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In memory of A. Ehrhard

The Gaussian isoperimetric inequality, and its related concentration phenomenon,
is one of the most important properties of Gaussian measures. These notes aim to
present, in a concise and selfcontained form, the fundamental results on Gaussian
processes and measures based on the isoperimetric tool. In particular, our expo-
sition will include, from this modern point of view, some of the by now classical
aspects such as integrability and tail behavior of Gaussian seminorms, large devi-
ations or regularity of Gaussian sample paths. We will also concentrate on some
of the more recent aspects of the theory which deal with small ball probabilities.
Actually, the Gaussian concentration inequality will be the opportunity to develop
some functional analytic ideas around the concentration of measure phenomenon.
In particular, we will see how simple semigroup tools and the geometry of abstract
Markov generator may be used to study concentration and isoperimetric inequalities.
We investigate in this context some of the deep connections between isoperimetric
inequalities and functional inequalities of Sobolev type. We also survey recent work
on concentration inequalities in product spaces. Actually, although the main theme
is Gaussian isoperimetry and analysis, many ideas and results have a much broader
range of applications. We will try to indicate some of the related fields of interest.
The Gaussian isoperimetric and concentration inequalities were developed most
vigorously in the study of the functional analytic aspects of probability theory (prob-
ability in Banach spaces and its relation to geometry and the local theory of Banach
spaces) through the contributions of A. Badrikian, C. Borell, S. Chevet, A. Ehrhard,
X. Fernique, H. J. Landau and L. A. Shepp, B. Maurey, V. D. Milman, G. Pisier,
V. N. Sudakov and B. S. Tsirel’son, M. Talagrand among others. In particular, the
new proof by V. D. Milman of Dvoretzky’s theorem on spherical sections of convex
bodies started the development of the concentration ideas and of their applications
in geometry and probability in Banach spaces. Actually, most of the tools and in-
spiration come from analysis rather than probability. From this analytical point of
view, emphasis is put on inequalities in finite dimension as well as on the fundamen-
tal Gaussian measurable structure consisting of the product measure on IR™ when
each coordinate is endowed with the standard Gaussian measure. It is no surprise
therefore that most of the results, developed in the seventies and eighties, often do
not seem familiar to true probabilists, and even analysts on Wiener spaces. The aim
of this course is to try to advertise these powerful and useful ideas to the probability
community although all the results presented here are known and already appeared



elsewhere. In particular, M. Talagrand’s ideas and contributions, that strongly in-
fluenced the author’s comprehension of the subject, take an important part in this
exposition.

After a short introduction on isoperimetry, where we present the classical
isoperimetric inequality, the isoperimetric inequality on spheres and the Gaussian
isoperimetric inequality, our first task, in Chapter 2, will be to develop the concen-
tration of measure phenomenon from a functional analytic point of view based on
semigroup theory. In particular we show how the Gaussian concentration inequality
may easily be obtained from the commutation property of the Ornstein-Uhlenbeck
semigroup. In the last chapter, we further investigate the deep connections between
isoperimetric and functional inequalities (Sobolev inequalities, hypercontractivity,
heat kernel estimates...). We follow in this matter the ideas of N. Varopoulos in his
functional approach to isoperimetric inequalities and heat kernel bounds on groups
and manifolds. In Chapter 3, we will survey the remarkable recent isoperimetric
and concentration inequalities for product measures of M. Talagrand. This section
aims to demonstrate the power of abstract concentration arguments and induction
techniques in this setting. These deep ideas appear of potential use in a number
of problems in probability and applied probability. In Chapter 4, we present, from
the concentration viewpoint, the classical integrability properties and tail behaviors
of norms of Gaussian measures or random vectors as well as their large deviations.
We also show how the isoperimetric and concentration ideas allow a nontopological
approach to large deviations of Gaussian measures. The next chapter deals with the
corresponding questions for Wiener chaos as remarkably investigated by C. Borell in
the late seventies and early eighties. In Chapter 6, we provide a complete treatment
of regularity of Gaussian processes based on the results of R. M. Dudley, X. Fernique,
V. N. Sudakov and M. Talagrand. In particular, we present the recent short proof
of M. Talagrand, based on concentration, of the necessity of the majorizing measure
condition for bounded or continuous Gaussian processes. Chapter 7 is devoted to
some of the recent aspects of the study of Gaussian measures, namely small ball
probabilities. We also investigate in this chapter some correlation and conditional
inequalities for norms of Gaussian measures (which have been applied recently to
the support of a diffusion theorem and the Freidlin-Wentzell large deviation princi-
ple for stronger topologies on Wiener space). Finally, and as announced, we come
back in Chapter 8 to a semigroup approach of the Gaussian isoperimetric inequality
based on hypercontractivity. Most chapters are completed with short notes for fur-
ther reading. We also tried to appropriately complete the list of references although
we did not put emphasis on historical details and comments.

I sincerely thank the organizers of the Ecole d’Eté de St-Flour for their invita-
tion to present this course. My warmest thanks to Ph. Barbe, M. Capitaine, M. A.
Lifshits and W. Stolz for a careful reading of the early version of these notes and to
C. Borell and S. Kwapien for several helful comments and indications. Many thanks
to P. Baldi, S. Chevet, Ch. Léonard, A. Millet and J. Wellner for their comments, re-
marks and corrections during the school and to all the participants for their interest
in this course.

St-Flour, Toulouse 1994 Michel Ledoux



1. SOME ISOPERIMETRIC INEQUALITIES

In this first chapter, we present the basic isoperimetric inequalities which form the
geometric background of this study. Although we will not directly be concerned
with true isoperimetric problems and description of extremal sets later on, these
inequalities are at the basis of the concentration inequalities of the next chapter
on which most results of these notes will be based. We introduce the isoperimetric
ideas with the classical isoperimetric inequality on IR™ but the main result will
actually be the isoperimetric property on spheres and its limit version, the Gaussian
isoperimetric inequality. More on isoperimetry may be found e.g. in the book [B-Z]
as well as in the survey paper [Os] and the references therein.

