Group C*-algebras

A.K.

Recall ${ }^{1}$ that if G is a nonempty set, the linear space

$$
c_{o o}(G)=\{f: G \rightarrow \mathbb{C}: \operatorname{supp} f \text { finite }\}
$$

has a Hamel basis consisting of the functions $\left\{\delta_{t}: t \in G\right\}$ where

$$
\delta_{t}(s)= \begin{cases}1, & s=t \\ 0, & s \neq t\end{cases}
$$

Thus every $f \in c_{o o}(G)$ is a finite sum

$$
f=\sum_{t \in G} f(t) \delta_{t} .
$$

The Hilbert space $\ell^{2}(G)$ is the completion of $c_{o o}(G)$ with respect to the scalar product

$$
\langle f, g\rangle=\sum_{t \in G} f(t) \overline{g(t)}
$$

and then $\left\{\delta_{t}: t \in G\right\}$ becomes an orthonormal basis of $\ell^{2}(G)$.
In case G is a group, the group operations $(s, t) \rightarrow s t$ and $t \rightarrow t^{-1}$ extend linearly to make $c_{o o}(G)$ into a ${ }^{*}$-algebra: we define $\delta_{s} * \delta_{t}=\delta_{s t}$ and $\left(\delta_{t}\right)^{*}=\delta_{t^{-1}}$, so that

$$
f * g=\left(\sum_{s} f(s) \delta_{s}\right) *\left(\sum_{t} g(t) \delta_{t}\right)=\sum_{s, t} f(s) g(t) \delta_{s t}
$$

and

$$
f^{*}=\left(\sum_{s} f(s) \delta_{s}\right)^{*}=\sum_{s} \overline{f(s)} \delta_{s^{-1}}
$$

[^0]in other words (setting $r=s t$)
$$
f * g=\sum_{r}\left(\sum_{s} f(s) g\left(s^{-1} r\right)\right) \delta_{r}=\sum_{r}\left(\sum_{t} f\left(r t^{-1}\right) g(t)\right) \delta_{r}
$$
and (changing s to $r=s^{-1}$)
$$
f^{*}=\sum_{r} \overline{f\left(r^{-1}\right)} \delta_{r}
$$

Thus

$$
(f * g)(r)=\sum_{s} f(s) g\left(s^{-1} r\right)=\sum_{t} f\left(r t^{-1}\right) g(t) \quad(r \in G)
$$

and

$$
\left(f^{*}\right)(r)=\overline{f\left(r^{-1}\right)} \quad(r \in G)
$$

We may also complete $c_{o o}(G)$ with respect to the ℓ^{1} norm

$$
\|f\|_{1}=\sum_{t}|f(t)|
$$

to obtain the Banach space $\ell^{1}(G)$. Note that because of the relations

$$
\begin{aligned}
\|f * g\|_{1} & \leq\|f\|_{1}\|g\|_{1} \\
\text { and } \quad\left\|f^{*}\right\|_{1} & =\|f\|_{1}
\end{aligned}
$$

(the proof of the first one is easy ${ }^{2}$ and the second one is obvious) the multiplication and the involution extend continuously to $\ell^{1}(G)$, which becomes a Banach algebra with isometric involution, although rarely a C^{*}-algebra.

For example if e, s and s^{2} are different elements of G and $f=\delta_{s^{-1}}+\delta_{e}-\delta_{s}$ then $\|f\|_{1}=1+1+1$ and

$$
f^{*} * f=\left(\delta_{s}+\delta_{e}-\delta_{s^{-1}}\right)\left(\delta_{s^{-1}}+\delta_{e}-\delta_{s}\right)=-\delta_{s^{-2}}+3 \delta_{e}-\delta_{s^{2}}
$$

hence $\left\|f^{*} * f\right\|_{1}=1+3+1$.
In order to equip $c_{o o}(G)$ with a suitable C^{*}-norm, we study its *-representations on Hilbert space.

