Shifts, Contractions, Dilations, ...

Notes by A.K., January 2012

Contents

1 Preliminaries 2
1.1 Reminder . 2
1.2 The space H^{2}. 3
$\begin{array}{lll}2 \text { Invariant subspaces } & 3\end{array}$
3 Shifts 6
4 The Beurling - Lax - Halmos Theorem 9
5 Dilations of a contraction 13

| 6 von Neumann's inequality | 17 |
| :--- | :--- | :--- |

1 Preliminaries

1.1 Reminder

If $^{1-1} f: \mathbb{T} \rightarrow \mathbb{C}$ is a Borel function and $1 \leq p<\infty$, we say $f \in L^{p}(\mathbb{T})$ if

$$
\|f\|_{p}^{p} \equiv \int_{0}^{2 \pi}\left|f\left(e^{i x}\right)\right|^{p} \frac{d x}{2 \pi} \equiv \int|f|^{p} d m<+\infty
$$

and we say $f \in L^{\infty}(\mathbb{T})$ if f is essentially bounded, which means that there is an $M>0$ s.t. the set $X_{M}=\left\{e^{i x}:\left|f\left(e^{i x}\right)\right|>M\right\}$ has measure zerq ${ }^{2}$, the least such M is denoted $\|f\|_{\infty}$.

We identify functions when they are almost everywhere (a.e.) equal, that is, when they differ on a set of measure zero. Thus

$$
C(\mathbb{T}) \varsubsetneqq L^{\infty}(\mathbb{T}) \varsubsetneqq L^{2}(\mathbb{T}) \varsubsetneqq L^{1}(\mathbb{T}) .
$$

For $f \in L^{1}(\mathbb{T})$ define

$$
\hat{f}(n)=\int_{0}^{2 \pi} f\left(e^{i x}\right) e^{-i n x} d m(x), \quad n \in \mathbb{Z}
$$

The map

$$
\mathcal{F}: f \rightarrow(\hat{f}(n))_{n \in \mathbb{Z}}
$$

is the Fourier transform.
Proposition 1.1 If $f \in L^{1}(\mathbb{T})$ satisfies $\hat{f}(n)=0$ for all $n \in \mathbb{Z}$ then $f=0$ (a.e.).
Note that $L^{2}(\mathbb{T})$ is a Hilbert space for the scalar product

$$
\langle f, g\rangle=\int_{0}^{2 \pi} f\left(e^{i x}\right) \overline{g\left(e^{i x}\right)} d m(x)
$$

and the family

$$
\left\{\zeta_{n}: n \in \mathbb{Z}\right\} \quad \text { where } \zeta_{n}\left(e^{i x}\right)=e^{i n x}
$$

is orthonormal: $\left\langle\zeta_{n}, \zeta_{m}\right\rangle=\delta_{n m}$.
Proposition 1.1 shows that no nonzero element of L^{2} can be orthogonal to the family $\left\{\zeta_{n}: n \in \mathbb{Z}\right\}$: hence it must be an orthonormal basis of L^{2}.

Therefore for each $f \in L^{2}$ we have

$$
\begin{aligned}
f & =\sum_{n=-\infty}^{+\infty} \hat{f}(n) \zeta_{n} \\
\text { and }\|f\|_{2}^{2} & \left.=L^{2} \text { convergence }\right) \\
n=-\infty & |\hat{f}(n)|^{2}
\end{aligned} \quad \text { (Parseval). }
$$

[^0]
1.2 The space H^{2}

Definition 1 For $1 \leq p \leq \infty$,

$$
H^{p}(\mathbb{T})=\left\{f \in L^{p}(\mathbb{T}): \hat{f}(-k)=0 \text { for all } k=1,2, \ldots\right\}
$$

Given $f \in H^{2}(\mathbb{T})$, consider the power series

$$
\tilde{f}(z)=\sum_{n=0}^{\infty} \hat{f}(n) z^{n}
$$

Since $\sum_{n=0}^{+\infty}|\hat{f}(n)|^{2}=\|f\|_{2}^{2}<\infty$, and so $\limsup |\hat{f}(n)| \leq 1$, the power series has radius of convergence at least 1 , hence converges in the open unit disc \mathbb{D} and defines an analytic function $\tilde{f}: \mathbb{D} \rightarrow \mathbb{C}$. Conversely, if an analytic function $g: \mathbb{D} \rightarrow \mathbb{C}$ has a power series $g(z)=\sum a_{n} z^{n}$ such that the coefficients satisfy $\sum\left|a_{n}\right|^{2}<\infty$, then (by completeness of L^{2}) we may define $g^{*} \in L^{2}(\mathbb{T})$ by $g^{*}=\sum a_{n} \zeta_{n}$ and we find that $\widehat{g}(n)=\left\langle g^{*}, \zeta_{n}\right\rangle=a_{n}$ when $n \geq 0$ while $\widehat{g^{*}}(-k)=0$ for $k=1,2, \ldots$. Thus $g^{*} \in H^{2}(\mathbb{T})$ and $\widetilde{g^{*}}=g$.

Using the linear map $f \rightarrow \tilde{f}$ and its inverse, $g \rightarrow g^{*}$ we identify $H^{2}(\mathbb{T})$ with the space $H^{2}(\mathbb{D})$ of all analytic functions on the disc with square-summable power series.

It can be shown that the "boundary function" may be obtained directly from g as follows:

Theorem 1.2 (Fatou) If $g \in H^{2}(\mathbb{D})$, then for almost all $e^{i x} \in \mathbb{T}$ the limit $\lim _{r}{ }_{\gamma_{1}} g\left(r e^{i x}\right)$ exists and equals $g^{*}\left(e^{i x}\right)$.

2 Invariant subspaces

Definition 2 If H is a Hilbert space and $T: H \rightarrow H$ is bounded linear. i.e. $T \in B(H)$, a closed linear subspace $E \subseteq H$ is called T-invariant if $T(E) \subseteq E$.

Let $T: H^{2}(\mathbb{T}) \rightarrow H^{2}(\mathbb{T})$ be defined by

$$
T f=\zeta_{1} f \quad\left(f \in H^{2}(\mathbb{T})\right)
$$

where $\zeta_{1}(z)=z^{1}(z \in \mathbb{T})$. Note that T is an isometry ${ }^{3}$ (so $T^{*} T=I$) but is not onto, since $\zeta_{0} \perp T\left(H^{2}\right)$. Since $T\left(\zeta_{n}\right)=\zeta_{n+1}$ we have in fact

$$
\bigcap_{n \geq 0} T^{n}\left(H^{2}\right)=\{0\} .
$$

Indeed, $\zeta_{k} \perp T^{n}\left(H^{2}\right)$ for all $k<n$. Hence if $f \in \bigcap_{n \geq 0} T^{n}\left(H^{2}\right)$ then $f \perp \zeta_{k}$ for all $k \in \mathbb{Z}_{+}$ and so, since $\left\{\zeta_{n}: n \in \mathbb{Z}_{+}\right\}$is an orthonormal basis of H^{2}, it follows that $f=0$.

Now let $\phi \in H^{2}$ with $|\phi(z)|=1$ for almost all $z \in \mathbb{T}$. Note that since $|\phi|=1$ a.e., ϕ defines a bounded, in fact an isometric operator T_{ϕ} on H^{2} by the formula ${ }^{4}$

$$
T_{\phi} f=\phi f, \quad f \in H^{2} .
$$

Therefore the set

$$
\phi H^{2}=\left\{\phi f: f \in H^{2}\right\}
$$

is a closed subspace of H^{2} because T_{ϕ} is isometric.

[^1]Also, ϕH^{2} is T-invariant:

$$
T\left(\phi H^{2}\right)=\zeta_{1} \phi H^{2}=\phi\left(\zeta_{1} H^{2}\right) \subseteq \phi H^{2}
$$

because $\zeta_{1} H^{2} \subseteq H^{2}$.
In fact,

$$
\bigcap_{n \geq 0} T^{n}\left(\phi H^{2}\right) \subseteq \bigcap_{n \geq 0} T^{n}\left(H^{2}\right)=\{0\}
$$

A function $\phi \in H^{2}$ with $|\phi(z)|=1$ for almost all $z \in \mathbb{T}$ is called an inner function Examples are: $\zeta^{n}(n \in \mathbb{N})$ and $f(z)=\exp \frac{z-1}{z+1}$.

