
Group C*-algebras

A.K.

Recall1 that if G is a nonempty set, the linear space

coo(G) = {f : G → C : supp f finite }
has a Hamel basis consisting of the functions {δt : t ∈ G} where

δt(s) =

{
1, s = t
0, s 6= t

Thus every f ∈ coo(G) is a finite sum

f =
∑
t∈G

f(t)δt.

The Hilbert space `2(G) is the completion of coo(G) with respect to the scalar
product

〈f, g〉 =
∑
t∈G

f(t)g(t)

and then {δt : t ∈ G} becomes an orthonormal basis of `2(G).
In case G is a group, the group operations (s, t) → st and t → t−1

extend linearly to make coo(G) into a *-algebra: we define δs ∗ δt = δst and
(δt)

∗ = δt−1 , so that

f ∗ g =

(∑
s

f(s)δs

)
∗

(∑
t

g(t)δt

)
=
∑
s,t

f(s)g(t)δst

and

f ∗ =

(∑
s

f(s)δs

)∗

=
∑

s

f(s)δs−1
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in other words (setting r = st)

f ∗ g =
∑

r

(∑
s

f(s)g(s−1r)

)
δr =

∑
r

(∑
t

f(rt−1)g(t)

)
δr

and (changing s to r = s−1)

f ∗ =
∑

r

f(r−1)δr.

Thus

(f ∗ g)(r) =
∑

s

f(s)g(s−1r) =
∑

t

f(rt−1)g(t) (r ∈ G)

and
(f ∗)(r) = f(r−1) (r ∈ G).

We may also complete coo(G) with respect to the `1 norm

‖f‖1 =
∑

t

|f(t)|

to obtain the Banach space `1(G). Note that because of the relations

‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1

and ‖f ∗‖1 = ‖f‖1

(the proof of the first one is easy2 and the second one is obvious) the multi-
plication and the involution extend continuously to `1(G), which becomes a
Banach algebra with isometric involution, although rarely a C*-algebra.

For example if e, s and s2 are different elements of G and f = δs−1 +δe−δs

then ‖f‖1 = 1 + 1 + 1 and

f ∗ ∗ f = (δs + δe − δs−1)(δs−1 + δe − δs) = −δs−2 + 3δe − δs2

hence ‖f ∗ ∗ f‖1 = 1 + 3 + 1.

In order to equip coo(G) with a suitable C*-norm, we study its *-representations
on Hilbert space.

2
∑

r

∣∣∑
s f(s)g(s−1r)

∣∣ ≤
∑

r

∑
s |f(s)|.|g(s−1r)| =

∑
s

∑
r |f(s)|.|g(s−1r)| =∑

s |f(s)|.
∑

r |g(s−1r)| =
∑

s |f(s)|
∑

t |g(t)|
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The left regular representation Let H = `2(G). Each t ∈ G defines a
unitary operator λt on H by the formula

λt(
∑

s

ξ(s)δs) =
∑

s

ξ(s)δts (ξ =
∑

s

ξ(s)δs ∈ `2(G)).

For example, if G = Z then λn = Un where U is the bilateral shift, U(δn) =
δn+1, on `2(Z).

Making the change of variable r = ts, we find

(λtξ)(r) = ξ(t−1r) (r ∈ G).

Note that λt is a well-defined linear isometry, because

‖λt(ξ)‖2
2 =

∑
r

|ξ(t−1r)|2 =
∑

s

|ξ(s)|2 = ‖ξ‖2
2 .

Also λe = I (the identity operator) and

λtλs = λts

because
λt(λsδr) = λt(δsr) = δtsr = δ(ts)r = λts(δr)

for each r ∈ G. Since the operators involved are bounded and linear and the
{δt} span `2(G) the claim follows.

In particular it follows that each λt is invertible with inverse (λt)
−1 = λt−1

and so it is an onto isometry, i.e. a unitary, with (λt)
∗ = λt−1 . Thus we have

a group homomorphism
G → U(B(H))

into the group of unitary operators on H = `2(G). This is called a unitary
representation of G on H.

