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1 The strong and weak operator topologies on B(H)

Let H be a Hilbert space. Besides the operator norm topology, the algebra B(H) can be
also endowed with the strong operator topology (SOT). The latter is the locally convex
topology which is induced by the family of semi-norms (Qξ)ξ∈H, where

Qξ(a) = ‖a(ξ)‖

for all ξ ∈ H and a ∈ B(H). Hence, a net of operators (aλ)λ in B(H) is SOT-convergent to
0 if and only if limλ aλ(ξ) = 0 for all ξ ∈ H. The weak operator topology (WOT) on B(H)
is the locally convex topology which is induced by the family of semi-norms (Pξ,η)ξ,η∈H,
where

Pξ,η(a) = |<a(ξ), η>|
for all ξ, η ∈ H and a ∈ B(H). In other words, a net of operators (aλ)λ in B(H) is WOT-
convergent to 0 if and only if limλ <aλ(ξ), η>= 0 for all ξ, η ∈ H.

Remarks 1.1 (i) Let (aλ)λ be a net of operators on H. Then, we have

‖·‖− lim
λ

aλ = 0 =⇒ SOT− lim
λ

aλ = 0 =⇒ WOT− lim
λ

aλ = 0.

If the Hilbert space H is not finite dimensional, none of the implications above can be
reversed (cf. Exercise 5.1).

(ii) For any a ∈ B(H) we consider the left (resp. right) multiplication operator

La : B(H) −→ B(H) (resp. Ra : B(H) −→ B(H)),

which is defined by letting La(b) = ab (resp. Ra(b) = ba) for all b ∈ B(H). It is easily seen
that the operators La and Ra are WOT-continuous. On the other hand, if the Hilbert space
H is not finite dimensional, then the multiplication in B(H) is not (jointly) WOT-continuous
(cf. Exercise 5.1).

(iii) The adjoint operator
( )∗ : B(H) −→ B(H),

which is defined by a 7→ a∗, a ∈ B(H), is WOT-continuous.

Proposition 1.2 Let (aλ)λ be a bounded net of operators on H. Then, the following con-
ditions are equivalent:

(i) WOT− limλ aλ = 0.
(ii) There is an orthonormal basis (ei)i of the Hilbert space H, such that for all i, j we

have limλ <aλ(ei), ej >= 0.
(iii) There is a subset B ⊆ H, whose closed linear span is H, such that for all ξ, η ∈ B

we have limλ <aλ(ξ), η>= 0.
(iv) There is a dense subset X ⊆ H, such that limλ <aλ(ξ), η> = 0 for all ξ, η ∈ X.

Proof. It is clear that (i)→(ii)→(iii), whereas the implication (iii)→(iv) follows by letting
X be the (algebraic) linear span of B. It only remains to show that (iv)→(i). To that end,
assume that M > 0 is such that ‖aλ ‖≤ M for all λ and consider two vectors ξ, η ∈ H. For
any positive ε we may choose two vectors ξ′, η′ ∈ X, such that ‖ξ−ξ′ ‖< ε and ‖η−η′ ‖< ε.
Since

<aλ(ξ), η> − <aλ(ξ′), η′> = <aλ(ξ − ξ′), η> + <aλ(ξ′), η − η′>,
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it follows that

|<aλ(ξ), η> − <aλ(ξ′), η′>| ≤ |<aλ(ξ − ξ′), η>| + |<aλ(ξ′), η − η′>|
≤ ‖aλ ‖ · ‖ξ − ξ′ ‖ · ‖η‖ +
‖aλ ‖ · ‖ξ′ ‖ · ‖η − η′ ‖

≤ Mε(‖ξ ‖ + ‖η‖ +ε).

Since limλ <aλ(ξ′), η′>= 0, we may choose λ0 such that |<aλ(ξ′), η′>|< ε for all λ ≥ λ0.
Then, |<aλ(ξ), η >|< ε(1 + M(‖ ξ ‖ + ‖η ‖ +ε)) for all λ ≥ λ0 and hence limλ <aλ(ξ), η >
= 0, as needed. 2

Theorem 1.3 Let H be a separable Hilbert space, r a positive real number and B(H)r =
{a ∈ B(H) : ‖a‖≤ r} the closed r-ball of B(H). Then, the topological space (B(H)r,WOT)
is compact and metrizable.

Proof. In order to prove compactness, we consider for any ξ, η ∈ H the closed disc

Dξ,η = {z ∈ C : |z | ≤ r‖ξ ‖ · ‖η‖} ⊆ C

and the product space
∏

ξ,η∈HDξ,η. In view of Tychonoff’s theorem, the latter space is
compact. We now define the map

f : B(H)r −→
∏

ξ,η∈HDξ,η,

by letting f(a) = (<a(ξ), η>)ξ,η for all a ∈ B(H)r. It is clear that f is a homeomorphism of
(B(H)r,WOT) onto its image. Therefore, the compactness of (B(H)r,WOT) will follow, as
soon as we prove that the image im f of f is closed in

∏
ξ,η∈HDξ,η. To that end, let (zξ,η)ξ,η

be an element in the closure of im f . Then, the family (zξ,η)ξ,η is easily seen to be linear in
ξ and quasi-linear in η, whereas | zξ,η | ≤ r ‖ ξ ‖ · ‖ η ‖ for all ξ, η. Hence, there is a vector
aξ ∈ H with ‖aξ ‖≤ r‖ξ ‖, such that zξ,η =<aξ, η> for all ξ, η ∈ H. Using the linearity of
the family (zξ,η)ξ,η in the first variable, it follows that there is an operator a ∈ B(H)r, such
that aξ = a(ξ) for all ξ ∈ H. Then, (zξ,η)ξ,η = f(a) ∈ im f , as needed.

In order to prove metrizability, we fix an orthonormal basis (en)∞n=0 of the separable
Hilbert space H and define for any a, b ∈ B(H)r

dr(a, b) =
∑

n,m

1
2n+m

|<(b− a)(en), em >| .

It is easily seen that dr is a metric on B(H)r, which induces, in view of Proposition 1.2, the
weak operator topology on B(H)r. 2

Our next goal is to prove a result of von Neumann, describing the closure of unital self-
adjoint subalgebras of B(H) in the weak and strong operator topologies in purely algebraic
terms. To that end, we consider for any subset X ⊆ B(H) the commutant

X ′ = {a ∈ B(H) : ax = xa for all x ∈ X}.

The bicommutant X ′′ of X is the commutant of X ′. It is clear that X ⊆ X ′′.

Lemma 1.4 For any X ⊆ B(H) the commutant X ′ is WOT-closed.

2



Proof. For any operator x ∈ B(H) we consider the linear endomorphisms Lx and Rx of
B(H), which are given by left and right multiplication with x respectively. Then, X ′ =⋂

x∈X ker (Lx −Rx) and hence the result follows from Remark 1.1(ii). 2

If n is a positive integer and X ⊆ B(H) a set of operators, we shall consider the set
X · In = {xIn : x ∈ X} ⊆ Mn(B(H)) ' B(Hn). Then, the following two properties are
easily verified (cf. Exercise 5.2):

(i) The commutant (X · In)′ of X · In in Mn(B(H)) ' B(Hn) is the set Mn(X ′) of
matrices with entries in the commutant X ′ of X in B(H).

(ii) The bicommutant (X · In)′′ of X · In in Mn(B(H)) ' B(Hn) is the set X ′′ · In, where
X ′′ is the bicommutant of X in B(H).

Lemma 1.5 Let A be a self-adjoint subalgebra of B(H) and V ⊆ H a closed A-invariant
subspace. Then:

(i) The orthogonal complement V ⊥ is A-invariant.
(ii) If p is the orthogonal projection onto V , then p ∈ A′.
(iii) The subspace V is A′′-invariant.

Proof. (i) Let ξ ∈ V ⊥ and a ∈ A. Then, for any vector η ∈ V we have a∗(η) ∈ AV ⊆ V
and hence <a(ξ), η>=<ξ, a∗(η)>= 0. Therefore, it follows that a(ξ) ∈ V ⊥.

(ii) We fix an operator a ∈ A and note that the subspaces V and V ⊥ are a-invariant, in
view of our assumption and (i) above. It follows easily from this that the operators ap and
pa coincide on both V and V ⊥. Hence, ap = pa.

