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1 Introduction

This paper is possibly of only pedagogical interest. While giving
a course on measure theory, the author worked out this (fairly el-
ementary) proof of the Riesz Representation Theorem [Rie]. He
subsequently learnt that V.S. Varadarajan [VSV] has also given
an elementary proof, which uses more or less the same tools;
unfortunately, however, back-volumes (as far back as 1959) of
that journal are not easily available in India. Even Varadarajan
did not seem to have copies of that reprint.

Finally, this author has received enough favourable response
to talks on this proof as well as requests for preprints that it
seemed plausible that there might be a case for publishing this
proof in an Indian journal.

The author would like to record his gratitude to S.M. Sri-
vastava and M.G. Nadkarni for filling in some arguments in the
proofs of Proposition 2.3 and the reduction from the locally com-
pact to the compact case, respectively.

A final mathematical note: we restrict ourselves to proving
the version of the Riesz Representation Theorem which asserts
that ‘positive linear functionals come from measures’. Thus,
what we call the Riesz Representation Theorem is stated in
three parts - as Theorems 2.1, 3.3 and 4.1 - corresponding to
the compact metric, compact Hausdorff, and locally compact
Hausdorff cases of the theorem.

2 The compact metric case

In this section we shall prove a special and probably the most
important case of the theorem - i.e., when the underlying space
X is a compact metric space, which is our standing assumption
throughout this section.

In this section, the symbol BX will denote the Borel σ-algebra
of X; i.e., BX is the smallest σ-algebra of subsets of X which
contains all compact sets.

Thus, our aim in this section is to prove the following fact.

Theorem 2.1 If τ : C(X) → C is a linear functional which
is positive in the sense of assuming non-negative real values on
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non-negative real-valued continuous functions, then there exists
a unique finite positive measure µ defined on the Borel σ-algebra
BX such that

τ(f) =

∫
fdµ .

We prepare the way for proving this result, with a few simple
results.

Lemma 2.2 Let X be a compact Hausdorff space. Then the
following conditions on a linear functional τ : C(X) → C are
equivalent:

(a) τ is positive in the sense of the statement of the previous
theorem;

(b) τ is a bounded linear functional and ||τ || = τ(1), where
we write 1 for the constant function identically equal to one.

Proof: This statement is known - see [Arv] for instance -
to hold in the more general context where C(X) is replaced by
a general (not necessarily commutative) unital C∗-algebra. In
the interest of a general readership, we present the proof in the
special (commutative) case stated in this lemma.

(a) ⇒ (b): Positivity of τ implies that the equation

(f, g) = τ(fḡ)

defines a ‘semi-inner product’ on C(X); i.e., the expression (f, g)
is sesquilinear in its arguments (meaning (

∑2
i=1 αifi,

∑2
j=1 βjgj) =∑2

i,j=1 αiβ̄j(fi, gj)) and positive semi-definite (meaning (f, f) ≥
0 for all f). It is a standard fact - found in any text in functional
analysis, such as [Sim] or [Sun] - that every sesquilinear positive-
semidefinite form satisfies the celebrated Cauchy Schwartz in-
equality: i.e.,

|(f, g)|2 ≤ (f, f)(g, g) ∀ f, g ∈ C(X) .

In other words

|τ(fḡ)|2 ≤ τ(|f |2)τ(|g|2) ∀ f, g ∈ C(X) . (2.1)
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In particular, with g = 1, we find that

|τ(f)|2 ≤ τ(|f |2)τ(1).

But it follows from positivity that

τ(|f |2) ≤ τ(||f ||2 1) = ||f ||2τ(1).

Thus, we find that

|τ(f)|2 ≤ ||f ||2τ(1)2 ∀ f ;

i.e., ||τ ||C(X)∗ ≤ τ(1). The reverse inequality is obviously valid
since ||1|| = 1; the proof of (a) ⇒ (b) is complete.

(b) ⇒ (a) We may assume, without loss of generality, that
||τ || = τ(1) = 1. It will clearly suffice to show that

0 ≤ f ≤ 1 ⇒ 0 ≤ τ(f) ≤ 1 .