[^1]The left regular representation Let $H=\ell^{2}(G)$. Each $t \in G$ defines a unitary operator λ_{t} on H by the formula

$$
\lambda_{t}\left(\sum_{s} \xi(s) \delta_{s}\right)=\sum_{s} \xi(s) \delta_{t s} \quad\left(\xi=\sum_{s} \xi(s) \delta_{s} \in \ell^{2}(G)\right) .
$$

For example, if $G=\mathbb{Z}$ then $\lambda_{n}=U^{n}$ where U is the bilateral shift, $U\left(\delta_{n}\right)=$ δ_{n+1}, on $\ell^{2}(\mathbb{Z})$.

Making the change of variable $r=t s$, we find

$$
\left(\lambda_{t} \xi\right)(r)=\xi\left(t^{-1} r\right) \quad(r \in G)
$$

Note that λ_{t} is a well-defined linear isometry, because

$$
\left\|\lambda_{t}(\xi)\right\|_{2}^{2}=\sum_{r}\left|\xi\left(t^{-1} r\right)\right|^{2}=\sum_{s}|\xi(s)|^{2}=\|\xi\|_{2}^{2}
$$

Also $\lambda_{e}=I$ (the identity operator) and

$$
\lambda_{t} \lambda_{s}=\lambda_{t s}
$$

because

$$
\lambda_{t}\left(\lambda_{s} \delta_{r}\right)=\lambda_{t}\left(\delta_{s r}\right)=\delta_{t s r}=\delta_{(t s) r}=\lambda_{t s}\left(\delta_{r}\right)
$$

for each $r \in G$. Since the operators involved are bounded and linear and the $\left\{\delta_{t}\right\}$ span $\ell^{2}(G)$ the claim follows.

In particular it follows that each λ_{t} is invertible with inverse $\left(\lambda_{t}\right)^{-1}=\lambda_{t^{-1}}$ and so it is an onto isometry, i.e. a unitary, with $\left(\lambda_{t}\right)^{*}=\lambda_{t^{-1}}$. Thus we have a group homomorphism

$$
G \rightarrow \mathcal{U}(\mathcal{B}(H))
$$

into the group of unitary operators on $H=\ell^{2}(G)$. This is called a unitary representation of G on H.

The unitary representation λ immediately extends to a *-representation, also denoted by λ, of the ${ }^{*}$-algebra $c_{o o}(G)$ on $\ell^{2}(G)$. More precisely, given $f=\sum_{t} f(t) \delta_{s} \in c_{o o}(G)$ we define

$$
\begin{aligned}
\lambda(f) & =\sum_{t} f(t) \lambda_{t} \\
\text { i.e. } \quad(\lambda(f) \xi)(r) & =\sum_{t} f(t) \xi\left(t^{-1} r\right) \quad\left(\xi \in \ell^{2}(G)\right) .
\end{aligned}
$$

This is a bounded operator because

$$
\|\lambda(f)\|=\left\|\sum_{t} f(t) \lambda_{t}\right\| \leq \sum_{t}|f(t)|\left\|\lambda_{t}\right\|=\sum_{t}|f(t)|=\|f\|_{1}
$$

since each λ_{t} is unitary. In fact this inequality shows that λ extends to a (contractive) map $\ell^{1}(G) \rightarrow B\left(\ell^{2}(G)\right)$.

The fact that λ is a *-representation immediately follows from the properties of its restriction to G :

$$
\begin{aligned}
& \lambda\left(\left(\sum_{t} f(t) \delta_{t}\right) *\left(\sum_{s} g(s) \delta_{s}\right)\right)=\lambda\left(\sum_{t, s} f(t) g(s) \delta_{t s}\right)=\sum_{t, s} f(t) g(s) \lambda_{t s} \\
& =\sum_{t, s} f(t) g(s) \lambda_{t} \lambda_{s}=\left(\sum_{t} f(t) \lambda_{t}\right) \cdot\left(\sum_{s} g(s) \lambda_{s}\right)=\lambda(f) \lambda(g) \\
& \text { and } \quad \lambda\left(\left(\sum_{t} f(t) \delta_{t}\right)^{*}\right)=\lambda\left(\sum_{t} \overline{f(t)} \delta_{t-1}\right)=\sum_{t} \overline{f(t)} \lambda_{t^{-1}} \\
& \quad=\sum_{t} \overline{f(t)} \lambda_{t}^{*}=\left(\sum_{t} f(t) \lambda_{t}\right)^{*} .
\end{aligned}
$$

The above calculations can be carried out for any unitary representation of G. The details are left as an exercise.