(iii) Let ξ ∈ V , a′′ ∈ A′′ and consider the orthogonal projection p onto V . In view of
(ii) above, we have a′′p = pa′′ and hence a′′(ξ) = a′′p(ξ) = pa′′(ξ) ∈ V , as needed. 2

We are now ready to state and prove von Neumann’s theorem.

Theorem 1.6 (von Neumann bicommutant theorem) Let A ⊆ B(H) be a self-adjoint sub-
algebra containing the identity operator. Then, ASOT = AWOT = A′′, where we denote by
ASOT (resp. AWOT ) the SOT-closure (resp. WOT-closure) of A in B(H).

Proof. It is clear that ASOT ⊆ AWOT . Since A ⊆ A′′, it follows from Lemma 1.4 that
AWOT ⊆ A′′. Hence, it only remains to show that A′′ ⊆ ASOT . In order to verify this, we
consider an operator a′′ ∈ A′′, a positive real number ε, a positive integer n and vectors
ξ1, . . . , ξn ∈ H. We have to show that the SOT-neighborhood

Nε,ξ1,...,ξn(a′′) = {a ∈ B(H) : ‖(a− a′′)ξi ‖< ε for all i = 1, . . . , n}

of a′′ intersects A non-trivially. To that end, we consider the self-adjoint subalgebra A·In ⊆
Mn(B(H)) acting on the Hilbert space Hn by left multiplication and the closed subspace

V = {(a(ξ1), . . . , a(ξn)) : a ∈ A} ⊆ Hn.

It is clear that V is A · In-invariant. Invoking Lemma 1.5(iii) and the discussion preceding
it, we conclude that the subspace V is left invariant under the action of the operator a′′In ∈
Mn(B(H)). Since 1 ∈ A, we have (ξ1, . . . , ξn) ∈ V and hence (a′′(ξ1), . . . , a′′(ξn)) ∈ V .
Therefore, there is an operator a ∈ A, such that

‖(a′′(ξ1), . . . , a′′(ξn))− (a(ξ1), . . . , a(ξn))‖< ε.
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Then, ‖a′′(ξi)− a(ξi)‖< ε for all i = 1, . . . , n and hence a ∈ Nε,ξ1,...,ξn(a′′), as needed. 2

A von Neumann algebra of operators acting on H is a self-adjoint subalgebra N ⊆ B(H),
which is WOT-closed and contains the identity 1. Equivalently, in view of von Neumann’s
bicommutant theorem, a von Neumann algebra N is a self-adjoint subalgebra of B(H), such
that N = N ′′. It is clear that any von Neumann algebra N as above is closed under the
operator norm topology of B(H); in particular, N is a unital C∗-algebra.

Lemma 1.7 Let A be a von Neumann algebra of operators acting on the Hilbert space H.
For any idempotent e ∈ A there is a projection f ∈ A, such that ef = f and fe = e.
Proof. Since e ∈ Idem(A), the subspace V = im e is easily seen to be closed andA′-invariant.
Therefore, Lemma 1.5(ii) implies that the orthogonal projection f onto V is contained in
A′′. Invoking Theorem 1.6, we conclude that f ∈ A. The equalities ef = f and fe = e
follow since e and f are idempotent operators on H with the same image. 2

Let A ⊆ B(H) be a self-adjoint algebra of operators containing 1 and N its WOT-closure.
Then, any operator a ∈ N can be approximated (in the weak operator topology) by a net
(aλ)λ of operators from A. The following result, which is cited without proof, implies that
the net (aλ)λ can be chosen to be bounded.

Theorem 1.8 (Kaplansky density theorem) Let A be a self-adjoint subalgebra of B(H)
containing 1 and N its WOT-closure. Then, for any positive real number r the r-ball
Ar = A ∩ B(H)r of A is WOT-dense in the r-ball Nr = N ∩ B(H)r of N . 2

2 The von Neumann algebra of a group

Given a (discrete) group G, we consider the Hilbert space `2G of square summable complex-
valued functions on G with canonical orthonormal basis (δg)g∈G. In other words, `2G
consists of vectors of the form

∑
g∈G rgδg, where the rg’s are complex numbers such that∑

g∈G |rg |2 < ∞. The inner product of two vectors ξ =
∑

g∈G rgδg and ξ′ =
∑

g∈G r′gδg is
given by

<ξ, ξ′>=
∑

g∈G
rgr′g.

For any element g ∈ G we consider the linear endomorphism Lg of `2G, which is defined by
letting

Lg

(∑
x∈G

rxδx

)
=

∑
x∈G

rxδgx

for any vector
∑

x∈G rxδx ∈ `2G. It is easily seen that L1 = 1 and Lgh = LgLh for all
g, h ∈ G. Moreover, Lg is an isometry and hence L∗g = L−1

g = Lg−1 for all g ∈ G. We shall
consider the C-linear map

L : CG −→ B(`2G),

which extends the map g 7→ Lg, g ∈ G. For any element a ∈ CG we shall denote its image
in B(`2G) by La. We note that the group algebra CG can be endowed with the structure
of a ∗-algebra, by letting

(∑
g∈G agg

)∗
=

∑
g∈G agg

−1 for all
∑

g∈G λgg ∈ CG.

Lemma 2.1 Let G be a group and L : CG −→ B(`2G) the linear map defined above. Then,
L is an injective ∗-algebra homomorphism and hence the subalgebra L(CG) ⊆ B(`2G) is
self-adjoint.
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Proof. It is clear that L is an algebra homomorphism. For any a =
∑

g∈G agg ∈ CG, where
ag ∈ C for all g ∈ G, we have La =

∑
g∈G agLg and hence La(δ1) =

∑
g∈G agδg ∈ `2G.

It follows readily from this that L is injective. We now let a =
∑

g∈G agg ∈ CG, where
ag ∈ C for all g ∈ G, and consider the associated operator La =

∑
g∈G agLg ∈ L(CG).

Since L∗g = Lg−1 for all g ∈ G, it follows that L∗a =
∑

g∈G agLg−1 = La∗ ∈ L(CG). 2

We define the reduced C∗-algebra C∗
r G of G to be the operator norm closure of L(CG) in

B(`2G); then, C∗
r G is a unital C∗-algebra We also define the group von Neumann algebra

NG as the WOT-closure of L(CG) in B(`2G). Since NG is closed under the operator norm
topology, it contains C∗

r G; hence, there are inclusions L(CG) ⊆ C∗
r G ⊆ NG ⊆ B(`2G).

Remark 2.2 Assume that the group G is finite of order n. Then, the Hilbert space `2G
is identified with Cn and hence B(`2G) ' Mn(C). Moreover, all three topologies defined
above on B(`2G) (i.e. operator norm topology, SOT and WOT) coincide with the standard
Cartesian product topology on Mn(C) ' Cn2

. Since any linear subspace is closed therein,
it follows that L(CG) = C∗

r G = NG.

In the following lemma we describe certain properties that are satisfied by the operators in
the von Neumann algebra NG.

Lemma 2.3 Let G be a group and consider an operator a ∈ NG.
(i) If (δg)g∈G denotes the canonical orthonormal basis of `2G, then we have <a(δg), δhg >

=<a(δ1), δh > for all g, h ∈ G.1

(ii) For any vector ξ ∈ `2G and any group element g ∈ G the family of complex numbers
(<a(δ1), δx > · <ξ, δx−1g >)x is summable and

∑
x∈G

<a(δ1), δx > · <ξ, δx−1g >=<a(ξ), δg > .

(iii) If a(δ1) = 0 ∈ `2G then a is the zero operator.

Proof. (i) First of all, let us consider the case where a = Lx for some x ∈ G. In that case,
we have to prove that <δxg, δhg >=<δx, δh >. But this equality is obvious, since xg = hg if
and only if x = h. Both sides of the formula to be proved are linear and WOT-continuous
in a and hence the result follows from the special case considered above, since NG is the
WOT-closure of the linear span of the set {Lx : x ∈ G}.