The classical isoperimetric inequality in R™ (see e.g. [B-Z], [Ha], [Os]...), which
at least in dimension 2 and for convex sets may be considered as one of the oldest
mathematical statements (cf. [Os]), asserts that among all compact sets A in R"
with smooth boundary A and with fixed volume, Euclidean balls are the ones with
the minimal surface measure. In other words, whenever vol,,(4) = vol,,(B) where B
is a ball (and n > 1),

(1.1) vol,,—1(0A) > vol,,_1(0B).

There is an equivalent, although less familiar, formulation of this result in terms
of isoperimetric neighborhoods or enlargements which in particular avoids surface
measures and boundary considerations; namely, if A, denotes the (closed) Euclidean
neighborhood of A of order r > 0, and if B is as before a ball with the same volume
as A, then, for every r > 0,

(1.2) vol, (A;) > vol,(B;).

Note that A, is simply the Minkowski sum A + B(0,r) of A and of the (closed)
Euclidean ball B(0,r) with center the origin and radius r. The equivalence between
(1.1) and (1.2) follows from the Minkowski content formula

vol,_1(0A) = lim inf1 [vol, (Ar) — vol, (A)]

r—0 7



(whenever the boundary 0A of A is regular enough). Actually, if we take the latter
as the definition of vol,,_1(0A), it is not too difficult to see that (1.1) and (1.2) are
equivalent for every Borel set A (see Chapter 8 for a related result). The simplest
proof of this isoperimetric inequality goes through the Brunn-Minkowski inequality
which states that if A and B are two compact sets in IR", then

(1.3) vol, (A + B)Y/™ > vol,, (A)Y/™ + vol,,(B)*/.

To deduce the isoperimetric inequality (1.2) from the Brunn-Minkowski inequality
(1.3), let 79 > 0 be such that vol,,(A) = vol,,(B(0,7y)). Then, by (1.3),

= vol,, (B(0, 70 + 7)) """ = vol,, (B(0,70),) """

As an illustration of the methods, let us briefly sketch the proof of the Brunn-
Minkowski inequality (1.3) following [Ha] (for an alternate simple proof, see [Pi3]).
By a simple approximation procedure, we may assume that each of A and B is a
union of finitely many disjoint sets, each of which is a product of intervals with
edges parallel to the coordinate axes. The proof is by induction on the total number
p of these rectangular boxes in A and B. If p = 2, that is if A and B are products
of intervals with sides of length (a;),,.,, and (b;); -, ,, respectively, then

vol,, (A)Y™ + vol,,(B)'/™ ﬁ ﬁ b; v
vol,, (A—i—Bl/” al—I—bZ Pl a; + b;

=1

SIF—‘

where we have used the inequality between geometric and arithmetic means. Now,
assume that A and B consist of a total of p > 2 products of intervals and that (1.3)
holds for all sets A’ and B’ which are composed of a total of at most p—1 rectangular
boxes. We may and do assume that the number of rectangular boxes in A is at least
2. Parallel shifts of A and B do not change the volume of A, B or A + B. Take
then a shift of A with the property that one of the coordinate hyperplanes divides
A in such a way that there is at least one rectangular box in A on each side of this
hyperplane. Therefore A is the union of A’ and A” where A’ and A” are disjoint
unions of a number of rectangular boxes strictly smaller than the number in A. Now
shift B parallel to the coordinate axes in such a manner that the same hyperplane
divides B into B’ and B” with

vol, (B’) _ vol, (A”) )
vol,(B)  vol,(A) '




Each of B’ and B” has at most the same number of products of intervals as B has.
Now, by the induction hypothesis,

vol, (A + B)
> vol, (A" + B') + vol,, (A" + B")
> [Voln(A')l/” + Voln(B')l/”}
= )\[voln(A)l/” + voln(B)l/”}
= [Voln(A)l/” + Voln(B)l/”}n

[vol,, (A")Y/™ 4 vol,(B")*/"]"
(1 — ) [vol, (A)Y™ + vol,(B)Y/"]"

"4
"4
which is the result. Note that, by concavity, (1.3) implies (is actually equivalent to
the fact) that, for every A in [0, 1],

vol, (AA+ (1—X)B) > [)\voln(A)l/" +(1- )\)voln(B)l/”}n > vol,, (A)*vol, (B)* .

In the probabilistic applications, it is the isoperimetric inequality on spheres,
rather than the classical isoperimetric inequality, which is of fundamental impor-
tance. The use of the isoperimetric inequality on spheres in analysis and probability
goes back to the new proof, by V. D. Milman [Mil], [Mi3], of the famous Dvoretzky
theorem on spherical sections of convex bodies [Dv]. Since then, it has been used
extensively in the local theory of Banach spaces (see [F-L-M], [Mi-S], [Pi3]...) and in
probability theory via its Gaussian version (see below). The purpose of this course
is actually to present a complete account on the Gaussian isoperimetric inequality
and its probabilistic applications. For the applications to Banach space theory, we
refer to [Mi-S], [Pil], [Pi3].

Very much as (1.1), the isoperimetric inequality on spheres expresses that
among all subsets with fixed volume on a sphere, geodesic balls (caps) achieve
the minimal surface measure. This inequality has been established independently
by E. Schmidt [Sch] and P. Lévy [Lé] in the late forties (but apparently for sets
with smooth boundaries). Schmidt’s proof is based on the classical isoperimetric
rearrangement or symmetrization techniques due to J. Steiner (see [F-L-M] for a
complete proof along these lines, perhaps the first in this generality). A nice two-
point symmetrization technique may also be used (see [Be2]). Lévy’s argument,
which applies to more general types of surfaces, uses the modern tools of minimal
hypersurfaces and integral currents. His proof has been generalized to Riemannian
manifolds with positive Ricci curvature by M. Gromov [Gro], [Mi-S|, [G-H-L]. Let
M be a compact connected Riemannian manifold of dimension N (> 2), and let
d be its Riemannian metric and p its normalized Riemannian measure. Denote by
R(M) the infimum of the Ricci tensor Ric (-, -) of M over all unit tangent vectors.
Recall that if S/ is the sphere of radius p > 0 in RN R(SN) = (N —1)/p* (see
[G-H-L]). We denote below by o) the normalized rotation invariant measure on S5 .
If A is a subset of M, we let as before A, = {x € M;d(z,A) <r},r >0.

