Operator Theory - Spring 2010 - Summary

Week 2: Feb. 24-25

1.1 Examples of operators (continued)

Given an onb of \mathcal{H}, every bounded operator on \mathcal{H} has a matrix. The converse fails!
Integral operators on $L^{2}(X, \mu)$: given a "nice" function $k: X \times X \rightarrow \mathbb{C}$, let $f \rightarrow A_{k} f$ where $A_{k} f(x)=\int k(x, y) f(y) d \mu(y)$.

2 Bounded Operators

2.1

The adjoint: if $T \in \mathcal{B}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$, the formula

$$
\left\langle T^{*} y, x\right\rangle_{1}=\langle y, T x\rangle_{2}, \quad x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2}
$$

defines a unique $T^{*} \in \mathcal{B}\left(\mathcal{H}_{2}, \mathcal{H}_{1}\right)$, and $\left\|T^{*}\right\|=\|T\|$.
Properties of the adjoint operation:

1. $A^{* *}=A \quad\left(A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}\right)$
2. $(A+\lambda B)^{*}=A^{*}+\bar{\lambda} B^{*} \quad\left(A, B \in \mathcal{B}\left(\mathcal{H}_{1} \mathcal{H}_{2}\right), \lambda \in \mathbb{C}\right)$
3. $(A C)^{*}=C^{*} A^{*} \quad\left(A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}, C: \mathcal{H}_{2} \rightarrow \mathcal{H}_{3}\right)$
4. $\left\|A^{*} A\right\|=\|A\|^{2} \quad\left(A \in \mathcal{B}\left(\mathcal{H}_{1} \mathcal{H}_{2}\right)\right)$.

Generalisation: A sesquilinear form is a map $\phi: \mathcal{H}_{1} \times \mathcal{H}_{2} \rightarrow \mathbb{C}$ which is linear in the first variable and antilinear (or conjugate linear) in the second.

Theorem 1 (The BLT theorem) ${ }^{1}$ A sesquilinear form ϕ is bounded (i.e. there is $M<\infty$ s.t. $\phi(x, y) \leq M\|x\|\|y\|$ for all $\left.x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2}\right)$ iff there exists $T \in \mathcal{B}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ s.t.

$$
\phi(x, y)=\langle T x, y\rangle, \quad x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2} .
$$

This T is unique and the least bound M for ϕ is $\|T\|$.
Polarisation. Every sesquilinear $\phi: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ is uniquely determined by the associated "quadratic form": for all $x, y \in \mathcal{H}$

$$
4 \phi(x, y)=\phi(x+y, x+y)-\phi(x-y, x-y)+i \phi(x+i y, x+i y)-i \phi(x-i y, x-i y)
$$

Hence, if $\langle T x, x\rangle=\langle S x, x\rangle$ for all $x \in \mathcal{H}$, then $S=T$. What happens in real Hilbert space?!

[^0]
2.2 Classes of operators

- An isometry $X: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is \ldots an isometry: $\|X x\|=\|x\|$ for all $x \in \mathcal{H}_{1}$; equivalently, $\langle X x, X y\rangle=\langle x, y\rangle$ for all $x, y \in \mathcal{H}_{1}$ (polarise); X is isometric iff $X^{*} X=I_{\mathcal{H}_{1}}$.
- Special case: a unitary operator $Y: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is an onto isometry. Y is unitary iff $Y^{*} Y=I_{\mathcal{H}_{1}}$ and $Y Y^{*}=I_{\mathcal{H}_{2}}$; equivalently, if it is invertible and $Y^{-1}=Y^{*}$.

Example: The unilateral shift $S: e_{n} \rightarrow e_{n+1}$ on $\ell^{2}\left(\mathbb{Z}_{+}\right)$is isometric, not unitary. Note $S^{*}\left(e_{n}\right)=e_{n-1}$ for $n>0$ but $S^{*}\left(e_{0}\right)=0$.

