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1 Introduction

The laws of large numbers of classical probability theory state that sums

of independent random variables are, under very mild conditions, close to

their expectation with a large probability. Such sums are the most basic

examples of random variables concentrated around their mean. More recent

results reveal that such a behavior is shared by a large class of general

functions of independent random variables. The purpose of these notes is

to give an introduction to some of these general concentration inequalities.

The inequalities discussed in these notes bound tail probabilities of gen-

eral functions of independent random variables. Several methods have been

known to prove such inequalities, including martingale methods pioneered

in the 1970's by Milman, see Milman and Schechtman [61] (see the in�u-

ential surveys of McDiarmid [58], [59] and Chung and Lu [?] for some

new develpments), information-theoretic methods (see Alhswede, Gács,

and Körner [1], Marton [52], [53],[54], Dembo [24], Massart [55] and Rio

[68]), Talagrand's induction method [77],[75],[76] (see also Luczak and Mc-

Diarmid [49], McDiarmid [60], Panchenko [63, 64, 65] and the so-called

�entropy method�, based on logarithmic Sobolev inequalities, developed by

Ledoux [45],[44], see also Bobkov and Ledoux [12], Massart [56], Rio [68],

Boucheron, Lugosi, and Massart [14], [15], and Bousquet [16]. Also, various

problem-speci�c methods have been worked out in random graph theory,

see Janson, �uczak, and Ruci«ski [39] for a survey.
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2 Basics

To make these notes self-contained, we �rst brie�y introduce some of the

basic inequalities of probability theory.

First of all, recall that for any nonnegative random variable X,

EX =

∫∞
0

P{X � t}dt .

This implies Markov's inequality: for any nonnegative random variable X,

and t > 0,

P{X � t} � EX

t
.

If follows from Markov's inequality that if φ is a strictly monotonically

increasing nonnegative-valued function then for any random variable X and

real number t,

P{X � t} = P{φ(X) � φ(t)} � Eφ(X)

φ(t)
.

An application of this with φ(x) = x2 is Chebyshev's inequality: if X is an

arbitrary random variable and t > 0, then

P{|X−EX| � t} = P
{
|X−EX|2 � t2} � E

h
|X−EX|2

i
t2

=
Var{X}

t2
.

More generally taking φ(x) = xq (x � 0), for any q > 0 we have

P{|X−EX| � t} � E [|X−EX|q]

tq
.

In speci�c examples one may choose the value of q to optimize the ob-

tained upper bound. Such moment bounds often provide with very sharp

estimates of the tail probabilities. A related idea is at the basis of Cher-

no�'s bounding method. Taking φ(x) = esx where s is an arbitrary positive

number, for any random variable X, and any t 2 R, we have

P{X � t} = P{esX � est} � EesX

est
.
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In Cherno�'s method, we �nd an s > 0 that minimizes the upper bound or

makes the upper bound small. Even though Cherno� bounds are never as

good as the best moment bound (see Exercise 1), in many cases they are

easier to handle.

The Cauchy-Schwarz inequality states that if the random variables X

and Y have �nite second moments (E[X2] < ∞ and E[Y2] < ∞), then

|E[XY]| �
q
E[X2]E[Y2].

We may use this to prove a one-sided improvement of Chebyshev's inequal-

ity:

Theorem 1 chebyshev-cantelli inequality. Let t � 0. Then

P{X−EX � t} � Var{X}

Var{X} + t2
.

Proof. We may assume without loss of generality that EX = 0. Then for

all t

t = E[t− X] � E[(t− X)1{X<t}].

(where 1 denotes the indicator function). Thus for t � 0 from the Cauchy-

Schwarz inequality,

t2 � E[(t− X)2]E[12
{X<t}]

= E[(t− X)2]P{X < t}

= (Var{X} + t2)P{X < t},

that is,

P{X < t} � t2

Var{X} + t2
,

and the claim follows. 2

We end this section by recalling a simple association inequality due to

Chebyshev (see, e.g., [36]). We note here that association properties may

often be used to derive concentration properties. We refer the reader to

the survey of Dubdashi and Ranjan [30]
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Theorem 2 chebyshev's association inequality. Let f and g be

nondecreasing real-valued functions de�ned on the real line. If X is

a real-valued random variable, then

E[f(X)g(X)] � E[f(X)]E[g(X)]| .

If f is nonincreasing and g is nondecreasing then

E[f(X)g(X)] � E[f(X)]E[g(X)]| .

Proof. Let the random variable Y be distributed as X and independent of

it. If f and g are nondecreasing, (f(x) − f(y))(g(x) − g(y)) � 0 so that

E[(f(X) − f(Y))(g(X) − g(Y))] � 0 .
Expand this expectation to obtain the �rst inequality. The proof of the

second is similar. 2

An important generalization of Chebyshev's association inequality is

described as follows. A real-valued function f de�ned on Rn is said to be

nondecreasing (nonincreasing) if it is nondecreasing (nonincreasing) in each

variable while keeping all other variables �xed at any value.

Theorem 3 (harris' inequality.) Let f, g : Rn → R be nondecreasing

functions. Let X1, . . . , Xn be independent real-valued random variables

and de�ne the random vector X = (X1, . . . , Xn) taking values in Rn.

Then

E[f(X)g(X)] � E[f(X)]E[g(X)] .

Similarly, if f is nonincreasing and g is nondecreasing then

E[f(X)g(X)] � E[f(X)]E[g(X)] .

Proof. Again, it su�ces to prove the �rst inequality. We proceed by in-

duction. For n = 1 the statement is just Chebyshev's association inequality.

Now suppose the statement is true for m < n. Then

E[f(X)g(X)] = EE[f(X)g(X)|X1, . . . , Xn−1]

� E [E[f(X)|X1, . . . , Xn−1]E[g(X)|X1, . . . , Xn−1]]
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because given X1, . . . , Xn−1, both f and g are nondecreasing functions of the

n-th variable. Now it follows by independence that the functions f 0, g 0 :

R
n−1 → R de�ned by f 0(x1, . . . .xn−1) = E[f(X)|X1 = x1, . . . , Xn−1 = xn−1]

and g 0(x1, . . . .xn−1) = E[g(X)|X1 = x1, . . . , Xn−1 = xn−1] are nondecreasing

functions, so by the induction hypothesis,

E[f 0(X1, . . . , Xn−1)g
0(X1, . . . , Xn−1)]

� E[f 0(X1, . . . , Xn−1)]E[g 0(X1, . . . , Xn−1)]

= E[f(X)]E[g(X)]

as desired. 2

Exercises

Exercise 1 moments vs. chernoff bounds. Show that moment bounds

for tail probabilities are always better than Cherno� bounds. More pre-

cisely, let X be a nonnegative random variable and let t > 0. The best

moment bound for the tail probability P{X � t} is minqE[Xq]t−q where

the minimum is taken over all positive integers. The best Cherno� bound

is infs>0E[es(X−t)]. Prove that

min
q
E[Xq]t−q � inf

s>0
E[es(X−t)].

Exercise 2 first and second moment methods. Show that if X is a

nonnegative integer-valued random variable then P{X 6= 0} � EX. Show

also that

P{X = 0} � Var(X)

Var(X) + (EX)2
.

Exercise 3 subgaussian moments. We say that a random variable X has

a subgaussian distribution if there exists a constant c > 0 such that for all

s > 0, E[esX] � ecs2
. Show that there exists a universal constant K such

that if X is subgaussian, then for every positive integer q,

(E[Xq
+])

1/q � Kpcq .
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Exercise 4 subgaussian moments�converse. Let X be a random vari-

able such that there exists a constant c > 0 such that

(E[Xq
+])

1/q � p
cq

for every positive integer q. Show that X is subgaussian. More precisely,

show that for any s > 0,

E[esX] �
p
2e1/6eces2/2 .

Exercise 5 subexponential moments. We say that a random variable X

has a subexponential distribution if there exists a constant c > 0 such that

for all 0 < s < 1/c, E[esX] � 1/(1− cs). Show that if X is subexponential,

then for every positive integer q,

(E[Xq
+])

1/q � 4c

e
q .

Exercise 6 subexponential moments�converse. Let X be a random

variable such that there exists a constant c > 0 such that

(E[Xq
+])

1/q � cq

for every positive integer q. Show that X is subexponential. More precisely,

show that for any 0 < s < 1/(ec),

E[esX] � 1

1− ces
.

7



3 Sums of independent random variables

In this introductory section we recall some simple inequalities for sums of

independent random variables. Here we are primarily concerned with upper

bounds for the probabilities of deviations from the mean, that is, to obtain

inequalities for P{Sn −ESn � t}, with Sn =
∑n

i=1 Xi, where X1, . . . , Xn are

independent real-valued random variables.

Chebyshev's inequality and independence immediately imply

P{|Sn −ESn| � t} � Var{Sn}

t2
=

∑n
i=1 Var{Xi}

t2
.

In other words, writing σ2 = 1
n

∑n
i=1 Var{Xi},

P

{������ 1n
n∑

i=1

Xi −EXi

������ � ε
}
� σ2

nε2
.

This simple inequality is at the basis of the weak law of large numbers.

To understand why this inequality is unsatisfactory, recall that, under

some additional regularity conditions, the central limit theorem states that

P

{s
n

σ2

0@ 1
n

n∑
i=1

Xi −EXi

1A � y
} → 1−Φ(y) � 1p

2π

e−y2/2

y
,

from which we would expect, at least in a certain range of the parameters,

something like

P

{
1

n

n∑
i=1

Xi −EXi � ε
}
� e−nε2/(2σ2). (1)

Clearly, Chebyshev's inequality is way o� mark in this case, so we should

look for something better. In the sequel we prove some of the simplest

classical exponential inequalities for the tail probabilities of sums of inde-

pendent random variables which yield signi�cantly sharper estimates.

3.1 Hoe�ding's inequality

Cherno�'s bounding method, described in Section 2, is especially conve-

nient for bounding tail probabilities of sums of independent random vari-
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ables. The reason is that since the expected value of a product of indepen-

dent random variables equals the product of the expected values, Cherno�'s

bound becomes

P{Sn −ESn � t} � e−st
E

24exp
0@s n∑

i=1

(Xi −EXi)

1A35
= e−st

n∏
i=1

E

h
es(Xi−EXi)

i
(by independence). (2)

Now the problem of �nding tight bounds comes down to �nding a good

upper bound for the moment generating function of the random variables

Xi−EXi. There are many ways of doing this. For bounded random variables

perhaps the most elegant version is due to Hoe�ding [38]:

Lemma 1 hoeffding's inequality. Let X be a random variable with

EX = 0, a � X � b. Then for s > 0,

E

h
esX

i
� es2(b−a)2/8.

Proof. Note that by convexity of the exponential function

esx � x− a

b− a
esb +

b− x

b− a
esa for a � x � b.

Exploiting EX = 0, and introducing the notation p = −a/(b− a) we get

EesX � b

b− a
esa −

a

b− a
esb

=
�
1− p+ pes(b−a)

�
e−ps(b−a)

def
= eφ(u),

where u = s(b− a), and φ(u) = −pu+ log(1− p+ peu). But by straight-

forward calculation it is easy to see that the derivative of φ is

φ 0(u) = −p+
p

p+ (1− p)e−u
,
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therefore φ(0) = φ 0(0) = 0. Moreover,

φ 00(u) =
p(1− p)e−u

(p+ (1− p)e−u)
2 �

1

4
.

Thus, by Taylor's theorem, for some θ 2 [0, u],

φ(u) = φ(0) + uφ 0(0) +
u2

2
φ 00(θ) � u2

8
=
s2(b− a)2

8
. 2

Now we may directly plug this lemma into (2):

P{Sn −ESn � t}

� e−st
n∏

i=1

es2(bi−ai)
2/8 (by Lemma 1)

= e−stes2
∑n

i=1(bi−ai)
2/8

= e−2t2/
∑n

i=1(bi−ai)
2

(by choosing s = 4t/
∑n

i=1(bi − ai)
2).

Theorem 4 hoeffding's tail inequality [38]. Let X1, . . . , Xn be

independent bounded random variables such that Xi falls in the interval

[ai, bi] with probability one. Then for any t > 0 we have

P{Sn −ESn � t} � e−2t2/
∑n

i=1(bi−ai)
2

and

P{Sn −ESn � −t} � e−2t2/
∑n

i=1(bi−ai)
2

.