Theorem 1.1. Assume that R(M) = R > 0 and let S}Y be the manifold of constant
curvature equal to R (ie. p is such that R(S)) = (N —1)/p®> = R). Let A be



measurable in M and let B be a geodesic ball, or cap, of S} such that u(A) > oY (B).
Then, for every r > 0,

(1.4) u(A,) 2 o(B,).

Theorem 1.1 of course applies to the sphere Sév itself. Equality in (1.4) occurs
only if M is a sphere and A a cap on this sphere. Notice furthermore that Theo-
rem 1.1 applied to sets the diameter of which tends to zero contains the classical
isoperimetric inequality in Euclidean space. We refer to [Gro|, [Mi-S] or [G-H-L] for
the proof of Theorem 1.1.

Theorem 1.1 is of particular interest in probability theory via its limit version
which gives rise to the Gaussian isoperimetric inequality, our tool of fundamental
importance in this course. The Gaussian isoperimetric inequality may indeed be
considered as the limit of the isoperimetric inequality on the spheres S I])V when the
dimension N and the radius p both tend to infinity in the geometric (R(S)) =
(N —1)/p?) and probabilistic ratio p?> = N. It has indeed been known for some
time that the measures U% on S%, projected on a fixed subspace IR", converge
when N goes to infinity to the canonical Gaussian measure on IR". To be more
precise, denote by IIny1,,, N > n, the projection from IRV onto IR™. Let ~,, be
the canonical Gaussian measure on IR" with density ¢, (z) = (27)~™/2 exp(—|z|?/2)
with respect to Lebesgue measure (where |z| is the Euclidean norm of x € IR"™).

Lemma 1.2. For every Borel set A in IR",

lim o (T, (4) N SDS) = m(A).

N—oo

Lemma 1.2 is commonly known as Poincaré’s lemma [MK] although it does
not seem to be due to H. Poincaré (cf. [D-F]). The convergence is better than only
weak convergence of the sequence of measures II N+1’n(a%) to vp. Simple analytic

or probabilistic proofs of Lemma 1.2 may be found in the literature ([Eh1], [Gal],
[Fe5], [D-F]...). The following elegant proof was kindly communicated to us by J.
Rosinski.

Proof. Let (gi);~, be a sequence of independent standard normal random variables.
For every integer N > 1, set R3 = g?+---+g%. Now, (VN/Rn11)-(g1,- -, 9N+1)
is equal in distribution to U%, and thus (vVN/Rny1) - (g1,.-.,9n) is equal in
distribution to HNH,n(a%) (N > n). Since R%/N — 1 almost surely by the
strong law of large numbers, we already get the weak convergence result. Lemma
1.2 is however stronger since convergence is claimed for every Borel set. In order
to get the full conclusion, notice that R2, R?\H_l — R2 and (g1,...,9n)/ R, are

independent. Therefore R2/R% ., is independent of (g1,...,9,)/Rn and has beta
distribution § with parameters n/2, (N + 1 —n)/2. Now,

_ v N
N 1 N
O-\/N(HN-Fl,n(A) N S\/ﬁ) = ]P{RN+1 (917 .. 7gn> € A}

:]P{<N Rggj_l)l/Q.Rin(gl""’g”) EA}.
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Therefore,
N (11
OUN (Mn1,n(A) N S\/—
= B(%, M=) ‘1/ /IA (VNtz)t3 (1 — )2 Lo} (x)dt
Sn 1
2 Ntl-n_ 4

n n TL U 2 n—
=g ) g [ / Y- 9) o @)

by the change of variables u = v/ Nt. Letting N — oo, the last integral converges by
the dominated convergence theorem to

2 - n—1_—u?/2 3 _n—1
W/S?I/O [A('U/.T)u (§ dO’l (x)du

which is precisely 7, (A) in polar coordinates. The proof of Lemma 1.2 is thus com-
plete. This proof is easily modified to actually yield uniform convergence of densities
on compacts sets ([Eh1], [Gal], [Fe5]) and in the variation metric [D-F]. O]

As we have seen, caps are the extremal sets of the isoperimetric problem on
spheres. Now, a cap may be regarded as the intersection of a sphere and a half-space,
and, by Poincaré’s limit, caps will thus converge to half-spaces. There are therefore
strong indications that half-spaces will be the extremal sets of the isoperimetric
problem for Gaussian measures. A half-space H in IR" is defined as

H={zeR";(z,u) <a}

for some real number a and some unit vector v in IR"™. The isoperimetric inequality
for the canonical Gaussian measure 7, in IR™ may then be stated as follows. If A is
a set in IR", A, denotes below its Euclidean neighborhood of order r > 0.

Theorem 1.3. Let A be a Borel set in IR™ and let H be a half-space such that
Yn(A) > ~v,(H). Then, for every r > 0,

n(Ar) 2 yn(Hy).

Since 7, is both rotation invariant and a product measure, the measure of a
half-space is actually computed in dimension one. Denote by ® the distribution

function of 71, that is
2270 d
/ /2 To t e R.
<
)

Then, if H = {z € R";(z,u) < a}, v,(H) = ®(a), and Theorem 1.3 expresses
);

equivalently that when ’yn( ) > then

(a

(1.5) M(Ar) = ®(a+r)
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for every r > 0. In other words, if ® ! is the inverse function of ®, for every Borel
set A in IR"™ and every r > 0,

(1.6) O (yn(Ar)) = @7 (n(A)) + 1

The Gaussian isoperimetric inequality is thus essentially dimension free, a charac-
teristic feature of the Gaussian setting.

Proof of Theorem 1.3. We prove (1.5) and use the isoperimetric inequality on spheres
(Theorem 1.1) and Lemma 1.2. We may assume that a = ® (v, (A)) > —oo. Let
then b € (—o0,a). Since v, (A) > ®(b) = v1((—00,b]), by Lemma 1.2, for every N
(> n) large enough,

(1.7) o (MY (A) N ST%) > ol (T 1 (1= 00,8]) N ST,

It is easy to see that HN+1 LA N SN (HN1+1 L(A)N S%)T where the neigh-
borhood of order  on the right hand side is understood with respect to the geodesic
distance on S%. Since H;,lﬂ’l((—oo, b)) N S% is a cap on Syﬁ, by (1.7) and the
isoperimetric inequality on spheres (Theorem 1.1),

o) ) 2 o (I3, 7))
> 0 (M (o, ) N SY5), ).