Theorem 2.1 (Beurling) A closed nonzero subspace $E \subseteq H^{2}(\mathbb{T})$ is T-invariant if and only if there exists $\phi \in H^{2}$ with $|\phi(z)|=1$ for almost all $z \in \mathbb{T}$ such that $E=\phi H^{2}$. Moreover, ϕ is essentially unique in the sense that if $E=\psi H^{2}$ where $|\psi|=1$ a.e. then $\frac{\phi}{\psi}$ is (a.e. equal to) a constant (of modulus 1).

Proof. Suppose that $E \subseteq H^{2}$ is a closed nonzero T-invariant subspace. The space $T(E)$ is a closed subspace of E because T is isometric. Moreover, $T(E) \neq E$ because

$$
\bigcap_{n \geq 0} T^{n}(E) \subseteq \bigcap_{n \geq 0} T^{n}\left(H^{2}\right)=\{0\}
$$

Thus there exists $\phi \in E$ of norm 1, such that $\phi \perp T(E)$.
Claim 1. The sequence $\left\{\phi, T(\phi), T^{2}(\phi), \ldots\right\}$ is an orthonormal sequence in E.
Proof. Since $\phi \in E$ which is T-invariant we have $T^{n}(\phi) \in E$ for all $n \in \mathbb{N}$. Moreover $\left\|T^{n}(\phi)\right\|_{2}=\|\phi\|_{2}=1$. Also, if $m, n \in \mathbb{N}$ with $m>n$ we have

$$
T^{m}(\phi) \in T^{m}(E) \subseteq T^{n+1}(E)=T^{n}(T(E))
$$

Thus $T^{m}(\phi) \in T^{n}(T(E))$. But $T^{n}(\phi) \perp T^{n}(T(E))$ since $\phi \perp T(E)$ by construction and T^{n} is isometric. Thus

$$
T^{n}(\phi) \perp T^{m}(\phi)
$$

Claim 2. For all nonzero $k \in \mathbb{Z}$ we have

$$
\int \zeta_{k}|\phi|^{2} d m=0
$$

Proof. For $k>0$,

$$
\int \zeta_{k}|\phi|^{2} d m=\int\left(\zeta_{k} \phi\right) \bar{\phi} d m=\left\langle\zeta_{k} \phi, \phi\right\rangle=\left\langle T^{k}(\phi), \phi\right\rangle=0
$$

by the previous claim. For $k=-n<0$,

$$
\int \zeta_{k}|\phi|^{2} d m=\int \phi\left(\overline{\zeta_{n} \phi}\right) d m=\left\langle\phi, \zeta_{n} \phi\right\rangle=\left\langle\phi, T^{n}(\phi)\right\rangle=0 .
$$

It follows from this claim that the function $\psi=|\phi|^{2}$, which is in L^{1}, satisfies $\hat{\psi}(k)=0$ for all $k \in \mathbb{Z}$ except $k=0$. By Proposition $1.1, \psi$ must be a multiple of $\zeta_{0}=\mathbf{1}$ and hence a.e. equal to a constant. Hence so is $|\phi|$. Since $\int|\phi|^{2} d m=1$, the constant must be 1 .

This shows that $|\phi(z)|=1$ a.e.

Claim 3. $E=\phi H^{2}$.
Proof. First, $\phi H^{2}=T_{\phi}\left(H^{2}\right)$ and T_{ϕ} is an isometry since $|\phi|=1$ a.e.
Since $\left\{\zeta_{n}: n \in \mathbb{Z}_{+}\right\}$is an orthonormal basis of H^{2}, the set

$$
\left\{T_{\phi} \zeta_{0}, T_{\phi} \zeta_{1}, T_{\phi} \zeta_{2}, \ldots\right\}=\left\{\phi, \zeta_{1} \phi, \zeta_{2} \phi, \ldots\right\}=\left\{\phi, T(\phi), T^{2}(\phi), \ldots\right\}
$$

is an orthonormal basis of ϕH^{2}, and is contained in E since $\phi \in E$ which is T-invariant. We conclude that $\phi H^{2} \subseteq E$.

To prove that equality in fact holds, suppose $f \in E$ is orthogonal to ϕH^{2}; we show that $f=0$. Indeed, for all $n=0,1,2, \ldots$ we have

$$
f \perp \phi \zeta_{n} \quad \Rightarrow \quad \int f \overline{\phi \zeta_{n}} d m=0 \quad \Rightarrow \quad \int f \bar{\phi} \zeta_{-n} d m=0
$$

On the other hand if $k=1,2, \ldots$ then $\left\langle\zeta_{k} f, \phi\right\rangle=0$ since $\zeta_{k} f=T^{k}(f) \in T^{k}(E) \subseteq T(E)$ while $\phi \perp T(E)$ by definition; thus

$$
0=\left\langle\zeta_{k} f, \phi\right\rangle=\int \zeta_{k} f \bar{\phi} d m
$$

This shows that the L^{2} function $f \bar{\phi}$ has all its Fourier coefficients equal to 0 and hence must vanish (a.e.). Since $|\phi|=1$ a.e. this shows that $f=0$.

Uniqueness

If $\phi H^{2}=\psi H^{2}$ where $|\phi|=|\psi|=1$ a.e. then $\bar{\psi} \phi H^{2}=H^{2}$, so that $\bar{\psi} \phi=\bar{\psi} \phi \mathbf{1} \in H^{2}$. Similarly $\bar{\phi} \psi H^{2}=H^{2}$, so that $\bar{\phi} \psi \in H^{2}$. Thus the function $h=\bar{\psi} \phi$ and its complex conjugate are both analytic, which can only happen if h is a constant (alternatively, $h \in H^{2}$ means $\hat{h}(-n)=0$ for $n=1,2, \ldots$ while $\bar{h} \in H^{2}$ means $\hat{h}(+n)=0$ for $n=1,2, \ldots$; hence h is constant).

This concludes the proof of the Theorem.

Remark 2.2 Note the dual role played by ϕ (and also by ζ_{1}) in the above proof:
On the one hand ϕ is a vector in H^{2} and is moved around by the operator T (we say ϕ is a wandering vector), and on the other it "is" an operator T_{ϕ} acting on the space H^{2}.

3 Shifts

Definition 3 closed subspace L of a Hilbert space H is said to be wandering for an isometry $A \in \mathcal{B}(H)$ if the subspaces $L, A(L), A^{2}(L), \ldots$ are pairwise orthogonal.

Notation If $\left\{M_{n}\right\}$ is a family of pairwise orthogonal closed subspaces of a Hilbert space H, the orthogonal direct sum

$$
\bigoplus_{n=0}^{\infty} M_{n}=M_{0} \oplus M_{1} \oplus M_{2} \oplus \ldots
$$

is the smallest closed subspace $\bigvee M_{n}$ of H containing each M_{n}. This consists of all ξ of the form

$$
\xi=\sum_{n=0}^{\infty} \xi_{n} \quad \text { with } \xi_{n} \in M_{n} \text { and } \quad \sum_{n=0}^{\infty}\left\|\xi_{n}\right\|^{2}<\infty
$$

Thus if L is an A-wandering subspace we may form the orthogonal direct sum

$$
\bigoplus_{n=0}^{\infty} A^{n}(L):=M_{+}(L)
$$

Remark 3.1 Note that we may recover the wandering subspace from $M_{+}(L)$:

$$
L=M_{+}(L) \ominus A\left(M_{+}(L)\right):=M_{+}(L) \cap A\left(M_{+}(L)\right)^{\perp}
$$

Indeed, L is contained in $M_{+}(L)$ and is orthogonal to each $A^{n+1}(L),(n \geq 0)$, hence to their orthogonal direct sum, which is $A\left(M_{+}(L)\right)$; and conversely, if a vector $\xi=\sum_{k \geq 0} A^{k} x_{k}$ is in $M_{+}(L)$ (i.e. each x_{k} is in L) and is orthogonal to $A\left(M_{+}(L)\right)$ hence to all $A^{n+1}(L)$, then for all $\eta \in L$ and $n \geq 0$ we have

$$
0=\left\langle\xi, A^{n+1} \eta\right\rangle=\sum_{k \geq 0}\left\langle A^{k} x_{k}, A^{n+1} \eta\right\rangle=\left\langle A^{n+1} x_{n+1}, A^{n+1} \eta\right\rangle=\left\langle x_{n+1}, \eta\right\rangle
$$

and so $x_{n+1}=0$; hence $\xi=x_{0} \in L$.
Definition 4 (unilateral) shift on a Hilbert space H is a map $S \in \mathcal{B}(H)$ such that
(a) $\|S x\|=\|x\|$ for all $x \in H$ (S is an isometry) and
(b) There is an S-wandering subspace L such that $M_{+}(L)=H$.