(ii) Since ξ =
∑

x <ξ, δx > δx, it follows that a(ξ) =
∑

x <ξ, δx > a(δx). In view of the
linearity and continuity of the inner product, we conclude that

<a(ξ), δg > =
∑

x
<ξ, δx > · <a(δx), δg >

=
∑

x
<ξ, δx > · <a(δ1), δgx−1 >

=
∑

y
<ξ, δy−1g > · <a(δ1), δy >,

where the second equality follows from (i) above.
(iii) If a(δ1) = 0, then the equality of (ii) above implies that the inner product <a(ξ), δg >

vanishes for all vectors ξ ∈ `2G and all group elements g ∈ G. It follows readily from this
that a = 0. 2

1In fact, this property characterizes the operators in NG; cf. Exercise 5.3.
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We note that the linear functional r1 : CG −→ C, which maps an element a ∈ CG onto
the coefficient of 1 ∈ G in a, extends to a linear functional

τ : NG −→ C,

by letting τ(a) = <a(δ1), δ1 > for all a ∈ NG.

Remark 2.4 Let G be a group and τ the linear functional defined above. Then, the
assertion of Lemma 2.3(i) implies that τ(a) =<a(δg), δg > for all a ∈ NG and g ∈ G.

Proposition 2.5 Let G be a group and τ the linear functional defined above. Then:
(i) τ is a WOT-continuous trace.
(ii) τ is positive and faithful, i.e. τ(a∗a) ≥ 0 for all a ∈ NG, whereas τ(a∗a) = 0 if and

only if a = 0.
(iii) τ is normalized, i.e. τ(1) = 1, where 1 ∈ NG is the identity operator.

The trace τ will be referred to as the canonical trace on the von Neumann algebra NG.
Proof. (i) It is clear that τ is WOT-continuous. In order to show that τ is a trace, we fix
an operator a ∈ NG and note that for any g ∈ G we have

<aLg(δg−1), δg−1 >=<a(δ1), δg−1 >=<a(δ1), L∗g(δ1)>=<Lga(δ1), δ1 >,

where the second equality follows since L∗g = Lg−1 . Invoking Remark 2.4, we conclude that
τ(aLg) = τ(Lga). This being the case for all g ∈ G, it follows that τ(aa′) = τ(a′a) for
all a′ ∈ L(CG). Since multiplication in B(`2G) is separately WOT-continuous (cf. Remark
1.1(ii)), the WOT-continuity of τ implies that τ(aa′) = τ(a′a) for all a′ ∈ NG.

(ii) For any a ∈ NG we have

τ(a∗a) = <a∗a(δ1), δ1 >=<a(δ1), a(δ1)>= ‖a(δ1)‖2≥ 0.

In particular, τ(a∗a) = 0 if and only if a(δ1) = 0; this proves the final assertion, in view of
Lemma 2.3(iii).

(iii) We compute τ(1) = <δ1, δ1 >= ‖δ1 ‖2 = 1. 2

3 The center of NG

Let us consider the subset Gf ⊆ G, which consists of all elements g ∈ G that have finitely
many conjugates. Since the cardinality of the conjugacy class [g] of any element g ∈ G is
equal to the index of the centralizer Cg of g in G, it follows that Gf = {g ∈ G : [G : Cg]< ∞}.
We shall denote by C(G) the set of conjugacy classes of the elements of G and let Cf (G) be
the subset of C(G) that consists of those conjugacy classes [g], for which g ∈ Gf .

Lemma 3.1 Let Gf and Cf (G) be the sets defined above. Then:
(i) Gf is a characteristic (and hence normal) subgroup of G.
(ii) For any commutative ring k the center Z(kG) of the group algebra kG is a free

k-module with basis consisting of the elements ζ[g] =
∑{x : x ∈ [g]}, [g] ∈ Cf (G).

Proof. (i) It is clear that Gf is non-empty, since 1 ∈ Gf . We note that for any two elements
g1, g2 ∈ G the intersection Cg1 ∩ Cg2 is contained in the centralizer of the product g1g2. In
particular, if g1, g2 ∈ Gf then

[G : Cg1g2 ] ≤ [G : Cg1 ∩ Cg2 ] ≤ [G : Cg1 ] [G : Cg2 ] < ∞
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and hence g1g2 ∈ Gf . For any element g ∈ G we have Cg = Cg−1 ; therefore, g−1 ∈ Gf

if g ∈ Gf . We have proved that Gf is a subgroup of G. In order to prove that Gf is
characteristic in G, let us consider an automorphism σ : G −→ G. Then, σ restricts to a
bijection between the conjugacy classes [g] and [σ(g)] for any element g ∈ G. In particular,
g ∈ Gf if and only if σ(g) ∈ Gf .

(ii) It is clear that the subset {ζ[g] : [g] ∈ Cf (G)} ⊆ kG is linearly independent over
k. Moreover, xζ[g]x

−1 = ζ[g] for all x ∈ G and hence ζ[g] ∈ Z(kG) for all [g] ∈ Cf (G).
In order to show that the ζ[g]’s form a basis of Z(kG), let us consider a central element
a =

∑
g∈G agg ∈ kG, where ag ∈ k for all g ∈ G. Then, a = xax−1 for all x ∈ G and

hence ag = ax−1gx for all g, x ∈ G. Therefore, the function g 7→ ag, g ∈ G, is constant
on conjugacy classes. Since its support is finite, that function must vanish on the infinite
conjugacy classes. It follows that a is a linear combination of the ζ[g]’s, as needed. 2

Let ZG be the center of the von Neumann algebra NG; it is clear that ZG = NG∩ (NG)′,
being WOT-closed, is itself a von Neumann algebra of operators on `2G. Our next goal is
to identify ZG with the WOT-closure of the self-adjoint subalgebra Z(L(CG)) ⊆ B(`2G).
We note that

Z(L(CG)) = L(CG) ∩ (L(CG))′ ⊆ L(CG)′′ ∩ (L(CG))′′′ = NG ∩ (NG)′.

Hence, ZG being WOT-closed, we have Z(L(CG))
WOT ⊆ ZG. In order to prove the reverse

inclusion, we shall need a couple of auxiliary results.

Lemma 3.2 Let a ∈ ZG be an operator in the center of NG. Then:
(i) For all g, h ∈ G we have <a(δ1), δg−1hg > = <a(δ1), δh >.
(ii) The inner product < a(δ1), δg > depends only upon the conjugacy class [g] ∈ C(G)

and vanishes if g /∈ Gf .
(iii) For any g ∈ G we have

a(δg) =
∑

[x]∈Cf (G)
<a(δ1), δx > Lζ[x]

(δg) ∈ `2G.

Proof. (i) We fix the elements g, h ∈ G and compute

<a(δ1), δg−1hg > = <a(δ1), Lg−1(δhg)>
= <L∗g−1a(δ1), δhg >

= <Lga(δ1), δhg >
= <aLg(δ1), δhg >
= <a(δg), δhg >
= <a(δ1), δh >

In the above chain of equalities, the third one follows since L∗g−1 = Lg, the fourth one since
a commutes with Lg, whereas the last one was established in Lemma 2.3(i).

(ii) It follows from (i) that the function g 7→<a(δ1), δg >, g ∈ G, is constant on conjugacy
classes. Being square-summable, that function must vanish on those elements g ∈ G with
infinitely many conjugates.

(iii) It follows from (i) and (ii) above that

a(δ1) =
∑

[x]∈Cf (G)
<a(δ1), δx >

∑
{δx′ : x′ ∈ [x])}

=
∑

[x]∈Cf (G)
<a(δ1), δx > Lζ[x]

(δ1).
(1)
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On the other hand, for any g ∈ G the operator Lg commutes with a (since a ∈ ZG) and
Lζ[x]

for any x ∈ Gf (since the Lζ[x]
’s are central in L(CG); cf. Lemma 3.1(ii)). Therefore,

we have
a(δg) = aLg(δ1)

= Lga(δ1)
=

∑
[x]∈Cf (G)

<a(δ1), δx > LgLζ[x]
(δ1)

=
∑

[x]∈Cf (G)
<a(δ1), δx > Lζ[x]

Lg(δ1)

=
∑

[x]∈Cf (G)
<a(δ1), δx > Lζ[x]

(δg).

