A note on the character space

Let ¹ \mathcal{A} be an *abelian unital Banach algebra*, and let $\hat{\mathcal{A}}$ be the set of all nonzero morphisms $\phi : \mathcal{A} \to \mathbb{C}$. Note that $\phi(\mathbf{1})^2 = \phi(\mathbf{1}^2) = \phi(\mathbf{1})$ and so $\phi(\mathbf{1}) = 1$ (for if $\phi(\mathbf{1}) = 0$ then $\phi(a) = \phi(a\mathbf{1}) = 0$ for all a, contradiction).

Remark 1 For each $\phi \in A$ and $a \in A$ we have $\phi(a) \in \sigma(a)$. Thus $|\phi(a)| \leq ||a||$ for all a hence $||\phi|| \leq 1$. But $\phi(\mathbf{1}) = 1$ and so $||\phi|| = 1$.

For the proof, notice that the element $b = a - \phi(a)\mathbf{1}$ belongs to ker ϕ ; but this is an ideal of \mathcal{A} (since ϕ is a morphism) and it is proper (since $\phi \neq 0$) so it cannot contain invertible elements. Thus $a - \phi(a)\mathbf{1} \notin GL(\mathcal{A})$, so $\phi(a) \in \sigma(a)$. \Box

We have shown that

$$\{\phi(a):\phi\in\hat{\mathcal{A}}\}\subseteq\sigma(a).$$

We wish to show that equality in fact holds. So fix a $\lambda \in \sigma(a)$ and let $\mathcal{I}_0 = \{x(a-\lambda \mathbf{1}) : x \in \mathcal{A}\}$. One easily sees that \mathcal{I}_0 is a proper ideal of \mathcal{A} . It is enough to find $\phi \in \hat{\mathcal{A}}$ such that the ideal ker ϕ contains \mathcal{J}_0 .

We will show that \mathcal{J}_0 is contained in a maximal proper ideal of \mathcal{A} .

Remark 2 If \mathcal{J} is a proper ideal of \mathcal{A} , then

$$\|\mathbf{1} - x\| \ge 1 \quad \text{for all } x \in \mathcal{J}.$$

In particular, the closure of a proper ideal is a proper ideal.

Indeed, if $\|\mathbf{1} - x\| < 1$ then $x \in GL(\mathcal{A})$ as we know so x cannot belong to a proper ideal. \Box

Remark 3 \mathcal{J}_0 is contained in a maximal proper ideal of \mathcal{A} , which is therefore closed.

Proof. Let F be the family of all ideals \mathcal{J} of \mathcal{A} containing \mathcal{J}_0 but not $\mathbf{1}$, ordered by inclusion. If $G \subseteq F$ is a totally ordered subset of F, let \mathcal{J}_G be the union of all elements of G. Of course \mathcal{J}_G contains \mathcal{J}_0 and does not contain $\mathbf{1}$; it is easy to verify that \mathcal{J}_G is an ideal, hence it is an upper bound for G.

Zorn's lemma shows that there exists $\mathcal{M} \in F$ which is maximal in (F, \subseteq) . This is an ideal containing \mathcal{J}_0 and it is proper because $\mathbf{1} \notin \mathcal{M}$. In fact it is a maximal proper ideal; for if \mathcal{N} is a proper ideal of \mathcal{A} containing \mathcal{M} , then it contains \mathcal{J}_0 and, since it is proper, cannot contain $\mathbf{1}$; thus $\mathcal{N} \in F$, hence $\mathcal{N} = \mathcal{M}$ because \mathcal{M} is a maximal member of F.

In particular \mathcal{M} is closed, because its closure is an ideal and does not contain 1 by Remark 2. \Box

Note the essential use of 1 in the above argument: in fact the conclusion may fail in non-unital algebras: If for example $\mathcal{A} = c_0$, the Banach algebra of null sequences,

 $^{^{1}\}mathrm{notesquotient},\,21$ Jan2012

then it can be shown that the ideal $\mathcal{J} = c_{00}$ (the set of sequences of finite support) is not contained in a maximal ideal.

Now let $\mathcal{B} = \mathcal{A}/\mathcal{M}$. It is well known that (since \mathcal{M} is a closed subspace) \mathcal{B} is a Banach space with respect to the quotient norm

$$||a + \mathcal{M}|| = \inf\{||a + x|| : x \in \mathcal{M}\} = \operatorname{dist}(a, \mathcal{M}).$$

Remark 4 \mathcal{A}/\mathcal{M} is a Banach algebra.