The theorem above is generally known as Hoe�ding's inequality. For

binomial random variables it was proved by Cherno� [19] and Okamoto

[62].

This inequality has the same form as the one we hoped for based on

(1) except that the average variance σ2 is replaced by the upper bound

(1/4)
∑n

i=1(bi − ai)
2. In other words, Hoe�ding's inequality ignores in-

formation about the variance of the Xi's. The inequalities discussed next

provide an improvement in this respect.
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3.2 Bernstein's inequality

Assume now without loss of generality that EXi = 0 for all i = 1, . . . , n.

Our starting point is again (2), that is, we need bounds for E
h
esXi

i
. Intro-

duce σ2
i = E[X2

i ], and

Fi =

∞∑
r=2

sr−2
E[Xr

i ]

r!σ2
i

.

Since esx = 1+ sx+
∑∞

r=2 s
rxr/r!, we may write

E

h
esXi

i
= 1+ sE[Xi] +

∞∑
r=2

srE[Xr
i ]

r!

= 1+ s2σ2
iFi (since E[Xi] = 0.)

� es2σ2
i Fi.

Now assume that the Xi's are bounded such that |Xi| � c. Then for each

r � 2,
E[Xr

i ] � cr−2σ2
i .

Thus,

Fi �
∞∑

r=2

sr−2cr−2σ2
i

r!σ2
i

=
1

(sc)2

∞∑
r=2

(sc)r

r!
=
esc − 1− sc

(sc)2
.

Thus, we have obtained

E

h
esXi

i
� es2σ2

i
esc−1−sc

(sc)2 .

Returning to (2) and using the notation σ2 = (1/n)
∑
σ2

i , we get

P

{
n∑

i=1

Xi > t

}
� enσ2(esc−1−sc)/c2−st.

Now we are free to choose s. The upper bound is minimized for

s =
1

c
log

�
1+

tc

nσ2

�
.

Resubstituting this value, we obtain Bennett's inequality [9]:
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Theorem 5 bennett's inequality. Let X1, . . ., Xn be independent

real-valued random variables with zero mean, and assume that |Xi| � c
with probability one. Let

σ2 =
1

n

n∑
i=1

Var{Xi}.

Then for any t > 0,

P

{
n∑

i=1

Xi > t

}
� exp

 
−
nσ2

c2
h

�
ct

nσ2

�!
.

where h(u) = (1+ u) log(1+ u) − u for u � 0.

The message of this inequality is perhaps best seen if we do some further

bounding. Applying the elementary inequality h(u) � u2/(2+2u/3), u � 0
(which may be seen by comparing the derivatives of both sides) we obtain

a classical inequality of Bernstein [10]:

Theorem 6 bernstein's inequality. Under the conditions of the pre-

vious theorem, for any ε > 0,

P

{
1

n

n∑
i=1

Xi > ε

}
� exp

 
−

nε2

2σ2 + 2cε/3

!
.

We see that, except for the term 2cε/3 in the denominator of the expo-

nent, Bernstein's inequality is qualitatively right when we compare it with

the central limit theorem (1). Bernstein's inequality points out one more

interesting phenomenon: if σ2 < ε, then the upper bound behaves like

e−nε instead of the e−nε2
guaranteed by Hoe�ding's inequality. This might

be intuitively explained by recalling that a Binomial(n, λ/n) distribution

can be approximated, for large n, by a Poisson(λ) distribution, whose tail

decreases as e−λ.
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Exercises

Exercise 7 Let X1, . . . , Xn be independent random variables, taking their

values from [0, 1]. Denoting m = ESn, show that for any t � m,

P{Sn � t} �
�
m

t

�t �n−m

n− t

�n−t

.

Hint: Proceed by Cherno�'s bounding.

Exercise 8 continuation. Use the previous exercise to show that

P{Sn � t} �
�
m

t

�t

et−m,

and for all ε > 0,

P{Sn � m(1+ ε)} � e−mh(ε),

where h is the function de�ned in Bennett's inequality. Finally,

P{Sn � m(1− ε)} � e−mε2/2.

(see, e.g., Karp [40], Hagerup and Rüb [35]).

Exercise 9 Compare the �rst bound of the previous exercise with the

best Cherno� bound for the tail of a Poisson random variable: let Y be

a Poisson(m) random variable. Show that

P{Y � t} � inf
s>0

E

h
esY
i

est
=

�
m

t

�t

et−m.

Use Stirling's formula to show that

P{Y � t} � P{Y = t} �
�
m

t

�t

et−m 1p
2πt

e−1/(12t+1),

Exercise 10 sampling without replacement. Let X be a �nite set

with N elements, and let X1, . . . , Xn be a random sample without replace-

ment from X and Y1, . . . , Yn a random sample with replacement from X .

Show that for any convex real-valued function f,

Ef

0@ n∑
i=1

Xi

1A � Ef
0@ n∑

i=1

Yi

1A .
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In particular, by taking f(x) = esx, we see that all inequalities derived for

the sums of independent random variables Yi using Cherno�'s bounding

remain true for the sum of the Xi's. (This result is due to Hoe�ding [38].)
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4 The Efron-Stein inequality

The main purpose of these notes is to show how many of the tail inequali-

ties for sums of independent random variables can be extended to general

functions of independent random variables. The simplest, yet surprisingly

powerful inequality of this kind is known as the Efron-Stein inequality. It

bounds the variance of a general function. To obtain tail inequalities, one

may simply use Chebyshev's inequality.

Let X be some set, and let g : X n → R be a measurable function of

n variables. We derive inequalities for the di�erence between the random

variable Z = g(X1, . . . , Xn) and its expected value EZ when X1, . . . , Xn are

arbitrary independent (not necessarily identically distributed!) random

variables taking values in X .

The main inequalities of this section follow from the next simple result.

To simplify notation, we write Ei for the expected value with respect to

the variable Xi, that is, EiZ = E[Z|X1, . . . , Xi−1, Xi+1, . . . , Xn].

Theorem 7

Var(Z) �
n∑

i=1

E

h
(Z−EiZ)

2
i
.

Proof. The proof is based on elementary properties of conditional ex-

pectation. Recall that if X and Y are arbitrary bounded random variables,

then E[XY] = E[E[XY|Y]] = E[YE[X|Y]].

Introduce the notation V = Z−EZ, and de�ne

Vi = E[Z|X1, . . . , Xi] −E[Z|X1, . . . , Xi−1], i = 1, . . . , n.

Clearly, V =
∑n

i=1 Vi. (Thus, V is written as a sum of martingale di�er-
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ences.) Then

Var(Z) = E

264
0@ n∑

i=1

Vi

1A2
375

= E

n∑
i=1

V2
i + 2E

∑
i>j

ViVj

= E

n∑
i=1

V2
i ,

since, for any i > j,

EViVj = EE [ViVj|X1, . . . , Xj] = E [VjE [Vi|X1, . . . , Xj]] = 0 .

To bound EV2
i , note that, by independence of the Xi,

E[Z|X1, . . . , Xi−1] = E

�
E[Z|X1, . . . , Xi−1, Xi+1, . . . , Xn]

����X1, . . . , Xi

�
,

and therefore

V2
i = (E[Z|X1, . . . , Xi] −E[Z|X1, . . . , Xi−1])

2

=

�
E

�
E[Z|X1, . . . , Xn] −E[Z|X1, . . . , Xi−1, Xi+1, . . . , Xn]

����X1, . . . , Xi

��2

� E

�
(E[Z|X1, . . . , Xn] −E[Z|X1, . . . , Xi−1, Xi+1, . . . , Xn])

2
����X1, . . . , Xi

�
(by Jensen's inequality)

= E

�
(Z−EiZ)

2
����X1, . . . , Xi

�
.

Taking expected values on both sides, we obtain the statement. 2

Now the Efron-Stein inequality follows easily. To state the theorem, let

X 01, . . . , X
0
n form an independent copy of X1, . . . , Xn and write

Z 0i = g(X1, . . . , X
0
i, . . . , Xn) .

Theorem 8 efron-stein inequality (efron and stein [32], steele

[73]).

Var(Z) � 1

2

n∑
i=1

E

h
(Z− Z 0i)

2
i

16



Proof. The statement follows by Theorem 7 simply by using (condition-

ally) the elementary fact that if X and Y are independent and identically

distributed random variables, then Var(X) = (1/2)E[(X−Y)2], and therefore

Ei

h
(Z−EiZ)

2
i

=
1

2
Ei

h
(Z− Z 0i)

2
i
. 2

Remark. Observe that in the case when Z =
∑n

i=1 Xi is a sum of indepen-

dent random variables (of �nite variance) then the inequality in Theorem

8 becomes an equality. Thus, the bound in the Efron-Stein inequality is,

in a sense, not improvable. This example also shows that, among all func-

tions of independent random variables, sums, in some sense, are the least

concentrated. Below we will see other evidences for this extremal property

of sums.

Another useful corollary of Theorem 7 is obtained by recalling that, for

any random variable X, Var(X) � E[(X−a)2] for any constant a 2 R. Using
this fact conditionally, we have, for every i = 1, . . . , n,

Ei

h
(Z−EiZ)

2
i
� Ei

h
(Z− Zi)

2
i

where Zi = gi(X1, . . . , Xi−1, Xi+1, . . . , Xn) for arbitrary measurable functions

gi : X n−1 → R of n − 1 variables. Taking expected values and using

Theorem 7 we have the following.

Theorem 9

Var(Z) �
n∑

i=1

E

h
(Z− Zi)

2
i
.

In the next two sections we specialize the Efron-Stein inequality and

its variant Theorem 9 to functions which satisfy some simple easy-to-verify

properties.

4.1 Functions with bounded di�erences

We say that a function g : X n → R has the bounded di�erences property

if for some nonnegative constants c1, . . . , cn,

sup
x1,...,xn,

x 0

i2X

|g(x1, . . . , xn) − g(x1, . . . , xi−1, x
0
i, xi+1, . . . , xn)| � ci , 1 � i � n .
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In other words, if we change the i-th variable of g while keeping all the

others �xed, the value of the function cannot change by more than ci.

Then the Efron-Stein inequality implies the following:

Corollary 1 If g has the bounded di�erences property with constants

c1, . . . , cn, then

Var(Z) � 1

2

n∑
i=1

c2
i .

Next we list some interesting applications of this corollary. In all cases

the bound for the variance is obtained e�ortlessly, while a direct estimation

of the variance may be quite involved.

Example. bin packing. This is one of the basic operations research

problems. Given n numbers x1, . . . , xn 2 [0, 1], the question is the fol-

lowing: what is the minimal number of �bins� into which these numbers

can be packed such that the sum of the numbers in each bin doesn't ex-

ceed one. Let g(x1, . . . , xn) be this minimum number. The behavior of

Z = g(X1, . . . , Xn), when X1, . . . , Xn are independent random variables, has

been extensively studied, see, for example, Rhee and Talagrand [67], Rhee

[66], Talagrand [75]. Now clearly by changing one of the xi's, the value of

g(x1, . . . , xn) cannot change by more than one, so we have

Var(Z) � n

2
.

However, sharper bounds may be proved by using Talagrand's convex dis-

tance inequality discussed later.

Example. longest common subsequence. This problem has been

studied intensively for about 20 years now, see Chvátal and Sanko� [20],

Deken [23], Dan£ík and Paterson [22], Steele [72, 74], The simplest version

is the following: Let X1, . . . , Xn and Y1, . . . , Yn be two sequences of coin

�ips. De�ne Z as the length of the longest subsequence which appears in

both sequences, that is,

Z = max{k : Xi1 = Yj1, . . . , Xik = Yjk,

where 1 � i1 < � � � < ik � n and 1 � j1 < � � � < jk � n}.
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The behavior of EZ has been investigated in many papers. It is known

that E[Z]/n converges to some number γ, whose value is unknown. It

is conjectured to be 2/(1 +
p
2), and it is known to fall between 0.75796

and 0.83763. Here we are concerned with the concentration of Z. A mo-

ment's thought reveals that changing one bit can't change the length of the

longest common subsequence by more than one, so Z satis�es the bounded

di�erences property with ci = 1. Consequently,

Var{Z} � n,

(see Steele [73]). Thus, by Chebyshev's inequality, with large probability,

Z is within a constant times
p
n of its expected value. In other words, it

is strongly concentrated around the mean, which means that results about

EZ really tell us about the behavior of the longest common subsequence

of two random strings.