The number $\operatorname{dim} L$ is called the multiplicity of the shift.
Note that, by Remark 3.1, the wandering subspace L is uniquely determined by S, and in fact, since $M_{+}(L)=H$,

$$
L=H \ominus S(H)=S(H)^{\perp}=\operatorname{ker}\left(S^{*}\right)
$$

Thus the multiplicity of a shift is uniquely defined.
Conversely,
Remark 3.2 Two shifts $S \in B(H)$ and $S_{1} \in B\left(H_{1}\right)$ are unitarily equivalent if and only if their wandering subspaces L and L_{1} are of the same dimension.

Thus the number $\operatorname{dim} L$ uniquely determines S up to unitary equivalence.

Indeed, if L and L_{1} have the same dimension, choose any unitary $U: L \rightarrow L_{1}$ and define

$$
V: H \rightarrow H_{1}: \sum S^{n}\left(x_{n}\right) \rightarrow \sum S_{1}^{n}\left(U x_{n}\right)
$$

It is clear that V is invertible:

$$
V^{-1}\left(\sum S_{1}^{n}\left(y_{n}\right)\right)=\sum S^{n}\left(U^{-1} y_{n}\right)
$$

and it is isometric because

$$
\left\|\sum S_{1}^{n}\left(U x_{n}\right)\right\|^{2}=\sum\left\|S_{1}^{n}\left(U x_{n}\right)\right\|^{2}=\sum\left\|x_{n}\right\|^{2}=\left\|\sum S^{n}\left(x_{n}\right)\right\|^{2} .
$$

For example the operator $T f(z)=z f(z), \quad f \in H^{2}$ is a shift. ${ }^{5}$ The vector ζ is a wandering vector for T, i.e. the family $\left\{T^{n} \zeta: n \in \mathbb{Z}_{+}\right\}$is orthogonal.

We will need an easy observation
Remark 3.3 If $T \in B(H)$ is an isometry and P a projection, then the projection onto $T P(H)$ is $T P T^{*}$.

Proof. If $\xi=T(\eta) \in T P(H)$ then $T P T^{*} \xi=T P T^{*} T \eta=T P \eta=T \eta=\xi$ (since $T^{*} T=I$ and $\eta \in P(H)$), and if $\zeta \perp T P(H)$ then $T P T^{*} \zeta=0$ since for all $\xi \in H$ we have $\left\langle T P T^{*} \zeta, \xi\right\rangle=$ $\left\langle\zeta, T P T^{*} \xi\right\rangle=0$ because $P\left(T^{*} \xi\right) \in P(H)$ so $T P T^{*} \xi \in T P(H)$.

Theorem 3.4 (Wold Decomposition) If $A \in \mathcal{B}(H)$ is an isometry, there is a unique decomposition $H=H_{s} \oplus H_{u}$ into A-reducing subspaces such that the restriction A_{s} of A to H_{s} is a shift (if nonzero) and the restriction A_{u} of A to H_{u} is unitary (if nonzero).

Moreover, if $\quad L=H \ominus A(H)=A(H)^{\perp}=\operatorname{ker} A^{*}$, then L is an A-wandering subspace, i.e. the family $\left\{A^{n}(L): n \in \mathbb{Z}_{+}\right\}$is a family of closed mutually orthogonal subspaces.

We have

$$
H_{s}=M_{+}(L)=\bigoplus_{n \geq 0} A^{n}(L)=\left\{x \in H: A^{* n} x \rightarrow 0\right\} \quad \text { and } \quad H_{u}=\bigcap_{n \geq 0} A^{n}(H)
$$

Proof. (i) If $A^{n} x \in A^{n}(L)$ and $A^{m} y \in A^{m}(L)$ with $k=n-m>0$ then, since A^{m} is isometric,

$$
\left\langle A^{n} x, A^{m} y\right\rangle=\left\langle A^{m} A^{k} x, A^{m} y\right\rangle=\left\langle A^{k} x, y\right\rangle=0
$$

because $A^{k} x \in A(H)$ (since $k \geq 1$) while y is in L which is orthogonal to $A(H)$. Thus $A^{n}(L) \perp A^{m}(L)$.
(ii) Define $\quad H_{s}=\bigoplus_{n \geq 0} A^{n}(L)$. We show that

$$
\begin{equation*}
H_{s}=\left\{x \in H: A^{* n} x \rightarrow 0\right\} . \tag{**}
\end{equation*}
$$

If $P(L)$ is the projection onto $L=(A(H))^{\perp}$, then $P(L)=I-A A^{*}$; by Remark 3.3 the projection $P\left(A^{n}(L)\right)$ onto $A^{n}(L)$ is $A^{n} P(L) A^{* n}=A^{n}\left(I-A A^{*}\right) A^{* n}$. Now $x \in H_{s}$ if and only if

$$
\begin{equation*}
x=\sum_{n=0}^{\infty} P\left(A^{n}(L)\right) x=\lim _{N \rightarrow \infty} \sum_{n=0}^{N-1} A^{n}\left(I-A A^{*}\right) A^{* n} x=x-\lim _{N \rightarrow \infty} A^{N} A^{* N} x \tag{}
\end{equation*}
$$

[^2]i.e. if and only if $\lim _{N \rightarrow \infty} A^{N} A^{* N} x=0$, equivalently if and only if $\lim _{N}\left\|A^{* N} x\right\|=0$ (A^{N} is an isometry).

This shows (**).
On the other hand, $y \perp H_{s}$ if and only if $y \perp A^{n}(L)$ for all $n \geq 0$, equivalently if

$$
0=P\left(A^{n}(L)\right) y=A^{n}\left(I-A A^{*}\right) A^{* n} y \Longleftrightarrow A^{n} A^{* n} y=A^{n+1} A^{* n+1} y
$$

for all n, and so $y=A^{n} A^{* n} y$ for all n. But $A^{n} A^{* n}$ is the projection onto $A^{n}(H)$. Therefore $y \perp H_{s}$ if and only if $y \in A^{n}(H)$ for all $n \geq 0$. In other words, $y \perp H_{s}$ iff $y \in \bigcap_{n \geq 0} A^{n}(H)$. We have shown that

$$
\left(H_{s}\right)^{\perp}=\bigcap_{n \geq 0} A^{n}(H):=H_{u} .
$$

(iii) If $P=P\left(H_{u}\right)$ then, for all $x \in H, \quad P x=\lim _{n} A^{n} A^{* n} x$. Thus

$$
\begin{aligned}
P\left(A H_{u}\right) x & =A P A^{*} x=A \lim _{n} A^{n} A^{* n} A^{*} x=\lim _{n} A^{n+1} A^{*(n+1)} x=P x \\
\text { and so } \quad P\left(A H_{u}\right) & =A P A^{*}=P \quad \text { hence } \quad P A=A P A^{*} A=A P .
\end{aligned}
$$

The second relation shows that A reduces H_{u} and the first relation shows that A maps H_{u} onto H_{u}. Hence $\left.A\right|_{H_{u}}$ is a unitary operator on H_{u}.

