A note on the spectrum

Let ¹ \mathcal{B} be a unital Banach algebra (for example, $\mathcal{B} = \mathcal{B}(\mathcal{H})$) and denote by $GL(\mathcal{B})$ the group of invertible elements of \mathcal{B} .

Basic Lemma If $T \in \mathcal{B}$ satisfies ||T|| < 1 then $I - T \in GL(\mathcal{B})$ and

$$\sum_{k=0}^{\infty} T^k = (I - T)^{-1}.$$

Proof. The geometric series on the left converges absolutely, hence (completeness of \mathcal{B}) converges. If $S_n = \sum_{k=0}^n T^k$, it is immediate that $S_n(I-T) = (I-T)S_n = I - T^{n+1}$. Hence $\lim_n S_n(I-T) = \lim_n (I-T)S_n = I$. \Box

If $T \in \mathcal{B}$ we define the *spectrum of* T to be

$$\sigma(T) = \{ \lambda \in \mathbb{C} : (\lambda I - T) \notin GL(\mathcal{B}) \}.$$

Lemma 1 $\sigma(T)$ is bounded by ||T||, so

$$\rho(T) := \sup\{|\lambda| : \lambda \in \sigma(T)\} \le ||T||$$

Proof. If $|\lambda| > ||T||$ then $\left\|\frac{T}{\lambda}\right\| < 1$ and so the geometric series

$$\sum_{k=0}^{\infty} \left(\frac{T}{\lambda}\right)^k = \left(I - \frac{T}{\lambda}\right)^{-1}$$

is convergent, showing that $(\lambda - T) = \lambda \left(I - \frac{T}{\lambda}\right) \in GL(\mathcal{B})$, hence $\lambda \notin \sigma(T)$. \Box

Lemma 2 If $\lambda \notin \sigma(T)$ so that $R_{\lambda} = (\lambda I - T)^{-1}$ is defined, then for all $w \in \mathbb{C}$ with $|w - \lambda| < \frac{1}{\|R_{\lambda}\|}$ we have $w \notin \sigma(T)$ and in fact

$$-\sum_{k=0}^{\infty} (-R_{\lambda})^{k+1} (w-\lambda)^{k} = (wI-T)^{-1} = R_{w}$$

Proof. Set $z = \lambda - w$; if $|w - \lambda| < \frac{1}{\|R_{\lambda}\|}$ then $\|zR_{\lambda}\| < 1$ so $I - zR_{\lambda} \in GL(\mathcal{B})$ and

$$\sum_{k=0}^{\infty} (zR_{\lambda})^{k} = (I - zR_{\lambda})^{-1}$$

hence
$$\sum_{k=0}^{\infty} R_{\lambda}^{k+1} z^{k} = R_{\lambda} (I - zR_{\lambda})^{-1} = ((I - zR_{\lambda})R_{\lambda}^{-1})^{-1}$$
$$= (R_{\lambda}^{-1} - z)^{-1} = (\lambda - T - z)^{-1} = (w - T)^{-1}$$

Conclusion 1 The set $\sigma(T)$ is closed, because $\mathbb{C} \setminus \sigma(T)$ is open; in fact if $\lambda \notin \sigma(T)$ then $B(\lambda, \frac{1}{\|R_{\lambda}\|}) \subseteq \mathbb{C} \setminus \sigma(T)$.

 $^{^{1}}$ notes, 23 November 11

Conclusion 2 The function

$$w \to R_w : \mathbb{C} \setminus \sigma(T) \to \mathbb{B}$$

has a power series expansion around each $\lambda \notin \sigma(T)$, hence is continuous on $\mathbb{C} \setminus \sigma(T)$.

(A power series converges uniformly on compact subsets of its set of convergence, and its partial sums are polynomials and hence continuous functions.)

Remark 3 In fact $w \to R_w$ is holomorphic (differentiable in norm). This is proved exactly as in the case of a complex - valued power series.

Alternatively, it follows from the following "resolvent identity":

If $\lambda, \mu \notin \sigma(T)$ are distinct,

$$\frac{R_{\lambda} - R_{\mu}}{\lambda - \mu} = \frac{(\lambda - T)^{-1} - (\mu - T)^{-1}}{\lambda - \mu} = -(\lambda - T)^{-1}(\mu - T)^{-1} = -R_{\lambda}R_{\mu}$$

so that, if $\lambda \to \mu$, then $\left\| \frac{R_{\lambda} - R_{\mu}}{\lambda - \mu} + R_{\mu}^2 \right\| \to 0$ since $\|R_{\lambda} - R_{\mu}\| \to 0$ (continuity of $\lambda \to R_{\lambda}$).

Proof of the resolvent identity.

$$(\lambda - T)((\lambda - T)^{-1} - (\mu - T)^{-1})(\mu - T) = (\mu - T) - (\lambda - T) = \mu - \lambda.$$

Lemma 4 The spectrum $\sigma(T)$ is nonempty.

Proof. Suppose $\sigma(T)$ is empty. Then $w \to R_w$ is defined on \mathbb{C} and has a power series expansion around each complex number. Therefore for each continuous linear form $\phi : \mathcal{B} \to \mathbb{C}$ the function

$$w \to \phi(R_w) : \mathbb{C} \to \mathbb{C}$$

has a power series expansion around each point, hence is entire.

Now if $w \in \mathbb{C}$ is such that |w| > ||T|| then $||w^{-1}T|| < 1$ hence

$$\phi(R_w) = \phi((w - T)^{-1}) = w^{-1}\phi((I - w^{-1}T)^{-1})$$

= $\frac{1}{w}\phi\left(\sum_{k=0}^{\infty} (w^{-1}T)^k\right) = \frac{1}{w}\sum_{k=0}^{\infty}\phi((w^{-1}T)^k) = \frac{1}{w}\sum_{k=0}^{\infty}\phi(T^k)\frac{1}{w^k}.$

This series converges uniformly on compact subsets of $\{w \in \mathbb{C} : |w| > ||T||\}$. Therefore, integrating on a circle $\gamma(t) = re^{is}$, $s \in [0, 2\pi]$ with radius r > ||T||, we obtain

$$\int_{\gamma} \phi(R_w) dw = \int_{\gamma} \sum_{k=0}^{\infty} \phi(T^k) \frac{1}{w^{k+1}} dw = \sum_{k=0}^{\infty} \phi(T^k) \int_{\gamma} \frac{1}{w^{k+1}} dw$$

(by uniform convergence)
$$= \phi(T^0) \int_{\gamma} \frac{1}{w} dw = 2\pi i \phi(T^0).$$

Since the function $w \to \phi(R_w)$ is entire, the left hand side vanishes for all ϕ . This forces $\phi(I) = \phi(T^0) = 0$ for each continuous linear form ϕ and hence I = 0 which is absurd. \Box