Example. uniform deviations. One of the central quantities of sta-

tistical learning theory and empirical process theory is the following: let

X1, . . . , Xn be i.i.d. random variables taking their values in some set X , and

let A be a collection of subsets of X . Let µ denote the distribution of X1,

that is, µ(A) = P{X1 2 A}, and let µn denote the empirical distribution:

µn(A) =
1

n

n∑
i=1

1{Xi2A} .

The quantity of interest is

Z = sup
A2A

|µn(A) − µ(A)|.

If limn→∞EZ = 0 for every distribution of the Xi's, then A is called a

uniform Glivenko-Cantelli class, and Vapnik and Chervonenkis [81] gave a

beautiful combinatorial characterization of such classes. But regardless of

what A is, by changing one Xi, Z can change by at most 1/n, so regardless

of the behavior of EZ, we always have

Var(Z) � 1

2n
.
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For more information on the behavior of Z and its role in learning theory

see, for example, Devroye, Györ�, and Lugosi [28], Vapnik [80], van der

Vaart and Wellner [78], Dudley [31].

Next we show how a closer look at the Efron-Stein inequality implies a

signi�cantly better bound for the variance of Z. We do this in a slightly

more general framework of empirical processes. Let F be a class of real-

valued functions (no boundedness is assumed!) and de�ne Z = g(X1, . . . , Xn) =

supf2F

∑n
j=1 f(Xj). Observe that, by symmetry, the Efron-Stein inequality

may be rewritten as

Var(Z) � 1

2

n∑
i=1

E

h
(Z− Z 0i)

2
i

=

n∑
i=1

E

h
(Z− Z 0i)

2
1Z 0

i<Z

i
.

Let f� 2 F denote the (random) function which achieves the supremum in

the de�nition of Z, that is, Z =
∑n

j=1 f
�(Xj). Then clearly,

(Z− Z 0i)
2
1Z 0

i<Z � (f�(Xi) − f�(X 0i))
2

and therefore

Var(Z) � E

24sup
f2F

n∑
i=1

(f(Xi) − f(X 0i))
2

35
� E

24sup
f2F

n∑
i=1

�
2f(Xi)

2 + 2f(X 0i)
2
�35

� 4E

24sup
f2F

n∑
i=1

f(Xi)
2

35 .
For functions f 2 F are taking values in the interval [−1, 1], then from just

the bounded di�erences property we derived Var(Z) � 2n. The new bound

may be a signi�cant improvement whenever the maximum of the variances∑n
i=1 f(Xi)

2 of the functions in F is small. More importantly, in deriving

the new bound we have not assumed any boundedness of the functions f.

The exponential tail inequality due to Talagrand [76] extends this variance

inequality, and is one of the most important recent results of the theory

of empirical processes, see also Ledoux [45], Massart [56], Rio [68], and

Bousquet [16].
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Example. first passage time in oriented percolation. Consider a

directed graph such that a weight Xi is assigned to each edge ei such that

the Xi are nonnegative independent random variables with second moment

EX2
i = σ2. Let v1 and v2 be �xed vertices of the graph. We are interested

in the total weight of the path from v1 to v2 with minimum weight. Thus,

Z = min
P

∑
ei2P

Xi

where the minimum is taken over all paths P from v1 to v2. Denote the

optimal path by P�. By replacing Xi with X
0
i, the total minimum weight

can only increase if the edge ei is on P
�, and therefore

(Zi − Z 0i)
2
1Z 0

i>Z � (X 0i − Xi)
2
1ei2P� � X 0i21ei2P� .

Thus,

Var(Z) � E
∑

i

X 0i
2
1ei2P� = σ2

E

∑
i

1ei2P� � σ2L

where L is the length of the longest path between v1 and v2.

Example. minimum of the empirical loss. Concentration inequalities

have been used as a key tool in recent developments of model selection

methods in statistical learning theory. For the background we refer to

the the recent work of Koltchinskii Panchenko [42], Massart [57], Bartlett,

Boucheron, and Lugosi [5], Lugosi and Wegkamp [51], Bousquet [17].

Let F denote a class of {0, 1}-valued functions on some space X . For

simplicity of the exposition we assume that F is �nite. The results remain

true for general classes as long as the measurability issues are taken care

of. Given an i.i.d. sample Dn = (hXi, Yii)i�n of n pairs of random variables

hXi, Yii taking values in X � {0, 1}, for each f 2 F we de�ne the empirical

loss

Ln(f) =
1

n

n∑
i=1

`(f(Xi), Yi)

where the loss function ` is de�ned on {0, 1}2 by

`(y, y 0) = 1y6=y 0 .
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In nonparametric classi�cation and learning theory it is common to select

an element of F by minimizing the empirical loss. The quantity of interest

in this section is the minimal empirical loss

bL = inf
f2F

Ln(f).

Corollary 1 immediately implies that Var(bL) � 1/(2n). However, a more

careful application of the Efron-Stein inequality reveals that bLmay be much

more concentrated than predicted by this simple inequality. Getting tight

results for the �uctuations of bL provides better insight into the calibration

of penalties in certain model selection methods.

Let Z = nbL and let Z 0i be de�ned as in Theorem 8, that is,

Z 0i = min
f2F

24∑
j6=i

`(f(Xj), Yj) + `(f(Xi
0), Yi

0)

35
where hXi

0, Yi
0i is independent of Dn and has the same distribution as

hXi, Yii. Now the convenient form of the Efron-Stein inequality is the fol-

lowing:

Var(Z) � 1

2

n∑
i=1

E

h
(Z− Z 0i)

2
i

=

n∑
i=1

E

h
(Z− Z 0i)

2
1Z 0

i>Z

i
Let f� denote a (possibly non-unique) minimizer of the empirical risk so

that Z =
∑n

j=1 `(f
�(Xj), Yj). The key observation is that

(Z− Z 0i)
2
1Z 0

i>Z � (`(f�(Xi
0), Yi

0) − `(f�(Xi), Yi))
2
1Z 0

i>Z

= `(f�(X 0i), Y
0
i)1`(f�(Xi),Yi)=0 .

Thus,

n∑
i=1

E

h
(Z− Z 0i)

2
1Z 0

i>Z

i
� E

∑
i:`(f�(Xi),Yi)=0

EX 0

i,Y
0

i
[`(f�(X 0i), Y

0
i)] � nEL(f�)

where EX 0

i,Y
0

i
denotes expectation with respect to the variables X 0i, Y

0
i and for

each f 2 F , L(f) = E`(f(X), Y) is the true (expected) loss of f. Therefore,

the Efron-Stein inequality implies that

Var(bL) � EL(f�)

n
.
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This is a signi�cant improvement over the bound 1/(2n) whenever EL(f�)

is much smaller than 1/2. This is very often the case. For example, we

have

L(f�) = bL− (Ln(f�) − L(f�)) � Z

n
+ sup

f2F
(L(f) − Ln(f))

so that we obtain

Var(bL) � EbL
n

+
E supf2F(L(f) − Ln(f))

n
.

In most cases of interest, E supf2F(L(f) − Ln(f)) may be bounded by a

constant (depending on F) times n−1/2 (see, e.g., Lugosi [50]) and then the

second term on the right-hand side is of the order of n−3/2. For exponential

concentration inequalities for bL we refer to Boucheron, Lugosi, and Massart

[15].

Example. kernel density estimation. Let X1, . . . , Xn be i.i.d. samples

drawn according to some (unknown) density f on the real line. The density

is estimated by the kernel estimate

fn(x) =
1

nh

n∑
i=1

K

 
x− Xi

h

!
,

where h > 0 is a smoothing parameter, and K is a nonnegative function

with
∫
K = 1. The performance of the estimate is measured by the L1 error

Z = g(X1, . . . , Xn) =

∫
|f(x) − fn(x)|dx.

It is easy to see that

|g(x1, . . . , xn) − g(x1, . . . , x
0
i, . . . , xn)| � 1

nh

∫ �����K�x− xi

h

�
− K

 
x− x 0i
h

!�����dx
� 2

n
,

so without further work we get

Var(Z) � 2

n
.
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It is known that for every f,
p
nEg → ∞ (see Devroye and Györ� [27])

which implies, by Chebyshev's inequality, that for every ε > 0

P

{����� ZEZ − 1

����� � ε
}

= P {|Z−EZ| � εEZ} � Var(Z)

ε2(EZ)2
→ 0

as n → ∞. That is, Z/EZ → 0 in probability, or in other words, Z is

relatively stable. This means that the random L1-error behaves like its

expected value. This result is due to Devroye [25], [26]. For more on the

behavior of the L1 error of the kernel density estimate we refer to Devroye

and Györ� [27], Devroye and Lugosi [29].

4.2 Self-bounding functions

Another simple property which is satis�ed for many important examples is

the so-called self-bounding property. We say that a nonnegative function

g : X n → R has the self-bounding property if there exist functions gi :

X n−1 → R such that for all x1, . . . , xn 2 X and all i = 1, . . . , n,

0 � g(x1, . . . , xn) − gi(x1, . . . , xi−1, xi+1, . . . , xn) � 1

and also

n∑
i=1

(g(x1, . . . , xn) − gi(x1, . . . , xi−1, xi+1, . . . , xn)) � g(x1, . . . , xn) .

Concentration properties for such functions have been studied by Boucheron,

Lugosi, and Massart [14], Rio [68], and Bousquet [16]. For self-bounding

functions we clearly have

n∑
i=1

(g(x1, . . . , xn) − gi(x1, . . . , xi−1, xi+1, . . . , xn))
2 � g(x1, . . . , xn) .

and therefore Theorem 9 implies

Corollary 2 If g has the self-bounding property, then

Var(Z) � EZ .
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Next we mention some applications of this simple corollary. It turns

out that in many cases the obtained bound is a signi�cant improvement

over what we would obtain by using simply Corollary 1.

Remark. relative stability. Bounding the variance of Z by its ex-

pected value implies, in many cases, the relative stability of Z. A se-

quence of nonnegative random variables (Zn) is said to be relatively stable

if Zn/EZn → 1 in probability. This property guarantees that the random

�uctuations of Zn around its expectation are of negligible size when com-

pared to the expectation, and therefore most information about the size

of Zn is given by EZn. If Zn has the self-bounding property, then, by

Chebyshev's inequality, for all ε > 0,

P

{����� Zn

EZn

− 1

����� > ε
}
� Var(Zn)

ε2(EZn)2
� 1

ε2EZn

.

Thus, for relative stability, it su�ces to have EZn → ∞.

Example. empirical processes. A typical example of self-bounding

functions is the supremum of nonnegative empirical processes. Let F
be a class of functions taking values in the interval [0, 1] and consider

Z = g(X1, . . . , Xn) = supf2F

∑n
j=1 f(Xj). (A special case of this is men-

tioned above in the example of uniform deviations.) De�ning gi = g 0

for i = 1, . . . , n with g 0(x1, . . . , xn−1) = supf2F

∑n−1
j=1 f(Xj) (so that Zi =

supf2F

∑n
j=1

j6=i
f(Xj)) and letting f

� 2 F be a function for which Z =
∑n

j=1 f
�(Xj),

one obviously has

0 � Z− Zi � f�(Xi) � 1
and therefore

n∑
i=1

(Z− Zi) �
n∑

i=1

f�(Xi) = Z.

(Here we have assumed that the supremum is always achieved. The mod-

i�cation of the argument for the general case is straightforward.) Thus,

by Corollary 2 we obtain Var(Z) � EZ. Note that Corollary 1 implies

Var(Z) � n/2. In some important applications EZ may be signi�cantly

smaller than n/2 and the improvement is essential.
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Example. rademacher averages. A less trivial example for self-

bounding functions is the one of Rademacher averages. Let F be a class of

functions with values in [−1, 1]. If σ1, . . . , σn denote independent symmet-

ric {−1, 1}-valued random variables, independent of the Xi's (the so-called

Rademacher random variables), then we de�ne the conditional Rademacher

average as

Z = E

24sup
f2F

n∑
j=1

σjf(Xj)|X
n
1

35 .
(Thus, the expected value is taken with respect to the Rademacher variables

and Z is a function of the Xi's.) Quantities like Z have been known to

measure e�ectively the complexity of model classes in statistical learning

theory, see, for example, Koltchinskii [41], Bartlett, Boucheron, and Lugosi

[5], Bartlett and Mendelson [7], Bartlett, Bousquet, and Mendelson [6]. It

is immediate that Z has the bounded di�erences property and Corollary 1

implies Var(Z) � n/2. However, this bound may be improved by observing

that Z also has the self-bounding property, and therefore Var(Z) � EZ.