Proposition 1 There is a bijective correspondence between unitary representations of G and ${ }^{*}$-representations of $c_{o o}(G)$:
If $\pi: G \rightarrow \mathcal{U}(\mathcal{B}(H))$ is any unitary representation of the group G, the formula

$$
\tilde{\pi}\left(\sum_{t} f(t) \delta_{t}\right)=\sum_{t} f(t) \pi(t)
$$

defines a unital *-representation of $c_{o o}(G)$ (and of $\ell^{1}(G)$) on the same Hilbert space H which is $\|\cdot\|_{1}$-contractive.

Conversely, every unital $\|\cdot\|_{1}$-contractive ${ }^{*}$-representation ρ of $c_{o o}(G)$ (or of $\ell^{1}(G)$) defines a unitary representation π by 'restriction': $\pi(t)=\rho\left(\delta_{t}\right)$ satisfying $\tilde{\pi}=\rho$.

We usually use the symbol π for $\tilde{\pi}$.

Definition 1 Let Σ be the set of all $\|\cdot\|_{1}$-contractive ${ }^{*}$-representations $\left(\pi, H_{\pi}\right)$ of $c_{o o}(G)$ (equivalently, of $\ell^{1}(G)$).

The C^{*}-norm on $c_{o o}(G)$ (or $\left.\ell^{1}(G)\right)$ is defined by the formula

$$
\|f\|_{*}=\sup \{\|\pi(f)\|: \pi \in \Sigma\}
$$

The group C^{*}-algebra $C^{*}(G)$ is defined to be the completion of $c_{o o}(G)$ (or equivalently of $\ell^{1}(G)$) with respect to this norm.

Remarks 2 First of all, the set Σ is non-empty: it contains the left regular representation.

Clearly $\|\cdot\|_{*}$ is a seminorm on $c_{o o}(G)$, being the supremum of seminorms, all of which are (by definition) bounded by $\|\cdot\|_{1}$, hence so is $\|\cdot\|_{*}$. Also, $\|\cdot\|_{*}$ satisfies the C^{*}-identity, because all the seminorms $f \rightarrow\|\pi(f)\|$ satisfy it. ${ }^{3}$

But why is $\|\cdot\|_{*}$ a norm? In other words, why is it true that $\|f\|_{*}>0$ whenever $f \in c_{o o}(G)$ is nonzero?

The reason is that the left regular representation is faithful on $c_{o o}(G)$ and $\ell^{1}(G)$; thus if $f \in \ell^{1}(G)$ is nonzero then $\lambda(f) \neq 0$ and so $\|f\|_{*} \geq\|\lambda(f)\|>0$.

Indeed if $f=\sum_{t} f(t) \delta_{t} \in \ell^{1}(G)$ is nonzero then there exists $s \in G$ with $f(s) \neq 0$ and then ${ }^{4}$

$$
\left\langle\lambda(f) \delta_{e}, \delta_{s}\right\rangle_{\ell^{2}(G)}=\left\langle\sum_{t} f(t) \lambda_{t}\left(\delta_{e}\right), \delta_{s}\right\rangle=\sum_{t} f(t)\left\langle\delta_{t}, \delta_{s}\right\rangle=f(s)
$$

because the δ_{s} are orthonormal in $\ell^{2}(G)$. Thus $\lambda(f) \neq 0$.
The usefulness of $C^{*}(G)$ comes from the following property, whose proof is an immediate consequence of the previous proposition and the fact that $c_{o o}(G)$ is a dense *-subalgebra of $C^{*}(G)$.

Proposition 3 There is a bijective correspondence between unitary representations of G and unital ${ }^{*}$-representations of the group C^{*}-algebra $C^{*}(G)$.

In particular, the left regular representation λ extends to a ${ }^{*}$-representation of $C^{*}(G)$ on $\ell^{2}(G)$. However, the fact that λ is faithful on $c_{o o}(G)$ does NOT mean that its extension remains faithful on $C^{*}(G)$!