The unitary representation λ immediately extends to a *-representation,
also denoted by λ, of the *-algebra coo(G) on `2(G). More precisely, given
f =

∑
t f(t)δs ∈ coo(G) we define

λ(f) =
∑

t

f(t)λt

i.e. (λ(f)ξ)(r) =
∑

t

f(t)ξ(t−1r) (ξ ∈ `2(G)).
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This is a bounded operator because

‖λ(f)‖ =

∥∥∥∥∥∑
t

f(t)λt

∥∥∥∥∥ ≤∑
t

|f(t)| ‖λt‖ =
∑

t

|f(t)| = ‖f‖1

since each λt is unitary. In fact this inequality shows that λ extends to a
(contractive) map `1(G) → B(`2(G)).

The fact that λ is a *-representation immediately follows from the prop-
erties of its restriction to G:

λ

((∑
t

f(t)δt

)
∗

(∑
s

g(s)δs

))
= λ

(∑
t,s

f(t)g(s)δts

)
=
∑
t,s

f(t)g(s)λts

=
∑
t,s

f(t)g(s)λtλs =

(∑
t

f(t)λt

)
·

(∑
s

g(s)λs

)
= λ(f)λ(g)

and λ

((∑
t

f(t)δt

)∗)
= λ

(∑
t

f(t)δt−1

)
=
∑

t

f(t)λt−1

=
∑

t

f(t)λ∗t =

(∑
t

f(t)λt

)∗

.

The above calculations can be carried out for any unitary representation of
G. The details are left as an exercise.

Proposition 1 There is a bijective correspondence between unitary repre-
sentations of G and *-representations of coo(G):
If π : G → U(B(H)) is any unitary representation of the group G, the formula

π̃

(∑
t

f(t)δt

)
=
∑

t

f(t)π(t)

defines a unital *-representation of coo(G) (and of `1(G)) on the same Hilbert
space H which is ‖·‖1-contractive.

Conversely, every unital ‖·‖1-contractive *-representation ρ of coo(G) (or
of `1(G)) defines a unitary representation π by ‘restriction’: π(t) = ρ(δt)
satisfying π̃ = ρ.

We usually use the symbol π for π̃.
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Definition 1 Let Σ be the set of all ‖·‖1-contractive *-representations (π, Hπ)
of coo(G) (equivalently, of `1(G)).

The C*-norm on coo(G) (or `1(G)) is defined by the formula

‖f‖∗ = sup{‖π(f)‖ : π ∈ Σ}.

The group C*-algebra C∗(G) is defined to be the completion of coo(G) (or
equivalently of `1(G)) with respect to this norm.

Remarks 2 First of all, the set Σ is non-empty: it contains the left regular
representation.

Clearly ‖·‖∗ is a seminorm on coo(G), being the supremum of seminorms,
all of which are (by definition) bounded by ‖·‖1, hence so is ‖·‖∗. Also, ‖·‖∗
satisfies the C*-identity, because all the seminorms f → ‖π(f)‖ satisfy it.3

But why is ‖·‖∗ a norm? In other words, why is it true that ‖f‖∗ > 0
whenever f ∈ coo(G) is nonzero?

The reason is that the left regular representation is faithful on coo(G) and
`1(G); thus if f ∈ `1(G) is nonzero then λ(f) 6= 0 and so ‖f‖∗ ≥ ‖λ(f)‖ > 0.

Indeed if f =
∑

t f(t)δt ∈ `1(G) is nonzero then there exists s ∈ G with
f(s) 6= 0 and then4

〈λ(f)δe, δs〉`2(G) =

〈∑
t

f(t)λt(δe), δs

〉
=
∑

t

f(t) 〈δt, δs〉 = f(s)

because the δs are orthonormal in `2(G). Thus λ(f) 6= 0.

The usefulness of C∗(G) comes from the following property, whose proof
is an immediate consequence of the previous proposition and the fact that
coo(G) is a dense *-subalgebra of C∗(G).

Proposition 3 There is a bijective correspondence between unitary repre-
sentations of G and unital *-representations of the group C*-algebra C∗(G).

In particular, the left regular representation λ extends to a *-representation
of C∗(G) on `2(G). However, the fact that λ is faithful on coo(G) does NOT
mean that its extension remains faithful on C∗(G)!

