A note on the character space

Let ${ }^{1} \mathcal{A}$ be an abelian unital Banach algebra, and let $\hat{\mathcal{A}}$ be the set of all nonzero morphisms $\phi: \mathcal{A} \rightarrow \mathbb{C}$. Note that $\phi(\mathbf{1})^{2}=\phi\left(\mathbf{1}^{2}\right)=\phi(\mathbf{1})$ and so $\phi(\mathbf{1})=1$ (for if $\phi(\mathbf{1})=0$ then $\phi(a)=\phi(a \mathbf{1})=0$ for all a, contradiction).

Remark 1 For each $\phi \in \hat{\mathcal{A}}$ and $a \in \mathcal{A}$ we have $\phi(a) \in \sigma(a)$. Thus $|\phi(a)| \leq\|a\|$ for all a hence $\|\phi\| \leq 1$. But $\phi(\mathbf{1})=1$ and so $\|\phi\|=1$.

For the proof, notice that the element $b=a-\phi(a) \mathbf{1}$ belongs to ker ϕ; but this is an ideal of \mathcal{A} (since ϕ is a morphism) and it is proper (since $\phi \neq 0$) so it cannot contain invertible elements. Thus $a-\phi(a) \mathbf{1} \notin G L(\mathcal{A})$, so $\phi(a) \in \sigma(a)$.

We have shown that

$$
\{\phi(a): \phi \in \hat{\mathcal{A}}\} \subseteq \sigma(a) .
$$

We wish to show that equality in fact holds. So fix a $\lambda \in \sigma(a)$ and let $\mathcal{I}_{0}=\{x(a-\lambda \mathbf{1})$: $x \in \mathcal{A}\}$. One easily sees that \mathcal{I}_{0} is a proper ideal of \mathcal{A}. It is enough to find $\phi \in \hat{\mathcal{A}}$ such that the ideal $\operatorname{ker} \phi$ contains \mathcal{J}_{0}.

We will show that \mathcal{J}_{0} is contained in a maximal proper ideal of \mathcal{A}.
Remark 2 If \mathcal{J} is a proper ideal of \mathcal{A}, then

$$
\|\mathbf{1}-x\| \geq 1 \quad \text { for all } x \in \mathcal{J}
$$

In particular, the closure of a proper ideal is a proper ideal.
Indeed, if $\|\mathbf{1}-x\|<1$ then $x \in G L(\mathcal{A})$ as we know so x cannot belong to a proper ideal.

Remark $\mathbf{3} \mathcal{J}_{0}$ is contained in a maximal proper ideal of \mathcal{A}, which is therefore closed.
Proof. Let F be the family of all ideals \mathcal{J} of \mathcal{A} containing \mathcal{J}_{0} but not $\mathbf{1}$, ordered by inclusion. If $G \subseteq F$ is a totally ordered subset of F, let \mathcal{J}_{G} be the union of all elements of G. Of course \mathcal{J}_{G} contains \mathcal{J}_{0} and does not contain 1 ; it is easy to verify that \mathcal{J}_{G} is an ideal, hence it is an upper bound for G.

Zorn's lemma shows that there exists $\mathcal{M} \in F$ which is maximal in (F, \subseteq). This is an ideal containing \mathcal{J}_{0} and it is proper because $\mathbf{1} \notin \mathcal{M}$. In fact it is a maximal proper ideal; for if \mathcal{N} is a proper ideal of \mathcal{A} containing \mathcal{M}, then it contains \mathcal{J}_{0} and, since it is proper, cannot contain 1 ; thus $\mathcal{N} \in F$, hence $\mathcal{N}=\mathcal{M}$ because \mathcal{M} is a maximal member of F.

In particular \mathcal{M} is closed, because its closure is an ideal and does not contain 1 by Remark 2.

Note the essential use of $\mathbf{1}$ in the above argument: in fact the conclusion may fail in non-unital algebras: If for example $\mathcal{A}=c_{0}$, the Banach algebra of null sequences,

[^0]then it can be shown that the ideal $\mathcal{J}=c_{00}$ (the set of sequences of finite support) is not contained in a maximal ideal.