Finally, $H_{s}=H_{u}^{\perp}$ also reduces A.
Uniqueness It remains to prove that if $H=K_{s} \oplus K_{u}$, is an arbitrary decomposition so that $\left.A\right|_{K_{s}}$ is a shift and $\left.A\right|_{K_{u}}$ is unitary, then $K_{u}=H_{u}$ and $K_{s}=H_{s}$. But if $\left.A\right|_{K_{s}}$ is a shift then $L^{\prime}:=K_{s} \ominus A\left(K_{s}\right)$ is A-wandering; and it will be enough to prove that $L=L^{\prime}$, for then $K_{s}=M_{+}\left(L^{\prime}\right)=M_{+}(L)=K_{s}$ and their orthogonal complements will also be equal. Now ${ }^{6}$
$L=H \ominus A H=\left(K_{u} \oplus K_{s}\right) \ominus\left(A K_{u} \oplus A K_{s}\right)=\left(K_{u} \oplus K_{s}\right) \ominus\left(K_{u} \oplus A K_{s}\right)=K_{s} \ominus A K_{s}=L^{\prime}$.
Remark 3.5 It follows that an isometry $A \in \mathcal{B}(H)$ is a shift if and only if it satisfies $\left\|A^{* n} x\right\| \rightarrow 0$ for all $x \in H$. Equivalently if and only if $\bigcap_{n \geq 0} A^{n}(H)=0$.

[^3]
4 The Beurling - Lax - Halmos Theorem

We wish to generalise Beurling's Theorem (Theorem[2.1) to characterise invariant subspaces of a shift of arbitrary multiplicity.

In the multiplicity one case, invariant subspaces M were shown to be of the form $M=$ $T_{\phi}\left(H^{2}\right)$ where $\phi \in H^{2}$ was a suitable function. Note that T_{ϕ} is an isometry which commutes with the operator T. This is the form of Beurling's Theorem that generalises. Indeed, it can be shown that, conversely, any isometry $A \in B\left(H^{2}\right)$ which commutes with T is necessarily of the form $A=T_{\phi}$ (see [2, Problem 242]).

Let E be a Hilbert space and define

$$
H=E \otimes \ell^{2}=\left\{\xi=\left(x_{n}\right): x_{n} \in E, \sum_{n \geq 0}\left\|x_{n}\right\|_{E}^{2}<\infty\right\} .
$$

This is a Hilbert space with scalar product

$$
\left\langle\left(x_{n}\right),\left(y_{n}\right)\right\rangle=\sum_{n}\left\langle x_{n}, y_{n}\right\rangle_{E}
$$

(the sum converges absolutely). Completeness is proved just like the case of ℓ^{2}.
We denote the sequence $(0, \ldots, 0, x, 0, \ldots)$ (with x at the n-th place) by the symbol $x \otimes e_{n}$; the linear span of $\left\{x \otimes e_{n}: x \in E, n \in \mathbb{Z}_{+}\right\}$is dense in $\left.H\right]^{7}$ and

$$
\left(x_{n}\right)=\sum_{n=0}^{\infty} x_{n} \otimes e_{n} .
$$

Let $S \in B(H)$ be given by

$$
S\left(\left(x_{0}, x_{1}, x_{2}, \ldots\right)\right)=\left(0, x_{0}, x_{1}, x_{2}, \ldots\right)
$$

i.e.

$$
S\left(x \otimes e_{n}\right)=x \otimes e_{n+1} \quad\left(x \in E, n \in \mathbb{Z}_{+}\right) .
$$

This is an isometry, called the unilateral shift of multiplicity $\operatorname{dim} E$.
Suppose $V \in B(H)$ is a partial isometry. Let $M=V(H)$. This is a closed subspace since V is isometric on the orthogonal complement of its kernel.

Remark 4.1 If $V S=S V$ then M is S-invariant.
Proof. If $\xi \in M$ there exists $\eta \in H$ such that $\xi=V \eta$. Then

$$
S(\xi)=S(V \eta)=V(S \eta) \in V(H)=M .
$$

Conversely,
Theorem 4.2 Let $M \subseteq H$ be a closed S-invariant subspace. Then there exists a partial isometry $V \in B(H)$ which commutes with S such that

$$
M=V(H) .
$$

We will need the following
Lemma 4.3 If H is a separable Hilbert space and $P \in B(H)$ is a projection, then for any orthonormal basis $\left\{f_{i}: i \in I\right\}$ of H we have

$$
\operatorname{dim} P(H)=\sum_{i \in I}\left\|P f_{i}\right\|^{2}
$$

[^4]Proof. Let $\left\{y_{k}: k \in K\right\}$ be an orthonormal basis of $P(H)$. Since each $P f_{i}$ is in $P(H)$, by Parseval we have

$$
\begin{aligned}
\left\|P f_{i}\right\|^{2} & =\sum_{k \in K}\left|\left\langle P f_{i}, y_{k}\right\rangle\right|^{2} \\
\text { and so } \quad \sum_{i \in I}\left\|P f_{i}\right\|^{2} & =\sum_{i \in I} \sum_{k \in K}\left|\left\langle P f_{i}, y_{k}\right\rangle\right|^{2}=\sum_{k \in K} \sum_{i \in I}\left|\left\langle f_{i}, P y_{k}\right\rangle\right|^{2} \\
& =\sum_{k \in K} \sum_{i \in I}\left|\left\langle f_{i}, y_{k}\right\rangle\right|^{2}=\sum_{k \in K}\left\|y_{k}\right\|^{2}
\end{aligned}
$$

by Parseval again, since $\left\{f_{i}: i \in I\right\}$ is an orthonormal basis of H. But the last sum equals the cardinality of K, i.e. the dimension of $P(H)$.
Proof of the Theorem. Define

$$
L=M \ominus S(M)=M \cap(S M)^{\perp} .
$$

This is a nonzero subspace because $S(M) \neq M$. Indeed, if $m \in \mathbb{Z}_{+}$is the smallest integer for which there exists $\xi=\left(x_{n}\right) \in M$ with $x_{m} \neq 0$, then all $S(\eta) \in S(M)$ have their first m coordinates equal to 0 and so $\xi \notin S(M)$.

Let P be the projection onto M and let Q be the projection onto L. Then $S P S^{*}$ is the projection onto $S(M)$ (Remark 3.3) and so

$$
Q=P-S P S^{*} .
$$

Claim 1. L is a wandering subspace, i.e. the subspaces $S^{n}(L), n \geq 0$ are pairwise orthogonal.
Proof. ${ }^{8}$ If $S^{m}(\xi) \in S^{m}(L)$ and $S^{n}(\eta) \in S^{n}(L)$ with $k=m-n>0$ then

$$
\left\langle S^{m}(\xi), S^{n}(\eta)\right\rangle=\left\langle S^{n} S^{k}(\xi), S^{n}(\eta)\right\rangle=\left\langle S^{k}(\xi), \eta\right\rangle \quad\left(S^{n} \text { is isometric }\right)
$$

But $S^{k}(\xi) \in S(M)$ (note $k \geq 1$) because $S(\xi) \in S(M)$ which is S-invariant; on the other hand $\eta \in L$ and $L \perp S(M)$, so $\left\langle S^{k}(\xi), \eta\right\rangle=0$.

Thus we may form the sum

$$
N=\bigoplus_{n=0}^{\infty} S^{n}(L)=L \oplus S(L) \oplus S^{2}(L) \oplus \ldots
$$

This consists of all ξ of the form

$$
\xi=\sum_{n=0}^{\infty} S^{n}\left(\xi_{n}\right) \quad \text { with } \xi_{n} \in L \text { and } \quad \sum_{n=0}^{\infty}\left\|S^{n} \xi_{n}\right\|^{2}=\sum_{n=0}^{\infty}\left\|\xi_{n}\right\|^{2}<\infty .
$$

Claim 2. $\quad N=M$.
Proof. Since $L \subseteq M$ so $S^{n}(L) \subseteq S^{n}(M) \subseteq M$, we see that M contains each $S^{n}(L)$, hence it must contain N.