In the above chain of equalities, the third one follows from Eq.(1), in view of the continuity
of Lg. 2

Corollary 3.3 Let a ∈ ZG be an operator in the center of NG and b ∈ (Z(L(CG)))′ an
operator in the commutant of Z(L(CG)) in B(`2G). Then, for any two elements g, h ∈ G
the family of complex numbers (<a(δ1), δx > · <b(δg), δx−1h >)x∈G is summable and

∑
x∈G

<a(δ1), δx > · <b(δg), δx−1h > = <ba(δg), δh > .

Proof. In view of the continuity of b, Lemma 3.2(iii) implies that

ba(δg) =
∑

[x]∈Cf (G)
<a(δ1), δx > bLζ[x]

(δg)

=
∑

[x]∈Cf (G)
<a(δ1), δx > Lζ[x]

b(δg)

=
∑

x∈G
<a(δ1), δx > Lxb(δg).

In the above chain of equalities, the second one follows since b commutes with Lζ[x]
∈

Z(L(CG)) for all [x] ∈ Cf (G) (cf. Lemma 3.1(ii)), whereas the last one is a consequence of
Lemma 3.2(ii). Therefore, we have

<ba(δg), δh > =
∑

x∈G
<a(δ1), δx > · <Lxb(δg), δh >

=
∑

x∈G
<a(δ1), δx > · <b(δg), L∗x(δh)>

=
∑

x∈G
<a(δ1), δx > · <b(δg), Lx−1(δh)>

=
∑

x∈G
<a(δ1), δx > · <b(δg), δx−1h >,

where the first equality follows from the continuity of the inner product < , δh > and the
third one from the equalities L∗x = Lx−1 , x ∈ G. 2

We are now ready to prove the following result, describing the center of the von Neumann
algebra NG.

Proposition 3.4 The center ZG of the von Neumann algebra NG is the WOT-closure in
B(`2G) of the center Z(L(CG)) of the algebra L(CG).
Proof. As we have already noted, the von Neumann algebra ZG contains the WOT-closure
of Z(L(CG)). On the other hand, the WOT-closure of the ∗-algebra Z(L(CG)) coincides
with its bicommutant in B(`2G) (cf. Theorem 1.6). Hence, it only remains to show that
ZG ⊆ (Z(L(CG)))′′, i.e. that any a ∈ ZG commutes with any b ∈ (Z(L(CG)))′. Let us fix
such a pair of operators a, b. Since a ∈ ZG ⊆ NG, we have

<a(ξ), δh > =
∑

x∈G
<a(δ1), δx > · <ξ, δx−1h >
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for all ξ ∈ `2G and h ∈ G (cf. Lemma 2.3(ii)). In particular, we have

<ab(δg), δh > =
∑

x∈G
<a(δ1), δx > · <b(δg), δx−1h >

for all g, h ∈ G. Therefore, Corollary 3.3 implies that

<ab(δg), δh > = <ba(δg), δh >

for all g, h ∈ G and hence ab = ba, as needed. 2

Remark 3.5 Let H be a Hilbert space, A ⊆ B(H) a unital self-adjoint subalgebra and N
its WOT-closure. Even though the center Z(N ) of N always contains the WOT-closure of
the center Z(A) of A, the inclusion Z(A)

WOT ⊆ Z(N ) may be proper (in contrast to the
situation described in Proposition 3.4); cf. Exercise 5.4.

4 The center-valued trace on NG

Our goal is to construct a trace

t = tG : NG −→ ZG,

which is WOT-continuous on bounded sets, maps ZG identically onto itself and is closely
related to the canonical trace τ .

I. The trace on CG. We shall begin by defining t on the group algebra CG. More
precisely, we define the linear map

t0 : CG −→ Z(CG),

by letting t0(g) = 0 if g /∈ Gf and t0(g) = 1
[G:Cg ]ζ[g] if g ∈ Gf .2

Proposition 4.1 Let t0 : CG −→ Z(CG) be the C-linear map defined above. Then:
(i) t0 is a trace with values in Z(CG),
(ii) t0(a) = a for all a ∈ Z(CG),
(iii) t0(aa′) = at0(a′) for all a ∈ Z(CG) and a′ ∈ CG (i.e. t0 is Z(CG)-linear),
(iv) t0(a∗) = t0(a)∗ for all a ∈ CG and
(v) the trace functional r1 on CG factors as the composition

CG
t0−→ Z(CG)

r′1−→ C,

where r′1 is the restriction of r1 to the center Z(CG).
Proof. (i) Since t0 is C-linear, it suffices to show that t0(g) = t0(g′) whenever [g] = [g′] ∈
C(G). But this is an immediate consequence of the definition of t0.

(ii) We consider an element g ∈ Gf with [G : Cg] = n and let [g] = {g1, . . . , gn}. Then,
t0(gi) = t0(g) for all i = 1, . . . , n and hence

t0(ζ[g]) = t0
(∑n

i=1
gi

)
=

∑n

i=1
t0(gi) = nt0(g) = ζ[g].

2This definition is imposed by the requirement that t0 extends to a trace on the von Neumann algebra
NG with values in ZG, which is WOT-continuous on bounded sets and maps ZG identically onto itself; cf.
Exercise 5.5.
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Since t0 is C-linear, the proof is finished by invoking Lemma 3.1(ii).
(iii) We consider an element g ∈ Gf with [G : Cg] = n and let [g] = {g1, . . . , gn}; then,

gi ∈ Gf for all i = 1, . . . , n. If g′ ∈ G is an element with g′ /∈ Gf , then (Gf being a subgroup
of G, in view of Lemma 3.1(i)) gig

′ /∈ Gf for all i = 1, . . . , n. In particular,

t0(ζ[g]g
′) = t0

(∑n

i=1
gig

′
)
=

∑n

i=1
t0(gig

′) = 0 = ζ[g]t0(g
′).

We now assume that g′ ∈ Gf and consider the conjugacy class [g′] = {g′1, . . . , g′m}, where
m = [G : Cg′ ]. Then, for any j = 1, . . . , m there exists an element xj ∈ G, such that
g′j = xjg

′x−1
j . Since ζ[g] is central in CG, we have ζ[g]g

′
j = xjζ[g]g

′x−1
j and hence (t0 being

a trace, in view of (i) above) t0
(
ζ[g]g

′
j

)
= t0

(
ζ[g]g

′
)

for all j = i, . . . , m. It follows that

ζ[g]ζ[g′] = t0
(
ζ[g]ζ[g′]

)
= t0

(∑m

j=1
ζ[g]g

′
j

)
=

∑m

j=1
t0

(
ζ[g]g

′
j

)
= mt0

(
ζ[g]g

′
)
,

where the first equality is a consequence of (ii) above, since the element ζ[g]ζ[g′] is central in
CG. We conclude that

t0
(
ζ[g]g

′
)
=

1
m

ζ[g]ζ[g′] = ζ[g]t0(g
′)

in this case as well. Therefore, we have proved that t0
(
ζ[g]g

′
)

= ζ[g]t0(g′) for all g′ ∈ G.
Since this is the case for any g ∈ Gf , the linearity of t0, combined with Lemma 3.1(ii),
finishes the proof.

(iv) Since both sides of the equality to be proved are conjugate linear in a, it suffices to
consider the case where a = g, for some element g ∈ G. In that case, we have a∗ = g−1. If
g ∈ Gf and [g] = {g1, . . . , gn}, then g−1 ∈ Gf and

[
g−1

]
=

{
g−1
1 , . . . , g−1

n

}
. Therefore, we

have
t0(a∗) = t0

(
g−1

)
=

∑n

i=1
g−1
i =

(∑n

i=1
gi

)
∗ = t0(g)∗ = t0(a)∗.

If g is not contained in Gf , which is a subgroup of G, then g−1 is not contained in Gf either
and hence both t0(a)∗ = t0(g)∗ and t0(a∗)= t0

(
g−1

)
vanish.

(v) It suffices to verify that the linear functionals r′1 ◦ t0 and r1 have the same value on
g for all g ∈ G. But this follows immediately from the definitions. 2

II. A factorization of the trace on CG. In order to extend the trace t0 defined
above to the von Neumann algebra NG, we shall consider the linear maps

∆ : CG −→ CGf and c : CGf −→ Z(CG),

which are defined by letting ∆ map any group element g ∈ G onto g (resp. onto 0) if g ∈ Gf

(resp. if g /∈ Gf ) and c map any g ∈ Gf onto 1
[G:Cg ]ζ[g]. Then, t0 can be expressed as the

composition
CG

∆−→ CGf
c−→ Z(CG).

