away from zero)
we end up with the exact equation

1
Cz+s(2)
We can of course solve this by the quadratic formula, obtaining
ozEVE2-4 2
s(z) = 2 ozt VZ 4
To figure out what branch of the square root one has to use here, we
use (2.92), which easily implies® that

5(2) = 1+ 0(1)

z
as z goes to infinity non-tangentially away from the real line. Also, we

(2.103) s(z) =

know that s has to be complex analytic (and in particular, continuous)
away from the real line. From this and basic complex analysis, we
conclude that
—2++v22—4

2
where V22 — 4 is the branch of the square root with a branch cut at
[—2,2] and which equals z at infinity.

(2.104) s(z) =

As there is only one possible subsequence limit of the Es,, we
conclude that Es,, converges locally uniformly (and thus pointwise)
to the function (2.104), and thus (by the concentration of measure of

2976 justify this, one has to make the error term in (2.92) uniform in n, but this
can be accomplished without difficulty using the Bai-Yin theorem (for instance).
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sn(z)) we see that for each z, s,(z) converges almost surely (and in
probability) to s(z).

Exercise 2.4.12. Find a direct proof (starting from (2.102), (2.92),
and the smoothness of Es,(z)) that Es,(z) = s(z) 4+ o(1) for any
fixed z, that avoids using the Arzeld-Ascoli theorem. (The basic point
here is that one has to solve the approximate equation (2.102), using
some robust version of the quadratic formula. The fact that Es,, is a
Herglotz function will help eliminate various unwanted possibilities,
such as one coming from the wrong branch of the square root.)

To finish computing the limiting ESD of Wigner matrices, we
have to figure out what probability measure s comes from. But this
is easily read off from (2.104) and (2.95):
s(-+ib) —s(-—ib) 1

27 27
as b — 0. Thus the semicircular law is the only possible measure
which has Stieltjes transform s, and indeed a simple application of
the Cauchy integral formula and (2.105) shows us that s is indeed the
Stieltjes transform of pig.

(2.105) (4 -2 dr = pee

Putting all this together, we have completed the Stieltjes trans-
form proof of the semicircular law.

Remark 2.4.7. In order to simplify the above exposition, we opted
for a qualitative analysis of the semicircular law here, ignoring such
questions as the rate of convergence to this law. However, an inspec-
tion of the above arguments reveals that it is easy to make all of the
above analysis quite quantitative, with quite reasonable control on all
terms®C. In particular, it is not hard to use the above analysis to show
that for [Im(z)| > n~¢ for some small absolute constant ¢ > 0, one
has s,(z) = s(z) + O(n™¢) with overwhelming probability. Combin-
ing this with a suitably quantitative version of the Stieltjes continuity
theorem, this in turn gives a polynomial rate of convergence of the
ESDs K, to the semicircular law g, in that one has

,U,ﬁ]un(_oo, >\) = ,Ufsc(_oov )‘) + O(TL_ )

300ne has to use Exercise 2.4.12 instead of the Arzeli-Ascoli theorem if one wants
everything to be quantitative.
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with overwhelming probability for all A € R.

A variant of this quantitative analysis can in fact get very good

logo(l) n
7

which is only just a little bit larger than the mean spacing O(1/n) of
the normalised eigenvalues (recall that we have n normalised eigen-
values, constrained to lie in the interval [—2 — 0(1),2 + o(1)] by the
Bai-Yin theorem). This was accomplished by Erdés, Schlein, and

control on this ESD down to quite fine scales, namely to scales

Yau[ErScYa2008]?! by using an additional observation, namely that
the eigenvectors of a random matrix are very likely to be delocalised
in the sense that their £2 energy is dispersed more or less evenly across
its coefficients. Such delocalization has since proven to be a funda-
mentally important ingredient in the fine-scale spectral analysis of
Wigner matrices, which is beyond the scope of this text.

2.4.4. Dyson Brownian motion and the Stieltjes transform.
We now explore how the Stieltjes transform interacts with the Dyson
Brownian motion (introduced in Section 3.1). We let n be a large
number, and let M, () be a Wiener process of Hermitian random
matrices, with associated eigenvalues A1 (%), ..., A, (t), Stieltjes trans-
forms

n

1 1
(2.106) s(t,z) = — —_

n ; Ai(t)/V/n—z
and spectral measures

n

1
j=1

We now study how s, p evolve in time in the asymptotic limit n — oo.
Our computation will be only heuristic in nature.
Recall from Section 3.1 that the eigenvalues A; = A;(t) undergo
Dyson Brownian motion
dt
Xi — A

(2.108) d\i=dB; + )
i

31Strictly speaking, this paper assumed additional regularity hypotheses on the
distribution &, but these conditions can be removed with the assistance of Talagrand’s
inequality, Theorem 2.1.13.
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Applying (2.106) and Taylor expansion (dropping all terms of higher
order than dt, using the Tto heuristic dB; = O(dt'/?)), we conclude
that

1 < dB; 1 & |dB;|?
ds = — N el
ST TR ; N/vn—z22  n? ; N/ — 2)3

1 dt
n32 2 (i =2 (N /v = 2)*

1<i,j<n:izj

2
For z away from the real line, the term # S % is of size

O(dt/n) and can heuristically be ignored in the limit n — co. Drop-
ping this term, and then taking expectations to remove the Brownian
motion term dB;, we are led to

1 dt
Bls=—Blm 2 om0 o

1<i,j <n:iztj

Performing the 7 summation using (2.106) we obtain

o gl s\ /V)dt

022 Oulvin—2)?

where we adopt the convention that for real x, s(z) is the average of
s(z +10) and s(xz — i0). Using (2.107), this becomes

(2.109) Es; = —E/ (S(x)Q du(z)

R (T —2)

where the t subscript denotes differentiation in ¢. From (2.95) we
heuristically have

s(x £1i0) = s(x) £ wip(z)

(heuristically treating u as a function rather than a measure) and on
squaring one obtains

s(z +140)* = (s(2)?* — 72 p?(z)) £ 2mis(x)p(z).

From this the Cauchy integral formula around a slit in real axis (using
the bound (2.91) to ignore the contributions near infinity) we thus

have
$2(s 2s(x)
(2) = / dp(z)

r—z
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and thus on differentiation in z
2s(x)
Comparing this with (2.109), we obtain

Es; + Ess, = 0.

From concentration of measure, we expect s to concentrate around
its mean s := Es, and similarly s, should concentrate around s,. In
the limit n — oo, the expected Stieltjes transform s should thus obey
the (complex) Burgers’ equation

(2.110) st +ss, =0.

To illustrate how this equation works in practice, let us give an in-
formal derivation of the semicircular law. We consider the case when
the Wiener process starts from M (0) = 0, thus M; = /tG for a GUE
matrix G. As such, we have the scaling symmetry

s(t,z) = %SGUE <\2>

where sgu g is the asymptotic Stieltjes transform for GUE (which we
secretly know to be given by (2.104), but let us pretend that we did
not yet know this fact). Inserting this self-similar ansatz into (2.110)
and setting ¢ = 1, we conclude that

1 1, ,
7§SGUE — §Z$GUE + SSquE = 0,

multiplying by two and integrating, we conclude that
zsqup + sayp = C

for some constant C. But from the asymptotic (2.92) we see that
C' must equal —1. But then the above equation can be rearranged
into (2.103), and so by repeating the arguments at the end of the
previous section we can deduce the formula (2.104), which then gives
the semicircular law by (2.95).

As is well known in PDE,; one can solve Burgers’ equation more
generally by the method of characteristics. For reasons that will be-
come clearer in Section 2.5, we now solve this equation by a slightly
different (but ultimately equivalent) method. The idea is that rather
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than think of s = s(t, z) as a function of z for fixed ¢, we think®? of
z = 2(t,s) as a function of s for fixed ¢t. Note from (2.92) that we
expect to be able to invert the relationship between s and z as long
as z is large (and s is small).

To exploit this change of perspective, we think of s, z,t as all
varying by infinitesimal amounts ds, dz, dt respectively. Using (2.110)
and the total derivative formula ds = s;dt + s,dz, we see that

ds = —ss,dt + s,dz.

If we hold s fixed (i.e. ds = 0), so that z is now just a function of ¢,
and cancel off the s, factor, we conclude that
dz
it
Integrating this, we see that
(2.111) z(t,s) = z(0,s) + ts.

This, in principle, gives a way to compute s(t, z) from s(0, z). First,
we invert the relationship s = s(0,2) to z = z(0, s); then we add ts
to z(0, s); then we invert again to recover s(t, z).

Since M; = My + VtG, where G is a GUE matrix independent
of My, we have thus given a formula to describe the Stieltjes trans-
form of My + vtG in terms of the Stieltjes transform of My. This
formula is a special case of a more general formula of Voiculescu for
free convolution, with the operation of inverting the Stieltjes trans-
form essentially being the famous R-transform of Voiculescu; we will
discuss this more in the next section.

2.5. Free probability

In the foundations of modern probability, as laid out by Kolmogorov
(and briefly reviewed in Section 1.1), the basic objects of study are
constructed in the following order:

(i) Firstly, one selects a sample space €2, whose elements w rep-
resent all the possible states that one’s stochastic system
could be in.

32(This trick is sometimes known as the hodograph transform, especially if one
views s as “velocity” and z as “position”.
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(ii) Then, one selects a o-algebra B of events E (modeled by
subsets of €2), and assigns each of these events a probability
P(E) € [0,1] in a countably additive manner, so that the
entire sample space has probability 1.

(iii) Finally, one builds (commutative) algebras of random wvari-
ables X (such as complex-valued random variables, mod-
eled by measurable functions from {2 to C), and (assuming
suitable integrability or moment conditions) one can assign
expectations EX to each such random variable.

In measure theory, the underlying measure space (2 plays a promi-
nent foundational role, with the measurable sets and measurable func-
tions (the analogues of the events and the random variables) always
being viewed as somehow being attached to that space. In proba-
bility theory, in contrast, it is the events and their probabilities that
are viewed as being fundamental, with the sample space €2 being ab-
stracted away as much as possible, and with the random variables
and expectations being viewed as derived concepts. See Section 1.1
for further discussion of this philosophy.

However, it is possible to take the abstraction process one step
further, and view the algebra of random wvariables and their expec-
tations as being the foundational concept, and ignoring both the
presence of the original sample space, the algebra of events, or the
probability measure.

There are two reasons for wanting to shed (or abstract®3 away)
these previously foundational structures. Firstly, it allows one to more
easily take certain types of limits, such as the large n limit n — oo
when considering n X n random matrices, because quantities built
from the algebra of random variables and their expectations, such as
the normalised moments of random matrices tend to be quite stable
in the large n limit (as we have seen in previous sections), even as the
sample space and event space varies with n.

Secondly, this abstract formalism allows one to generalise the clas-
sical, commutative theory of probability to the more general theory

33This theme of using abstraction to facilitate the taking of the large n limit also
shows up in the application of ergodic theory to combinatorics via the correspondence
principle; see [Ta2009, §2.10] for further discussion.
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of non-commutative probability theory, which does not have a classical
underlying sample space or event space, but is instead built upon a
(possibly) non-commutative algebra of random variables (or “observ-
ables”) and their expectations (or “traces”). This more general for-
malism not only encompasses classical probability, but also spectral
theory (with matrices or operators taking the role of random vari-
ables, and the trace taking the role of expectation), random matrix
theory (which can be viewed as a natural blend of classical probability
and spectral theory), and quantum mechanics (with physical observ-
ables taking the role of random variables, and their expected value
on a given quantum state being the expectation). It is also part of

734 (of which non-

a more general “non-commutative way of thinking
commutative geometry is the most prominent example), in which a
space is understood primarily in terms of the ring or algebra of func-
tions (or function-like objects, such as sections of bundles) placed
on top of that space, and then the space itself is largely abstracted
away in order to allow the algebraic structures to become less com-
mutative. In short, the idea is to make algebra the foundation of the
theory, as opposed to other possible choices of foundations such as

sets, measures, categories, etc..

It turns out that non-commutative probability can be modeled
using operator algebras such as C*-algebras, von Neumann algebras,
or algebras of bounded operators on a Hilbert space, with the latter
being accomplished via the Gelfand-Naimark-Segal construction. We
will discuss some of these models here, but just as probability theory
seeks to abstract away its measure-theoretic models, the philosophy
of non-commutative probability is also to downplay these operator
algebraic models once some foundational issues are settled.

When one generalises the set of structures in one’s theory, for in-
stance from the commutative setting to the non-commutative setting,

34Note that this foundational preference is to some extent a metamathematical
one rather than a mathematical one; in many cases it is possible to rewrite the theory in
a mathematically equivalent form so that some other mathematical structure becomes
designated as the foundational one, much as probability theory can be equivalently
formulated as the measure theory of probability measures. However, this does not
negate the fact that a different choice of foundations can lead to a different way of
thinking about the subject, and thus to ask a different set of questions and to discover
a different set of proofs and solutions. Thus it is often of value to understand multiple
foundational perspectives at once, to get a truly stereoscopic view of the subject.
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the notion of what it means for a structure to be “universal”, “free”,
or “independent” can change. The most familiar example of this
comes from group theory. If one restricts attention to the category of
abelian groups, then the “freest” object one can generate from two
generators e, f is the free abelian group of commutative words e” f™
with n,m € Z, which is isomorphic to the group Z2. If however one
generalises to the non-commutative setting of arbitrary groups, then
the “freest” object that can now be generated from two generators
e, f is the free group Fs of non-commutative words e™! f™1 ... ek fmk
with ni,mq,...,nk, mg € Z, which is a significantly larger extension
of the free abelian group Z2.

Similarly, when generalising classical probability theory to non-
commutative probability theory, the notion of what it means for two
or more random variables to be independent changes. In the classical
(commutative) setting, two (bounded, real-valued) random variables
X, Y are independent if one has

Ef(X)g(Y) =0

whenever f, g : R — R are well-behaved functions (such as polynomi-
als) such that all of Ef(X), Eg(Y) vanishes. In the non-commutative
setting, one can generalise the above definition to two commuting
bounded self-adjoint variables; this concept is useful for instance in
quantum probability, which is an abstraction of the theory of observ-
ables in quantum mechanics. But for two (bounded, self-adjoint)
non-commutative random variables X, Y, the notion of classical inde-
pendence no longer applies. As a substitute, one can instead consider
the notion of being freely independent (or free for short), which means
that
Efi(X)g1(Y). .. fu(X)ge(Y) = 0

whenever f1,91,..., fr,gr : R = R are well-behaved functions such
that all of Ef1(X),Eg1(Y),...,Efi(X),Egr(Y) vanish.

The concept of free independence was introduced by Voiculescu,
and its study is now known as the subject of free probability. We
will not attempt a systematic survey of this subject here; for this, we
refer the reader to the surveys of Speicher[Sp] and of Biane[Bi2003].
Instead, we shall just discuss a small number of topics in this area to
give the flavour of the subject only.
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The significance of free probability to random matrix theory lies
in the fundamental observation that random matrices which have in-
dependent entries in the classical sense, also tend to be independent?®
in the free probability sense, in the large n limit n — oco. Because
of this, many tedious computations in random matrix theory, par-
ticularly those of an algebraic or enumerative combinatorial nature,
can be done more quickly and systematically by using the framework
of free probability, which by design is optimised for algebraic tasks
rather than analytical ones.

Much as free groups are in some sense “maximally non-commutative”,
freely independent random variables are about as far from being com-
muting as possible. For instance, if X,Y are freely independent and
of expectation zero, then EXY XY vanishes, but EXXYY instead
factors as (EX?)(EY?). As a consequence, the behaviour of freely in-
dependent random variables can be quite different from the behaviour
of their classically independent commuting counterparts. Neverthe-
less there is a remarkably strong analogy between the two types of
independence, in that results which are true in the classically inde-
pendent case often have an interesting analogue in the freely indepen-
dent setting. For instance, the central limit theorem (Section 2.2) for
averages of classically independent random variables, which roughly
speaking asserts that such averages become gaussian in the large n
limit, has an analogue for averages of freely independent variables,
the free central limit theorem, which roughly speaking asserts that
such averages become semicircular in the large n limit. One can then
use this theorem to provide yet another proof of Wigner’s semicircle
law (Section 2.4).

Another important (and closely related) analogy is that while the
distribution of sums of independent commutative random variables
can be quickly computed via the characteristic function (i.e. the
Fourier transform of the distribution), the distribution of sums of
freely independent non-commutative random variables can be quickly
computed using the Stieltjes transform instead (or with closely related
objects, such as the R-transform of Voiculescu). This is strongly

35This is only possible because of the highly non-commutative nature of these
matrices; as we shall see, it is not possible for non-trivial commuting independent
random variables to be freely independent.
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reminiscent of the appearance of the Stieltjes transform in random
matrix theory, and indeed we will see many parallels between the use
of the Stieltjes transform here and in Section 2.4.

As mentioned earlier, free probability is an excellent tool for com-
puting various expressions of interest in random matrix theory, such
as asymptotic values of normalised moments in the large n limit
n — o0o. Nevertheless, as it only covers the asymptotic regime in
which n is sent to infinity while holding all other parameters fixed,
there are some aspects of random matrix theory to which the tools of
free probability are not sufficient by themselves to resolve (although
it can be possible to combine free probability theory with other tools
to then answer these questions). For instance, questions regarding
the rate of convergence of normalised moments as n — oo are not di-
rectly answered by free probability, though if free probability is com-
bined with tools such as concentration of measure (Section 2.1) then
such rate information can often be recovered. For similar reasons,
free probability lets one understand the behaviour of k™ moments as
n — oo for fized k, but has more difficulty dealing with the situation
in which % is allowed to grow slowly in n (e.g. kK = O(logn)). Because
of this, free probability methods are effective at controlling the bulk
of the spectrum of a random matrix, but have more difficulty with
the edges of that spectrum (as well as with related concepts such as
the operator norm, see Section 2.3) as well as with fine-scale structure
of the spectrum. Finally, free probability methods are most effective
when dealing with matrices that are Hermitian with bounded opera-
tor norm, largely because the spectral theory of bounded self-adjoint
operators in the infinite-dimensional setting of the large n limit is non-
pathological®®. For non-self-adjoint operators, free probability needs
to be augmented with additional tools, most notably by bounds on
least singular values, in order to recover the required stability for the
various spectral data of random matrices to behave continuously with
respect to the large n limit. We will return this latter point in Section
2.7.

36This is ultimately due to the stable nature of eigenvalues in the self-adjoint
setting; see [Ta2010b, §1.5] for discussion.
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2.5.1. Abstract probability theory. We will now slowly build up
the foundations of non-commutative probability theory, which seeks
to capture the abstract algebra of random variables and their expec-
tations. The impatient reader who wants to move directly on to free
probability theory may largely jump straight to the final definition
at the end of this section, but it can be instructive to work with
these foundations for a while to gain some intuition on how to handle
non-commutative probability spaces.

To motivate the formalism of abstract (non-commutative) prob-
ability theory, let us first discuss the three key examples of non-
commutative probability spaces, and then abstract away all features
that are not shared in common by all three examples.

Example 2.5.1 (Random scalar variables). We begin with classical
probability theory - the study of scalar random variables. In order
to use the powerful tools of complex analysis (such as the Stieltjes
transform), it is very convenient to allow our random variables to
be complex valued. In order to meaningfully take expectations, we
would like to require all our random variables to also be absolutely
integrable. But this requirement is not sufficient by itself to get good
algebraic structure, because the product of two absolutely integrable
random variables need not be absolutely integrable. As we want to
have as much algebraic structure as possible, we will therefore restrict
attention further, to the collection L>~ = (N2, L*(Q) of random
variables with all moments finite. This class is closed under multipli-
cation, and all elements in this class have a finite trace (or expecta-
tion). One can of course restrict further, to the space L = L (Q)
of (essentially) bounded variables, but by doing so one loses impor-
tant examples of random variables, most notably gaussians, so we will
work instead®” with the space L.

The space L>°~ of complex-valued random variables with all mo-
ments finite now becomes an algebra over the complex numbers C;
i.e. it is a vector space over C that is also equipped with a bilinear
multiplication operation - : L~ x L~ — L°~ that obeys the as-
sociative and distributive laws. It is also commutative, but we will

37This will cost us some analytic structure - in particular, L°°~ will not be a

Banach space, in contrast to L° - but as our focus is on the algebraic structure, this
will be an acceptable price to pay.
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suppress this property, as it is not shared by the other two examples
we will be discussing. The deterministic scalar 1 then plays the role
of the multiplicative unit in this algebra.

In addition to the usual algebraic operations, one can also take
the complex conjugate or adjoint X* = X of a complex-valued ran-
dom variable X. This operation * : L°°~ — L°°~ interacts well with
the other algebraic operations: it is in fact an anti-automorphism on
L~ which means that it preserves addition (X +Y)* = X*4+Y™*, re-
verses multiplication (XY)* = Y*X*, is anti-homogeneous ((cX)* =
¢X* for ¢ € C), and it is invertible. In fact, it is its own inverse
((X*)* = X), and is thus an involution.

This package of properties can be summarised succinctly by stat-
ing that the space L>~ of bounded complex-valued random variables
is a (unital) x-algebra.

The expectation operator E can now be viewed as a map E :
L~ — C. It obeys some obvious properties, such as being linear
(i.e. E is a linear functional on L*). In fact it is *-linear, which
means that it is linear and also that E(X*) = EX for all X. We also
clearly have E1 = 1. We will remark on some additional properties
of expectation later.

Example 2.5.2 (Deterministic matrix variables). A second key ex-
ample is that of (finite-dimensional) spectral theory - the theory of
n X n complex-valued matrices X € M, (C). (One can also consider
infinite-dimensional spectral theory, of course, but for simplicity we
only consider the finite-dimensional case in order to avoid having to
deal with technicalities such as unbounded operators.) Like the space
L°°~ considered in the previous example, M, (C) is a x-algebra, where
the multiplication operation is of course given by matrix multiplica-
tion, the identity is the matrix identity 1 = I,,, and the involution
X — X* is given by the matriz adjoint operation. On the other hand,
as is well-known, this *-algebra is not commutative (for n > 2).

The analogue of the expectation operation here is the normalised
trace 7(X) := L tr X. Thus 7 : M,(C) — C is a *-linear functional
on M, (C) that maps 1 to 1. The analogy between expectation and
normalised trace is particularly evident when comparing the moment

method for scalar random variables (based on computation of the
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moments EX*) with the moment method in spectral theory (based
on a computation of the moments 7(X*)).

Example 2.5.3 (Random matrix variables). Random matrixz theory
combines classical probability theory with finite-dimensional spectral
theory, with the random variables of interest now being the random
matrices X € L®~ ® M,,(C), all of whose entries have all moments
finite. It is not hard to see that this is also a *-algebra with iden-
tity 1 = I,,, which again will be non-commutative for n > 2. The
normalised trace 7 here is given by

1
7(X) =E—trX,
n

thus one takes both the normalised matrix trace and the probabilistic
expectation, in order to arrive at a deterministic scalar (i.e. a complex
number). As before, we see that 7 : L™~ ® M, (C) — C is a *-
linear functional that maps 1 to 1. As we saw in Section 2.3, the
moment method for random matrices is based on a computation of
the moments 7(X*) = EL tr X*.

Let us now simultaneously abstract the above three examples,
but reserving the right to impose some additional axioms as needed:

Definition 2.5.4 (Non-commutative probability space, preliminary
definition). A non-commutative probability space (or more accurately,
a potentially non-commutative probability space) (A, ) will consist
of a (potentially non-commutative) #-algebra A of (potentially non-
commutative) random variables (or observables) with identity 1, to-
gether with a trace 7 : A — C, which is a x-linear functional that
maps 1 to 1. This trace will be required to obey a number of addi-
tional axioms which we will specify later in this section.

This definition is not yet complete, because we have not fully
decided on what axioms to enforce for these spaces, but for now
let us just say that the three examples (L~ E), (Mn(C),%tr),
(L~ ® M,,(C),E+ tr) given above will obey these axioms and serve
as model examples of non-commutative probability spaces. We men-
tion that the requirement 7(1) = 1 can be viewed as an abstraction
of Kolmogorov’s axiom that the sample space has probability 1.
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To motivate the remaining axioms, let us try seeing how some
basic concepts from the model examples carry over to the abstract
setting.

Firstly, we recall that every scalar random variable X € L[>~
has a probability distribution px, which is a probability measure on
the complex plane C; if X is self-adjoint (i.e. real valued), so that
X = X*, then this distribution is supported on the real line R. The
condition that X lie in L°°~ ensures that this measure is rapidly
decreasing, in the sense that [ |2|* dux(x) < oo for all k. The
measure p1y is related to the moments 7(X*) = EX* by the formula

(2.112) (X)) = /czk dpx(2)

for k=0,1,2,.... In fact, one has the more general formula
(2.113) F(XR(X)) = /C 2 g (2)

for k,1 =0,1,2,....

Similarly, every deterministic matrix X € M,,(C) has a empiri-
cal spectral distribution px = =" | 65,(x), which is a probability
measure on the complex plane C. Again, if X is self-adjoint, then
distribution is supported on the real line R. This measure is related
to the moments 7(X*) = L tr X* by the same formula (2.112) as in
the case of scalar random variables. Because n is finite, this measure
is finitely supported (and in particular is rapidly decreasing). As for
(2.113), the spectral theorem tells us that this formula holds when X
is normal (i.e. XX* = X*X), and in particular if X is self-adjoint
(of course, in this case (2.113) collapses to (2.112)), but is not true in
general. Note that this subtlety does not appear in the case of scalar
random variables because in this commutative setting, all elements
are automatically normal.

Finally, for random matrices X € L*~ ® M,,(C), we can form
the expected empirical spectral distribution puyx = E% > Ini(X)>
which is again a rapidly decreasing probability measure on C, which
is supported on R if X is self-adjoint. This measure is again related
to the moments 7(X*) = EX tr X* by the formula (2.112), and also
by (2.113) if X is normal.
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Now let us see whether we can set up such a spectral measure px
for an element X in an abstract non-commutative probability space
(A, 7). From the above examples, it is natural to try to define this
measure through the formula (2.112), or equivalently (by linearity)
through the formula

(2.114) (P(X)) = /C P() dyx (2)

whenever P : C — C is a polynomial with complex coefficients (note
that one can define P(X) without difficulty as X is a *-algebra). In
the normal case, one may hope to work with the more general formula

(2.115) r(P(X,X*)) = /C P(2,7) dux(2)

whenever P : C x C — C is a polynomial of two complex variables
(note that P(X, X*) can be defined unambiguously precisely when X
is normal).

It is tempting to apply the Riesz representation theorem to (2.114)
to define the desired measure px, perhaps after first using the Weier-
strass approximation theorem to pass from polynomials to continuous
functions. However, there are multiple technical issues with this idea:

(i) In order for the polynomials to be dense in the continuous
functions in the uniform topology on the support of ux, one
needs the intended support o(X) of px to be on the real
line R, or else one needs to work with the formula (2.115)
rather than (2.114). Also, one also needs the intended sup-
port o(X) to be bounded for the Weierstrass approximation
theorem to apply directly.

(ii) In order for the Riesz representation theorem to apply, the
functional P +— 7(P(X,X*)) (or P — 7(P(X))) needs
to be continuous in the uniform topology, thus one must
be able to obtain a bound®® of the form |7(P(X, X*))| <
C'sup, ¢, (x) |P(2, %) for some (preferably compact) set o(X).

(iii) In order to get a probability measure rather than a signed
measure, one also needs some non-negativity: 7(P(X, X*))

381, get a probability measure, one in fact needs to have C = 1.
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needs to be non-negative whenever P(z,z) > 0 for z in the
intended support o(X).

To resolve the non-negativity issue, we impose an additional ax-
iom on the non-commutative probability space (A, T):

Axiom 2.5.5 (Non-negativity). For any X € A, we have 7(X*X) >
0. (Note that X*X s self-adjoint and so its trace 7(X*X) is neces-
sarily a real number.)

In the language of von Neumann algebras, this axiom (together
with the normalisation 7(1) = 1) is essentially asserting that 7 is a
state. Note that this axiom is obeyed by all three model examples, and
is also consistent with (2.115). It is the noncommutative analogue of
the Kolmogorov axiom that all events have non-negative probability.

With this axiom, we can now define an positive semi-definite
inner product (,)r2(ry on A by the formula

<X, Y>L2(‘r) = T(X*Y)

This obeys the usual axioms of an inner product, except that it is only
positive semi-definite rather than positive definite. One can impose
positive definiteness by adding an axiom that the trace 7 is faithful,
which means that 7(X*X) = 0 if and only if X = 0. However, we
will not need the faithfulness axiom here.

Without faithfulness, A is a semi-definite inner product space
with semi-norm

1X 2y 2= (X, X) gy V2 = 7(XX)1/2.
In particular, we have the Cauchy-Schwarz inequality
(XY ) 2| < N1 XNz 1Y 22 r)-
This leads to an important monotonicity:

Exercise 2.5.1 (Monotonicity). Let X be a self-adjoint element of
a non-commutative probability space (A, 7). Show that we have the
monotonicity relationships

|7_(X2k—1)|1/(2k—1) < IT(XZk)ll/(2k) < |T(X2k+2)‘1/(2k+2)

for any k£ > 0.
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As a consequence, we can define the spectral radius p(X) of a
self-adjoint element X by the formula

(2.116) p(X) = klim |T(X2k)‘1/(2k)’
— 00

in which case we obtain the inequality

(2.117) (X)) < p(X)*

for any k£ = 0,1,2,.... We then say that a self-adjoint element is
bounded if its spectral radius is finite.

Example 2.5.6. In the case of random variables, the spectral radius
is the essential supremum ||X ||z, while for deterministic matrices,
the spectral radius is the operator norm || X||op. For random matri-
ces, the spectral radius is the essential supremum ||| X ||op| Lo of the
operator norm.

