A note on the spectrum

Let ${ }^{1} \mathcal{B}$ be a unital Banach algebra (for example, $\mathcal{B}=\mathcal{B}(\mathcal{H})$) and denote by $G L(\mathcal{B})$ the group of invertible elements of \mathcal{B}.
Basic Lemma If $T \in \mathcal{B}$ satisfies $\|T\|<1$ then $I-T \in G L(\mathcal{B})$ and

$$
\sum_{k=0}^{\infty} T^{k}=(I-T)^{-1}
$$

Proof. The geometric series on the left converges absolutely, hence (completeness of $\mathcal{B})$ converges. If $S_{n}=\sum_{k=0}^{n} T^{k}$, it is immediate that $S_{n}(I-T)=(I-T) S_{n}=I-T^{n+1}$. Hence $\lim _{n} S_{n}(I-T)=\lim _{n}(I-T) S_{n}=I$.

If $T \in \mathcal{B}$ we define the spectrum of T to be

$$
\sigma(T)=\{\lambda \in \mathbb{C}:(\lambda I-T) \notin G L(\mathcal{B})\}
$$

Lemma $1 \sigma(T)$ is bounded by $\|T\|$, so

$$
\rho(T):=\sup \{|\lambda|: \lambda \in \sigma(T)\} \leq\|T\|
$$

Proof. If $|\lambda|>\|T\|$ then $\left\|\frac{T}{\lambda}\right\|<1$ and so the geometric series

$$
\sum_{k=0}^{\infty}\left(\frac{T}{\lambda}\right)^{k}=\left(I-\frac{T}{\lambda}\right)^{-1}
$$

is convergent, showing that $(\lambda-T)=\lambda\left(I-\frac{T}{\lambda}\right) \in G L(\mathcal{B})$, hence $\lambda \notin \sigma(T)$.

Lemma 2 If $\lambda \notin \sigma(T)$ so that $R_{\lambda}=(\lambda I-T)^{-1}$ is defined, then for all $w \in \mathbb{C}$ with $|w-\lambda|<\frac{1}{\left\|R_{\lambda}\right\|}$ we have $w \notin \sigma(T)$ and in fact

$$
-\sum_{k=0}^{\infty}\left(-R_{\lambda}\right)^{k+1}(w-\lambda)^{k}=(w I-T)^{-1}=R_{w}
$$

Proof. Set $z=\lambda-w$; if $|w-\lambda|<\frac{1}{\left\|R_{\lambda}\right\|}$ then $\left\|z R_{\lambda}\right\|<1$ so $I-z R_{\lambda} \in G L(\mathcal{B})$ and

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left(z R_{\lambda}\right)^{k} & =\left(I-z R_{\lambda}\right)^{-1} \\
\text { hence } \quad \sum_{k=0}^{\infty} R_{\lambda}^{k+1} z^{k} & =R_{\lambda}\left(I-z R_{\lambda}\right)^{-1}=\left(\left(I-z R_{\lambda}\right) R_{\lambda}^{-1}\right)^{-1} \\
& =\left(R_{\lambda}^{-1}-z\right)^{-1}=(\lambda-T-z)^{-1}=(w-T)^{-1}
\end{aligned}
$$

Conclusion 1 The set $\sigma(T)$ is closed, because $\mathbb{C} \backslash \sigma(T)$ is open; in fact if $\lambda \notin \sigma(T)$ then $B\left(\lambda, \frac{1}{\left\|R_{\lambda}\right\|}\right) \subseteq \mathbb{C} \backslash \sigma(T)$.

[^0]Conclusion 2 The function

$$
w \rightarrow R_{w}: \mathbb{C} \backslash \sigma(T) \rightarrow \mathbb{B}
$$

has a power series expansion around each $\lambda \notin \sigma(T)$, hence is continuous on $\mathbb{C} \backslash \sigma(T)$.
(A power series converges uniformly on compact subsets of its set of convergence, and its partial sums are polynomials and hence continuous functions.)

Remark 3 In fact $w \rightarrow R_{w}$ is holomorphic (differentiable in norm). This is proved exactly as in the case of a complex - valued power series.

Alternatively, it follows from the following "resolvent identity":
If $\lambda, \mu \notin \sigma(T)$ are distinct,

$$
\frac{R_{\lambda}-R_{\mu}}{\lambda-\mu}=\frac{(\lambda-T)^{-1}-(\mu-T)^{-1}}{\lambda-\mu}=-(\lambda-T)^{-1}(\mu-T)^{-1}=-R_{\lambda} R_{\mu} .
$$

so that, if $\lambda \rightarrow \mu$, then $\left\|\frac{R_{\lambda}-R_{\mu}}{\lambda-\mu}+R_{\mu}^{2}\right\| \rightarrow 0$ since $\left\|R_{\lambda}-R_{\mu}\right\| \rightarrow 0$ (continuity of $\lambda \rightarrow R_{\lambda}$).

Proof of the resolvent identity.

$$
(\lambda-T)\left((\lambda-T)^{-1}-(\mu-T)^{-1}\right)(\mu-T)=(\mu-T)-(\lambda-T)=\mu-\lambda
$$

Lemma 4 The spectrum $\sigma(T)$ is nonempty.
Proof. Suppose $\sigma(T)$ is empty. Then $w \rightarrow R_{w}$ is defined on \mathbb{C} and has a power series expansion around each complex number. Therefore for each continuous linear form $\phi: \mathcal{B} \rightarrow \mathbb{C}$ the function

$$
w \rightarrow \phi\left(R_{w}\right): \mathbb{C} \rightarrow \mathbb{C}
$$

has a power series expansion around each point, hence is entire.
Now if $w \in \mathbb{C}$ is such that $|w|>\|T\|$ then $\left\|w^{-1} T\right\|<1$ hence

$$
\begin{aligned}
\phi\left(R_{w}\right) & =\phi\left((w-T)^{-1}\right)=w^{-1} \phi\left(\left(I-w^{-1} T\right)^{-1}\right) \\
& =\frac{1}{w} \phi\left(\sum_{k=0}^{\infty}\left(w^{-1} T\right)^{k}\right)=\frac{1}{w} \sum_{k=0}^{\infty} \phi\left(\left(w^{-1} T\right)^{k}\right)=\frac{1}{w} \sum_{k=0}^{\infty} \phi\left(T^{k}\right) \frac{1}{w^{k}} .
\end{aligned}
$$

This series converges uniformly on compact subsets of $\{w \in \mathbb{C}:|w|>\|T\|\}$. Therefore, integrating on a circle $\gamma(t)=r e^{i s}, s \in[0,2 \pi]$ with radius $r>\|T\|$, we obtain

$$
\begin{aligned}
\int_{\gamma} \phi\left(R_{w}\right) d w=\int_{\gamma} \sum_{k=0}^{\infty} \phi\left(T^{k}\right) \frac{1}{w^{k+1}} d w & =\sum_{k=0}^{\infty} \phi\left(T^{k}\right) \int_{\gamma} \frac{1}{w^{k+1}} d w \\
\text { (by uniform convergence) } & =\phi\left(T^{0}\right) \int_{\gamma} \frac{1}{w} d w=2 \pi i \phi\left(T^{0}\right)
\end{aligned}
$$

Since the function $w \rightarrow \phi\left(R_{w}\right)$ is entire, the left hand side vanishes for all ϕ. This forces $\phi(I)=\phi\left(T^{0}\right)=0$ for each continuous linear form ϕ and hence $I=0$ which is absurd.

[^0]: ${ }^{1}$ notes, 23 November 11