Indeed, de�ning

Zi = E

26664supf2F

n∑
j=1

j6=i

σjf(Xj)|X
n
1

37775
it is easy to see that 0 � Z−Zi � 1 and

∑n
i=1(Z−Zi) � Z (the details are

left as an exercise). The improvement provided by Lemma 2 is essential

since it is well-known in empirical process theory and statistical learning

theory that in many cases when F is a relatively small class of functions, EZ

may be bounded by something like Cn1/2 where the constant C depends on

the class F , see, e.g., Vapnik [80], van der Vaart and Wellner [78], Dudley

[31].

Con�guration functions

An important class of functions satisfying the self-bounding property con-

sists of the so-called con�guration functions de�ned by Talagrand [75, sec-

tion 7]. Our de�nition, taken from [14] is a slight modi�cation of Tala-

grand's.
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Assume that we have a property P de�ned over the union of �nite

products of a set X , that is, a sequence of sets P1 � X , P2 � X�X , . . . , Pn �
X n. We say that (x1, . . . xm) 2 Xm satis�es the property P if (x1, . . . xm) 2
Pm. We assume that P is hereditary in the sense that if (x1, . . . xm) satis�es

P then so does any subsequence (xi1, . . . xik) of (x1, . . . xm). The function

gn that maps any tuple (x1, . . . xn) to the size of a largest subsequence

satisfying P is the con�guration function associated with property P.

Corollary 2 implies the following result:

Corollary 3 Let gn be a con�guration function, and let Z = gn(X1, . . . , Xn),

where X1, . . . , Xn are independent random variables. Then

Var(Z) � EZ .

Proof. By Corollary 2 it su�ces to show that any con�guration function

is self bounding. Let Zi = gn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn). The condition

0 � Z−Zi � 1 is trivially satis�ed. On the other hand, assume that Z = k

and let {Xi1, . . . , Xik} � {X1, . . . , Xn} be a subsequence of cardinality k such

that fk(Xi1, . . . , Xik) = k. (Note that by the de�nition of a con�guration

function such a subsequence exists.) Clearly, if the index i is such that

i /2 {i1, . . . , ik} then Z = Zi, and therefore

n∑
i=1

(Z− Zi) � Z

is also satis�ed, which concludes the proof. 2

To illustrate the fact that con�guration functions appear rather natu-

rally in various applications, we describe some examples originating from

di�erent �elds.

Example. number of distinct values in a discrete sample. Let

X1, . . . , Xn be independent, identically distributed random variables taking

their values on the set of positive integers such that P{X1 = k} = pk, and let

Z denote the number of distinct values taken by these n random variables.

Then we may write

Z =

n∑
i=1

1{Xi 6=X1,...,Xi 6=Xi−1},
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so the expected value of Z may be computed easily:

EZ =

n∑
i=1

∞∑
j=1

(1− pj)
i−1pj.

It is easy to see that E[Z]/n → 0 as n → ∞ (see Exercise 13). But how

concentrated is the distribution of Z? Clearly, Z satis�es the bounded

di�erences property with ci = 1, so Corollary 1 implies Var(Z) � n/2 so

Z/n → 0 in probability by Chebyshev's inequality. On the other hand, it

is obvious that Z is a con�guration function associated to the property of

�distinctness�, and by Corollary 3 we have

Var(Z) � EZ

which is a signi�cant improvement since EZ = o(n).

Example. vc dimension. One of the central quantities in statistical

learning theory is the Vapnik-Chervonenkis dimension, see Vapnik and

Chervonenkis [81, 82], Blumer, Ehrenfeucht, Haussler, and Warmuth [11],

Devroye, Györ�, and Lugosi [28], Anthony and Bartlett [3], Vapnik [80],

etc.

LetA be an arbitrary collection of subsets of X , and let xn
1 = (x1, . . . , xn)

be a vector of n points of X . De�ne the trace of A on xn
1 by

tr(xn
1 ) = {A \ {x1, . . . , xn} : A 2 A} .

The shatter coe�cient, (or Vapnik-Chervonenkis growth function) of A in

xn
1 is T(xn

1 ) = |tr(xn
1 )|, the size of the trace. T(xn

1 ) is the number of di�erent

subsets of the n-point set {x1, . . . , xn} generated by intersecting it with

elements of A. A subset {xi1, . . . , xik} of {x1, . . . , xn} is said to be shattered

if 2k = T(xi1, . . . , xik). The vc dimension D(xn
1 ) of A (with respect to xn

1 ) is

the cardinality k of the largest shattered subset of xn
1 . From the de�nition

it is obvious that gn(xn
1 ) = D(xn

1 ) is a con�guration function (associated to

the property of �shatteredness�, and therefore if X1, . . . , Xn are independent

random variables, then

Var(D(Xn
1 )) � ED(Xn

1 ) .
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Example. increasing subsequences. Consider a vector xn
1 = (x1, . . . , xn)

of n di�erent numbers in [0, 1]. The positive integers i1 < i2 < � � � < im

form an increasing subsequence if xi1 < xi2 < � � � < xim (where i1 � 1

and im � n). Let L(xn
1 ) denote the length of a longest increasing subse-

quence. gn(xn
1 ) = L(xn

1 ) is a clearly a con�guration function (associated

with the �increasing sequence� property), and therefore if X1, . . . , Xn are

independent random variables such that they are di�erent with probability

one (it su�ces if every Xi has an absolutely continuous distribution) then

Var(L(Xn
1 )) � EL(Xn

1 ). If the Xi's are uniformly distributed in [0, 1] then it

is known that EL(Xn
1 ) ∼ 2

p
n, see Logan and Shepp [48], Groeneboom [34].

The obtained bound for the variance is apparently loose. A di�cult result

of Baik, Deift, and Johansson [4] implies that Var(L(Xn
1 )) = O(n1/3).

For early work on the concentration on L(X) we refer to Frieze [33],

Bollobás and Brightwell [13], and Talagrand [75].

Exercises

Exercise 11 Assume that the random variables X1, . . . , Xn are indepen-

dent and binary {0,1}-valued with P{Xi = 1} = pi and that g has the

bounded di�erences property with constants c1, . . . , cn. Show that

Var(Z) �
n∑

i=1

c2
ipi(1− pi).

Exercise 12 Complete the proof of the fact that the conditional Rademacher

average has the self-bounding property.

Exercise 13 Consider the example of the number of distinct values in a

discrete sample described in the text. Show that E[Z]/n → 0 as n → ∞.

Calculate explicitely Var(Z) and compare it with the upper bound obtained

by Theorem 9.

Exercise 14 Let Z be the number of triangles in a random graph G(n, p).

Calculate the variance of Z and compare it with what you get by using the

Efron-Stein inequality to estimate it. (In the G(n, p) model for random

graphs, the random graph G = (V, E) with vertex set V (|V | = n) and edge
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set E is generated by starting from the complete graph with n vertices and

deleting each edge independently from the others with probability 1 − p.

A triangle is a complete three-vertex subgraph.)
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5 The entropy method

In the previous section we saw that the Efron-Stein inequality serves as a

powerful tool for bounding the variance of general functions of indepen-

dent random variables. Then, via Chebyshev's inequality, one may easily

bound the tail probabilities of such functions. However, just as in the case

of sums of independent random variables, tail bounds based on inequalities

for the variance are often not satisfactory, and essential improvements are

possible. The purpose of this section is to present a methodology which

allows one to obtain exponential tail inequalities in many cases. The pur-

suit of such inequalities has been an important topics in probability theory

in the last few decades. Originally, martingale methods dominated the re-

search (see, e.g., McDiarmid [58], [59], Rhee and Talagrand [67], Shamir

and Spencer [70]) but independently information-theoretic methods were

also used with success (see Alhswede, Gács, and Körner [1], Marton [52],

[53],[54], Dembo [24], Massart [55], Rio [68], and Samson [69]). Talagrand's

induction method [77],[75],[76] caused an important breakthrough both in

the theory and applications of exponential concentration inequalities. In

this section we focus on so-called �entropy method�, based on logarithmic

Sobolev inequalities developed by Ledoux [45],[44], see also Bobkov and

Ledoux [12], Massart [56], Rio [68], Boucheron, Lugosi, and Massart [14],

[15], and Bousquet [16]. This method makes it possible to derive exponen-

tial analogues of the Efron-Stein inequality perhaps the simplest way.

The method is based on an appropriate modi�cation of the �tensoriza-

tion� inequality Theorem 7. In order to prove this modi�cation, we need to

recall some of the basic notions of information theory. To keep the material

at an elementary level, we prove the modi�ed tensorization inequality for

discrete random variables only. The extension to arbitrary distributions is

straightforward.

5.1 Basic information theory

In this section we summarize some basic properties of the entropy of a

discrete-valued random variable. For a good introductory book on infor-

mation theory we refer to Cover and Thomas [21].
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Let X be a random variable taking values in the countable set X with

distribution P{X = x} = p(x), x 2 X . The entropy of X is de�ned by

H(X) = E[− log p(X)] = −
∑
x2X

p(x) log p(x)

(where log denotes natural logarithm and 0 log 0 = 0). If X, Y is a pair of

discrete random variables taking values in X � Y then the joint entropy

H(X, Y) of X and Y is de�ned as the entropy of the pair (X, Y). The condi-

tional entropy H(X|Y) is de�ned as

H(X|Y) = H(X, Y) −H(Y) .

Observe that if we write p(x, y) = P{X = x, Y = y} and p(x|y) = P{X =

x|Y = y} then

H(X|Y) = −
∑

x2X ,y2Y

p(x, y) log p(x|y)

from which we see that H(X|Y) � 0. It is also easy to see that the de�ning

identity of the conditional entropy remains true conditionally, that is, for

any three (discrete) random variables X, Y, Z,

H(X, Y|Z) = H(Y|Z) +H(X|Y, Z) .

(Just add H(Z) to both sides and use the de�nition of the conditional

entropy.) A repeated application of this yields the chain rule for entropy:

for arbitrary discrete random variables X1, . . . , Xn,

H(X1, . . . , Xn) = H(X1)+H(X2|X1)+H(X3|X1, X2)+� � �+H(Xn|X1, . . . , Xn−1) .

Let P and Q be two probability distributions over a countable set X with

probability mass functions p and q. Then the Kullback-Leibler divergence

or relative entropy of P and Q is

D(PkQ) =
∑
x2X

p(x) log
p(x)

q(x)
.

Since log x � x− 1,

D(PkQ) = −
∑
x2X

p(x) log
q(x)

p(x)
� −

∑
x2X

p(x)

 
q(x)

p(x)
− 1

!
= 0 ,
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so that the relative entropy is always nonnegative, and equals zero if and

only if P = Q. This simple fact has some interesting consequences. For

example, if X is a �nite set with N elements and X is a random variable

with distribution P and we take Q to be the uniform distribution over X
then D(PkQ) = logN−H(X) and therefore the entropy of X never exceeds

the logarithm of the cardinality of its range.

Consider a pair of random variables X, Y with joint distribution PX,Y and

marginal distributions PX and PY. Noting that D(PX,YkPX � PY) = H(X) −

H(X|Y), the nonnegativity of the relative entropy implies that H(X) �
H(X|Y), that is, conditioning reduces entropy. It is similarly easy to see

that this fact remains true for conditional entropies as well, that is,

H(X|Y) � H(X|Y, Z) .

Now we may prove the following inequality of Han [37]

Theorem 10 han's inequality. Let X1, . . . , Xn be discrete random

variables. Then

H(X1, . . . , Xn) � 1

n− 1

n∑
i=1

H(X1, . . . , Xi−1, Xi+1, . . . , Xn)

Proof. For any i = 1, . . . , n, by the de�nition of the conditional entropy

and the fact that conditioning reduces entropy,

H(X1, . . . , Xn)

= H(X1, . . . , Xi−1, Xi+1, . . . , Xn) +H(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn)

� H(X1, . . . , Xi−1, Xi+1, . . . , Xn) +H(Xi|X1, . . . , Xi−1) i = 1, . . . , n .