3‖π(f∗ ∗ f)‖ = ‖π(f)∗π(f)‖ = ‖π(f)‖2.
4since

∑
t |f(t)| < ∞, the sum

∑
t f(t)λt converges (absolutely) in the norm of

B(`2(G)).
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The image λ(C∗(G)) in B(`2(G)) is a C*-algebra; it equals the closure of
λ(coo(G)) in the norm of B(`2(G)) and is called the reduced C*-algebra C∗

r (G)
of G.

In many cases, for example when G is abelian, λ is faithful on C∗(G),
so that C∗

r (G) ' C∗(G) (isometrically and *-isomorphically). In general,
however, C∗

r (G) is a quotient of C∗(G) and does not ‘contain’ all unitary
representations of G.

Example 4 Let G = F2 be the free group in two generators a and b; that is,
any element of G is a (finite) ‘word’ of the form anbmakbj where n, m, k, j ∈ Z
and there are no relations between a and b. It is known that the reduced
C*-algebra C∗

r (F2) is simple, i.e. it has no nontrivial closed two-sided ideals.
Thus all of its representations are isomorphisms; Since C∗

r (F2) is obviously
infinite-dimensional, it cannot have finite dimensional representations. On
the other hand, the group F2 does have unitary representations on finite-
dimensional spaces: Just take any two unitary n × n matrices U and V
and define π(a) = U and π(b) = V . Since there are no relations between
a and b, this extends to a unitary representation of F2 on Cn; for exam-
ple π(anbmakbj) = UnV mUkV j. Hence C∗(F2) does have nontrivial finite-
dimensional representations: therefore it cannot be isomorphic to C∗(F2).

Thus, C∗
r (F2) is a proper quotient of C∗(F2).

Example 5 Let G = Z. If we represent each n ∈ Z by the function ζn(z) =
zn, z ∈ T, the convolution product ζn∗ζm = ζn+m becomes pointwise product,
involution becomes complex conjugation, and the elements of coo(G) become
trigonometric polynomials. Hence if P ⊂ C(T) is the set of trigonometric
polynomials we have a *-isomorphism

coo(Z) → P :
∑

n

f(n)δn → pf , where pf (z) ≡
∑

n

f(n)zn.

Note that, as observed earlier, the left regular representation λ is generated
by λ(1) = U , the bilateral shift on `2(Z), which is unitarily equivalent to
multiplication by ζ on L2(T). Therefore, for each f ∈ coo(Z), λ(f) = pf (U)
is unitarily equivalent to the multiplication operator Mpf

acting on L2(T)
and so

‖λ(f)‖ =
∥∥Mpf

∥∥ = ‖pf‖∞ = sup{|pf (z)| : z ∈ T}.
It follows that the closure C∗

r (Z) of λ(coo(Z) is isometrically isomorphic to
the sup-norm closure of the trigonometric polynomials, namely C(T).
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We will show that C∗(Z) is isometrically *-isomorphic with C(T).
Since coo(Z) is ‖·‖∗-dense in C∗(Z) and P is ‖·‖∞-dense in C(T) (Stone-

Weierstrass) it suffices to show that the norm ‖f‖∗ on coo(Z) coincides with
the sup norm ‖pf‖∞ of C(T). For this, since we just proved that ‖pf‖∞ =
‖λ(f)‖ ≤ ‖f‖∗, it is enough to prove the reverse inequality, namely that if π
is any unitary representation of Z on some Hilbert space, then

‖π(f)‖ ≤ ‖pf‖∞

for any f =
∑

n f(n)δn ∈ coo(Z).
Indeed let V = π(1); this is a unitary operator and

π(f) =
∑

n

f(n)π(n) =
∑

n

f(n)V n = pf (V ).

Now pf (V ) is a normal operator and hence its norm equals its spectral radius.
By the spectral mapping theorem,

σ(pf (V )) = {pf (z) : z ∈ σ(V )} ⊆ {pf (z) : z ∈ T}

because V is unitary and so σ(V ) ⊆ T. Thus

‖π(f)‖ = ‖pf (V )‖ ≤ sup{|pf (z)| : z ∈ T} = ‖pf‖∞ .

Abelian groups The situation of this last example generalizes to arbitrary
abelian groups. Briefly, if G is an abelian group, then of course coo(G) is
abelian, and hence so is C∗(G). Thus C∗(G) ' C(K), where K is the
compact space of multiplicative linear functionals on C∗(G) with the weak*
topology. We identify the space K:

Define the set of characters of G

Ĝ = Γ = {γ : G → T : homomorphism}.

