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1 Preliminaries

1.1 Reminder

If1 f : T→ C is a Borel function and 1 ≤ p <∞, we say f ∈ Lp(T) if

‖f‖pp ≡
∫ 2π

0
|f(eix)|p dx

2π
≡
∫
|f |pdm < +∞

and we say f ∈ L∞(T) if f is essentially bounded, which means that there is an M > 0 s.t.
the set XM = {eix : |f(eix)| > M} has measure zero2; the least such M is denoted ‖f‖∞.

We identify functions when they are almost everywhere (a.e.) equal, that is, when they
differ on a set of measure zero. Thus

C(T) $ L∞(T) $ L2(T) $ L1(T).

For f ∈ L1(T) define

f̂(n) =

∫ 2π

0
f(eix)e−inxdm(x), n ∈ Z.

The map
F : f → (f̂(n))n∈Z

is the Fourier transform.

Proposition 1.1 If f ∈ L1(T) satisfies f̂(n) = 0 for all n ∈ Z then f = 0 (a.e.).

Note that L2(T) is a Hilbert space for the scalar product

〈f, g〉 =

∫ 2π

0
f(eix)g(eix)dm(x)

and the family
{ζn : n ∈ Z} where ζn(eix) = einx

is orthonormal: 〈ζn, ζm〉 = δnm.
Proposition 1.1 shows that no nonzero element of L2 can be orthogonal to the family

{ζn : n ∈ Z}: hence it must be an orthonormal basis of L2.
Therefore for each f ∈ L2 we have

f =

+∞∑
n=−∞

f̂(n)ζn (L2 convergence)

and ‖f‖22 =
+∞∑

n=−∞
|f̂(n)|2 (Parseval).

1notes11, 15 Jan. 2012
2that is, given any ε > 0, the set XM can be covered by a countable number of intervals of total length

at most ε
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1.2 The space H2

Definition 1 For 1 ≤ p ≤ ∞,

Hp(T) = {f ∈ Lp(T) : f̂(−k) = 0 for all k = 1, 2, . . .}.

Given f ∈ H2(T), consider the power series

f̃(z) =

∞∑
n=0

f̂(n)zn.

Since
∑+∞

n=0 |f̂(n)|2 = ‖f‖22 < ∞, and so lim sup |f̂(n)| ≤ 1, the power series has radius
of convergence at least 1, hence converges in the open unit disc D and defines an analytic
function f̃ : D→ C. Conversely, if an analytic function g : D→ C has a power series
g(z) =

∑
anz

n such that the coefficients satisfy
∑
|an|2 <∞, then (by completeness of L2)

we may define g∗ ∈ L2(T) by g∗ =
∑
anζn and we find that ĝ∗(n) = 〈g∗, ζn〉 = an when

n ≥ 0 while ĝ∗(−k) = 0 for k = 1, 2, . . . . Thus g∗ ∈ H2(T) and g̃∗ = g.
Using the linear map f → f̃ and its inverse, g → g∗ we identify H2(T) with the space

H2(D) of all analytic functions on the disc with square-summable power series.
It can be shown that the “boundary function” may be obtained directly from g as

follows:

Theorem 1.2 (Fatou) If g ∈ H2(D), then for almost all eix ∈ T the limit limr↗1 g(reix)
exists and equals g∗(eix).

2 Invariant subspaces

Definition 2 If H is a Hilbert space and T : H → H is bounded linear. i.e. T ∈ B(H), a
closed linear subspace E ⊆ H is called T -invariant if T (E) ⊆ E.

Let T : H2(T)→ H2(T) be defined by

Tf = ζ1f (f ∈ H2(T)),

where ζ1(z) = z1 (z ∈ T). Note that T is an isometry3 (so T ∗T = I) but is not onto, since
ζ0 ⊥ T (H2). Since T (ζn) = ζn+1 we have in fact⋂

n≥0
Tn(H2) = {0}.

Indeed, ζk ⊥ Tn(H2) for all k < n. Hence if f ∈
⋂
n≥0 T

n(H2) then f ⊥ ζk for all k ∈ Z+

and so, since {ζn : n ∈ Z+} is an orthonormal basis of H2, it follows that f = 0.
Now let φ ∈ H2 with |φ(z)| = 1 for almost all z ∈ T. Note that since |φ| = 1 a.e., φ

defines a bounded, in fact an isometric operator Tφ on H2 by the formula 4

Tφf = φf, f ∈ H2.

Therefore the set
φH2 = {φf : f ∈ H2}

is a closed subspace of H2 because Tφ is isometric.

3Exercise: Note that T ∗ is not “multiplication by ζ̄1” (which does not preserve H2); what is it?
4Exercise: Why does f → φf map H2 into H2?
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Also, φH2 is T -invariant:

T (φH2) = ζ1φH
2 = φ(ζ1H

2) ⊆ φH2

because ζ1H
2 ⊆ H2.

In fact, ⋂
n≥0

Tn(φH2) ⊆
⋂
n≥0

Tn(H2) = {0}.

A function φ ∈ H2 with |φ(z)| = 1 for almost all z ∈ T is called an inner function
Examples are: ζn (n ∈ N) and f(z) = exp z−1

z+1 .