Summing these n inequalities and using the chain rule for entropy, we get

nH(X1, . . . , Xn) �
n∑

i=1

H(X1, . . . , Xi−1, Xi+1, . . . , Xn) +H(X1, . . . , Xn)

which is what we wanted to prove. 2

We �nish this section by an inequality which may be regarded as a

version of Han's inequality for relative entropies. As it was pointed out by
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Massart [57], this inequality may be used to prove the key tensorization

inequality of the next section.

To this end, let X be a countable set, and let P and Q be probabil-

ity distributions on X n such that P = P1 � � � � � Pn is a product mea-

sure. We denote the elements of X n by xn
1 = (x1, . . . , xn) and write

x(i) = (x1, . . . , xi−1, xi+1, . . . , xn) for the (n − 1)-vector obtained by leav-

ing out the i-th component of xn
1 . Denote by Q(i) and P(i) the marginal

distributions of x(i) according to Q and P, that is,

Q(i)(x(i)) =
∑
x2X

Q(x1, . . . , xi−1, x, xi+1, . . . , xn)

and

P(i)(x(i)) =
∑
x2X

P(x1, . . . , xi−1, x, xi+1, . . . , xn)

=
∑
x2X

P1(x1) � � �Pi−1(xi−1)Pi(x)Pi+1(xi+1) � � �Pn(xn) .

Then we have the following.

Theorem 11 han's inequality for relative entropies.

D(QkP) � 1

n− 1

n∑
i=1

D(Q(i)kP(i))

or equivalently,

D(QkP) �
n∑

i=1

�
D(QkP) −D(Q(i)kP(i))

�
.

Proof. The statement is a straightforward consequence of Han's inequality.

Indeed, Han's inequality states that∑
xn

12X
n

Q(xn
1 ) logQ(xn

1 ) � 1

n− 1

n∑
i=1

∑
x(i)2Xn−1

Q(i)(x(i)) logQ(i)(x(i)) .

Since

D(QkP) =
∑

xn
12X

n

Q(xn
1 ) logQ(xn

1 ) −
∑

xn
12X

n

Q(xn
1 ) log P(xn

1 )
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and

D(Q(i)kP(i)) =
∑

x(i)2Xn−1

�
Q(i)(x(i)) logQ(i)(x(i)) −Q(i)(x(i)) log P(i)(x(i))

�
,

it su�ces to show that∑
xn

12X
n

Q(xn
1 ) log P(xn

1 ) =
1

n− 1

n∑
i=1

∑
x(i)2Xn−1

Q(i)(x(i)) log P(i)(x(i)) .

This may be seen easily by noting that by the product property of P, we

have P(xn
1 ) = P(i)(x(i))Pi(xi) for all i, and also P(xn

1 ) =
∏n

i=1 Pi(xi), and

therefore∑
xn

12X
n

Q(xn
1 ) log P(xn

1 ) =
1

n

n∑
i=1

∑
xn

12X
n

Q(xn
1 )
�
log P(i)(x(i)) + log Pi(xi)

�

=
1

n

n∑
i=1

∑
xn

12X
n

Q(xn
1 ) log P(i)(x(i)) +

1

n

∑
xn

12X
n

Q(xn
1 ) log P(xn

1 ) .

Rearranging, we obtain∑
xn

12X
n

Q(xn
1 ) log P(xn

1 ) =
1

n− 1

n∑
i=1

∑
xn

12X
n

Q(xn
1 ) log P(i)(x(i))

=
1

n− 1

n∑
i=1

∑
x(i)2Xn−1

Q(i)(x(i)) log P(i)(x(i))

where we used the de�ning property of Q(i). 2

5.2 Tensorization of the entropy

We are now prepared to prove the main exponential concentration in-

equalities of these notes. Just as in Section 4, we let X1, . . . , Xn be in-

dependent random variables, and investigate concentration properties of

Z = g(X1, . . . , Xn). The basis of Ledoux's entropy method is a powerful

extension of Theorem 7. Note that Theorem 7 may be rewritten as

Var(Z) �
n∑

i=1

E

h
Ei(Z

2) − (Ei(Z))2
i
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or, putting φ(x) = x2,

Eφ(Z) − φ(EZ) �
n∑

i=1

E [Eiφ(Z) − φ(Ei(Z))] .

As it turns out, this inequality remains true for a large class of convex

functions φ, see Beckner [8], Lataªa and Oleszkiewicz [43], Ledoux [45],

and Chafaï [18]. The case of interest in our case is when φ(x) = x log x. In

this case, as seen in the proof below, the left-hand side of the inequality

may be written as the relative entropy between the distribution induced

by Z on X n and the distribution of Xn
1 . Hence the name �tensorization

inequality of the entropy�, (see, e.g., Ledoux [45]).

Theorem 12 Let φ(x) = x log x for x > 0. Let X1 . . . , Xn be independent

random variables taking values in X and let f be a positive-valued

function on X n. Letting Y = f(X1, . . . , Xn), we have

Eφ(Y) − φ(EY) �
n∑

i=1

E [Eiφ(Y) − φ(Ei(Y))] .

Proof. We only prove the statement for discrete random variables X1 . . . , Xn.

The extension to the general case is technical but straightforward. The the-

orem is a direct consequence of Han's inequality for relative entropies. First

note that if the inequality is true for a random variable Y then it is also true

for cY where c is a positive constant. Hence we may assume that EY = 1.

Now de�ne the probability measure Q on X n by

Q(xn
1 ) = f(xn

1 )P(xn
1 )

where P denotes the distribution of Xn
1 = (X1, . . . , Xn). Then clearly,

Eφ(Y) − φ(EY) = E[Y log Y] = D(QkP)

which, by Theorem 11, does not exceed
∑n

i=1

�
D(QkP) −D(Q(i)kP(i))

�
.

However, straightforward calculation shows that

n∑
i=1

�
D(QkP) −D(Q(i)kP(i))

�
=

n∑
i=1

E [Eiφ(Y) − φ(Ei(Y))]

36



and the statement follows. 2

The main idea in Ledoux's entropy method for proving concentration

inequalities is to apply Theorem 12 to the positive random variable Y = esZ.

Then, denoting the moment generating function of Z by F(s) = E[esZ], the

left-hand side of the inequality in Theorem 12 becomes

sE
h
ZesZ

i
−E

h
esZ

i
logE

h
esZ

i
= sF 0(s) − F(s) log F(s) .

Our strategy, then is to derive upper bounds for the derivative of F(s) and

derive tail bounds via Cherno�'s bounding. To do this in a convenient way,

we need some further bounds for the right-hand side of the inequality in

Theorem 12. This is the purpose of the next section.

5.3 Logarithmic Sobolev inequalities

Recall from Section 4 that we denote Zi = gi(X1, . . . , Xi−1, Xi+1, . . . , Xn)

where gi is some function over X n−1. Below we further develop the right-

hand side of Theorem 12 to obtain important inequalities which serve as

the basis in deriving exponential concentration inequalities. These inequal-

ities are closely related to the so-called logarithmic Sobolev inequalities of

analysis, see Ledoux [45, 46, 47], Massart [56].

First we need the following technical lemma:

Lemma 2 Let Y denote a positive random variable. Then for any

u > 0,

E[Y log Y] − (EY) log(EY) � E[Y log Y − Y logu− (Y − u)] .

Proof. As for any x > 0, log x � x− 1, we have

log
u

EY
� u

EY
− 1 ,

hence

EY log
u

EY
� u−EY

which is equivalent to the statement. 2
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Theorem 13 a logarithmic sobolev inequality. Denote ψ(x) =

ex − x− 1. Then

sE
h
ZesZ

i
−E

h
esZ

i
logE

h
esZ

i
�

n∑
i=1

E

h
esZψ (−s(Z− Zi))

i
.

Proof. We bound each term on the right-hand side of Theorem 12. Note

that Lemma 2 implies that if Yi is a positive function of X1, . . . , Xi−1, Xi+1, . . . , Xn,

then

Ei(Y log Y) −Ei(Y) logEi(Y) � Ei [Y(log Y − log Yi) − (Y − Yi)]

Applying the above inequality to the variables Y = esZ and Yi = esZi, one

gets

Ei(Y log Y) −Ei(Y) logEi(Y) � Ei

h
esZψ(−s(Z− Zi))

i
and the proof is completed by Theorem 12. 2

The following symmetrized version, due to Massart [56], will also be

useful. Recall that Z 0i = g(X1, . . . , X
0
i, . . . , Xn) where the X 0i are independent

copies of the Xi.

Theorem 14 symmetrized logarithmic sobolev inequality. If ψ

is de�ned as in Theorem 13 then

sE
h
ZesZ

i
−E

h
esZ

i
logE

h
esZ

i
�

n∑
i=1

E

h
esZψ (−s(Z− Z 0i))

i
.

Moreover, denote τ(x) = x(ex − 1). Then for all s 2 R,

sE
h
ZesZ

i
−E

h
esZ

i
logE

h
esZ

i
�

n∑
i=1

E

h
esZτ(−s(Z− Z 0i))1Z>Z 0

i

i
,

sE
h
ZesZ

i
−E

h
esZ

i
logE

h
esZ

i
�

n∑
i=1

E

h
esZτ(s(Z 0i − Z))1Z<Z 0

i

i
.
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Proof. The �rst inequality is proved exactly as Theorem 13, just by noting

that, just like Zi, Z
0
i is also independent of Xi. To prove the second and

third inequalities, write

esZψ (−s(Z− Z 0i)) = esZψ (−s(Z− Z 0i))1Z>Z 0

i
+ esZψ (s(Z 0i − Z))1Z<Z 0

i
.

By symmetry, the conditional expectation of the second term may be writ-

ten as

Ei

h
esZψ (s(Z 0i − Z))1Z<Z 0

i

i
= Ei

h
esZ 0

iψ (s(Z− Z 0i))1Z>Z 0

i

i
= Ei

h
esZe−s(Z−Z 0

i)ψ (s(Z− Z 0i))1Z>Z 0

i

i
.

Summarizing, we have

Ei

h
esZψ (−s(Z− Z 0i))

i
= Ei

h�
ψ (−s(Z− Z 0i)) + e−s(Z−Z 0

i)ψ (s(Z− Z 0i))
�
esZ
1Z>Z 0

i

i
.

The second inequality of the theorem follows simply by noting that ψ(x)+

exψ(−x) = x(ex − 1) = τ(x). The last inequality follows similarly. 2

5.4 First example: bounded di�erences and more

The purpose of this section is to illustrate how the logarithmic Sobolev

inequalities shown in the previous section may be used to obtain powerful

exponential concentration inequalities. The �rst result is rather easy to

obtain, yet it turns out to be very useful. Also, its proof is prototypical in

the sense that it shows, in a transparent way, the main ideas.

Theorem 15 Assume that there exists a positive constant C such that,

almost surely,
n∑

i=1

(Z− Z 0i)
2
1Z>Z 0

i
� C .

Then for all t > 0,

P [Z−EZ > t] � e−t2/4C .
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Proof. Observe that for x > 0, τ(−x) � x2, and therefore, for any s > 0,

Theorem 14 implies

sE
h
ZesZ

i
−E

h
esZ

i
logE

h
esZ

i
� E

24esZ
n∑

i=1

s2(Z− Z 0i)
2
1Z>Z 0

i

35
� s2CE

h
esZ

i
,

where we used the assumption of the theorem. Now denoting the moment

generating function of Z by F(s) = E

h
esZ

i
, the above inequality may be

re-written as

sF 0(s) − F(s) log F(s) � Cs2F(s) .
After dividing both sides by s2F(s), we observe that the left-hand side is

just the derivative of H(s) = s−1 log F(s), that is, we obtain the inequality

H 0(s) � C .
By l'Hospital's rule we note that lims→0H(s) = F 0(0)/F(0) = EZ, so by

integrating the above inequality, we get H(s) � EZ+sC, or in other words,

F(s) � esEZ+s2C .

Now by Markov's inequality,

P [Z > EZ+ t] � F(s)e−sEZ−st � es2C−st .