[^2]The image $\lambda\left(C^{*}(G)\right)$ in $\mathcal{B}\left(\ell^{2}(G)\right)$ is a C^{*}-algebra; it equals the closure of $\lambda\left(c_{o o}(G)\right)$ in the norm of $\mathcal{B}\left(\ell^{2}(G)\right)$ and is called the reduced C^{*}-algebra $C_{r}^{*}(G)$ of G.

In many cases, for example when G is abelian, λ is faithful on $C^{*}(G)$, so that $C_{r}^{*}(G) \simeq C^{*}(G)$ (isometrically and ${ }^{*}$-isomorphically). In general, however, $C_{r}^{*}(G)$ is a quotient of $C^{*}(G)$ and does not 'contain' all unitary representations of G.

Example 4 Let $G=\mathbb{F}_{2}$ be the free group in two generators a and b; that is, any element of G is a (finite) 'word' of the form $a^{n} b^{m} a^{k} b^{j}$ where $n, m, k, j \in \mathbb{Z}$ and there are no relations between a and b. It is known that the reduced C^{*}-algebra $C_{r}^{*}\left(\mathbb{F}_{2}\right)$ is simple, i.e. it has no nontrivial closed two-sided ideals. Thus all of its representations are isomorphisms; Since $C_{r}^{*}\left(\mathbb{F}_{2}\right)$ is obviously infinite-dimensional, it cannot have finite dimensional representations. On the other hand, the group \mathbb{F}_{2} does have unitary representations on finitedimensional spaces: Just take any two unitary $n \times n$ matrices U and V and define $\pi(a)=U$ and $\pi(b)=V$. Since there are no relations between a and b, this extends to a unitary representation of \mathbb{F}_{2} on \mathbb{C}^{n}; for example $\pi\left(a^{n} b^{m} a^{k} b^{j}\right)=U^{n} V^{m} U^{k} V^{j}$. Hence $C^{*}\left(\mathbb{F}_{2}\right)$ does have nontrivial finitedimensional representations: therefore it cannot be isomorphic to $C^{*}\left(\mathbb{F}_{2}\right)$.

Thus, $C_{r}^{*}\left(\mathbb{F}_{2}\right)$ is a proper quotient of $C^{*}\left(\mathbb{F}_{2}\right)$.
Example 5 Let $G=\mathbb{Z}$. If we represent each $n \in \mathbb{Z}$ by the function $\zeta_{n}(z)=$ $z^{n}, z \in \mathbb{T}$, the convolution product $\zeta_{n} * \zeta_{m}=\zeta_{n+m}$ becomes pointwise product, involution becomes complex conjugation, and the elements of $c_{o o}(G)$ become trigonometric polynomials. Hence if $\mathcal{P} \subset C(\mathbb{T})$ is the set of trigonometric polynomials we have a ${ }^{*}$-isomorphism

$$
c_{o o}(\mathbb{Z}) \rightarrow \mathcal{P}: \sum_{n} f(n) \delta_{n} \rightarrow p_{f}, \text { where } p_{f}(z) \equiv \sum_{n} f(n) z^{n}
$$

Note that, as observed earlier, the left regular representation λ is generated by $\lambda(1)=U$, the bilateral shift on $\ell^{2}(\mathbb{Z})$, which is unitarily equivalent to multiplication by ζ on $L^{2}(\mathbb{T})$. Therefore, for each $f \in c_{o o}(\mathbb{Z}), \lambda(f)=p_{f}(U)$ is unitarily equivalent to the multiplication operator $M_{p_{f}}$ acting on $L^{2}(\mathbb{T})$ and so

$$
\|\lambda(f)\|=\left\|M_{p_{f}}\right\|=\left\|p_{f}\right\|_{\infty}=\sup \left\{\left|p_{f}(z)\right|: z \in \mathbb{T}\right\}
$$

It follows that the closure $C_{r}^{*}(\mathbb{Z})$ of $\lambda\left(c_{o o}(\mathbb{Z})\right.$ is isometrically isomorphic to the sup-norm closure of the trigonometric polynomials, namely $C(\mathbb{T})$.