Guided by the model examples, we expect that a bounded self-
adjoint element X should have a spectral measure px supported on
the interval [—p(X), p(X)]. But how to show this? It turns out
that one can proceed by tapping the power of complex analysis, and
introducing the Stieltjes transform

(2.118) sx(2) = 7((X —2)7)

for complex numbers z. Now, this transform need not be defined for
all z at present, because we do not know that X — z is invertible in
A. However, we can avoid this problem by working formally. Indeed,
we have the formal Neumann series expansion

which leads to the formal Laurent series expansion

(2.119) sx(z) = —Z%
k=0

If X is bounded self-adjoint, then from (2.117) we see that this formal
series actually converges in the region |z| > p(X). We will thus define
the Stieltjes transform sx(z) on the region |z| > p(X) by this series
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expansion (2.119), and then extend to as much of the complex plane

as we can by analytic continuation®’.

We now push the domain of definition of sx(z) into the disk
{]z] < p(X)}. We need some preliminary lemmas.

Exercise 2.5.2. Let X be bounded self-adjoint. For any real number
R, show that p(R%?+ X?) = R? + p(X)?. (Hint: use (2.116), (2.117)).

Exercise 2.5.3. Let X be bounded normal. Show that |7(X*)| <
(X X)) < p(X X2

Now let R be a large positive real number. The idea is to rewrite
the (formal) Stieltjes transform 7((X —2)~!) using the formal identity

(2.120) (X —2)7' = ((X +iR) — (2 +iR))™*

and take Neumann series again to arrive at the formal expansion
— T((X +iR)*)

2.121 =— _

(2.121) x(0) == e

From the previous two exercises we see that
[T((X +iR)")| < (R? + p(X)*)*/?

and so the above Laurent series converges for |z + iR| > (R? +
p(X)2) 172

Exercise 2.5.4. Give a rigorous proof that the two series (2.119),
(2.121) agree for z large enough.

We have thus extended sx(z) analytically to the region {z : |z +
iR| > (R? + p(X)?)Y/2}. Letting R — oo, we obtain an extension of
sx(z) to the upper half-plane {z : Im(z) > 0}. A similar argument
(shifting by —iR instead of +iR) gives an extension to the lower
half-plane, thus defining sx (z) analytically everywhere except on the
interval [—p(X), p(X)].

39There could in principle be some topological obstructions to this continuation,
but we will soon see that the only place where singularities can occur is on the real
interval [—p(X), p(X)], and so no topological obstructions will appear. One can also
work with the original definition (2.118) of the Stieltjes transform, but this requires
imposing some additional analytic axioms on the non-commutative probability space,
such as requiring that A be a C*-algebra or a von Neumann algebra, and we will avoid
discussing these topics here as they are not the main focus of free probability theory.
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On the other hand, it is not possible to analytically extend sx (z)
to the region {z : |z] > p(X) — ¢} for any 0 < £ < p(X). Indeed, if
this were the case, then from the Cauchy integral formula (applied at
infinity), we would have the identity

T(X* :—L sx(2)2F dz
(x*) /M_R (=)

211

for any R > p(X) — &, which when combined with (2.116) implies
that p(X) < R for all such R, which is absurd. Thus the spectral
radius p(X) can also be interpreted as the radius of the smallest ball
centred at the origin outside of which the Stieltjes transform can be
analytically continued.

Now that we have the Stieltjes transform everywhere outside of
[—p(X), p(X)], we can use it to derive an important bound (which
will soon be superceded by (2.114), but will play a key role in the
proof of that stronger statement):

Proposition 2.5.7 (Boundedness). Let X be bounded self-adjoint,
and let P : C — C be a polynomial. Then

IT(P(X))| < sup |P(2)].
z€[—p(X),p(X)]

Proof. (Sketch) We can of course assume that P is non-constant, as
the claim is obvious otherwise. From Exercise 2.5.3 (replacing P with
PP, where P is the polynomial whose coefficients are the complex
conjugate of that of P) we may reduce to the case when P has real
coefficients, so that P(X) is self-adjoint. Since X is bounded, it is
not difficult (using (2.116), (2.117)) to show that P(X) is bounded
also (Exercise!).

As P(X) is bounded self-adjoint, it has a Stieltjes transform de-
fined outside of [—p(P (X)), p(P(X))], which for large z is given by
the formula

(2.122) spoo(z) = =3 T

k
z
k=0
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By the previous discussion, to establish the proposition it will suffice
to show that the Stieltjes transform can be continued to the domain

Q:={zeC:z2> sup |P(x)|}.
z€[—p(X),p(X)]
For this, we observe the partial fractions decomposition
1 . Pt
Pw)=z  pg-. v=¢
of (P(w) — 2)~! into linear combinations of (w — ¢)~!, at least when

the roots of P — z are simple. Thus, formally, at least, we have the
identity

spox)(2) = Y P’l(g) sx(C)-
CGP(¢)=2
One can verify this identity is consistent with (2.122) for z sufficiently
large. (Exercise! Hint: First do the case when X is a scalar, then
expand in Taylor series and compare coefficients, then use the agree-
ment of the Taylor series to do the general case.)

If z is in the domain , then all the roots ¢ of P({) = z lie
outside the interval [—p(X), p(X)]. So we can use the above formula
as a definition of sp(x)(2), at least for those z € § for which the roots
of P — z are simple; but there are only finitely many exceptional z
(arising from zeroes of P’) and one can check (Exercise! Hint: use
the analytic nature of sx and the residue theoremto rewrite parts
of sp(x)(z) as a contour integral.) that the singularities here are
removable. It is easy to see (Exercise!) that sp(x) is holomorphic
outside of these removable singularities, and the claim follows. O

Exercise 2.5.5. Fill in the steps marked (Exercise!) in the above
proof.

From Proposition 2.5.7 and the Weierstrass approrimation the-
orem (see e.g. [Ta2010, §1.10]), we see that the linear functional
P — 7(P(X)) can be uniquely extended to a bounded linear func-
tional on C([—p(X), p(X)]), with an operator norm 1. Applying the
Riesz representation theorem (see e.g. [Ta2010, §1.10]), we thus can
find a unique Radon measure (or equivalently, Borel measure) px on
[—p(X), p(X)] of total variation 1 obeying the identity (2.114) for all
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P. In particular, setting P = 1 see that px has total mass 1; since it
also has total variation 1, it must be a probability measure. We have
thus shown the fundamental

Theorem 2.5.8 (Spectral theorem for bounded self-adjoint elements).
Let X be a bounded self-adjoint element of a non-commutative proba-
bility space (A, 7). Then there exists a unique Borel probability mea-
sure ux on [—p(X), p(X)] (known as the spectral measure of X ) such
that (2.114) holds for all polynomials P : C — C.

Remark 2.5.9. If one assumes some completeness properties of the
non-commutative probability space, such as that A is a C*-algebra
or a von Neumann algebra, one can use this theorem to meaningfully
define F'(X) for other functions F' : [—p(X), p(X)] — C than poly-
nomials; specifically, one can do this for continuous functions F' if A
is a C*-algebra, and for L*°(ux) functions F' if A is a von Neumann
algebra. Thus for instance we can start define absolute values | X]|, or
square roots |X|'/2, etc.. Such an assignment F + F(X) is known
as a functional calculus; it can be used for instance to go back and
make rigorous sense of the formula (2.118). A functional calculus is
a very convenient tool to have in operator algebra theory, and for
that reason one often completes a non-commutative probability space
into a C*-algebra or von Neumann algebra, much as how it is often
convenient to complete the rationals and work instead with the reals.
However, we will proceed here instead by working with a (possibly in-
complete) non-commutative probability space, and working primarily
with formal expressions (e.g. formal power series in z) without trying
to evaluate such expressions in some completed space. We can get
away with this because we will be working exclusively in situations in
which the spectrum of a random variable can be reconstructed exactly
from its moments (which is in particular true in the case of bounded
random variables). For unbounded random variables, one must usu-
ally instead use the full power of functional analysis, and work with
the spectral theory of unbounded operators on Hilbert spaces.

Exercise 2.5.6. Let X be a bounded self-adjoint element of a non-
commutative probability space, and let ux as the spectral measure
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of X. Establish the formula
1

sx(2) =/ dux ()
[—p(X),p(X)] T — %

for all z € C\[-p(X),p(X)]. Conclude that the support*® of the
spectral measure px must contain at least one of the two points

—p(X), p(X).

Exercise 2.5.7. Let X be a bounded self-adjoint element of a non-

commutative probability space with faithful trace. Show that p(X) =
0 if and only if X = 0.

Remark 2.5.10. It is possible to also obtain a spectral theorem for
bounded normal elements along the lines of the above theorem (with
px now supported in a disk rather than in an interval, and with
(2.114) replaced by (2.115)), but this is somewhat more complicated
to show (basically, one needs to extend the self-adjoint spectral the-
orem to a pair of commuting self-adjoint elements, which is a little
tricky to show by complex-analytic methods, as one has to use several
complex variables).

The spectral theorem more or less completely describes the be-
haviour of a single (bounded self-adjoint) element X in a non-commutative
probability space. As remarked above, it can also be extended to
study multiple commuting self-adjoint elements. However, when one
deals with multiple non-commuting elements, the spectral theorem
becomes inadequate (and indeed, it appears that in general there is
no usable substitute for this theorem). However, we can begin mak-
ing a little bit of headway if we assume as a final (optional) axiom a
very weak form of commutativity in the trace:

Axiom 2.5.11 (Trace). For any two elements X,Y , we have 7(XY) =
7(YX).

Note that this axiom is obeyed by all three of our model examples.
From this axiom, we can cyclically permute products in a trace, e.g.
T(XYZ) = 7(YZX) = 7(ZXY). However, we cannot take non-
cyclic permutations; for instance, 7(XY Z) and 7(X ZY") are distinct
in general. This axiom is a trivial consequence of the commutative

407pe support of a measure is the intersection of all the closed sets of full measure.
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nature of the complex numbers in the classical setting, but can play
a more non-trivial role in the non-commutative setting. It is however
possible to develop a large part of free probability without this axiom,
if one is willing instead to work in the category of von Neumann
algebras. Thus, we shall leave it as an optional axiom:

Definition 2.5.12 (Non-commutative probability space, final defi-
nition). A non-commutative probability space (A, T) consists of a -
algebra A with identity 1, together with a x-linear functional 7 :
A — C, that maps 1 to 1 and obeys the non-negativity axiom. If 7
obeys the trace axiom, we say that the non-commutative probability
space is tracial. If 7 obeys the faithfulness axiom, we say that the
non-commutative probability space is faithful.

From this new axiom and the Cauchy-Schwarz inequality we can
now get control on products of several non-commuting elements:

Exercise 2.5.8. Let X1,..., X} be bounded self-adjoint elements of
a tracial non-commutative probability space (A, 7). Show that

(XX < p(X)™ . p(X )™

for any non-negative integers my,...,mg. (Hint: Induct on k, and
use Cauchy-Schwarz to split up the product as evenly as possible,
using cyclic permutations to reduce the complexity of the resulting
expressions. )

Exercise 2.5.9. Let ANL>(7) be those elements X in a tracial non-
commutative probability space (A, 7) whose real and imaginary parts
Re(X) = X+TX*, Im(X) := Xgltx* are bounded and self-adjoint; we
refer to such elements simply as bounded elements. Show that this is

a sub-*-algebra of A.

This allows one to perform the following Gelfand-Naimark-Segal
(GNS) construction. Recall that A N L*°(7) has a positive semi-
definite inner product (,)z2(;). We can perform the Hilbert space
completion of this inner product space (quotienting out by the ele-
ments of zero norm), leading to a complex Hilbert space L?(7) into
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which ANL>(7) can be mapped as a dense subspace by an isometry?!
L ANL® (1) — L3(7).

The space A N L*°(7) acts on itself by multiplication, and thus
also acts on the dense subspace t(ANL>®(7)) of L?(7). We would like
to extend this action to all of L?(7), but this requires an additional
estimate:

Lemma 2.5.13. Let (A, 7) be a tracial non-commutative probability
space. If XY € AN L(7) with X self-adjoint, then

XY |z2(r) < p(XONY [[22(r)-

Proof. Squaring and cyclically permuting, it will suffice to show that
T(Y*X?Y) < p(X)*7(Y*Y).

Let € > 0 be arbitrary. By Weierstrass approximation, we can
find a polynomial P with real coefficients such that z? + P(x)? =
p(X)? + O(e) on the interval [—p(X), p(X)]. By Proposition 2.5.7,
we can thus write X2 + P(X)? = p(X)? + E where E is self-adjoint
with p(E) = O(e). Multiplying on the left by Y* and on the right by
Y and taking traces, we obtain

T(Y*X?Y) + 7(Y*P(X)?Y) < p(X)?*7(Y*Y) + 7(Y*EY).

By non-negativity, 7(Y*P(X)?Y) > 0. By Exercise 2.5.8, we have
T(Y*EY) = Oy (¢). Sending € — 0 we obtain the claim. O

As a consequence, we see that the self-adjoint elements X of
ANL(7) act in a bounded manner on all of L?(7), and so on taking
real and imaginary parts, we see that the same is true for the non-
self-adjoint elements too. Thus we can associate to each X € L*(1)
a bounded linear transformation X € B(L?(7)) on the Hilbert space
L3(7).

Exercise 2.5.10 (Gelfand-Naimark theorem). Show that the map
X +— X is a *-isomorphism from A N L*®(7) to a x-subalgebra of
B(L?(7)), and that one has the representation

7(X) = (e, Xe)

41l This isometry is injective when A is faithful, but will have a non-trivial kernel
otherwise.
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for any X € L*°(7), where e is the unit vector e := ¢(1).

Remark 2.5.14. The Gelfand-Naimark theorem required the tracial
hypothesis only to deal with the error E in the proof of Lemma 2.5.13.
One can also establish this theorem without this hypothesis, by as-
suming instead that the non-commutative space is a C*-algebra; this
provides a continuous functional calculus, so that we can replace P
in the proof of Lemma 2.5.13 by a continuous function and dispense
with E altogether. This formulation of the Gelfand-Naimark theorem
is the one which is usually seen in the literature.

The Gelfand-Naimark theorem identifies A N L*°(7) with a *-
subalgebra of B(L?(7)). The closure of this *-subalgebra in the weak
operator topology®? is then a von Neumann algebra, which we denote
as L*°(7). As a consequence, we see that non-commutative proba-
bility spaces are closely related to von Neumann algebras (equipped
with a tracial state 7). However, we refrain from identifying the for-
mer completely with the latter, in order to allow ourselves the freedom
to work with such spaces as L°°~, which is almost but not quite a
von Neumann algebra. Instead, we use the following looser (and more
algebraic) definition in Definition 2.5.12.

2.5.2. Limits of non-commutative random variables. One ben-
efit of working in an abstract setting is that it becomes easier to take
certain types of limits. For instance, it is intuitively obvious that the
cyclic groups Z/NZ are “converging” in some sense to the integer
group Z. This convergence can be formalised by selecting a distin-
guished generator e of all groups involved (1 mod N in the case of
Z/NZ, and 1 in the case of the integers Z), and noting that the set of
relations involving this generator in Z/NZ (i.e. the relations ne =0
when n is divisible by N) converge in a pointwise sense to the set
of relations involving this generator in Z (i.e. the empty set). Here,
to see the convergence, we viewed a group abstractly via the rela-
tions between its generators, rather than on a concrete realisation of
a group as (say) residue classes modulo N.

42The weak operator topology on the space B(H) of bounded operators on a
Hilbert space is the weakest topology for which the coefficient maps T +— (Tu, v) i are
continuous for each u,v € H.
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We can similarly define convergence of random variables in non-
commutative probability spaces as follows.

Definition 2.5.15 (Convergence). Let (A, 7,) be a sequence of non-
commutative probability spaces, and let (Ao, 7o) be an additional
non-commutative space. For each n, let X, 1,..., X,  be a sequence
of random variables in A, and let X 1,..., X 1 be a sequence of
random variables in A4.,. We say that X, 1,..., X, converges in
the sense of moments to Xoo 1,. .., Xoo i if we have

Tn(Xn,il . Xn,im) — Too (Xoo,i1 . Xoo,im>

as n — oo for any sequence iy,...,4, € {1,...,k}. We say that
Xn,1s-..,Xn, converge in the sense of x-moments to X 1,..., Xoo )k
i X1,y Xnk, X5y q5- .., X, converges in the sense of moments to
Xoots ey Kooy Xog 15+ s X ke

If Xi,..., Xy (viewed as a constant k-tuple in n) converges in
the sense of moments (resp. *-moments) to Yi,...,Y), we say that
X1,..., Xt and Y1, ..., Y} have matching joint moments (resp. match-

ing joint x-moments).

Example 2.5.16. If X .Y, converge in the sense of moments to
X, Yoo then we have for instance that

Tn(XnY X)) = Too (X YE X o)

as n — oo for each k, while if they converge in the stronger sense of
s-moments then we obtain more limits, such as

(X Y FXH) = 1o (X YEXE).

Note however that no uniformity in k is assumed for this convergence;
in particular, if k varies in n (e.g. if & = O(logn)), there is now no
guarantee that one still has convergence.

Remark 2.5.17. When the underlying objects X, 1,..., X, and
Xq,..., X} are self-adjoint, then there is no distinction between con-
vergence in moments and convergence in x-moments. However, for
non-self-adjoint variables, the latter type of convergence is far stronger,
and the former type is usually too weak to be of much use, even in the
commutative setting. For instance, let X be a classical random vari-
able drawn uniformly at random from the unit circle {z € C : |z| = 1}.
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Then the constant sequence X,, = X has all the same moments as the
zero random variable 0, and thus converges in the sense of moments
to zero, but does not converge in the x-moment sense to zero.

It is also clear that if we require that A be generated by Xo 1,. .., Xoo &
in the #-algebraic sense (i.e. every element of A, is a polynomial
combination of Xoo1,...,Xook and their adjoints) then a limit in
the sense of *-moments, if it exists, is unique up to matching joint
*-moiments.

For a sequence X,, of a single, uniformly bounded, self-adjoint
element, convergence in moments is equivalent to convergence in dis-
tribution:

Exercise 2.5.11. Let X,, € A, be a sequence of self-adjoint elements
in non-commutative probability spaces (A,,, 7,) with p(X,,) uniformly
bounded, and let X, € Ay be another bounded self-adjoint element
in a non-commutative probability space (As,7oo). Show that X,
converges in moments to X, if and only if the spectral measure px,
converges in the vague topology to px_ .

Thus, for instance, one can rephrase the Wigner semicircular
law (in the convergence in expectation formulation) as the asser-
tion that a sequence M,, € L*~ ® M,(C) of Wigner random ma-
trices with (say) subgaussian entries of mean zero and variance one,
when viewed as elements of the non-commutative probability space
(L~ ® M, (C), E tr), will converge to any bounded self-adjoint ele-
ment u of a non-commutative probability space with spectral measure
given by the semicircular distribution pg. := %(4 — x2)1+/ ? dx. Such
elements are known as semicircular elements. Here are some easy
examples of semicircular elements:

(i) A classical real random variable u drawn using the proba-
bility measure fisc.

(ii) The identity function x — 2 in the Lebesgue space L (dsc),
endowed with the trace 7(f) := [5 f dpsc-

iii) The function 6 — 2 cos 6 in the Lebesgue space L ([0, 7], 2 sin” 0 d6).
g P

Here is a more interesting example of a semicircular element:
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Exercise 2.5.12. Let (A, 7) be the non-commutative space consist-
ing of bounded operators B(¢?(N)) on the natural numbers with
trace 7(X) := (eo, Xeo)e2(n), where eg,e1,... is the standard ba-
sis of /2(N). Let U : e, ~— e,41 be the right shift on ¢2(N). Show
that U + U* is a semicircular operator. (Hint: one way to proceed
here is to use Fourier analysis to identify ¢?(N) with the space of
odd functions 6 — f(#) on R/27Z, with U being the operator that
maps sin(nd) to sin((n+1)0); show that U + U™ is then the operation
of multiplication by 2cosf.) One can also interpret U as a creation
operator in a Fock space, but we will not do so here.

Exercise 2.5.13. With the notation of the previous exercise, show
that 7((U + U*)¥) is zero for odd k, and is equal to the Catalan
number C}, /o from Section 2.3 when k is odd. Note that this provides
a (very) slightly different proof of the semicircular law from that given
from the moment method in Section 2.4.

Because we are working in such an abstract setting with so few
axioms, limits exist in abundance:

Exercise 2.5.14. For each n, let X, 1,..., X,  be bounded self-
adjoint elements of a tracial non-commutative space (A, 7,). Sup-
pose that the spectral radii p(X,, 1), . .., p(Xp k) are uniformly bounded
in n. Show that there exists a subsequence n; and bounded self-
adjoint elements X, ..., Xj of a tracial non-commutative space (A, 7)
such that X, 1,...,X,, r converge in moments to X,..., Xy as
j — 0o. (Hint: use the Bolzano-Weierstrass theorem and the Arzela-
Ascoli diagonalisation trick to obtain a subsequence in which each of
the joint moments of Xy, 1,..., Xy, x converge as j — oo. Use these
moments to build a noncommutative probability space.)

2.5.3. Free independence. We now come to the fundamental con-
cept in free probability theory, namely that of free independence.

Definition 2.5.18 (Free independence). A collection X1, ..., X} of
random variables in a non-commutative probability space (A,7) is
freely independent (or free for short) if one has

T((Pu(Xi,) = 7(P1(X4,))) - - (P (X, ) — 7(P (X)) = 0
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whenever Py, ..., P, are polynomials and i1,...,%, € {1,...,k} are
indices with no two adjacent i; equal.

A sequence Xy, 1, ..., Xy, of random variables in a non-commutative
probability space (A, 7,) is asymptotically freely independent (or
asymptotically free for short) if one has

T ((P1 (Xn,il) —7(P (Xn,il))) e (PM(Xn,im) - T(Pm(Xn,im))))

—0
as n — oo whenever Pi,..., P, are polynomials and i1,...,%,, €
{1,...,k} are indices with no two adjacent i; equal.

Remark 2.5.19. The above example describes freeness of collections
of random variables A. One can more generally define freeness of col-
lections of subalgebras of A, which in some sense is the more natural
concept from a category-theoretic perspective, but we will not need
this concept here. See e.g. [Bi2003] for more discussion.

Thus, for instance, if X, Y are freely independent, then 7(P(X)Q(Y)R(X)S(Y))
will vanish for any polynomials P, @, R, S for which 7(P (X)), 7(Q(Y)), 7(R(X)),7(S(Y))
all vanish. This is in contrast to classical independence of classi-

cal (commutative) random variables, which would only assert that
7(P(X)Q(Y)) = 0 whenever 7(P(X)),7(Q(Y)) both vanish.

To contrast free independence with classical independence, sup-
pose that 7(X) = 7(Y) = 0. If X, Y were freely independent, then
T(XYXY) = 0. If instead X,Y were commuting and classically in-
dependent, then we would instead have 7(XYXY) = 7(X?%Y?) =
7(X?)7(Y?), which would almost certainly be non-zero.

For a trivial example of free independence, X and Y automat-
ically are freely independent if at least one of X,Y is constant (i.e.
a multiple of the identity 1). In the commutative setting, this is
basically the only way one can have free independence:

Exercise 2.5.15. Suppose that X, Y are freely independent elements
of a faithful non-commutative probability space which also commute.
Show that at least one of X,Y is equal to a scalar. (Hint: First
normalise X,Y to have trace zero, and consider 7(XY XY).)
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A less trivial example of free independence comes from the free
group, which provides a clue as to the original motivation of this
concept:

Exercise 2.5.16. Let F5 be the free group on two generators g1, go.
Let A = B({%(F3)) be the non-commutative probability space of
bounded linear operators on the Hilbert space ¢?(F3), with trace
7(X) = (Xeo, ep), where eg is the Kronecker delta function at the
identity. Let Uy, Us € A be the shift operators

Urf(g) = flg19);  Ua2f(9) := f(929)
for f € (?(F3) and g € Fy. Show that Uy, Uy are freely independent.

For classically independent commuting random variables X,Y,
knowledge of the individual moments 7(X*), 7(Y*) gave complete
information on the joint moments: 7(X*Y') = 7(X*)7(Y"'). The
same fact is true for freely independent random variables, though the
situation is more complicated. We begin with a simple case: comput-
ing 7(XY) in terms of the moments of X,Y. From free independence
we have

(X = 7(X))(Y = 7(¥)) =0.
Expanding this using linear nature of trace, one soon sees that
(2.123) T(XY) = 7(X)7(Y).

So far, this is just as with the classically independent case. Next, we
consider a slightly more complicated moment, 7(XY X). If we split
Y=7%)+ (Y —7(Y)), we can write this as
T(XYX) =7(Y)T(X?) + (X (Y — 7(Y))X).

In the classically independent case, we can conclude the latter term
would vanish. We cannot immediately say that in the freely inde-
pendent case, because only one of the factors has mean zero. But
from (2.123) we know that 7(X(Y —7(Y)) = 7((Y — 7(Y¥))X) = 0.
Because of this, we can expand

T(X(Y = 7(V)X) = 7((X = (X)) (Y = 7(Y))(X - 7(X)))

and now free independence does ensure that this term vanishes, and
SO

(2.124) (XY X) =7(Y)r(X?).
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So again we have not yet deviated from the classically independent
case. But now let us look at 7(XY XY). We split the second X into
7(X) and X — 7(X). Using (2.123) to control the former term, we
have

T(XYXY) = 7(X)*7(Y?) + (XY (X — 7(X))Y).
From (2.124) we have 7(Y (X — 7(X))Y) = 0, so we have
T(XYXY) =7(X)*r(Y?) + 7((X — 7(X))Y(X — 7(X))Y).

Now we split Y into 7(Y) and Y —7(Y"). Free independence eliminates
all terms except

T(XYXY) = 7(X)*7(Y?) + 7((X — 7(X)7(Y)(X — 7(X))7(Y))
which simplifies to
T(XYXY) = 7(X)27(Y?) + 7(X)7(Y)? — 7(X)?7(Y)?

which differs from the classical independence prediction of 7(X?2)7(Y?).

This process can be continued:

Exercise 2.5.17. Let X1,..., X} be freely independent. Show that
any joint moment of Xi,..., X can be expressed as a polynomial
combination of the individual moments 7(X?7) of the X;. (Hint: in-
duct on the complexity of the moment.)

The product measure construction allows us to generate classi-
cally independent random variables at will (after extending the un-
derlying sample space): see Exercise 1.1.20. There is an analogous
construction, called the amalgamated free product, that allows one
to generate families of freely independent random variables, each of
which has a specified distribution. Let us give an illustrative special
case of this construction:

Lemma 2.5.20 (Free products). For each 1 < i < k, let (A;,7;)
be a non-commutative probability space. Then there exists a non-
commutative probability space (A, T) which contain embedded copies
of each of the (A;,7;), such that whenever X; € A; fori=1,... k,
then X1,..., Xy are freely independent.
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Proof. (Sketch) Recall that each A; can be given an inner product
(,)£2(4;)- One can then orthogonally decompose each space A; into
the constants C, plus the trace zero elements A? = {X € A; :
7(X) =0}.

We now form the Fock space F to be the inner product space
formed by the direct sum of tensor products

(2.125) A o...0A
where m > 0, and 41,...,%n € {1,...,k} are such that no adjacent
pair 4;,4;41 of the 41,...,4,, are equal. Each element X, € A; then

acts on this Fock space by defining
XV, ®...xY, )=X;0Y;, ®...xY;

when 4 # i1, and

X, (Y, ®...xY; ):=7(X;Y;,)Y,,®...xY;, +(X;V;,—7(X;Y;,))QY,R..

when ¢ = i;. One can thus map A; into the space A := Hom(F, F)
of linear maps from F to itself. The latter can be given the structure
of a non-commutative space by defining the trace 7(X) of an element

X € A by the formula 7(X) := (Xeg, eg) 7, where ey is the vacuum

state of F, being the unit of the m = 0 tensor product. One can verify
(Exercise!) that A; embeds into A and that elements from different
A; are freely independent. O

Exercise 2.5.18. Complete the proof of Lemma 2.5.20. (Hint: you
may find it helpful to first do Exercise 2.5.16, as the construction here
is in an abstraction of the one in that exercise.)

Finally, we illustrate the fundamental connection between free
probability and random matrices first observed by Voiculescu[Vo1991
namely that (classically) independent families of random matrices are
asymptotically free. The intuition here is that while a large random
matrix M will certainly correlate with itself (so that, for instance,
tr M*M will be large), once one interposes an independent random
matrix N of trace zero, the correlation is largely destroyed (thus, for
instance, tr M*NM will usually be quite small).

We give a typical instance of this phenomenon here:

B

XY

im
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Proposition 2.5.21 (Asymptotic freeness of Wigner matrices). Let
Mya,..., My be a collection of independent n x n Wigner matrices,
where the coefficients all have uniformly bounded m*™ moments for
each m. Then the random variables ﬁMn’l, e, ﬁMn,k € (L>* ®

M, (C),EL tr) are asymptotically free.

Proof. (Sketch) Let us abbreviate ﬁMnJ as X; (suppressing the n
dependence). It suffices to show that the traces

AT = 7(X2)) = o1)
j=1
for each fixed choice of natural numbers a4,...,a,,, where no two

adjacent %;,%;41 are equal.

Recall from Section 2.3 that T(X;Lj) is (up to errors of o(1)) equal
to a normalised count of paths of length a; in which each edge is tra-
versed exactly twice, with the edges forming a tree. After normalisa-
tion, this count is equal to 0 when a; is odd, and equal to the Catalan
number C,; /o when a; is even.