Now let $\mathcal{B}=\mathcal{A} / \mathcal{M}$. It is well known that (since \mathcal{M} is a closed subspace) \mathcal{B} is a Banach space with respect to the quotient norm

$$
\|a+\mathcal{M}\|=\inf \{\|a+x\|: x \in \mathcal{M}\}=\operatorname{dist}(a, \mathcal{M})
$$

Remark $4 \mathcal{A} / \mathcal{M}$ is a Banach algebra.
Proof. We have to prove that

$$
\|a b+\mathcal{M}\| \leq\|a+\mathcal{M}\|\|b+\mathcal{M}\|, \quad a, b \in \mathcal{A} .
$$

If $x, y \in \mathcal{M}$ then

$$
\|a+x\|\|b+y\| \geq\|(a+x)(b+y)\|=\|a b+x b+a y+x y\| .
$$

But $x b+a y+x y \in \mathcal{M}$, so $\|a b+x b+a y+x y\| \geq\|a b+\mathcal{M}\|$. Thus

$$
\|a+x\|\|b+y\| \geq\|a b+\mathcal{M}\|
$$

and the required inequality follows by taking the inf over x and y in \mathcal{M}.

Remark $5 \mathcal{B}=\mathcal{A} / \mathcal{M}$ is a division algebra with identity $\mathbf{1}+\mathcal{M}$: that is, if $a+\mathcal{M}$ is not the zero element $0+\mathcal{M}$ of \mathcal{B}, then $a+\mathcal{M}$ is invertible.

Proof. We need to find $b \in \mathcal{A}$ so that $(a+\mathcal{M})(b+\mathcal{M})=1+\mathcal{M}$, equivalently $a b+\mathcal{M}=\mathbf{1}+\mathcal{M}$, i.e. $a b-\mathbf{1} \in \mathcal{M}$. Set

$$
\mathcal{J}=a \mathcal{A}+\mathcal{M}=\{a b+x: b \in \mathcal{A}, x \in \mathcal{M}\} .
$$

This is easily seen to be an ideal of \mathcal{A} and it clearly contains \mathcal{M}. But it also contains a which is not in \mathcal{M}; hence, by maximality of \mathcal{M}, we must have $\mathcal{J}=\mathcal{A}$. Thus there exists $b \in \mathcal{A}$ and $x \in \mathcal{M}$ so that $a b+x=\mathbf{1}$, in other words $a b-\mathbf{1}=-x \in \mathcal{M}$.

Remark 6 If \mathcal{B} is a division Banach algebra, there is an isomorphism $a \rightarrow \lambda(a)$: $\mathcal{B} \rightarrow \mathbb{C}$.

Proof. The spectrum $\sigma(a)$ of each $a \in \mathcal{B}$ is nonempty. Thus there exists $\lambda(a) \in \mathbb{C}$ such that $a-\lambda(a) \mathbf{1}$ is not invertible. By the last remark, $a-\lambda(a) \mathbf{1}=0$, i.e. $a=\lambda(a) \mathbf{1}$. Now if $\mu \in \sigma(a)$ then $a-\mu \mathbf{1}$ is not invertible, hence $a=\mu \mathbf{1}$ and so $\mu=\lambda(a)$.

Thus $\sigma(a)=\{\lambda(a)\}$ is a singleton. Therefore we have a well defined map

$$
a \rightarrow \lambda(a): \mathcal{B} \rightarrow \mathbb{C}
$$

This is an injective algebra morphism: for example $a=\lambda(a) \mathbf{1}$ and $b=\lambda(b) \mathbf{1}$ gives $a b=\lambda(a) \lambda(b) \mathbf{1}$, but then $\lambda(a) \lambda(b) \in \sigma(a b)=\{\lambda(a b)\}$ and so $\lambda(a) \lambda(b)=\lambda(a b)$.

To show that $\{\phi(a): \phi \in \hat{\mathcal{A}}\}=\sigma(a)$, define $\phi: \mathcal{A} \rightarrow \mathbb{C}$ as follows:

$$
\begin{aligned}
\phi: \mathcal{A} & \rightarrow \\
& \rightarrow \\
x & \rightarrow x+\mathcal{M}
\end{aligned} \rightarrow_{c} \rightarrow \lambda(x+\mathcal{M}) .
$$

This is a composition of morphisms, hence a morphism. Its kernel is precisely \mathcal{M}, so $\phi \neq 0$ and, since $a-\lambda \mathbf{1} \in \mathcal{J}_{0} \subseteq \mathcal{M}$, we have $\phi(a-\lambda \mathbf{1})=0$ i.e. $\phi(a)=\lambda$.

[^0]: ${ }^{1}$ notesquotient, 21 Jan 2012