Now take $\xi \in M \cap N^{\perp}$. Then $\xi \in M$ and $\xi \perp L$; thus $Q \xi=0$, i.e. $\left(P-S P S^{*}\right) \xi=$ 0 and so $\xi=P \xi=S P S^{*} \xi$. Thus $\xi \in S(M)$; but $\xi \in(S(L))^{\perp}$ so $S Q S^{*} \xi=0$, i.e. $\left(S P S^{*}-S^{2} P S^{* 2}\right) \xi=0$ and so $\xi=S P S^{*} \xi=S^{2} P S^{* 2} \xi$, i.e. $\xi \in S^{2}(M)$. Continuing

[^5]inductively, we conclude that $\xi \in S^{n}(M)$ i.e. $\xi=S^{n} P S^{* n} \xi$ for all $n \geq 0$. But then $\xi=0$, because if $\xi=\sum_{k \geq 0} x_{k} \otimes e_{k}$ then $S^{* n} \xi=\sum_{k \geq n} x_{k} \otimes e_{k-n}$ so
$$
\|\xi\|^{2}=\left\|S^{n} P S^{* n} \xi\right\|^{2} \leq\left\|S^{* n} \xi\right\|^{2}=\sum_{k \geq n}\left\|x_{k}\right\|^{2} \rightarrow 0
$$

Claim 3. There exists a partial isometry $U: H \rightarrow E$ with initial space L.
Proof. It is enough to prove that there exists an isometry $W: L \rightarrow E$; then $U: H \rightarrow E$ will be the extension of W to H, defined by setting $U(\xi)=0$ for $\xi \in L^{\perp}$.

Now the existence of an isometry $W: L \rightarrow E$ will follow if we prove that $\operatorname{dim} L \leq \operatorname{dim} E$.
Let $\left\{u_{k}: k \in K\right\}$ be an orthonormal basis of E. Since H is generated by $\left\{x \otimes e_{n}: x \in\right.$ $\left.E, n \in \mathbb{Z}_{+}\right\}$, the set $\left\{u_{k} \otimes e_{n}: k \in K, n \in \mathbb{Z}_{+}\right\}$is an orthonormal basis of H. Thus by Lemma 4.3

$$
\operatorname{dim} L=\sum_{k \in K} \sum_{n \in \mathbb{Z}_{+}}\left\|Q\left(u_{k} \otimes e_{n}\right)\right\|^{2}=\sum_{k \in K} \sum_{n \in \mathbb{Z}_{+}}\left\langle Q\left(u_{k} \otimes e_{n}\right), u_{k} \otimes e_{n}\right\rangle
$$

Now $u_{k} \otimes e_{n}=S^{n}\left(u_{k} \otimes e_{0}\right)$ and $Q=P-S P S^{*}$, so

$$
\begin{aligned}
\left\langle Q\left(u_{k} \otimes e_{0}\right), u_{k} \otimes e_{0}\right\rangle & =\left\langle P\left(u_{k} \otimes e_{0}\right),\left(u_{k} \otimes e_{0}\right)\right\rangle-\left\langle S P S^{*}\left(u_{k} \otimes e_{0}\right), u_{k} \otimes e_{0}\right\rangle \\
& =\left\langle P\left(u_{k} \otimes e_{0}\right),\left(u_{k} \otimes e_{0}\right)\right\rangle
\end{aligned}
$$

(because $\left.S^{*}\left(x \otimes e_{0}\right)=0\right)$ and for $n>0$,

$$
\begin{aligned}
\left\langle Q\left(u_{k} \otimes e_{n}\right), u_{k} \otimes e_{n}\right\rangle & =\left\langle P S^{n}\left(u_{k} \otimes e_{0}\right), S^{n}\left(u_{k} \otimes e_{0}\right)\right\rangle-\left\langle S P S^{*} S^{n}\left(u_{k} \otimes e_{0}\right), S^{n}\left(u_{k} \otimes e_{0}\right)\right\rangle \\
& =\left\langle P S^{n}\left(u_{k} \otimes e_{0}\right), S^{n}\left(u_{k} \otimes e_{0}\right)\right\rangle-\left\langle P S^{n-1}\left(u_{k} \otimes e_{0}\right), S^{n-1}\left(u_{k} \otimes e_{0}\right)\right\rangle
\end{aligned}
$$

Thus for each $k \in K$,

$$
\begin{aligned}
\sum_{n=0}^{m}\left\langle Q\left(u_{k} \otimes e_{n}\right), u_{k} \otimes e_{n}\right\rangle= & \left\langle P\left(u_{k} \otimes e_{0}\right),\left(u_{k} \otimes e_{0}\right)\right\rangle \\
& +\left\langle P S\left(u_{k} \otimes e_{0}\right), S\left(u_{k} \otimes e_{0}\right)\right\rangle-\left\langle P\left(u_{k} \otimes e_{0}\right),\left(u_{k} \otimes e_{0}\right)\right\rangle \\
& +\ldots \ldots \\
& +\left\langle P S^{m}\left(u_{k} \otimes e_{0}\right), S^{m}\left(u_{k} \otimes e_{0}\right)\right\rangle-\left\langle P S^{m-1}\left(u_{k} \otimes e_{0}\right), S^{m-1}\left(u_{k} \otimes e_{0}\right)\right\rangle \\
= & \left\langle P S^{m}\left(u_{k} \otimes e_{0}\right), S^{m}\left(u_{k} \otimes e_{0}\right)\right\rangle
\end{aligned}
$$

and so

$$
\operatorname{dim} L=\lim _{m \rightarrow \infty} \sum_{k \in K}\left\langle P S^{m}\left(u_{k} \otimes e_{0}\right), S^{m}\left(u_{k} \otimes e_{0}\right)\right\rangle \leq \sum_{k \in K}\left\|u_{k}\right\|^{2}=\operatorname{dim} E
$$

Now define $V: H \rightarrow H$ as follows: Let $\xi=\sum_{n=0}^{\infty} x_{n} \otimes e_{n} \in H$, so that $\sum_{n}\left\|x_{n}\right\|^{2}=$ $\|\xi\|^{2}<+\infty$. Observe that $x_{n} \in E$ so $U^{*} x_{n} \in L$ and the vectors $S^{n}\left(U^{*} x_{n}\right)$ are pairwise orthogonal; thus the series $\sum_{n} S^{n}\left(U^{*} x_{n}\right)$ converges in H and we may define

$$
V\left(\sum_{n=0}^{\infty} x_{n} \otimes e_{n}\right)=\sum_{n=0}^{\infty} S^{n}\left(U^{*} x_{n}\right)
$$

This is a contraction:

$$
\|V \xi\|^{2}=\left\|\sum_{n=0}^{\infty} S^{n}\left(U^{*} x_{n}\right)\right\|^{2}=\sum_{n}\left\|S^{n}\left(U^{*} x_{n}\right)\right\|^{2}=\sum_{n}\left\|U^{*} x_{n}\right\|^{2} \leq \sum_{n}\left\|x_{n}\right\|^{2}=\|\xi\|^{2}
$$

Claim 4. V is a partial isometry.
Proof. Let $F=U(L) \subseteq E$ be the final space of the partial isometry U. Note that U^{*} is a partial isometry with initial space F and final space L. Consider the subspace

$$
X:=\left\{\xi=\sum_{n=0}^{\infty} x_{n} \otimes e_{n}: x_{n} \in F\right\} \subseteq H .
$$

If $\xi \in X$, then each coordinate x_{n} is in F and so $\left\|U^{*} x_{n}\right\|=\left\|x_{n}\right\|$. Thus

$$
\|V \xi\|^{2}=\sum_{n}\left\|U^{*} x_{n}\right\|^{2}=\sum_{n}\left\|x_{n}\right\|^{2}=\|\xi\|^{2} .
$$

and so $\left.V\right|_{F}$ is isometric.
If $\xi \perp X$, then each coordinate x_{n} is in $F^{\perp} 9^{9}$ and so $U^{*} x_{n}=0$. Thus $V \xi=0$, showing that V vanishes on X^{\perp}.
Claim 5. $\quad V(H)=M$.
Proof. Since the range of U^{*} is L, it is clear that that $V(H)$ lies in the direct sum of the subspaces $S^{n}(L)$, namely M. On the other hand, given $n \geq 0$ and $\xi \in L$, letting $x=U \xi \in F$ we have $V\left(x \otimes e_{n}\right)=S^{n}\left(U^{*} x\right)=S^{n}(\xi)$. Thus $V(H)$ contains all subspaces $S^{n}(L), n \in \mathbb{Z}_{+}$, hence also their direct sum M.