Theorem 2.1 (Beurling) A closed nonzero subspace E ⊆ H2(T) is T -invariant if and
only if there exists φ ∈ H2 with |φ(z)| = 1 for almost all z ∈ T such that E = φH2.
Moreover, φ is essentially unique in the sense that if E = ψH2 where |ψ| = 1 a.e. then φ

ψ
is (a.e. equal to) a constant (of modulus 1).

Proof. Suppose that E ⊆ H2 is a closed nonzero T -invariant subspace. The space T (E) is
a closed subspace of E because T is isometric. Moreover, T (E) 6= E because⋂

n≥0
Tn(E) ⊆

⋂
n≥0

Tn(H2) = {0}.

Thus there exists φ ∈ E of norm 1, such that φ ⊥ T (E).

Claim 1. The sequence {φ, T (φ), T 2(φ), . . . } is an orthonormal sequence in E.
Proof. Since φ ∈ E which is T -invariant we have Tn(φ) ∈ E for all n ∈ N. Moreover
‖Tn(φ)‖2 = ‖φ‖2 = 1. Also, if m,n ∈ N with m > n we have

Tm(φ) ∈ Tm(E) ⊆ Tn+1(E) = Tn(T (E)).

Thus Tm(φ) ∈ Tn(T (E)). But Tn(φ) ⊥ Tn(T (E)) since φ ⊥ T (E) by construction and Tn

is isometric. Thus
Tn(φ) ⊥ Tm(φ). 2

Claim 2. For all nonzero k ∈ Z we have

∫
ζk|φ|2dm = 0.

Proof. For k > 0,∫
ζk|φ|2dm =

∫
(ζkφ)φ̄dm = 〈ζkφ, φ〉 =

〈
T k(φ), φ

〉
= 0

by the previous claim. For k = −n < 0,∫
ζk|φ|2dm =

∫
φ(ζnφ)dm = 〈φ, ζnφ〉 = 〈φ, Tn(φ)〉 = 0. 2

It follows from this claim that the function ψ = |φ|2, which is in L1, satisfies ψ̂(k) = 0
for all k ∈ Z except k = 0. By Proposition 1.1, ψ must be a multiple of ζ0 = 1 and hence
a.e. equal to a constant. Hence so is |φ|. Since

∫
|φ|2dm = 1, the constant must be 1.

This shows that |φ(z)| = 1 a.e.
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Claim 3. E = φH2.
Proof. First, φH2 = Tφ(H2) and Tφ is an isometry since |φ| = 1 a.e.
Since {ζn : n ∈ Z+} is an orthonormal basis of H2, the set

{Tφζ0, Tφζ1, Tφζ2, . . . } = {φ, ζ1φ, ζ2φ, . . . } = {φ, T (φ), T 2(φ), . . . }

is an orthonormal basis of φH2, and is contained in E since φ ∈ E which is T -invariant.
We conclude that φH2 ⊆ E.

To prove that equality in fact holds, suppose f ∈ E is orthogonal to φH2; we show that
f = 0. Indeed, for all n = 0, 1, 2, . . . we have

f⊥φζn ⇒
∫
fφζndm = 0 ⇒

∫
fφ̄ζ−ndm = 0.

On the other hand if k = 1, 2, . . . then 〈ζkf, φ〉 = 0 since ζkf = T k(f) ∈ T k(E) ⊆ T (E)
while φ ⊥ T (E) by definition; thus

0 = 〈ζkf, φ〉 =

∫
ζkfφ̄dm.

This shows that the L2 function fφ̄ has all its Fourier coefficients equal to 0 and hence must
vanish (a.e.). Since |φ| = 1 a.e. this shows that f = 0.

Uniqueness
If φH2 = ψH2 where |φ| = |ψ| = 1 a.e. then ψφH2 = H2, so that ψφ = ψφ1 ∈ H2.

Similarly φψH2 = H2, so that φψ ∈ H2. Thus the function h = ψφ and its complex
conjugate are both analytic, which can only happen if h is a constant (alternatively, h ∈ H2

means ĥ(−n) = 0 for n = 1, 2, . . . while h̄ ∈ H2 means ĥ(+n) = 0 for n = 1, 2, . . . ; hence h
is constant).

This concludes the proof of the Theorem. 2

Remark 2.2 Note the dual role played by φ (and also by ζ1) in the above proof:
On the one hand φ is a vector in H2 and is moved around by the operator T (we say φ is
a wandering vector), and on the other it “is” an operator Tφ acting on the space H2.
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3 Shifts

Definition 3 A closed subspace L of a Hilbert space H is said to be wandering for an
isometry A ∈ B(H) if the subspaces L,A(L), A2(L), . . . are pairwise orthogonal.

Notation If {Mn} is a family of pairwise orthogonal closed subspaces of a Hilbert space
H, the orthogonal direct sum

∞⊕
n=0

Mn = M0 ⊕M1 ⊕M2 ⊕ . . .

is the smallest closed subspace
∨
Mn of H containing each Mn. This consists of all ξ of the

form

ξ =

∞∑
n=0

ξn with ξn ∈Mn and

∞∑
n=0

‖ξn‖2 <∞.