One can perform a similar computation to compute T(H;nzl ijj).
Up to errors of o(1), this is a normalised count of coloured paths of
length a1 +...+ am,, where the first a; edges are coloured with colour
11, the next as with colour s, etc. Furthermore, each edge is traversed
exactly twice (with the two traversals of each edge being assigned the
same colour), and the edges form a tree. As a consequence, there
must exist a j for which the block of a; edges of colour ¢; form their
own sub-tree, which contributes a factor of C,, /5 or 0 to the final
trace. Because of this, when one instead computes the normalised
expression T(H;ﬁzl(X:,j — T(ijj))), all contributions that are not
o(1) cancel themselves out, and the claim follows. O
Exercise 2.5.19. Expand the above sketch into a full proof of the
above theorem.

Remark 2.5.22. This is by no means the only way in which random
matrices can become asymptotically free. For instance, if instead one
considers random matrices of the form M,, ; = U A;U;, where A; are
deterministic Hermitian matrices with uniformly bounded eigenval-
ues, and the U; are iid unitary matrices drawn using Haar measure
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on the unitary group U(n), one can also show that the M, ; are
asymptotically free; again, see [V01991] for details.

2.5.4. Free convolution. When one is summing two classically in-
dependent (real-valued) random variables X and Y, the distribution
x4y of the sum X + Y is the convolution pux * py of the distribu-
tions px and uy. This convolution can be computed by means of the
characteristic function

Fx (t) := 7(e™) :/ e dux (x)
R
by means of the simple formula
T(eit(XJrY)) _ T(eitX)T(eitY).

As we saw in Section 2.2, this can be used in particular to establish
a short proof of the central limit theorem.

There is an analogous theory when summing two freely indepen-
dent (self-adjoint) non-commutative random variables X and Y’; the
distribution px 4y turns out to be a certain combination px H uy,
known as the free convolution of px and py. To compute this free
convolution, one does not use the characteristic function; instead, the
correct tool is the Stieltjes transform

sx(2) = 7((X —2)71) = /R L dux (@)

T —z
which has already been discussed earlier.

Here’s how to use this transform to compute free convolutions. If
one wishes, one can that X is bounded so that all series involved con-
verge for z large enough, though actually the entire argument here can
be performed at a purely algebraic level, using formal power series,
and so the boundedness hypothesis here is not actually necessary.

The trick (which we already saw in Section 2.4) is not to view
s = sx(z) as a function of z, but rather to view z = zx(s) as a
function of s. Given that one asymptotically has s ~ —1/z for z, we
expect to be able to perform this inversion for z large and s close to
zero; and in any event one can easily invert (2.119) on the level of
formal power series.
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With this inversion, we thus have
(2.126) s=7((X —2x(s)™)

and thus
(X —2x(s)) " = s(1 — Ex)

for some Ex = Ex(s) of trace zero. Now we do some (formal) alge-
braic sleight of hand. We rearrange the above identity as

X =zx(s)+s 11— Ex)" "
Similarly we have
Y =2y(s)+s (1 —Ey)™?
and so
X+Y =z2x(s)+2v(s)+s (1 - Ex)" "+ (1— Ey)"'].
We can combine the second two terms via the identity
(1-Ex) ' +(1-FEy)'=(1-Ex)'(1-Ey+1-Ex)(1-Ey) "
Meanwhile
1=(1-Ex)'(1-FEy —Ex +ExEy)(1—-Ey)!
and so
X+Y = 2x(s)+2y(s)+s ' +s H(1-Ex) '(1-ExEy)(1-Ey) .
We can rearrange this a little bit as
(X+Y —zx(s)—zy(s)—s ) =s[(1-Ey)(1-ExEy) '(1-Ex)).

We expand out as (formal) Neumann series:

(1-Ey)(1-ExEy) '(1-Ex) = (1-Ey)(1+ExEy+Ex FEy Ex Ey +. .

This expands out to equal 1 plus a whole string of alternating products
of EX and Ey.

Now we use the hypothesis that X and Y are free. This easily
implies that E'x and Ey are also free. But they also have trace zero,
thus by the definition of free independence, all alternating products
of Ex and Ey have zero trace*>. We conclude that

7((1—- By)(1 - ExEy) (1 - Ex)) =1

4310 the case when there are an odd number of terms in the product, one can
obtain this zero trace property using the cyclic property of trace and induction.

)(1-Ex).
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and so
T((X +Y —zx(s) —2y(s) —s 1)) =s.
Comparing this against (2.126) for X + Y we conclude that

Zx4y(8) = z2x(s) + 2y (s) + s L

Thus, if we define the R-transform Rx of X to be (formally) given
by the formula
Rx(s) := zx(—s) — s

then we have the addition formula
Rxi+vy = Rx + Ry.

Since one can recover the Stieltjes transform sx (and hence the R-
transform Ry) from the spectral measure py and vice versa, this
formula (in principle, at least) lets one compute the spectral measure
tx+y of X+Y from the spectral measures px, py, thus allowing one
to define free convolution.

For comparison, we have the (formal) addition formula
log F'x vy = log Fx + log Fy

for classically independent real random variables X, Y. The following
exercises carry this analogy a bit further.

Exercise 2.5.20. Let X be a classical real random variable. Working
formally, show that

tog P (1) = 3 U iy

k=1

where the cumulants ki (X) can be reconstructed from the moments
7(X*) by the recursive formula

k—1
(XN = () + (X)) Y (X
Jj=1 a1+...4aj=k—j
for k > 1. (Hint: start with the identity 4 Fx (t) = (4 log Fx (t))Fx(t).)
Thus for instance x1(X) = 7(X) is the expectation, ko (X) = 7(X?)—
7(X)? is the variance, and the third cumulant is given by the formula

k3 (X) = 7(X3) + 37(XH7(X) — 47(X)3.
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Establish the additional formula
(X =>"T] Ca(X)
T AEm

where 7w ranges over all partitions of {1,...,k} into non-empty cells

A.

Exercise 2.5.21. Let X be a non-commutative random variable.
Working formally, show that

Rx(S) = i Ck(X)Sk_l
k=1

where the free cumulants Cy(X) can be reconstructed from the mo-
ments 7(X*) by the recursive formula

k—1
T(XF) = C(X) + > Ci(X) > (X)) .. 7(X%)
j=1 ar+...+aj=k—j
for k > 1. (Hint: start with the identity sx(z)Rx(—sx(z)) =
14 zsx(z).) Thus for instance C1(X) = 7(X) is the expectation,
Cy(X) = 7(X?) — 7(X)? is the variance, and the third free cumulant
is given by the formula

C3(X) = 7(X?) = 37(X?)7(X) + 27(X)>.
Establish the additional formula
T(X*) =T #m1a(X)
T Aem
where 7 ranges over all partitions of {1,...,k} into non-empty cells
A which are non-crossing, which means that if a < b < ¢ < d lie in

{1,...,k}, then it cannot be the case that a,c lie in one cell A while
b, d lie in a distinct cell A’.

Remark 2.5.23. These computations illustrate a more general prin-
ciple in free probability, in that the combinatorics of free probability
tend to be the “non-crossing” analogue of the combinatorics of clas-
sical probability; compare with Remark 2.3.18.

Remark 2.5.24. The R-transform allows for efficient computation
of the spectral behaviour of sums X + Y of free random variables.
There is an analogous transform, the S-transform, for computing the
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spectral behaviour (or more precisely, the joint moments) of products
XY of free random variables; see for instance [Sp].

The R-transform clarifies the privileged role of the semicircular
elements:

Exercise 2.5.22. Let u be a semicircular element. Show that R s, (s)
ts for any t > 0. In particular, the free convolution of v/tu and vt'u

is Vvt + t'u.

Exercise 2.5.23. From the above exercise, we see that the effect of
adding a free copy of v/tu to a non-commutative random variable X
is to shift the R-transform by ts. Explain how this is compatible with
the Dyson Brownian motion computations in Section 2.4.

It also gives a free analogue of the central limit theorem:

Exercise 2.5.24 (Free central limit theorem). Let X be a self-adjoint
random variable with mean zero and variance one (i.e. 7(X) = 0 and
7(X?) = 1), and let X7, Xo, X3,... be free copies of X. Let S, :=
(X1 +...4+ X,,)/+v/n. Show that the coefficients of the formal power
series Rg, (s) converge to that of the identity function s. Conclude
that S,, converges in the sense of moments to a semicircular element
u.

The free central limit theorem implies the Wigner semicircular
law, at least for the GUE ensemble and in the sense of expectation.
Indeed, if M, is an n x n GUE matrix, then the matrices ﬁMn are
a.s. uniformly bounded (by the Bai-Yin theorem, Notes 3), and so
(after passing to a subsequence, if necessary), they converge in the
sense of moments to some limit w.

On the other hand, if M/ is an independent copy of M, then
M,, + M! = +/2M,, from the properties of gaussians. Taking limits,
we conclude that u + u’' = v/2u, where (by Proposition 2.5.21) u’ is
a free copy of u. Comparing this with the free central limit theorem
(or just the additivity property of R-transforms we see that u must
have the semicircular distribution. Thus the semicircular distribu-
tion is the only possible limit point of the ﬁMn, and the Wigner
semicircular law then holds (in expectation, and for GUE). Using con-
centration of measure, we can upgrade the convergence in expectation
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to a.s. convergence; using the Lindeberg replacement trick one can
replace GUE with arbitrary Wigner matrices with (say) bounded co-
efficients; and then by using the truncation trick one can remove the
boundedness hypothesis. (These latter few steps were also discussed
in Section 2.4.)

2.6. Gaussian ensembles

Our study of random matrices, to date, has focused on somewhat
general ensembles, such as iid random matrices or Wigner random
matrices, in which the distribution of the individual entries of the
matrices was essentially arbitrary (as long as certain moments, such
as the mean and variance, were normalised). In these notes, we now
focus on two much more special, and much more symmetric, ensem-
bles:

(i) The Gaussian Unitary Ensemble (GUE), which is an ensem-
ble of random n x n Hermitian matrices M,, in which the
upper-triangular entries are iid with distribution N(0,1)¢,
and the diagonal entries are iid with distribution N (0, 1)r,
and independent of the upper-triangular ones; and

(ii) The Gaussian random matriz ensemble, which is an ensem-
ble of random n x n (non-Hermitian) matrices M,, whose
entries are iid with distribution N (0, 1)c.

The symmetric nature of these ensembles will allow us to com-
pute the spectral distribution by exact algebraic means, revealing a
surprising connection with orthogonal polynomials and with determi-
nantal processes. This will, for instance, recover the semicircular law
for GUE, but will also reveal fine spacing information, such as the
distribution of the gap between adjacent eigenvalues, which is largely
out of reach of tools such as the Stieltjes transform method and the
moment method (although the moment method, with some effort, is
able to control the extreme edges of the spectrum).

Similarly, we will see for the first time the circular law for eigen-
values of non-Hermitian matrices.

There are a number of other highly symmetric ensembles which
can also be treated by the same methods, most notably the Gaussian
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Orthogonal Ensemble (GOE) and the Gaussian Symplectic Ensem-
ble (GSE). However, for simplicity we shall focus just on the above
two ensembles. For a systematic treatment of these ensembles, see
[De1999].

2.6.1. The spectrum of GUE. We have already shown using Dyson
Brownian motion in Section 3.1 that that we have the Ginibre formula[Gil965]

1 2
2.127 n(A) = ——=e A2 |A, (V)2
(2.127) Pn(A) ) [An (M)
for the density function of the eigenvalues (A1,...,\,) € RY of a

GUE matrix M, where
A= I i=n)
1<i<j<n

is the Vandermonde determinant. We now give an alternate proof
of this result (omitting the exact value of the normalising constant
W) that exploits unitary invariance and the change of variables
formula (the latter of which we shall do from first principles). The
one thing to be careful about is that one has to somehow quotient
out by the invariances of the problem before being able to apply the
change of variables formula.

One approach here would be to artificially “fix a gauge” and work
on some slice of the parameter space which is “transverse” to all the
symmetries. With such an approach, one can use the classical change
of variables formula. While this can certainly be done, we shall adopt
a more “gauge-invariant” approach and carry the various invariances

with us throughout the computation®*

We turn to the details. Let V,, be the space of Hermitian n x n
matrices, then the distribution pas, of a GUE matrix M, is a abso-
lutely continuous probability measure on V,,, which can be written
using the definition of GUE as

i, = Co(C [T e CTT e70772) ana,,
1<i<j<n 1<i<n
where dM,, is Lebesgue measure on V, &;; are the coordinates of M,,,
and C), is a normalisation constant (the exact value of which depends

44por a comparison of the two approaches, see [Ta2009b, §1.4].
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on how one normalises Lebesgue measure on V). We can express this
more compactly as

war, = Cpe™ tr(M)/2 dM,.

Expressed this way, it is clear that the GUE ensemble is invariant
under conjugations M, — UM, U~! by any unitary matrix.

Let D be the diagonal matrix whose entries \; > ... > A, are the
eigenvalues of M,, in descending order. Then we have M, = UDU !
for some unitary matrix U € U(n). The matirx U is not uniquely
determined; if R is diagonal unitary matrix, then R commutes with
D, and so one can freely replace U with U R. On the other hand, if the
eigenvalues of M are simple, then the diagonal matrices are the only
matrices that commute with D, and so this freedom to right-multiply
U by diagonal unitaries is the only failure of uniqueness here. And in
any case, from the unitary invariance of GUE, we see that even after
conditioning on D, we may assume without loss of generality that U
is drawn from the invariant Haar measure on U(n). In particular, U
and D can be taken to be independent.

Fix a diagonal matrix Dy = diag(\y, ..., A}) for some AY > ... >
AV let € > 0 be extremely small, and let us compute the probability
(2.128) P(||M,, — Do|lr <)

that M, lies within € of Dy in the Frobenius norm(2.64). On the one
hand, the probability density of M, is proportional to

e tr(D3)/2 _ o—IX"?/2
near Dy (where we write A := (A\{,..., %)) and the volume of a ball
of radius ¢ in the n?-dimensional space V,, is proportional to 5"2, SO
(2.128) is equal to

(2.129) (C! + o(1))e™ e tr(P5)/2

for some constant C/ > 0 depending only on n, where o(1) goes
to zero as € — 0 (keeping n and Dy fixed). On the other hand, if
|M,, — Do||r < e, then by the Weyl inequality (1.54) (or Weilandt-
Hoffman inequality (1.64)) we have D = Do+ O(e) (we allow implied
constants here to depend on n and on Dy). This implies UDU ! =
D + O(g), thus UD — DU = O(g). As a consequence we see that
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the off-diagonal elements of U are of size O(¢). We can thus use the
inverse function theorem in this local region of parameter space and
make the ansatz*®

D=Dy+¢eFE; U=exp(eS)R

where E is a bounded diagonal matrix, R is a diagonal unitary matrix,
and S is a bounded skew-adjoint matrix with zero diagonal. Note that
the map (R,S) — exp(eS)R has a non-degenerate Jacobian, so the
inverse function theorem applies to uniquely specify R,S (and thus
E) from U, D in this local region of parameter space.

Conversely, if D,U take the above form, then we can Taylor ex-
pand and conclude that

M, = UDU* = Do+ ¢FE +£(SDy — DoS) + O(£?)
and so
|M,, — Dol = €||E + (SDo — DoS)|| r + O(£?).

We can thus bound (2.128) from above and below by expressions of
the form

(2.130) P(|E + (SDy — DoS)||r < 1+ O()).

As U is distributed using Haar measure on U(n), S is (locally) dis-
tributed using £~ times a constant multiple of Lebesgue measure
on the space W of skew-adjoint matrices with zero diagonal, which has
dimension n? —n. Meanwhile, E is distributed using (p,, (A\°)+o(1))e"
times Lebesgue measure on the space of diagonal elements. Thus we
can rewrite (2.130) as

Cre™ (pa(A°) + 0(1)) / / dEdS
[ E+(SDo—Do )| r<1+0(e)

where dF and dS denote Lebesgue measure and C!/ > 0 depends only
on n.

Observe that the map S — SDg — DyS dilates the (complex-
valued) ij entry of S by )\? — A%, and so the Jacobian of this map is

45Note here the emergence of the freedom to right-multiply U by diagonal
unitaries.
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[Ticicj<n A9 — A212 = |A,(A?)[%. Applying the change of variables,
we can express the above as

n )\0
e "2” JEOQ / / dEdS,
n(A%)] | E+8||#<14+0()

The integral here is of the form C/" 4+ O(e) for some other constant
C}"" > 0. Comparing this formula with (2.129) we see that

pr(A0) +o(1) = C1"e= NP2, (AO) 2 + o(1)

for yet another constant C.;”” > 0. Sending ¢ — 0 we recover an exact
formula

pu(N) +o(1) = O 2 A, ()2
when A is simple. Since almost all Hermitian matrices have simple
spectrum (see Exercise 1.3.10), this gives the full spectral distribution
of GUE, except for the issue of the unspecified constant.

Remark 2.6.1. In principle, this method should also recover the ex-
plicit normalising constant o )n =73 i (2.127), but to do this it appears
one needs to understand the volume of the fundamental domain of
U(n) with respect to the logarithm map, or equivalently to under-
stand the volume of the unit ball of Hermitian matrices in the oper-
ator norm. I do not know of a simple way to compute this quantity
(though it can be inferred from (2.127) and the above analysis). One
can also recover the normalising constant through the machinery of
determinantal processes, see below.

Remark 2.6.2. The above computation can be generalised to other
U (n)-conjugation-invariant ensembles M,, whose probability distribu-
tion is of the form

W, = Cpe= VM) gar,

for some potential function V : R — R (where we use the spectral
theorem to define V' (M,,)), yielding a density function for the spec-
trum of the form

pa(X) = Cre™ 2= VAL (V).

Given suitable regularity conditions on V', one can then generalise
many of the arguments in these notes to such ensembles. See [De1999]
for details.
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2.6.2. The spectrum of gaussian matrices. The above method
also works for gaussian matrices G, as was first observed by Dyson
(though the final formula was first obtained by Ginibre, using a dif-
ferent method). Here, the density function is given by

(2.131) C,e~ " CE) G = ¢, e IGIF g

where C, > 0 is a constant and dG is Lebesgue measure on the space
M, (C) of all complex n x n matrices. This is invariant under both
left and right multiplication by unitary matrices, so in particular is
invariant under unitary conjugations as before.

This matrix G has n complex (generalised) eigenvalues o(G) =
{A\1,..., A}, which are usually distinct:

Exercise 2.6.1. Let n > 2. Show that the space of matrices in
M,,(C) with a repeated eigenvalue has codimension 2.

Unlike the Hermitian situation, though, there is no natural way
to order these n complex eigenvalues. We will thus consider all n! pos-
sible permutations at once, and define the spectral density function
pn(A1, ..., An) of G by duality and the formula

F(Npn(A) d\:=E > F(A, .., A)
e Mo An }=0 (@)
for all test functions F. By the Riesz representation theorem, this
uniquely defines p,, (as a distribution, at least), although the total
mass of p, is n! rather than 1 due to the ambiguity in the spectrum.

Now we compute p, (up to constants). In the Hermitian case,
the key was to use the factorisation M, = UDU~!. This particu-
lar factorisation is of course unavailable in the non-Hermitian case.
However, if the non-Hermitian matrix G has simple spectrum, it can
always be factored instead as G = UTU !, where U is unitary and T
is upper triangular. Indeed, if one applies the Gram-Schmidt process
to the eigenvectors of G and uses the resulting orthonormal basis to
form U, one easily verifies the desired factorisation. Note that the
eigenvalues of G are the same as those of T, which in turn are just
the diagonal entries of T

Exercise 2.6.2. Show that this factorisation is also available when
there are repeated eigenvalues. (Hint: use the Jordan normal form.)
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To use this factorisation, we first have to understand how unique
it is, at least in the generic case when there are no repeated eigenval-
ues. As noted above, if G = UTU ™!, then the diagonal entries of T
form the same set as the eigenvalues of G. We have the freedom to
conjugate T by a permutation matriz P to obtain P~'T P, and right-
multiply U by P to counterbalance this conjugation; this permutes
the diagonal entries of T around in any one of n! combinations.

Now suppose we fix the diagonal A\, ..., \, of T, which amounts
to picking an ordering of the n eigenvalues of G. The eigenvalues of
T are A1, ..., An, and furthermore for each 1 < j < n, the eigenvector
of T associated to A; lies in the span of the last n—j +1 basis vectors
€j,...,e, of C", with a non-zero e; coefficient (as can be seen by
Gaussian elimination or Cramer’s rule). As G = UTU™! with U
unitary, we conclude that for each 1 < j < n, the j* column of
U lies in the span of the eigenvectors associated to Aj,..., A,. As
these columns are orthonormal, they must thus arise from applying
the Gram-Schmidt process to these eigenvectors (as discussed earlier).
This argument also shows that once the diagonal entries Aq,..., A,
of T are fixed, each column of U is determined up to rotation by a
unit phase. In other words, the only remaining freedom is to replace
U by UR for some unit diagonal matrix R, and then to replace T by
R™'TR to counterbalance this change of U.

To summarise, the factorisation G = UTU ! is unique up to
right-multiplying U by permutation matrices and diagonal unitary
matrices (which together generate the Weyl group of the unitary
group U(n)), and then conjugating 7' by the same matrix. Given
a matrix GG, we may apply these symmetries randomly, ending up
with a random factorisation UTU ! such that the distribution of 7'
is invariant under conjugation by permutation matrices and diago-
nal unitary matrices. Also, since G is itself invariant under unitary
conjugations, we may also assume that U is distributed uniformly
according to the Haar measure of U(n), and independently of T

To summarise, the gaussian matrix ensemble G can almost surely
be factorised as UTU !, where T = (t;j)1<i<j<n is an upper-triangular
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matrix distributed according to some distribution

((tih<ici<n) ] dti
1<i<j<n
which is invariant with respect to conjugating T by permutation ma-
trices or diagonal unitary matrices, and U is uniformly distributed
according to the Haar measure of U(n), independently of T'.

Now let Ty = (t7;)1<i<j<n be an upper triangular matrix with
complex entries whose entries t{;,...,t2 € C are distinct. As in the

r nn

previous section, we consider the probability
(2.132) P(|G — Tollr < o).

On the one hand, since the space M,,(C) of complex n x n matrices
has 2n? real dimensions, we see from (2.131) that this expression is
equal to

(2.133) (C! + o(1))e~ I1Toll g2n*
for some constant C], > 0.

Now we compute (2.132) using the factorisation G = UTU 1.
Suppose that |G —Tol|r < €, so G =Ty + O(e) As the eigenvalues of
To are t9,...,t0  which are assumed to be distinct, we see (from the
inverse function theorem) that for ¢ small enough, G has eigenvalues
t9, 4+ O(e),...,t%, + O(e). Thus the diagonal entries of T are some
permutation of t9; + O(e),...,t2 + O(g). As we are assuming the
distribution of T to be invariant under conjugation by permutation
matrices, all permutations here are equally likely, so with probabil-
ity?® 1/n!, we may assume that the diagonal entries of T are given by

t9, +O(¢g),...,t% + O(e) in that order.

Let u?,...,uY be eigenvector of T associated to t9;,...,t0 . then
the Gram-Schmidt process applied to uy, ..., u, (starting at v and
working backwards to u}) gives the standard basis e1, ..., e, (in re-
verse order). By the inverse function theorem, we thus see that
we have eigenvectors u; = ul + O(e),...,u, = u® + O(e) of G,
which when the Gram-Schmidt process is applied, gives a perturba-
tion e +0(e), ..., e,+0(e) in reverse order. This gives a factorisation

46The factor of 1/n! will eventually be absorbed into one of the unspecified
constants.
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G =UTU! in which U = I + O(e), and hence T = Tp + O(¢). This
is however not the most general factorisation available, even after fix-
ing the diagonal entries of T', due to the freedom to right-multiply U
by diagonal unitary matrices R. We thus see that the correct ansatz
here is to have

U=R+0(); T=R'TZR+0(e)

for some diagonal unitary matrix R.

In analogy with the GUE case, we can use the inverse function
theorem make the more precise ansatz

U=exp(eS)R; T=R Ty, +cE)R

where S is skew-Hermitian with zero diagonal and size O(1), R is diag-
onal unitary, and E is an upper triangular matrix of size O(1). From
the invariance U + UR;T — R™'TR we see that R is distributed
uniformly across all diagonal unitaries. Meanwhile, from the unitary
conjugation invariance, S is distributed according to a constant mul-
tiple of e’ times Lebesgue measure dS on the n? — n-dimensional
space of skew Hermitian matrices with zero diagonal; and from the
definition of v, F is distributed according to a constant multiple of
the measure

(1+ o(1)e™ +"(Ty) dE,

where dE is Lebesgue measure on the n? 4+ n-dimensional space of
upper-triangular matrices. Furthermore, the invariances ensure that
the random variables S, R, E are distributed independently. Finally,
we have

G =UTU ™! = exp(e9)(Tp + ¢F) exp(—eS).

Thus we may rewrite (2.132) as
(2.134)

(Cota) + o) [ [ 4SdE
|| exp(eS)(To+eE) exp(—eS)—To||r<e

for some C!/ > 0 (the R integration being absorbable into this con-
stant C//). We can Taylor expand

exp(eS)(Ty + eE) exp(—eS) = Ty + e(E + STy — TpS) + O(e?)
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and so we can bound (2.134) above and below by expressions of the

(CV(Ty) + o(1))e2” / / dSdE.
| E+STo—ToS|| p<1+0(e)

The Lebesgue measure dF is invariant under translations by upper

form

triangular matrices, so we may rewrite the above expression as

(2.135)  (Cp(To) + o(1))e2™ / / dSdE,
| E+m(STo—ToS) || r <14+O(e)

where 7(STy — TpS) is the strictly lower triangular component of
STO — T()S

The next step is to make the (linear) change of variables V' :=
w(STo — TpS). We check dimensions: S ranges in the space S of
skew-adjoint Hermitian matrices with zero diagonal, which has di-
2 —n)/2, as does the space of strictly lower-triangular
matrices, which is where V' ranges. So we can in principle make this
change of variables, but we first have to compute the Jacobian of the
transformation (and check that it is non-zero). For this, we switch
to coordinates. Write S = (Sij)lgi,jgn and V = (Uij)1§j<i§n- In
coordinates, the equation V = 7(STy — TpS) becomes

j n
0 0
vig = sty — Ytk
k=1 k=i

mension (n

or equivalently

j—1 n
0 0 0 0
vij = (tj; — t3;)si; + E jSik — E Lk Skj-
k=1 k=it+1
Thus for instance
0 0
Un1 = (tll - tnn)snl
0 0 0
ty = tnpn)Sn2 + 12501

t(l)l - t?n—l)(n—l))s(nfl)l - t?n—l)nsnl

(
(
Uns = (t35 — 10, )83 + t13801 + t935n2
(32 =t 1)(n—1))8(n-1)2 T 28 (m-1)1 = {{n_1yn5n2
(

21 = 02y (n—2))S(n-21 = tn_2)(n—1)S(n—1)1 = L{n_2yn5n1
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etc. We then observe that the transformation matrix from s,1, $n2, S(n—1)1, - - -

t0 Un1, Un2, Vn—1)1,-- - is triangular, with diagonal entries given by
t?j — % for 1 < j < i < n. The Jacobian of the (complex-linear) map
S +— V is thus given by

| H t?j _tzQi|2 = |A(t(1)1a7t91n)|2
1<j<i<n

which is non-zero by the hypothesis that the ¢!, ... t4™ are distinct.
We may thus rewrite (2.135) as

Ch(To) +0(1) 5y,
INCR S // v
115 nn ||E+V”F§1+O(€)

where dV is Lebesgue measure on strictly lower-triangular matrices.
The integral here is equal to C)" 4+ O(g) for some constant C/”’. Com-
paring this with (2.132), cancelling the factor of 82”2, and sending
e — 0, we obtain the formula

2
P((E)h<i<icn) = CoV AW, ..., 10,2 I1TolF

for some constant C” > 0. We can expand

cImlE = T e

1<i<j<n

If we integrate out the off-diagonal variables t?j for1 <i<j<n,we
see that the density function for the diagonal entries (A1,...,A,) of
T is proportional to

A, .., )2 Zi=t X1

Since these entries are a random permutation of the eigenvalues of G,
we conclude the Ginibre formula

(2.136) Py An) = Cnl A, . .. Ap)[2e S N

for the joint density of the eigenvalues of a gaussian random matrix,
where ¢,, > 0 is a constant.

Remark 2.6.3. Given that (2.127) can be derived using Dyson Brow-
nian motion, it is natural to ask whether (2.136) can be derived by a
similar method. It seems that in order to do this, one needs to con-
sider a Dyson-like process not just on the eigenvalues Ay, ..., Ay, but
on the entire triangular matrix T (or more precisely, on the moduli
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space formed by quotienting out the action of conjugation by uni-
tary diagonal matrices). Unfortunately the computations seem to get
somewhat complicated, and we do not present them here.

2.6.3. Mean field approximation. We can use the formula (2.127)
for the joint distribution to heuristically derive the semicircular law,
as follows.

It is intuitively plausible that the spectrum (Ag,...,A,) should
concentrate in regions in which p,(A1,...,\,) is as large as possible.
So it is now natural to ask how to optimise this function. Note that
the expression in (2.127) is non-negative, and vanishes whenever two
of the \; collide, or when one or more of the \; go off to infinity, so a
maximum should exist away from these degenerate situations.

We may take logarithms and write

"1
(2.137) —1og pu(A1, .- An Z§A P+ ) log By —M +C

i#£]

where C' = C,, is a constant whose exact value is not of importance
to us. From a mathematical physics perspective, one can interpret
(2.137) as a Hamiltonian for n particles at positions Aj,..., \,, sub-
ject to a confining harmonic potential (these are the 2|A;[? terms)
and a repulsive logarithmic potential between particles (these are the

1
W terms).

Our objective is now to find a distribution of Aq,...,\, that
minimises this expression.