Proof. We have to prove that

$$\|ab + \mathcal{M}\| \le \|a + \mathcal{M}\| \|b + \mathcal{M}\|, \quad a, b \in \mathcal{A}.$$

If $x, y \in \mathcal{M}$ then

$$||a + x|| ||b + y|| \ge ||(a + x)(b + y)|| = ||ab + xb + ay + xy||.$$

But $xb + ay + xy \in \mathcal{M}$, so $||ab + xb + ay + xy|| \ge ||ab + \mathcal{M}||$. Thus

$$||a+x|| ||b+y|| \ge ||ab+\mathcal{M}||$$

and the required inequality follows by taking the inf over x and y in \mathcal{M} . \Box

Remark 5 $\mathcal{B} = \mathcal{A}/\mathcal{M}$ is a division algebra with identity $1 + \mathcal{M}$: that is, if $a + \mathcal{M}$ is not the zero element $0 + \mathcal{M}$ of \mathcal{B} , then $a + \mathcal{M}$ is invertible.

Proof. We need to find $b \in \mathcal{A}$ so that $(a + \mathcal{M})(b + \mathcal{M}) = \mathbf{1} + \mathcal{M}$, equivalently $ab + \mathcal{M} = \mathbf{1} + \mathcal{M}$, i.e. $ab - \mathbf{1} \in \mathcal{M}$. Set

$$\mathcal{J} = a\mathcal{A} + \mathcal{M} = \{ab + x : b \in \mathcal{A}, x \in \mathcal{M}\}.$$

This is easily seen to be an ideal of \mathcal{A} and it clearly contains \mathcal{M} . But it also contains a which is not in \mathcal{M} ; hence, by maximality of \mathcal{M} , we must have $\mathcal{J} = \mathcal{A}$. Thus there exists $b \in \mathcal{A}$ and $x \in \mathcal{M}$ so that $ab + x = \mathbf{1}$, in other words $ab - \mathbf{1} = -x \in \mathcal{M}$. \Box

Remark 6 If \mathcal{B} is a division Banach algebra, there is an isomorphism $a \to \lambda(a)$: $\mathcal{B} \to \mathbb{C}$.

Proof. The spectrum $\sigma(a)$ of each $a \in \mathcal{B}$ is nonempty. Thus there exists $\lambda(a) \in \mathbb{C}$ such that $a - \lambda(a)\mathbf{1}$ is not invertible. By the last remark, $a - \lambda(a)\mathbf{1} = 0$, i.e. $a = \lambda(a)\mathbf{1}$. Now if $\mu \in \sigma(a)$ then $a - \mu\mathbf{1}$ is not invertible, hence $a = \mu\mathbf{1}$ and so $\mu = \lambda(a)$.

Thus $\sigma(a) = \{\lambda(a)\}\$ is a singleton. Therefore we have a well defined map

$$a \to \lambda(a) : \mathcal{B} \to \mathbb{C}.$$

This is an injective algebra morphism: for example $a = \lambda(a)\mathbf{1}$ and $b = \lambda(b)\mathbf{1}$ gives $ab = \lambda(a)\lambda(b)\mathbf{1}$, but then $\lambda(a)\lambda(b) \in \sigma(ab) = \{\lambda(ab)\}$ and so $\lambda(a)\lambda(b) = \lambda(ab)$. \Box

To show that $\{\phi(a): \phi \in \hat{\mathcal{A}}\} = \sigma(a)$, define $\phi: \mathcal{A} \to \mathbb{C}$ as follows:

$$\phi: \ \mathcal{A} \ \to \ \mathcal{B} \ \to \ \mathbb{C} \\ x \ \to \ x + \mathcal{M} \ \to \ \lambda(x + \mathcal{M})$$

This is a composition of morphisms, hence a morphism. Its kernel is precisely \mathcal{M} , so $\phi \neq 0$ and, since $a - \lambda \mathbf{1} \in \mathcal{J}_0 \subseteq \mathcal{M}$, we have $\phi(a - \lambda \mathbf{1}) = 0$ i.e. $\phi(a) = \lambda$. \Box