Now, (H;,lﬂ’l((—oo, b)) N SN
large)

), = H;/1+1 1 (=00, b+ r(N)]) N Syﬁ where (for N

r(N) = VN cos [arccos(b/\/ﬁ) — r/\/N} —b.

Since limr(N) = r, by Lemma 1.2 again, v, (A4,) > ®(b+r). Since b < a is arbitrary,
the conclusion follows. O

Theorem 1.3 is due independently to C. Borell [Bo2] and to V. N. Sudakov
and B. S. Tsirel’son [S-T] with the same proof based on the isoperimetric inequality
on spheres and Poincaré’s limit. A. Ehrhard [Eh2] (see also [Eh3], [Eh5]) gave a
different proof using an intrinsic Gaussian symmetrization procedure similar to the
Steiner symmetrization used by E. Schmidt in his proof of Theorem 1.1. In any case,
Ehrhard’s proof or the proof of isoperimetry on spheres are rather delicate, as it is
usually the case with isoperimetric inequalities and the description of their extremal
sets.

With this same Gaussian symmetrization tool, A. Ehrhard [Eh2] established
furthermore a Brunn-Minkowski type inequality for ~,,, however only for convex
sets. More precisely, he showed that whenever A and B are convex sets in IR", for
every A € [0, 1],

(1.8) O (v (AA+ (1= A)B)) = A0~ (7,(4)) + (1 = N2~ (7a(B)).

It might be worthwhile noting that if we apply this inequality to B the Euclidean
ball with center the origin and radius r/(1 — \) and let A tend to one, we recover
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inequality (1.6) (for A convex). However, it is still an open problem to know whether
(1.8) holds true for every Borel sets A and B and not only convex sets*. It would
improve upon the more classical logconcavity of Gaussian measures (cf. [Bol]) that
states that, for every Borel sets A and B, and every A € [0, 1],

(L.9) (M + (1= N)B) > 7a(A) 7 (B) .

As another inequality of interest, let us note that if A is a Borel set with
Yn(A) = ®(a), and if h € R",

(1.10) Y(A+h) < ®(a+]h|).

By rotational invariance, we may assume that h = rej, r = |h|, where e; is the first
unit vector on IR", changing A into some new set A’ with v, (4) = v,(A’") = ®(a).
Then, by the translation formula for ~,,

erz/Q'yn(A' +h)= / e "dyy, (x)

’

< / e " dy, (x) + ey, (A' N{x; > a}).
A'n{z1<a}

Since v, (A’ N {x1 > a}) = v, ((A)° N {x1 < a}) where (A’)° is the complement of
Al

erz/Q’Yn(A/'i‘h) S/ e_rwldvn(.T) _l_e—ra,yn((Al)cm{xl < CL})

A'n{z1<a}

< / e "dyn(z)
{z1<a}

= eTz/Qvn(x; r1<a+r)= er2/2<1>(a +7).

The claim (1.10) follows.

Notes for further reading. Very recently, S. Bobkov [Bob2] gave a remarkable new
simple proof of the isoperimetric inequality for Gaussian measures based on a sharp
two point isoperimetric inequality (inspired by [Tall]) and the central limit theorem.
This proof is similar in nature to Gross’ original proof [Gr3] of the logarithmic
Sobolev inequality for Gaussian measures and does not use any kind of isoperimetric
symmetrization or rearrangement (cf. also Chapter 8). In addition to the preceding
open problem (1.8), the following conjecture is still open. Is it true that for every
symmetric closed convex set A in IR",

(111) (M) 2 72(AS)

During the school, R. Latala [La] proved that (1.8) holds when only one of the two sets A
and B is convex. Thus, due to the preceding comment, the Brunn-Minkowski principle generalizes

to the Gaussian setting.
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for each A > 1, where S is a symmetric strip such that v, (A) = v,(S)? This con-
jecture has been known since an unpublished preprint by L. Shepp on the existence
of strong exponential moments of Gaussian measures (cf. Chapter 4 and [L-S]). Re-
cent work of S. Kwapien and J. Sawa [K-S] shows that the conjecture is true under
the additional assumption that A is sufficiently symmetric (A is an ellipsoid for
example). Examples of isoperimetric processes in probability theory are presented
in [Boll], [Bol2].
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2. THE CONCENTRATION OF MEASURE PHENOMENON

In this section, we present the concentration of measure phenomenon which was
most vigourously put forward by V. D. Milman in the local theory of Banach spaces
(cf. [Mi2], [Mi3], [Mi-S]). Isoperimetry is concerned with infinitesimal neighborhoods
and surface areas and with extremal sets. The concentration of measure phenomenon
rather concerns the behavior of “large” isoperimetric neighborhoods. Although of
basic isoperimetric inspiration, the concentration of measure phenomenon is a milder
property that may be shown, as we will see, to be satisfied in a large number of
settings, sometimes rather far from the geometrical frame of isoperimetry. It roughly
states that if a set A C X has measure at least one half, “most” of the points in
X are “close” to A. The main task is to make precise the meaning of the words
“most” and “close” in the examples of interest. Moreover, new tools may be used
to establish concentration inequalities. In particular, we will present in this chapter
simple semigroup and probabilistic proofs of both the concentration inequalities on
spheres and in Gauss space. In chapter 8, we further develop the functional approach
and try to reach with these tools the full isoperimetric statements.

As we mentioned it at the end of the preceding chapter, isoperimetric inequali-
ties and description of their extremal sets are often rather delicate, if not unknown.
However, in almost all the applications presented here, the Gaussian isoperimetric
inequality is only used in the form of the corresponding concentration inequality.
Since the latter will be established here in an elementary way, it can be freely used
in the applications.

