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1 Unbounded Operators and their adjoints

1.1 Unbounded operators

Let1 H,K be Hilbert spaces. In the sequel, by an operator A from H to K we will mean
a linear transformation defined on a linear manifold D(A) ⊆ H into K. If A is bounded,
then it extends by continuity to the closure D(A), and, defining A to be 0 on D(A)⊥,
we may assume that A is everywhere defined. However when A is not bounded, then it
is necessary to specify its domain of definition. Operators with different domains may
have quite different properties, as we shall see (for example, the operator of differentiation
defines different operators on various subspaces of L2(R)).
Recall that the direct sum H ⊕K becomes a Hilbert space with scalar product

〈(x, y), (z, w)〉 = 〈x, z〉+ 〈y, w〉.

Definition 1.1 The graph of an operator A is

Gr(A) = {(x,Ax) : x ∈ D(A)} ⊆ H ⊕K.

We say A extends B and write A ⊆ B when Gr(A) ⊆ Gr(B).

Suppose A is an operator defined on a closed subspace D(A). If A is bounded, it is
easy to see that its graph is a closed subspace of H ⊕K. The closed graph theorem
states that the converse also holds. Without the assumption that D(A) is complete, this
is no longer true (see Example 1.1 below). Having a closed graph proves to be a useful
substitute for continuity in many cases.

Definition 1.2 A is a closed operator if Gr(A) is closed in H ⊕K, i.e. if
[xn ∈ D(A), xn → x and Axn → y implies x ∈ D(A) and Ax = y.]
The set of closed, densely defined operators from H to K will be denoted C(H,K).

Example 1.1 On H = L2(R), let D(Q) = {f ∈ H : t→ tf(t) is in L2(R)} and
(Qf)(t) = tf(t) (f ∈ D(Q)). Then Q is (not continuous, but it is) closed.
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Proof. To see that Q is unbounded, let fn = χ[n,n+1] and observe that fn ∈ D(Q) and
‖fn‖ = 1 while ‖Qfn‖ → ∞ as n→∞.
Suppose now that (hn, Qhn) ∈ Gr(Q) and (hn, Qhn) → (h, g). To show (h, g) ∈ Gr(Q),
fix k ∈ N and let Pkf = χ[−k,k]f (f ∈ H). Note that for each f ∈ H, Pkf vanishes outside
a compact set, hence Pkf ∈ D(Q). Since limnQhn = g and Pk is a bounded operator,
we have limn PkQhn = Pkg. If Qk is defined by (Qkf)(t) = tχ[−k,k](t)f(t) (f ∈ H),
then Qk is an everywhere defined bounded operator (verify!) which extends PkQ. Hence
limn PkQhn = limnQkhn = Qkh. Thus Qkh = Pkg, so ‖Qkh‖ = ‖Pkg‖ ≤ ‖g‖. In other
words ∫ k

−k
|th(t)|2dt ≤ ‖g‖2

for all k ∈ N, so that
∫

R |th(t)|2dt < ∞, i.e. h ∈ D(Q). Thus PkQh = Qkh = Pkg for all
k. Thus Qh and g agree a.e. on each [−k, k], and so Qh = g, i.e. (h, g) ∈ Gr(Q). 2

A small modification of this example yields a non-closed operator:

Example 1.2 If D(Qo) = {f ∈ H : f vanishes a.e. outside a compact set} and
(Qof)(t) = tf(t) (f ∈ D(Qo)), then clearly Q extends Qo and an easy modification of the
above argument shows that Gr(Qo) = Gr(Q). Thus the operator Qo is not closed, but it
has a closed extension, and in fact Q is the minimal closed extension of Qo.

Definition 1.3 An operator A is closable iff there exists a closed operator extending A.
In this case A has a minimal closed extension denoted A which is defined by Gr(A) =
Gr(A).

Remark 1.3 A is closable iff Gr(A) is a graph, i.e. iff (0, y) ∈ Gr(A) implies y = 0.

Proof: Exercise.

Remark 1.4 Any bounded operator is closable.

Indeed if (0, y) ∈ Gr(A) there exists a sequence (xn, Axn) in Gr(A) such that xn → 0
and Axn → y; since A is continuous, Axn → 0 and so y = 0.

Remark 1.5 If A is closable, then of course Gr(A) ⊆ Gr(A) = Gr(A), so D(A) ⊆
D(A) ⊆ D(A). It is not however generally the case that D(A) is closed. This happens iff
A is bounded.

Indeed if A is bounded then so is A (why?); replacing A by A, we may therefore assume
that A is closed. For each x ∈ D(A) there is a sequence xn in D(A) such that xn → x. By
continuity, (Axn) also converges, say to y. Thus (x, y) = lim(xn, Axn) ∈ Gr(A) = Gr(A)
and so x ∈ D(A).
Conversely if D(A) is closed then, by the closed graph theorem, A is bounded and hence
so is its restriction A.

Example 1.6 On H = `2(N), let e∞ =
∑

1
n
en. If D(A) = [e∞, e1, e2, ...] (lin. span) and

A(ae∞ +
∑n

k=1 akek) = ae∞, then A is not closable.