Claim 6. $\quad V S=S V$.
Proof. This is obvious: For all $x \in E$ and $n \geq 0$,

$$
\begin{aligned}
& V S\left(x \otimes e_{n}\right)=V\left(x \otimes e_{n+1}\right)=S^{n+1}\left(U^{*} x\right) \\
& S V\left(x \otimes e_{n}\right)=S\left(S^{n}\left(U^{*} x\right)\right)=S^{n+1}\left(U^{*} x\right) .
\end{aligned}
$$

[^6]
5 Dilations of a contraction

Theorem 5.1 Let $T \in \mathcal{B}(\mathcal{H})$ be a contraction. Then there exists a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ and a unitary operator $U \in \mathcal{B}(\mathcal{K})$ such that

$$
T^{n}=\left.P_{\mathcal{H}} U^{n}\right|_{\mathcal{H}} \quad(n \geq 1)
$$

Remark 5.2 The condition $T^{n}=\left.P_{\mathcal{H}} U^{n}\right|_{\mathcal{H}}$ forces the subspace $\mathcal{H} \subseteq K$ to be semi-invariant under U, i.e. of the form $\mathcal{H}=\mathcal{H}_{2} \cap \mathcal{H}_{1}^{\perp}$, where $\mathcal{H}_{1} \subseteq \mathcal{H}_{2}$ and both spaces are U-invariant.

Thus the matrix of U with respect to the (ordered) decomposition
$\mathcal{K}=\mathcal{H}_{1} \oplus \mathcal{H} \oplus \mathcal{H}_{2}^{\perp}$ takes the form ${ }^{10}$

$$
U=\left[\begin{array}{ccc}
* & * & * \\
0 & T & * \\
0 & 0 & *
\end{array}\right] .
$$

Indeed, define

$$
\mathcal{H}_{2}=\overline{\left[U^{n} y: y \in \mathcal{H}, n \geq 0\right]} \quad \text { and } \quad \mathcal{H}_{1}=\mathcal{H}_{2} \cap \mathcal{H}^{\perp} .
$$

Then we have two closed subspaces of \mathcal{K} such that $\mathcal{H}_{1} \subseteq \mathcal{H}_{2}$ and $\mathcal{H}=\mathcal{H}_{2} \cap \mathcal{H}_{1}^{\perp}$. Clearly \mathcal{H}_{2} is U invariant (because $\left[U^{n} y: y \in \mathcal{H}\right]$ is) and we need to show that \mathcal{H}_{1} is also U invariant.

Thus if P_{i} denotes the projection onto \mathcal{H}_{i}, we have to show that $U P_{1}=P_{1} U P_{1}$. But $P_{1}=P_{2}-P=P_{2} P^{\perp}$ and $U P_{2}=P_{2} U P_{2}$ because $U\left(\mathcal{H}_{2}\right) \subseteq \mathcal{H}_{2}$, hence

$$
P_{1} U P_{1}=P_{2} U P_{2} P^{\perp}-P U P_{2} P^{\perp}=U P_{2} P^{\perp}-P U P_{2} P^{\perp}=U P_{1}-P U P_{2} P^{\perp}
$$

and so it suffices to show that $P U P_{2} P^{\perp}=0$, equivalently that $P U P_{2}=P U P P_{2}$, or $P U x=P U P x$ for $x \in \mathcal{H}_{2}$. In fact it suffices to show the last equality when $x=U^{n} y$ for some $n \in \mathbb{Z}_{+}$and $y \in \mathcal{H}$ (for then it will follow for arbitrary $x \in \mathcal{H}_{2}$ by linearity and continuity).

But for $x=U^{n} y$, since $P U P U^{n} P=(P U P)\left(P U^{n} P\right)=T^{n+1}=P U^{n+1} P$ we have

$$
\begin{aligned}
P U P x & =P U P U^{n} y=P U P U^{n} P y \quad(\text { because } y \in \mathcal{H}) \\
& =P U^{n+1} P y=P U^{n+1} y=P U\left(U^{n} y\right)=P U x
\end{aligned}
$$

as required. This shows that \mathcal{H}_{1} is U-invariant as well.
Example 5.3 Suppose $z \in \mathbb{C}$ with $|z|<1$ and let $T=z I$ acting on $\mathcal{H}=\mathbb{C}$.
Try to construct a unitary dilation U on the space $\mathbb{C} \oplus \mathbb{C} \oplus$:

$$
U=\left[\begin{array}{lll}
a & b & c \\
0 & z & d \\
0 & 0 & e
\end{array}\right]
$$

Now U is unitary if and only if its rows and columns form orthonormal sets. This forces $|b|^{2}=|d|^{2}=1-|z|^{2}$ and we may choose $b=d=\sqrt{1-|z|^{2}}$. But then the orthogonality of the second and third column give $b \bar{c}+z \bar{d}=0$, so $c=-\bar{z}$. Now if the first row and third column are to have unit length then necessarily $a=0$ and $e=0$. Thus

$$
U=\left[\begin{array}{ccc}
0 & b & -\bar{z} \\
0 & \boxed{z} & b \\
0 & 0 & 0
\end{array}\right] \quad\left(b=\sqrt{1-|z|^{2}}\right) .
$$

[^7]But this is not unitary! The first column and last row are 0 . To remedy this, we need to add rows and columns:

$$
U=\left[\begin{array}{ccccc}
s & 1 & 0 & 0 & 0 \\
0 & 0 & b & -\bar{z} & 0 \\
0 & 0 & \llcorner z & b & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & t
\end{array}\right]
$$

Now the length of the first row and the last column force $s=t=0$, and again the first column and last row are 0 . Thus we need to add more rows and columns, and so on "ad infinitum": So U turns out to be an operator acting on the infinite dimensional (!) space $\ell^{2}(\mathbb{Z})$ given by

$$
U=\left[\begin{array}{llllll}
\ddots & \ddots & & & & \\
\ddots & 1 & 0 & & & \\
& 0 & b & -\bar{z} & & \\
& & z & b & 0 & \\
& & & 0 & 1 & \ddots \\
& & & & \ddots & \ddots
\end{array}\right]
$$

It is not hard to verify that this operator is unitary, and it will follow anyway from the general construction (second method) below.

Proof of the Theorem. (First method) We dilate T in two steps:
(a) we dilate (T, \mathcal{H}) to an isometry $\left(V, \mathcal{K}_{1}\right)$ and
(b) we dilate the isometry $\left(V, \mathcal{H}_{1}\right)$ to a unitary (U, \mathcal{K}).

Then (U, \mathcal{K}) will be a unitary dilation of (T, \mathcal{H}).
(a) Dilation of a contraction to an isometry

The space \mathcal{K}_{1} is defined to be

$$
\mathcal{K}_{1}=\mathcal{H} \otimes \ell^{2}\left(\mathbb{Z}_{+}\right)
$$

(see Section 4). Recall that \mathcal{K}_{1} consists of all families $\left(x_{n}\right)_{n \geq 0}$ (with $x_{n} \in \mathcal{H}$ for all n) which are square summable in norm. We identify \mathcal{H} with the subspace $\mathcal{H}_{0}=\{(h, 0,0, \ldots): h \in \mathcal{H}\}$ of \mathcal{K}_{1}.