Viewing the algebras above as algebras of operators acting on `2G by left translations, we
shall study the continuity properties of ∆ and c and show that both of them extend to the
respective WOT-closures.

III. The map ∆. We begin by considering a (possibly infinite) family (Hs)s∈S of Hilbert
spaces and define H to be the corresponding Hilbert space direct sum. Then, H =

⊕
s∈S Hs
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consists of those elements ξ = (ξs)s ∈
∏

s∈S Hs, for which the series
∑

s∈S ‖ξs ‖2
s is conver-

gent. (Here, we denote for any s ∈ S by ‖·‖s the norm of the Hilbert space Hs.) The inner
product on H is defined by letting <ξ, η> =

∑
s∈S <ξs, ηs >s for any two vectors ξ = (ξs)s

and η = (ηs)s of H, where < , >s denotes the inner product of Hs for all s ∈ S. The
Hilbert spaces Hs, s ∈ S, admit isometric embeddings as closed orthogonal subspaces of H
by means of the operators ιs : Hs −→ H, which map an element ξs ∈ Hs onto the element
ιs(ξs) = (ηs′)s′ ∈ H with ηs = ξs and ηs′ = 0 for s′ 6= s. Then, the Hilbert space H is the
closed linear span of the subspaces ιs(Hs), s ∈ S. For any index s ∈ S we shall also consider
the projection Ps : H −→ Hs, which maps an element ξ = (ξs′)s′ ∈ H onto ξs ∈ Hs. It is
clear that Ps is a continuous linear map with ‖Ps‖≤ 1 for all s ∈ S. Moreover, for any
vectors ξ ∈ H and ηs ∈ Hs we have <Ps(ξ), ηs >s = <ξ, ιs(ηs)>; therefore, Ps = ι∗s is the
adjoint of ιs for all s ∈ S.

Let us consider a bounded operator a ∈ B(H) and a vector ξ = (ξs)s ∈ H. Then, the
family (Psaιs(ξs))s ∈

∏
s∈S Hs is also a vector in H, since

∑
s∈S

‖Psaιs(ξs)‖2
s ≤

∑
s∈S

‖aιs(ξs)‖2

≤ ‖a‖2
∑

s∈S
‖ ιs(ξs)‖2

= ‖a‖2
∑

s∈S
‖ξs ‖2

s

= ‖a‖2‖ξ ‖2 .

(2)

This is the case for any ξ ∈ H and hence we may consider the map

∆(a) : H −→ H,

which maps an element ξ = (ξs)s ∈ H onto ∆(a)(ξ) = (Psaιs(ξs))s ∈ H. Itcis clear that the
map ∆(a) is linear. Moreover, it follows from (2) that ∆(a) is a bounded operator; in fact,
we have ‖∆(a)‖≤‖a‖. Therefore, we may consider the map

∆ : B(H) −→ B(H),

which is given by a 7→ ∆(a), a ∈ B(H). The map ∆ is linear and continuous with respect
to the operator norm topology on B(H); in fact, ‖∆‖≤ 1.3 It is easily seen that

∆(a)ιs = ιsPsaιs (3)

for all a ∈ B(H) and all indices s ∈ S. Since ∆ is a contraction, it induces by restriction to
the r-ball a map

∆r : (B(H))r −→ (B(H))r

for any radius r. Of course, ∆r is continuous with respect to the operator norm topology
on (B(H))r.

Lemma 4.2 The map ∆r defined above is WOT-continuous for any r.

Proof. Let (aλ)λ be a bounded net of operators in B(H), which is WOT-convergent to 0.
In order to show that the net (∆(aλ))λ of operators in B(H) is WOT-convergent to 0 as
well, it suffices, in view of Proposition 1.2, to show that limλ <∆(aλ)(ξ), η> = 0, whenever

3The decomposition H =
⊕

s∈S
Hs identifies the algebra B(H) with a certain algebra of S × S matrices

whose (s, s′)-entry consists of bounded operators from Hs′ to Hs for all s, s′ ∈ S. Under this identification,
the linear map ∆ maps any a = (ass′)s,s′∈S onto the diagonal matrix diag{ass : s ∈ S}.
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there are two indices s, s′ ∈ S and vectors ξs ∈ Hs and ηs′ ∈ Hs′ , such that ξ = ιs(ξs) and
η = ιs′(ηs′). Since

∆(aλ)(ξ) = ∆(aλ)ιs(ξs) = ιsPsaλιs(ξs)

(cf. Eq.(3)), the inner product < ∆(aλ)(ξ), η >=< ∆(aλ)(ξ), ιs′(ηs′) > vanishes if s 6= s′.
On the other hand, if s = s′ we have

< ∆(aλ)(ξ), η > = < ιsPsaλιs(ξs), ιs(ηs) >
= < Psaλιs(ξs), ηs >s

= < aλιs(ξs), ιs(ηs) > ,

where the last equality follows since Ps = ι∗s. Since WOT-limλaλ = 0, we conclude that
limλ <∆(aλ)(ξ), η>= 0 in this case as well. 2

In order to apply the conclusion of Lemma 4.2, we consider the group G and a subgroup
H ≤ G. If S is a set of representatives of the left cosets of H in G, then the decomposition
of G into the disjoint union of the cosets Hs, s ∈ S, induces a Hilbert space decomposition
`2G =

⊕
s∈S `2(Hs). We consider the operator

∆ : B(`2G) −→ B(`2G),

which is associated with that decomposition as above. In particular, let us fix an element
g ∈ G and try to identify the operator ∆(Lg) ∈ B(`2G). For any x ∈ G there is a unique
s = s(x) ∈ S, such that x ∈ Hs. Then,

∆(Lg)(δx) = ∆(Lg)ιs(δx) = ιsPsLgιs(δx) = ιsPsLg(δx) = ιsPs(δgx),

where the second equality follows from Eq.(3). We note that gx ∈ Hs if and only if g ∈ H
and hence ∆(Lg)(δx) is equal to ιs(δgx) = δgx if g ∈ H and vanishes if g /∈ H. Since this is
the case for all x ∈ G, we conclude that

∆(Lg) =

{
Lg if g ∈ H
0 if g /∈ H

In particular, ∆(Lg) is an element of the subalgebra L(CH) ⊆ B(`2G). (We note that here
L(CH) is viewed as an algebra of operators acting on `2G.) Hence, ∆ restricts to a linear
map

∆ : L(CG) −→ L(CH) ⊆ B(`2G).

Corollary 4.3 Let H be a subgroup of G and consider the linear operator

∆ : L(CG) −→ L(CH) ⊆ B(`2G),

which is defined above. Then:
(i) The operator ∆ is a contraction.
(ii) The map

∆r : (L(CG))r −→ (L(CH))r ⊆ (B(`2G))r,

induced from ∆ by restriction to the respective r-balls, is WOT-continuous for any r. 2
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IV. The map c. We shall begin by considering a group N together with an automorphism
φ : N −→ N . Then, φ extends by linearity to an automorphism of the complex group
algebra CN , which will be still denoted (by an obvious abuse of notation) by φ. We shall
also consider the associated automorphism Lφ of the algebra of operators L(CN) ⊆ B(`2N),
which is defined by letting Lφ(La) = Lφ(a) for all a ∈ CN . On the other hand, there is a
unitary operator Φ ∈ B(`2N), such that Φ(δx) = δφ(x) for all x ∈ N ; here, we denote by
(δx)x∈N the canonical orthonormal basis of `2N .

Lemma 4.4 Let N be a group and φ an automorphism of N .
(i) The associated isometry Φ of the Hilbert space `2N is such that Lφ(a) ◦Φ = Φ ◦La ∈

B(`2N) for all a ∈ CN .
(ii) The automorphism Lφ of L(CN) is norm-preserving and WOT-continuous.

Proof. (i) By linearity, it suffices to verify that Lφ(x) ◦ Φ = Φ ◦ Lx for all x ∈ N . For any
element y ∈ N we have

(Lφ(x) ◦ Φ)(δy) = Lφ(x)(δφ(y)) = δφ(x)φ(y) = δφ(xy) = Φ(δxy) = (Φ ◦ Lx)(δy).