Suppose, to the contrary, that τ(f) = z ∈ C \ [0, 1] for some
0 ≤ f ≤ 1 . Then we can find an open disc - with centre z0 and
radius r > 0, say - which contains [0,1] but not z. Then, for any
x ∈ X, we have |f(x)−z0| < r, and consequently ||f−z01|| < r;
hence |z−z0| = |τ(f−z01)| ≤ ||f−z01|| < r. This contradiction
to our assumption that |z − z0| ≥ r completes the proof. 2

Proposition 2.3 Every compact metric space is a continuous
image of the (compact metric) space 2N, the Cartesian product
of countably infinitely many copies of a two point space.

Proof: The proof relies on two facts:
(i) a compact metric space is totally bounded, i,e,. for any

ǫ > 0 it is possible to coverX by finitely many sets with diamater
less than ǫ; and

(ii) Cantor’s intersection theorem which states that the in-
tersection, in a compact metric space, of a decreasing sequence
of closed sets with diameters converging to zero is a singleton
set.

Indeed, by (i) above, we may find closed sets {Bk : 1 ≤
k ≤ n1} each with diameter at most one, whose union is X.
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Next, since Bj is compact, we can find closed sets {Bj,k : 1 ≤
k ≤ m′

j} of diameter at most 1
2

whose union is Bj; choose
n2 = max1≤j≤n1

m′
j, and define Bj,k = Bj,m′

j
for m′

j ≤ k ≤ n2.
In other words, we may assume that in the labelling of Bj,k, the
range of the second index k is over the finite index set {1, · · · , n2}
and independent of the first index j. Using (i) repeatedly, an
easy induction argument shows that we may, for each q, find a
positive integer nq and closed sets {Bj1,j2,···,jq

: 1 ≤ ji ≤ ni}
of diameter at most 1

q
such that (a) X = ∪n1

j=1Bj, and (b)

Bj1,j2,···,jq−1
= ∪

nq

jq=1Bj1,j2,···,jq
for each j1, j2, · · · , jq−1.

If j = (j1, j2, · · · , jq, · · ·), appeal to (ii) above to find that
∩∞

q=1Bj1,j2,···,jq
= {f(j)} for a uniquely determined function f :∏∞

q=1{1, 2, · · · , nq} → X. The hypotheses ensure that if i and
j agree in the first q co-ordinates, then f(i) and f(j) are at
a distance of at most 2

q
from one another. This shows that

the function f is continuous. Finally (a) and (b) of the last
paragraph ensure that the function f maps onto X.

Finally, we may clearly assume, without loss of generality,
that nq = 2mq . Then it is clear that there is a (continuous)
surjection from 2N to

∏∞

q=1{1, 2, · · · , 2
mq}. Combining these two

maps we get the desired surjection to X. 2

Proof of Theorem 2.1

In addition to the above facts, the proof uses just one more
fact, the Hahn-Banach Theorem, which says that any bounded
linear functional τ0 on a subspace V0 of a normed space V may
be extended to a bounded linear functional τ on V such that
||τ ||V ∗ = ||τ0||V ∗

0
. This may be found in any text on functional

analysis. (See [Sim] or [Sun], for instance.)
The first step of the proof is to observe that the special case of

Theorem 2.1, when X = 2N, is a consequence of Caratheodory’s
Extension Theorem. Indeed, suppose τ is a positive linear func-
tional on C(2N), which we may assume is normalised so that
τ(1) = 1. Let

πn](j1, j2 · · · , jn, · · ·) = (j1, j2 · · · , jn)

denote the projection πn] : 2N → 2n onto the first n co-ordinates
(where we have written 2n to denote the product of n copies
of the two point space). Let A = {π−1

n] (E) : E ⊂ 2n, n ∈ N}.
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Then, A is a base for the topology of 2N, and all the members
of A are open and compact; and A is an algebra of sets which
generates the Borel σ-algebra B2N . In particular the functions
1A are continuous for each A ∈ A. Hence, we may define

µ(A) = τ(1A) ∀ A ∈ A . (2.2)

The linearity of τ clearly implies that µ is a finitely additive set
function on A. Since members of A are compact and open, no
element of A can be expressed as a countable union of pairwise
disjoint non-empty members of A. In other words, we see that
any finitely additive set function on A is automatically count-
ably additive, and hence, by Caratheodory’s extension theorem,
extends to a probability measure µ defined on all of BX . If we
define τµ(f) =