Choosing s = t/2C, the upper bound becomes e−t2/4C. Replace Z by −Z

to obtain the same upper bound for P [Z < EZ− t]. 2

It is clear from the proof that under the condition

n∑
i=1

(Z− Z 0i)
2 � C

one has the two-sided inequality

P [|Z−EZ| > t] � 2e−t2/4C .

An immediate corollary of this is a subgaussian tail inequality for functions

of bounded di�erences.
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Corollary 4 bounded differences inequality. Assume the function

g satis�es the bounded di�erences assumption with constants c1, . . . , cn,

then

P [|Z−EZ| > t] � 2e−t2/4C

where C =
∑n

i=1 c
2
i .

We remark here that the constant appearing in this corollary may be

improved. Indeed, using the martingale method, McDiarmid [58] showed

that under the conditions of Corollary 4,

P [|Z−EZ| > t] � 2e−2t2/C

(see the exercises). Thus, we have been able to extend Corollary 1 to an

exponential concentration inequality. Note that by combining the variance

bound of Corollary 1 with Chebyshev's inequality, we only obtained

P [|Z−EZ| > t] � C

2t2

and therefore the improvement is essential. Thus the applications of Corol-

lary 1 in all the examples shown in Section 4.1 are now improved in an

essential way without further work.

Example. hoeffding's inequality in hilbert space. As a simple

illustration of the power of the bounded di�erences inequality, we derive

a Hoe�ding-type inequality for sums of random variables taking values in

a Hilbert space. In particular, we show that if X1, . . . , Xn are independent

zero-mean random variables taking values in a separable Hilbert space such

that kXik � ci/2 with probability one, then for all t � 2pC,

P

24






n∑

i=1

Xi







 > t
35 � e−t2/2C

where C =
∑n

i=1 c
2
i . This follows simply by observing that, by the triangle

inequality, Z = k∑n
i=1 Xik satis�es the bounded di�erences property with
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constants ci, and therefore

P

24






n∑

i=1

Xi







 > t
35 = P

24






n∑

i=1

Xi







−E








n∑

i=1

Xi







 > t−E








n∑

i=1

Xi








35

� exp

0@−
2 (t−E k∑n

i=1 Xik)2

C

1A .

The proof is completed by observing that, by independence,

E








n∑

i=1

Xi







 �
vuuutE








n∑

i=1

Xi








2

=

vuuut n∑
i=1

E kXik2 � C .

However, Theorem 15 is much stronger than Corollary 4. To understand

why, just observe that the conditions of Theorem 15 do not require that g

has bounded di�erences. All that's required is that

sup
x1,...,xn,

x 0

1,...,x 0

n2X

n∑
i=1

|g(x1, . . . , xn) − g(x1, . . . , xi−1, x
0
i, xi+1, . . . , xn)|2 �

n∑
i=1

c2
i ,

an obviously much milder requirement. The next application is a good

example in which the bounded di�erences inequality does not work, yet

Theorem 15 gives a sharp bound.

Example. the largest eigenvalue of a random symmetric matrix.

Here we derive, using Theorem 15, a result of Alon, Krivelevich, and Vu

[2]. Let A be a symmetric real matrix whose entries Xi,j, 1 � i � j � n are

independent random variables with absolute value bounded by 1. If Z = λ1

is the largest eigenvalue of A, then

P [Z > EZ+ t] � e−t2/16 .

The property of the largest eigenvalue we need is that if v = (v1, . . . , vn) 2
R

n is an eigenvector corresponding to the largest eigenvalue λ1 with kvk =

1, then

λ1 = vTAv = sup
u:kuk=1

uTAu .
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To use Theorem 15, consider the symmetric matrix A 0
i,j obtained by replac-

ing Xi,j in A by the independent copy X 0i,j, while keeping all other variables

�xed. Let Z 0i,j denote the largest eigenvalue of the obtained matrix. Then

by the above-mentioned property of the largest eigenvalue,

(Z− Z 0i,j)1Z>Z 0

i,j
�

�
vTAv− vTA 0

i,jv
�
1Z>Z 0

i,j

=
�
vT (A−A 0

i,jv
�
1Z>Z 0

i,j
=
�
vivj(Xi,j − X 0i,j)

�
+

� 2|vivj| .

Therefore,

∑
1�i�j�n

(Z− Z 0i,j)
2
1Z>Z 0

i,j
�

∑
1�i�j�n

4|vivj|
2 � 4

0@ n∑
i=1

v2
i

1A2

= 4 .

The result now follows from Theorem 15. Note that by the Efron-Stein in-

equality we also have Var(Z) � 4. A similar exponential inequality, though

with a somewhat worst constant in the exponent, can also be derived for

the lower tail. In particular, Theorem 20 below implies, for t > 0,

P [Z < EZ− t] � e−t2/16(e−1) .

Also notice that the same proof works for the smallest eigenvalue as well.

Alon, Krivelevich, and Vu [2] show, with a simple extension of the argu-

ment, that if Z is the k-th largest (or k-th smallest) eigenvalue then the

upper bounds becomes e−t2/(16k2), though it is not clear whether the factor

k−2 in the exponent is necessary.

5.5 Exponential inequalities for self-bounding functions

In this section we prove exponential concentration inequalities for self-

bounding functions discussed in Section 4.2. Recall that a variant of the

Efron-Stein inequality (Theorem 2) implies that for self-bounding functions

Var(Z) � E(Z) . Based on the logarithmic Sobolev inequality of Theorem

13 we may now obtain exponential concentration bounds. The theorem

appears in Boucheron, Lugosi, and Massart [14] and builds on techniques

developed by Massart [56].
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Recall the de�nition of following two functions that we have already

seen in Bennett's inequality and in the logarithmic Sobolev inequalities

above:

h (u) = (1+ u) log (1+ u) − u (u � −1),

and ψ(v) = sup
u�−1

[uv− h(u)] = ev − v− 1 .

Theorem 16 Assume that g satis�es the self-bounding property. Then

for every s 2 R,
logE

h
es(Z−EZ)

i
� EZψ(s) .

Moreover, for every t > 0,

P [Z � EZ+ t] � exp
�
−EZh

�
t

EZ

��
and for every 0 < t � EZ,

P [Z � EZ− t] � exp
�
−EZh

�
−
t

EZ

��
By recalling that h(u) � u2/(2+2u/3) for u � 0 (we have already used

this in the proof of Bernstein's inequality) and observing that h(u) � u2/2

for u � 0, we obtain the following immediate corollaries: for every t > 0,

P [Z � EZ+ t] � exp

"
−

t2

2EZ+ 2t/3

#

and for every 0 < t � EZ,

P [Z � EZ− t] � exp

"
−
t2

2EZ

#
.

Proof. We apply Lemma 13. Since the function ψ is convex with ψ (0) =

0, for any s and any u 2 [0, 1] , ψ(−su) � uψ(−s). Thus, since Z −

Zi 2 [0, 1], we have that for every s, ψ(−s (Z− Zi)) � (Z− Zi)ψ(−s) and

therefore, Lemma 13 and the condition
∑n

i=1(Z− Zi) � Z implies that

sE
h
ZesZ

i
−E

h
esZ

i
logE

h
esZ

i
� E

24ψ(−s)esZ
n∑

i=1

(Z− Zi)

35
� ψ(−s)E

h
ZesZ

i
.
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Introduce eZ = Z − E [Z] and de�ne, for any s, �F(s) = E

h
eseZi. Then the

inequality above becomes

[s−ψ(−s)]
�F0(s)
�F(s)

− log �F(s) � EZψ(−s) ,

which, writing G(s) = log F(s), implies

(1− e−s)G0 (s) −G (s) � EZψ (−s) .

Now observe that the function G0 = EZψ is a solution of the ordinary

di�erential equation (1− e−s)G0 (s)−G (s) = EZψ (−s). We want to show

that G � G0. In fact, if G1 = G−G0, then

(1− e−s)G01 (s) −G1 (s) � 0. (3)

Hence, de�ning �G(s) = G1 (s) /(es − 1), we have

(1− e−s) (es − 1) �G0(s) � 0.
Hence �G0 is non-positive and therefore �G is non-increasing. Now, since eZ is

centered G01 (0) = 0. Using the fact that s(es−1)−1 tends to 1 as s goes to 0,

we conclude that �G(s) tends to 0 as s goes to 0. This shows that �G is non-

positive on (0,∞) and non-negative over (−∞, 0), hence G1 is everywhere

non-positive, therefore G � G0 and we have proved the �rst inequality of

the theorem. The proof of inequalities for the tail probabilities may be

completed by Cherno�'s bounding:

P [Z−E [Z] � t] � exp

"
− sup

s>0
(ts−EZψ (s))

#
and

P [Z−E [Z] � −t] � exp

"
− sup

s<0
(−ts−EZψ (s))

#
.

The proof is now completed by using the easy-to-check (and well-known)

relations

sup
s>0

[ts−EZψ (s)] = EZh (t/EZ) for t > 0

sup
s<0

[−ts−EZψ(s)] = EZh(−t/EZ) for 0 < t � EZ.
2
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5.6 Combinatorial entropies

Theorems 2 and 16 provide concentration inequalities for functions having

the self-bounding property. In Section 4.2 several examples of such func-

tions are discussed. The purpose of this section is to show a whole new

class of self-bounding functions that we call combinatorial entropies.

Example. vc entropy. In this �rst example we consider the so-called

Vapnik-Chervonenkis (or vc) entropy, a quantity closely related to the vc

dimension discussed in Section 4.2. Let A be an arbitrary collection of

subsets of X , and let xn
1 = (x1, . . . , xn) be a vector of n points of X . Recall

that the shatter coe�cient is de�ned as the size of the trace of A on xn
1 ,

that is,

T(xn
1 ) = |tr(xn

1 )| = |{A \ {x1, . . . , xn} : A 2 A}| .

The vc entropy is de�ned as the logarithm of the shatter coe�cient, that

is,

h(xn
1 ) = log2 T(x

n
1 ) .

Lemma 3 The vc entropy has the self-bounding property.

Proof. We need to show that there exists a function h 0 of n− 1 variables

such that for all i = 1, . . . , n, writing x(i) = (x1, . . . , xi−1, xi+1, . . . , xn),

0 � h(xn
1 ) − h 0(x(i)) � 1 and

n∑
i=1

�
h(xn

1 ) − h 0(x(i))
�
� h(xn

1 ).

We de�ne h 0 the natural way, that is, as the entropy based on the n − 1

points in its arguments. Then clearly, for any i, h 0(x(i)) � h(xn
1 ), and the

di�erence cannot be more than one. The nontrivial part of the proof is

to show the second property. We do this using Han's inequality (Theorem

10).

Consider the uniform distribution over the set tr(xn
1 ). This de�nes a

random vector Y = (Y1, . . . , Yn) 2 Yn. Then clearly,

h(xn
1 ) = log2 |tr(xn

1 )(x)| =
1

ln 2
H(Y1, . . . , Yn)
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where H(Y1, . . . , Yn) is the (joint) entropy of Y1, . . . , Yn. Since the uniform

distribution maximizes the entropy, we also have, for all i � n, that

h 0(x(i)) � 1

ln 2
H(Y1, . . . , Yi−1, Yi+1, . . . , Yn).

Since by Han's inequality

H(Y1, . . . , Yn) � 1

n− 1

n∑
i=1

H(Y1, . . . , Yi−1, Yi+1, . . . , Yn)|,

we have
n∑

i=1

�
h(xn

1 ) − h 0(x(i))
�
� h(xn

1 )

as desired. 2

The above lemma, together with Theorems 2 and 15 immediately imply

the following:

Corollary 5 Let X1, . . . , Xn be independent random variables taking their

values in X and let Z = h(Xn
1 ) denote the random vc entropy. Then

Var(Z) � E[Z], for t > 0

P [Z � EZ+ t] � exp

"
−

t2

2EZ+ 2t/3

#
,

and for every 0 < t � EZ,

P [Z � EZ− t] � exp

"
−
t2

2EZ

#
.

Moreover, for the random shatter coe�cient T(Xn
1 ), we have

E log2 T(X
n
1 ) � log2ET(X

n
1 ) � log2 eE log2 T(X

n
1 ) .