For the proof, observe that both (e∞, e∞) and (e∞, 0) belong to Gr(A).
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1.2 Adjoints

We wish to define the adjoint of an unbounded operator.
Let A ∈ B(H,K), the set of all bounded (everywhere defined) operators A : H → K,
where H, K are Hilbert spaces. Recall the definition of the adjoint A∗ of A:
For each x ∈ K, the map y → 〈Ay, x〉 : H → C is linear and continuous (indeed
|〈Ay, x〉| ≤ (‖A‖.‖x‖)‖y‖); thus by the Riesz representation theorem there exists a unique
vector A∗x ∈ H such that 〈y, A∗x〉 = 〈Ay, x〉 for all y ∈ H. One checks that the map
x→ A∗x is linear (and continuous).
If A is not bounded, the above argument may fail for some vectors x; the domain D(A∗)
of A∗ will be defined to be the set of all x ∈ K for which the argument works, namely
the set of all x ∈ K such that the map y → 〈Ay, x〉 is continuous on D(A). For such x,
this map has a continuous (Hahn-Banach) extension, say φx, from D(A) to all of H; by
the Riesz representation theorem there exists a vector ξx ∈ H such that 〈ξx, y〉 = φx(y)
for all y ∈ H. Thus 〈ξx, y〉 = 〈x,Ay〉 for all y ∈ D(A).
Now if D(A) is dense in H, then this last relation defines the vector ξx uniquely; thus we
may write ξx = A∗x. It is easy to check that D(A∗) is a linear manifold and that the map
A∗ : D(A∗)→ H is linear.
However if D(A) is not dense, ξx will depend not only on x and A, but also on the choice
of extension of the mapping y → 〈Ay, x〉 from D(A) to H. For this reason, the adjoint A∗

of A is only defined for densely defined operators:

Definition 1.4 If A : D(A) → K is a densely defined operator, then its adjoint A∗ is
defined on the linear manifold

D(A∗) = {x ∈ K : D(A) 3 y → 〈Ay, x〉 is continuous}

by the formula 〈A∗x, y〉 = 〈x,Ay〉, y ∈ D(A).

The operator A∗ : D(A∗)→ H is linear.

Remark 1.7 (i) Note that x ∈ D(A∗) iff there exists Kx < +∞ s.t. |〈Ay, x〉| ≤ Kx‖y‖
for all y ∈ D(A).
(ii) Also, (x, u) ∈ Gr(A∗) iff 〈u, y〉 = 〈x,Ay〉 for all y ∈ D(A).

Remark 1.8 The adjoint A∗ need not be densely defined. In fact, D(A∗) may be {0}.

Example. Let H = `2(N × N) with orthonormal basis {en,m : n,m ∈ N} and let
K = `2(N) with its usual basis {en : n ∈ N}. Define D(A) = [en,m : n,m ∈ N] (the linear
span of {en,m : n,m ∈ N}); let Aen,m = en for all m,n and extend linearly 2 to D(A).
Suppose y ∈ D(A∗). Then we claim that y = 0. Indeed for each fixed n ∈ N, since
{en,m : m ∈ N} is an orthonormal set we have

∞∑
m=1

|〈A∗y, en,m〉|2 ≤ ‖A∗y‖2.

2Thus for x =
∑N

n=1

∑M
m=1 xn,men,m ∈ D(A) we have Ax =

∑N
n=1(

∑M
m=1 xn,m)en, right?
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But, for all m, 〈A∗y, en,m〉 = 〈y, Aen,m〉 = 〈y, en〉 so for the above sum to be finite we
must have 〈y, en〉 = 0. This holds for all n ∈ N; since {en : n ∈ N} is a basis of H, it
yields y = 0. 2

Let
V : H ⊕K → K ⊕H : (x, y)→ (−y, x).

It is easy to see that V is a linear isometry satisfying V 2 = −I, hence is onto. Thus V is
unitary, so if E ⊆ H ⊕K is a subspace, then (V (E))⊥ = V (E⊥).

Lemma 1.9 If A is densely defined, then (i) Gr(A∗) = V (Gr(A))⊥ and
(ii) V (Gr(A∗)) = Gr(A)⊥.

Proof. We have (x, y) ∈ V (Gr(A))⊥ iff 〈(x, y), (z, w)〉 = 0 for all (z, w) ∈ V (Gr(A)) i.e.
〈(x, y), (−Au, u)〉 = 0 for all u ∈ D(A). This holds iff 〈x,Au〉 = 〈y, u〉 for all u ∈ D(A),
which is equivalent to (x, y) ∈ Gr(A∗) (see Remark 1.7).
The other assertion follows since V 2 = −I and Gr(A) = −Gr(A). 2

Proposition 1.10 Suppose D(A) is dense in H. Then (i) A∗ is closed.
(ii) A is closable iff D(A∗) is dense. If so A = A∗∗.