Since the bounded operators Lφ(x)◦Φ and Φ◦Lx agree on the orthonormal basis {δy : y ∈ N}
of the Hilbert space `2N , they are equal.

(ii) For any a ∈ CN we have Lφ(a) = Φ ◦ La ◦ Φ−1, in view of (i) above. Since Φ is
unitary, it follows that ‖Lφ(a) ‖= ‖La ‖ for all a ∈ CN and hence Lφ is norm-preserving.
On the other hand, the map b 7→ Φ ◦ b ◦ Φ−1, b ∈ B(`2N), is WOT-continuous (cf. Remark
1.1(ii)). Being a restriction of it, Lφ is WOT-continuous as well. 2

We now assume that N is a group on which the group G acts by automorphisms. Then,
for any g ∈ G we are given an automorphism φg : N −→ N , in such a way that φg ◦ φg′ =
φgg′ for all g, g′ ∈ G. There is an induced action of G by automorphisms (φg)g on the
complex group algebra CN and a corresponding action of G by automorphisms (Lφg)g on
the algebra of operators L(CN) ⊆ B(`2N). More precisely, for any g ∈ G the automorphism
φg : CN −→ CN is the linear extension of φg ∈ Aut(N), whereas Lφg : L(CN) −→ L(CN)
maps La onto Lφg(a) for all a ∈ CN .

If the G-action on N is such that all orbits are finite (equivalently, if for any element
x ∈ N the stabilizer subgroup Stabx has finite index in G), then we define the linear map

c : L(CN) −→ L(CN),

as follows: For any x ∈ N with G-orbit {x1, . . . , xm} ⊆ N , where m = m(x) = [G : Stabx],
we let c(Lx) = 1

m

∑m
i=1 Lxi ∈ L(CN).

Lemma 4.5 Assume that G acts on a group N by automorphisms, in such a way that all
orbits are finite, and consider the linear operator c on L(CN) defined above.

(i) Let x be an element of N and H ≤ G a subgroup of finite index with H ⊆ Stabx. If
[G : H] = k and {g1, . . . , gk} is a set of representatives of the right H-cosets {gH : g ∈ G},
then c(Lx) = 1

k

∑k
i=1 Lφgi (x).

(ii) The operator c is a contraction.
(iii) The map

cr : (L(CN))r −→ (L(CN))r,

induced from c by restriction to the r-balls, is WOT-continuous for any r.
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Proof. (i) Since H is contained in the stabilizer Stabx, we have φg(x) = φg′(x) ∈ N if
gH = g′H. Therefore, the right hand side of the equality to be proved doesn’t depend upon
the choice of the set of representatives of the cosets {gH : g ∈ G}. Let {s1, . . . , sm} be a set
of representatives of the cosets {g Stabx : g ∈ G}, where m = m(x) = [G : Stabx]. Then,
the G-orbit of x is the set {φs1(x), . . . , φsm(x)} and hence

c(Lx) =
1
m

∑m

i=1
Lφsi (x).

We now let {u1, . . . , ul} be a set of representatives of the cosets {gH : g ∈ Stabx}, where
l = [ Stabx : H]. Then, the set {siuj : 1 ≤ i ≤ m , 1 ≤ j ≤ l} is a set of representatives of
the cosets {gH : g ∈ G}. In particular, k = [G : H] = [G : Stabx] · [ Stabx : H] = ml. Since
the uj ’s stabilize x, we have φsiuj (x) = φsi(x) for all i, j and hence

c(Lx) =
1
m

∑m

i=1
Lφsi(x) =

l

k

∑m

i=1
Lφsi (x) =

1
k

∑m

i=1

∑l

j=1
Lφsiuj (x),

as needed.
(ii) Let a =

∑r
i=1 aixi ∈ CN , where ai ∈ C and xi ∈ N for all i = 1, . . . , r. We

consider the subgroup H =
⋂r

i=1 Stabxi , which has finite index in G, and fix a set of
representatives {g1, . . . , gk} of the cosets {gH : g ∈ G}. We note that La =

∑r
i=1 aiLxi ,

whereas Lφgj (a) =
∑r

i=1 aiLφgj (xi) for all j = 1, . . . , k. Hence, it follows from (i) above that

c(La) =
∑r

i=1
aic(Lxi) =

∑r

i=1
ai

1
k

∑k

j=1
Lφgj (xi) =

1
k

∑k

j=1
Lφgj (a).

Since ‖ Lφgj (a) ‖ = ‖ La ‖ for all j = 1, . . . , k (cf. Lemma 4.4(ii)), we may conclude that
‖c(La)‖ ≤ ‖La ‖ and hence c is a contraction.

(iii) Let (aλ)λ be a net of elements in the group algebra CN , such that the net of
operators (Laλ

)λ is bounded and WOT-convergent to 0 ∈ B(`2N). For any index λ we
write aλ =

∑
x∈N aλ,xx, where the aλ,x’s are complex numbers, and note that

<Laλ
(δ1), δx > = <

∑
x′∈N

aλ,x′δx′ , δx > = aλ,x

for all x ∈ N ; in particular, it follows that limλ aλ,x = 0 for all x ∈ N . In order to show
that the bounded net (c(Laλ

))λ of operators in L(CN) ⊆ B(`2N) is WOT-convergent to 0
as well, it suffices to show that

limλ <c(Laλ
)(δy), δz >= 0

for all y, z ∈ N (cf. Proposition 1.2). For any pair of elements x, x′ ∈ N we write x ∼ x′ if
and only if x and x′ are in the same orbit under the G-action, whereas m(x) denotes the
cardinality of the G-orbit of x. Then,

c(Laλ
) =

∑
x∈N

aλ,xc(Lx)

=
∑

x∈N
aλ,x

1
m(x)

∑
{Lx′ : x′ ∼ x}

=
∑

x′∈N

∑
{aλ,x

1
m(x) : x ∼ x′}Lx′

and hence
<c(Laλ

)(δy), δz >=
∑
{aλ,x

1
m(x) : x ∼ zy−1}.
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Since limλ aλ,x = 0 for each one of the finitely many x’s in the G-orbit of zy−1, we conclude
that limλ <c(Laλ

)(δy), δz > = 0. 2

Let H be a Hilbert space, S a non-empty index set and H(S) the Hilbert space direct sum
of the constant family of Hilbert spaces (Hs)s∈S with Hs = H for all s ∈ S. For any
bounded operator a ∈ B(H) there is an associated linear operator a(S) : H(S) −→ H(S),
which maps an element (ξs)s ∈ H(S) onto (a(ξs))s. The map a(S) is well-defined, since for
any (ξs)s ∈ H(S) we have

∑
s∈S

‖a(ξs)‖2≤
∑

s∈S
‖a‖2‖ξs ‖2 = ‖a‖2

∑
s∈S

‖ξs ‖2 < ∞.

It follows that the operator a(S) is bounded and ‖a(S) ‖≤‖a‖. In fact, we may fix an index
s ∈ S and consider the restriction of a(S) on the subspace ιs(H), in order to conclude that
‖a(S) ‖= ‖a‖. Hence, the linear map

ν : B(H) −→ B
(
H(S)

)
,

which is given by a 7→ a(S), a ∈ B(H), is an isometry and we may consider its restriction to
the r-balls

νr : (B(H))r −→
(
B

(
H(S)

))
r.

Then, a net (aλ)λ in (B(H))r is WOT-convergent to 0 if and only if this is the case for the
associated net

(
a

(S)
λ

)
λ of operators on H(S). Indeed, if WOT-limλ a

(S)
λ = 0, then we may

consider the restriction of the a
(S)
λ ’s on the subspace ιs(H) ⊆ H(S), for some index s ∈ S, in

order to conclude that WOT-limλ aλ = 0. Conversely, assume that the bounded net (aλ)λ

of operators in B(H) is WOT-convergent to 0. Then, for any pair of indices s, s′ ∈ S and
any vectors ξ, ξ′ ∈ H, we have

< a
(S)
λ ιs(ξ), ιs′(ξ′) >=< ιsaλ(ξ), ιs′(ξ′) >=

{
< aλ(ξ), ξ′ > if s = s′

0 if s 6= s′

where the first equality follows since a(S)ιs = ιsa for any a ∈ B(H). In any case, we conclude
that limλ < a

(S)
λ ιs(ξ), ιs′(ξ′) >= 0 and hence the bounded net

(
a

(S)
λ

)
λ is WOT-convergent

to 0 (cf. Proposition 1.2).