We know from previous notes that the A; should be have mag-
nitude O(y/n). Let us then heuristically make a mean field appm:cima—
tion, in that we approxnnate the discrete spectral measure = Z] 1 5>\ /R
by a continuous*” probability measure p(z) dz. Then we can heuris-
tically approximate (2.137) as

([ ooty ot [ [ 10w L ptonty) dady) +

47Secretly, we know from the semicircular law that we should be able to take
p=5(4— zz)i, but pretend that we do not know this fact yet.
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and so we expect the distribution p to minimise the functional

(2.138) /R%;ﬁp(ac) da:—l—/R/Rlog Timp(x)p(y) dxdy.

One can compute the Euler-Lagrange equations of this functional:

Exercise 2.6.3. Working formally, and assuming that p is a proba-
bility measure that minimises (2.138), argue that

1, / 1
2242 [ 1o dy=C
5 gl_y‘()y

for some constant C' and all z in the support of p. For all x outside
of the support, establish the inequality

1 1
—z? 4 2/ log ply) dy > C.
2 R |z =yl

There are various ways we can solve this equation for p; we sketch
here a complex-analytic method. Differentiating in x, we formally
obtain

1
1772p.v./ —p(y) dy =0
RT Y

on the support of p. But recall that if we let

s(2) ::/R ! p(y) dy

y—z
be the Stieltjes transform of the probability measure p(x) dz, then

we have
Im(s(z +i0")) = mp(x)

and

Re(s(z +1i0T)) = —p.v./ ply) dy.

RT Y
We conclude that
(x + 2Re(s(x +i07))Im(s(z +i01))) =0
for all x, which we rearrange as
Im(s*(x +i07) 4+ zs(z +i0")) = 0.

This makes the function f(z) = s?(2) + zs(2) entire (it is analytic in

the upper half-plane, obeys the symmetry f(Z) = f(z), and has no
1+o(1)
as

z
jump across the real line). On the other hand, as s(z) =
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z = 00, f goes to —1 at infinity. Applying Liouville’s theorem, we
conclude that f is constant, thus we have the familiar equation

2 +2s=—1

which can then be solved to obtain the semicircular law as in Section
2.4.

Remark 2.6.4. Recall from Section 3.1 that Dyson Brownian motion
can be used to derive the formula (2.127). One can then interpret
the Dyson Brownian motion proof of the semicircular law for GUE
in Section 2.4 as a rigorous formalisation of the above mean field
approximation heuristic argument.

One can perform a similar heuristic analysis for the spectral mea-
sure pug of a random gaussian matrix, giving a description of the
limiting density:

Exercise 2.6.4. Using heuristic arguments similar to those above,
argue that ug should be close to a continuous probability distribution
p(z) dz obeying the equation

1
| 2|2 —|—/ log ——p(w) dw =C
c |z —wl

on the support of p, for some constant C, with the inequality

(2.139) |2]? +/ log p(w) dw > C.
c

|z — w]
Using the Newton potential % log |z| for the fundamental solution of
the two-dimensional Laplacian —02 — 83 , conclude (non-rigorously)
that p is equal to % on its support.

Also argue that p should be rotationally symmetric. Use (2.139)
and Green’s formula to argue why the support of p should be simply
connected, and then conclude (again non-rigorously) the circular law

1
(2.140) G ~ ;1|z|§1 dz.

We will see more rigorous derivations of the circular law later in
this text.
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2.6.4. Determinantal form of the GUE spectral distribution.
In a previous section, we showed (up to constants) that the density
function p,,(A1,. .., A,) for the eigenvalues A; > ... > \,, of GUE was
given by the formula (2.127).

As is well known, the Vandermonde determinant A(Aq,...,\,)
that appears in (2.127) can be expressed up to sign as a determinant
of an m X n matrix, namely the matrix (/\gfl)lgingn. Indeed, this
determinant is clearly a polynomial of degree n(n—1)/2 in Aq,..., A,
which vanishes whenever two of the ); agree, and the claim then
follows from the factor theorem (and inspecting a single coefficient of
the Vandermonde determinant, e.g. the H?zl )\§71 coefficient, to get
the sign).

We can square the above fact (or more precisely, multiply the
above matrix matrix by its adjoint) and conclude that [A(Ay, ..., An)[?
is the determinant of the matrix

n—1
O NN 1<ij<n-
k=0

More generally, if Py(z), ..., P,—1(z) are any sequence of polynomials,
in which P;(z) has degree i, then we see from row operations that the
determinant of

(Pj-1(Ai))1<ij<n
is a non-zero constant multiple of A(Aq,...,A,) (with the constant
depending on the leading coefficients of the P;), and so the determi-
nant of

(3" PO PO s szn
k=0

is a non-zero constant multiple of [A(A1,...,\,)[?. Comparing this
with (2.127), we obtain the formula

n—1

pn(N) = Cdet(Y Puh)e M/ (A )e ™ ) 121 j<n
k=0

for some non-zero constant C.

This formula is valid for any choice of polynomials P; of de-
gree i. But the formula is particularly useful when we set P; equal
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to the (normalised) Hermite polynomials, defined*® by applying the
Gram-Schmidt process in L?(R) to the polynomials zie=*"/4 for i =
0,...,n—1 to yield P; (x)e’zg/‘l. In that case, the expression

n—1
(2.141) K, (z,y) := Z Pk(x)e_m2/4Pk(y)e_y2/4
k=0

becomes the integral kernel of the orthogonal projection 7y;, operator
in L2(R) to the span of the zie=*"/%, thus

mf@) = | Kuwnr)
for all f € L2(R), and so p,()) is now a constant multiple of
det(Kn (Ai; Aj))1<ij<n-

The reason for working with orthogonal polynomials is that we
have the trace identity

(2.142) / K,(z,z) de =tr(my,) =n
R
and the reproducing formula

(2.143) Ky (z,y) = AKn(m,z)Kn(z,y) dz

which reflects the identity my, = 7r‘2/n. These two formulae have an

important consequence:

Lemma 2.6.5 (Determinantal integration formula). Let K, : R x
R — R be any symmetric rapidly decreasing function obeying (2.142),
(2.143). Then for any k > 0, one has

(2.144)

det (K (Nis Aj))i<ij<krr dAkp1 = (n— k) det (K (i, Aj))1<ij<k-
R

Remark 2.6.6. This remarkable identity is part of the beautiful

algebraic theory of determinantal processes, which is discussed further
in [Ta2010b, §2.6].

48Equivalcnt1y7 the P; are the orthogonal polynomials associated to the measure
2
e~ /2 dg.
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Proof. We induct on k. When k& = 0 this is just (2.142). Now assume
that £ > 1 and that the claim has already been proven for k — 1.
We apply cofactor expansion to the bottom row of the determinant
det(Kn (i, Aj))1<i,j<k+1. This gives a principal term

(2.145) det (K (N, Aj))1<i j<i B n (k1 A1)
plus a sum of k additional terms, the I*" term of which is of the form
(2.146) (=) KL (A M) det (K (A M) 1<isha<i<hr 14

Using (2.142), the principal term (2.145) gives a contribution of n det(K,, (A, Aj))1<i j<k
to (2.144). For each nonprincipal term (2.146), we use the multilin-

earity of the determinant to absorb the K, (A, \x+1) term into the

j =k + 1 column of the matrix. Using (2.143), we thus see that the

contribution of (2.146) to (2.144) can be simplified as

ISR IS

which after row exchange, simplifies to — det(K,, (A, Aj))1<i,j<k- The
claim follows. O

In particular, if we iterate the above lemma using the Fubini-
Tonelli theorem, we see that

/ det(Kn()\i, )\j))lgi,jgn d)\l . d)\n =nl.

On the other hand, if we extend the probability density function
pn(A1, ... An) symmetrically from the Weyl chamber RZ to all of
R", its integral is also n!. Since det(K, (i, \j))1<i j<n is clearly sym-
metric in the Ay, ..., \,, we can thus compare constants and conclude
the Gaudin-Mehta formula[MeGal960]

pn()\la ey >\n) = det(Kn()\Z, )\j))lgi,jgnn
More generally, if we define pj, : R¥ — R* to be the function
(2147) pk(/\h ey >\k) = det(Kn(/\Z-, )\j))lgi,jgk;

then the above formula shows that pg is the k-point correlation func-
tion for the spectrum, in the sense that

(2148) /k Pk()\la AN .,)\k)F(/\l, . -7/\k) d)\l . d/\k
R
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=E > FO (M), N (M)
1<ir<...<ip<n

for any test function ' : R — C supported in the region {(z1,...,zy) :

x1 < ... <}

In particular, if we set k = 1, we obtain the explicit formula
1
Euy, = —Kp(z,z) de
n

for the expected empirical spectral measure of M,,. Equivalently after
renormalising by /n, we have

(2.149) Epn, )y = #Kn(\/ﬁz, Vnzx) dz.

It is thus of interest to understand the kernel K, better.

To do this, we begin by recalling that the functions Pl-(x)e*IQ/4
were obtained from zie=®"/4 by the Gram-Schmidt process. In partic-
ular, each P (w)e_mz/4 is orthogonal to the z7e=%"/4 for all 0 < j < i.
This implies that xPZ-(x)e*IQ/4 is orthogonal to z7e¢=*"/4 for 0 < j <
i — 1. On the other hand, zP;(x) is a polynomial of degree ¢ + 1, so
ar:Pi(aU).e_g”z/4 must lie in the span of zie=*"/4 for ) <j<i+1. Com-
bining the two facts, we see that zP; must be a linear combination of
P;_1,P;, P11, with the P, coefficient being non-trivial. We rewrite
this fact in the form

for some real numbers a;, b;, ¢; (with ¢g = 0). Taking inner products
with P41 and P;_; we see that

2.151 P (x) P11 (x e/ dp = i
( ) +
R a;
and
/ gvPi(a,’)R_l(:17)67‘7‘32/2 dx = G
R a;
and so
a;
2.152 =
( ) Cii= o

(with the convention a_; = c0).
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We will continue the computation of a;, b;, ¢; later. For now, we
we pick two distinct real numbers x,y and consider the Wronskian-
type expression

Pi1(2)Pi(y) — Pi(x) Py (y)-
Using (2.150), (2.152), we can write this as

a;i(x —y)P;(x)Pi(y) + (Pi—1(z)Pi(y) — Pi(xz)Pi—1(y))

a;

ai—1
or in other words
Pip1(z)Pi(y) — Pi(z)Piva(y)

Pi(x)Pi(y) = P p—
_ Pi(x)Pioa(y) — Pima(2) Pi(y)
ai—l(x - y) .

We telescope this and obtain the Christoffel-Darboux formula for the
kernel (2.141):

(2.153)  Ko(z,y) = L2 n1@) = Paa@Paly) a4y,

anfl(x - y)
Sending y — « using L’Hoépital’s rule, we obtain in particular that
1
(2.154) K, (z,2) = ——(P,(2)Pu_1(z) — P._ () Pa(z))e™ /2,
Gp—1

Inserting this into (2.149), we see that if we want to understand
the expected spectral measure of GUE, we should understand the
asymptotic behaviour of P, and the associated constants a,. For
this, we need to exploit the specific properties of the gaussian weight

2
e~ /2. In particular, we have the identity

d
(2.155) ze T = /2
dx
so upon integrating (2.151) by parts, we have
_2 1
[ (Pl Pis(o) + PPl (a))e 2 do =
R

a;

As P! has degree at most ¢ — 1, the first term vanishes by the or-
thonormal nature of the P;(z)e=*/4, thus

2.156 P(z) Pl (z)e=="/2 dx = l
+1
- .

a;
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To compute this, let us denote the leading coefficient of P; as k;. Then

i+1 kl
(PFIC#PZ» plus lower-order terms, and so we have
k2

(i+Dkitn 1
]fi o a; '
On the other hand, by inspecting the 2i*! coefficient of (2.150) we
have

P, is equal to

ki+1 = CLik‘i.
Combining the two formulae (and making the sign convention that
the k; are always positive), we see that
1

a; =
! i+ 1

and

-

ki1 = it
Meanwhile, a direct computation shows that Py(z) = ko = W,
and thus by induction
_ 1
B (2m)1/4/i! .
A similar method lets us compute the b;. Indeed, taking inner prod-
ucts of (2.150) with Pi(a:)e*mz/ 2 and using orthonormality we have

b; = —ai/ JcPi(av)Qe_‘"”Z/2 dx
R
which upon integrating by parts using (2.155) gives
b; = —2ai/ Pi(1:)]314’(17)67#/2 dx.
R

As P! is of degree strictly less than i, the integral vanishes by or-

thonormality, thus b; = 0. The identity (2.150) thus becomes Hermite
recurrence relation

1 Vi
mxﬂ(m) - \/mpi_l(:c).

Another recurrence relation arises by considering the integral

/ Pj(a:)Pz-'_~_1(:c)(3*“Cz/2 dx.
R

(2.157) Py (z) =
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On the one hand, as P, ; has degree at most i, this integral vanishes
if 5 > i by orthonormality. On the other hand, integrating by parts
using (2.155), we can write the integral as

/ (@P; — P})(x) P (2)e™™ /2 da.
R

If j <4, then o P; — P]{ has degree less than ¢+ 1, so the integral again
vanishes. Thus the integral is non-vanishing only when j = ¢. Using
(2.156), we conclude that

1
Qi

We can combine (2.158) with (2.157) to obtain the formula
d .
d7(67x2/2131($)) = i+ 1le " 2Py(a),
x
which together with the initial condition Py = W gives the ex-
plicit representation
= 2/2 ar 2/2

2.159 P, = ———e"/T—e"
(2.159) )= oty d
for the Hermite polynomials. Thus, for instance, at x = 0 one sees
from Taylor expansion that

(vl
(2m)1/42n/2(n /2)1

(2.160) P,(0) = P.(0)=0

when n is even, and

(=12 (0 + 1)Vl
(2m)1/42(n+1)/2((n 4+ 1) /2)!

(2.161) P,(0)=0; P;(0)=

when n is odd.

In principle, the formula (2.159), together with (2.154), gives us
an explicit description of the kernel K, (v, ) (and thus of Eupy, / /m,
by (2.149)). However, to understand the asymptotic behaviour as
n — oo, we would have to understand the asymptotic behaviour

of dinne_mz/ 2 as n — 00, which is not immediately discernable by
inspection. However, one can obtain such asymptotics by a variety
of means. We give two such methods here: a method based on ODE
analysis, and a complex-analytic method, based on the method of
steepest descent.
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We begin with the ODE method. Combining (2.157) with (2.158)
we see that each polynomial P, obeys the Hermite differential equa-
tion

P/ (z) —xP) (z) + mP,,(z) = 0.
If we look instead at the Hermite functions ¢y, () := P, (z)e=% /4,

we obtain the differential equation

Lom(@) = (m+ 3)0m

where L is the harmonic oscillator operator
2
x

Lo := —¢" + Zd).

Note that the self-adjointness of L here is consistent with the orthog-
onal nature of the ¢,,.

Exercise 2.6.5. Use (2.141), (2.154), (2.159), (2.157), (2.158) to
establish the identities

Ko, 2) = 3 d5(a)?
7=0

= 0 (2)* + (n — —)pn(2)?
and thus by (2.149)

n—1
N e P
L
\/ﬁ
It is thus natural to look at the rescaled functions
Om () 1= V/1m (v/n)
which are orthonormal in L?(R) and solve the equation

~ m-+1/2 -~
Ly ymtdm(x) = T/ m

= [0 (V) + Vil — S )n(iia)?]

where Lj, is the semiclassical harmonic oscillator operator

2
Lug = ~h*¢" + -9,
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thus
1 n—1 B
Epn, pym =+ > (@) do =
j=0
1- z? -
(2.162) = [-0n(2)* + (1= )on(2)’] da

The projection 7y, is then the spectral projection operator of
Ly, m to [0,1]. According to semi-classical analysis, with h being
interpreted as analogous to Planck’s constant, the operator Lj has
symbol p? + %2, where p := fih% is the momentum operator, so the
projection 7y, is a projection to the region {(z,p) : p* + % < 1}
of phase space, or equivalently to the region {(z,p) : |p| < (4 —
q:2)1+/ 2}. In the semi-classical limit & — 0, we thus expect the diagonal
K, (z,7) of the normalised projection h?wy, to be proportional to
the projection of this region to the x variable, i.e. proportional to
(4— xz)i_/ ®. We are thus led to the semicircular law via semi-classical
analysis.

It is possible to make the above argument rigorous, but this would
require developing the theory of microlocal analysis, which would be
overkill given that we are just dealing with an ODE rather than a
PDE here (and an extremely classical ODE at that); but see Section
3.3. We instead use a more basic semiclassical approximation, the
WKB approximation, which we will make rigorous using the classical
method of variation of parameters (one could also proceed using the
closely related Prifer transformation, which we will not detail here).
We study the eigenfunction equation

Lpp= Ao

where we think of A > 0 as being small, and A as being close to 1.
We rewrite this as

1
(2.163) ¢ = —ﬁk(x)ng
where k(z) := /X — 22/4, where we will only work in the “classical”

region z2/4 < X (so k(z) > 0) for now.

Recall that the general solution to the constant coefficient ODE
¢" = —5k?¢ is given by ¢(z) = Ae'**/h + Be~tke/h Inspired by
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this, we make the ansatz
¢($) _ A(m)ei\ll(x)/h + B(x)e—i\ll(x)/h

where U(z) := [ k(y) dy is the antiderivative of k. Differentiating
this, we have

() —
_|_A/(x)ei\ll(z)/h + B/(x)e—i‘ll(m)/h.
Because we are representing a single function ¢ by two functions
A, B, we have the freedom to place an additional constraint on A, B.

Following the usual variation of parameters strategy, we will use this
freedom to eliminate the last two terms in the expansion of ¢, thus

(A(x)eull(w)/h _ B(x)efz\l'(z)/h)

(2.164) Al (x)e™ @/ L B (z)e @M — ),
We can now differentiate again and obtain
2 -1,/
#(a) = =200 g0y + B (g @ervrn _ payevionm)
+ikf(;«") (A'(2)e?¥@/1 _ Bl (g)e= V(@) /by,
Comparing this with (2.163) we see that
_ p K () _ p

A z\I/(x)/h_Bl i¥(z)/h _ _ A 1\Il(z)/h_B i¥(xz)/h ]

()e () T e (e)e )

Combining this with (2.164), we obtain equations of motion for A and
B:

"(z) = _51;((3;)) (2) 5};((3;))3(x)6—2i\1/(w)/h
(@) = - F (@) K (z) 20 (x
Biz) = _2k(x)B(x) + 2k(x)A(33)€ v@/h,

We can simplify this using the integrating factor substitution

A(z) = k(z)"Y%a(z); B(z) = k(z)~2b(z)

to obtain
K (z) 2
/ _ 20 (x)/h.
(2.165) a'(x) Wo(2) b(x)e ;
!/
(2.166) b (2) = P o (ye2iv@n




2.6. Gaussian ensembles 241

The point of doing all these transformations is that the role of the h
parameter no longer manifests itself through amplitude factors, and
instead only is present in a phase factor. In particular, we have

a’,b" = O(la| + [b])
on any compact interval I in the interior of the classical region 2% /4 <

A (where we allow implied constants to depend on I'), which by Gron-
wall’s inequality gives the bounds

a'(z), ' (x), a(z),b(z) = O(la(0)] + [b(0)])
on this interval I. We can then insert these bounds into (2.165),
(2.166) again and integrate by parts (taking advantage of the non-
stationary nature of ¥) to obtain the improved bounds*’
(2.167)
a(x) = a(0)+O0(h(la(0)[+[b(0)]));  b(z) = b(0)+O(h(la(0)|+]b(0)]))
on this interval. This is already enough to get the asymptotics that
we need:

Exercise 2.6.6. Use (2.162) to show that on any compact interval I
in (=2,2), the density of Eu,; , /s is given by

(laf*(@) + b (@) (V1 = 22 /4 + o(1)) + O(Ja(@)[[b()])

where a,b are as above with A = 1 + % and h = % Combining

this with (2.167), (2.160), (2.161), and Stirling’s formula, conclude
that Euy /. m converges in the vague topology to the semicircular

law (4 — a:Q)i/ ? dx. (Note that once one gets convergence inside
(—2,2), the convergence outside of [—2,2] can be obtained for free
since g,/ m and 5= (4 — J:2)1+/ ? dx are both probability measures.)

We now sketch out the approach using the method of steepest
descent. The starting point is the Fourier inversion formula

2 1 . 2
e % /2 _ eitr o=t /2 dt
V2T /R

which upon repeated differentiation gives
d" 67:1:2/2 _ i" / tneitzeftQ/Q dt
dxm™ \/ﬁ R

49More precise asymptotic expansions can be obtained by iterating this procedure,
but we will not need them here.
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and thus by (2.159)

(=1)" / —(t—ix)?/2
P — n i
() (2m)3/4v/n! Jr e o

and thus

- (=)" +1)/2/ o)
n(x) = ————n\" e” dt

where
o(t) :=logt — (t —ix)?/2 — 2° /4

where we use a suitable branch of the complex logarithm to handle
the case of negative t.

The idea of the principle of steepest descent is to shift the contour
of integration to where the real part of ¢(z) is as small as possible.
For this, it turns out that the stationary points of ¢(z) play a crucial
role. A brief calculation using the quadratic formula shows that there
are two such stationary points, at

ix £ vV4 — 22
5 )

When |z| < 2, ¢ is purely imaginary at these stationary points, while
for |z| > 2 the real part of ¢ is negative at both points. One then
draws a contour through these two stationary points in such a way
that near each such point, the imaginary part of ¢(z) is kept fixed,
which keeps oscillation to a minimum and allows the real part to decay
as steeply as possible (which explains the name of the method). After
a certain tedious amount of computation, one obtains the same type
of asymptotics for ¢,, that were obtained by the ODE method when
|z] < 2 (and exponentially decaying estimates for |x| > 2).

z =

Exercise 2.6.7. Let f: C — C, g : C — C be functions which are
analytic near a complex number zg, with f'(z9) = 0 and f”(2¢) # 0.

Let € > 0 be a small number, and let v be the line segment {zp + tv :

—& < t < €}, where v is a complex phase such that f”(zg)v? is a

negative real. Show that for e sufficiently small, one has

/e/\f(z)g(z) dz = (1+0(1)) —— VQm’eAf(ZO)
Y

f”(Zo))\ g(zo)
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as A — +oo. This is the basic estimate behind the method of steepest
descent; readers who are also familiar with the method of stationary
phase may see a close parallel.

Remark 2.6.7. The method of steepest descent requires an explicit
representation of the orthogonal polynomials as contour integrals, and
as such is largely restricted to the classical orthogonal polynomials
(such as the Hermite polynomials). However, there is a non-linear
generalisation of the method of steepest descent developed by Deift
and Zhou, in which one solves a matrix Riemann-Hilbert problem
rather than a contour integral; see [Del1999] for details. Using these
sorts of tools, one can generalise much of the above theory to the spec-
tral distribution of U(n)-conjugation-invariant discussed in Remark
2.6.2, with the theory of Hermite polynomials being replaced by the
more general theory of orthogonal polynomials; this is discussed in
[Del999] or [DeGi2007].

The computations performed above for the diagonal kernel K, (x, )
can be summarised by the asymptotic

Kn(v/nz, /i) = va(peo() + o(1))

whenever z € R is fixed and n — 00, and pgc(x) 1= 5= (4 — a?2)1+/2 is
the semicircular law distribution. It is reasonably straightforward to
generalise these asymptotics to the off-diagonal case as well, obtaining
the more general result

(2 168)
KalVme e ey VT ) = V(@K 32) +o(0)

for fixed z € (—2,2) and y1, y2 € R, where K is the Dyson sine kernel
sin(m(y1 — y2)

(Y1 — y2)

In the language of semi-classical analysis, what is going on here is
that the rescaling in the left- hand side of (2.168) is transforming the
phase space region {(z, p) : p*+%- < 1} to the region {(z, p) : [p| < 1}
in the limit n — oo, and the prOJectlon to the latter region is given
by the Dyson sine kernel. A formal proof of (2.168) can be given
by using either the ODE method or the steepest descent method
to obtain asymptotics for Hermite polynomials, and thence (via the

K(y1,y2) :=
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Christoffel-Darboux formula) to asymptotics for K,,; we do not give
the details here, but see for instance [AnGuZi2010).

From (2.168) and (2.147), (2.148) we obtain the asymptotic for-
mula

E Z F(Vnpse(x)(Ni, (M) — v/nz), ...,

1< <...<ix<n

Vnpse(®)(Niy, (M) — v/nz))
— / F(yi,...,yx) det(K (yi, yj))1<ij<k dyi - - . dys
Rk

for the local statistics of eigenvalues. By means of further algebraic
manipulations (using the general theory of determinantal processes),
this allows one to control such quantities as the distribution of eigen-
value gaps near /nz, normalised at the scale m, which is the
average size of these gaps as predicted by the semicircular law. For in-
stance, for any so > 0, one can show (basically by the above formulae
combined with the inclusion-exclusion principle) that the proportion

of eigenvalues \; with normalised gap \/ﬁi’*(lt_/)‘; less than sy con-

verges as n — oo to [;* % det(1 — K)p2(0,5 ds, where t, € [-2,2]

is defined by the formula fi; psc(x) dx = ¢, and K is the integral
operator with kernel K (x,y) (this operator can be verified to be trace
class, so the determinant can be defined in a Fredholm sense). See
for instance®® [Me2004].

Remark 2.6.8. One can also analyse the distribution of the eigenval-
ues at the edge of the spectrum, i.e. close to +21/n. This ultimately
hinges on understanding the behaviour of the projection 7y, near the
corners (0, £2) of the phase space region Q = {(p, z) : p2—|—9”7‘2 <1}, or
of the Hermite polynomials P, (x) for x close to +2+/n. For instance,
by using steepest descent methods, one can show that

T :
n2¢, (2v/n + W) — Ai(x)

as n — oo for any fixed z,y, where Ai is the Airy function

1~
Ai(z) = f/ cos(g + tx) dt.
0

™

50 finitary version of this inclusion-exclusion argument can also be found at
[Ta2010b, §2.6].
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This asymptotic and the Christoffel-Darboux formula then gives the
asymptotic

(2.169) O (20 + s, 2V + ) = Kail,)
n n

for any fixed z,y, where Ka; is the Airy kernel

Ai(z) A’ (y) — Ai'(z) Ai
Kas(o.g) o M)A ) = Al (2) Aily)
r—y
This then gives an asymptotic description of the largest eigenvalues
of a GUE matrix, which cluster in the region 2/n + O(n'/®). For
instance, one can use the above asymptotics to show that the largest
eigenvalue A\; of a GUE matrix obeys the Tracy- Widom law
A —2
P(J

nl/6

< t) — det(l — A)LQ[O,t]

for any fixed t, where A is the integral operator with kernel K 4;. See
[AnGuZi2010] and Section 3.3 for further discussion.

2.6.5. Determinantal form of the gaussian matrix distribu-
tion. One can perform an analogous analysis of the joint distribu-
tion function (2.136) of gaussian random matrices. Indeed, given any
family Py, ..., P,—1(2) of polynomials, with each P; of degree ¢, much
the same arguments as before show that (2.136) is equal to a constant
multiple of

n—1
det(z Pk()\i)ei‘/\il /QPk()\j)eil)\j‘ /2)1§z‘,j§n-
k=0

One can then select Pk(z)e_‘z‘z/2 to be orthonormal in L?(C). Actu-
ally in this case, the polynomials are very simple, being given explic-
itly by the formula
L&
z".
Vrk!

Exercise 2.6.8. Verify that the le(,z)(f_“z‘2/2 are indeed orthonor-
mal, and then conclude that (2.136) is equal to det (K, (i, Aj))1<i,j<n,
where

Pk(Z) =

n—1, L

1 2 w? (zw)
= — ez Hw[)/2
K, (z,w) = e ,; o
-0
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Conclude further that the m-point correlation functions p,, (21, . . ., 2m)
are given as

pm(Zl, ey Zm) = det(Kn(zl, Zj))lgi,jgm'

Exercise 2.6.9. Show that as n — oo, one has

nKn(\/ﬁz, \/ﬁz) = %1‘251 +o(1)

and deduce that the expected spectral measure Eug, 5 converges
vaguely to the circular measure p. := %1|Z|§1 dz; this is a special
case of the circular law.

Exercise 2.6.10. For any |z| < 1 and wy, ws € C, show that

REu(Ve + wn), VA + w)) = —exp(—lr — wal?/2) + (1)

as n — oo. This formula (in principle, at least) describes the asymp-
totic local m-point correlation functions of the spectrum of gaussian
matrices.

Remark 2.6.9. One can use the above formulae as the starting point
for many other computations on the spectrum of random gaussian ma-
trices; to give just one example, one can show that expected number
of eigenvalues which are real is of the order of \/n (see [EdA1996] for
more precise results of this nature). It remains a challenge to extend
these results to more general ensembles than the gaussian ensemble.

2.7. The least singular value

Now we turn attention to another important spectral statistic, the
least singular value o,(M) of an n x n matrix M (or, more generally,
the least non-trivial singular value o,(M) of a n x p matrix with
p < n). This quantity controls the invertibility of M. Indeed, M is
invertible precisely when o,,(M) is non-zero, and the operator norm
| M~ Y|op of M~ is given by 1/0,,(M). This quantity is also related to
the condition number o1(M)/on,(M) = || M||op|| M~ |op of M, which
is of importance in numerical linear algebra. As we shall see in the
next set of notes, the least singular value of M (and more generally, of
the shifts ﬁM —zI for complex z) will be of importance in rigorously
establishing the circular law for iid random matrices M, as it plays
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a key role in computing the Stieltjes transform %tr(ﬁM —zI)~t of
such matrices, which as we have already seen is a powerful tool in
understanding the spectra of random matrices.