Proof. (i) If (xn, A
∗xn) ∈ Gr(A∗) and (xn, A

∗xn) → (x, y), then for all z ∈ D(A) we
have

〈Az, x〉 = lim〈Az, xn〉 = lim〈z, A∗xn〉 = 〈z, y〉

so that z → 〈Az, x〉 = 〈z, y〉 is continuous on D(A). This shows that x ∈ D(A∗) and

〈z, A∗x〉 = 〈Az, x〉 = 〈z, y〉

for all z in the dense set D(A), hence A∗x = y.
Alternatively: by the Lemma we have Gr(A∗) = V (Gr(A))⊥. Since V is isometric, it
maps closed subspaces to closed subspaces. The result now follows since (Gr(A))⊥ is
closed.

(ii) Note that Gr(A) = ((Gr(A))⊥)⊥ since Gr(A) is a linear manifold in H ⊕K. By the
Lemma, V (Gr(A∗)) = (Gr(A))⊥ so Gr(A) = (V (Gr(A∗)))⊥.
If A∗ is densely defined, applying the Lemma to A∗ we have Gr(A∗∗) = V (Gr(A∗))⊥ and
so Gr(A) = Gr(A∗∗), which shows that A is closable and A = A∗∗.
Conversely suppose that D(A∗) is not dense in K and let y 6= 0 be in (D(A∗))⊥. For all
(x,A∗x) ∈ Gr(A∗) we have 〈(y, 0), (x,A∗x)〉 = 0 so (y, 0) ∈ (Gr(A∗))⊥. Thus (0,−y) ∈
V (Gr(A∗))⊥ = Gr(A), so that Gr(A) is not a graph. 2

Remark 1.11 If D(A∗) = K then A is bounded.

Proof. The operator A∗ is everywhere defined and closed, hence bounded by the closed
graph theorem. But then A∗∗ is also everywhere defined and bounded (see the comments
preceding Definition 1.4). However, by Proposition 1.10, A∗∗ extends A, so A must be
bounded.
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1.3 Symmetric and selfadjoint operators

Definition 1.5 A densely defined operator A from H to H is said to be symmetric or
Hermitian if

〈Ax, y〉 = 〈x,Ay〉 ∀x, y ∈ D(A),

equivalently iff A ⊆ A∗, i.e. iff D(A) ⊆ D(A∗) and Ax = A∗x for all x ∈ D(A).
A is said to be selfadjoint if A = A∗, i.e. if it is symmetric and D(A) = D(A∗).
A is essentially selfadjoint if it is closable and A is selfadjoint.
If A is closed, a linear manifold D ⊆ D(A) is called a core for A if A is the closure of
A|D.

Example 1.12 The operator Q defined in Example 1.1 is selfadjoint, and D(Qo) is a
core.

Proof. Exercise.

Remark 1.13 A symmetric unbounded operator cannot be everywhere defined.

This follows immediately from 1.11.

Remark 1.14 A symmetric operator may have many, or no, selfadjoint extensions (see
Examples 1.27, 1.28, 1.29 below). An operator A has a unique selfadjoint extension iff it
is essentially selfadjoint. Thus A is essentially selfadjoint iff A∗∗ = A∗.

We leave the proofs as exercises.

1.4 Examples

Reminder: Absolutely continuous functions

Definition 1.6 If J ⊆ R is an interval, a function f : J → C is said to be absolutely
continuous if given ε > 0 there exists δ > 0 such that:
if [si, ti] ⊆ [a, b] are pairwise disjoint intervals with total length

∑n
i=1 |ti − si| < δ, then∑n

i=1 |f(ti)− f(si)| < ε.
We write f ∈ AC(J).

For example, if f ∈ L1([a, b]) then its indefinite integral F (x) =
∫ x
a
f(t)dt (with respect

to Lebesgue measure) is absolutely continuous.

Theorem 1.15 A function f : [a, b] → C is absolutely continuous if and only if it is
almost everywhere differentiable 3, its derivative f ′ is in L1([a, b]) and, for all x ∈ [a, b],

f(x)− f(a) =

∫ x

a

f ′(t)dt.

3that is, for almost all x ∈ [a, b] the limit lim
h→0

f(x+h)−f(x)
h ≡ f ′(x) exists
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Example 1.16 Let L2([0, 1]) and define three operators as follows:

D(T1) = {f ∈ H : f ∈ AC, f ′ ∈ L2}
D(T2) = {f ∈ D(T1) : f(0) = f(1)}
D(T3) = {f ∈ D(T2) : f(0) = f(1) = 0}
Tkf = if, f ∈ D(Tk), k = 1, 2, 3

(thus T3 ⊂ T2 ⊂ T1). Then T ∗1 = T3, T ∗2 = T2, T ∗3 = T1.
Hence T3 is symmetric, non-selfadjoint, and has selfadjoint extensions (for example, T2),
T2 is selfdjoint and its extension T1 is not symmetric.

For the proof, see Rudin, Functional Analysis, Example 13.4.