Let $T \in \mathcal{B}(\mathcal{H})$ be a contraction. It follows that the operator $I-T^{*} T$ is positive; hence we may define

$$
D_{T}=\left(I-T^{*} T\right)^{1 / 2}
$$

Consider the operator $V \in \mathcal{B}\left(\mathcal{K}_{1}\right)$ given by

$$
V=\left[\begin{array}{ccccc}
T & 0 & 0 & 0 & \ldots \\
D_{T} & 0 & 0 & 0 & \ldots \\
0 & I & 0 & 0 & \ldots \\
0 & 0 & I & 0 & \cdots \\
\vdots & \vdots & & \ddots & \ddots
\end{array}\right]=\left[\begin{array}{ll}
T & 0 \\
* & *
\end{array}\right]
$$

(the last matrix is written with respect to the decomposition $\mathcal{K}_{1}=\mathcal{H} \oplus \mathcal{H}^{\perp}$.) Explicitly,

$$
V\left(h_{0}, h_{1}, h_{2}, \ldots\right)=\left(T h_{0}, D_{T} h_{0}, h_{1}, h_{2}, \ldots\right) .
$$

Clearly V dilates T. To see that it is isometric, note that

$$
\begin{aligned}
\left\|T h_{0}\right\|^{2}+\left\|D_{T} h_{0}\right\|^{2} & =\left\langle T h_{0}, T h_{0}\right\rangle+\left\langle D_{T} h_{0}, D_{T} h_{0}\right\rangle \\
& =\left\langle T^{*} T h_{0}, h_{0}\right\rangle+\left\langle D_{T}^{2} h_{0}, h_{0}\right\rangle=\left\|h_{0}\right\|^{2} .
\end{aligned}
$$

and thus

$$
\begin{aligned}
\|V h\|^{2} & =\left\|T h_{0}\right\|^{2}+\left\|D_{T} h_{0}\right\|^{2}+\sum_{n=1}^{\infty}\left\|h_{n}\right\|^{2} \\
& =\left\|h_{0}\right\|^{2}+\sum_{n=1}^{\infty}\left\|h_{n}\right\|^{2}=\|h\|^{2}
\end{aligned}
$$

(b) Dilation of an isometry to a unitary

Let $V \in \mathcal{B}\left(\mathcal{K}_{1}\right)$ be an isometry, $V^{*} V=I$.
Observe that $\left(V V^{*}\right) V=V\left(V^{*} V\right)=V$. Also $\left(V V^{*}\right)^{2}=V\left(V^{*} V\right) V^{*}=V V^{*}$ so $V V^{*}$ is a projection. Let $P=I-V V^{*}$. This is also a projection and $P V=V-V V^{*} V=0$.

Thus if

$$
U: \mathcal{K}_{1} \oplus \mathcal{K}_{1} \rightarrow \mathcal{K}_{1} \oplus \mathcal{K}_{1}: \quad \text { is given by } \quad U=\left[\begin{array}{cc}
V^{*} & 0 \\
P & V
\end{array}\right]
$$

then U is unitary. Indeed,

$$
U U^{*}=\left[\begin{array}{cc}
V^{*} & 0 \\
P & V
\end{array}\right]\left[\begin{array}{cc}
V & P \\
0 & V^{*}
\end{array}\right]=\left[\begin{array}{cc}
V^{*} V & V^{*} P \\
P V & P^{2}+V V^{*}
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right]
$$

and

$$
U^{*} U=\left[\begin{array}{cc}
V & P \\
0 & V^{*}
\end{array}\right]\left[\begin{array}{cc}
V^{*} & 0 \\
P & V
\end{array}\right]=\left[\begin{array}{cc}
V V^{*}+P^{2} & P V \\
V^{*} P & V^{*} V
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right]
$$

Combining the two steps, we obtain the dilation U in the form

$$
U=\left[\begin{array}{cccc}
T^{*} & A^{*} & 0 & 0 \\
0 & B^{*} & 0 & 0 \\
P_{11} & P_{12} & T & 0 \\
P_{21} & P_{22} & A & B
\end{array}\right]=\left[\begin{array}{ccc}
V^{*} & 0 & 0 \\
P_{1} & T & 0 \\
P_{2} & A & B
\end{array}\right]
$$

where $P_{1}=\left[\begin{array}{ll}P_{11} & P_{12}\end{array}\right]$ and $P_{2}=\left[\begin{array}{ll}P_{21} & P_{22}\end{array}\right]$.
Remark 5.4 Observe that, since the space \mathcal{K}_{1} is in fact U-invariant (not just semi-invariant), we have $U^{n} \mid \mathcal{K}_{1}=V^{n}$: thus U^{n} is in fact an extension of V^{n} (not merely a dilation).

Proof of the Theorem. (Second method) Notice that since $\|T\| \leq 1$, the operators $I-T^{*} T$ and $I-T T^{*}$ are positive; hence we may define

$$
D_{T}=\left(I-T^{*} T\right)^{1 / 2}, \quad D_{T^{*}}=\left(I-T T^{*}\right)^{1 / 2}
$$

These are called the 'defect operators': $D_{T}=0$ iff T is an isometry, and $D_{T^{*}}=0$ iff T^{*} is an isometry (then T is called a co-isometry). Note that

$$
T D_{T}^{2}=T-T T^{*} T=D_{T^{*}}^{2} T, \quad T^{*} D_{T^{*}}^{2}=T^{*}-T^{*} T T^{*}=D_{T}^{2} T^{*}
$$

from which we obtain

$$
\begin{equation*}
T^{*} D_{T^{*}}=D_{T} T^{*}, \quad T D_{T}=D_{T^{*}} T \tag{1}
\end{equation*}
$$

by approximating the function $f(t)=\sqrt{t}$ by polynomials $\left(p_{n}\right)$ uniformly for $t \in[0,1]$ (so that $D_{T}=\lim _{n} p_{n}\left(D_{T}^{2}\right)$ and $\left.D_{T^{*}}=\lim _{n} p_{n}\left(D_{T^{*}}^{2}\right)\right)$.

The space \mathcal{K} is defined to be

$$
\mathcal{K}=\mathcal{H} \otimes \ell^{2}(\mathbb{Z}) .
$$

Thus \mathcal{K} consists of all families $\left(x_{n}\right)_{n \in \mathbb{Z}}$ (with $x_{n} \in \mathcal{H}$ for all n) which are square summable in norm, i.e. $\sum_{n \in \mathbb{Z}}\left\|x_{n}\right\|^{2}<\infty$.
We identify \mathcal{H} with the subspace $\mathcal{H}_{0}=\{(\ldots, 0, \hbar \hbar, 0, \ldots): h \in \mathcal{H}\}$ of \mathcal{K}.
Consider the operator $U \in \mathcal{B}(\mathcal{K})$ given by

$$
U=\left[\begin{array}{cccccc}
\ddots & \ddots & & & & \\
\ddots & I & 0 & & & \\
& 0 & D_{T} & -T^{*} & & \\
& & T & D_{T^{*}} & 0 & \\
& & & 0 & I & \ddots \\
& & & & \ddots & \ddots
\end{array}\right]=\left[\begin{array}{ccc}
* & * & * \\
0 & T & * \\
0 & 0 & *
\end{array}\right] .
$$

Explicitly, for $h=\left(h_{n}\right)$, we have $U h=h^{\prime}=\left(h_{n}^{\prime}\right)$, where

$$
h_{-1}^{\prime}=D_{T} h_{0}-T^{*} h_{1}, \quad h_{0}^{\prime}=T h_{0}+D_{T^{*}} h_{1}, \quad h_{j}^{\prime}=h_{j+1},(j \neq-1,0) .
$$

Clearly U dilates T. To see that it is isometric, consider

$$
\begin{aligned}
\left\|h_{-1}^{\prime}\right\|^{2}+\left\|h_{0}^{\prime}\right\|^{2} & =\left(\left\langle D_{T}^{2} h_{0}, h_{0}\right\rangle+\left\langle T^{*} h_{1}, T^{*} h_{1}\right\rangle-2 \operatorname{Re}\left\langle D_{T} h_{0}, T^{*} h_{1}\right\rangle\right) \\
& +\left(\left\langle T h_{0}, T h_{0}\right\rangle+\left\langle D_{T^{*}}^{2} h_{1}, h_{1}\right\rangle+2 \operatorname{Re}\left\langle D_{T^{*}} h_{1}, T h_{0}\right\rangle\right) \\
& =\left\|h_{0}\right\|^{2}+\left\|h_{1}\right\|^{2} \quad\left(\text { using } T D_{T}=D_{T^{*}} T\right) .
\end{aligned}
$$