In the setting of Theorem 1.1, if A is a set on M with sufficiently large measure,
for example if pu(A) > %, then, by the explicit expression of the measure of a cap,
we get that, for every r > 0

(2.1) W(A) > 1- exp(_Rg),

that is a Gaussian bound, only depending on R, on the complement of the neigh-
borhood of order r of A, uniformly in those A’s such that p(A) > % More precisely,

if u(A) > 1, for “most” z’s in M, there exists y in A within distance 1/VR of z. Of
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course, the ratio 1/v/R is in general much smaller than the diameter of the manifold
(see below the example of SiV). Equivalently, let f be a Lipschitz map on M and
let m be a median of f for p (i.e. u(f > m) > 1 and p(f < m) > 1). If we apply
(2.1) to the set A = {f < m}, it easily follows that, for every r > 0,

Rr?
mF=mtr) = exp(_znfniip)'

Together with the corresponding inequality for A = {f > m}, for every r > 0,

Rr?
(2.2) p(lf =ml>r) < 2€XP<—m)-

Thus, f is concentrated around some mean value with a large probability depending
on some exponential of the ratio R/l inip. This property has taken the name of
concentration of measure phenomenon (cf. [G-M], [Mi-S)).

The preceding bounds are of particular interest for families of probability mea-

sures such as for example the measures o on the unit spheres S as N tends to

infinity for which (2.2) becomes (since R(S) = N — 1),

(N — 1)r2)
20 £ty /-

Think thus of the dimension N to be large. Of course, if || f||;;, <1, for every z,y

a{v(|f—m| 27”) §2exp<—

in SV, |f(z) — f(y)| < 7. But the preceding concentration inequality tells us that,
already for 7 of the order of 1/v/N, |f(z) — m| < r on a large set (in the sense
of the measure) of z’s. It is then from the interplay, in this inequality, between
N large, r of the order of 1/v/N and the respective values of m and [ fllsp for f
the gauge of a convex body that V. D. Milman draws the information in order to
choose at random the Euclidean sections of the convex body and to prove in this
way Dvoretzky’s theorem (see [Mil], [Mi3], [Mi-S]).

Another (this time noncompact) concentration example is of course the Gaus-
sian measure 7, on IR" (the canonical Gaussian measure on IR" with density with
respect to Lebesgue measure (2m) /2 exp(—|z|?/2)). If v,(A) > I, we may take
a =0 1in (1.5) and thus, for every r > 0,

(2.3) Yul(A) > ®(r) > 1— %e_’"Q/Q.

Let f be a Lipschitz function on IR™ with Lipschitz (semi-) norm

[f(z) = f(W)
Fllggp = sup L L]
H ||Lp oty |x—y|
(where | - | is the Euclidean norm on IR™) and let m be a median of f for v,. As

efore, it follows from (2.3) that for every r > 0,

@4 (=l zr) <2(1- 80/ 1f]1s,)) Sexf’(%n;w )
Lip
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Thus, for r of the order of ||f|l;,, [f —m| < r on “most” of the space. The word
“most” is described here by a Gaussian bound.

Isoperimetric and concentration inequalities involve both a measure and a met-
ric structure (to define the isoperimetric neighborhoods or enlargements). On an
abstract (Polish) metric space (X, d) equipped with a probability measure pu, or a
family of probability measures, the concentration of measure phenomenon may be
described via the concentration function

a(r) = a((X,d; p);r) = sup{l — p(A,); AC X, pu(A) > 3}, 7>0.

It is a remarkable property that this concentration function may be controlled in a
rather large number of cases, and very often by a Gaussian decay as above. Isoperi-
metric tools are one of the most important and powerful arguments used to establish
concentration inequalities. However, since we are concerned here with enlargements
A, for (relatively) large values of r rather than infinitesimal values, the study of
the concentration phenomenon can be quite different from the study of isoperimet-
ric inequalities, both in establishing new concentration inequalities and in applying
them. Indeed, the framework of concentration inequalities is less restrictive than the
isoperimetric setting as we will see for example in the next chapter, due mainly to
the fact that we are not looking here for the extremal sets.

New tools to establish concentration inequalities were thus developed. For exam-
ple, M. Gromov and V. D. Milman [G-M] showed that if X is a compact Riemannian
manifold, for every r > 0,

a(r) < Cexp (—C\/)Tl r)
3

(with C' = 2 and ¢ = log(2)) where ); is the first nontrivial eigenvalue of the
Laplacian on X (see also [A-M-S] for a similar result in an abstract setting). In case
R(X) > 0, this is however weaker than (2.1). They also developed in this paper [G-
M] several topological applications of concentration such as fixed point theorems. On
the probabilistic side, some martingale inequalities put forward by B. Maurey [Mal]
have been used in the local theory of Banach spaces in extensions of Dvoretzky’s
theorem (cf. [Ma2], [Mi-S], [Pil]). The main idea consists in writing, for a well-
behaved function f, the difference f — IE(f) as a sum of martingale differences
d; = E(f|F;) — IE(f|Fi—1) where (F;), is some (finite) filtration. The classical
arguments on sums of independent random variables then show in the same way
that if >, ||d;||% <1, for every r > 0,

(2.5) P{|f —E(f)] > r} < 207" /2

([Azu], [Mal]). As a corollary, one can deduce from this result the concentration of
Haar measure p on {0, 1}" equipped with the Hamming metric as

r

o) < Con(-22)

for some numerical constant C' > 0. This property may be established from the
corresponding isoperimetric inequality ([Har], [W-W]), but V. D. Milman et G.
Schechtman [Mi-S] deduce it from inequality (2.5) (see Chapter 3).
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Our first aim here will be to give a simple proof of the concentration inequality
(2.4). The proof is based on the Hermite or Ornstein-Uhlenbeck semigroup (F%),~,
defined, for every well-behaved function f on IR"™, by (Mehler’s formula) a

P f(x) = / f(e_tx +(1- e_2t)1/2y) dv,(y), ze€R", t>0,
and more precisely on its commutation property
(2.6) VP, f=e 'P(Vf).

The generator L of (P;),~, is given by Lf(x) = Af(x) — (z,Vf(x)), f smooth
enough on IR™, and we have the integration by parts formula,

[ Loy = (9199,

for all smooth functions f and g on IR".

Proposition 2.1. Let f be a Lipschitz function on R" with | f|[;;, < 1 and
[ fdvn = 0. Then, for every real number A,

(2.7) /eAfdvn < M2,

Before turning to the proof of this proposition, let us briefly indicate how to
deduce a concentration inequality from (2.7). Let f be any Lipschitz function on
IR". As a consequence of (2.7), for every real number A,

/exp()\(f — [fdvn))dy, < exp(% /\2||f||iip)'

By Chebyshev’s inequality, for every A and r > 0,

ulr 2 i) < e L1, )

and, optimizing in A,

2

T
(2.8) (= [ fdym+7) < exp(—2H inip).