With the topology of pointwise convergence, it is not hard to see that this is
a compact space (a closed subspace of the Cartesian product TG) and it is a
group with pointwise operations. In fact it can be shown to be a topological
group (the group operations are continuous). It is called the dual group of
G.

Any γ ∈ Γ is a *-representation of G on the Hilbert space C (since
γ(t)γ(s) = γ(ts) and γ(t−1) = (γ(t))−1 = γ(t)) and thus extends (Proposition

7



3) to a *-representation γ̃ of C∗(G) on C, i.e. a multiplicative linear functional
on C∗(G). Conversely, any multiplicative linear functional on C∗(G) restricts
to a character on G. Thus there is a bijection between the set Γ of characters
of G and the set K of multiplicative linear functionals on C∗(G). We claim
that this bijection is a homeomorphism; since both spaces are compact and
Hausdorff, it suffices to prove that it is continuous.

Let γi → γ in Γ; this means γi(t) → γ(t) for each t ∈ G. To prove that
γ̃i → γ̃ in K, we need to prove that γ̃i(a) → γ̃(a) for all a ∈ C∗(G). Fix such
an a. Since coo(G) is dense in C∗(G), given ε > 0 there exists f ∈ coo(G)
with ‖a− f‖∗ < ε. Now each γ̃i and γ̃ has norm 1, and so

|γ̃i(a− f)− γ̃(a− f)| ≤ 2 ‖a− f‖∗ < 2ε.

On the other hand, if f is a finite sum
∑

t f(t)δt, we have

|γ̃i(f)− γ̃(f)| =

∣∣∣∣∣∑
t

f(t)(γi(t)− γ(t))

∣∣∣∣∣ ≤∑
t

|f(t)|.|γi(t)− γ(t)|.

Now since γi(t) → γ(t) for each t ∈ G, there is io such that |γi(t)− γ(t)| < ε
for each i ≥ io and each t in the finite support of f . Combining with the
previous inequality we conclude that

|γ̃i(a)− γ̃(a)| < (2 + ‖f‖1)ε

whenever i ≥ io; thus γ̃i → γ̃ in the weak*-topology.
This concludes the proof that Γ and K are homeomorphic; we henceforth

identify K with Γ and now we can conclude by Gelfand theory that C∗(G) '
C(Γ). In fact the *-isomorphism is given by a → â, where

â(γ) = γ̃(a), a ∈ C∗(G)

and in particular

f̂(γ) =
∑

s

f(s)γ(s), f ∈ coo(G).

Haar measure on Γ We now wish to equip Γ with a suitable probability
measure µ and form L2(Γ, µ). We first define a state:

ω : coo(G) → C : f → f(e)
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Clearly this is linear5 and ω(1) = ω(δe) = δe(e) = 1. We check positivity:

ω(f ∗ ∗ f) =(f ∗ ∗ f)(e) =
∑

s

f ∗(s)f(s−1e) =
∑

s

f(s−1)f(s−1) =∑
s

|f(s−1)|2 =
∑

s

|f(s)|2 ≥ 0 (1)

for all f =
∑

s f(s)δs ∈ coo(G).
Note also that ω is continuous in the norm of C∗(G) ' C(Γ): Indeed

|ω(f)| = |f(e)| = | 〈λ(f)δe, δe〉 | ≤ ‖λ(f)‖ ‖δe‖2
2 = ‖λ(f)‖ ≤ ‖f‖∗ =

∥∥∥f̂∥∥∥
∞

when f ∈ coo(G). Therefore ω extends to a continuous linear form on the
completion C(Γ) and the extension is a state. By the Riesz representation
theorem, there exists a unique Borel probability measure µ on the compact
space Γ such that

ω(a) =

∫
Γ

â(γ)dµ(γ) for all a ∈ C∗(G). (2)

Lemma 6 The measure µ
(i) is left invariant, i.e. µ(γE) = µ(E) for every Borel subset of Γ and any
g ∈ Γ (where γE = {γγ′ : γ′ ∈ E}), and
(ii) has full support, i.e. µ(U) > 0 for every nonempty open set U ⊆ Γ.