Thus if L is an A-wandering subspace we may form the orthogonal direct sum

∞⊕
n=0

An(L) := M+(L).

Remark 3.1 Note that we may recover the wandering subspace from M+(L):

L = M+(L)	A(M+(L)) := M+(L) ∩A(M+(L))⊥.

Indeed, L is contained in M+(L) and is orthogonal to each An+1(L), (n ≥ 0), hence to their
orthogonal direct sum, which is A(M+(L)); and conversely, if a vector ξ =

∑
k≥0A

kxk is in

M+(L) (i.e. each xk is in L) and is orthogonal to A(M+(L)) hence to all An+1(L), then for
all η ∈ L and n ≥ 0 we have

0 =
〈
ξ, An+1η

〉
=
∑
k≥0

〈
Akxk, A

n+1η
〉

=
〈
An+1xn+1, A

n+1η
〉

= 〈xn+1, η〉

and so xn+1 = 0; hence ξ = x0 ∈ L.

Definition 4 A (unilateral) shift on a Hilbert space H is a map S ∈ B(H) such that
(a) ‖Sx‖ = ‖x‖ for all x ∈ H (S is an isometry) and
(b) There is an S-wandering subspace L such that M+(L) = H.

The number dimL is called the multiplicity of the shift.

Note that, by Remark 3.1, the wandering subspace L is uniquely determined by S, and in
fact, since M+(L) = H,

L = H 	 S(H) = S(H)⊥ = ker(S∗).

Thus the multiplicity of a shift is uniquely defined.
Conversely,

Remark 3.2 Two shifts S ∈ B(H) and S1 ∈ B(H1) are unitarily equivalent if and only if
their wandering subspaces L and L1 are of the same dimension.

Thus the number dimL uniquely determines S up to unitary equivalence.
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Indeed, if L and L1 have the same dimension, choose any unitary U : L→ L1 and define

V : H → H1 :
∑

Sn(xn)→
∑

Sn1 (Uxn).

It is clear that V is invertible:

V −1
(∑

Sn1 (yn)
)

=
∑

Sn(U−1yn)

and it is isometric because∥∥∥∑Sn1 (Uxn)
∥∥∥2 =

∑
‖Sn1 (Uxn)‖2 =

∑
‖xn‖2 =

∥∥∥∑Sn(xn)
∥∥∥2 .

For example the operator Tf(z) = zf(z), f ∈ H2 is a shift.5 The vector ζ is a
wandering vector for T , i.e. the family {Tnζ : n ∈ Z+} is orthogonal.

We will need an easy observation

Remark 3.3 If T ∈ B(H) is an isometry and P a projection, then the projection onto
TP (H) is TPT ∗.

Proof. If ξ = T (η) ∈ TP (H) then TPT ∗ξ = TPT ∗Tη = TPη = Tη = ξ (since T ∗T = I and
η ∈ P (H)), and if ζ⊥TP (H) then TPT ∗ζ = 0 since for all ξ ∈ H we have 〈TPT ∗ζ, ξ〉 =
〈ζ, TPT ∗ξ〉 = 0 because P (T ∗ξ) ∈ P (H) so TPT ∗ξ ∈ TP (H). 2

Theorem 3.4 (Wold Decomposition) If A ∈ B(H) is an isometry, there is a unique
decomposition H = Hs ⊕Hu into A-reducing subspaces such that the restriction As of A to
Hs is a shift (if nonzero) and the restriction Au of A to Hu is unitary (if nonzero).

Moreover, if L = H 	A(H) = A(H)⊥ = kerA∗, then L is an A-wandering subspace,
i.e. the family {An(L) : n ∈ Z+} is a family of closed mutually orthogonal subspaces.

We have

Hs = M+(L) =
⊕
n≥0

An(L) = {x ∈ H : A∗nx→ 0} and Hu =
⋂
n≥0

An(H).

Proof. (i) If Anx ∈ An(L) and Amy ∈ Am(L) with k = n − m > 0 then, since Am is
isometric,

〈Anx,Amy〉 =
〈
AmAkx,Amy

〉
=
〈
Akx, y

〉
= 0

because Akx ∈ A(H) (since k ≥ 1) while y is in L which is orthogonal to A(H). Thus
An(L)⊥Am(L).

(ii) Define Hs =
⊕

n≥0A
n(L). We show that

Hs = {x ∈ H : A∗nx→ 0}. (**)

If P (L) is the projection onto L = (A(H))⊥, then P (L) = I − AA∗; by Remark 3.3 the
projection P (An(L)) onto An(L) is AnP (L)A∗n = An(I − AA∗)A∗n. Now x ∈ Hs if and
only if

x =

∞∑
n=0

P (An(L))x = lim
N→∞

N−1∑
n=0

An(I −AA∗)A∗nx = x− lim
N→∞

ANA∗Nx (*)

5Observe that under the unitary F : H2 → `2 : ζn → en (of course F is the restriction to H2 of the Fourier
transform F : L2(T) → `2(Z)) the operator T is transformed into the (multiplicity one) shift S : `2 → `2

given by Sen = en+1.
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i.e. if and only if limN→∞A
NA∗Nx = 0, equivalently if and only if limN ‖A∗Nx‖ = 0

(AN is an isometry).
This shows (∗∗).
On the other hand, y⊥Hs if and only if y⊥An(L) for all n ≥ 0, equivalently if

0 = P (An(L))y = An(I −AA∗)A∗ny ⇐⇒ AnA∗ny = An+1A∗n+1y

for all n, and so y = AnA∗ny for all n. But AnA∗n is the projection onto An(H). Therefore
y⊥Hs if and only if y ∈ An(H) for all n ≥ 0. In other words, y⊥Hs iff y ∈

⋂
n≥0A

n(H).
We have shown that

(Hs)
⊥ =

⋂
n≥0

An(H) := Hu.