Applying (2.8) to both f and —f, we get a concentration inequality similar to (2.4)
(around the mean rather than the median)

2
(2.9) Yo(|f = [fdm| = 7) < 2exp<— L )
201 £l
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Two parameters are thus entering those concentration inequalities, the median or
the mean of a function f with respect to 7, and its Lipschitz norm. These can
be very different. For example, if f is the Euclidean norm on IR™, the median or
the mean of f are of the order of \/n while ||f|[;;, = 1. This is one of the main
features of these inequalities (cf. [L-T2]) and is at the basis of the Gaussian proofs
of Dvoretzky’s theorem (see [Pil], [Pi3]).

Proof of Proposition 2.1. Let f be smooth enough on IR"™ with mean zero and
[fllLp < 1. For A fixed, set G(t) = [exp (AP f)dyn, t > 0. Since ||flp;, < 1,
it follows from (2.6) that |V (Ps f)|2 < e72% almost everywhere for every s. Since
[ fdvn, =0, G(oo) = 1. Hence, for every ¢ > 0,

Glt) =1 - /tooaxs) ds—1— A/tm (/L(Psf) exp(/\Psf)dfyn)ds
—1 +A2/too (/ \V(Psf)\Qexp(APsf)d%)ds

<1+ )\2/ e % G(s)ds
t

where we used integration by parts in the space variable. Let H(t) be the logarithm
of the right hand side of this inequality. Then the preceding inequality tells us that
—H'(t) < A\2e™?! for every t > 0. Therefore

logG(0) < H / H'( dt<?

which is the claim of the proposition, at least for a smooth function f. The general
case follows from a standard approximation, by considering for example P f instead
of f and by letting then ¢ tend to zero. The proof is complete. O

Inequalities (2.8) and (2.9) will be our key argument in the study of integra-
bility properties and tail behavior of Gaussian random vectors, as well as in the
various applications throughout these notes. While the concentration inequalities
(2.4) of isoperimetric nature may of course be used equivalently, we would like to
emphasize here the simple proof of Proposition 2.1 from which (2.8) and (2.9) follow.
Proposition 2.1 is due to I. A. Ibragimov, V. N. Sudakov and B. S. Tsirel’son [I-S-T]
(see also B. Maurey [Pil, p. 181]). Their argument is actually of more probabilistic
nature. For every smooth enough function f on IR", write

FW () — Ef (WD) = / (VToof (W (5)dW (1))

where (W(t)),> is Brownian motion on IR" starting at the origin and where (7}),~,,
denotes its associated semigroup (the heat semigroup), with the probabilistic nor-
malization. Note then that the above stochastic integral has the same distribu-
tion as ((7) where (5(t));~, is a one-dimensional Brownian motion and where
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T = fol |VTy_f(W(t))|? dt. Therefore, for every Lipschitz function f such that
[ fllLip <1, 7 < 1 almost surely so that, for all r > 0,

P{f(W(1) —Bf(W(1)) > r} < P{ max B(t) >}

0<t<1 -

r 2

Since W (1) has distribution 7, this is thus simply (2.8).

Proposition 2.1 and its proof may actually be extended to a larger setting to
yield for example a simple proof of the concentration (2.2) (up to some numerical
constants) on spheres or on Riemannian manifolds M with positive curvature R(M ).
The proof uses the heat semigroup on M and Bochner’s formula. It is inspired by
the work of D. Bakry and M. Emery [B-E] (cf. also [D-S]) on hypercontractivity and
logarithmic Sobolev inequalities. We will come back to this observation in Chapter
8. We establish the following fact (cf. [Led4]).

Proposition 2.2. Let M be a compact Riemannian manifold of dimension N (> 2)
and with R(M) = R > 0. Let f be a Lipschitz function on M with || f||;;, <1 and

assume that [ fdu = 0. Then, for every real number A,

/e’\fd,u < e,\2/21~2_

Proof. Let V be the gradient on M and A be the Laplace-Beltrami operator. By
Bochner’s formula (see e.g. [G-H-L]), for every smooth function f on M, pointwise

%A(|Vf|2) —(Vf,V(Af)) = Ric(Vf, Vf)+ HHess(f)H;.
In particular,
(210) LA(VIP) ~ (VF VAN = RIVIE + 1 (A

The dimensional term in this inequality will actually not be used and we will only
be concerned here with the inequality

(2.11) SA(VSP) ~ (VA V(AP = BRIV,

Now, consider the heat semigroup P; = e, t > 0, and let f be smooth on M.
Let further s > 0 be fixed and set, for every t < s, F(t) = P,(|[V(Ps_¢f)|?). It is
an immediate consequence of (2.11) applied to Ps_f that F'(t) > 2RF(t), t < s.
Hence, the function e 2% F'(t) is increasing on the interval [0, s] and we have thus
that, for every s > 0,

(2.12) IV (P.f)|* < e 2P P,(IVf]?).
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This relation, which is actually equivalent to (2.11), expresses a commutation prop-
erty between the respective actions of the semigroup and the gradient (cf. (2.6)). It
is the only property which is used in the proof itself which is now exactly as the
proof of Proposition 2.1. Let f be smooth on M with ||f||Lip <1land [fdu=0.For
A fixed, set G(t) = [exp (AP.f)dp, t > 0. Since [ fllrip < 1, it follows from (2.12)

that |V (Psf)|* < e 2% almost everywhere for every s. Since [fdp =0, G(co) = 1.
Hence, for every t > 0,

=1+ AQ/OO (/ |V (Pf) \Qexp(szf)du)ds
<1+ )\2/00 e 215 G(s)ds

where we used integration by parts in the space variable. The proof is completed as
in Proposition 2.1. O

The commutation formula VP, f = ¢ *P,(V f) of the Ornstein-Uhlenbeck semi-
group expresses equivalently a Bochner formula for the second order generator L
of infinite dimension (N = co) and constant curvature 1 (limit of R(S% ~) when N

N
goes to infinity) of the type (2.10) or (2.11)

S L(VIP) — (VE V(L) > (L)

The geometry of the Ornstein-Uhlenbeck generator is thus purely infinite dimen-
sional, even on a finite dimensional state space (as the Gaussian isoperimetric in-
equality itself, cf. Chapter 1). The abstract consequences of these observations are
at the origin of the study by D. Bakry and M. Emery of hypercontractive diffu-
sions under curvature-dimension hypotheses [B-E], [Bak]. We will come back to this
question in Chapter 8 and actually show, according to [A-M-S], that (2.7) can be
deduced directly from hypercontractivity.