1.5 The inevitability of unboundedness

One form of Heisenberg’s uncertainty principle states that the observables P and Q rep-
resenting momentum (P) and position (Q) of a quantum mechanical particle correspond
to ‘matrices’, or operators, which satisfy the famous “canonical commutation relation”

(PQ−QP )f = if for all f in the common domain of P and Q (CCR)

One possible representation of this relation is the following:
LetH = L2(R) andD = C∞c (R), the infinitely differentiable functions of compact support.
Define P and Q on D by

Pf = if ′, (Qf)(t) = tf(t), f ∈ D.
Note that P and Q are well defined on the linear manifold D, which is invariant under P
and Q, and so one can form polynomials in P and Q (such as PQ−QP ). It is trivial to
verify that (CCR) holds for all f ∈ D.
But the misfortune is that these operators are not bounded!
The question arises:

Is it possible to represent (CCR) by a pair of bounded operators?

The answer is NO:

Proposition 1.17 If x, y are elements of a normed algebra with identity e (such as B(H))
then

xy − yx 6= e.

Proof (Wielandt) Suppose, by way of contradiction, that xy − yx = e. It then follows
that, for all n ∈ N, we have

xny − yxn = nxn−1 and xn−1 6= 0.

Indeed, for n = 1 the first statement is just the hypothesis and the second is obvious. If
these statements are assumed to hold for some n, then the first equality gives xn 6= 0 and

xn+1y − yxn+1 = xn(xy − yx) + (xny − yxn)x

= xne+ nxn−1x = (n+ 1)xn

which is the induction step. It follows that

0 6=
∥∥nxn−1

∥∥ = ‖xny − yxn‖ ≤ 2 ‖xn‖ ‖y‖ ≤ 2
∥∥xn−1

∥∥ ‖x‖ ‖y‖
which implies that n ≤ 2 ‖x‖ ‖y‖ for all n ∈ N, an absurdity.
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1.6 The spectrum of an unbounded operator

The inverse of an unbounded operator Let S be a densely defined operator from
H to K. Suppose first that S is closed, and bijective as a map S : D(S)→ K. Consider
the usual inverse T : K → D(S); this is defined everywhere on K by

T : y → x where x ∈ D(S) and y = Sx.

In other words, (y, x) ∈ G(T ) iff (x, y) ∈ G(S), that is, G(T ) = Γ(G(S)) where
Γ : H ⊕K → K ⊕H is the ‘flip’ (x, y) → (y, x). But note that, since G(S) is closed in
H ⊕ K and Γ is obviously unitary, the subspace G(T ) = Γ(G(S)) is closed in K ⊕ H.
Thus T is an everywhere defined map between Hilbert spaces and its graph is closed; the
closed graph theorem shows that T must be a bounded operator. The relation

x = Ty iff x ∈ D(S) and y = Sx

means
ST = IK and TS ⊂ IH .

These remarks motivate the following

Definition 1.7 We say that a linear map S : D(S) → K has an inverse if there is a
bounded operator T : K → H such that

ST = IK and TS ⊂ IH .

The operator T is uniquely determined by this relation; it is called the inverse of S and
is denoted S−1.

We have shown above that if S : D(S)→ K is bijective and closed, then it has an inverse
- which is bounded. Conversely if there is T ∈ B(K,H) satisfying the conditions of the
definition, then the first relation gives that T must be 1-1, S must be onto and ran(T ) ⊆
D(S) (here ran(T ) is the range of T ), while the second forces ran(T ) = D(S). 4 Finally
since G(T ) is closed (because T is bounded and everywhere defined) G(S) = Γ(G(T ))
must be closed.
Thus only closed operators can have inverses.

Definition 1.8 (Resolvent and Spectrum) If S is densely defined on H,

the resolvent set of S: ρ(S) = {λ ∈ C : λ− S = λI − S has an inverse}
the spectrum of S: σ(S) = C \ ρ(S).

(Note that D(λ− S) = D(S).)

Recall that C(H) denotes the set of closed, densely defined operators on H.

Proposition 1.18 If S ∈ C(H) then ρ(S) is open in C and the map

ρ(S)→ B(H) : λ→ (λ− S)−1

is holomorphic: it has a (norm-convergent) power series expansion around each λo ∈ ρ(S).
Moreover if S ∈ B(H) then in fact σ(S) is nonempty and compact.

4If x ∈ D(S) then TSx = x so x ∈ ran(T ).
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Proof. Claim (i) If S ∈ B(H) then σ(S) is bounded, and in fact σ(S) ⊆ ball(0, ‖S‖).
Indeed if |λ| > ‖S‖ then

(λ− S)−1 =
∞∑
n=0

1

λn+1
Sn (norm convergence)

Proof: The partial sums of
∑

n

(
S
λ

)n
are norm-Cauchy since ‖S/λ‖ < 1.

Claim (ii) If S ∈ C(H) then ρ(S) is open.
Proof of Claim. Fix λ ∈ ρ(S) and write T = (λ − S)−1. For z ∈ C with |z| < ‖T‖−1

(recall T is bounded) note that

λ− S + z = λ− S + z(λ− S)(λ− S)−1 = (λ− S)(I + zT ).