(iii) If P = P (Hu) then, for all x ∈ H, Px = limnA
nA∗nx. Thus

P (AHu)x = APA∗x = A lim
n
AnA∗nA∗x = lim

n
An+1A∗(n+1)x = Px

and so P (AHu) = APA∗ = P hence PA = APA∗A = AP.

The second relation shows that A reduces Hu and the first relation shows that A maps Hu

onto Hu. Hence A|Hu is a unitary operator on Hu.
Finally, Hs = H⊥u also reduces A.

Uniqueness It remains to prove that if H = Ks⊕Ku, is an arbitrary decomposition so that
A|Ks is a shift and A|Ku is unitary, then Ku = Hu and Ks = Hs. But if A|Ks is a shift then
L′ := Ks 	 A(Ks) is A-wandering; and it will be enough to prove that L = L′, for then
Ks = M+(L′) = M+(L) = Ks and their orthogonal complements will also be equal. Now 6

L = H 	AH = (Ku ⊕Ks)	 (AKu ⊕AKs) = (Ku ⊕Ks)	 (Ku ⊕AKs) = Ks 	AKs = L′.

Remark 3.5 It follows that an isometry A ∈ B(H) is a shift if and only if it satisfies
‖A∗nx‖ → 0 for all x ∈ H. Equivalently if and only if

⋂
n≥0A

n(H) = 0.

6In more detail: Given x ∈ L write x = xs + xu with xs ∈ Ks and xu ∈ Ku. But x⊥A(Ku ⊕Ks) and
A(Ku ⊕Ks) = AKu ⊕ AKs = Ku ⊕ AKs (note that A(Ku) = Ku since A|Ku is unitary). Thus x⊥Ku so
x = xs ∈ Ks. But also x⊥A(Ks), so x ∈ Ks 	 A(Ks) ⊆ L′. This shows that L ⊆ L′; the same argument
using the decomposition H = Hs ⊕Hu yields L′ ⊆ L.
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4 The Beurling - Lax - Halmos Theorem

We wish to generalise Beurling’s Theorem (Theorem 2.1) to characterise invariant subspaces
of a shift of arbitrary multiplicity.

In the multiplicity one case, invariant subspaces M were shown to be of the form M =
Tφ(H2) where φ ∈ H2 was a suitable function. Note that Tφ is an isometry which commutes
with the operator T . This is the form of Beurling’s Theorem that generalises. Indeed, it can
be shown that, conversely, any isometry A ∈ B(H2) which commutes with T is necessarily
of the form A = Tφ (see [2, Problem 242]).

Let E be a Hilbert space and define

H = E ⊗ `2 = {ξ = (xn) : xn ∈ E,
∑
n≥0
‖xn‖2E <∞}.

This is a Hilbert space with scalar product

〈(xn), (yn)〉 =
∑
n

〈xn, yn〉E

(the sum converges absolutely). Completeness is proved just like the case of `2.
We denote the sequence (0, . . . , 0, x, 0, . . . ) (with x at the n-th place) by the symbol

x⊗ en; the linear span of {x⊗ en : x ∈ E,n ∈ Z+} is dense in H 7 and

(xn) =

∞∑
n=0

xn ⊗ en.

Let S ∈ B(H) be given by

S((x0, x1, x2, . . . )) = (0, x0, x1, x2, . . . )

i.e.
S(x⊗ en) = x⊗ en+1 (x ∈ E,n ∈ Z+).

This is an isometry, called the unilateral shift of multiplicity dimE.

Suppose V ∈ B(H) is a partial isometry. Let M = V (H). This is a closed subspace
since V is isometric on the orthogonal complement of its kernel.

Remark 4.1 If V S = SV then M is S-invariant.

Proof. If ξ ∈M there exists η ∈ H such that ξ = V η. Then

S(ξ) = S(V η) = V (Sη) ∈ V (H) = M. 2

Conversely,

Theorem 4.2 Let M ⊆ H be a closed S-invariant subspace. Then there exists a partial
isometry V ∈ B(H) which commutes with S such that

M = V (H).

We will need the following

Lemma 4.3 If H is a separable Hilbert space and P ∈ B(H) is a projection, then for any
orthonormal basis {fi : i ∈ I} of H we have

dimP (H) =
∑
i∈I
‖Pfi‖2 .