At this point, we realized that simple semigroup arguments may be used to
establish concentration properties, however on Lipschitz functions rather than sets.
It is not difficult however to deduce from Propositions 2.1 and 2.2 inequalities on sets
very close to the inequalities which follow from isoperimetry (but still for “large”
neighborhoods). We briefly indicate the procedure in the Gaussian setting.

Let A be a Borel set in IR™ with canonical Gaussian measure v, (A) > 0. For
every u > 0, let

fa,u(z) = min(d(z, A), u)

where d(x,A) is the Euclidean distance from the point z to the set A. Clearly
[faullp, < 1 so that we may apply inequality (2.8) to this family of Lipschitz

functions when u varies. Let B4, = [ fa wd7y. Inequality (2.8) applied to fa., and
r=u— FEy, yields

Yo (z € R™;min(d(z, A),u) > u) < exp(—% (u — EA,u)Q)a



21

that is
1 2
(2.13) (w2 & Ay) < exp —3 (u—E4 )

since d(z, A) > u if and only if x ¢ A,. We have now to appropriately control the
expectations E4 ,, = [ fa,udVn, possibly only with u and the measure of A. A first
bound is simply F4 ., < u~y(A€) which already yields,

Tolzse ¢ Ay) < eXp(—% u2%(A)2)

for every u > 0. This inequality may already be compared to (2.3). However, if we
use this estimate recursively, we get

Ean = / Y (@5 d(z, A) > t)dt < / min (%(AC),e—tzvn(A)z/z)dt_
0 0
If we let then §(v) be the decreasing function on (0, 1] defined by
(2.14) d(v) = / min (1 — v,e_t2“2/2)dt,
0

we have E4 . < 6(7,(A)) uniformly in u. Hence, from (2.13), for every u > 0,

u? u?
’yn(x;x ¢ Au) < exp <—? + uEA7u> < exp(—? + u5(’yn(A))).

In conclusion, we obtained from Proposition 2.1 and inequality (2.8) that, for every
r >0,

(2.15) n(Ar) > 1 —exp (—2—2 + ré(yn(A))).

This simple argument thus yields an inequality very similar in nature to the isoperi-
metric bound (2.3), with however the extra factor (v, (A4)). (Using the preceding
recursive argument, one may of course improve further and further this estimate.)
Due to the fact that §(y,(A)) — 0 as v,(A) — 1, this result can be used exactly as
the isoperimetric inequality in almost all the applications presented in these notes.
We will come back to this in Chapter 4 for example, and we will always use (2.15)
rather than isoperimetry in the applications.

We conclude this chapter with a proposition closely related to Proposition 2.1
and the proof of which is similar. It will be used in Chapter 4 in some large devia-
tion statement for the Ornstein-Uhlenbeck process. We only consider the Gaussian
setting.
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Proposition 2.3. Let f be a Lipschitz function on R" with | f[|;;, < 1. Then, for
every real number A\ and every t > 0,

[ [ el (1= 972y) — fa)])da (@) (y) < (21 - ).

Proposition 2.3 will be used for the small values of the time t. When ¢ — oo, it
is somewhat weaker than Proposition 2.1. The stochastic version of this proposition
is inspired from the forward and backward martingales of T. Lyons and W. Zheng
[L-Z] (see [Tak], [Fa]).

Proof. The left hand side of the inequality of Proposition 2.3 may be rewritten as

G(t) = /e_’\fPt(e’\f)dfyn.

Let A be fixed and f be smooth enough. For every ¢ > 0,

Gt)=1+ /Ot G'(s)ds =1 +/Ot (/e_AfLPs(e’\f)dfyn)ds
=1 +A2/Ot e ® (/e_’\f(Vf, Ps(eAfo)>d%)

t
<1+ )\2/ e °G(s)ds
0

since |V f| < 1 almost everywhere. Let H(t) = log(1 + )\Qfg e *G(s)ds), t > 0. We
just showed that H'(t) < A\2e~! for every t > 0. Hence,

H(t) = /Ot H'(s)ds < AQ/Ot e fds=\(1—-e")

and the proof is complete. O
If A and B are subsets of IR"™, and if t > 0, set

K.(A,B) = /

A

P,(Ig) dv, <: /B Pt([A)d'Vn)

where I4 is the indicator function of the set A. Assume that d(A, B) > r > 0 (for
the Euclidean distance on IR"). In particular, B C (A,) so that

Kt(A7 B) S Kt (A, (Ar)c)

Apply then Proposition 2.3 to the Lipschitz map f(x) = d(x, A). For every t > 0
and every A > 0,

KA (A) = [ Rt i <o [ N ) i,
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since I(AT)C < e e . Hence
Kt (A, (AT)C) S e—)ﬂ”e)\z(l—e_t).

Optimizing in A yields

(2.16) Ki(A, B) < K. (A, (4,)°) < exp (-ﬁ).

Formula (2.16) will thus be used in Chapter 4 in applications to large deviations for
the Ornstein-Uhlenbeck process.
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3. ISOPERIMETRIC AND CONCENTRATION
INEQUALITIES FOR PRODUCT MEASURES

In this chapter, we present several isoperimetric and concentration inequalities for
product measures due to M. Talagrand. On the basis of the product structure of the
canonical Gaussian measure -, and various open problems on sums of independent
vector valued random variables, M. Talagrand developed in the past years new in-
equalities in products of probability spaces by defining several different notions of
isoperimetric enlargement in this setting. These results appear as a striking illustra-
tion of the power of abstract concentration ideas which can be developed far beyond
the framework of the classical geometrical isoperimetric inequalities. One of the main
applications of his powerful techniques and results concerns tail behaviors and limit
properties of sums of independent Banach space valued random variables. It partly
motivated the writing of the book [L-T2] and we thus refer the interested reader
to this reference for this kind of applications. New applications concern geometric
probabilities, percolation, statistical mechanics... We will concentrate here on some
of the theoretical inequalities and their relations with the Gaussian isoperimetric
inequality, as well as on some recent and new aspects of the work of M. Talagrand
[Tal6]. We actually refer to [Tal6] for complete proofs and details of some of the
main results we present here. The reader that is interested first in the applications
of the Gaussian isoperimetric and concentration inequalities may skip this chapter
and come back to it after Chapter 7.