But part (i) shows that I + zT is invertible and

(I + zT )−1 =
∞∑
n=0

(−zT )n

so (λ+ z − S)−1 = (I + zT )−1(λ− S)−1 =
∞∑
n=0

(−1)nT n+1zn

which is a convergent power series in z.
This shows that ball(λ, ‖T‖−1) ⊆ ρ(S) and the map u → (u − S)−1 has a power series
expansion around λ.

Claim (iii) Suppose S ∈ B(H). Then σ(S) cannot be empty.
Indeed if it were, then by (ii) for each x, y ∈ H the complex function

f : λ→
〈
(λ− S)−1x, y

〉
would be entire. Also, when |λ| > ‖S‖ by (i) we would have

f(λ) =

〈
∞∑
n=0

1

λn+1
Snx, y

〉
=

1

λ

∞∑
n=0

1

λn
〈Snx, y〉

so |f(λ)| ≤ 1

|λ|

∞∑
n=0

1

|λ|n
‖S‖n ‖x‖ ‖y‖ =

1

|λ|

(
1− ‖S‖

|λ|

)−1

‖x‖ ‖y‖

so that lim
|λ|→∞

|f(λ)| = 0. Hence f = 0 by Liouville’s theorem.

But since x, y ∈ H are arbitrary, this would imply that (λ − S)−1 = 0 which is absurd.
2

For z ∈ C \ {λ, µ} we have

1

λ− z
− 1

µ− z
=

µ− λ
(λ− z)(µ− z)

.

This is also true for operators:
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Definition 1.9 Suppose S ∈ C(H) and let λ, µ ∈ ρ(S). Then

(λ− S)−1 − (µ− S)−1 = (µ− λ)(λ− S)−1(µ− S)−1.

This is called the resolvent equality. Sometimes we write

rλ(S) ≡ (λ− S)−1

and call the bounded operator-valued function λ→ rλ(S) the resolvent of S.

The proof is the following:

(λ− S)−1 − (µ− S)−1 = (λ− S)−1(I − (λ− S)(µ− S)−1)

= (λ− S)−1((µ− S)− (λ− S))(µ− S)−1

= (λ− S)−1(µ− λ)(µ− S)−1.

Corollary 1.19 Let S ∈ C(H). Then
(i) The map λ→ rλ(S) : ρ(S)→ B(H) is continuous.
(ii) If λ ∈ ρ(S) then µ→ rµ(S) is norm-differentiable at λ, that is, the (norm)-limit

lim
µ→λ

(µ− S)−1 − (λ− S)−1

µ− λ
exists and equals − (λ− S)−2.

Proof Both statements follow from the fact that the map λ→ rλ(S) has a local power
series; the proof is the same as in elementary complex analysis.
Another proof of part (ii) follows from the resolvent equality: If λ, µ ∈ ρ(S) and λ 6= µ
then

(µ− S)−1 − (λ− S)−1

µ− λ
= −(λ− S)−1(µ− S)−1.

But by part (i) we have that lim
µ→λ
‖(µ− S)−1 − (λ− S)−1‖ = 0 and thus when µ→ λ the

right hand side converges (in norm) and in fact the limit is −(λ− S)−2. 2

While the spectrum of a bounded operator is always bounded and nonempty, this need
not be true for unbounded operators:
We show that the spectrum of an unbounded operator can be the whole complex plane
or, with a ‘small’ change in the operator, it can be empty!

Example 1.20 Let H = L2([0, 1] and define two operators as follows:

D(S1) = {f ∈ H : f ∈ AC}
D(S2) = D(S1) ∩ {f ∈ AC : f(0) = 0)}
Skf = if ′, f ∈ D(Sk), k = 1, 2

Then σ(S1) = C and σ(S2) = ∅.

Proof It is an exercise for the reader to prove that these operators are closed and densely
defined.
Claim 1: σ(S1) = C; in fact, every λ ∈ C is an eigenvalue for S1.
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Proof of the Claim Given an arbitrary λ ∈ C, we need to find a nonzero function
f ∈ D(S1) such that (λ− S1)f = 0, equivalently,

λf = if ′.

But it is trivial to solve this differential equation: separating variables, we find that f(t) =
e−iλt is a solution and we observe that f is absolutely continuous, being continuously
differentiable.
This shows that λ− S1 is not even 1-1. 2

Claim 2: σ(S2) = ∅; that is, for every λ ∈ C, not only is λ − S2 injective, it also maps
D(S2) onto H.
Proof of the Claim Given an arbitrary λ ∈ C, we claim that the operator Sλ : H → H
defined by

(Sλg)(x) = ie−iλx
∫ x

0

eiλsg(s)ds g ∈ L2([0, 1])

is the inverse of (λ− S2): that is, we will prove that (λ− S2)Sλ = I and Sλ(λ− S2) ⊂ I.
Let g ∈ L2([0, 1] be arbitrary; observe that since g ∈ L1 and x→ e−iλx is C1, the function
Sλg is absolutely continuous and vanishes at 0, so it is in D(S2).
Setting f = Sλg we have f ′ = ig − iλf so that (λ− S2)f = λf − if ′ = g. Thus

(λ− S2)Sλ = I.