To prove that U is onto, given $\left(h_{n}^{\prime}\right) \in \ell^{2}(\mathbb{Z})$ set $h_{j}=h_{j-1}^{\prime},(j \neq-1,0)$ and determine h_{0} and h_{1} by solving the system

$$
\begin{aligned}
\left.\begin{array}{c}
h_{-1}^{\prime}=D_{T} h_{0}-T^{*} h_{1} \\
h_{0}^{\prime}=T h_{0}+D_{T^{*}} h_{1}
\end{array}\right\} & \left.\Rightarrow \begin{array}{c}
D_{T} h_{-1}^{\prime}=\left(I-T^{*} T\right) h_{0}-D_{T} T^{*} h_{1} \\
T^{*} h_{0}^{\prime}=T^{*} T h_{0}+T^{*} D_{T^{*}} h_{1}
\end{array}\right\} \\
& \Rightarrow D_{T} h_{-1}^{\prime}+T^{*} h_{0}^{\prime}=h_{0}-D_{T} T^{*} h_{1}+T^{*} D_{T^{*}} h_{1}=h_{0} \\
\left.\begin{array}{c}
h_{-1}^{\prime}=D_{T} h_{0}-T^{*} h_{1} \\
h_{0}^{\prime}=T h_{0}+D_{T^{*}} h_{1}
\end{array}\right\} & \left.\Rightarrow \begin{array}{c}
T h_{-1}^{\prime}=T D_{T} h_{0}-T T^{*} h_{1} \\
D_{T^{*}}^{\prime} h_{0}^{\prime}=D_{T^{*}} T h_{0}+\left(I-T T^{*}\right) h_{1}
\end{array}\right\} \\
& \Rightarrow-T h_{-1}^{\prime}+D_{T^{*}} h_{0}^{\prime}=-T D_{T} h_{0}+D_{T^{*}} T h_{0}+h_{1}=h_{1}
\end{aligned}
$$

where we have used relations (1).

6 von Neumann's inequality

Theorem 6.1 (von Neumann's inequality) If $T \in \mathcal{B}(H)$ is a contraction and p is a polynomial $p(z)=\sum_{k=0}^{n} a_{k} z^{k}$, then

$$
\|p(T)\|_{\mathcal{B}(H)} \leq \sup \{|p(z)|: z \in \mathbb{T}\}
$$

Proof. Let $U \in \mathcal{B}(K)$ be any unitary dilation of $T \in \mathcal{B}(H)$. Observe that $p(T)=\left.P_{H} p(U)\right|_{H}$ and hence $\|p(T)\|_{\mathcal{B}(H)} \leq\|p(U)\|_{\mathcal{B}(K)}$. But U is a unitary operator so $\sigma(U) \subseteq \mathbb{T}$; thus by the spectral mapping theorem we have

$$
\begin{aligned}
&\|p(U)\|_{\mathcal{B}(K)}=\sup \{|p(z)|: z \in \sigma(U)\} \leq \sup \{|p(z)|: z \in \mathbb{T}\} \\
& \text { Thus } \quad\|p(T)\|_{\mathcal{B}(H)} \leq\|p(U)\|_{\mathcal{B}(K)} \leq \sup \{|p(z)|: z \in \mathbb{T}\}
\end{aligned}
$$

Example 6.2 In particular if $T=w I$ where $w \in \mathbb{D}$, then for any polynomial p we obtain $p(T)=p(w) I$ and so

$$
|p(w)|=\|p(T)\| \leq \sup \{|p(z)|: z \in \mathbb{T}\}
$$

More generally, let $A(\mathbb{D})$ be the algebra of all continuous complex-valued functions on $\overline{\mathbb{D}}$ which are analytic in \mathbb{D}. This is a closed subalgebra of $C(\overline{\mathbb{D}})$: it consists of all $f \in C(\overline{\mathbb{D}})$ that are limits of polynomials (in z) uniformly in $\overline{\mathbb{D}}$. It follows that the last inequality is true for all $f \in A(\mathbb{D})$:

$$
\sup \{\mid f(w): w \in \overline{\mathbb{D}}\} \leq \sup \{f(z) \mid: z \in \mathbb{T}\}
$$

We have obtained a particular case of the maximum modulus principle of complex analysis by Operator Theory methods.

Remark 6.3 von Neumann's inequality shows that, given a contraction $T \in B(H)$ the functional calculus $p \rightarrow p(T)$ extends by continuity to a contractive homomorphism $f \rightarrow$ $f(T)$ from the disc algebra $A(\mathbb{D})$ into $B(H)$: a representation of the Banach algebra $A(\mathbb{D})$. Conversely, given any contractive representation $\pi: A(\mathbb{D}) \rightarrow B(H)$ we obtain a contraction $T=\pi(\zeta) \in B(H)($ recall $\zeta(z)=z$ for $z \in \overline{\mathbb{D}})$ such that $\pi(f)=f(T)$ for all $f \in A(\mathbb{D})$.

References

[1] P. R. Halmos, Shifts on Hilbert spaces, Journal für die Reine und Angewandte Mathematik, (208), 102-112, 1961, MR0152896.
[2] P. R. Halmos, A Hilbert space problem book, second edition, Springer Graduate Texts in Mathematics Vol. 19, New York, 1982, MR0675952.
[3] M. Rosenblum and J. Rovnyak, Hardy classes and operator theory, Corrected reprint of the 1985 original, Dover Publications Inc., Mineola, NY, 1997, MR1435287.
[4] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, Translated from the French and revised, North-Holland Publishing Co., Amsterdam, 1970 MR0275190.
[5] B. Sz.-Nagy, C. Foias, H. Bercovici and L. Kérchy, Harmonic analysis of operators on Hilbert space, Second enlarged edition, Universitext, Springer, New York, 2010, MR2760647.

[^0]: ${ }^{1}$ notes11, 15 Jan. 2012
 ${ }^{2}$ that is, given any $\varepsilon>0$, the set X_{M} can be covered by a countable number of intervals of total length at most ε

[^1]: ${ }^{3}$ Exercise: Note that T^{*} is not "multiplication by $\bar{\zeta}_{1}$ " (which does not preserve H^{2}); what is it?
 ${ }^{4}$ Exercise: Why does $f \rightarrow \phi f$ map H^{2} into H^{2} ?

[^2]: ${ }^{5}$ Observe that under the unitary $\mathcal{F}: H^{2} \rightarrow \ell^{2}: \zeta_{n} \rightarrow e_{n}$ (of course \mathcal{F} is the restriction to H^{2} of the Fourier transform $\left.\mathcal{F}: L^{2}(\mathbb{T}) \rightarrow \ell^{2}(\mathbb{Z})\right)$ the operator T is transformed into the (multiplicity one) shift $S: \ell^{2} \rightarrow \ell^{2}$ given by $S e_{n}=e_{n+1}$.

[^3]: ${ }^{6}$ In more detail: Given $x \in L$ write $x=x_{s}+x_{u}$ with $x_{s} \in K_{s}$ and $x_{u} \in K_{u}$. But $x \perp A\left(K_{u} \oplus K_{s}\right)$ and $A\left(K_{u} \oplus K_{s}\right)=A K_{u} \oplus A K_{s}=K_{u} \oplus A K_{s}$ (note that $A\left(K_{u}\right)=K_{u}$ since $\left.A\right|_{K_{u}}$ is unitary). Thus $x \perp K_{u}$ so $x=x_{s} \in K_{s}$. But also $x \perp A\left(K_{s}\right)$, so $x \in K_{s} \ominus A\left(K_{s}\right) \subseteq L^{\prime}$. This shows that $L \subseteq L^{\prime}$; the same argument using the decomposition $H=H_{s} \oplus H_{u}$ yields $L^{\prime} \subseteq L$.

[^4]: ${ }^{7} H$ is the orthogonal direct sum of its subspaces $E_{n}:=\left\{x \otimes e_{n}: x \in E\right\}$ which are all isomorphic to E.

[^5]: ${ }^{8}$ This generalises the argument in part (i) of the proof of Theorem 3.4 .

[^6]: ${ }^{9}$ because for all $x \in F$ and all $n \geq 0$ we have $\xi \perp\left(x \otimes e_{n}\right)$, hence $x_{n} \perp x$.

[^7]: ${ }^{10}$ It would be lower triangular if we wrote the decomposition as $\mathcal{K}=\mathcal{H}_{2}^{\perp} \oplus \mathcal{H} \oplus \mathcal{H}_{1}$.