Corollary 4.6 Assume that G acts on a group N by automorphisms, in such a way that
all orbits are finite. We consider a group N ′ containing N as a subgroup and let c be the
linear operator on L(CN) ⊆ L(CN ′) ⊆ B(`2N ′), which is defined as in the paragraph before
Lemma 4.5. Then:

(i) The operator c is a contraction.
(ii) The map

cr : (L(CN))r −→ (L(CN))r,

induced from c by restriction to the r-balls, is continuous with respect to the weak operator
topology on (L(CN))r ⊆ (B(`2N ′))r for any r.

Proof. For any element a ∈ CN we shall denote by La (resp. L′a) the left translation induced
by a on the Hilbert space `2N (resp. `2N ′). If S ⊆ N ′ is a set of representatives of the
cosets {Nx : x ∈ N ′}, then the Hilbert space `2N ′ =

⊕
s∈S `2(Ns) is naturally identified
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with (`2N)(S), in such a way that L′a is identified with L
(S)
a for all a ∈ CN . Therefore,

assertions (i) and (ii) are immediate consequences of Lemma 4.5(ii),(iii), in view of the
discussion above. 2

V. The WOT-continuity of the trace on L(CG). Since L : CG −→ L(CG) is
an algebra isomorphism, it follows that the center Z(L(CG)) of L(CG) coincides with
L(Z(CG)), where Z(CG) is the center of CG. Hence, the linear map t0 : CG −→ Z(CG)
of Proposition 4.1 induces a linear map

t : L(CG) −→ Z(L(CG)),

by letting t(La) = Lt0(a) for any a ∈ CG. Using the results obtained above, we can now
establish certain key continuity properties of t.

Proposition 4.7 Let t : L(CG) −→ Z(L(CG)) be the linear map defined above. Then:
(i) t is a contraction and its restriction

tr : (L(CG))r −→ (Z(L(CG)))r

to the respective r-balls is WOT-continuous for any r,
(ii) t is a trace with values in Z(L(CG)),
(iii) t(La) = La for all La ∈ Z(L(CG)),
(iv) t(LaLa′) = Lat(La′) for all La ∈ Z(L(CG)) and La′ ∈ L(CG) (i.e. t is Z(L(CG))-

linear),
(v) t(L∗a)= t(La)∗ for all La ∈ L(CG) and
(vi) the canonical trace functional τ on L(CG) factors as the composition

L(CG) t−→ Z(L(CG)) τ ′−→ C,

where τ ′ is the restriction of τ to the center Z(L(CG)).

Proof. (i) Let Gf £G be the normal subgroup consisting of those elements g ∈ G that have
finitely many conjugates and consider the linear map

∆ : L(CG) −→ L(CGf ),

which is defined on the set of generators Lg, g ∈ G, by letting ∆(Lg) = Lg if g ∈ Gf and
∆(Lg) = 0 if g /∈ Gf . The orbit of an element g ∈ Gf under the conjugation action of G is
the conjugacy class [g] ∈ C(G), a finite set with [G : Cg] elements. We consider the linear
map

c : L(CGf ) −→ L(CGf ),

which maps Lg onto 1
[G:Cg ]

∑{Lx : x ∈ [g]} for all g ∈ Gf . It is clear that the composition

L(CG) ∆−→ L(CGf ) c−→ L(CGf )

coincides with the composition

L(CG) t−→ Z(L(CG)) ↪→ L(CGf ).

Therefore, (i) is a consequence of Corollaries 4.3 and 4.6. The proof of assertions (ii), (iii),
(iv), (v) and (vi) follows readily from Proposition 4.1. 2
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VI. The construction of t on NG. Using the results obtained above, we shall now
construct the center-valued trace t on the von Neumann algebra NG of the countable group
G. We note that the countability of G implies that the Hilbert space `2G is separable. For
any radius r we consider the r-ball (B(`2G))r of the algebra of bounded operators on `2G.
Then, the space ((B(`2G))r, WOT) is compact and metrizable; in fact, we can choose for
any r a metric dr on ((B(`2G))r, WOT), in such a way that

dr(a, a′) = d2r(a′ − a, 0) (4)

for all a, a′ ∈ (B(`2G))r (cf. Theorem 1.3 and its proof). In view of Kaplansky’s density the-
orem (Theorem 1.8), the r-ball (NG)r is the WOT-closure of the r-ball (L(CG))r. It follows
that ((NG)r, WOT) is also a compact metric space; in particular, it is a complete metric
space. In fact, ((NG)r, WOT) can be identified with the completion of its dense subspace
((L(CG))r, WOT). As an immediate consequence of the discussion above, we note that any
operator in NG is the WOT-limit of a bounded sequence of operators in L(CG). Using
a similar argument, combined with Proposition 3.4, we may identify the complete metric
space ((ZG)r, WOT) with the completion of its dense subspace ((Z(L(CG)))r, WOT). It
follows that any operator in ZG is the WOT-limit of a bounded sequence of operators in
Z(L(CG)).

We now consider the linear map t : L(CG) −→ Z(L(CG)) of Proposition 4.7. We know
that t is a contraction, whereas its restriction tr to the respective r-balls is WOT-continuous
for all r. Having fixed the radius r, we note that the continuity of t2r at 0 implies that for
any ε > 0 there is δ = δ(r, ε) > 0, such that

d2r(a, 0) < δ =⇒ d2r(t(a), 0) < ε

for all a ∈ (L(CG))2r. Taking into account the linearity of t and Eq.(4), it follows that

dr(a, a′) < δ =⇒ dr(t(a), t(a′)) < ε

for all a, a′ ∈ (L(CG))r. Therefore, the map

tr : ((L(CG))r,WOT) −→ ((Z(L(CG)))r, WOT)

is uniformly continuous and hence admits a unique extension to a continuous map between
the completions

tr : ((NG)r, WOT) −→ ((ZG)r, WOT). (5)

Taking into account the uniqueness of these extensions, it follows that there is a well-defined
map

t : NG −→ ZG,

which is contractive, extends t : L(CG) −→ Z(L(CG)) and its restriction to the respective
r-balls is the WOT-continuous map tr of (5) for all r.

Theorem 4.8 Let ZG be the center of the von Neumann algebra NG and t : NG −→ ZG
the map defined above. Then:

(i) t extends the trace t0 : CG −→ Z(CG), in the sense that the following diagram is
commutative

CG
t0−→ Z(CG)

L ↓ ↓ L

NG
t−→ ZG
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(ii) t is a contraction and its restriction to bounded sets is WOT-continuous,
(iii) t is C-linear,
(iv) t is a trace with values in ZG,
(v) t(a) = a for all a ∈ ZG,
(vi) t(aa′) = at(a′) for all a ∈ ZG and a′ ∈ NG (i.e. t is ZG-linear),
(vii) t(a∗)= t(a)∗ for all a ∈ NG,
(viii) the canonical trace functional τ on NG factors as the composition

NG
t−→ ZG

τ ′−→ C,

where τ ′ is the restriction of τ on ZG.
(ix) t(a∗a) is non-zero and self-adjoint for all a ∈ NG \ {0}.

The trace t is referred to as the center-valued trace on NG.

Proof. Assertions (i) and (ii) follow from the construction of t.
(iii) As we have already noted, for any a, a′ ∈ NG there are bounded sequences (an)n

and (a′n)n in L(CG), such that WOT-limn an = a and WOT-limn a′n = a′. Then, for any
λ, λ′ ∈ C the sequence (λan +λ′a′n)n is bounded and WOT-convergent to λa+λ′a′. In view
of the linearity of t on L(CG), we have t(λan + λ′a′n) = λt(an) + λ′t(a′n) for all n. Since t
is WOT-continuous on bounded sets, it follows that t(λa + λ′a′) = λt(a) + λ′t(a′).