∫
fdµ, then we see from equation (2.2) that τ

and τµ agree on any continuous function f which factors through
some πn]; since such functions are dense in C(2N), we may con-
clude that τ = τµ. In fact, equation (2.2) determines µ uniquely,
since a finite measure on B is uniquely determined by its restric-
tion to any ‘algebra of sets’ which generates B as a σ-algebra.
In other words, Theorem 2.1 is indeed true when X = 2N

Suppose now that X is a general compact metric space and
that τ is a positive linear functional on C(X). We may assume
that ||τ || = τ(1) = 1. Proposition 2.3 guarantees the existence
of a continuous surjection p : 2N → X. Then it is easy to see
that the map p∗ : C(X) → C(2N) defined by p∗(f) = f ◦ p is
an isometric positivity preserving homomorphism of algebras.
In particular, we may regard C(X) as a subspace of C(2N) via
p∗. It follows from the Hahn-Banach theorem that there exists
a bounded linear functional τ̃ on C(2N) such that

τ̃(p∗(f)) = τ(f) ∀ f ∈ C(X) (2.3)

and
||τ̃ || = ||τ || = τ(1) = τ̃(p∗(1)) = τ̃(1). (2.4)

Deduce now from Lemma 2.2 that τ̃ is a positive linear func-
tional on C(2N). Conclude from the already proved special case
of the theorem for 2N that there exists a positive (in fact prob-
ability) measure ν defined on B2N such that τ̃(g) =

∫
2N gdν.
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hence, we see from the ‘change of variable formula’ that

τ(f) = τ̃(p∗(f))

=

∫

2N

p∗(f) dν

=

∫

2N

f ◦ p dν

=

∫

X

f d(ν ◦ p−1) ;

hence with µ = ν ◦ p−1, we see that τ is indeed given by inte-
gration against µ.

To complete the proof, we only need to establish uniqueness,
For this, we first assert that if τ is given by integration against
µ, then

µ(K) = inf{τ(f) : 1K ≤ f ∈ C(X)} (2.5)

for every compact K ⊂ X.
Since

1K ≤ f ⇒ µ(K) =

∫
1Kdµ ≤

∫
fdµ = τ(f) ,

it is clear that µ(K) is no greater than the infimum displayed in
equation (2.5).

Conversely, since compact subsets of X are Gδ sets, we can
find a decreasing sequence of open sets Un such that K = ∩Un.
(For instance, we can choose Un = {x ∈ X : d(x,K) < 1

n
}.) We

can find continuous fn : X→[0, 1] such that 1K ≤ f ≤ 1Un
. Then

it is clear that fn(x)→1K(x) ∀x ∈ X; and since 0 ≤ fn ≤ 1 ∀n,
it follows from the dominated convergence theorem that

µ(K) =

∫
1Kdµ = lim

∫
fndµ

and in particular, µ(K) is no smaller than the infimum displayed
in equation (2.5).

Finally, since any finite measure on a compact metric space is
determined by its values on compact sets (see Proposition 4.2),
we see that τ indeed determines µ uniquely.

2
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3 The general compact Hausdorff case

We assume in this section that X is any compact Hausdorff
space. We begin with a couple of elementary lemmas.

Lemma 3.1 (a) The following conditions on a closed subset A
of X are equivalent:

(i) A is a Gδ set - i.e., there exists a sequence {Un} of open
sets such that A = ∩nUn;

(ii) there exists a continuous function f : X → [0, 1] such
that A = f−1({0}).

Proof: (i) ⇒ (ii) : Compact Hausdorff spaces are normal;
so we can, by Urysohn’s theorem, find a continuous function
fn : X → [0, 1] such that

fn(x) =

{
0 if x ∈ A
1 if x /∈ Un

;

now set f =
∑∞

n=1 2−nfn.
(ii) ⇒ (i) : Let Un = {x ∈ X : |f(x)| < 1

n
}. 2

In this section, the symbol BX will denote the the smallest
σ-algebra of subsets of X which contains all the compact Gδ

sets. A member of the σ-algebra BX is called a Baire set. (Note
that when X is a compact metric space, there is no distinction
between Borel sets and Baire sets; this is because any closed set
A in a metric space is a Gδ, as demonstrated by the function
f(x) = d(x,A).)