The least singular value

o(M) = inf ||Mal,
llzll=1
which sits at the “hard edge” of the spectrum, bears a superficial
similarity to the operator norm
[M]lop = o1 (M) = sup ||Mz]|
llzll=1

at the “soft edge” of the spectrum, that was discussed back in Section
2.3, so one may at first think that the methods that were effective
in controlling the latter, namely the epsilon-net argument and the
moment method, would also work to control the former. The epsilon-
net method does indeed have some effectiveness when dealing with
rectangular matrices (in which the spectrum stays well away from
zero), but the situation becomes more delicate for square matrices;
it can control some “low entropy” portions of the infimum that arise
from “structured” or “compressible” choices of x, but are not able to
control the “generic” or “incompressible” choices of z, for which new
arguments will be needed. As for the moment method, this can give
the coarse order of magnitude (for instance, for rectangular matrices
with p = yn for 0 < y < 1, it gives an upper bound of (1—,/y+o(1))n
for the singular value with high probability, thanks to the Marchenko-
Pastur law), but again this method begins to break down for square
matrices, although one can make some partial headway by considering
negative moments such as tr M 2, though these are more difficult to
compute than positive moments tr M*.

So one needs to supplement these existing methods with addi-
tional tools. It turns out that the key issue is to understand the
distance between one of the n rows Xy,...,X,, € C™ of the matrix
M, and the hyperplane spanned by the other n — 1 rows. The rea-
son for this is as follows. First suppose that o, (M) = 0, so that M
is non-invertible, and there is a linear dependence between the rows
Xi1,...,X,. Thus, one of the X; will lie in the hyperplane spanned
by the other rows, and so one of the distances mentioned above will
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vanish; in fact, one expects many of the n distances to vanish. Con-
versely, whenever one of these distances vanishes, one has a linear
dependence, and so o, (M) = 0.

More generally, if the least singular value o, (M) is small, one
generically expects many of these n distances to be small also, and
conversely. Thus, control of the least singular value is morally equiv-
alent to control of the distance between a row X; and the hyperplane
spanned by the other rows. This latter quantity is basically the dot
product of X; with a unit normal n; of this hyperplane.

When working with random matrices with jointly independent
coefficients, we have the crucial property that the unit normal n;
(which depends on all the rows other than X;) is independent of X;,
so even after conditioning n; to be fixed, the entries of X; remain
independent. As such, the dot product X; - n; is a familiar scalar
random walk, and can be controlled by a number of tools, most no-
tably Littlewood-Offord theorems and the Berry-Esséen central limit
theorem. As it turns out, this type of control works well except in
some rare cases in which the normal n; is “compressible” or otherwise
highly structured; but epsilon-net arguments can be used to dispose

of these cases®.

These methods rely quite strongly on the joint independence on
all the entries; it remains a challenge to extend them to more general
settings. Even for Wigner matrices, the methods run into difficulty
because of the non-independence of some of the entries (although it
turns out one can understand the least singular value in such cases
by rather different methods).

To simplify the exposition, we shall focus primarily on just one
specific ensemble of random matrices, the Bernoulli ensemble M =
(fz‘j)lgi,jgn of random sign matrices, where &;; = £1 are independent
Bernoulli signs. However, the results can extend to more general
classes of random matrices, with the main requirement being that
the coefficients are jointly independent.

5lThis general strategy was first developed for the technically simpler singular-
ity problem in [Ko1967], and then extended to the least singular value problem in
[Ru2008].
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2.7.1. The epsilon-net argument. We begin by using the epsilon
net argument to establish a lower bound in the rectangular case, first
established in [LiPaRuTo2005]:

P LIS

p Bernoulli matriz, where 1p < (1 —0)n for some 6 > 0 (independent
of n). Then with exponentially high probability (i.e. 1 — O(e™") for
some ¢ > 0), one has o,(M) > c\/n, where ¢ > 0 depends only on 4.

This should be compared with the upper bound established in
Section 2.3, which asserts that
(2.170) |Mlop = 00(M) < OV
holds with overwhelming probability for some absolute constant C'
(indeed, one can take any C' > 2 here).

We use the epsilon net argument introduced in Section 2.3, but
with a smaller value of € > 0 than used for the largest singular value.

We write
o,(M) = inf Mz||.
o(M) = inf M
Taking X to be a maximal e-net of the unit sphere in CP, with € > 0
to be chosen later, we have that

0p(M) > inf [ M| — <] Ml
and thus by (2.170), we have with overwhelming probability that
op(M) > inf |Mz| — Cey/n,
r€EXD
and so it suffices to show that
P(inf |[Ma] < 202 V/)

is exponentially small in n. From the union bound, we can upper
bound this by

> P(|Mz|| < 2Cev/n).

rEX
From the volume packing argument we have
(2.171) 1] < O(1/e)P < O(1/e)A=m,

So we need to upper bound, for each x € X, the probability
P(|[ Mz < 2C=y/m).
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If we let Y1,...,Y,, € CP be the rows of M, we can write this as

n
P> [V - af* <4C%%n).

j=1
By Markov’s inequality(1.14), the only way that this event can hold
is if we have

Y; - z|? < 8C2%e?
for at least n/2 values of j. We do not know in advance what the set
of j is for which this event holds. But the number of possible values
of such sets of j is at most 2. Applying the union bound (and paying
the entropy cost of 2™) and using symmetry, we may thus bound the
above probability by®2
<2"P(|Y; - z|* < 8C?%?* for 1 < j <n/2).

Now observe that the random variables Y; - x are independent, and
so we can bound this expression by
<2"P(|Y - x| < V8Ce)"/?
where Y = (£1,...,£,) is a random vector of iid Bernoulli signs.
We write © = (x1,...,%,), so that Y - z is a random walk
Y z=&x1 4+ ...+ &z,

To understand this walk, we apply (a slight variant) of the Berry-
Esséen theorem from Section 2.2:

Exercise 2.7.1. Show®? that

r R
supP(lY -2 —t| <r) < +—5 + |53
t > ll=]® =
for any r > 0 and any non-zero z. (Hint: first normalise ||z| = 1,

then adapt the proof of the Berry-Esséen theorem.)

Conclude in particular that if

Z |xj|2 2810

Jilay| <100

52We will take n to be even for sake of notation, although it makes little essential
difference.

53Actually, for the purposes of this section, it would suffice to establish
a weaker form of the Berry-Esséen theorem with E?zl lz;]1%/]|z]|® replaced by

(22:1 |z;|3/]|z]|®)¢ for any fixed ¢ > 0.
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(say) then
supP(|Y -z — t| < V8Ce) < e.
t

(Hint: condition out all the z; with |z;| > 1/2.)

Let us temporarily call x incompressible if

> <t

jiles|<e100

and compressible otherwise. If we only look at the incompressible
elements of X, we can now bound

P(|[Mz]| < 2Cev/n) < O(e)",

and comparing this against the entropy cost (2.171) we obtain an
acceptable contribution for € small enough (here we are crucially using
the rectangular condition p < (1 — d)n).

It remains to deal with the compressible vectors. Observe that
such vectors lie within € of a sparse unit vector which is only sup-

200 positions. The e-entropy of these sparse

ported in at most ¢
vectors (i.e. the number of balls of radius € needed to cover this
space) can easily be computed to be of polynomial size O(n% (1)) in

n. Meanwhile, we have the following crude bound:

Exercise 2.7.2. For any unit vector x, show that
P(lY -z2|<k)<1-—k

for k > 0 small enough. (Hint: Use the Paley-Zygmund inequality,
Exercise 1.1.9. Bounds on higher moments on |Y - 2| can be obtained
for instance using Hoeffding’s inequality, or by direct computation.)
Use this to show that

P(||Mz| < 2Cey/n) < exp(—cn)

for all such x and ¢ sufficiently small, with ¢ > 0 independent of &
and n.

Thus the compressible vectors give a net contribution of O(n% (1)) x
exp(—cn), which is acceptable. This concludes the proof of Theorem
2.7.1.
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2.7.2. Singularity probability. Now we turn to square Bernoulli
matrices M = (&;;)1<i,j<n. Before we investigate the size of the least
singular value, we first tackle the easier problem of bounding the
singularity probability
P(0,(M) = 0),

i.e. the probability that M is not invertible. The problem of comput-
ing this probability exactly is still not completely settled. Since M is
singular whenever the first two rows (say) are identical, we obtain a
lower bound

Plon(M)=0) 2 5.
and it is conjectured that this bound is essentially tight in the sense
that

1 n
P(ox(M) = 0) = (3 +o(1))",
but this remains open; the best bound currently is [BoVuWo02010],

and gives

P(0, (M) = 0) < % +o(1))",

We will not prove this bound here, but content ourselves with a weaker
bound, essentially due to Komlés[Ko1967]:

Proposition 2.7.2. We have P(o,, (M) = 0) < 1/n'/2.

To show this, we need the following combinatorial fact, due to
Erdos[Er1945):

Proposition 2.7.3 (Erdds Littlewood-Offord theorem). Let x =
(x1,...,2pn) be a vector with at least k nonzero entries, and let Y =

(&1,...,&n) be a random vector of iid Bernoulli signs. Then P(Y -x =
0) < k=12,

Proof. By taking real and imaginary parts we may assume that x
is real. By eliminating zero coefficients of £ we may assume that
k = n; reflecting we may then assume that all the x; are positive.
Observe that the set of Y = (&1,...,&,) € {—-1,1}" withY -2 =0
forms an antichain® in {—1,1}" with the product partial ordering.

54An antichain in a partially ordered set X is a subset S of X such that no two
elements in S are comparable in the order. The product partial ordering on {—1,1}"
is defined by requiring (z1,...,2n) < (Y1,...,yn) iff z; < y; for all 4. Sperner’s
theorem asserts that all anti-chains in {—1,1}" have cardinality at most (Ln72j)'
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The claim now easily follows from Sperner’s theorem and Stirling’s
formula (Section 1.2). O

Note that we also have the obvious bound
(2.172) PY -z=0)<1/2

for any non-zero x.

Now we prove the theorem. In analogy with the arguments of
Section 2.7, we write

P(on,(M) =0) = P(Mx = 0 for some nonzero z € C")

(actually we can take z € R™ since M is real). We divide into com-
pressible and incompressible vectors as before, but our definition of
compressibility and incompressibility is slightly different now. Also,
one has to do a certain amount of technical maneuvering in order to
preserve the crucial independence between rows and columns.

Namely, we pick an € > 0 and call x compressible if it is supported
on at most en coordinates, and incompressible otherwise.

Let us first consider the contribution of the event that Mx = 0
for some nonzero compressible z. Pick an x with this property which
is as sparse as possible, say k sparse for some 1 < k < en. Let us
temporarily fix k. By paying an entropy cost of |en](}), we may
assume that it is the first k entries that are non-zero for some 1 <
k < en. This implies that the first k£ columns Y7,...,Ys of M have a
linear dependence given by x; by minimality, Y7, ..., Yx_1 are linearly
independent. Thus, z is uniquely determined (up to scalar multiples)
by Yi,...,Y;. Furthermore, as the n x k matrix formed by Y7,..., Y%
has rank k—1, there is some &k x k minor which already determines x up
to constants; by paying another entropy cost of (Z), we may assume
that it is the top left minor which does this. In particular, we can
now use the first & rows Xi,..., X} to determine z up to constants.
But the remaining n — k rows are independent of X1,..., X, and still
need to be orthogonal to x; by Proposition 2.7.3, this happens with
probability at most O(vEk)~("~*) giving a total cost of

> (3) oemon,

1<k<en
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which by Stirling’s formula (Section 1.2) is acceptable (in fact this
gives an exponentially small contribution).

The same argument gives that the event that y*M = 0 for some
nonzero compressible y also has exponentially small probability. The
only remaining event to control is the event that Mz = 0 for some
incompressible z, but that Mz # 0 and y*M # 0 for all nonzero
compressible z,y. Call this event E.

Since Mx = 0 for some incompressible x, we see that for at least
en values of k € {1,...,n}, the row X}, lies in the vector space Vj
spanned by the remaining n — 1 rows of M. Let E} denote the event
that E holds, and that X lies in Vj; then we see from double counting
that

P(E) < — 3 P(Ey).

En
k=1

n

By symmetry, we thus have
1
€

To compute P(FE,,), we freeze X7,..., X,,_1 consider a normal vector
x to V,,_1; note that we can select z depending only on Xy, ..., X,,_1.
We may assume that an incompressible normal vector exists, since
otherwise the event E,, would be empty. We make the crucial ob-
servation that X, is still independent of x. By Proposition 2.7.3, we
thus see that the conditional probability that X, - x = 0, for fixed
Xi,..., Xn 1,18 O-(n"1/?). We thus see that P(E) <. 1/n'/?, and
the claim follows.

Remark 2.7.4. Further progress has been made on this problem
by a finer analysis of the concentration probability P(Y -z = 0),
and in particular in classifying those x for which this concentra-
tion probability is large (this is known as the inverse Littlewood-
Offord problem). Important breakthroughs in this direction were
made by Haldsz[Hal1977] (introducing Fourier-analytic tools) and
by Kahn, Komlés, and Szemerédi[KaKo0Sz1995] (introducing an ef-
ficient “swapping” argument). In [TaVu2007] tools from additive
combinatorics (such as Freiman’s theorem) were introduced to ob-
tain further improvements, leading eventually to the results from
[BoVuWo02010] mentioned earlier.
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2.7.3. Lower bound for the least singular value. Now we re-
turn to the least singular value o, (M) of an iid Bernoulli matrix,
and establish a lower bound. Given that there are n singular values
between 0 and o1(M), which is typically of size O(y/n), one expects
the least singular value to be of size about 1/4/n on the average. An-
other argument supporting this heuristic scomes from the following
identity:

Exercise 2.7.3 (Negative second moment identity). Let M be an
invertible n x n matrix, let Xq,...,X,, be the rows of M, and let
Ry,..., R, be the columns of M~!. For each 1 < i <, let V; be the
hyperplane spanned by all the rows Xy, ..., X,, other than X;. Show
that || R;| = dist(X;,V;)™ and .1, oy (M) =2 =37 | dist(X;, V;)2.

From Talagrand’s inequality (Theorem 2.1.13), we expect each
dist(X;, Vi) to be of size O(1) on the average, which suggests that
St 0i(M)™% = O(n); this is consistent with the heuristic that the
eigenvalues o;(M) should be roughly evenly spaced in the interval
[0,2+/n] (so that o,,—;(M) should be about (i + 1)/+/n).

Now we give a rigorous lower bound:

Theorem 2.7.5 (Lower tail estimate for the least singular value).
For any A > 0, one has

P(0n(M) < A/vn) < oxs0(1) + 0nsocin(1)

where 0.—,0(1) goes to zero as A — 0 uniformly in n, and 0p—o0o:r(1)
goes to zero as n — oo for each fized X.

This is a weaker form of a result of Rudelson and Vershynin[RuVe2008]
(which obtains a bound of the form O(X) + O(c™) for some ¢ < 1),
which builds upon the earlier works [Ru2008], [TaVu2009], which
obtained variants of the above result.

The scale 1/4/n that we are working at here is too fine to use
epsilon net arguments (unless one has a lot of control on the en-
tropy, which can be obtained in some cases thanks to powerful inverse
Littlewood-Offord theorems, but is difficult to obtain in general.) We
can prove this theorem along similar lines to the arguments in the
previous section; we sketch the method as follows. We can take X\ to
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be small. We write the probability to be estimated as
P(|Mz| < X\/+/n for some unit vector x € C™).

We can assume that || M|, < Cy/n for some absolute constant C', as
the event that this fails has exponentially small probability.

We pick an € > 0 (not depending on A) to be chosen later. We call
a unit vector x € C™ compressible if x lies within a distance € of a en-
sparse vector. Let us first dispose of the case in which ||[Mz|| < A\\/n
for some compressible x. By paying an entropy cost of (L;;L J), we may
assume that x is within € of a vector y supported in the first [en]
coordinates. Using the operator norm bound on M and the triangle
inequality, we conclude that

Myl < (A + Ce)v/n.

Since y has norm comparable to 1, this implies that the least singular
value of the first [en| columns of M is O((A + &)y/n). But by Theo-
rem 2.7.1, this occurs with probability O(exp(—cn)) (if A, e are small
enough). So the total probability of the compressible event is at most
(L;; J)O(exp(—cn)), which is acceptable if € is small enough.

Thus we may assume now that ||Mz|| > A/+/n for all compressible
unit vectors x; we may similarly assume that [|y*M| > A/y/n for
all compressible unit vectors y. Indeed, we may also assume that
ly*M;|| > M\/+/n for every i, where M; is M with the i*" column
removed.

The remaining case is if |Mz| < A/y/n for some incompressible
x. Let us call this event E. Write z = (x1,...,2,), and let Y7,...,Y,
be the column of M, thus

Letting W; be the subspace spanned by all the Y7,...,Y,, except for
Y;, we conclude upon projecting to the orthogonal complement of W;
that

] dlist(Yi, W) < A/

for all ¢ (compare with Exercise 2.7.3). On the other hand, since x
is incompressible, we see that |z;| > ¢/y/n for at least en values of 1,
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and thus
(2.173) dist(Y;, W;) < A/e.

for at least en values of i. If we let F; be the event that E and (2.173)
both hold, we thus have from double-counting that

1
P(E) < o ; P(E;)

and thus by symmetry

1

P(E) < EP(En)

(say). However, if E, holds, then setting y to be a unit normal vector
to W; (which is necessarily incompressible, by the hypothesis on M;),
we have

Yi -yl < Ae.
Again, the crucial point is that Y; and y are independent. The incom-
pressibility of y, combined with a Berry-Esséen type theorem, then
gives

Exercise 2.7.4. Show that
P(]Y; -yl < Me) < &2

(say) if A is sufficiently small depending on ¢, and n is sufficiently
large depending on €.

This gives a bound of O(¢) for P(E) if A is small enough depend-
ing on €, and n is large enough; this gives the claim.

Remark 2.7.6. A variant of these arguments, based on inverse Littlewood-
Offord theorems rather than the Berry-Esséen theorem, gives the vari-
ant estimate

1
O’n(%

with high probability for some A > 0, and any z of polynomial size

(2.174) M, —zI)>n"4

in n. There are several results of this type, with overlapping ranges of
generality (and various values of A) [GoTi2007, PaZh2010, TaVu2008],
and the exponent A is known to degrade if one has too few moment
assumptions on the underlying random matrix M. This type of result
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(with an unspecified A) is important for the circular law, discussed
in the next set of lectures.

2.7.4. Upper bound for the least singular value. One can com-
plement the lower tail estimate with an upper tail estimate:

Theorem 2.7.7 (Upper tail estimate for the least singular value).
For any A > 0, one has

(2.175) P(o,(M) > XN/v/n) < 0rsso0(1) + 0n—oon(1).

We prove this using an argument of Rudelson and Vershynin[RuVe2009].
Suppose that o,,(M) > A/y/n, then

(2.176) ly* M| < Vallyll/A
for all y.

Next, let X1,...,X,, be the rows of M, and let Ry,..., R, be
the columns of M~1, thus Ry,..., R, is a dual basis for X1,...,X,.
From (2.176) we have

DIy Ril* < nllyl*/A%
i=1

We apply this with y equal to X,, — 7, (X,,), where m,, is the orthogonal
projection to the space V,,_1 spanned by Xi,...,X,,_1. On the one
hand, we have

ly[I* = dist(X, Vin1)?
and on the other hand we have for any 1 < ¢ < n that
Yy - Rz = —Wn(Xn) . Rl = —Xn . Fn(Ri)

and so
n—1

(2.177) D X (R P < ndist(Xo, Vio1)? /A%
=1

If (2.177) holds, then |X,, - m,(R;)|? = O(dist(X,,, Vyi—1)?/\?) for at
least half of the 4, so the probability in (2.175) can be bounded by
n—1
1
< =Y P(IX, - mo(Ry)? = O(dist (X, V1) /A?))
i
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which by symmetry can be bounded by
< P(|X,, - m(R1)|? = O(dist(X,,, Viu_1)?/2\?)).

Let € > 0 be a small quantity to be chosen later. From Talagrand’s
inequality (Theorem 2.1.13) we know that dist(X,,V,—-1) = Oc(1)
with probability 1 — O(g), so we obtain a bound of

< P(X, - m(Ry) = O(1/X)) 4+ O(e).

Now a key point is that the vectors 7, (R1), ..., 7 (Rn—1) depend
only on X1,...,X,_1 and not on X,,; indeed, they are the dual basis
for Xy,...,X,_1 in V,,_1. Thus, after conditioning X;,..., X, 1
and thus m,(R1) to be fixed, X,, is still a Bernoulli random vector.
Applying a Berry-Esséen inequality, we obtain a bound of O(¢) for the
conditional probability that X,, - m,(R1) = O.(1/X) for A sufficiently
small depending on €, unless 7, (R;) is compressible (in the sense that,
say, it is within € of an en-sparse vector). But this latter possibility
can be controlled (with exponentially small probability) by the same
type of arguments as before; we omit the details.

2.7.5. Asymptotic for the least singular value. The distribu-
tion of singular values of a gaussian random matrix can be computed
explicitly by techniques similar to those employed in Section 2.6. In
particular, if M is a real gaussian matrix (with all entries iid with dis-
tribution N(0,1)gr), it was shown in [Ed1988| that /no, (M) con-
verges in distribution to the distribution ug := %e"’m_ﬁ dx
as n — oo. It turns out that this result can be extended to other
ensembles with the same mean and variance. In particular, we have

the following result from [TaVu2010]:

Theorem 2.7.8. If M is an iid Bernoulli matriz, then /no, (M)
also converges in distribution to ug as n — oo. (In fact there is a
polynomial rate of convergence.)

This should be compared with Theorems 2.7.5, 2.7.7, which show
that v/no, (M) have a tight sequence of distributions in (0, +00). The
arguments from [TaVu2010] thus provide an alternate proof of these
two theorems.
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The arguments in [TaVu2010] do not establish the limit up di-
rectly, but instead use the result of [EA1988] as a black box, focusing
instead on establishing the universality of the limiting distribution of
v/no, (M), and in particular that this limiting distribution is the same
whether one has a Bernoulli ensemble or a gaussian ensemble.

The arguments are somewhat technical and we will not present
them in full here, but instead give a sketch of the key ideas.

In previous sections we have already seen the close relationship
between the least singular value o, (M), and the distances dist(X;, V;)
between a row X; of M and the hyperplane V; spanned by the other
n—1 rows. It is not hard to use the above machinery to show that as
n — oo, dist(X;,V;) converges in distribution to the absolute value
|N(0,1)r| of a Gaussian regardless of the underlying distribution of
the coefficients of M (i.e. it is asymptotically universal). The ba-
sic point is that one can write dist(X;,V;) as |X; - n;| where n; is
a unit normal of V; (we will assume here that M is non-singular,
which by previous arguments is true asymptotically almost surely).
The previous machinery lets us show that n; is incompressible with
high probability, and then claim then follows from the Berry-Esséen
theorem.

Unfortunately, despite the presence of suggestive relationships
such as Exercise 2.7.3, the asymptotic universality of the distances
dist(X;, V;) does not directly imply asymptotic universality of the
least singular value. However, it turns out that one can obtain a
higher-dimensional version of the universality of the scalar quantities
dist(X;, V), as follows. For any small k (say, 1 < k < n® for some

small ¢ > 0) and any distinct iy,...,4; € {1,...,n}, a modification
of the above argument shows that the covariance matrix
(2.178) (m(X,) - 7(Xs,))1<ab<k

of the orthogonal projections 7 (X, ), ..., n(X;, ) of the k rows X, ..., X;
to the complement V- . of the space V;, .. ;, spanned by the other
n — k rows of M, is also universal, converging in distribution to the
covariance® matrix (G, -Gp)1<ap<k Of k iid gaussians G, = N(0,1)r
(note that the convergence of dist(X;,V;) to |[N(0,1)r]| is the k =1

k

55These covariance matrix distributions are also known as Wishart distributions.
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case of this claim). The key point is that one can show that the
complement sz i s usually “incompressible” in a certain technical
sense, which implies that the projections 7(X;,) behave like iid gaus-

sians on that projection thanks to a multidimensional Berry-Esséen
theorem.

On the other hand, the covariance matrix (2.178) is closely related
to the inverse matrix M ~!:

Exercise 2.7.5. Show that (2.178) is also equal to A*A, where A is
the n x k matrix formed from the i,...,4; columns of M ~!.

In particular, this shows that the singular values of k randomly
selected columns of M ~! have a universal distribution.

Recall our goal is to show that y/no, (M) has an asymptotically
universal distribution, which is equivalent to asking that ﬁ 1M~ |op
has an asymptotically universal distribution. The goal is then to
extract the operator norm of M~! from looking at a random n x k
minor B of this matrix. This comes from the following application of
the second moment method:

Exercise 2.7.6. Let A be an n X n matrix with columns Ry, ..., R,,
and let B be the n x k matrix formed by taking k of the columns
Ry, ..., R, at random. Show that

n
* n n
BlAA - LB Bl < YA
k=1
where ||| is the Frobenius norm(2.64).

Recall from Exercise 2.7.3 that |Ry|| = 1/dist(Xy, Vi), so we
expect each ||Rg| to have magnitude about O(1). This, together
with the Wielandt-Hoeffman inequality (1.67) means that we expect
o1 (M~1Y)*(M~1)) = 0,(M) 2 to differ by O(n?/k) from %o, (B*B) =
ro1 (B)2. In principle, this gives us asymptotic universality on y/no, (M)
from the already established universality of B.

There is one technical obstacle remaining, however: while we
know that each dist(Xy, V%) is distributed like a Gaussian, so that
each individual Ry is going to be of size O(1) with reasonably good
probability, in order for the above exercise to be useful, one needs to
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bound all of the Ry simultaneously with high probability. A naive
application of the union bound leads to terrible results here. Fortu-
nately, there is a strong correlation between the Ry: they tend to be
large together or small together, or equivalently that the distances
dist(Xk, Vi) tend to be small together or large together. Here is one
indication of this:

Lemma 2.7.9. For any 1 <k <i<mn, one has

s (X
[ XD

diSt(X,', ‘/Z) Z A
L+ 2 jmt T X i (X5, 7)

where ; is the orthogonal projection onto the space spanned by X1, ..., Xg, X;.

Proof. We may relabel so that ¢« = k + 1; then projecting everything
by m; we may assume that n = k + 1. Our goal is now to show that

(Xl
n—1 [Be]] '
L 2t TRt v)
Recall that Ry, ..., R, is a dual basis to X7, ..., X,,. This implies in
particular that

dist (X, V1) >

n
z=Y (v-X))R,
j=1
for any vector z; applying this to X,, we obtain
n—1
Xn = ||Xn||2Rn + Z(XJ - Xn)R,
j=1
and hence by the triangle inequality

n—1

X IRl < 11Xl + D IXG Xl Rj -
j=1
Using the fact that | R;|| = 1/ dist(X;, R;), the claim follows. O

In practice, once k gets moderately large (e.g. k = n° for some
small ¢ > 0), one can control the expressions ||7;(X;)| appearing here
by Talagrand’s inequality (Theorem 2.1.13), and so this inequality
tells us that once dist(X;,V;) is bounded away from zero for j =
1,...,k, it is bounded away from zero for all other k also. This turns
out to be enough to get enough uniform control on the R; to make
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Exercise 2.7.6 useful, and ultimately to complete the proof of Theorem
2.7.8.

2.8. The circular law

In this section, we leave the realm of self-adjoint matrix ensembles,
such as Wigner random matrices, and consider instead the simplest

examples of non-self-adjoint ensembles, namely the iid matrix ensem-
bles.

The basic result in this area is

Theorem 2.8.1 (Circular law). Let M, be an nxn iid matriz, whose
entries &5, 1 < 4,5 < n are iid with a fived (complex) distribution
& = & of mean zero and variance one. Then the spectral measure
K2, converges both in probability and almost surely to the circular

law peire := %1II|2+\y|2§1 dxdy, where x,y are the real and imaginary
coordinates of the complex plane.

This theorem has a long history; it is analogous to the semicir-
cular law, but the non-Hermitian nature of the matrices makes the
spectrum so unstable that key techniques that are used in the semi-
circular case, such as truncation and the moment method, no longer
work; significant new ideas are required. In the case of random gauss-
ian matrices, this result was established by Mehta[Me2004] (in the
complex case) and by Edelman[Ed1996] (in the real case), as was
sketched out in Section 2.6. In 1984, Girko[Gil1984] laid out a general
strategy for establishing the result for non-gaussian matrices, which
formed the base of all future work on the subject; however, a key in-
gredient in the argument, namely a bound on the least singular value
of shifts ﬁMn — zI, was not fully justified at the time. A rigorous
proof of the circular law was then established by Bai[Ba1997], assum-
ing additional moment and boundedness conditions on the individual
entries. These additional conditions were then slowly removed in a
sequence of papers [GoTi2007, Gi2004, PaZh2010, TaVu2008],
with the last moment condition being removed in [TaVuKr2010).

At present, the known methods used to establish the circular law
for general ensembles rely very heavily on the joint independence of
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all the entries. It is a key challenge to see how to weaken this joint
independence assumption.

2.8.1. Spectral instability. One of the basic difficulties present in
the non-Hermitian case is spectral instability: small perturbations in
a large matrix can lead to large fluctuations in the spectrum. In
order for any sort of analytic technique to be effective, this type of
instability must somehow be precluded.

The canonical example of spectral instability comes from perturb-
ing the right shift matrix

0 1 0 0

0 0 1 0
Uo = .

0 0 O 0

to the matrix

01 0 0

0 0 1 0
U, = .

e 0 0 0

for some € > 0.

The matrix Uy is nilpotent: Uj = 0. Its characteristic polynomial
is (—A)™, and it thus has n repeated eigenvalues at the origin. In
contrast, U, obeys the equation Ul" = €1, its characteristic polynomial
is (—\)" — &(—1)", and it thus has n eigenvalues at the n'® roots
gl/ne2mii/n 5 =0, ... n—1of e. Thus, even for exponentially small
values of €, say € = 27", the eigenvalues for U, can be quite far from
the eigenvalues of Uy, and can wander all over the unit disk. This is in
sharp contrast with the Hermitian case, where eigenvalue inequalities
such as the Weyl inequalities (1.63) or Wielandt-Hoffman inequalities
(1.67) ensure stability of the spectrum.