For the second claim, let h ∈ D(S2); then h ∈ AC and also h(0) = 0 so we obtain

(Sλ(λ− S2)h)(x) = (Sλ(λh− ih′))(x) = ie−iλx
∫ x

0

eiλs(λh(s)− ih′(s))ds

= iλe−iλx
∫ x

0

eiλsh(s)ds+ e−iλx
∫ x

0

eiλsh′(s)ds

= iλe−iλx
∫ x

0

eiλsh(s)ds+ e−iλx[eiλsh(s)]s=xs=0 − e−iλx
∫ x

0

(iλ)eiλsh(s)ds

= h(x)− eiλxh(0) = h(x)

Thus Sλ(λ− S2)h = h for all h ∈ D(S2), which completes the proof. 2

The Cayley transform The mapping

φ : R→ T \ {1} : t→ t− i
t+ i

is a homeomorphic bijection between R and T \ {1}. Thus if T ∈ B(H) is a (bounded)
selfadjoint operator, hence with σ(T ) ⊆ R, by the Continuous Functional Calculus we
may define a bounded operator

U = φ(T ) = (T − iI)(T + iI)−1

(note that −i /∈ σ(T ) and so T + iI is invertible). Since φ(t)−1 = φ(t), the operator U is
unitary: U∗ = φ(T )∗ = φ(T )−1 = U−1; also σ(U) = {φ(λ) : λ ∈ σ(T )} ⊆ T \ {1} by the
spectral mapping theorem.
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Conversely, every unitary operator U is of the form φ(T ) for some T = T ∗ ∈ B(H),
provided that σ(U) does not contain the point 1; indeed, it suffices to observe that the
function ψ = φ−1 : T \ {1} → R is continuous and apply the Continuous Functional
Calculus (for normal operators) to find the required T = ψ(U).

We wish to extend the correspondence T ←→ U , if possible, to unbounded operators.

Definition 1.10 For the purposes of these notes, a linear map U from D(U) ⊆ H to K
will be called a partial isometry iff its restriction to

M ≡ ker(U)⊥ ∩ D(U) = {x ∈ D(U) : [Uy = 0⇒ 〈x, y〉 = 0]}

is an isometry. The linear space M is called the initial space and U(M) = ran(U)
is called the final space of U . If M = H then U is said to be an isometry, while if
ran(U) = K then U is called a coisometry. Thus a partial isometry is unitary iff it is
both an isometry and a coisometry.

Note that a partial isometry is necessarily bounded, with norm equal to 1 (if nonzero).
Thus U is closable, and its closure Ū is still a partial isometry, with D(Ū) = D(U).
However a partial isometry may have several distinct extensions. For example if D(U) and
ran(U) are not dense, then any choice of a pair of unit vectors e ∈ D(U)⊥ and f ∈ ran(U)⊥

will give a partially isometric extension V of U defined on D(V ) = [D(U) ∪ {e}] by
V x = Ux if x ∈ D(U) and V e = f .

Proposition 1.21 If T is a symmetric operator on H, there exists a partial isometry

U(T ) : ran(T + iI)→ ran(T − iI)

given by 5 Tx+ ix→ Tx− ix, x ∈ D(T ).

The operator U(T ) is called the Cayley transform of T .
In fact I − U(T ) is 1-1.
Also, D(T ) = ran(I − U(T )) and

T (I − U(T )) = i(I + U(T )).

Thus T can be reconstructed from its Cayley transform.

Proof. Let x ∈ D(T ). Then

‖Tx± ix‖2 = ‖Tx‖2 + ‖x‖2 ± 〈Tx, ix〉 ± 〈ix, Tx〉 = ‖Tx‖2 + ‖x‖2

since 〈Tx, x〉 = 〈x, Tx〉 because T is symmetric. Thus ‖Tx + ix‖ = ‖Tx − ix‖ and
therefore the map

U(T ) : ran(T + iI)→ ran(T − iI) : Tx+ ix→ Tx− ix

is a well-defined linear isometric bijection.

5Thus U(T ) coincides on ran(T + iI) with the linear map (T − iI)(T + iI)−1; we avoid this notation
because generally T + iI does not have a bounded inverse (see later). The same remarks apply to the
relation T (I − U(T )) = i(I + U(T )).
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To prove the second statement, note that by definition a vector x belongs to D(T ) if
and only if z = Tx + ix belongs to D(U(T )), and then U(T )z = Tx − ix. Adding and
subtracting,

(I − U(T ))z = 2ix, (I + U(T ))z = 2Tx.

Since the correspondence z → x is bijective, this shows that I −U(T ) is 1-1 on D(U(T )),
and that ran(I − U(T )) = D(T ). Thus, for all z ∈ D(U(T )),

T (I − U(T ))z = 2iTx = i(I + U(T ))z. 2

Remark 1.22 We have seen that the operator I − U(T ) is 1-1, i.e. the number 1 is not
an eigenvalue of U(T ). In case T is a bounded selfadjoint operator, a stronger property
holds: 1 is not in the spectrum of U(T ) (as we have seen). However when T is not bounded
then I − U(T ) cannot be invertible: If 1 /∈ σ(U(T )), then T is bounded.