Lemma 3.2 The following conditions on a subset E ⊂ X are
equivalent:

(i) A is a Baire set;
(ii) there exists a continuous function F : X → Y from X

into a compact metric space Y and a Baire - equivalently Borel
- set E ∈ BY such that A = F−1(E).

In particular, any scalar-valued continuous function on X is
‘Baire measurable’. Further, the space Y may, without loss of
generality, be taken to be [0, 1]C for some countable set C.
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Proof: (ii) ⇒ (i): Suppose F : X → Y is a continuous
function from X into a compact metric space Y . Let C = {E ∈
BY : F−1(E) is a Baire set}. First notice that if K is any closed
set in Y , then K is also a Gδ set, and consequently F−1(K) is
a compact Gδ set and hence a Baire set in X; hence C contains
all closed sets in Y . Since the definition shows that C is clearly
a σ-algebra, it follows that C = BY .

(i) ⇒ (ii): Let B denote the collection of those subsets A ⊂
X which are inverse images, under continuous functions into Y -
where Y = [0, 1]C for some countable set C - of Borel sets in Y .
We check now that B is closed under countable unions. Suppose
An = F−1

n (En) for some En ∈ BYn
, where Fn : X → Yn = [0, 1]Cn

(with Cn some countable set) is continuous ; we may assume,
without loss of generality, that the index sets Cn are pairwise
disjoint. Then, let C = ∪nCn, so we may identify Y = [0, 1]C

with
∏

n Yn. Write πn for the natural projection mapping of Y
onto Yn. Define F : X → Y by requiring that πn ◦ F = Fn, and
define E ′

n = π−1
n (En). The definitions show that F is continuous,

E ′
n ∈ BY , so that ∪nE

′
n ∈ BY and

∪nAn = ∪nF
−1(E ′

n) = F−1(∪nE
′
n) ;

so B is indeed closed under countable unions. Since it is trivially
closed under complementation, it follows that B is a σ-algebra of
sets. So, in order to complete the proof of the lemma, it remains
only to prove that B contains all compact Gδ sets; but this is
guaranteed by Lemma 3.1. 2

We can now state the Riesz Representation Theorem for gen-
eral compact Hausdorff spaces.

Theorem 3.3 If τ : C(X) → C is a positive linear functional,
then there exists a unique finite positive µ defined on the Baire
σ-algebra BX such that

τ(f) =

∫
fdµ .

Proof: Let

C = {(Y, π) : π is a continuous map of X onto a metric space Y } .
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For (Y, π), (Y1, π1), (Y2, π2) ∈ C, let us write

Bπ = {π−1(E) : E ∈ BY }, and

(Y1, π1) ≤ (Y2, π2) ⇔ ∃ ψ : Y2 → Y1 such that π1 = ψ ◦ π2

The proof involves a series of assertions:

(1) If (Y, π) ∈ C, there exists a unique measure µY defined
on BY such that

∫

Y

g dµY = τ(g ◦ π), ∀ g ∈ C(Y ) . (3.6)

(Reason: The equation

τY (g) = τ(g ◦ π) (3.7)

defines a positive linear functional on C(Y ), and we may apply
Theorem 2.1 to the compact metric space Y .)

(2) If (Y1, π1), (Y2, π2) ∈ C, and if (Y1, π1) ≤ (Y2, π2), so that
there exists a continuous map ψ : Y2 → Y1 such that π1 = ψ ◦π2

then µY1
= ψ∗(µY2

) (meaning that µY1
(E) = µY2

(ψ−1(E)) , ∀E ∈
BY1

.

(Reason: For arbitrary g ∈ C(Y1), an application of the
‘change of variable formula’ shows that

∫

Y1

g d(ψ∗(µY2
)) =

∫

Y2

g ◦ ψ dµY2

= τ(g ◦ ψ ◦ π2)

= τ(g ◦ π1) ,

and the uniqueness assertion of (1) above establishes the desired
equality of measures.)

(3) If {(Yn, πn) : n = 1, 2, · · ·} ⊂ C, then there exists (Y, π) ∈
C such that (Yn, πn) ≤ (Y, π) ∀n.