One can explain the problem in terms of pseudospectrum®®. The
only spectrum of U is at the origin, so the resolvents (U — zI)~! of
U are finite for all non-zero z. However, while these resolvents are

56The pseudospectrum of an operator T is the set of complex numbers z for which
the operator norm (T — zI)™!||op is either infinite, or larger than a fixed threshold
1/e.
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finite, they can be extremely large. Indeed, from the nilpotent nature
of Uy we have the Neumann series

1 U ug!

(Ug—2I)" ' =—=— 0 -0

z ; T e e Zn
so for |z| < 1 we see that the resolvent has size roughly |z| =", which is
exponentially large in the interior of the unit disk. This exponentially
large size of resolvent is consistent with the exponential instability of

the spectrum:

Exercise 2.8.1. Let M be a square matrix, and let z be a complex
number. Show that |[(M — 2I)7!|,, > R if and only if there exists a
perturbation M + E of M with ||E||op < 1/R such that M + E has z
as an eigenvalue.

This already hints strongly that if one wants to rigorously prove
control on the spectrum of M near z, one needs some sort of upper
bound on ||(M — 2I)7!||op, or equivalently one needs some sort of
lower bound on the least singular value o, (M — 2I) of M — zI.

Without such a bound, though, the instability precludes the di-
rect use of the truncation method, which was so useful in the Her-
mitian case. In particular, there is no obvious way to reduce the
proof of the circular law to the case of bounded coefficients, in con-
trast to the semicircular law where this reduction follows easily from
the Wielandt-Hoffman inequality (see Section 2.4). Instead, we must
continue working with unbounded random variables throughout the
argument (unless, of course, one makes an additional decay hypothe-
sis, such as assuming certain moments are finite; this helps explain the
presence of such moment conditions in many papers on the circular
law).

2.8.2. Incompleteness of the moment method. In the Hermit-
ian case, the moments

1 1 k &
Etr(%M) —/Rx d,uﬁ1Mn(x)

of a matrix can be used (in principle) to understand the distribution
[ completely (at least, when the measure ;1 has sufficient

My,
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decay at infinity. This is ultimately because the space of real poly-
nomials P(z) is dense in various function spaces (the Weierstrass
approximation theorem).

In the non-Hermitian case, the spectral measure g1 is now
m M.

supported on the complex plane rather than the real line. One still

has the formula

1 1
— tr(

L=t = [ (o)

but it is much less useful now, because the space of complex polyno-
mials P(z) no longer has any good density properties®”. In particular,
the moments no longer uniquely determine the spectral measure.

This can be illustrated with the shift examples given above. It is
easy to see that U and U have vanishing moments up to (n — 1)

order, i.e.
1 1

7t R
n r(\/ﬁ
for k=1,...,n— 1. Thus we have

k _ —
[ = [ Fa, ()=0

for k = ,m — 1. Despite this enormous number of matching

1 1
Uk ==t
) nr(

%Us)k =0

moments, the spectral measures fi_1_ and p_1 1 are vastly different;
U

the former is a Dirac mass at the origin, while the latter can be
arbitrarily close to the unit circle. Indeed, even if we set all moments

/zkdyzo
R

for k = 1,2,..., then there are an uncountable number of possible

equal to zero,

(continuous) probability measures that could still be the (asymptotic)
spectral measure p: for instance, any measure which is rotationally
symmetric around the origin would obey these conditions.

If one could somehow control the mixed moments
n

1 1 1 —
| ()= 7 SR 00

5TFor instance, the uniform closure of the space of polynomials on the unit disk
is not the space of continuous functions, but rather the space of holomorphic functions
that are continuous on the closed unit disk.
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of the spectral measure, then this problem would be resolved, and one
could use the moment method to reconstruct the spectral measure
accurately. However, there does not appear to be any obvious way
to compute this quantity; the obvious guess of < tr(ﬁMn)k(ﬁMS)l
works when the matrix M,, is normal, as M,, and M}’ then share the
same basis of eigenvectors, but generically one does not expect these
matrices to be normal.

Remark 2.8.2. The failure of the moment method to control the
spectral measure is consistent with the instability of spectral mea-
sure with respect to perturbations, because moments are stable with
respect to perturbations.

Exercise 2.8.2. Let k£ > 1 be an integer, and let M,, be an iid matrix
whose entries have a fixed distribution £ with mean zero, variance 1,
and with k' moment finite. Show that %tr(ﬁMn)k converges to
zero as n — o0 in expectation, in probability, and in the almost sure
sense. Thus we see that fR P d/ﬁﬁ (z) converges to zero in these
three senses also. This is of course consistent with the circular law,
but does not come close to establishing that law, for the reasons given

above.

The failure of the moment method also shows that methods of free
probability (Section 2.5) do not work directly. For instance, observe
that for fixed €, Uy and U, (in the noncommutative probability space
(Mat,, (C), £ tr)) both converge in the sense of *-moments as n — 0o
to that of the right shift operator on ¢?(Z) (with the trace 7(T) =
(€0, Teq), with ey being the Kronecker delta at 0); but the spectral
measures of Uy and U, are different. Thus the spectral measure cannot
be read off directly from the free probability limit.

2.8.3. The logarithmic potential. With the moment method out
of consideration, attention naturally turns to the Stieltjes transform

d 1 (w)

1 1 KL,

sn(2) = *tf(TMn — )7t :/ —t
n n C w—z

Even though the measure K, is now supported on C rather than
R, the Stieltjes transform is still well-defined. The Plemelj formula
for reconstructing spectral measure from the Stieltjes transform that
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was used in previous notes is no longer applicable, but there are other
formulae one can use instead, in particular one has

Exercise 2.8.3. Show that

1
K-, = ;@sn(z)

in the sense of distributions, where

1,0 .0
0z = 5(%4-1%)

is the Cauchy-Riemann operator.

One can control the Stieltjes transform quite effectively away from
the origin. Indeed, for iid matrices with subgaussian entries, one can
show (using the methods from Section 2.3) that the operator norm
of %Mn is 1 + o(1) almost surely; this, combined with (2.8.2) and
Laurent expansion, tells us that s, (z) almost surely converges to —1/z
locally uniformly in the region {z : |z| > 1}, and that the spectral

Measure 1y, CONVerges almost surely to zero in this region (which
T

can of course also be deduced directly from the operator norm bound).
This is of course consistent with the circular law, but is not sufficient
to prove it (for instance, the above information is also consistent
with the scenario in which the spectral measure collapses towards the
origin). One also needs to control the Stieltjes transform inside the
disk {z : |2| < 1} in order to fully control the spectral measure.

For this, existing methods (such as predecessor comparison) are
not particularly effective (mainly because of the spectral instability,
and also because of the lack of analyticity in the interior of the spec-
trum). Instead, one proceeds by relating the Stieltjes transform to
the logarithmic potential

Fue) = [ 1ol = 2ldi gy, ()

It is easy to see that s,(z) is essentially the (distributional) gradient
of ful(2):
0

.0
sn(2) = (—% + Z@)fn(z)a
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and thus g, is related to the spectral measure by the distributional
formula®®

1
(2.179) B, = 5= Al

where A := 887522 + 53722 is the Laplacian.

In analogy to previous continuity theorems, we have

Theorem 2.8.3 (Logarithmic potential continuity theorem). Let M,
be a sequence of random matrices, and suppose that for almost every
complex number z, f(z) converges almost surely (resp. in probability)
to

£:) = | 1oglz — wldu(u)
c
for some probability measure p. Then K2, converges almost surely

(resp. in probability) to p in the vague topology.

Proof. We prove the almost sure version of this theorem, and leave
the convergence in probability version as an exercise.

On any bounded set K in the complex plane, the functions log | -
—w| lie in L?(K) uniformly in w. From Minkowski’s integral in-
equality, we conclude that the f, and f are uniformly bounded in
L?(K). On the other hand, almost surely the f,, converge pointwise
to f. From the dominated convergence theorem this implies that
min(|f,, — f|, M) converges in L*(K) to zero for any M; using the
uniform bound in L?(K) to compare min(|f, — f|, M) with |f, — f]
and then sending M — oo, we conclude that f,, converges to f in
LY (K). In particular, f, converges to f in the sense of distribu-
tions; taking distributional Laplacians using (2.179) we obtain the
claim. g

Exercise 2.8.4. Establish the convergence in probability version of
Theorem 2.8.3.

Thus, the task of establishing the circular law then reduces to
showing, for almost every z, that the logarithmic potential f,(z) con-
verges (in probability or almost surely) to the right limit f(z).

58This formula just reflects the fact that 5= log|z| is the Newtonian potential in
two dimensions.
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Observe that the logarithmic potential

n

z :1 o )\j(Mn)—z
J(z) = 3D log| = 7= — 2

Jj=1

can be rewritten as a log-determinant:

1 1
fulz) = - log | det(%Mn —zI)|.
To compute this determinant, we recall that the determinant of a
matrix A is not only the product of its eigenvalues, but also has a
magnitude equal to the product of its singular values:

n

|det A| = [ o5(4) = [ A (A7 4)"/2
j=1

j=1

and thus
1 o0
fulz) = 7/ log z dvy, ()
2 Jo

where dv,, . is the spectral measure of the matrix (ﬁMn—zI)* (ﬁMn—
2I).

The advantage of working with this spectral measure, as opposed
to the original spectral measure K, is that the matrix (ﬁMn —

ZI)*(ﬁMn —zI) is self-adjoint, and so methods such as the moment
method or free probability can now be safely applied to compute
the limiting spectral distribution. Indeed, Girko[Gi1984] established
that for almost every z, v, , converged both in probability and almost
surely to an explicit (though slightly complicated) limiting measure
v, in the vague topology. Formally, this implied that f,(z) would
converge pointwise (almost surely and in probability) to

1 (e 9]
7/ logz dv,(x).
2 Jo

A lengthy but straightforward computation then showed that this
expression was indeed the logarithmic potential f(z) of the circular
measure ey, SO that the circular law would then follow from the
logarithmic potential continuity theorem.

Unfortunately, the vague convergence of v, . to v, only allows
one to deduce the convergence of [~ F(z) dvy, . to [~ F(z) dv, for
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F continuous and compactly supported. Unfortunately, log 2 has sin-
gularities at zero and at infinity, and so the convergence

/ log z dvy, »(2) —>/ logz dv,(x)
0 0

can fail if the spectral measure v, , sends too much of its mass to
zero or to infinity.

The latter scenario can be easily excluded, either by using oper-
ator norm bounds on M,, (when one has enough moment conditions)
or even just the Frobenius norm bounds (which require no moment
conditions beyond the unit variance). The real difficulty is with pre-
venting mass from going to the origin.

The approach of Bai[Ba1997] proceeded in two steps. Firstly, he
established a polynomial lower bound

1
O'n(%

asymptotically almost surely for the least singular value of ﬁMn —

M, —2I) > n=¢

zI. This has the effect of capping off the logx integrand to be
of size O(logn). Next, by using Stieltjes transform methods, the
convergence of v, , to v, in an appropriate metric (e.g. the Levi
distance metric) was shown to be polynomially fast, so that the
distance decayed like O(n~¢) for some ¢ > 0. The O(n™¢) gain
can safely absorb the O(logn) loss, and this leads to a proof of
the circular law assuming enough boundedness and continuity hy-
potheses to ensure the least singular value bound and the conver-
gence rate. This basic paradigm was also followed by later works
[GoTi2007, PaZh2010, TaVu2008], with the main new ingredient
being the advances in the understanding of the least singular value
(Section 2.7).

Unfortunately, to get the polynomial convergence rate, one needs
some moment conditions beyond the zero mean and unit variance
rate (e.g. finite 2 + n*® moment for some 1 > 0). In my paper with
Vu and Krishnapur, we used the additional tool of the Talagrand
concentration inequality (Theorem 2.1.13) to eliminate the need for
the polynomial convergence. Intuitively, the point is that only a small
fraction of the singular values of ﬁMn —zI are going to be as small as



272 2. Random matrices

n~¢ most will be much larger than this, and so the O(logn) bound is
only going to be needed for a small fraction of the measure. To make
this rigorous, it turns out to be convenient to work with a slightly
different formula for the determinant magnitude | det(A)| of a square
matrix than the product of the eigenvalues, namely the base-times-
height formula

|det(A)] = ] dist(X, V;)
j=1

where X; is the j*® row and V; is the span of X1,..., X, 1.

Exercise 2.8.5. Establish the inequality
[T os() < [T dist(x;,v5) < [ os(4)
j=n+l-m j=1 7j=1
for any 1 < m < n. (Hint: the middle product is the product of
the singular values of the first m rows of A, and so one should try to
use the Cauchy interlacing inequality for singular values, see Section
1.3.3.) Thus we see that dist(X;,V}) is a variant of o;(A).

The least singular value bounds, translated in this language (with
A= ﬁMn — zI), tell us that dist(X;,V;) > n~¢ with high proba-
bility; this lets ignore the most dangerous values of j, namely those
j that are equal to n — O(n®%) (say). For low values of j, say
j < (1 = 6)n for some small §, one can use the moment method
to get a good lower bound for the distances and the singular values,
to the extent that the logarithmic singularity of log x no longer causes
difficulty in this regime; the limit of this contribution can then be seen
by moment method or Stieltjes transform techniques to be universal
in the sense that it does not depend on the precise distribution of the
components of M,,. In the medium regime (1 —6)n < j < n —n®9%,
one can use Talagrand’s inequality (Theorem 2.1.13) to show that
dist(X;, V;) has magnitude about y/n — j, giving rise to a net con-
tribution to f,(z) of the form %2(176)n<j<n7n0_99 O(logv/n —j),
which is small. Putting all this together, one can show that f,(z)
converges to a universal limit as n — oo (independent of the compo-
nent distributions); see [TaVuKr2010] for details. As a consequence,
once the circular law is established for one class of iid matrices, such
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as the complex gaussian random matrix ensemble, it automatically
holds for all other ensembles also.

2.8.4. Brown measure. We mentioned earlier that due to eigen-
value instability (or equivalently, due to the least singular value of
shifts possibly going to zero), the moment method (and thus, by ex-
tension, free probability) was not sufficient by itself to compute the
asymptotic spectral measure of non-Hermitian matrices in the large n
limit. However, this method can be used to give a heuristic prediction
as to what that measure is, known as the Brown measure[Br1986].
While Brown measure is not always the limiting spectral measure of
a sequence of matrices, it turns out in practice that this measure can
(with some effort) be shown to be the limiting spectral measure in
key cases. As Brown measure can be computed (again, after some ef-
fort) in many cases, this gives a general strategy towards computing
asymptotic spectral measure for various ensembles.

To define Brown measure, we use the language of free probabil-

ity (Section 2.5). Let u be a bounded element (not necessarily self-
adjoint) of a non-commutative probability space (A, 7), which we will
assume to be tracial. To derive Brown measure, we mimic the Girko
strategy used for the circular law. Firstly, for each complex number
z, we let v, be the spectral measure of the non-negative self-adjoint
element (u — 2)*(u — 2).
Exercise 2.8.6. Verify that the spectral measure of a positive ele-
ment v*u is automatically supported on the non-negative real axis.
(Hint: Show that 7(P(u*u)u*uP(u*u)) > 0 for any real polynomial
P, and use the spectral theorem.)

By the above exercise, v, is a compactly supported probability
measure on [0, +00). We then define the logarithmic potential f(z)
by the formula

1 o0
flz)= f/ logz dv.(x).
2 Jo
Note that f may equal —oo at some points.

To understand this determinant, we introduce the regularised de-
terminant

fe(2):= ;/OOO log(e 4+ x) dv.(z)
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for € > 0. From the monotone convergence theorem we see that f.(z)
decreases pointwise to f(z) as € — 0.

We now invoke the Gelfand-Naimark theorem (Exercise 2.5.10)
and embed®® A into the space of bounded operators on L?(7), so that
we may now obtain a functional calculus. Then we can write

]' *
fe(z) = gr(log(e + (u = 2)"(u = 2))).
One can compute the first variation of f,:

Exercise 2.8.7. Let € > 0. Show that the function f. is continuously
differentiable with

Oufe(2) = —Ret((e + (u—2)"(u—2)) " {u—2))
and
Oyf-(2) = —Im7((e + (u — 2)*(u — 2)) " H(u — 2)).
Then, one can compute the second variation at, say, the origin:

Exercise 2.8.8. Let ¢ > 0. Show that the function f. is twice
continuously differentiable with

Opzf(0) = Re7((e + uu) ™' — (e + uw*u) " (u + u*) (e + u*u) "'u)
and
Oy f=(0) = Re7((e + u*u) ™' — (e + wu) " H(u* —u)(e + u*u) u).
We conclude in particular that
Af(0) =2ReT((e +u*u)™! — (e + u u) " u* (e + utu) " tu)
or equivalently
AF(0) = 2t u) 2 By et u) ™ 2uebrtu) 2 ).
Exercise 2.8.9. Show that
e +u ) 2u(e + ) 2y < e+ w2,

(Hint: Adapt the proof of Lemma 2.5.13.)

591f  is not faithful, this embedding need not be injective, but this will not be
an issue in what follows.
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We conclude that Af. is non-negative at zero. Translating u by
any complex number we see that Af. is non-negative everywhere,
that is to say that f. is subharmonic. Taking limits we see that f is
subharmonic also; thus if we define the Brown measure p = p, of u

as 1
= —A
pi= g f

(cf. (2.179)) then p is a non-negative measure.

Exercise 2.8.10. Show that for |z| > p(u) := p(u*u)'/?, f is contin-
uously differentiable with

0:f(2) = —Rer((u—2)7")

and

0y f(z) =TImr((u—2)"")
and conclude that f is harmonic in this region; thus Brown measure
is supported in the disk {z : |z| < p(u)}. Using Green’s theorem,
conclude also that Brown measure is a probability measure.

Exercise 2.8.11. In a finite-dimensional non-commutative probabil-
ity space (Mat,,(C), L tr), show that Brown measure is the same as
spectral measure.

Exercise 2.8.12. In a commutative probability space (L*°(f2),E),
show that Brown measure is the same as the probability distribution.

Exercise 2.8.13. If u is the left shift on £2(Z) (with the trace 7(T) :=
(Teq, eq)), show that the Brown measure of u is the uniform measure
on the unit circle {z € C: |z| = 1}.

This last exercise illustrates the limitations of Brown measure for
understanding asymptotic spectral measure. The shift Uy and the
perturbed shift U, introduced in previous sections both converge in
the sense of *-moments as n — oo (holding ¢ fixed) to the left shift
u. For non-zero €, the spectral measure of U, does indeed converge
to the Brown measure of u, but for £ = 0 this is not the case. This
illustrates a more general principle®?, that Brown measure is the right

60gce [Sn2002] for a precise formulation of this heuristic, using gaussian
regularisation.
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asymptotic limit for “generic” matrices, but not for exceptional ma-
trices.

The machinery used to establish the circular law in full generality
can be used to show that Brown measure is the correct asymptotic
spectral limit for other models:

Theorem 2.8.4. Let M,, be a sequence of random matrices whose en-
tries are joint independent and with all moments uniformly bounded,
with variance uniformly bounded from below, and which converges in
the sense of x-moments to an element u of a non-commutative prob-
ability space. Then the spectral measure p LM, converges almost

surely and in probability to the Brown measure of u.

This theorem is essentially [TaVuKr2010, Theorem 1.20]. The
main ingredients are those mentioned earlier, namely a polynomial
lower bound on the least singular value, and the use of Talagrand’s
inequality (Theorem 2.1.13) to control medium singular values (or
medium codimension distances to subspaces). Of the two ingredients,
the former is more crucial, and is much more heavily dependent at
present on the joint independence hypothesis; it would be of interest
to see how to obtain lower bounds on the least singular value in more
general settings.
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3.1. Brownian motion and Dyson Brownian
motion

One theme in this text will be the central nature played by the gauss-
ian random variables X = N(u,0?). Gaussians have an incredibly
rich algebraic structure, and many results about general random vari-
ables can be established by first using this structure to verify the re-
sult for gaussians, and then using universality techniques (such as the
Lindeberg exchange strategy) to extend the results to more general
variables.

One way to exploit this algebraic structure is to continuously
deform the variance t := 02 from an initial variance of zero (so that
the random variable is deterministic) to some final level T. We would
like to use this to give a continuous family ¢ — X} of random variables
Xt = N(u,t) as t (viewed as a “time” parameter) runs from 0 to 7.

At present, we have not completely specified what X; should
be, because we have only described the individual distribution X; =
N(p,t) of each X;, and not the joint distribution. However, there is
a very natural way to specify a joint distribution of this type, known
as Brownian motion. In this sectionwe lay the necessary probability
theory foundations to set up this motion, and indicate its connection
with the heat equation, the central limit theorem, and the Ornstein-
Uhlenbeck process. This is the beginning of stochastic calculus, which
we will not develop fully here.

We will begin with one-dimensional Brownian motion, but it is
a simple matter to extend the process to higher dimensions. In par-
ticular, we can define Brownian motion on vector spaces of matrices,
such as the space of n x n Hermitian matrices. This process is equi-
variant with respect to conjugation by unitary matrices, and so we
can quotient out by this conjugation and obtain a new process on the
quotient space, or in other words on the spectrum of n x n Hermitian
matrices. This process is called Dyson Brownian motion, and turns
out to have a simple description in terms of ordinary Brownian mo-
tion; it will play a key role in several of the subsequent notes in this
course.
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3.1.1. Formal construction of Brownian motion. We begin with
constructing one-dimensional Brownian motion. We shall model this
motion using the machinery of Wiener processes:

Definition 3.1.1 (Wiener process). Let 4 € R, and let ¥ C [0, +00)
be a set of times containing 0. A (one-dimensional) Wiener process
on ¥ with initial position p is a collection (X;)iex of real random
variables X; for each time t € X, with the following properties:

(ii) Almost surely, the map ¢ — X; is a continuous function on
PN

(iii) Forevery 0 <t_ <t in X, the increment X;, —X;_has the
distribution of N (0, ¢4+ —t_)r. (In particular, X; = N(u, t)r
for every t > 0.)

(iv) Forevery to <t; <...<t,in X, the increments Xy, — Xy, ,
for i =1,...,n are jointly independent.

If ¥ is discrete, we say that (Xi)iex is a discrete Wiener process; if
Y = [0, 400) then we say that (X;)iex is a continuous Wiener process.

Remark 3.1.2. Collections of random variables (X}):ex, where X is
a set of times, will be referred to as stochastic processes, thus Wiener
processes are a (very) special type of stochastic process.

Remark 3.1.3. In the case of discrete Wiener processes, the conti-
nuity requirement (ii) is automatic. For continuous Wiener processes,
there is a minor technical issue: the event that ¢ — X, is continu-
ous need not be a measurable event (one has to take uncountable
intersections to define this event). Because of this, we interpret (ii)
by saying that there exists a measurable event of probability 1, such
that ¢ — X; is continuous on all of this event, while also allowing
for the possibility that ¢ — X; could also sometimes be continuous
outside of this event also. One can view the collection (X;)icx as a
single random variable, taking values in the product space R* (with
the product o-algebra, of course).

Remark 3.1.4. One can clearly normalise the initial position u of a
Wiener process to be zero by replacing X; with X; — u for each ¢.
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We shall abuse notation somewhat and identify continuous Wiener
processes with Brownian motion in our informal discussion, although
technically the former is merely a model for the latter. To empha-
sise this link with Brownian motion, we shall often denote continuous
Wiener processes as (B)e[0,400) Tather than (X;)ie(0,400)-

It is not yet obvious that Wiener processes exist, and to what
extent they are unique. The situation is easily clarified though for
discrete processes:

Proposition 3.1.5 (Discrete Brownian motion). Let ¥ be a discrete
subset of [0, +00) containing 0, and let p € R. Then (after extending
the sample space if necessary) there exists a Wiener process (Xi)iex
with base point u. Furthermore, any other Wiener process (X|)ics
with base point p has the same distribution as .

Proof. AsY is discrete and contains 0, we can write it as {tg, t1, ta,...}
for some

O=to<ti <ty <....

Let (dX;)$2, be a collection of jointly independent random variables
with dX; = N(0,t; — t;_1)r (the existence of such a collection, after
extending the sample space, is guaranteed by Exercise 1.1.20). If we
then set

for all ¢ = 0,1,2,..., then one easily verifies (using Exercise 2.1.9)
that (X})tex is a Wiener process.

Conversely, if (X})iex is a Wiener process, and we define dX/ :=
X! — X/ | for i = 1,2,..., then from the definition of a Wiener
process we see that the dX/ have distribution N(0,¢; — ¢;—1)r and
are jointly independent (i.e. any finite subcollection of the dX/ are
jointly independent). This implies for any finite n that the random
variables (dX;)? ; and (dX])_, have the same distribution, and thus
(Xt)tes and (X])iesy have the same distribution for any finite subset
Y/ of 3. From the construction of the product o-algebra we conclude
that (X¢)tex and (X{)tex have the same distribution, as required. 0O

Now we pass from the discrete case to the continuous case.
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Proposition 3.1.6 (Continuous Brownian motion). Let 1 € R.
Then (after extending the sample space if necessary) there exists a
Wiener process (Xt)ie[o,400) With base point p. Furthermore, any
other Wiener process (X{)ic[o,+00) With base point p has the same
distribution as p.

Proof. The uniqueness claim follows by the same argument used to
prove the uniqueness component of Proposition 3.1.5, so we just prove
existence here. The iterative construction we give here is somewhat
analogous to that used to create self-similar fractals, such as the Koch
snowflake. (Indeed, Brownian motion can be viewed as a probabilistic
analogue of a self-similar fractal.)

The idea is to create a sequence of increasingly fine discrete Brow-
nian motions, and then to take a limit. Proposition 3.1.5 allows one
to create each individual discrete Brownian motion, but the key is to
couple these discrete processes together in a consistent manner.

Here’s how. We start with a discrete Wiener process (X;)ten on
the natural numbers N = {0,1,2...} with initial position p, which
exists by Proposition 3.1.5. We now extend this process to the denser
set of times N := {in : n € N} by setting

X+ X1
Xip1 = — +Yio
for t =0,1,2,..., where (Y;,0)ten are iid copies of N(0,1/4)r, which
are jointly independent of the (X;)ien. It is a routine matter to use
Exercise 2.1.9 to show that this creates a discrete Wiener process
(Xt)e1n on 3N which extends the previous process.

Next, we extend the process further to the denser set of times
iN by defining

X+ Xit1/2
Xt+% = 72“_/ +Yt,1

where (Y¢,1),c1n are iid copies of N(0,1/8)g, jointly independent of
(Xi)ie1n- Again, it is a routine matter to show that this creates a

. . 1
discrete Wiener process (X¢),c1n on gN.
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Iterating this procedure a countable number! of times, we obtain
a collection of discrete Wiener processes (Xt)tezikN for k=0,1,2,...
which are consistent with each other, in the sense that the earlier
processes in this collection are restrictions of later ones.

Now we establish a Holder continuity property. Let 6 be any
exponent between 0 and 1/2, and let 7' > 0 be finite. Observe that
for any £ = 0,1,... and any j € N, we have X 1)/or — Xj o0 =
N(0,1/2%)g and hence (by the subgaussian nature of the normal

distribution)
P(|X(]+1)/2k — XJ/Qk‘ Z 2—k9) S CeXp(_CQk(l_QG))

for some absolute constants C|c. The right-hand side is summable
as j, k run over N subject to the constraint j/2¥ < T. Thus, by the
Borel-Cantelli lemma, for each fixed T', we almost surely have that

| X1y — Xjjan| <279

for all but finitely many j,k € N with j/2¥ < T. In particular,
this implies that for each fixed T, the function ¢ — X; is almost
surely Hélder continuous? of exponent @ on the dyadic rationals j /2"
in [0,7], and thus (by the countable union bound) is almost surely
locally Hoélder continuous of exponent 6 on the dyadic rationals in
[0, +00). In particular, they are almost surely locally uniformly con-
tinuous on this domain.

As the dyadic rationals are dense in [0, +00), we can thus almost
surely® extend ¢ — X, uniquely to a continuous function on all of
[0,4+00). Note that if ¢, is any sequence in [0, +00) converging to
t, then X; converges almost surely to X;, and thus also converges
in probability and in distribution. Similarly for differences such as
Xt — X¢_,. Using this, we easily verify that (X)ep,4+o0) i @
continuous Wiener process, as required. U

1This requires a countable number of extensions of the underlying sample space,
but one can capture all of these extensions into a single extension via the machinery of
inverse limits of probability spaces; it is also not difficult to manually build a single
extension sufficient for performing all the above constructions.

2In other words, there exists a constant Cr such that | X, — X;| < Crl|s —t|? for
all s,t € [0,T].

30n the remaining probability zero event, we extend ¢t +— X in some arbitrary
measurable fashion.
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Remark 3.1.7. One could also have used the Kolmogorov extension
theorem (see e.g. [Ta2011]) to establish the limit.

Exercise 3.1.1. Let (X¢)tc[0,+00) Pe a continuous Wiener process.
We have already seen that if 0 < 6 < 1/2, that the map ¢ — X; is
almost surely Holder continuous of order 6. Show that if 1/2 < 6 <1,
then the map t — X, is almost surely not Holder continuous of order
0.

Show also that the map t — X; is almost surely nowhere differ-
entiable. Thus, Brownian motion provides a (probabilistic) example
of a continuous function which is nowhere differentiable.

Remark 3.1.8. In the above constructions, the initial position u
of the Wiener process was deterministic. However, one can easily
construct Wiener processes in which the initial position Xy is itself a
random variable. Indeed, one can simply set

Xt = Xo +Bt

where (Bt)ie[o,4+00) is a continuous Wiener process with initial po-
sition 0 which is independent of Xy. Then we see that X; obeys
properties (ii), (iii), (iv) of Definition 3.1.1, but the distribution of
X, is no longer N(u,t)r, but is instead the convolution of the law of
Xo, and the law of N(0,t)g.