Note that the left-hand side of the last statement follows from Jensen's

inequality, while the right-hand side by taking s = ln 2 in the �rst inequality

of Theorem 16. This last statement shows that the expected vc entropy

E log2 T(X
n
1 ) and the annealed vc entropy are tightly connected, regardless
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of the class of sets A and the distribution of the Xi's. We note here that

this fact answers, in a positive way, an open question raised by Vapnik [79,

pages 53�54]: the empirical risk minimization procedure is non-trivially

consistent and rapidly convergent if and only if the annealed entropy rate

(1/n) log2E[T(X)] converges to zero. For the de�nitions and discussion we

refer to [79].

The proof of concentration of the vc entropy may be generalized, in a

straightforward way, to a class of functions we call combinatorial entropies

de�ned as follows.

Let xn
1 = (x1, . . . , xn) be an n-vector of elements with xi 2 Xi to which

we associate a set tr(xn
1 ) � Yn of n-vectors whose components are elements

of a possibly di�erent set Y. We assume that for each x 2 X n and i � n, the
set tr(x(i)) = tr(x1, . . . , xi−1, xi+1, . . . , xn) is the projection of tr(xn

1 ) along

the ith coordinate, that is,

tr(x(i)) =
{
y(i) = (y1, . . . , yi−1, yi+1, . . . , yn) 2 Yn−1 :

9yi 2 Y such that (y1, . . . , yn) 2 tr(xn
1 )

}
.

The associated combinatorial entropy is h(xn
1 ) = logb |tr(xn

1 )| where b is an

arbitrary positive number.

Just like in the case of vc entropy, combinatorial entropies may be

shown to have the self-bounding property. (The details are left as an exer-

cise.) Then we immediately obtain the following generalization:

Theorem 17 Assume that h(xn
1 ) = logb |tr(xn

1 )| is a combinatorial en-

tropy such that for all x 2 X n and i � n,
h(xn

1 ) − h(x(i)) � 1 .
If Xn

1 = (X1, . . . , Xn) is a vector of n independent random variables

taking values in X , then the random combinatorial entropy Z = h(Xn
1 )

satis�es

P [Z � E [Z] + t] � exp

"
−

t2

2E[Z] + 2t/3

#
,

and

P [Z � E [Z] − t] � exp

"
−

t2

2E[Z]

#
.
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Moreover,

E [logb |tr(Xn
1 )|] � logbE[|tr(Xn

1 )|] � b− 1

log b
E [logb |tr(Xn

1 )|] .

Example. increasing subsequences. Recall the setup of the example of

increasing subsequences of Section 4.2, and let N(xn
1 ) denote the number

of di�erent increasing subsequences of xn
1 . Observe that log2N(xn

1 ) is a

combinatorial entropy. This is easy to see by considering Y = {0, 1}, and

by assigning, to each increasing subsequence i1 < i2 < � � � < im of xn
1 , a

binary n-vector yn
1 = (y1, . . . , yn) such that yj = 1 if and only if j = ik for

some k = 1, . . . ,m (i.e., the indices appearing in the increasing sequence

are marked by 1). Now the conditions of Theorem 17 are obviously met,

and therefore Z = log2N(Xn
1 ) satis�es all three inequalities of Theorem 17.

This result signi�cantly improves a concentration inequality obtained by

Frieze [33] for log2N(Xn
1 ).

5.7 Variations on the theme

In this section we show how the techniques of the entropy method for

proving concentration inequalities may be used in various situations not

considered so far. The versions di�er in the assumptions on how
∑n

i=1(Z−

Z 0i)
2 is controlled by di�erent functions of Z. For various other versions

with applications we refer to Boucheron, Lugosi, and Massart [15]. In

all cases the upper bound is roughly of the form e−t2/σ2
where σ2 is the

corresponding Efron-Stein upper bound on Var(Z). The �rst inequality may

be regarded as a generalization of the upper tail inequality in Theorem 16.

Theorem 18 Assume that there exist positive constants a and b such

that
n∑

i=1

(Z− Z 0i)
2
1Z>Z 0

i
� aZ+ b .

Then for s 2 (0, 1/a),

logE[exp(s(Z−E[Z]))] � s2

1− as
(aEZ+ b)
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and for all t > 0,

P {Z > EZ+ t} � exp

 
−t2

4aEZ+ 4b+ 2at

!
.

Proof. Let s > 0. Just like in the �rst steps of the proof of Theorem 15,

we use the fact that for x > 0, τ(−x) � x2, and therefore, by Theorem 14

we have

sE
h
ZesZ

i
−E

h
esZ

i
logE

h
esZ

i
� E

24esZ
n∑

i=1

(Z− Z 0i)
2
1Z>Z 0

i

35
� s2

�
aE

h
ZesZ

i
+ bE

h
esZ

i�
,

where at the last step we used the assumption of theorem.

Denoting, once again, F(s) = E
h
esZ

i
, the above inequality becomes

sF 0(s) − F(s) log F(s) � as2F 0(s) + bs2F(s) .

After dividing both sides by s2F(s), once again we see that the left-hand

side is just the derivative of H(s) = s−1 log F(s), so we obtain

H 0(s) � a(log F(s)) 0 + b .

Using the fact that lims→0H(s) = F 0(0)/F(0) = EZ and log F(0) = 0, and

integrating the inequality, we obtain

H(s) � EZ+ a log F(s) + bs ,

or, if s < 1/a,

logE[exp(s(Z−E[Z]))] � s2

1− as
(aEZ+ b) ,

proving the �rst inequality. The inequality for the upper tail now follows

by Markov's inequality and Exercise 17. 2

There is a subtle di�erence between upper and lower tail bounds. Bounds

for the lower tail P {Z < EZ− t} may be easily derived, due to the as-

sociation inequality of Theorem 2, under much more general conditions

on
∑n

i=1(Z − Z 0i)
2
1Z<Z 0

i
(note the di�erence between this quantity and∑n

i=1(Z− Z 0i)
2
1Z>Z 0

i
appearing in the theorem above!).
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Theorem 19 Assume that for some nondecreasing function g,

n∑
i=1

(Z− Z 0i)
2
1Z<Z 0

i
� g(Z) .

Then for all t > 0,

P [Z < EZ− t] � exp

 
−t2

4E[g(Z)]

!
.

Proof. To prove lower-tail inequalities we obtain upper bounds for F(s) =

E[exp(sZ)] with s < 0. By the third inequality of Theorem 14,

sE
h
ZesZ

i
−E

h
esZ

i
logE

h
esZ

i
�

n∑
i=1

E

h
esZτ(s(Z 0i − Z))1Z<Z 0

i

i

�
n∑

i=1

E

h
esZs2(Z 0i − Z)2

1Z<Z 0

i

i
(using s < 0 and that τ(−x) � x2 for x > 0)

= s2E

24esZ
n∑

i=1

(Z− Z 0i)
2
1Z<Z 0

i

35
� s2E

h
esZg(Z)

i
.

Since g(Z) is a nondecreasing and esZ is a decreasing function of Z, Cheby-

shev's association inequality (Theorem 2) implies that

E

h
esZg(Z)

i
� E

h
esZ

i
E[g(Z)] .

Thus, dividing both sides of the obtained inequality by s2F(s) and writing

H(s) = (1/s) log F(s), we obtain

H 0(s) � E[g(Z)] .

integrating the inequality in the interval [s, 0) we obtain

F(s) � exp(s2E[g(Z)] + sE[Z]) .
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Markov's inequality and optimizing in s now implies the theorem. 2

The next result is useful when one in interested in lower-tail bounds but∑n
i=1(Z−Z 0i)

2
1Z<Z 0

i
is di�cult to handle. In some cases

∑n
i=1(Z−Z 0i)

2
1Z>Z 0

i

is easier to bound. In such a situation we need the additional guarantee

that |Z−Z 0i| remains bounded. Without loss of generality, we assume that

the bound is 1.

Theorem 20 Assume that there exists a nondecreasing function g such

that
∑n

i=1(Z−Z 0i)
2
1Z>Z 0

i
� g(Z) and for any value of Xn

1 and Xi
0, |Z−Z 0i| �

1. Then for all K > 0, s 2 [0, 1/K)

logE
h
exp(−s(Z−E[Z]))

i
� s2τ(K)

K2
E[g(Z)] ,

and for all t > 0, with t � (e− 1)E[g(Z)] we have

P [Z < EZ− t] � exp

 
−

t2

4(e− 1)E[g(Z)]

!
.

Proof. The key observation is that the function τ(x)/x2 = (ex − 1)/x is

increasing if x > 0. Choose K > 0. Thus, for s 2 (−1/K, 0), the second

inequality of Theorem 14 implies that

sE
h
ZesZ

i
−E

h
esZ

i
logE

h
esZ

i
�

n∑
i=1

E

h
esZτ(−s(Z− Z(i)))1Z>Z 0

i

i

� s2
τ(K)

K2
E

24esZ
n∑

i=1

(Z− Z(i))2
1Z>Z 0

i

35
� s2

τ(K)

K2
E

h
g(Z)esZ

i
,

where at the last step we used the assumption of the theorem.

Just like in the proof of Theorem 19, we boundE
h
g(Z)esZ

i
byE[g(Z)]E

h
esZ

i
.

The rest of the proof is identical to that of Theorem 19. Here we took K = 1.

2
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Exercises

Exercise 15 Relax the condition of Theorem 15 in the following way. Show

that if

E

24 n∑
i=1

(Z− Z 0i)
2
1Z>Z 0

i

����Xn
1

35 � c
then for all t > 0,

P [Z > EZ+ t] � e−t2/4c

and if

E

24 n∑
i=1

(Z− Z 0i)
2
1Z 0

i>Z

����Xn
1

35 � c ,
then

P [Z < EZ− t] � e−t2/4c .

Exercise 16 mcdiarmid's bounded differences inequality. Prove

that under the conditions of Corollary 4, the following improvement holds:

P [|Z−EZ| > t] � 2e−2t2/C

(McDiarmid [58]). Hint: Write Z as a sum of martingale di�erences as in

the proof of Theorem 7. Use Cherno�'s bounding and proceed as in the

proof of Hoe�ding's inequality, noting that the argument works for sums

of martingale di�erences.

Exercise 17 Let C and a denote two positive real numbers and denote

h1(x) = 1+ x−
p
1+ 2x. Show that

sup
λ2[0,1/a)

 
λt−

Cλ2

1− aλ

!
=
2C

a2
h1

�
at

2C

�
� t2

2
�
2C+ at

�
and that the supremum is attained at

λ =
1

a

 
1−

�
1+

at

C

�−1/2
!
.

Also,

sup
λ2[0,∞)

 
λt−

Cλ2

1+ aλ

!
=
2C

a2
h1

�
−at

2C

�
� t2

4C
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if t < C/a and the supremum is attained at

λ =
1

a

 �
1−

at

C

�−1/2

− 1

!
.

Exercise 18 Assume that h(xn
1 ) = logb|tr(x)| is a combinatorial entropy

such that for all x 2 X n and i � n,

h(xn
1 ) − h(x(i)) � 1

Show that h has the self-bounding property.

Exercise 19 Assume that Z = g(Xn
1 ) = g(X1, . . . , Xn) where X1, . . . , Xn are

independent real-valued random variables and g is a nondecreasing function

of each variable. Suppose that there exists another nondecreasing function

f : Rn → R such that

n∑
i=1

(Z− Z 0i)
2
1Z<Z 0

i
� f(Xn

1 ) .

Show that for all t > 0,

P[Z < EZ− t] � e−t2/(4Ef(Xn
1 ))
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6 Concentration of measure

In this section we address the �isoperimetric� approach to concentration in-

equalities, promoted and developed, in large part, by Talagrand [75, 76, 77].

First we give an equivalent formulation of the bounded di�erences inequal-

ity (Corollary 4) which shows that any not too small set in a product prob-

ability space has the property that the probability of those points whose

Hamming distance from the set is much larger than
p
n is exponentially

small. Then, using the full power of Theorem 15, we provide a signi�cant

improvement of this concentration-of-measure result, known as Talagrand's

convex distance inequality.

6.1 Bounded di�erences inequality revisited

Consider independent random variables X1, . . . , Xn taking their values in

a (measurable) set X and denote the vector of these variables by Xn
1 =

(X1, . . . , Xn) taking its value in X n.