We will show that $C^{*}(\mathbb{Z})$ is isometrically *-isomorphic with $C(\mathbb{T})$.
Since $c_{o o}(\mathbb{Z})$ is $\|\cdot\|_{*}$-dense in $C^{*}(\mathbb{Z})$ and \mathcal{P} is $\|\cdot\|_{\infty}$-dense in $C(\mathbb{T})$ (StoneWeierstrass) it suffices to show that the norm $\|f\|_{*}$ on $c_{o o}(\mathbb{Z})$ coincides with the sup norm $\left\|p_{f}\right\|_{\infty}$ of $C(\mathbb{T})$. For this, since we just proved that $\left\|p_{f}\right\|_{\infty}=$ $\|\lambda(f)\| \leq\|f\|_{*}$, it is enough to prove the reverse inequality, namely that if π is any unitary representation of \mathbb{Z} on some Hilbert space, then

$$
\|\pi(f)\| \leq\left\|p_{f}\right\|_{\infty}
$$

for any $f=\sum_{n} f(n) \delta_{n} \in c_{o o}(\mathbb{Z})$.
Indeed let $V=\pi(1)$; this is a unitary operator and

$$
\pi(f)=\sum_{n} f(n) \pi(n)=\sum_{n} f(n) V^{n}=p_{f}(V) .
$$

Now $p_{f}(V)$ is a normal operator and hence its norm equals its spectral radius. By the spectral mapping theorem,

$$
\sigma\left(p_{f}(V)\right)=\left\{p_{f}(z): z \in \sigma(V)\right\} \subseteq\left\{p_{f}(z): z \in \mathbb{T}\right\}
$$

because V is unitary and so $\sigma(V) \subseteq \mathbb{T}$. Thus

$$
\|\pi(f)\|=\left\|p_{f}(V)\right\| \leq \sup \left\{\left|p_{f}(z)\right|: z \in \mathbb{T}\right\}=\left\|p_{f}\right\|_{\infty}
$$

Abelian groups The situation of this last example generalizes to arbitrary abelian groups. Briefly, if G is an abelian group, then of course $c_{o o}(G)$ is abelian, and hence so is $C^{*}(G)$. Thus $C^{*}(G) \simeq C(K)$, where K is the compact space of multiplicative linear functionals on $C^{*}(G)$ with the weak* topology. We identify the space K :

Define the set of characters of G

$$
\widehat{G}=\Gamma=\{\gamma: G \rightarrow \mathbb{T}: \text { homomorphism }\} .
$$

With the topology of pointwise convergence, it is not hard to see that this is a compact space (a closed subspace of the Cartesian product \mathbb{T}^{G}) and it is a group with pointwise operations. In fact it can be shown to be a topological group (the group operations are continuous). It is called the dual group of G.

Any $\gamma \in \Gamma$ is a ${ }^{*}$-representation of G on the Hilbert space \mathbb{C} (since $\gamma(t) \gamma(s)=\gamma(t s)$ and $\left.\gamma\left(t^{-1}\right)=(\gamma(t))^{-1}=\overline{\gamma(t)}\right)$ and thus extends (Proposition
3) to a *-representation $\tilde{\gamma}$ of $C^{*}(G)$ on \mathbb{C}, i.e. a multiplicative linear functional on $C^{*}(G)$. Conversely, any multiplicative linear functional on $C^{*}(G)$ restricts to a character on G. Thus there is a bijection between the set Γ of characters of G and the set K of multiplicative linear functionals on $C^{*}(G)$. We claim that this bijection is a homeomorphism; since both spaces are compact and Hausdorff, it suffices to prove that it is continuous.