One first example studied by M. Talagrand is uniform measure on {0, 1}™. For
this example, he established a concentration inequality independent of the dimension
[Ta3]. More importantly, he developed a new powerful scheme of proof based on
induction on the number of coordinates. This technique allowed him to investigate
isoperimetric and concentration inequalities in abstract product spaces.

Let (2,3, u) be a (fixed but arbitrary) probability space and let P be the prod-
uct measure p®" on Q". A point z in Q" has coordinates x = (z1,...,z,). (In the
results which we present, one should notice that one does not increase the generality
with arbitrary products spaces (H?:l Qi Hi)~ Since the crucial inequalities will

not depend on n, we need simply towork on products of (Q, ) = (Hleﬁi, R, Hi)
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with itself and consider the coordinate map

T=(T1,...,0n) €V = (T), €Y, Z=(@F)y,...,[@),) e,

that only depends on the i-th factor.)
The Hamming distance on Q" is defined by

d(z,y) = Card{1l < i <mn; x; # vy}

The concentration function « of 2™ for d satisfies, for every product probability P,

2

(3.1) a(r) §C’exp< C’n)’ r >0,

where C' > 0 is numerical. In particular, if P(A) > %, for most of the elements x in
Q™ there exists y € A within distance y/n of z. On the two point space, this may
be shown to follow from the corresponding isoperimetric inequality [Har], [W-W].
A proof using the martingale inequality (2.4) is given in [Mi-S] (see also [MD] for
a version with a better constant). As we will see later on, one can actually give an
elementary proof of this result by induction on n. It might be important for the
sequel to briefly indicate the procedure. If A is a subset of Q™ and x € ", denote
by ! (x) the Hamming distance from z to A thus defined by

ol (z) = inf{k; >0;dy e A, Card{l <i<m;z; #y;} < k:}

(Although this is nothing more than d(x, A), this notation will be of better use in
the subsequent developments.) M. Talagrand’s approach [Ta3|, [Tal6] then consists
in showing that, for every A > 0 and every product probability P,

1 1 2
Ap 4 < n\</4
(3.2) /e dP < P(A) e :

In particular, by Chebyshev’s inequality, for every integer k,

P(pY > k) < e M /m,

P(A)

that is the concentration (3.1). The same proof actually applies to all the Hamming
metrics

do(z,y) = Zail{w#yi}, a=(a,...,a,) € RY,
i=1

with [a]? = 3" | a? instead of n in the right hand side of (3.2). One can improve
this result by studying functions of the probability of A in (3.2) such as P(A)™".

Optimizing in 7 > 0, it is then shown in [Tal6] that for k > (% log ﬁ)lﬂ

rorzoses( e (3eeris) |)

)
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which is close to the best exponent —2k?/n ([MD]).

Note that various measurability questions arise on ¢. These are actually com-
pletely unessential and will be ignored in what follows (start for example with a
finite probability space €2).

The previous definition of ol allows one to investigate various and very different
ways to measure the “distance” of a point = to a set A. In particular, this need not
anymore be metric. The functional ¢l controls a point x in Q™ by a single point in A.
Besides this function, M. Talagrand defines two new main controls, or enlargement
functions: one using several points in A, and one using a convex hull procedure. In
each case, a Gaussian concentration will be proved.

The convex hull control is defined with the metric ¢4 (z) = sup, =1 da(z, 4).
However, this definition somewhat hides the convexity properties of the functional
©% which will be needed in its investigation. For a subset A C 2" and z € Q", let

Ua(z) = {s = (si)1<i<n € {0,1}"; Jy € A such that y; = z; if s; = 0}.

(One can use instead the collection of the indicator functions I¢;, 4,3, ¥y € A.)
Denote by V4(z) the convex hull of U4(z) as a subset of R". Note that 0 € V4 (x) if
and only if x € A. One may then measure the distance from x to A by the Euclidean
distance d(0, V4(x)) from 0 to Va(z). It is easily seen that d(0,Va(z)) = ¢ (z). If
d(0,Va(x)) < r, there exists z in V4 (x) with |z| < r. Let a € R} with |a| = 1. Then

inf (a,y) < {a,z) <|z| <r.
it (9) < (a.2) < |4

Since

inf ) = inf ) :da 7A7
Lt (a) = inf (a5) = du(r, )

©%(xz) < r. The converse, that is not needed below, follows from Hahn-Banach’s
theorem.

The functional ¢ (x) is a kind of uniform control in the Hamming metrics
dg, |a| = 1. The next theorem [Ta6], [Tal6] extends the concentration (3.2) to this
uniformity.

Theorem 3.1. For every subset A of Q™, and every product probability P,

1 2 1
— (S P<——.
J (3 e0)ar < 5y
In particular, for every r > 0,

1
PG >r) < e_T2/4.

To briefly describe the general scheme of proofs by induction on the number of
coordinates, we present the proof of Theorem 3.1. The main difficulty in this type
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of statements is to find the adapted recurrence hypothesis expressed here by the
exponential integral inequalities.

Proof. The case n = 1 is easy. To go from n to n+ 1, let A be a subset of Q7! and
let B be its projection on Q". Let furthermore, for w € Q, A(w) be the section of A
along w. If x € Q" and w € Q, set z = (z,w). The key observation is the following:
if s € Up(w)(x), then (s,0) € Ua(z), and if t € Up(x), then (£,1) € Ua(z). It follows
that if u € V) (), v € Va(z) and 0 < A < 1, then (Au+ (1 —A)v,1— ) € Va(2).
By definition of ¢4 and convexity of the square function,

05 (2)2 < (1=2)% 4+ D+ (1= No|” < (1= 22+ Ajul? + (1= Aol

Hence,
Pa