Let A � X n be an arbitrary (measurable) set and write P[A] = P[Xn
1 2

A]. The Hamming distance d(xn
1 , y

n
1 ) between the vectors xn

1 , y
n
1 2 X n is

de�ned as the number of coordinates in which xn
1 and yn

1 di�er. Introduce

d(xn
1 , A) = min

yn
12A

d(xn
1 , y

n
1 ),

the Hamming distance between the set A and the point xn
1 . The basic

result is the following:

Theorem 21 For any t > 0,

P

"
d(Xn

1 , A) � t+

s
n

2
log

1

P[A]

#
� e−2t2/n .

Observe that on the right-hand side we have the measure of the com-

plement of the t-blowup of the set A, that is, the measure of the set of

points whose Hamming distance from A is at least t. If we consider a set,

say, with P[A] = 1/106, we see something very surprising: the measure

of the set of points whose Hamming distance to A is more than 10
p
n is
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smaller than e−108! In other words, product measures are concentrated on

extremely small sets�hence the name �concentration of measure�.

Proof. Observe that the function g(xn
1 ) = d(xn

1 , A) cannot change by more

than 1 by altering one component of xn
1 , that is, it has the bounded di�er-

ences property with constants c1 = � � � = cn = 1. Thus, by the bounded

di�erences inequality (Theorem 4 with the optimal constants given in Ex-

ercise 16),

P[Ed(Xn
1 , A) − d(Xn

1 , A) � t] � e−2t2/n.

But by taking t = Ed(Xn
1 , A), the left-hand side becomes P[d(Xn

1 , A) �
0] = P[A], so the above inequality implies

E[d(Xn
1 , A)] �

s
n

2
log

1

P[A]
.

Then, by using the bounded di�erences inequality again, we obtain

P

"
d(Xn

1 , A) � t+

s
n

2
log

1

P{A}

#
� e−2t2/n

as desired. 2

Observe that the bounded di�erences inequality may also be derived

from the above theorem. Indeed, if we consider a function g on X n having

the bounded di�erences property with constants ci = 1 (for simplicity),

then we may let A = {xn
1 2 X n : g(xn

1 ) � M[Z]}, where M[Z] denotes a

median of the random variable Z = g(X1, . . . , Xn). Then clearly P[A] �
1/2, so the above theorem implies

P[Z−MZ � t+

s
n

2
log 2] � e−2t2/n .

This has the same form as the bounded di�erences inequality except that

the expected value of Z is replaced by its median. This di�erence is usually

negligible, since

|EZ−MZ| � E|Z−MZ| =

∫∞
0

P[|Z−MZ| � t]dt,

so whenever the deviation of Z from its mean is small, its expected value

must be close to its median (see Exercise 20).
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6.2 Convex distance inequality

In a remarkable series of papers (see [77],[75],[76]), Talagrand developed an

induction method to prove powerful concentration results in many cases

when the bounded di�erences inequality fails. Perhaps the most widely

used of these is the so-called �convex-distance inequality�, see also Steele

[74], McDiarmid [59] for surveys with several interesting applications. Here

we use Theorem 15 to derive a version of the convex distance inequality.

For several extensions and variations we refer to Talagrand [77],[75],[76].

To understand Talagrand's inequality, we borrow a simple argument

from [59]. First observe that Theorem 21 may be easily generalized by

allowing the distance of the point Xn
1 from the set A to be measured by a

weighted Hamming distance

dα(xn
1 , A) = inf

yn
12A

dα(xn
1 , y

n
1 ) = inf

yn
12A

∑
i:xi 6=yi

|αi|

where α = (α1, . . . , αn) is a vector of nonnegative numbers. Repeating the

argument of the proof of Theorem 21, we obtain, for all α,

P

24dα(Xn
1 , A) � t+

vuutkαk2

2
log

1

P[A]

35 � e−2t2/kαk2

,

where kαk =
q∑n

i=1 α
2
i denotes the euclidean norm of α. Thus, for exam-

ple, for all vectors α with unit norm kαk = 1,

P

"
dα(Xn

1 , A) � t+

s
1

2
log

1

P[A]

#
� e−2t2

.

Thus, denoting u =
q

1
2
log 1

P[A]
, for any t � u,

P [dα(Xn
1 , A) � t] � e−2(t−u)2

.

On the one hand, if t �
q

−2 logP[A], then P[A] � e−t2/2. On the other

hand, since (t−u)2 � t2/4 for t � 2u, for any t �
q
2 log 1

P[A]
the inequality

above implies P [dα(Xn
1 , A) � t] � e−t2/2 . Thus, for all t > 0, we have

sup
α:kαk=1

P[A]�P [dα(Xn
1 , A) � t] � sup

α:kαk=1
min (P[A],P [dα(Xn

1 , A) � t]) � e−t2/2 .

57



The main message of Talagrand's inequality is that the above inequality

remains true even if the supremum is taken within the probability. To

make this statement precise, introduce, for any xn
1 = (x1, . . . , xn) 2 X n, the

convex distance of xn
1 from the set A by

dT (xn
1 , A) = sup

α2[0,∞)n:kαk=1

dα(xn
1 , A) .

The next result is a prototypical result from Talagrand's important paper

[75]. For an even stronger concentration-of-measure result we refer to [76].

Theorem 22 convex distance inequality. For any subset A � X n

with P[Xn
1 2 A] � 1/2 and t > 0,

min (P[A],P [dT (Xn
1 , A) � t]) � e−t2/4 .

Even though at the �rst sight it is not obvious how Talagrand's result

can be used to prove concentration for general functions g of Xn
1 , appar-

ently with relatively little work, the theorem may be converted into very

useful inequalities. Talagrand [75], Steele [74], and McDiarmid [59] survey

a large variety of applications. Instead of reproducing Talagrand's original

proof here we show how Theorem 15 and 20 imply the convex distance in-

equality. (This proof gives a slightly worse exponent than the one obtained

by Talagrand's method stated above.)

Proof. De�ne the random variable Z = dT (Xn
1 , A). First we observe that

dT (xn
1 , A) can be represented as a saddle point. Let M(A) denote the set

of probability measure on A. Then

dT (xn
1 , A) = sup

α:kαk�1
inf

ν2M(A)

∑
j

αjEν[1xj 6=Yj
]

(where Yn
1 is distributed according to ν)

= inf
ν2M(A)

sup
α:kαk�1

∑
j

αjEν[1xj 6=Yj
]

where the saddle point is achieved. This follows from Sion's minmax The-

orem [71] which states that if f(x, y) denotes a function from X � Y to R

that is convex and lower-semi-continuous with respect to x, concave and
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upper-semi-continuous with respect to y, where X is convex and compact,

then

inf
x
sup

y
f(x, y) = sup

y
inf
x
f(x, y) .

(We omit the details of checking the conditions of Sion's theorem, see [15].)

Let now (bν, bα) be a saddle point for xn
1 . We have

Z 0i = inf
ν2M(A)

sup
α

∑
j

αjEν[1
x

(i)
j 6=Yj

] � inf
ν2M(A)

∑
j

bαjEν[1
x

(i)
j 6=Yj

]

where x
(i)
j = xj if j 6= i and x

(i)
i = x 0i. Let �ν denote the distribution on A

that achieves the in�mum in the latter expression. Now we have

Z = inf
ν

∑
j

bαjEν[1xj 6=Yj
] �

∑
j

bαjE�ν[1xj 6=Yj
] .

Hence we get

Z− Z 0i �
∑

j

bαjE�ν[1xj 6=Yj
− 1

x
(i)
j 6=Yj

] = bαiE�ν[1xi 6=Yi
− 1

x
(i)
i 6=Yi

] � bαi .

Therefore
∑n

i=1(Z − Z 0i)
2
1Z>Z 0

i
� ∑

i
bα2

i = 1. Thus by Theorem 15 (more

precisely, by its generalization in Exercise 15), for any t > 0,

P [dT (Xn
1 , A) −EdT (Xn

1 , A) � t] � e−t2/4.

Similarly, by Theorem 20 we get

P [dT (Xn
1 , A) −EdT (Xn

1 , A) � −t] � e−t2/(4(e−1))

which, by taking t = EdT (Xn
1 , A), implies

EdT (Xn
1 , A) �

s
4(e− 1) log

1

P[A]
.

P

"
dT (Xn

1 , A) −

s
4(e− 1) log

1

P[A]
� t

#
� e−t2/4 .
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Now if 0 < u �
q

−4 logP[A] then P[A] � e−u2/4. On the other hand, if

u �
q

−4 logP[A] then

P [dT (Xn
1 , A) > u] � P

24dT (Xn
1 , A) −

s
4(e− 1) log

1

P[A]
> u− u

s
e− 1

e

35

� exp

−
u2
�
1−

q
(e− 1)/e

�2

4


where the second inequality follows from the upper-tail inequality above.

In conclusion, for all u > 0, we have

min (P[A],P [dT (Xn
1 , A) � u]) � exp

−
u2
�
1−

q
(e− 1)/e

�2

4


which concludes the proof of the convex distance inequality (with a worse

constant in the exponent). 2

6.3 Examples

In what follows we describe an application of the convex distance inequality

for the bin packing discussed in Section 4.1, appearing in Talagrand [75].

Let g(xn
1 ) denote the minimum number of bins of size 1 into which the

numbers x1, . . . , xn 2 [0, 1] can be packed. We consider the random variable

Z = g(Xn
1 ) where X1, . . . , Xn are independent, taking values in [0, 1].

Corollary 6 Denote Σ =
q
E

∑n
i=1 X

2
i . Then for each t > 0,

P[|Z−MZ| � t+ 1] � 8e−t2/(16(2Σ2+t)) .

Proof. First observe (and this is the only speci�c property of g we use in

the proof!) that for any xn
1 , y

n
1 2 [0, 1]n,

g(xn
1 ) � g(yn

1 ) + 2
∑

i:xi 6=yi

xi + 1 .
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To see this it su�ces to show that the xi for which xi 6= yi can be packed

into at most
j
2

∑
i:xi 6=yi

xi

k
+ 1 bins. For this it enough to �nd a packing

such that at most one bin is less than half full. But such a packing must

exist because we can always pack the contents of two half-empty bins into

one.

Denoting by α = α(xn
1 ) 2 [0,∞)n the unit vector xn

1 /kxn
1 k, we clearly

have ∑
i:xi 6=yi

xi = kxn
1 k

∑
i:xi 6=yi

αi = kxn
1 kdα(xn

1 , y
n
1 ) .

Let a be a positive number and de�ne the set Aa = {yn
1 : g(yn

1 ) � a}. Then,

by the argument above and by the de�nition of the convex distance, for

each xn
1 2 [0, 1]n there exists yn

1 2 Aa such that

g(xn
1 ) � g(yn

1 ) + 2
∑

i:xi 6=yi

xi + 1 � a+ 2kxn
1 kdT (xn

1 , Aa) + 1

from which we conclude that for each a > 0, Z � a+ 2kXn
1 kdT (Xn

1 , Aa)+ 1.

Thus, writing Σ =
q
E

∑n
i=1 X

2
i for any t � 0,

P[Z � a+ 1+ t]

� P

"
Z � a+ 1+ t

2kXn
1 k

2
p
2Σ2 + t

#
+P

�
kXn

1 k �
q
2Σ2 + t

�

� P

"
dT (Xn

1 , Aa) � t

2
p
2Σ2 + t

#
+ e−(3/8)(Σ2+t)

where the bound on the second term follows by a simple application of

Bernstein's inequality, see Exercise 21.

To obtain the desired inequality, we use the obtained bound with two

di�erent choices of a. To derive a bound for the upper tail of Z, we take

a =MZ. Then P[Aa] � 1/2 and the convex distance inequality yields

P[Z �MZ+ 1+ t] � 2
�
e−t2/(16(2Σ2+t)) + e−(3/8)(Σ2+t)

�
� 4e−t2/(16(2Σ2+t)) .

We obtain a similar inequality in the same way for P[Z � MZ − 1 − t] by

taking a =MZ− t− 1. 2
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Exercises

Exercise 20 Let X be a random variable with medianMX such that there

exist positive constants a and b such that for all t > 0,

P[|X−MX| > t] � ae−t2/b .

Show that |MX−EX| � apbπ/2.

Exercise 21 Let X1, . . . , Xn be independent random variables taking val-

ues is [0, 1]. Show that

P

264
vuuut n∑

i=1

X2
i �

vuuut2E n∑
i=1

X2
i + t

375 � e−(3/8)(E
∑n

i=1 X2
i +t) .
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