EXERCISES

OPERATOR THEORY MODULE, NOVEMBER 2025

2. C*-ALGEBRAS AND HILBERT SPACE OPERATORS

Exercise 2.1. Show the following for a C^* -algebra A.

- (i) If $u \in A$ is a unitary then $\sigma(u) \subseteq \mathbb{T}$. Does the converse hold?
- (ii) If $a \in A$ is normal then r(a) = ||a||.

Exercise 2.2. Show the following for a C^* -algebra A.

- (i) If (L,R) is a double centraliser on a C*-algebra A then ||L|| = ||R||.
- (ii) M(A) is a C*-algebra (with the operations and norm we defined in class).

Exercise 2.3. Let A be a C*-subalgebra of $\mathcal{B}(H)$ for a Hilbert space H. Show that the unitisation of A is canonically isomorphic to the C*-algebra generated by

$$\{\begin{bmatrix} a+\lambda I_H & 0 \\ 0 & \lambda I_{\mathbb{C}} \end{bmatrix} \mid a \in A, \lambda \in \mathbb{C}\}$$

inside $\mathcal{B}(H \oplus \mathbb{C})$.

Show that if $I_H \notin A$ then the unitisation of A is canonically isomorphic to the C*-algebra

$$A + \mathbb{C}I_H = \{a + \lambda I_H \mid a \in A, \lambda \in \mathbb{C}\}\$$

inside $\mathcal{B}(H)$.

Exercise 2.4. Let $\phi: A \to B$ be a *-morphism between C*-algebras A and B. Show that if ϕ is one-to-one then it is an isometric map.

Exercise 2.5. Let A be a unital C*-algebra. Let $a \in A_{sa}$ and $0 < \varepsilon < 1/4$. Suppose $\sigma(a) \subseteq [0, \varepsilon] \cup [1 - \varepsilon, 1]$. Show that there is a projection $p \in A$ with $||p - a|| \le \varepsilon$.

Exercise 2.6. Let A be a unital C*-algebra, and let $a, b \in A$ with b normal and $f \in C(\sigma(b))$. Show that if a commutes with b then a commutes with f(b).

Exercise 2.7. Let A be a unital C*-algebra and let $a \in A_{sa}$. Suppose that $||a|| \le 1$. Show that $1 - a^2 \ge 0$.

Exercise 2.8. Let A be a unital C*-algebra, $a \in Inv(A)$ and $p \in A$ a projection. Show that if a commutes with p then a is invertible in the corner pAp. If $a \in A$ is invertible in pAp, does it follow that $a \in Inv(A)$?

Exercise 2.9. Compute the operator norm of the following matrix (seen as a bounded linear operator on \mathbb{C}^2):

$$x = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

Exercise 2.10. Let A be a unital C*-algebra. Let $p_1, \ldots, p_n \in A$ be commuting projections and let B be the C*-algebra generated by $\{p_1, \ldots, p_n\}$. Show that for every $b \in B$ there exists a set $F \subseteq \{1, \ldots, n\}$ such that

$$||b|| = ||Q_F b||$$
 for $Q_F := \prod_{i \in F} p_i \prod_{j \notin F} (1 - p_j).$

1