Proof (i) Fix γ ∈ Γ. We claim that∫
Γ

f̂(γ−1γ′)dµ(γ′) =

∫
Γ

f̂(γ′)dµ(γ′) for all f ∈ coo(G).

Indeed, seting g(s) = γ(s)f(s) we easily find that ĝ(γ′) = f̂(γ−1γ′) and so∫
Γ
f̂(γ−1γ′)dµ(γ′) =

∫
Γ
ĝ(γ′)dµ(γ′) = g(e) = γ(e)f(e) = f(e).

Since coo(G) is dense in C(Γ) it follows that∫
Γ

a(γ−1γ′)dµ(γ′) =

∫
Γ

a(γ′)dµ(γ′) for all a ∈ C(Γ).

5This is not multiplicative: the product on coo(G) is not pointwise multiplication, it is
convolution
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By uniqueness of µ this implies∫
Γ

χE(γ−1γ′)dµ(γ′) =

∫
Γ

χE(γ′)dµ(γ′) for every Borel set E ⊆ Γ.

But since χE(γ−1γ′) = χγE(γ′), claim (i) follows.

(ii) Let U ⊆ Γ be a nonempty open set. Observe that {γU : γ ∈ Γ} is an
open cover of Γ (the map γ′ → γγ′ is a homeomorphism) and so there is a
finite subcover {γiU : i = 1, . . . , n}. Now µ(γiU) = µ(U) by left invariance,
hence

µ(Γ) = µ

(
n⋃

i=1

γiU

)
≤

n∑
i=1

µ(γiU) = nµ(U).

Since µ(Γ) > 0 it follows that µ(U) > 0. 2

The Fourier transform It follows from (2) that for f ∈ coo(G) (remem-

bering that the Gelfand transform is a *-morphism, so that ĝ ∗ f = ĝf̂) we
have

ω(f ∗ ∗ f) =

∫
Γ

f̂ ∗ ∗ fdµ =

∫
f̂ ∗f̂dµ =

∫
f̂ f̂dµ =

∫
|f̂(γ)|2dµ(γ). (3)

Combine this with (1) to conclude that∫
Γ

|f̂(γ)|2dµ(γ) =
∑

s

|f(s)|2 for all f ∈ coo(G).

This equality shows (if we write L2(Γ) for L2(Γ, µ)) that the linear map

(coo(G), ‖·‖`2(G)) → (C(Γ), ‖·‖L2(Γ)) : f → f̂

is isometric and has dense range, and thus extends to a unitary bijection

F : `2(G) → L2(Γ)

which is called the Fourier transform.
Finally, if f ∈ coo(G) and ξ ∈ coo(G) ⊂ `2(G) we have

F (λ(f)ξ) = F (f ∗ ξ) = f̂ ∗ ξ = f̂ ξ̂ = Mf̂ ξ̂ = Mf̂Fξ
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where Mg denotes multiplication by g on L2(Γ). The operators Fλ(f) and
Mf̂F are both bounded operators on `2(G) and coincide on the dense sub-
space coo(G); therefore they are equal:

Fλ(f) = Mf̂F or Fλ(f)F ∗ = Mf̂

(F is unitary). It follows that ‖λ(f)‖ = ‖Mf̂‖. But, since µ has full support,6

‖Mf̂‖ = ‖f̂‖∞. Thus finally

‖λ(f)‖ = ‖f̂‖∞ for all f ∈ coo(G)

so that the left regular representation is isometric on coo(G). Therefore its
extension to C∗(G) ' C(Γ) is also isometric, hence injective, and implements
a *-isomorphism between C∗(G) and C∗

r (G). We summarize:

Theorem 7 If G is an abelian group and Γ = Ĝ, then C∗(G) ' C(Γ) and
the Fourier transform F : `2(G) → L2(Γ) implements a unitary equivalence
between the left regular representation λ of C∗(G) on `2(G) and the multipli-
cation representation g → Mg of C(Γ) on L2(Γ). Hence λ is isometric and
so C∗(G) ' C∗

r (G).

6If U is an open set on which |f̂ | ≥ ‖f̂‖∞ − ε, then ξ = χU is a nonzero element of
L2(Γ) and ‖Mf̂‖‖ξ‖2 ≥ ‖Mf̂ξ‖2 ≥ (‖f̂‖∞ − ε)‖ξ‖2.
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