(Reason: Define π : X →
∏∞

n=1 Yn by π(x) = (π1(x), π2(x), · · ·),
set Y = π(X), and let ψn : Y → Yj be the restriction to Y of
the projection onto Yn.)
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Finally, it is a direct consequence of Lemma 3.2 that BX =
∪(Y,π)∈CBπ. The above assertions show that there exists a unique
well-defined and countably additive set-function µ on BX with
the property that µ(π−1(E)) = µY (E) whenever E ∈ BY , (Y, π) ∈
C. In other words, π∗(µ) = µY so

∫
X
g ◦ π dµ =

∫
Y
gdµY =

τ(g ◦ π) ∀ g ∈ C(Y ). Now if f ∈ C(X), set Y = f(X), π = f ,
define g ∈ C(Y ) by g(z) = z ∀z ∈ Y , and deduce from the
previous sentence that indeed

∫

X

f dµ = τ(f) ,

as desired.
As for uniqueness, it is seen, exactly as in the compact metric

case, that equation (2.5) is valid for every compact Gδ set K.
Then Corollary 4.3 shows that τ determines µ uniquely.

2

4 The locally compact case

In this section, we assume thatX0 is a locally compact Hausdorff
space. We shall write

Cc(X0) = {f : X0 → C : f continuous, supp(f) compact} ,

where we write ‘supp(f)’ to denote the support of f , i.e., the
closure of {x ∈ X0 : f(x) 6= 0}. As before, we shall let BX0

denote the σ-algebra generated by compact Gδ subsets of X0.
Let us call a positive measure µ defined on BX0

inner regular
if: (i) µ(K) <∞ for every compact Gδ subset K of X0, and (ii)
µ(E) = sup{µ(K) : K a compact Gδ subset of E}.

We now wish to derive the following result from the preceding
sections.

Theorem 4.1 If τ : Cc(X0) → C is a linear functional which
is positive - meaning Cc(X0) ∋ f ≥ 0⇒τ(f) ≥ 0 - then there
exists a unique positive inner regular measure µ defined on BX0

such that

τ(f) =

∫
fdµ ∀ f ∈ Cc(X0) .
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Proof: Let K be a compact Gδ subset of X0, and suppose
K = ∩nUn, with Un open. We may, and do, assume without loss
of generality that Un has compact closure and that Un+1 ⊂ Un.
For each n, pick a continuous function φn : X → [0, 1] such that
1Un+1

≤ φn ≤ 1Un
, i.e.,

φn(x) =

{
0 if x /∈ Un

1 if x ∈ Un+1
.

The construction implies that

0 ≤ φn+1 = φnφn+1 ≤ φn . (4.8)

Assertion: Suppose now that f ∈ C(K) and f ≥ 0. Suppose1

f̃ ∈ Cc(X0) is a non-negative extension of f - i.e., f̃ |K = f .

Then limn→∞τ(f̃φn) exists and this limit depends only on f

and is independent of the choices of any of Un, φn, f̃ .

Reason: To start with, the positivity of τ and equation (4.8)

imply that {τ(f̃φn) : n = 1, 2, · · ·} is a non-increasing sequence
of non-negative numbers, and hence converges.

If g is another continuous non-negative function with com-
pact support which extends f , and if ǫ > 0, then Un ∩ {x ∈

X0 : |f̃(x) − g(x)| ≥ ǫ} is seen to be a a decreasing sequence of
compact sets whose intersection is empty. So, there exists an n
such that

x ∈ Un ⇒ |f̃(x) − g(x)| < ǫ ;

it follows from the positivity of τ that

|τ(f̃φk) − τ(gφk)| ≤ ǫτ(φk)

for all large k. Since lim τ(φn) exists (by virtue of the conclusion

of the previous paragraph applied to f = 1K , with f̃ = 1U1

(say)) this establishes that the limit of the Assertion is indeed

independent of f̃ .