Let $\gamma_{i} \rightarrow \gamma$ in Γ; this means $\gamma_{i}(t) \rightarrow \gamma(t)$ for each $t \in G$. To prove that $\tilde{\gamma}_{i} \rightarrow \tilde{\gamma}$ in K, we need to prove that $\tilde{\gamma}_{i}(a) \rightarrow \tilde{\gamma}(a)$ for all $a \in C^{*}(G)$. Fix such an a. Since $c_{o o}(G)$ is dense in $C^{*}(G)$, given $\epsilon>0$ there exists $f \in c_{o o}(G)$ with $\|a-f\|_{*}<\epsilon$. Now each $\tilde{\gamma}_{i}$ and $\tilde{\gamma}$ has norm 1 , and so

$$
\left|\tilde{\gamma}_{i}(a-f)-\tilde{\gamma}(a-f)\right| \leq 2\|a-f\|_{*}<2 \epsilon .
$$

On the other hand, if f is a finite sum $\sum_{t} f(t) \delta_{t}$, we have

$$
\left|\tilde{\gamma}_{i}(f)-\tilde{\gamma}(f)\right|=\left|\sum_{t} f(t)\left(\gamma_{i}(t)-\gamma(t)\right)\right| \leq \sum_{t}|f(t)| \cdot\left|\gamma_{i}(t)-\gamma(t)\right|
$$

Now since $\gamma_{i}(t) \rightarrow \gamma(t)$ for each $t \in G$, there is i_{o} such that $\left|\gamma_{i}(t)-\gamma(t)\right|<\epsilon$ for each $i \geq i_{o}$ and each t in the finite support of f. Combining with the previous inequality we conclude that

$$
\left|\tilde{\gamma}_{i}(a)-\tilde{\gamma}(a)\right|<\left(2+\|f\|_{1}\right) \epsilon
$$

whenever $i \geq i_{o}$; thus $\tilde{\gamma}_{i} \rightarrow \tilde{\gamma}$ in the weak ${ }^{*}$-topology.
This concludes the proof that Γ and K are homeomorphic; we henceforth identify K with Γ and now we can conclude by Gelfand theory that $C^{*}(G) \simeq$ $C(\Gamma)$. In fact the *-isomorphism is given by $a \rightarrow \hat{a}$, where

$$
\hat{a}(\gamma)=\tilde{\gamma}(a), \quad a \in C^{*}(G)
$$

and in particular

$$
\hat{f}(\gamma)=\sum_{s} f(s) \gamma(s), \quad f \in c_{o o}(G)
$$

Haar measure on Γ We now wish to equip Γ with a suitable probability measure μ and form $L^{2}(\Gamma, \mu)$. We first define a state:

$$
\omega: c_{o o}(G) \rightarrow \mathbb{C}: f \rightarrow f(e)
$$

Clearly this is linear ${ }^{5}$ and $\omega(\mathbf{1})=\omega\left(\delta_{e}\right)=\delta_{e}(e)=1$. We check positivity:

$$
\begin{align*}
\omega\left(f^{*} * f\right)= & \left(f^{*} * f\right)(e)=\sum_{s} f^{*}(s) f\left(s^{-1} e\right)=\sum_{s} \overline{f\left(s^{-1}\right)} f\left(s^{-1}\right)= \\
& \sum_{s}\left|f\left(s^{-1}\right)\right|^{2}=\sum_{s}|f(s)|^{2} \geq 0 \tag{1}
\end{align*}
$$

for all $f=\sum_{s} f(s) \delta_{s} \in c_{o o}(G)$.
Note also that ω is continuous in the norm of $C^{*}(G) \simeq C(\Gamma)$: Indeed

$$
|\omega(f)|=|f(e)|=\left|\left\langle\lambda(f) \delta_{e}, \delta_{e}\right\rangle\right| \leq\|\lambda(f)\|\left\|\delta_{e}\right\|_{2}^{2}=\|\lambda(f)\| \leq\|f\|_{*}=\|\hat{f}\|_{\infty}
$$

when $f \in c_{o o}(G)$. Therefore ω extends to a continuous linear form on the completion $C(\Gamma)$ and the extension is a state. By the Riesz representation theorem, there exists a unique Borel probability measure μ on the compact space Γ such that

$$
\begin{equation*}
\omega(a)=\int_{\Gamma} \hat{a}(\gamma) d \mu(\gamma) \quad \text { for all } a \in C^{*}(G) \tag{2}
\end{equation*}
$$

Lemma 6 The measure μ
(i) is left invariant, i.e. $\mu(\gamma E)=\mu(E)$ for every Borel subset of Γ and any $g \in \Gamma$ (where $\gamma E=\left\{\gamma \gamma^{\prime}: \gamma^{\prime} \in E\right\}$), and
(ii) has full support, i.e. $\mu(U)>0$ for every nonempty open set $U \subseteq \Gamma$.