Indeed if 1 /∈ σ(U(T )) and M = ‖(I − U(T ))−1‖, the relation (I − U(T ))(Tx+ ix) = 2ix
for x ∈ D(T ) gives ‖Tx+ ix‖ ≤ 2M ‖x‖ and so T + iI, and hence also T , is bounded.

Lemma 1.23 If T is selfadjoint, then the operator Q ≡ I + T 2 maps D(Q) = D(T 2)
bijectively onto H, and its inverse (I + T 2)−1 is continuous.

Proof. We have shown in Lemma 1.9 that Gr(T ∗) = V (Gr(T ))⊥. Since T = T ∗ is a
closed operator, this shows that the sets Gr(T ) = {(x, Tx) : x ∈ D(T )} and V (Gr(T )) =
{(−Tx, x) : x ∈ D(T )} are orthogonal closed subspaces of H ⊕H whose sum is H ⊕H.
Thus for any y ∈ H there are x, z ∈ D(T ) such that

(0, y) = (z, Tz) + (−Tx, x).

Thus z = Tx (so x ∈ D(T 2)) 6 and y = Tz + x = T 2x+ x. This shows that Q is onto.
Also, for all x ∈ D(T 2) we have

‖Qx‖2 = ‖x+ T 2x‖2 = ‖x‖2 + ‖T 2x‖2 + 2〈x, T 2x〉 = ‖x‖2 + ‖T 2x‖2 + 2〈Tx, Tx〉 ≥ ‖x‖2.

Thus Q is 1-1, and if y = Qx we have ‖Q−1y‖ = ‖x‖ ≤ ‖Qx‖ = ‖y‖ and hence Q−1 is
continuous. 2

Lemma 1.24 Let T be a symmetric operator. Then T is selfadjoint if and only if its
Cayley transform U(T ) is unitary.

Proof. Suppose that T is selfadjoint. For any x ∈ D(T 2), we have

(T + iI)(T − iI)x = (I + T 2)x = (T − iI)(T + iI)x.

It follows that ran(T + iI) = ran(I + T 2) = ran(T − iI). But ran(I + T 2) = H (Lemma
1.23), and hence D(U(T )) = ran(T + iI) = H and ran(U(T )) = ran(T − iI) = H. Thus
U(T ) is everywhere defined and onto. Since it is isometric, it is unitary.

Suppose conversely that U = U(T ) is unitary. First note that D(T ) = ran(I−U) is dense
in H. Indeed, if x ⊥ ran(I − U), then

‖(I − U)x‖2 = 〈(I − U∗)(I − U)x, x〉 = 〈(I − U)(I − U∗)x, x〉 = 0.

6Note that D(AB) = {x ∈ D(B) : Bx ∈ D(A)}.
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Since I − U is 1-1 (Proposition 1.21), this shows that x = 0. Thus T is densely defined,
so T ∗ exists, and a short calculation7 shows that T ⊆ T ∗.
Let y ∈ D(T ∗). We need to show that y ∈ D(T ). Since ran(T + iI) = H, there exists
x ∈ D(T ) such that (T ∗ + iI)y = (T + iI)x. But T ⊆ T ∗, hence (T + iI)x = (T ∗ + iI)x.
It follows that (T ∗ + iI)(x− y) = 0, and hence, for all z ∈ D(T ),

〈(T − iI)z, x− y〉 = 〈z, (T ∗ + iI)(x− y)〉 = 0.

Thus x − y is orthogonal to ran(T − iI) = H, and hence is 0. Therefore y = x ∈ D(T ),
as required. 2

It is not hard to verify that, if T and S are symmetric operators, T ⊆ S if and only
if U(T ) ⊆ U(S). Therefore it follows from the last Lemma that if a densely defined
symmetric operator T has a selfadjoint extension S then its Cayley transform U(T ) has
a unitary extension U(S). The converse also holds. For if U is a unitary extending U(T ),
then, since ran(I −U(T )) = D(T ) is dense, it follows that ran(I −U) must also be dense.
A calculation similar to the one in the proof of the above Lemma shows that, since I −U
is normal, ker(I − U) = ker(I − U∗) = (ran(I − U))⊥ so that I − U must be one to
one. Thus the formula S(I − U)x = i(I + U)x defines an operator on the dense domain
D(S) = ran(I − U). Clearly S extends T . It is easy to check that S is symmetric and,
since U(S) = U , the previous Lemma shows S is selfadjoint.

Conclusion: a densely defined symmetric operator T admits selfadjoint extensions if and
only if its Cayley transform U(T ) admits unitary extensions.

Now since U(T ) maps ran(T + iI) isometrically onto ran(T − iI), any unitary extension
U of U(T ) must map ran(T + iI) isometrically onto ran(T − iI). But since U is unitary,
it must also map (ran(T + iI))⊥ isometrically onto (ran(T − iI))⊥. It follows that the
dimensions of the last two closed subspaces must be equal. Conversely: if these dimensions
are equal, let V : (ran(T + iI))⊥ → (ran(T − iI))⊥ be any onto isometry. Then the map

U = V ⊕ U(T ) : (ran(T + iI))⊥ ⊕ ran(T + iI)→ H,

given by U(x+ y) = V x+ U(T )y for x ∈ (ran(T + iI))⊥ and y ∈ ran(T + iI), extends to
a unitary operator on H which extends U(T ).

