The mean ergodic theorem of von Neumann:
a very elementary proof

Let \(T : H \to H \) be any map on a Hilbert space and let

\[\text{Fix}(T) = \{ x \in H : Tx = x \} \]

be the fixed point set of \(T \). If \(x \in \text{Fix}(T) \), then the iterates \(T^k x \) are all equal to \(x \), hence \(T^k x \to x \). On the other hand, if \(T \) is continuous and \((T^n x) \) converges to some \(y \), then \(Ty = T(\lim_n T^n x) = \lim_n T(T^n x) = \lim_n T^{n+1} x = y \), so \(y \in \text{Fix}(T) \).

But, even for a unitary operator \(T \), it can happen that the sequence \((T^n x) \) converges only in the trivial case \(x = 0 \). Example: the bilateral shift.

The situation is much better if we take averages:

Theorem 1 Let \(T \in B(H) \) be a contraction. If

\[S_n = \frac{1}{n} \sum_{k=0}^{n-1} T^k \quad (n = 0, 1, \ldots) \]

are the averages of the iterates \(T^k \) of \(T \), then

(i) \((S_n) \) converges strongly (i.e. pointwise) and
(ii) its limit is the orthogonal projection \(F \) onto the fixed point set

\[\text{Fix}(T) = \ker(I - T) = \{ x \in H : Tx = x \} \].

Proof. (a) Suppose first that \(x = (I - T)(H) \), hence there exists \(y \in H \) with \(x = (I - T)y \). Then for each \(k \in \mathbb{Z}_+ \) we have \(T^k x = T^k y - T^{k+1} y \), therefore

\[S_n x = \frac{1}{n} (y - T^n y) \]

hence

\[\| S_n x \| \leq \frac{1}{n} \| y - T^n y \| \leq \frac{2 \| y \|}{n} \to 0. \]

Thus \(S^n x \to 0 \) for all \(x = (I - T)(H) \).

(b) It follows that for all \(x \in (I - T)(H) \) we have \(S^n x \to 0 \). Indeed given \(\varepsilon > 0 \) choose \(z = (I - T)y \in (I - T)(H) \) so that \(\| x - z \| < \varepsilon \), and then choose \(n_0 \in \mathbb{N} \) such that \(\| S_n z \| < \varepsilon \) for all \(n \geq n_0 \).

If \(n \geq n_0 \) then, since each \(S_n \) is a contraction,

\[\| S_n x \| \leq \| S_n (x - z) \| + \| S_n z \| \leq \| x - z \| + \| S_n z \| < 2 \varepsilon. \]

(c) It remains to consider the case \(x \in (I - T)(H) \) \(\bot = \ker(I - T^*) \), i.e. \(x = T^* x \).

But then \(x = Tx \): indeed

\[\| x - Tx \|^2 = \| x \|^2 + \| Tx \|^2 - 2 \text{Re} \langle x, Tx \rangle = \| x \|^2 + \| Tx \|^2 - 2 \text{Re} \langle T^* x, x \rangle = \| x \|^2 + \| Tx \|^2 - 2 \| x \|^2 \leq 0 \]

because \(T \) is a contraction; hence \(\| x - Tx \|^2 = 0 \).

Thus \(x \in \text{Fix}(T) \) and so, as noted above, \(S_n x = x \) for all \(n \), hence \(\lim_n S_n x = x \). Therefore for all \(x \in H \),

\[\lim_n S_n x = \lim_n S_n F x + \lim_n S_n F^* x = F x + 0. \quad \square \]

See also the very interesting blog, [Terry Tao: The mean Ergodic Theorem](http://terrytao.wordpress.com/).