Proof (i) Fix $\gamma \in \Gamma$. We claim that

$$
\int_{\Gamma} \hat{f}\left(\gamma^{-1} \gamma^{\prime}\right) d \mu\left(\gamma^{\prime}\right)=\int_{\Gamma} \hat{f}\left(\gamma^{\prime}\right) d \mu\left(\gamma^{\prime}\right) \quad \text { for all } f \in c_{o o}(G)
$$

Indeed, seting $g(s)=\overline{\gamma(s)} f(s)$ we easily find that $\hat{g}\left(\gamma^{\prime}\right)=\hat{f}\left(\gamma^{-1} \gamma^{\prime}\right)$ and so $\int_{\Gamma} \hat{f}\left(\gamma^{-1} \gamma^{\prime}\right) d \mu\left(\gamma^{\prime}\right)=\int_{\Gamma} \hat{g}\left(\gamma^{\prime}\right) d \mu\left(\gamma^{\prime}\right)=g(e)=\overline{\gamma(e)} f(e)=f(e)$.

Since $c_{o o}(G)$ is dense in $C(\Gamma)$ it follows that

$$
\int_{\Gamma} a\left(\gamma^{-1} \gamma^{\prime}\right) d \mu\left(\gamma^{\prime}\right)=\int_{\Gamma} a\left(\gamma^{\prime}\right) d \mu\left(\gamma^{\prime}\right) \quad \text { for all } a \in C(\Gamma)
$$

[^3]By uniqueness of μ this implies

$$
\int_{\Gamma} \chi_{E}\left(\gamma^{-1} \gamma^{\prime}\right) d \mu\left(\gamma^{\prime}\right)=\int_{\Gamma} \chi_{E}\left(\gamma^{\prime}\right) d \mu\left(\gamma^{\prime}\right) \quad \text { for every Borel set } E \subseteq \Gamma .
$$

But since $\chi_{E}\left(\gamma^{-1} \gamma^{\prime}\right)=\chi_{\gamma E}\left(\gamma^{\prime}\right)$, claim (i) follows.
(ii) Let $U \subseteq \Gamma$ be a nonempty open set. Observe that $\{\gamma U: \gamma \in \Gamma\}$ is an open cover of Γ (the map $\gamma^{\prime} \rightarrow \gamma \gamma^{\prime}$ is a homeomorphism) and so there is a finite subcover $\left\{\gamma_{i} U: i=1, \ldots, n\right\}$. Now $\mu\left(\gamma_{i} U\right)=\mu(U)$ by left invariance, hence

$$
\mu(\Gamma)=\mu\left(\bigcup_{i=1}^{n} \gamma_{i} U\right) \leq \sum_{i=1}^{n} \mu\left(\gamma_{i} U\right)=n \mu(U)
$$

Since $\mu(\Gamma)>0$ it follows that $\mu(U)>0$.

The Fourier transform It follows from (2) that for $f \in c_{o o}(G)$ (remembering that the Gelfand transform is a ${ }^{*}$-morphism, so that $\widehat{g * f}=\hat{g} \hat{f}$) we have

$$
\begin{equation*}
\omega\left(f^{*} * f\right)=\int_{\Gamma} \widehat{f^{*} * f} d \mu=\int \widehat{f^{*}} \hat{f} d \mu=\int \overline{\hat{f}} \hat{f} d \mu=\int|\hat{f}(\gamma)|^{2} d \mu(\gamma) \tag{3}
\end{equation*}
$$

Combine this with (1) to conclude that

$$
\int_{\Gamma}|\hat{f}(\gamma)|^{2} d \mu(\gamma)=\sum_{s}|f(s)|^{2} \quad \text { for all } f \in c_{o o}(G)
$$