3.1.2. Connection with random walks. We saw how to construct
Brownian motion as a limit of discrete Wiener processes, which were
partial sums of independent gaussian random variables. The central
limit theorem (see Section 2.2) allows one to interpret Brownian mo-
tion in terms of limits of partial sums of more general independent
random variables, otherwise known as (independent) random walks.

Definition 3.1.9 (Random walk). Let AX be a real random variable,
let 1 € R be an initial position, and let At > 0 be a time step. We
define a discrete random walk with initial position pu, time step At and
step distribution AX (or pax) to be a process (X;)iear.N defined by

Xnar = p+ Y AXar

i=1
where (AX;a+)$2, are iid copies of AX.
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Example 3.1.10. From the proof of Proposition 3.1.5, we see that
a discrete Wiener process on At - N with initial position p is nothing
more than a discrete random walk with step distribution of N (0, At)r.
Another basic example is simple random walk, in which AX is equal
to (At)'/2 times a signed Bernoulli variable, thus we have Xn+1)at =
Xt £ (At)'/2, where the signs + are unbiased and are jointly inde-
pendent in n.

Exercise 3.1.2 (Central limit theorem). Let X be a real random
variable with mean zero and variance 1, and let ¢ € R. For each
At > 0, let (Xt(At))te[oﬁoo) be a process formed by starting with
a random walk (Xt(At))teAt.N with initial position u, time step At,
and step distribution (At)'/2X, and then extending to other times in
[0,4+00), in a piecewise linear fashion, thus

At At At
X((n+)9)At =(1- H)X’IS,At) + HX((n-i-)l)At

for all n € N and 0 < # < 1. Show that as At — 0, the pro-
cess (Xt(At))te[O’Jroo) converges in distribution to a continuous Wiener
process with initial position p. (Hint: from the Riesz representation
theorem (or the Kolmogorov extension theorem), it suffices to estab-
lish this convergence for every finite set of times in [0, +00). Now use
the central limit theorem; treating the piecewise linear modifications
to the process as an error term.)

3.1.3. Connection with the heat equation. Let (B;):c[o,+) be
a Wiener process with base point u, and let F' : R — R be a smooth
function with all derivatives bounded. Then, for each time ¢, the ran-
dom variable F'(B;) is bounded and thus has an expectation EF(By).
From the almost sure continuity of B; and the dominated convergence
theorem we see that the map ¢ — EF(By) is continuous. In fact it is
differentiable, and obeys the following differential equation:

Lemma 3.1.11 (Equation of motion). For all times t > 0, we have

d 1
%EF(Bt) = iEFm(Bt)

where F,, is the second derivative of F'. In particular, t — EF(By) is
continuously differentiable (because the right-hand side is continuous).
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Proof. We work from first principles. It suffices to show for fixed
t >0, that

1

as dt — 0. We shall establish this just for non-negative dt; the claim
for negative dt (which only needs to be considered for ¢ > 0) is similar
and is left as an exercise.

Write dB; := Byyq:—B:¢. From Taylor expansion and the bounded
third derivative of F', we have

1
(3.1) F(Biyar) = F(Bt)+Fz(Bt)dBt+§wa(Bt)|dBt|2+O(|dBt|3)'

We take expectations. Since dB; = N(0,dt)r, we have E|dB;|®> =
O((dt)?/?), so in particular

1
EF(Biyat) = EF(B;) + EF,(B;)dB; + §EFM(Bt)|dBt|2 + o(dt).

Now observe that dB; is independent of By, and has mean zero and
variance dt. The claim follows. Il

Exercise 3.1.3. Complete the proof of the lemma by considering
negative values of dt. (Hint: one has to exercise caution because dB;
is not independent of B; in this case. However, it will be indepen-
dent of Biyg:. Also, use the fact that EF,(B;) and EF,,(B;) are
continuous in ¢. Alternatively, one can deduce the formula for the
left-derivative from that of the right-derivative via a careful applica-
tion of the fundamental theorem of calculus, paying close attention
to the hypotheses of that theorem.)

Remark 3.1.12. In the language of Ito calculus, we can write (3.1)
as

Here, dF(B;) := F(Biya:) — F(B:), and dt should either be thought
of as being infinitesimal, or being very small, though in the latter case
the equation (3.2) should not be viewed as being exact, but instead
only being true up to errors of mean o(dt) and third moment O(dt?).
This is a special case of Ito’s formula. It should be compared against

the chain rule
dF(X;) = Fp(X3)d X,
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when t — X, is a smooth process. The non-smooth nature of Brow-
nian motion causes the quadratic term in the Taylor expansion to be
non-negligible, which explains® the additional term in (3.2), although
the Holder continuity of this motion is sufficient to still be able to
ignore terms that are of cubic order or higher.

Let p(t, x) dz be the probability density function of By; by inspec-
tion of the normal distribution, this is a smooth function for ¢ > 0,
but is a Dirac mass at p at time ¢ = 0. By definition of density
function,

EF(B;) = /RF(x)p(t,:c) dx

for any Schwartz function F. Applying Lemma 3.1.11 and integrating
by parts, we see that

1
787;1;
9 p

in the sense of (tempered) distributions (see e.g. [Ta2010, §1.13]).
In other words, p is a (tempered distributional) solution to the heat

(3.3) hp =

equation (3.3). Indeed, since p is the Dirac mass at p at time t = 0,
p for later times ¢ is the fundamental solution of that equation from
initial position .

From the theory of PDE one can solve® the (distributional) heat
equation with this initial data to obtain the unique solution

tz) = o= le—nl?/2t
p(t, ) 5

Of course, this is also the density function of N(u,t)g, which is (un-
surprisingly) consistent with the fact that By = N(p,t). Thus we see
why the normal distribution of the central limit theorem involves the
same type of functions (i.e. gaussians) as the fundamental solution
of the heat equation. Indeed, one can use this argument to heuristi-
cally derive the central limit theorem from the fundamental solution
of the heat equation (cf. Section 2.2.7), although the derivation is

41n this spirit, one can summarise (the differential side of) Ito calculus informally
by the heuristic equations dB; = O((dt)'/?) and |dB;|? = dt, with the understanding
that all terms that are o(dt) are discarded.

5See for instance [Ta2010, §1.12].
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only heuristic because one first needs to know that some limiting
distribution already exists (in the spirit of Exercise 3.1.2).

Remark 3.1.13. Because we considered a Wiener process with a de-
terministic initial position u, the density function p was a Dirac mass
at time ¢ = 0. However, one can run exactly the same arguments for
Wiener processes with stochastic initial position (see Remark 3.1.8),
and one will still obtain the same heat equation (3.1.8), but now with
a more general initial condition.

We have related one-dimensional Brownian motion to the one-
dimensional heat equation, but there is no difficulty establishing a
similar relationship in higher dimensions. In a vector space R", de-
fine a (continuous) Wiener process (Xt)ic[o,4+00) in R™ with an ini-
tial position p = (p1,...,un) € R™ to be a process whose compo-
nents (X ;)ie[0,400) for @ = 1,...,n are independent Wiener pro-
cesses with initial position u;. It is easy to see that such processes
exist, are unique in distribution, and obey the same sort of properties
as in Definition 3.1.1, but with the one-dimensional gaussian distribu-
tion N(u,0?)Rr replaced by the n-dimensional analogue N (u, 0?I)gn,

which is given by the density function
1 2 2
e T

o)/ e dx

where dz is now Lebesgue measure on R™.

Exercise 3.1.4. If (B;);c[0,+0) is an n-dimensional continuous Wiener
process, show that

d 1
—EF(B;) = —=E(AF)(B
SEF(B,) = SB(AF)(B)
whenever I’ : R — R is smooth with all derivatives bounded, where
AF := —
P Oz?

is the Laplacian of F'. Conclude in particular that the density function
p(t,z) dz of B; obeys the (distributional) heat equation

1
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A simple but fundamental observation is that n-dimensional Brow-
nian motion is rotation-invariant: more precisely, if (X¢)¢c[o, 400 is an
n-dimensional Wiener process with initial position 0, and U € O(n)
is any orthogonal transformation on R"™, then (UX¢)ic[o,400) is an-
other Wiener process with initial position 0, and thus has the same
distribution:

(3.4) (UXt)teo,+00) = (Xt)te[0,4+00)-

This is ultimately because the n-dimensional normal distributions
N(0,0%I)r~ are manifestly rotation-invariant (see Exercise 2.2.13).

Remark 3.1.14. One can also relate variable-coefficient heat equa-
tions to variable-coefficient Brownian motion (X¢);e0,4o0), in which
the variance of an increment dX; is now only proportional to dt for
infinitesimal dt rather than being equal to dt, with the constant of
proportionality allowed to depend on the time ¢ and on the position
X;. One can also add drift terms by allowing the increment dX; to
have a non-zero mean (which is also proportional to dt). This can be
accomplished through the machinery of stochastic calculus, which we
will not discuss in detail in these notes. In a similar fashion, one can
construct Brownian motion (and heat equations) on manifolds or on
domains with boundary, though we will not discuss this topic here.

Exercise 3.1.5. Let X be a real random variable of mean zero and
variance 1. Define a stochastic process (X¢);c[0,400) by the formula

X = eit(Xl + Be2t_1)

where (Bt)¢e[0,400) 15 @ Wiener process with initial position zero that
is independent of X;. This process is known as an Ornstein- Uhlenbeck
process.

e Show that each X; has mean zero and variance 1.

e Show that X; converges in distribution to N(0,1)r as t —
0.

e If F: R — R is smooth with all derivatives bounded, show

that
%EF(Xt) =ELF(X;)
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where L is the Ornstein-Uhlenbeck operator
LF :=F,, —xF,.
Conclude that the density function p(t, z) of X; obeys (in a
distributional sense, at least) the Ornstein-Uhlenbeck equa-
tion
Op=L"p
where the adjoint operator L* is given by

e Show that the only probability density function p for which
L*p = 0 is the Gaussian \/%76_”’2/2 dx; furthermore, show
that Re(p, L*p)r2r) < 0 for all probability density func-
tions p in the Schwartz space with mean zero and variance
1. Discuss how this fact relates to the preceding two parts

of this exercise.

Remark 3.1.15. The heat kernel (ﬁ)de ~lz=ul*/2t i g dimensions
is absolutely integrable in time away from the initial time ¢t = 0 for
dimensions d > 3, but becomes divergent in dimension 1 and (just
barely) divergent for d = 2. This causes the qualitative behaviour of
Brownian motion B; in R? to be rather different in the two regimes.
For instance, in dimensions d > 3 Brownian motion is transient; al-
most surely one has By — oo as t — oo. But in dimension d = 1
Brownian motion is recurrent: for each xy € R, one almost surely
has B; = x¢ for infinitely many ¢. In the critical dimension d = 2,
Brownian motion turns out to not be recurrent, but is instead neigh-
bourhood recurrent: almost surely, B; revisits every neighbourhood
of xg at arbitrarily large times, but does not visit xq itself for any
positive time ¢t. The study of Brownian motion and its relatives is
in fact a huge and active area of study in modern probability theory,
but will not be discussed in this course.

3.1.4. Dyson Brownian motion. The space V' of n x n Hermitian
matrices can be viewed as a real vector space of dimension n? using
the Frobenius norm

A tr(A%)2 = Za”—FQ Z Re(a;;)? + Im(a;;)?

1<i<j<n
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where a;; are the coefficients of A. One can then identify V' explicitly
with R™ via the identification

(aij)1<ij<n = ((@i)=1, (V2Re(as;), V2Im(ai;))1<icj<n)-

Now that one has this indentification, for each Hermitian matrix
Ao € V (deterministic or stochastic) we can define a Wiener pro-
cess (A¢)iecjo,+00) ON V with initial position Ag. By construction,
we see that ¢t — A; is almost surely continuous, and each increment
Ay, —A;isequal to (t+—t_)Y/2 times a matrix drawn from the gauss-
ian unitary ensemble (GUE), with disjoint increments being jointly
independent. In particular, the diagonal entries of A;, — A;_ have
distribution N(0,¢+ — t_)gr, and the off-diagonal entries have distri-
bution N(0,t; —t_)c.

Given any Hermitian matrix A, one can form the spectrum (A1 (A4), ...

which lies in the Weyl chamber RY := {( A1y, ) ER™ 1 A >
... > An}. Taking the spectrum of the Wiener process (At)ie[o,+o0)s
we obtain a process

(AL(Ar), s A Ab))te(0,4-00)

in the Weyl cone. We abbreviate \;(A;) as A;.

For t > 0, we see that A; is absolutely continuously distributed
in V. In particular, since almost every Hermitian matrix has simple
spectrum, we see that A; has almost surely simple spectrum for ¢ > 0.
(The same is true for t = 0 if we assume that Ay also has an absolutely
continuous distribution.)

OK

The stochastic dynamics of this evolution can be described by
Dyson Brownian motion[Dy1962]:

Theorem 3.1.16 (Dyson Brownian motion). Lett > 0, and let dt >
0, and let A\y,..., )\, be as above. Then we have

dt
(3.5) dhi=dBi+ > St
1<j<nij#i
for all 1 <i <n, where d\; := X\i(Asrar) — Ni(Ar), and dBy, ... ,dB,
are iid copies of N (0, dt)r which are jointly independent of (As )y efo.4)
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and the error term ... has mean o(dt) and third moment O(dt3) in
the limit dt — 0 (holding t and n fized).

Using the language of Ito calculus, one usually views dt as infin-
itesimal and drops the ... error, thus giving the elegant formula

dt
X — A

d)\; = dB; + Z

1<j<n:jzi

that shows that the eigenvalues A; evolve by Brownian motion, com-
bined with a deterministic repulsion force that repels nearby eigen-
values from each other with a strength inversely proportional to the
separation. One can extend the theorem to the ¢ = 0 case by a limiting
argument provided that Ay has an absolutely continuous distribution.
Note that the decay rate of the error ... can depend on n, so it is not
safe to let n go off to infinity while holding dt fixed. However, it is
safe to let dt go to zero first, and then send n off to infinity®.

Proof. Fix t. We can write Ayrqr = A + (dt)1/2G, where G is
independent” of A; and has the GUE distribution. We now condition
A, to be fixed, and establish (3.5) for almost every fixed choice of Ay;
the general claim then follows upon undoing the conditioning (and
applying the dominated convergence theorem). Due to independence,
observe that G continues to have the GUE distribution even after
conditioning A; to be fixed.

Almost surely, A; has simple spectrum; so we may assume that
the fixed choice of A; has simple spectrum also. The eigenvalues \;
now vary smoothly near t, so we may Taylor expand

1
Ni(Aprar) = Mi + (d)Y2V el + §dtvéxi +0((dt)*?| G

for sufficiently small dt, where Vg is directional differentiation in
the G direction, and the implied constants in the O() notation can
depend on A; and n. In particular, we do not care what norm is used
to measure G in.

61t is also possible, by being more explicit with the error terms, to work with dt
being a specific negative power of n; see [TaVu2009b].

7Strictly speaking, G depends on dt, but this dependence will not concern us.
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As G has the GUE distribution, the expectation and variance
of |G| is bounded (possibly with constant depending on n), so the
error here has mean o(dt) and third moment O(dt?). We thus have

1
d\; = (d)>V e + 5dtVéAi +....

Next, from the first and second Hadamard variation formulae (1.72),
(1.73) we have

VG)\z’ = uquZ

and
|} Gui|*
VN =2
Z R
where uq,...,u, are an orthonormal eigenbasis for A;, and thus
|u*Gul|2
dX\; = (dt)2u; Gu; + dt
(dt) ui + ; N,

Now we take advantage of the unitary invariance of the Gaussian
unitary ensemble (that is, that UGU* = G for all unitary matrices G;
this is easiest to see by noting that the probability density function
of G is proportional to exp(—|G|%/2)). From this invariance, we
can assume without loss of generality that uq,...,u, is the standard
orthonormal basis of C™, so that we now have
€517

dXi = (dt)'2& +dt Yy =L
X — A

i#]

+...

where &;; are the coefficients of G. But the &; are iid copies of
N(0,1)r, and the &;; are iid copies of N(0,1)¢c, and the claim fol-

lows (note that dt}_, ”;”l ; has mean zero and third moment
O(dt?).) O

Remark 3.1.17. Interestingly, one can interpret Dyson Brownian
motion in a different way, namely as the motion of n independent
Wiener processes \;(t) after one conditions the \; to be non-intersecting
for all time; see [Gr1999]. It is intuitively reasonable that this con-
ditioning would cause a repulsion effect, though we do not know of
a simple heuristic reason why this conditioning should end up giving
the specific repulsion force present in (3.5).
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In the previous section, we saw how a Wiener process led to
a PDE (the heat flow equation) that could be used to derive the
probability density function for each component X; of that process.
We can do the same thing here:

Exercise 3.1.6. Let \1,..., A\, be as above. Let F: R® — R be a
smooth function with bounded derivatives. Show that for any ¢ > 0,
one has

HEF(A1,...,\n) =ED*F(\1,...,\p)
where D* is the adjoint Dyson operator

* ,_}n aMF
DF._2;6,2\iF+ > PR

1<i,j<ni£j "

If we let p : [0,4+00) x RY — R denote the density function p(t,-) :
RY — R of (A1(f),. .., An(t)) at time ¢ € [0, +00), deduce the Dyson
partial differential equation

(3.6) dp = Dp

(in the sense of distributions, at least, and on the interior of RZ),
where D is the Dyson operator

_1 - 2 p
(3.7 Dp:= 2;3)\1_,0 Z Oy, <>\i_/\j>.

1<i,j<n:i#j

The Dyson partial differential equation (3.6) looks a bit compli-
cated, but it can be simplified (formally, at least) by introducing the
Vandermonde determinant

(3.8) An(Aiso )= [T i= ).
1<i<j<n

Exercise 3.1.7. Show that (3.8) is the determinant of the matrix
~1

(MM i<ij<n, and is also the sum Y oes, sen(o) [T, )\Z(i).
Note that this determinant is non-zero on the interior of the Weyl
chamber RY. The significance of this determinant for us lies in the
identity
A
(3.9) A= > n

)\,_)\A
1<j<niizy ©0 7Y
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which can be used to cancel off the second term in (3.7). Indeed, we
have

Exercise 3.1.8. Let p be a smooth solution to (3.6) in the interior
of RY, and write

(3.10) p=2~7Au

in this interior. Show that u obeys the linear heat equation

1 n

in the interior of R%. (Hint: You may need to exploit the identity

(afb)l(afc) + (bfa)l(bfc) + (Cfa)l(cfb) = 0 for distinct a, b, c. Equivalently,

you may need to first establish that the Vandermonde determinant is

a harmonic function.)

Let p be the density function of the (A1,...,\,), as in (3.1.6).
Recall that the Wiener random matrix A; has a smooth distribution
in the space V' of Hermitian matrices, while the space of matrices in V'
with non-simple spectrum has codimension 3 by Exercise 1.3.10. On
the other hand, the non-simple spectrum only has codimension 1 in
the Weyl chamber (being the boundary of this cone). Because of this,
we see that p vanishes to at least second order on the boundary of
this cone (with correspondingly higher vanishing on higher codimen-
sion facets of this boundary). Thus, the function u in Exercise 3.1.8
vanishes to first order on this boundary (again with correspondingly
higher vanishing on higher codimension facets). Thus, if we extend p
symmetrically across the cone to all of R™, and extend the function
u antisymmetrically, then the equation (3.6) and the factorisation
(3.10) extend (in the distributional sense) to all of R™. Extending
(3.1.8) to this domain (and being somewhat careful with various is-
sues involving distributions), we now see that u obeys the linear heat
equation on all of R".

Now suppose that the initial matrix Ao had a deterministic spec-
trum v = (vq, ..., V), which to avoid technicalities we will assume to
be in the interior of the Weyl chamber (the boundary case then being
obtainable by a limiting argument). Then p is initially the Dirac delta
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function at v, extended symmetrically. Hence, u is initially ﬁ(u)

times the Dirac delta function at v, extended antisymmetrically:

> sgn(0)0r— o)

O'ESn

u(0,\) = Anl(y)

Using the fundamental solution for the heat equation in n dimensions,
we conclude that

1 2
- - —|A—a(v)|?/2t
u(t,\) = Gty Jgs sgn(o)e .

By the Leibniz formula for determinants

det((ai;)1<ij<n) = »_ sen(o) [ [ ai),
1=1

ocEeS,,
we can express the sum here as a determinant of the matrix

(e 20 <

Applying (3.10), we conclude

Theorem 3.1.18 (Johansson formula). Let Ay be a Hermitian ma-
triz with simple spectrum v = (v1,...,v,), let t > 0, and let Ay =
Ay + tY/2G where G is drawn from GUE. Then the spectrum \ =
(AM,-- 5 An) of Ay has probability density function

L AN
(2mt)n/2 Ay (v)

(3.11) p(t,\) = det(e= T2y, e,

n
on RZ‘

This formula is given explicitly in [Jo2001], who cites [BrHi1996]
as inspiration. (One can also check by hand that (3.11) satisfies the
Dyson equation (3.6).)

We will be particularly interested in the case when Ay = 0 and
t =1, so that we are studying the probability density function of the
eigenvalues (A1(G),..., Ay (@) of a GUE matrix G. The Johansson
formula does not directly apply here, because v is vanishing. However,
we can investigate the limit of (3.11) in the limit as v — 0 inside
the Weyl chamber; the Lipschitz nature of the eigenvalue operations
A X\ (A) (from the Weyl inequalities) tell us that if (3.11) converges
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locally uniformly as v — 0 for A in the interior of RY, then the limit
will indeed® be the probability density function for v = 0.

Exercise 3.1.9. Show that as v — 0, we have the identities
det(ef(’\"'fl’f)Z/Q)gingn — o PP/2=IVI?/2 det(eAithgi,jgn

and )
T A VALW) + o(A,()

locally uniformly in \. (Hint: for the second identity, use Taylor

det(eAiVj)1gi,jgn =

expansion and the Leibniz formula for determinants, noting the left-
hand side vanishes whenever A, (v) vanishes and so can be treated
by the (smooth) factor theorem.)

From the above exercise, we conclude the fundamental Ginibre
formula[Gil1965]
1

(3.12) p(A) = @n el

for the density function for the spectrum (A1 (G), ..., A\ (G)) of a GUE
matrix G.

e M2 1A, (V)2

This formula can be derived by a variety of other means; we
sketch one such way below.

Exercise 3.1.10. For this exercise, assume that it is known that
(3.12) is indeed a probability distribution on the Weyl chamber R% (if
not, one would have to replace the constant (27r)"/2 by an unspecified
normalisation factor depending only on n). Let D = diag(A1, ..., \,)
be drawn at random using the distribution (3.12), and let U be drawn
at random from Haar measure on U(n). Show that the probability
density function of UDU* at a matrix A with simple spectrum is
equal to cne*”“‘”fv/2 for some constant ¢, > 0. (Hint: use unitary
invariance to reduce to the case when A is diagonal. Now take a small
€ and consider what U and D must be in order for U DU* to lie within
€ of A in the Frobenius norm, performing first order calculations only
(i.e. linearising and ignoring all terms of order o(¢)).)

8Note from continuity that the density function cannot assign any mass to the
boundary of the Weyl chamber, and in fact must vanish to at least second order by
the previous discussion.
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Conclude that (3.12) must be the probability density function of
the spectrum of a GUE matrix.

Exercise 3.1.11. Verify by hand that the self-similar extension
plt.x) =" p(a/ V)

of the function (3.12) obeys the Dyson PDE (3.6). Why is this consis-
tent with (3.12) being the density function for the spectrum of GUE?

Remark 3.1.19. Similar explicit formulae exist for other invariant
ensembles, such as the gaussian orthogonal ensemble GOE and the
gaussian symplectic ensemble GSE. One can also replace the exponent
in density functions such as e~ I141%/2 with more general expressions
than quadratic expressions of A. We will however not detail these
formulae in this course (with the exception of the spectral distribution
law for random iid gaussian matrices, which we will discuss in a later
set of notes).

3.2. The Golden-Thompson inequality

Let A, B be two Hermitian n x n matrices. When A and B commute,
we have the identity

€A+B = €A€B .

When A and B do not commute, the situation is more complicated;
we have the Baker-Campbell-Hausdorff formula

A+B A_B_—1[A,B]

e =e“e’e

where the infinite product here is explicit but very messy. On the
other hand, taking determinants we still have the identity

det(eATB) = det(e?e?).

An identity in a somewhat similar spirit (which Percy Deift has half-
jokingly termed “the most important identity in mathematics”) is the
formula

(3.13) det(1 + AB) = det(1 + BA)

whenever A, B are n x k and k x n matrices respectively (or more
generally, A and B could be linear operators with sufficiently good
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spectral properties that make both sides equal). Note that the left-
hand side is an n x n determinant, while the right-hand side is a k x k
determinant; this formula is particularly useful when computing de-
terminants of large matrices (or of operators), as one can often use it
to transform such determinants into much smaller determinants. In
particular, the asymptotic behaviour of n x n determinants as n — oo
can be converted via this formula to determinants of a fixed size (inde-
pendent of n), which is often a more favourable situation to analyse.
Unsurprisingly, this trick is particularly useful for understanding the
asymptotic behaviour of determinantal processes.

There are many ways to prove (3.13). One is to observe first
that when A, B are invertible square matrices of the same size, that
1+ BA and 1+ AB are conjugate to each other and thus clearly have
the same determinant; a density argument then removes the invert-
ibility hypothesis, and a padding-by-zeroes argument then extends
the square case to the rectangular case. Another is to proceed via the
spectral theorem, noting that AB and BA have the same non-zero
eigenvalues.

By rescaling, one obtains the variant identity
det(z + AB) = 2" % det(z + BA)

which essentially relates the characteristic polynomial of AB with
that of BA. When n = k, a comparison of coefficients this al-
ready gives important basic identities such as tr(AB) = tr(BA) and
det(AB) = det(BA); when n is larger than k, an inspection of the

2"k coefficient similarly gives the Cauchy-Binet formula

(3.14) det(BA) = Y det(Agy ) det(Byxs)
se()

where S ranges over all k-element subsets of [n] := {1,...,n}, Agx
is the k x k minor of A coming from the rows S, and Bjjy g is sim-
ilarly the k x k& minor coming from the columns S. Unsurprisingly,
the Cauchy-Binet formula is also quite useful when performing com-
putations on determinantal processes.
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There is another very nice relationship between e+ and e“e?,
namely the Golden-Thompson inequality[Go1965, Th1965]

(3.15) tr(eT8) < tr(e”e?).

The remarkable thing about this inequality is that no commutativity
hypotheses whatsoever on the matrices A, B are required. Note that
the right-hand side can be rearranged using the cyclic property of
trace as tr(eP/2e4eP/?); the expression inside the trace is positive
definite so the right-hand side is positive®.

To get a sense of how delicate the Golden-Thompson inequality
is, let us expand both sides to fourth order in A, B. The left-hand
side expands as

tr1+tr(A+B)+%tr(A2+AB+BA+B2)+%tr(A+B)3

1 4

while the right-hand side expands as

tr1+tr(A+ B) + %tr(Az +2AB + B?)
+ %tr(A?’ +3A°B + 3AB? + B?)
1
+ 57 tr(A* +4A3B +6A°B? + 4AB® + B*) + ...

Using the cyclic property of trace tr(AB) = tr(BA), one can verify
that all terms up to third order agree. Turning to the fourth order
terms, one sees after expanding out (A+B)* and using the cyclic prop-
erty of trace as much as possible, we see that the fourth order terms
almost agree, but the left-hand side contains a term 75 tr(ABAB)
whose counterpart on the right-hand side is 15 tr(ABBA). The dif-
ference between the two can be factorised (again using the cyclic
property of trace) as —a tr[A, B]%. Since [4,B] :== AB — BA is
skew-Hermitian, —[A, B]? is positive definite, and so we have proven
the Golden-Thompson inequality to fourth order'®.

9n contrast, the obvious extension of the Golden-Thompson inequality to three
or more Hermitian matrices fails dramatically; there is no reason why expressions such
as tr(e?ePe®) need to be positive or even real.

100ne could also have used the Cauchy-Schwarz inequality for the Frobenius norm
to establish this; see below.
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Intuitively, the Golden-Thompson inequality is asserting that in-
teractions between a pair A, B of non-commuting Hermitian matrices
are strongest when cross-interactions are kept to a minimum, so that
all the A factors lie on one side of a product and all the B factors lie
on the other. Indeed, this theme will be running through the proof
of this inequality, to which we now turn.

The proof of the Golden-Thompson inequality relies on the some-
what magical power of the tensor power trick (see [Ta2008, §1.9]).
For any even integer p = 2,4,6,... and any n X n matrix A (not
necessarily Hermitian), we define the p-Schatten norm || A||, of A by
the formula'!

1Al == (tr(AAT)P/2)VP.
This norm can be viewed as a non-commutative analogue of the (P
norm; indeed, the p-Schatten norm of a diagonal matrix is just the
¢P norm of the coefficients.

Note that the 2-Schatten norm
| All2 := (tr(AA*))Y/?
is the Hilbert space norm associated to the Frobenius inner product
(or Hilbert-Schmidt inner product)
(A, B) :=tr(AB™).
This is clearly a non-negative Hermitian inner product, so by the
Cauchy-Schwarz inequality we conclude that
[ tr(A143)| < [[Ax]l2]| Azl

for any n x n matrices Ay, As. As ||Az|la = ||A%]|2, we conclude in
particular that
[ tr(A1A2)] < [|Av]2]| A2l

We can iterate this and establish the non-commutative Holder
inequality
(3.16) [tr(A1Az ... Ap)| < [[Ad]pllA2]lp - - - [[Apllp

whenever p = 2,4, 8, ... is an even power of 2 (compare with Exercise
1.3.9). Indeed, we induct on p, the case p = 2 already having been

11This formula in fact defines a norm for any p > 1; see Exercise 1.3.22(vi).
However, we will only need the even integer case here.
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established. If p > 4 is a power of 2, then by the induction hypothesis
(grouping A, ... A, into p/2 pairs) we can bound

(3.17) [tr(A1As ... Ap)| < (| A1 Az|lp 2|l A3 Adllpy2 - - | Ap—1Apllp/2-
On the other hand, we may expand

14142275 = tr Ay Ap A3 AT ... Ay Ay AZAT.
We use the cyclic property of trace to move the rightmost A factor to

the left. Applying the induction hypothesis again, we conclude that

141 421275 < 1147 Ax [l 2l A2 A3l - - 1A A [l 2] A2 A3 -

But from the cyclic property of trace again, we have ||[A7A||,/2 =
|A1]12 and [|A2A3],/2 = ||A2]|2. We conclude that

4142172 < [|A1llp]l Azl

and similarly for ||A3A4]|,/2, etc. Inserting this into (3.17) we obtain
(3.16).