Conclusion: T admits selfadjoint extensions if and only the closed subspaces (ran(T+iI))⊥

and (ran(T − iI))⊥ have the same dimension.

Note also that T is essentially selfadjoint if and only if it has a unique selfadjoint extension,
that is, if and only if its Cayley transform U(T ) has a unique unitary extension. This
clearly happens if and only if the linear manifolds ran(T + iI) and ran(T − iI) are dense
in H. Noting that (ran(T ± iI))⊥ = ker(T ∗ ∓ iI) (proof: exercise), we conclude that T is
essentially selfadjoint if and only if ker(T ∗ + iI) = ker(T ∗ − iI) = {0}.
This discussion proves the following

Theorem 1.25 Let T be a densely defined symmetric operator on H. Then
(a) T is selfadjoint if and only if ran(T + iI) = ran(T − iI) = H.

7If x = (I − U)z is in D(T ), then 〈x, Tx〉 = 〈(I − U)z, T (I − U)z〉 = 〈(I − U)z, i(I + U)z〉 =
〈z, i(I − U∗)(I + U)z〉 = 〈z, i(U − U∗)z〉 ∈ R since i(U − U∗) is selfadjoint. Thus 〈x, Tx〉 = 〈Tx, x〉.
Polarisation now shows that 〈x, Ty〉 = 〈Tx, y〉 for all x, y ∈ D(T ).
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(b) T has selfadjoint extensions if and only if its deficiency indices n±, defined by
n± = dim(ran(T ± iI))⊥, are equal.
(c) T is essentially selfadjoint if and only if the operators T ∗+iI and T ∗−iI are injective.

Corollary 1.26 If T is a densely defined symmetric operator on H, the following are
equivalent:
(a) T is selfadjoint;
(b) T is closed and ker(T ∗ − iI) = ker(T ∗ + iI) = {0};
(c) ran(T + iI) = ran(T − iI) = H.

The following examples illustrate the strong dependence of an unbounded symmetric
operator on its domain. In all three, the formula defining the operator is the same:
f → if ′. However, on one domain the operator admits no selfadjoint extensions, on
another it admits uncountably many, and on a third it is selfadjoint!

Example 1.27 A symmetric operator with no selfadjoint extensions:

Let H = L2((0,∞)). Define A by the formula Af = if ′ on the set D(A) of all functions of
the form e ·p, where e(t) = e−t and p is a polynomial without constant term (in particular
f(0) = 0 for f ∈ D(A)). It is left as an exercise to show that D(A) is dense in H.
An integration by parts shows that A is symmetric. We claim that e is orthogonal to
ran(A− iI). Indeed, for any f ∈ D(A) we have

〈Af, e〉 =

∫ ∞
0

if ′(t)e−tdt = i[f ′(t)e−t]+∞0 +

∫ ∞
0

f(t)e−tdt = 〈if, e〉

so that 〈Af − if, e〉 = 0 for each f ∈ D(A). Thus ran(A− iI) is not dense in H.
We show that ran(A + iI) is dense in H; it will follow from Theorem 1.25 (b) that A
cannot have selfadjoint extensions.
Let g ∈ D(A). Define a function f on [0,∞) by

f(x) = −ie−x
∫ x

0

etg(t)dt.

It is clear that f ∈ D(A) and it is easy to show that (A + iI)f = i(f ′ + f) = g. This
shows that ran(A+ iI) contains D(A), hence is dense in H. 2

Example 1.28 An operator with many selfadjoint extensions:

Let H = L2([0, 1]). Recall the operator B = T3 of Example 1.16:

D(B) = {f ∈ AC([0, 1]) : f ′ ∈ L2, f(0) = 0 = f(1)}, Bf = if ′ (f ∈ D(A)).

Then B is symmetric and B∗ is defined on D(B∗) = {f ∈ AC([0, 1]) : f ′ ∈ L2} by
B∗f = if ′ (so B 6= B∗). Note that B∗ is not symmetric. The self adjoint extensions of B
are precisely the operators Bc (|c| = 1) defined on

D(Bc) = {f ∈ AC([0, 1]) : f ′ ∈ L2, f(0) = cf(1)}
by Bcf = if ′ (for the proofs, see Reed & Simon, Functional Analysis, Section VII.2).
Thus B has uncountably many different selfadjoint extensions Bc and B ⊆ Bc ⊆ B∗.

Example 1.29 Consider any of the selfadjoint extensions of the operator in the previous
example: For instance, on H = L2([0, 1]), let

D(P ) = {f ∈ AC([0, 1]) : f ′ ∈ L2, f(0) = f(1)}
and (Pf)(t) = −if ′(t) (f ∈ D(P )). Then P is selfadjoint.
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