The bilateral shift $U: e_{n} \rightarrow e_{n+1}$ on $\ell^{2}(\mathbb{Z})$ is unitary: $U^{*}\left(e_{n}\right)=e_{n-1}$ for all $n \in \mathbb{Z}$.

- $A \in \mathcal{B}(\mathcal{H})$ is called normal iff $A^{*} A=A A^{*}$.

Example: the shift S isn't; any unitary $V: \mathcal{H} \rightarrow \mathcal{H}$ is.

- Special case: $B \in \mathcal{B}(\mathcal{H})$ is called selfadjoint if $B^{*}=B$; equivalently, if $\langle B x, x\rangle \in \mathbb{R}$ for all $x \in \mathcal{H}$ (polarise).
- Special case: $C \in \mathcal{B}(\mathcal{H})$ is called positive if $\langle C x, x\rangle \geq 0$ for all $x \in \mathcal{H}$.

Examples: All multilpication operators $M_{f}\left(f \in L^{\infty}(X, \mu)\right)$ are normal, because $M_{f}^{*}=$ $M_{\bar{f}}$. M_{f} is selfadjoint iff $f(t) \in \mathbb{R}$ for μ-almost all $t \in X$; it is positive iff $f(t) \geq 0$ for μ-almost all $t \in X$; it is isometric iff it is unitary iff $|f(t)|=1$ for μ-almost all $t \in X$.

Lemma 2 If $S \geq 0$ then for all $x, y \in \mathcal{H}$

$$
\begin{aligned}
& \text { (i) }|\langle S x, y\rangle|^{2} \leq\langle S x, x\rangle\langle S y, y\rangle \\
& \text { (ii) }\|S\|=\sup \{|\langle S x, x\rangle|:\|x\| \leq 1\} \\
& \text { (iii) }\left.\|S x\|\right|^{2} \leq\|S\|\langle S x, x\rangle \text {. }
\end{aligned}
$$

NB. (ii) also holds for S normal. Not generally (even for 2×2 matrices).
Proof (i) is just C-S. For (ii): If $a \equiv \sup \{|\langle S x, x\rangle|:\|x\| \leq 1\}$ then $a \leq\|S\|$.
For the opposite inequality, apply (i) to $\langle S x, y\rangle$:

$$
|\langle S x, y\rangle|^{2} \leq\langle S x, x\rangle\langle S y, y\rangle \leq a^{2}
$$

Take sup over x, y in ballH \mathcal{H} to obtain $\|S\|^{2} \leq a^{2}$.
For (iii): apply (ii) to $y=S x$.
Proposition 3 Let $\left(B_{n}\right)$ be a monotone sequence of selfadjoint operators which is uniformly bounded, i.e. $\sup _{n}\left\|B_{n}\right\|<\infty$. Then there is a unique $B=B^{*} \in \mathcal{B}(\mathcal{H})$ such that $\left\|B_{n} x-B x\right\| \rightarrow 0$ for all $x \in \mathcal{H}$. We say $B_{n} \rightarrow B$ in the strong operator topology (SOT).

Projections If $M \subseteq \mathcal{H}$ is a closed subspace, define the (orthogonal) projection $P_{M} \in$ $\mathcal{B}(\mathcal{H}))$.

- An operator $P \in \mathcal{B}(\mathcal{H}))$ is a projection iff $P=P^{2}=P^{*}$ (write $P \in \mathcal{P}(\mathcal{B}(\mathcal{H}))$). Then $P=P_{M}$ where $M=P(\mathcal{H})$. Also $0 \leq P \leq I$.
- If $P, Q \in \mathcal{P}(\mathcal{B}(\mathcal{H})))$ then

$$
P(\mathcal{H}) \subseteq Q(\mathcal{H}) \Longleftrightarrow P \leq Q \Longleftrightarrow P Q=P \Longleftrightarrow Q P=P
$$

 $M=\overline{\cup_{n} P_{n}(\mathcal{H})}$ (resp. $M=\cap_{n}\left(P_{n}(\mathcal{H})\right)$). [Monotonicity cannot be omitted.]

[^0]: ${ }^{1}$ Bacon, Lettuce, Tomato