7 H is the orthogonal direct sum of its subspaces En := {x⊗ en : x ∈ E} which are all isomorphic to E.
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Proof. Let {yk : k ∈ K} be an orthonormal basis of P (H). Since each Pfi is in P (H), by
Parseval we have

‖Pfi‖2 =
∑
k∈K
| 〈Pfi, yk〉 |2

and so
∑
i∈I
‖Pfi‖2 =

∑
i∈I

∑
k∈K
| 〈Pfi, yk〉 |2 =

∑
k∈K

∑
i∈I
| 〈fi, Pyk〉 |2

=
∑
k∈K

∑
i∈I
| 〈fi, yk〉 |2 =

∑
k∈K
‖yk‖2

by Parseval again, since {fi : i ∈ I} is an orthonormal basis of H. But the last sum equals
the cardinality of K, i.e. the dimension of P (H). 2

Proof of the Theorem. Define

L = M 	 S(M) = M ∩ (SM)⊥.

This is a nonzero subspace because S(M) 6= M . Indeed, if m ∈ Z+ is the smallest integer
for which there exists ξ = (xn) ∈M with xm 6= 0, then all S(η) ∈ S(M) have their first m
coordinates equal to 0 and so ξ /∈ S(M).

Let P be the projection onto M and let Q be the projection onto L. Then SPS∗ is the
projection onto S(M) (Remark 3.3) and so

Q = P − SPS∗.

Claim 1. L is a wandering subspace, i.e. the subspaces Sn(L), n ≥ 0 are pairwise orthogo-
nal.

Proof. 8 If Sm(ξ) ∈ Sm(L) and Sn(η) ∈ Sn(L) with k = m− n > 0 then

〈Sm(ξ), Sn(η)〉 =
〈
SnSk(ξ), Sn(η)

〉
=
〈
Sk(ξ), η

〉
(Sn is isometric).

But Sk(ξ) ∈ S(M) (note k ≥ 1) because S(ξ) ∈ S(M) which is S-invariant; on the other
hand η ∈ L and L ⊥ S(M), so

〈
Sk(ξ), η

〉
= 0. 2

Thus we may form the sum

N =
∞⊕
n=0

Sn(L) = L⊕ S(L)⊕ S2(L)⊕ . . .

This consists of all ξ of the form

ξ =

∞∑
n=0

Sn(ξn) with ξn ∈ L and

∞∑
n=0

‖Snξn‖2 =

∞∑
n=0

‖ξn‖2 <∞.

Claim 2. N = M .

Proof. Since L ⊆ M so Sn(L) ⊆ Sn(M) ⊆ M , we see that M contains each Sn(L), hence
it must contain N .

Now take ξ ∈ M ∩ N⊥. Then ξ ∈ M and ξ⊥L; thus Qξ = 0, i.e. (P − SPS∗)ξ =
0 and so ξ = Pξ = SPS∗ξ. Thus ξ ∈ S(M); but ξ ∈ (S(L))⊥ so SQS∗ξ = 0, i.e.
(SPS∗ − S2PS∗2)ξ = 0 and so ξ = SPS∗ξ = S2PS∗2ξ, i.e. ξ ∈ S2(M). Continuing

8This generalises the argument in part (i) of the proof of Theorem 3.4.
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inductively, we conclude that ξ ∈ Sn(M) i.e. ξ = SnPS∗nξ for all n ≥ 0. But then ξ = 0,
because if ξ =

∑
k≥0 xk ⊗ ek then S∗nξ =

∑
k≥n xk ⊗ ek−n so

‖ξ‖2 = ‖SnPS∗nξ‖2 ≤ ‖S∗nξ‖2 =
∑
k≥n
‖xk‖2 → 0 . 2

Claim 3. There exists a partial isometry U : H → E with initial space L.

Proof. It is enough to prove that there exists an isometry W : L → E; then U : H → E
will be the extension of W to H, defined by setting U(ξ) = 0 for ξ ∈ L⊥.

Now the existence of an isometry W : L→ E will follow if we prove that dimL ≤ dimE.
Let {uk : k ∈ K} be an orthonormal basis of E. Since H is generated by {x⊗ en : x ∈

E,n ∈ Z+}, the set {uk ⊗ en : k ∈ K,n ∈ Z+} is an orthonormal basis of H. Thus by
Lemma 4.3

dimL =
∑
k∈K

∑
n∈Z+

‖Q(uk ⊗ en)‖2 =
∑
k∈K

∑
n∈Z+

〈Q(uk ⊗ en), uk ⊗ en〉 .

Now uk ⊗ en = Sn(uk ⊗ e0) and Q = P − SPS∗, so

〈Q(uk ⊗ e0), uk ⊗ e0〉 = 〈P (uk ⊗ e0), (uk ⊗ e0)〉 − 〈SPS∗(uk ⊗ e0), uk ⊗ e0〉
= 〈P (uk ⊗ e0), (uk ⊗ e0)〉

(because S∗(x⊗ e0) = 0) and for n > 0,

〈Q(uk ⊗ en), uk ⊗ en〉 = 〈PSn(uk ⊗ e0), Sn(uk ⊗ e0)〉 − 〈SPS∗Sn(uk ⊗ e0), Sn(uk ⊗ e0)〉
= 〈PSn(uk ⊗ e0), Sn(uk ⊗ e0)〉 −

〈
PSn−1(uk ⊗ e0), Sn−1(uk ⊗ e0)

〉
.