Remark 3.2.1. Though we will not need to do so here, it is inter-
esting to note that one can use the tensor power trick to amplify
(3.16) for p equal to a power of two, to obtain (3.16) for all positive
integers p, at least when the A; are all Hermitian (again, compare
with Exercise 1.3.9). Indeed, pick a large integer m and let N be
the integer part of 2™ /p. Then expand the left-hand side of (3.16)
as tr(Ai/N .. Ai/NA;/N .. Azl,/N . All,/N) and apply (3.16) with p
replaced by 2™ to bound this by [[AT/ N |N. .. | AN N1 |12 PN
Sending m — oo (noting that 2™ = (1 + o(1))Np) we obtain the
claim.

Specialising (3.16) to the case where A; = ... = A, = AB for
some Hermitian matrices A, B, we conclude that

tr((AB)?) < ||AB|}
and hence by cyclic permutation
tr((AB)P) < tr((A2B*)P/?)
for any p = 2,4, .... Iterating this we conclude that
(3.18) tr((AB)P) < tr(APBP).
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Applying this with A, B replaced by e4/? and eB/? respectively, we
obtain

tr((eA/PelB/P)P) < tr(ete?).
Now we send p — co. Since e4/? = 14 A/p + O(1/p?) and B/ =
1+ B/p + O(1/p?), we have eA/PeB/p = ¢(A+B)/p+O1/p) and so
the left-hand side is tr(eAtB+O1/P)); taking the limit as p — oo we
obtain the Golden-Thompson inequality!?

If we stop the iteration at an earlier point, then the same argu-
ment gives the inequality

le+Z 11, < llee? |,

for p = 2,4,8,... a power of two; one can view the original Golden-
Thompson inequality as the p = 1 endpoint of this case in some
sense'®. In the limit p — 0o, we obtain in particular the operator

norm inequality
(3.19) ||6A+BHop < ||6A6B||op
This inequality has a nice consequence:

Corollary 3.2.2. Let A, B be Hermitian matrices. If e* < e (i.e.
eB — e is positive semi-definite), then A < B.

Proof. Since e? < eP we have (e?z,z) < (ePx,z) for all vectors
x, or in other words ||e4/?z|| < ||eP/2z|| for all 2. This implies that
e/2e=B/2 is a contraction, i.e. |[e?/2e7B/2|,, < 1. By (3.19), we
conclude that [e(A=5)/2||,, < 1, thus (A — B)/2 < 0, and the claim
follows. O

Exercise 3.2.1. Reverse the above argument and conclude that (3.2.2)
is in fact equivalent to (3.19).

It is remarkably tricky to try to prove Corollary 3.2.2 directly.
Here is a somewhat messy proof. By the fundamental theorem of
calculus, it suffices to show that whenever A(t) is a Hermitian ma-
trix depending smoothly on a real parameter with %e"‘(t) > 0, then

12g¢e also [Ve2008] for a slight variant of this proof.

131, fact, the Golden-Thompson inequality is true in any operator norm; see
[Bh1997, Theorem 9.3.7].
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%A(t) > 0. Indeed, Corollary 3.2.2 follows from this claim by setting
A(t) :=log(e? + t(e® — e4)) and concluding that A(1) > A(0).
To obtain this claim, we use the Duhamel formula
4 aw _ /1 =940 (L 4y esat) g
dt ) dt '

This formula can be proven by Taylor expansion, or by carefully ap-
proximating e2®) by (1 + A(t)/N)"; alternatively, one can integrate
the identity

9 7sA(t)a sA(t)y _ ,—sA(t) 9 SA(t)
95 ¢ o )T (A

which follows from the product rule and by interchanging the s and ¢
derivatives at a key juncture. We rearrange the Duhamel formula as

d awy _ a2 /1/2 Ay @ —sA
_ — s A SA(t) A(t)/2.
e e ( _1/26 (dt (t)e ds)e

Using the basic identity e Be=4 = ¢24(4) B we thus have

1/2
oA _ Az / e 3dAW®) go)( L A0,
dt _1/2 dt

formally evaluating the integral, we obtain

and thus

d ad(A))/2 _aimrser d Ao —acersa
@M = ShGataw))2) ARG e O,

As %e“‘(t) was positive semi-definite by hypothesis, e‘A("‘)/Q(%e“(t))e_“(t)/2

is also. It thus suffices to show that for any Hermitian A, the operator

% preserves the property of being semi-definite.

Note that for any real &, the operator e27*%2d(4) maps a posi-
tive semi-definite matrix B to another positive semi-definite matrix,

ZWiEABe—QW'L'fA

namely e By the Fourier inversion formula, it thus suf-

fices to show that the kernel F'(x) := Smhzy I8 positive semi-definite in
the sense that it has non-negative Fourier transform (this is a special
case of Bochner’s theorem). But a routine (but somewhat tedious)

application of contour integration shows that the Fourier transform
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F(€) = [ e 2™ F(z) dx is given by the formula F(¢) = m,

and the claim follows.

Because of the Golden-Thompson inequality, many applications
of the exponential moment method in commutative probability theory
can be extended without difficulty to the non-commutative case, as
was observed in [AhWi2002]. For instance, consider (a special case
of) the Chernoff inequality

PXi+...+4Xnv >N < max(e*)‘Q/‘l, eN/2)

for any A > 0, where X1, ..., X,, = X are iid scalar random variables
taking values in [—1,1] of mean zero and with total variance o2 (i.e.
each factor has variance 02 /N). We briefly recall the standard proof
of this inequality from Section 2.1. We first use Markov’s inequality
to obtain

P(X;+...4+ Xy > )) < e PEH Xt +XN)

for some parameter ¢t > 0 to be optimised later. In the scalar case,
we can factor e!(X1t-+XN) a5 X1 XN and then use the iid hy-

pothesis to write the right-hand side as
67t)\ (EetX)N.

An elementary Taylor series computation then reveals the bound
Ee! < exp(t?0?/N) when 0 < t < 1; inserting this bound and
optimising in ¢t we obtain the claim.

Now suppose that X;,..., X, = X are iid d x d Hermitian ma-
trices. One can try to adapt the above method to control the size of
the sum X; + ...+ Xy. The key point is then to bound expressions
such as

Etref(Xit+Xn)

As Xi,..., Xy need not commute, we cannot separate the product
completely. But by Golden-Thompson, we can bound this expression
by

Etr et X1t +Xn-1) ot Xy

which by independence we can then factorise as

tr(Ee! (Xt X)) (Bel X )
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As the matrices involved are positive definite, we can then take out
the final factor in operator norm:

HEetXn op tr Eet(X1+"'+XN_1).

Iterating this procedure, we can eventually obtain the bound
Etref(Xit+Xn) < ||EetX Hé\;

Combining this with the rest of the Chernoff inequality argument, we
can establish a matrix generalisation

P(|X1 + ..+ Xnllop = A) < nmax(e™/4, e2/2)

of the Chernoff inequality, under the assumption that the Xy,..., Xy
are iid with mean zero, have operator norm bounded by 1, and have
total variance Y | [[EX?||op equal to o?; see for instance [Ve2008]
for details.

Further discussion of the use of the Golden-Thompson inequality
and its variants to non-commutative Chernoff-type inequalities can
be found in [Gr2009], [Ve2008], [Tr2010]. It seems that the use of
this inequality may be quite useful in simplifying the proofs of several
of the basic estimates in this subject.

3.3. The Dyson and Airy kernels of GUE via
semiclassical analysis

Let n be a large integer, and let M,, be the Gaussian Unitary En-
semble (GUE), i.e. the random Hermitian matrix with probability
distribution

Cpe "MD/2g 0,

where dM,, is a Haar measure on Hermitian matrices and C,, is

the normalisation constant required to make the distribution of unit
mass. The eigenvalues A\; < ... < A, of this matrix are then a
coupled family of n real random variables. For any 1 < k < n, we
can define the k-point correlation function pg(x1,...,x) to be the
unique symmetric measure on R* such that

/ F(z1,...,25)pk(z1,...,25) = E Z Fiy, i)
Rk

1<iy<..<ip<n
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A standard computation (given for instance in Section 2.6 gives the
Ginibre formula|Gil965]

N 12
pr(r,san) = CL( [T s —ay e =il
1<i<j<n

for the n-point correlation function, where C), is another normali-
sation constant. Using Vandermonde determinants, one can rewrite
this expression in determinantal form as

pn(l'l, ey (En) = C711/ det(Kn(mivmj))lgi,jgn

where the kernel K, is given by

Falr9) = 3 ou(2)bx(v)
k=0

where ¢ (z) := Py(z)e=®" /4 and Py, Py, ... are the (L2-normalised)
Hermite polynomials (thus the ¢y are an orthonormal family, with
each Py being a polynomial of degree k). Integrating out one or more
of the variables, one is led to the Gaudin-Mehta formula**

(3-20) Pk($1, e 7961@) = det(Kn(xi,xj))lgi,jgk-

Again, see Section 2.6 for details.

The functions ¢ (z) can be viewed as an orthonormal basis of
eigenfunctions for the harmonic oscillator operator
> 2?
Lp:=(————+ —)¢;
6= (=7 + )

indeed it is a classical fact that
1
Loy = (k+ 5)%-
As such, the kernel K, can be viewed as the integral kernel of the
spectral projection operator 1(_Oo7n+%](L).

From (3.20) we see that the fine-scale structure of the eigenvalues
of GUE are controlled by the asymptotics of K,, as n — oco. The two
main asymptotics of interest are given by the following lemmas:

141y particular, the normalisation constant C!/ in the previous formula turns out
to simply be equal to 1.
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Lemma 3.3.1 (Asymptotics of K, in the bulk). Let zo € (—2,2),
and let pse(zg) = 5= (4— x0)1/2 be the semicircular law density at x.
Then, we have

Kalaovn+ 0 o) fpsc( 0)’
sin(m(y — 2))
T Ay - z)

as n — oo for any fized y,z € R (removing the singularity at y = z

s oV + —=——)
(321) \Fpsc($0)

in the usual manner).

Lemma 3.3.2 (Asymptotics of K,, at the edge). We have

Kn(2v/n+ uw%f+ UQ

(3:22) |, Ai(y) AT (2) - AT () Ai(2)
y—z
as n — oo for any fired y, z € R, where Ai is the Airy function
Ai(z) = 1 /OO cos(ﬁ +tx) dt
o ™ Jo 3

and again removing the singularity at y = z in the usual manner.

The proof of these asymptotics usually proceeds via computing
the asymptotics of Hermite polynomials, together with the Christoffel-
Darboux formula; this is for instance the approach taken in Section
2.6. However, there is a slightly different approach that is closer in
spirit to the methods of semi-classical analysis. For sake of complete-
ness, we will discuss this approach here, although to focus on the

main ideas, the derivation will not be completely rigorous'®.

3.3.1. The bulk asymptotics. We begin with the bulk asymp-
totics, Lemma 3.3.1. Fix x in the bulk region (—2,2). Applying the
change of variables

o= avit =t

151, particular, we will ignore issues such as convegence of integrals or of opera-
tors, or (removable) singularities in kernels caused by zeroes in the denominator. For
a rigorous approach to these asymptotics in the discrete setting, see [O12008].
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we see that the harmonic oscillator L becomes

d2

d ) (‘IO\/>+

*nPSC(w(J) )2
v, PSC(‘TO)
Since K, is the integral kernel of the spectral projection to the region
L < n+3, we conclude that the left-hand side of (3.21) (as a function

of y, z) is the integral kernel of the spectral projection to the region

d2

1
d2 =) <n+;

(SEO\f—F 0%

_nPSC(fo)

\fpsc (zo)

Isolating out the top order terms in n, we can rearrange this as

Thus, in the limit n — oo, we expect (heuristically, at least) that
the left-hand side of (3.21) to converge as n — oo to the integral
kernel of the spectral projection to the region

Kk

Introducing the Fourier dual variable £ to ¥, as manifested by the
Fourier transform

fle) = [ sty ay
and its inverse
Ply) = [ mp(e) as

then we (heuristically) have dy = 2mi&, and so we are now projecting
to the region

(3.23) €* < 1/4,

i.e. we are restricting the Fourier variable to the interval [-1/2,1/2].
Back in physical space, the associated projection P thus takes the
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form

Pi(y) = / ¢ f(¢) de
[~1/2,1/2]

/ /[ 1/2,1/2] e Kite) o
_ /R (W = 2) .,y g

y—z

and the claim follows.

Remark 3.3.3. From a semiclassical perspective, the original spec-
tral projection L <n + % can be expressed in phase space (using the
dual frequency variable 7 to x) as the ellipse

1
.24 4 < —
(3.24) 7r77+4 n+2

which after the indicated change of variables becomes the elongated
ellipse

1 1 )
2npsc(@o)(d—a2) " A peclwo)2(d —a3)”
1 1

< 4 -
- 4+2n(47x3)

&+

which converges (in some suitably weak sense) to the strip (3.23) as
n — 00.

3.3.2. The edge asymptotics. A similar (heuristic) argument gives
the edge asymptotics, Lemma 3.3.2. Starting with the change of vari-
ables

T =2vn+ 1/6

the harmonic oscillator L now becomes
L Laym s Loy
dy 2 1/6 ’

Thus, the left-hand side of (3.22) becomes the kernel of the spectral
projection to the region

d? 1
n1/3d2 (2f+ 1/6) <n+-.

2
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Expanding out, computing all terms of size n'/3 or larger, and rear-
ranging, this (heuristically) becomes
d2
—— +y <ol
R (1)
and so, heuristically at least, we expect (3.22) to converge to the
kernel of the projection to the region

2

(3.25) +y <0.

g Y S

To compute this, we again pass to the Fourier variable £, converting
the above to
1 d

4722 — <
Tt e S

using the usual Fourier-analytic correspondences between multiplica-
tion and differentiation. If we then use the integrating factor trans-
formation

F(§) = S R(E)
we can convert the above region to

1 d
— <0
2mi d§

which on undoing the Fourier transformation becomes
y<0,

and the spectral projection operation for this is simply the spatial
multiplier 1(_ ). Thus, informally at least, we see that the spectral
projection P to the region (3.25) is given by the formula

P=M"1_yoqM
where the Fourier multiplier M is given by the formula

MJ(€) = 73 f(¢).
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In other words (ignoring issues about convergence of the integrals),

Mf(y) = /R(/R 627riy5687r3i§3/36—27riz§ de) f(z) dz

= ooCos m(y — 2z T3e3 z)az
fg/R(/o (2 (y — 2)€ + 87°€3/3) de) f(2) d

—1A¥AmaMﬂy—d+§B)ﬁﬁ@)M

:/A@—@ﬂ@w

R
and similarly

“ley) = iy — 2z
M) /RA<y V() dy

(this reflects the unitary nature of M). We thus see (formally, at
least) that

Piy) = /R ( /( A ) A ) dw) ) d

To simplify this expression we perform some computations closely
related to the ones above. From the Fourier representation

Ai(y) = %/0 cos(ty +t3/3) dt

:/ e27riy5687ri£3/3 d¢
R

we see that
;1\1(5) _ e87r3i§3/3

which means that
1 d

(4n%% + o dg)AAi(f) =0

and thus )

“ae
thus Ai obeys the Airy equation
Ai"(y) = y Ai(y).
Using this, one soon computes that
d Ai(y —w) A'(z — w) — A'(y — w) Ai(z —w)
dw y—z

+y) Ai(y) =0,

= Ai(y—w) Ai(z—w).
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Also, stationary phase asymptotics tell us that Ai(y) decays exponen-
tially fast as y — 400, and hence Ai(y — w) decays exponentially fast
as w — —oo for fixed y; similarly for Ai’(z —w), Ai’(y —w), Ai(z —w).
From the fundamental theorem of calculus, we conclude that

B Ai(y) Ai'(2) — Ai'(y) Ai(z)

Ai(y — w) Ai(z — w) dw ,

(this is a continuous analogue of the Christoffel-Darboux formula),
and the claim follows.

Remark 3.3.4. As in the bulk case, one can take a semi-classical
analysis perspective and track what is going on in phase space. With
the scaling we have selected, the ellipse (3.24) has become
1/6\2 1
1302 , 2vn+y/n/®) < 1
g+ <n+ 3,
which we can rearrange as the eccentric ellipse

47%n

y2
4n2/3

which is converging as n — oo to the parabolic region

422 4y <0

1
262
47Tf+yfm—

which can then be shifted to the half-plane y < 0 by the parabolic
shear transformation (y, &) — (y + 4m2£2,€), which is the canonical
relation of the Fourier multiplier M. (The rapid decay of the kernel
Ai of M at +oo is then reflected in the fact that this transformation
only shears to the right and not the left.)

Remark 3.3.5. Presumably one should also be able to apply the
same heuristics to other invariant ensembles, such as those given by
probability distributions of the form

C,e” "M g

for some potential function P. Certainly one can soon get to an
orthogonal polynomial formulation of the determinantal kernel for
such ensembles, but I do not know if the projection operators for
such kernels can be viewed as spectral projections to a phase space
region as was the case for GUE. But if one could do this, this would
provide a heuristic explanation as to the universality phenomenon
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for such ensembles, as Taylor expansion shows that all (reasonably
smooth) regions of phase space converge to universal limits (such as a
strip or paraboloid) after rescaling around either a non-critical point
or a critical point of the region with the appropriate normalisation.

3.4. The mesoscopic structure of GUE
eigenvalues

In this section we give a heuristic model of the mesoscopic structure of
the eigenvalues \; < ... < A, of the nxn Gaussian Unitary Ensemble
(GUE), where n is a large integer. From Section 2.6, the probability
density of these eigenvalues is given by the Ginibre distribution

ie—H(A) d\

n
where d\ = d\;...d)\, is Lebesgue measure on the Weyl chamber
{ A1, 50) € R 2 A < ... < A}y Z, is a constant, and the
Hamiltonian H is given by the formula
l{(Alw..,An):::jzjgi——-Q > log|Ai = Al

=1 1<i<j<n

As we saw in Section 2.4, at the macroscopic scale of \/n, the eigen-
values A; are distributed according to the Wigner semicircle law

1
pue(e) = 5 (4 —a?) )%
Indeed, if one defines the classical location ' of the i eigenvalue to
be the unique solution in [—2/n,2+/n] to the equation

SV i
/ pse(r) dv = —
—2yn n

then it is known that the random variable \; is quite close to ’yid. In-
deed, a result of Gustavsson[Gu2005] shows that, in the bulk region
when en < i < (1 —¢)n for some fixed € > 0, ); is distributed asymp-
totically as a gaussian random variable with mean %Cl and variance

logn % 1

™ \/EPSC('Y;A) ’
1 . . .

———— is the mean eigenvalue spacing.

Vipse(vE) & paciig

Note that from the semicircular law, the factor
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At the other extreme, at the microscopic scale of the mean eigen-
value spacing (which is comparable to 1/4/n in the bulk, but can be
as large as n='/6 at the edge), the eigenvalues are asymptotically dis-
tributed with respect to a special determinantal point process, namely
the Dyson sine process in the bulk (and the Airy process on the edge),
as discussed in Section 3.3.

We now focus on the mesoscopic structure of the eigenvalues,
in which one involves scales that are intermediate between the mi-
croscopic scale 1/4/n and the macroscopic scale y/n, for instance in
correlating the eigenvalues A; and A; in the regime |i — j| ~ n? for
some 0 < 6 < 1. Here, there is a surprising phenomenon; there is
quite a long-range correlation between such eigenvalues. The results
from [Gu2005] shows that both A; and \; behave asymptotically like
gaussian random variables, but a further result from the same paper
shows that the correlation between these two random variables is as-
ymptotic to 1 — @ (in the bulk, at least); thus, for instance, adjacent
eigenvalues A; 11 and \; are almost perfectly correlated (which makes
sense, as their spacing is much less than either of their standard de-
viations), but that even very distant eigenvalues, such as A, /4 and
A3n/4, have a correlation comparable to 1/logn. One way to get a
sense of this is to look at the trace

/\1+—|—)\n

This is also the sum of the diagonal entries of a GUE matrix, and is
thus normally distributed with a variance of n. In contrast, each of
the \; (in the bulk, at least) has a variance comparable to logn/n.
In order for these two facts to be consistent, the average correlation
between pairs of eigenvalues then has to be of the order of 1/logn.

In this section we will a heuristic way to see this correlation,
based on Taylor expansion of the convex Hamiltonian H(A) around
the minimum ~, which gives a conceptual probabilistic model for the
mesoscopic structure of the GUE eigenvalues. While this heuristic
is in no way rigorous, it does seem to explain many of the features
currently known or conjectured about GUE, and looks likely to extend
also to other models.
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3.4.1. Fekete points. It is easy to see that the Hamiltonian H(\)
is convex in the Weyl chamber, and goes to infinity on the boundary
of this chamber, so it must have a unique minimum, at a set of points
v = (71,...,7) known as the Fekete points. At the minimum, we
have VH () = 0, which expands to become the set of conditions

(3.26) v-2y LI

it Vi — i

for all 1 < j < n. To solve these conditions, we introduce the monic
degree n polynomial

n

P(z) := H(m — ).

i=1

Differentiating this polynomial, we observe that

(3.27) P'(z) = P(x) Z

and

Py =P@) Y ———1

1<ijenizi T VT T
Using the identity
1 1 1 . 1 1
+

T=YT—7 =YY= TV~
followed by (3.26), we can rearrange this as

T—
1<i<n:i#j i

Comparing this with (3.27), we conclude that
P'(z) = 2P (z) —nP(x),
or in other words that P is the n'" Hermite polyomial

n x? d —z?
P(z) = Hy(e) o= (162 L2

Thus the Fekete points «; are nothing more than the zeroes of the n*®
Hermite polynomial.
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Heuristically, one can study these zeroes by looking at the func-
tion
¢() = P(x)e™/
which solves the eigenfunction equation
2

¢(2) + (n = )é(x) = 0.

Comparing this equation with the harmonic oscillator equation ¢ (x)+
k*¢(xz) = 0, which has plane wave solutions ¢(x) = Acos(kx + 0)
for k? positive and exponentially decaying solutions for k% nega-
tive, we are led (heuristically, at least) to conclude that ¢ is concen-

trated in the region where n — % is positive (i.e. inside the interval

. . 2 . .
[—2y/n,2/n]) and will oscillate at frequency roughly y/n — %= inside
this region. As such, we expect the Fekete points 7; to obey the
same spacing law as the classical locations 'yid; indeed it is possible
to show that v; = 7§l + O(1/y/n) in the bulk (with some standard

modifications at the edge). In particular, we have the heuristic

(3.28) Yi = = (i —j)/Vn
for 7,7 in the bulk.

Remark 3.4.1. If one works with the circular unitary ensemble
(CUE) instead of the GUE, in which M,, is drawn from the uni-
tary n X n matrices using Haar measure, the Fekete points become
equally spaced around the unit circle, so that this heuristic essentially
becomes exact.

3.4.2. Taylor expansion. Now we expand around the Fekete points
by making the ansatz

Ai =i + @,
thus the results of [Gu2005] predict that each x; is normally dis-

tributed with standard deviation O(y/logn//n) (in the bulk). We
Taylor expand

HO\) = H(2) + VHG) (@) + 5V HO) @)+

We heuristically drop the cubic and higher order terms. The constant
term H () can be absorbed into the partition constant Z,,, while the
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linear term vanishes by the property VH () of the Fekete points. We
are thus lead to a quadratic (i.e. gaussian) model

L iV HO @) gy

Z/

n

for the probability distribution of the shifts x;, where Z/, is the ap-
propriate normalisation constant.

Direct computation allows us to expand the quadratic form $V2H ()

as
n

%VQH(V)(x,x)ZZx'—F Z M

j=1 1<i<j<n

SN0

v

The Taylor expansion is not particularly accurate when j and ¢ are
too close, say 7 =1 + O(logo(l) n), but we will ignore this issue as it
should only affect the microscopic behaviour rather than the meso-
scopic behaviour. This models the z; as (coupled) gaussian random
variables whose covariance matrix can in principle be explicitly com-
puted by inverting the matrix of the quadratic form. Instead of doing
this precisely, we shall instead work heuristically (and somewhat inac-
curately) by re-expressing the quadratic form in the Haar basis. For
simplicity, let us assume that n is a power of 2. Then the Haar basis
consists of the basis vector

together with the basis vectors

1
Vr = —=(1, —1y,)
VI
for every discrete dyadic interval I C {1,...,n} of length between 2
and n, where I; and I, are the left and right halves of I, and 1j,,
1;, € R™ are the vectors that are one on Ij, I, respectively and zero
elsewhere. These form an orthonormal basis of R", thus we can write

z=Eovo+ > &t
i

for some coefficients &y, &;.
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From orthonormality we have

2
Ty

?:fg"‘z;f%

J

n
=1
and we have
(s — )
D aE = 2 ik
1<i<j<n Vi = 1,0
where the matrix coefficients ¢y ; are given by

- (V1) = 1) (Ws(0) = s ()
Py (i = )2

1<i<j<n

A standard heuristic wavelet computation using (3.28) suggests that
cr,j is small unless I and J are actually equal, in which case one has

n
CI,1 ™~ 73

]
(in the bulk, at least). Actually, the decay of the c; y away from the
diagonal I = J is not so large, because the Haar wavelets ¢; have
poor moment and regularity properties. But one could in principle
use much smoother and much more balanced wavelets, in which case

the decay should be much faster.
This suggests that the GUE distribution could be modeled by the
distribution
1 n 2
(3.29) 76*53/26*021 T¢I ge

n

for some absolute constant C; thus we may model {; = N(0,1) and
& = C'\/|I|\/ng; for some iid gaussians gy = N(0,1) independent of
&o. We then have as a model

o = % ; Sﬁ S (1a0) = 11,

for the fluctuations of the eigenvalues (in the bulk, at least), leading
of course to the model

& C ) )
(3.30) Ai=vi+—==+—2=) (15,() = 11,(i))
Y, Jn \/ﬁ; I I g1
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for the fluctuations themselves. This model does not capture the
microscopic behaviour of the eigenvalues such as the sine kernel (in-
deed, as noted before, the contribution of the very short I (which
corresponds to very small values of |j — 4|) is inaccurate), but ap-
pears to be a good model to describe the mesoscopic behaviour. For
instance, observe that for each i there are ~ logn independent nor-
malised gaussians in the above sum, and so this model is consistent
with the result of Gustavsson that each \; is gaussian with standard
deviation ~ %. Also, if |i — j| ~ n?, then the expansions (3.30)
of A;, A; share about (1 — §)logn of the logn terms in the sum in
common, which is consistent with the further result of Gustavsson
that the correlation between such eigenvalues is comparable to 1 — 6.

If one looks at the gap A\;11 — A; using (3.30) (and replacing the
Haar cutoff 17, (4) — 17, (¢) by something smoother for the purposes of
computing the gap), one is led to a heuristic of the form

D VS S S il -1, ()L
Yot == L vt v 2 1)

The dominant terms here are the first term and the contribution of
the very short intervals I. At present, this model cannot be accurate,
because it predicts that the gap can sometimes be negative; the con-
tribution of the very short intervals must instead be replaced some
other model that gives sine process behaviour, but we do not know
of an easy way to set up a plausible such model.

On the other hand, the model suggests that the gaps are largely
decoupled from each other, and have gaussian tails. Standard heuris-
tics then suggest that of the ~ n gaps in the bulk, the largest one

10% which was indeed established re-

should be comparable to
cently in [BeB02010].

Given any probability measure = p dz on R™ (or on the Weyl

3

chamber) with a smooth nonzero density, one can can create an as-
sociated heat flow on other smooth probability measures f dx by
performing gradient flow with respect to the Dirichlet form

1
D(f dx) := §/Rn \v%ﬁ dp.
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Using the ansatz (3.29), this flow decouples into a system of indepen-
dent Ornstein-Uhlenbeck processes

€y = —&odt + AWy

and

dg] = C”%(—g]dt + dW[)

where dWy,dW; are independent Wiener processes (i.e. Brownian
motion). This is a toy model for the Dyson Brownian motion (see
Section 3.1). In this model, we see that the mixing time for each
g1 is O(]I]/n); thus, the large-scale variables (g; for large I) evolve
very slowly by Dyson Brownian motion, taking as long as O(1) to
reach equilibrium, while the fine scale modes (g; for small I) can
achieve equilibrium in as brief a time as O(1/n), with the interme-
diate modes taking an intermediate amount of time to reach equilib-
rium. It is precisely this picture that underlies the Erdos-Schlein-Yau
approach[ErScYa2009] to universality for Wigner matrices via the
local equilibrium flow, in which the measure (3.29) is given an ad-
ditional (artificial) weight, roughly of the shape ="' (&+2:1€) in
order to make equilibrium achieved globally in just time O(n!'~¢),
leading to a local log-Sobolev type inequality that ensures conver-
gence of the local statistics once one controls a Dirichlet form con-
nected to the local equilibrium measure; and then one can use the
localisation of eigenvalues provided by a local semicircle law to con-
trol that Dirichlet form in turn for measures that have undergone
Dyson Brownian motion.
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