1To see that such extensions exist, first choose an open set U and a
compact set L such that K ⊂ U ⊂ L, and appeal to Tietze’s extension
theorem to find a continuous g : X→[0, 1] with the property that g|K = f

and g(x) = 0 ∀x ∈ L \ U , and finally let f̃ be g on L and 0 outside L.
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Suppose {(Vn, ψn)}n is an alternative choice to {(Un, φn)}n

in the sense that (i) Vn is a sequence of open sets such that
K = ∩nVn, (ii) ψn ∈ Cc(X0), ψn : X0 → [0, 1] and (iii)

ψn(x) =

{
0 if x /∈ Vn

1 if x ∈ Vn+1
.

Then, it may be seen, exactly as above, that if ǫ > 0 is
arbitrary, then supx∈X0

|f̃(x)(φn(x)−ψn(x)| < ǫ for large n, and
hence deduced from positivity of τ that

limn→∞τ(f̃φn) = limn→∞τ(f̃ψn) ,

thereby completing the proof of the assertion.

It is clear that there exists a linear functional τK on C(K)
such that

τK(f) = limnτ(f̃φn)

for any non-negative f (and f̃ and φk’s as above). Since τK is a
positive functional on C(K), we may deduce from Theorem 3.3
that there exists a unique finite positive measure µK defined
on BK such that

τK(f) =

∫

K

f dµK ∀ f ∈ C(K) .

Notice that the collection Λ of compact Gδ sets is a directed
set with respect to the ordering defined by

K ≤ L ⇔ K ⊂ Int(L)

where Int(L) denotes the interior of L.
We wish now to show that the family {µK : K ∈ Λ} is

consistent in the sense that

K,L ∈ Λ, K ≤ L⇒ µL|K = µK . (4.9)

First notice that it follows from the definitions that if g ∈
Cc(X0) and if supp(g) ≤ L, then

∫

L

g dµL = τ(g) . (4.10)
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Suppose now that K,L ∈ Λ and K ≤ L. We may find a
sequence {Un, φn} as above, such that K = ∩nUn and U1 ⊂ L.

Now, if f ∈ C(K) is arbitrary, and if f̃ is any extension of f to

a compactly supported continuous function with supp(f̃) ≤ L,
deduce from equation (4.10) and the dominated convergence, for
instance, that

∫

K

f dµK = lim
n
τ(f̃φn)

= lim
n

∫

L

(f̃φn) dµL

=

∫
1Kf dµL

=

∫

K

f d(µL)|K .

The uniqueness assertion in Theorem 3.3 then shows that
equation (4.9) is indeed valid.

Finally, for any set E ∈ BX0
, notice that E∩K ∈ BK ∀K ∈ Λ

and that {µK(E ∩K) : K ∈ Λ} is a non-decreasing net of real
numbers which must converge to a number - call it µ(E) - in
[0,∞]. Note that

µ(E) = sup
K∈Λ

µK(E ∩K) ∀E ∈ BX0
. (4.11)

We wish to say that this µ is the measure on BX0
whose

existence is asserted by the theorem. Suppose E =
∐∞

n=1En

where E,En ∈ BX0
. Then

µ(E) = sup
K∈Λ

µK(E ∩K)

= sup
K∈Λ

µK(
∞∐

n=1

En ∩K)

= sup
K∈Λ

∞∑

n=1

µK(En ∩K)

= sup
K∈Λ

sup
N

N∑

n=1

µK(En ∩K)
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= sup
N

sup
K∈Λ

N∑

n=1

µK(En ∩K)

= sup
N

lim
K∈Λ

N∑

n=1

µK(En ∩K)

= sup
N

N∑

n=1

lim
K∈Λ

µK(En ∩K)

= sup
N

N∑

n=1

µ(En)

=
∞∑

n=1

µ(En) ,

and hence µ is indeed countably additive, i.e., a measure defined
on BX0

.
Now, if f ∈ Cc(X0), it follows from equations (4.10) and

(4.9) that if L ∈ Λ satisfies supp(f) ≤ L, then

τ(f) =

∫

L

f dµL =

∫

X0

f dµ.

Finally, if K is any compact Gδ, then it is clear that

µ(K) = µK(K) < ∞ .

Let us defer, for a moment, the proof of inner regularity of
our µ, and verify, instead, that there is at most one inner regular
measure µ related to a τ as in the theorem. By inner regularity,
it suffices to observe that

µ(K) = inf{τ(f) : 1K ≤ f ∈ Cc(X0)}

for all compact Gδ subsets K. But this is proved exactly as in
the proof of equation (2.5).