Thus for each k ∈ K,

m∑
n=0

〈Q(uk ⊗ en), uk ⊗ en〉 = 〈P (uk ⊗ e0), (uk ⊗ e0)〉

+ 〈PS(uk ⊗ e0), S(uk ⊗ e0)〉 − 〈P (uk ⊗ e0), (uk ⊗ e0)〉
+ . . . . . .

+〈PSm(uk ⊗ e0), Sm(uk ⊗ e0)〉−
〈
PSm−1(uk ⊗ e0), Sm−1(uk ⊗ e0)

〉
= 〈PSm(uk ⊗ e0), Sm(uk ⊗ e0)〉

and so

dimL = lim
m→∞

∑
k∈K
〈PSm(uk ⊗ e0), Sm(uk ⊗ e0)〉 ≤

∑
k∈K
‖uk‖2 = dimE. 2

Now define V : H → H as follows: Let ξ =
∑∞

n=0 xn ⊗ en ∈ H, so that
∑

n ‖xn‖
2 =

‖ξ‖2 < +∞. Observe that xn ∈ E so U∗xn ∈ L and the vectors Sn(U∗xn) are pairwise
orthogonal; thus the series

∑
n S

n(U∗xn) converges in H and we may define

V

( ∞∑
n=0

xn ⊗ en

)
=

∞∑
n=0

Sn(U∗xn).

This is a contraction:

‖V ξ‖2 =

∥∥∥∥∥
∞∑
n=0

Sn(U∗xn)

∥∥∥∥∥
2

=
∑
n

‖Sn(U∗xn)‖2 =
∑
n

‖U∗xn‖2 ≤
∑
n

‖xn‖2 = ‖ξ‖2 .

11



Claim 4. V is a partial isometry.

Proof. Let F = U(L) ⊆ E be the final space of the partial isometry U . Note that U∗ is a
partial isometry with initial space F and final space L. Consider the subspace

X :=

{
ξ =

∞∑
n=0

xn ⊗ en : xn ∈ F

}
⊆ H.

If ξ ∈ X, then each coordinate xn is in F and so ‖U∗xn‖ = ‖xn‖. Thus

‖V ξ‖2 =
∑
n

‖U∗xn‖2 =
∑
n

‖xn‖2 = ‖ξ‖2 .

and so V |F is isometric.
If ξ⊥X, then each coordinate xn is in F⊥ 9 and so U∗xn = 0. Thus V ξ = 0, showing

that V vanishes on X⊥. 2.

Claim 5. V (H) = M .

Proof. Since the range of U∗ is L, it is clear that that V (H) lies in the direct sum of the
subspaces Sn(L), namely M . On the other hand, given n ≥ 0 and ξ ∈ L, letting x = Uξ ∈ F
we have V (x⊗ en) = Sn(U∗x) = Sn(ξ). Thus V (H) contains all subspaces Sn(L), n ∈ Z+,
hence also their direct sum M. 2

Claim 6. V S = SV .

Proof. This is obvious: For all x ∈ E and n ≥ 0,

V S(x⊗ en) = V (x⊗ en+1) = Sn+1(U∗x)

SV (x⊗ en) = S(Sn(U∗x)) = Sn+1(U∗x). 2

9because for all x ∈ F and all n ≥ 0 we have ξ⊥(x⊗ en), hence xn⊥x.

12



5 Dilations of a contraction

Theorem 5.1 Let T ∈ B(H) be a contraction. Then there exists a Hilbert space K ⊇ H
and a unitary operator U ∈ B(K) such that

Tn = PHU
n|H (n ≥ 1).

Remark 5.2 The condition Tn = PHU
n|H forces the subspace H ⊆ K to be semi-invariant

under U , i.e. of the form H = H2 ∩H⊥1 , where H1 ⊆ H2 and both spaces are U -invariant.
Thus the matrix of U with respect to the (ordered) decomposition

K = H1 ⊕H⊕H⊥2 takes the form 10

U =

 ∗ ∗ ∗
0 T ∗
0 0 ∗

 .
Indeed, define

H2 = [Uny : y ∈ H, n ≥ 0] and H1 = H2 ∩H⊥.

Then we have two closed subspaces of K such that H1 ⊆ H2 and H = H2∩H⊥1 . Clearly H2

is U invariant (because [Uny : y ∈ H] is) and we need to show that H1 is also U invariant.
Thus if Pi denotes the projection onto Hi, we have to show that UP1 = P1UP1. But

P1 = P2 − P = P2P
⊥ and UP2 = P2UP2 because U(H2) ⊆ H2, hence

P1UP1 = P2UP2P
⊥ − PUP2P

⊥ = UP2P
⊥ − PUP2P

⊥ = UP1 − PUP2P
⊥

and so it suffices to show that PUP2P
⊥ = 0, equivalently that PUP2 = PUPP2, or

PUx = PUPx for x ∈ H2. In fact it suffices to show the last equality when x = Uny
for some n ∈ Z+ and y ∈ H (for then it will follow for arbitrary x ∈ H2 by linearity and
continuity).

