

Previous Up Ne

Citations From References: 11 From Reviews: 4

MR1322911 (96i:46068) 46L05 46B04 47B07 47C15 47D25 Anoussis, M. [Anoussis, Michalis] (GR-AEG2);

Katsoulis, E. G. [Katsoulis, Elias George] (1-ENC)

Compact operators and the geometric structure of C^* -algebras. (English summary)

Proc. Amer. Math. Soc. 124 (1996), no. 7, 2115-2122.

Let \mathfrak{A} be a C^* -algebra. In this note the authors present geometric conditions that characterize those elements $a \in \mathfrak{A}$ which turn into compact operators when \mathfrak{A} acts on a Hilbert space. To state one of them, we fix a subset M of the unit ball of \mathfrak{A} , put $\operatorname{cp}(M) = \{a \in \mathfrak{A} : \|a \pm m\| \leq 1 \text{ for all } m \in M\}$, and call a norm-one element $a \in \mathfrak{A}$ geometrically compact if $\operatorname{cp}(\operatorname{cp}(\{x\}))$ is (norm-) compact. It turns out that a has this property if and only if there is a faithful representation π such that $\pi(a)$ is a compact operator. Moreover, a faithful representation π can be found such that $\pi(a)$ is finitedimensional, if and only if the geometric rank $r_g(x)$ of a, i.e. the dimension of the linear span of $\operatorname{cp}(\operatorname{cp}(\{x\}))$, is finite. The authors furthermore investigate the behaviour of the geometric rank, and point out that no obvious connection exists between the numbers $r_g(a)$ and $\operatorname{rk} \pi(a)$. *Wend Werner*

© Copyright American Mathematical Society 2020