Finally, if E ∈ BX0
is arbitrary, we have, by definition of our

µ, and Corollary 4.3,

µ(E) = sup
K∈Λ

µ(E ∩K)

= sup
K∈Λ

sup
C⊂E∩K, C compact Gδ

µ(C)
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so indeed
µ(E) = sup

C⊂E, C compact Gδ

µ(C)

The proof of the theorem is complete, modulo that of the
following proposition and its corollary. 2

Proposition 4.2 Suppose µ is a finite positive measure defined
on the Borel σ-algebra BX of a compact metric space. Then, for
any Borel set E ∈ BX , we have

µ(E) = sup{µ(K) : K ⊂ E and K is compact}

= inf{µ(U) : E ⊂ U and U is open}.

Proof: Let M denote the class of all those E ∈ BX which
satisfy the conclusion of the Proposition.

Suppose next that K is a compact set in X. Then the first
of the desired identities is clearly satisfied by K. On the other
hand, we may choose a sequence {Vn}

∞
n=1 of open sets such that

K = ∩∞
n=1Vn. It is then seen - from the fact that finite measures

are ‘continuous from above’ - that if we set Un = ∩n
m=1Vm, then

µ(K) = lim
n→∞

µ(Un) ;

hence, K also satisfies the second of the desired identities. Thus
M contains all compact sets.

We claim next that M is an algebra of sets. So suppose
Ei ∈ M for i = 1, 2. Let ǫ > 0. Then we can find compact
sets K1, K2 and open sets U1, U2 such that Ki ⊂ Ei ⊂ Ui and
µ(Ui \Ki) < ǫ. Then clearly K = K1 ∪K2 is a compact subset
of E = E1 ∪ E2 and U = U1 ∪ U2 is an open superset of E and
we have

µ(U \K) ≤ µ(U1 \K) + µ(U2 \K)

≤ µ(U1 \K1) + µ(U2 \K2)

< 2ǫ ;

the arbitrariness of ǫ shows that indeed E ∈ M.
Since complements of compact sets in X are open (and con-

versely), the class M is seen to be closed under the formation of
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complements. Hence M indeed contains the algebra generated
by all compact sets in X. Hence, in order to complete the proof,
it suffices (by the ‘monotone class theorem’) to verify that M is
a monotone class of sets.

So suppose En ∈ M, n = 1, 2, · · ·, and let ǫ > 0. Pick
compact sets Kn and open sets Un such that Kn ⊂ En ⊂ Un

and µ(Un \Kn) < ǫ
2n for each n.

If En ↑ E, pick a large m so that µ(E \ Em)) < ǫ, and
conclude, with U = ∪∞

n=1Un and K = Km that U is open, K is
compact, K ⊂ E ⊂ U and that

µ(U \ E) ≤

∞∑

n=1

µ(Un \ E)

≤
∞∑

n=1

µ(Un \ En)

≤
∞∑

n=1

µ(Un \Kn)

< ǫ ,

while

µ(E \Km) ≤ µ(E \ Em) + µ(Em \Km) < 2ǫ .

Since ǫ was arbitrary, this shows that E ∈ M.
The case when En ↓ E is similarly seen (take U = Uk and

K = ∩nKn, with k so large that µ(Ek \ E) < ǫ) to imply that
E ∈ M, thereby showing that M is a monotone class containing
the algebra generated by the collection of all compact sets. This
completes the proof of the proposition. 2

Corollary 4.3 Any finite positive measure deined on the Baire
σ-algebra BX of a compact Hausdorff space X is inner regular.

Proof: By Lemma 3.2, if A is any Baire subset of X, then
there exists a compact metric space Y , a Borel subset E ⊂ Y
and a continuous map f : X→Y such that A = f−1(E). Apply
Proposition 4.2 to the measure ν = µ ◦ f−1 defined on BY , to
find compact sets Cn ⊂ E such that ν(E) = supn ν(Cn). Notice
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that Kn = f−1(Cn) is a closed, hence compact, clearly Gδ subset
of X such that Kn ⊂ A and conclude that

µ(A) = ν(E) = sup
n

ν(Cn) = sup
n

µ(Kn) .

2
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