But for x = Uny, since PUPUnP = (PUP )(PUnP ) = Tn+1 = PUn+1P we have

PUPx = PUPUny = PUPUnPy (because y ∈ H)

= PUn+1Py = PUn+1y = PU(Uny) = PUx

as required. This shows that H1 is U -invariant as well.

Example 5.3 Suppose z ∈ C with |z| < 1 and let T = zI acting on H = C.

Try to construct a unitary dilation U on the space C⊕ C⊕ C:

U =

 a b c
0 z d
0 0 e

 .
Now U is unitary if and only if its rows and columns form orthonormal sets. This forces
|b|2 = |d|2 = 1− |z|2 and we may choose b = d =

√
1− |z|2. But then the orthogonality of

the second and third column give bc̄ + zd̄ = 0, so c = −z̄. Now if the first row and third
column are to have unit length then necessarily a = 0 and e = 0. Thus

U =

 0 b −z̄
0 z b
0 0 0

 (b =
√

1− |z|2).

10It would be lower triangular if we wrote the decomposition as K = H⊥2 ⊕H⊕H1.
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But this is not unitary! The first column and last row are 0. To remedy this, we need to
add rows and columns:

U =


s 1 0 0 0
0 0 b −z̄ 0
0 0 z b 0
0 0 0 0 1
0 0 0 0 t

 .
Now the length of the first row and the last column force s = t = 0, and again the first
column and last row are 0. Thus we need to add more rows and columns, and so on “ad
infinitum”: So U turns out to be an operator acting on the infinite dimensional (!) space
`2(Z) given by

U =



. . .
. . .

. . . 1 0
0 b −z̄

z b 0

0 1
. . .

. . .
. . .


It is not hard to verify that this operator is unitary, and it will follow anyway from the
general construction (second method) below.

Proof of the Theorem. (First method) We dilate T in two steps:
(a) we dilate (T,H) to an isometry (V,K1) and
(b) we dilate the isometry (V,H1) to a unitary (U,K).

Then (U,K) will be a unitary dilation of (T,H).

(a) Dilation of a contraction to an isometry

The space K1 is defined to be

K1 = H⊗ `2(Z+)

(see Section 4). Recall that K1 consists of all families (xn)n≥0 (with xn ∈ H for all n) which
are square summable in norm. We identifyH with the subspaceH0 = {(h, 0, 0, . . . ) : h ∈ H}
of K1.

Let T ∈ B(H) be a contraction. It follows that the operator I − T ∗T is positive; hence
we may define

DT = (I − T ∗T )1/2.

Consider the operator V ∈ B(K1) given by

V =


T 0 0 0 . . .
DT 0 0 0 . . .
0 I 0 0 . . .
0 0 I 0 . . .
...

...
. . .

. . .

 =

[
T 0
∗ ∗

]

(the last matrix is written with respect to the decomposition K1 = H⊕H⊥.) Explicitly,

V (h0, h1, h2, . . . ) = (Th0, DTh0, h1, h2, . . . ).

14



Clearly V dilates T . To see that it is isometric, note that

‖Th0‖2 + ‖DTh0‖2 = 〈Th0, Th0〉+ 〈DTh0, DTh0〉
= 〈T ∗Th0, h0〉+

〈
D2
Th0, h0

〉
= ‖h0‖2 .

and thus

‖V h‖2 = ‖Th0‖2 + ‖DTh0‖2 +
∞∑
n=1

‖hn‖2

= ‖h0‖2 +
∞∑
n=1

‖hn‖2 = ‖h‖2

(b) Dilation of an isometry to a unitary

Let V ∈ B(K1) be an isometry, V ∗V = I.
Observe that (V V ∗)V = V (V ∗V ) = V . Also (V V ∗)2 = V (V ∗V )V ∗ = V V ∗ so V V ∗ is a

projection. Let P = I − V V ∗. This is also a projection and PV = V − V V ∗V = 0.
Thus if

U : K1 ⊕K1 → K1 ⊕K1 : is given by U =

[
V ∗ 0
P V

]
then U is unitary. Indeed,

UU∗ =

[
V ∗ 0
P V

] [
V P
0 V ∗

]
=

[
V ∗V V ∗P
PV P 2 + V V ∗

]
=

[
I 0
0 I

]
and

U∗U =

[
V P
0 V ∗

] [
V ∗ 0
P V

]
=

[
V V ∗ + P 2 PV
V ∗P V ∗V

]
=

[
I 0
0 I

]
Combining the two steps, we obtain the dilation U in the form

U =


T ∗ A∗ 0 0
0 B∗ 0 0
P11 P12 T 0
P21 P22 A B

 =

 V ∗ 0 0
P1 T 0
P2 A B


where P1 = [ P11 P12 ] and P2 = [ P21 P22 ]. 2

Remark 5.4 Observe that, since the space K1 is in fact U -invariant (not just semi-invariant),
we have Un|K1 = V n: thus Un is in fact an extension of V n (not merely a dilation).