(iv) We recall that multiplication in B(`2G) is separately continuous in the weak operator
topology (cf. Remark 1.1(ii)). For any element a ∈ L(CG) the map a′ 7→ t(aa′)−t(a′a), a′ ∈
NG, is WOT-continuous on bounded sets and vanishes on L(CG), in view of Proposition
4.7(ii). Therefore, approximating any operator of NG by a bounded sequence in L(CG),
we conclude that t(aa′) = t(a′a) for all a′ ∈ NG. We now fix a′ ∈ NG and consider the
map a 7→ t(aa′) − t(a′a), a ∈ NG. This latter map is WOT-continuous on bounded sets
and vanishes on L(CG), as we have just proved. Hence, using the same argument as above,
we conclude that t(aa′) = t(a′a) for all a ∈ NG.

(v) We know that any operator a ∈ ZG is the WOT-limit of a bounded sequence of
operators in Z(L(CG)); therefore, the equality t(a) = a is an immediate consequence of
Proposition 4.7(iii), in view of the WOT-continuity of t on bounded sets.

(vi) We fix an operator a ∈ Z(L(CG)) and consider the map a′ 7→ t(aa′) − at(a′),
a′ ∈ NG. This map is WOT-continuous on bounded sets and vanishes on L(CG) (cf.
Proposition 4.7(iv)). Approximating any operator of NG by a bounded sequence in L(CG),
we conclude that t(aa′) = at(a′) for all a′ ∈ NG. We now fix an element a′ ∈ NG and
consider the map a 7→ t(aa′) − at(a′), a ∈ ZG. This map is WOT-continuous on bounded
sets and vanishes on Z(L(CG)), as we have just proved. Hence, approximating any operator
of ZG by a bounded sequence in Z(L(CG)), it follows that t(aa′) = at(a′) for all a ∈ ZG.

(vii) We know that any operator a ∈ NG is the WOT-limit of a bounded sequence of
operators in L(CG), whereas the adjoint operator is WOT-continuous on B(H) (cf. Remark
1.1(iii)). Therefore, the equality t(a∗)= t(a)∗ is an immediate consequence of Proposition
4.1(v), in view of the WOT-continuity of t on bounded sets.

(viii) Since the trace τ is WOT-continuous, the equality τ = τ ′◦t follows from the WOT-
continuity of t on bounded sets, combined with Proposition 4.7(vi), by approximating any
operator a ∈ NG by a bounded sequence of operators in L(CG).

(ix) In view of (vii) above, the operator t(a∗a) ∈ ZG is self-adjoint for all a ∈ NG.
Since τ(a∗a) = τ(t(a∗a)) (cf. (viii)), we may invoke Proposition 2.5(ii) in order to conclude
that t(a∗a) = 0 only if a = 0. 2

18



5 Exercises

1. Let `2N be the Hilbert space of square summable sequences of complex numbers and
consider the operators a, b ∈ B(`2N), which are defined by letting a(ξ0, ξ1, ξ2, . . .) =
(ξ1, ξ2, . . .) and b(ξ0, ξ1, ξ2, . . .) = (0, ξ0, ξ1, ξ2, . . .) for all (ξ0, ξ1, ξ2, . . .) ∈ `2N.

(i) Show that ‖an ‖= ‖bn ‖= 1 for all n ≥ 1.

(ii) Show that the sequence (an)n is SOT-convergent to 0, but not norm-convergent
to 0. In particular, the sequence (an)n is WOT-convergent to 0.

(iii) Show that the sequence (bn)n is WOT-convergent to 0, but not SOT-convergent
to 0.

(iv) Show that the sequence (anbn)n is not WOT-convergent to 0. In particular,
multiplication in B(`2N) is not jointly WOT-continuous.

2. Let R be a ring, n a positive integer and Mn(R) the corresponding matrix ring. For
any subset X ⊆ R we consider the subset Mn(X) (resp. X · In) of Mn(R), which
consists of all n× n matrices with entries in X (resp. of all matrices of the form xIn,
x ∈ X). Show that:

(i) The commutant (Mn(X))′ of Mn(X) in Mn(R) is equal to X ′ · In, where X ′ is
the commutant of X in R. In particular, the center Z(Mn(R)) of Mn(R) is equal to
Z(R) · In, where Z(R) is the center of R.

(ii) The commutant (X · In)′ of X · In in Mn(R) is equal to Mn(X ′).

3. Let G be a group. The goal of this Exercise is to show that the property of Lemma
2.3(i) characterizes the operators in the von Neumann algebra NG. To that end, let
us fix an operator a ∈ B(`2G), for which <a(δg), δhg >=<a(δ1), δh > for all g, h ∈ G.

(i) Show that for any operator b ∈ B(`2G) and any elements g, h ∈ G the families of
complex numbers (<a(δ1), δx > · <b(δg), δx−1h >)x and (<a(δ1), δx > · <b(δxg), δh >)x

are summable with sum <ab(δg), δh > and <ba(δg), δh > respectively.

(ii) Assume that b ∈ B(`2G) is an operator in the commutant L(CG)′ of the subalgebra
L(CG) ⊆ B(`2G). Then, show that ab = ba. In particular, conclude that a ∈
L(CG)′′ = NG.

4. Let H be a Hilbert space, A ⊆ B(H) a unital self-adjoint subalgebra and N = A′′ its
WOT-closure. Let Z(A) be the center of A and Z(N ) the center of N .

(i) Show that Z(N ) contains the WOT-closure of Z(A).

In contrast to the situation described in Proposition 3.4, the inclusion Z(A)′′ ⊆ Z(N )
may be proper. It is the goal of this Exercise to provide an example, which was
communicated to me by E. Katsoulis, where Z(A)′′ 6= Z(N ). To that end, we let H0

be an infinite dimensional Hilbert space and consider the Hilbert space H = H0 ⊕C.

(ii) For any a ∈ B(H0) and any scalar λ ∈ C we consider the linear map T (a, λ) :
H −→ H, which maps any element (v, z) ∈ H onto (a(v) + λv, λz). Show that
T (a, λ) ∈ B(H).

(iii) Consider the ideal F ⊆ B(H0) of finite rank operators and let

A = {T (a, λ) : a ∈ F , λ ∈ C},
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in the notation of (ii) above. Show that A is a unital self-adjoint subalgebra of B(H),
whose center Z(A) consists of the scalar multiples of the identity.

(iv) Let A ⊆ B(H) be the subalgebra defined in (iii) above. Show that the cen-
ter Z(A′′) of the bicommutant A′′ is 2-dimensional and conclude that the inclusion
Z(A)′′ ⊆ Z(A′′) is proper.

5. Let G be a countable group, NG the associated von Neumann algebra and ZG its
center. We consider a C-linear trace t′ : NG −→ ZG, which is WOT-continuous on
bounded sets and maps ZG identically onto itself. The goal of this Exercise is to show
that t′ coincides with the center-valued trace t constructed in Theorem 4.8.

(i) Let g ∈ G be an element with finitely many conjugates and Cg its centralizer in
G. Show that t′(Lg) = 1

[G:Cg ]Lζ[g]
∈ ZG.

(ii) Let (gn)n be a sequence of distinct elements of G. Show that the sequence of
operators (Lgn)n in B(`2G) is WOT-convergent to 0.

(iii) Let g ∈ G be an element with infinitely many conjugates. Show that t′(Lg) = 0.

(iv) Show that t′ = t.

6. (i) Let R = Mn(C) be the algebra of n × n matrices with entries in C. Show that
there is a unique C-linear trace t : R −→ Z(R), which is the identity on Z(R). The
trace t is given by letting t(A) = tr(A)

n In for all matrices A ∈ R. (Here, we denote by
tr the usual trace of a matrix.)

(ii) Let G be a finite group with r mutually non-isomorphic irreducible complex rep-
resentations V1, . . . , Vr and consider the corresponding characters χ1, . . . , χr and the
dimensions ni = dimVi = χi(1), i = 1, . . . , r. Show that the Wedderburn decomposi-
tion

CG '
∏r

i=1
Mni(C)

identifies the the center-valued trace t : NG −→ ZG with the map

t : CG −→
∏r

i=1
C · Ini ,

which is defined by letting t(a) =
(

χ1(a)
n1

In1 , . . . ,
χr(a)

nr
Inr

)
for all a ∈ CG.
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