This equality shows (if we write $L^{2}(\Gamma)$ for $L^{2}(\Gamma, \mu)$) that the linear map

$$
\left(c_{o o}(G),\|\cdot\|_{\ell^{2}(G)}\right) \rightarrow\left(C(\Gamma),\|\cdot\|_{L^{2}(\Gamma)}\right): f \rightarrow \hat{f}
$$

is isometric and has dense range, and thus extends to a unitary bijection

$$
F: \ell^{2}(G) \rightarrow L^{2}(\Gamma)
$$

which is called the Fourier transform.
Finally, if $f \in c_{o o}(G)$ and $\xi \in c_{o o}(G) \subset \ell^{2}(G)$ we have

$$
F(\lambda(f) \xi)=F(f * \xi)=\widehat{f * \xi}=\hat{f} \hat{\xi}=M_{\hat{f}} \hat{\xi}=M_{\hat{f}} F \xi
$$

where M_{g} denotes multiplication by g on $L^{2}(\Gamma)$. The operators $F \lambda(f)$ and $M_{\hat{f}} F$ are both bounded operators on $\ell^{2}(G)$ and coincide on the dense subspace $c_{o o}(G)$; therefore they are equal:

$$
F \lambda(f)=M_{\hat{f}} F \quad \text { or } F \lambda(f) F^{*}=M_{\hat{f}}
$$

(F is unitary). It follows that $\|\lambda(f)\|=\left\|M_{\hat{f}}\right\|$. But, since μ has full support, ${ }^{6}$ $\left\|M_{\hat{f}}\right\|=\|\hat{f}\|_{\infty}$. Thus finally

$$
\|\lambda(f)\|=\|\hat{f}\|_{\infty} \quad \text { for all } f \in c_{o o}(G)
$$

so that the left regular representation is isometric on $c_{o o}(G)$. Therefore its extension to $C^{*}(G) \simeq C(\Gamma)$ is also isometric, hence injective, and implements a *-isomorphism between $C^{*}(G)$ and $C_{r}^{*}(G)$. We summarize:

Theorem 7 If G is an abelian group and $\Gamma=\widehat{G}$, then $C^{*}(G) \simeq C(\Gamma)$ and the Fourier transform $F: \ell^{2}(G) \rightarrow L^{2}(\Gamma)$ implements a unitary equivalence between the left regular representation λ of $C^{*}(G)$ on $\ell^{2}(G)$ and the multiplication representation $g \rightarrow M_{g}$ of $C(\Gamma)$ on $L^{2}(\Gamma)$. Hence λ is isometric and so $C^{*}(G) \simeq C_{r}^{*}(G)$.

[^4]
[^0]: ${ }^{1}$ gpstar, $16 / 1 / 07$

[^1]: ${ }^{2} \sum_{r}\left|\sum_{s} f(s) g\left(s^{-1} r\right)\right| \leq \sum_{r} \sum_{s}|f(s)| \cdot\left|g\left(s^{-1} r\right)\right|=\sum_{s} \sum_{r}|f(s)| \cdot\left|g\left(s^{-1} r\right)\right|=$ $\sum_{s}|f(s)| \cdot \sum_{r}\left|g\left(s^{-1} r\right)\right|=\sum_{s}|f(s)| \sum_{t}|g(t)|$

[^2]: ${ }^{3}\left\|\pi\left(f^{*} * f\right)\right\|=\left\|\pi(f)^{*} \pi(f)\right\|=\|\pi(f)\|^{2}$.
 ${ }^{4}$ since $\sum_{t}|f(t)|<\infty$, the sum $\sum_{t} f(t) \lambda_{t}$ converges (absolutely) in the norm of $B\left(\ell^{2}(G)\right)$.

[^3]: ${ }^{5}$ This is not multiplicative: the product on $c_{o o}(G)$ is not pointwise multiplication, it is convolution

[^4]: ${ }^{6}$ If U is an open set on which $|\hat{f}| \geq\|\hat{f}\|_{\infty}-\epsilon$, then $\xi=\chi_{U}$ is a nonzero element of $L^{2}(\Gamma)$ and $\left\|M_{\hat{f}}\right\|\|\xi\|_{2} \geq\left\|M_{\hat{f}} \xi\right\|_{2} \geq\left(\|\hat{f}\|_{\infty}-\epsilon\right)\|\xi\|_{2}$.