Proof of the Theorem. (Second method) Notice that since ‖T‖ ≤ 1, the operators I − T ∗T
and I − TT ∗ are positive; hence we may define

DT = (I − T ∗T )1/2, DT ∗ = (I − TT ∗)1/2.

These are called the ‘defect operators’: DT = 0 iff T is an isometry, and DT ∗ = 0 iff T ∗ is
an isometry (then T is called a co-isometry). Note that

TD2
T = T − TT ∗T = D2

T ∗T, T ∗D2
T ∗ = T ∗ − T ∗TT ∗ = D2

TT
∗

from which we obtain
T ∗DT ∗ = DTT

∗, TDT = DT ∗T (1)
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by approximating the function f(t) =
√
t by polynomials (pn) uniformly for t ∈ [0, 1] (so

that DT = limn pn(D2
T ) and DT ∗ = limn pn(D2

T ∗)).
The space K is defined to be

K = H⊗ `2(Z).

Thus K consists of all families (xn)n∈Z (with xn ∈ H for all n) which are square summable
in norm, i.e.

∑
n∈Z ‖xn‖

2 <∞.
We identify H with the subspace H0 = {(. . . , 0, h , 0, . . . ) : h ∈ H} of K.

Consider the operator U ∈ B(K) given by

U =



. . .
. . .

. . . I 0
0 DT −T ∗

T DT ∗ 0

0 I
. . .

. . .
. . .


=

 ∗ ∗ ∗
0 T ∗
0 0 ∗

 .

Explicitly, for h = (hn), we have Uh = h′ = (h′n), where

h′−1 = DTh0 − T ∗h1, h′0 = Th0 +DT ∗h1, h′j = hj+1, (j 6= −1, 0).

Clearly U dilates T . To see that it is isometric, consider

‖h′−1‖2 + ‖h′0‖2 = (〈D2
Th0, h0〉+ 〈T ∗h1, T ∗h1〉 − 2Re 〈DTh0, T

∗h1〉)
+ (〈Th0, Th0〉+ 〈D2

T ∗h1, h1〉+ 2Re〈DT ∗h1, Th0〉)
= ‖h0‖2 + ‖h1‖2 (using TDT = DT ∗T ).

To prove that U is onto, given (h′n) ∈ `2(Z) set hj = h′j−1, (j 6= −1, 0) and determine h0
and h1 by solving the system

h′−1 = DTh0 − T ∗h1
h′0 = Th0 +DT ∗h1

}
⇒ DTh

′
−1 = (I − T ∗T )h0 −DTT

∗h1
T ∗h′0 = T ∗Th0 + T ∗DT ∗h1

}
⇒ DTh

′
−1 + T ∗h′0 = h0 −DTT

∗h1 + T ∗DT ∗h1 = h0

h′−1 = DTh0 − T ∗h1
h′0 = Th0 +DT ∗h1

}
⇒ Th′−1 = TDTh0 − TT ∗h1

DT ∗h
′
0 = DT ∗Th0 + (I − TT ∗)h1

}
⇒ −Th′−1 +DT ∗h

′
0 = −TDTh0 +DT ∗Th0 + h1 = h1

where we have used relations (1). 2
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6 von Neumann’s inequality

Theorem 6.1 (von Neumann’s inequality) If T ∈ B(H) is a contraction and p is a
polynomial p(z) =

∑n
k=0 akz

k, then

‖p(T )‖B(H) ≤ sup{|p(z)| : z ∈ T}.

Proof. Let U ∈ B(K) be any unitary dilation of T ∈ B(H). Observe that p(T ) = PHp(U)|H
and hence ‖p(T )‖B(H) ≤ ‖p(U)‖B(K). But U is a unitary operator so σ(U) ⊆ T; thus by
the spectral mapping theorem we have

‖p(U)‖B(K) = sup{|p(z)| : z ∈ σ(U)} ≤ sup{|p(z)| : z ∈ T}.

Thus ‖p(T )‖B(H) ≤ ‖p(U)‖B(K) ≤ sup{|p(z)| : z ∈ T}. 2

Example 6.2 In particular if T = wI where w ∈ D, then for any polynomial p we obtain
p(T ) = p(w)I and so

|p(w)| = ‖p(T )‖ ≤ sup{|p(z)| : z ∈ T}.

More generally, let A(D) be the algebra of all continuous complex-valued functions on D
which are analytic in D. This is a closed subalgebra of C(D): it consists of all f ∈ C(D)
that are limits of polynomials (in z) uniformly in D. It follows that the last inequality is
true for all f ∈ A(D):

sup{|f(w) : w ∈ D} ≤ sup{f(z)| : z ∈ T}.

We have obtained a particular case of the maximum modulus principle of complex anal-
ysis by Operator Theory methods.

Remark 6.3 von Neumann’s inequality shows that, given a contraction T ∈ B(H) the
functional calculus p → p(T ) extends by continuity to a contractive homomorphism f →
f(T ) from the disc algebra A(D) into B(H): a representation of the Banach algebra A(D).
Conversely, given any contractive representation π : A(D)→ B(H) we obtain a contraction
T = π(ζ) ∈ B(H) (recall ζ(z) = z for z ∈ D) such that π(f) = f(T ) for all f ∈ A(D).
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