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In this paper we present two approaches for estimating matrix-inverse quadratic forms 𝑥𝑇 𝐴−1𝑥, 
where 𝐴 is a symmetric positive definite matrix of order 𝑛, and 𝑥 ∈ ℝ𝑛. Using the first, analytic 
approach, we establish two families of estimates which are convenient for matrices with small 
condition number. Based on the second, heuristic approach, we derive two families of estimates 
which are suitable for matrices when vector 𝑥 is close enough to an eigenvector. The low 
complexity and stability of the estimates is proved. Several numerical results illustrating the 
effectiveness of the methods are presented.

1. Introduction

We consider the quadratic form 𝑥𝑇 𝐴−1𝑥, where 𝐴 ∈ ℝ𝑛×𝑛 is a symmetric positive definite (spd) matrix of order 𝑛, and 𝑥 ∈ ℝ𝑛. 
The purpose of this work is to establish a direct heuristic approach for the estimation of this quadratic form avoiding the explicit 
computation of the matrix inverse, which may be prohibitive when the matrix 𝐴 is large.

Once the quadratic form 𝑥𝑇 𝐴−1𝑥 is estimated, the bilinear form 𝑥𝑇 𝐴−1𝑦, where 𝑥, 𝑦 ∈ℝ𝑛, can be estimated too by employing the 
polarization identity

𝑥𝑇 𝐴−1𝑦 = 1
4
(𝑤𝑇 𝐴−1𝑤− 𝑣𝑇 𝐴−1𝑣)

where 𝑤 = 𝑥 + 𝑦 and 𝑣 = 𝑥 − 𝑦.

Quadratic forms of the type 𝑥𝑇 𝐴−𝑞𝑥, 𝑞 = 1, 2 arise in many applications for a suitably selected vector 𝑥 ∈ ℝ𝑛. Specifically, in 
Statistics and Uncertainty Quantification, they are required for approximating the inverse of covariance matrices [3,14]. In Network 
Analysis, they are useful for the specification of diagonal elements of the adjacency matrix [5]. In Numerical Analysis, quadratic 
forms are generally applied for the specification of the regularization parameter in the Tikhonov regularization method for the 
solution of ill-posed problems [6].

The exact computation of the quadratic form 𝑥𝑇 𝐴−1𝑥 requires the direct evaluation of the matrix 𝐴−1 which results to (𝑛3)
required floating point operations. In practice, this exact computation can be replaced by an estimate that is cheaper and faster to 
evaluate. This important problem has attracted a lot of attention and several approaches have been proposed [10,9,12]. In [1] the 
authors propose simplified anti-Gauss quadrature rules, whereas in [2] multiple orthogonal polynomials are employed. Moreover in 
[4] the global block Lanczos method is adopted and in [7] the authors apply extrapolation techniques for the estimation of bilinear 
forms of Hermitian matrices.

* Corresponding author.
Please cite this article as: Emmanouil Bizas et al., Appl. Numer. Math., https://doi.org/10.1016/j.apnum.2024.01.013

Available online 23 January 2024
0168-9274/© 2024 Published by Elsevier B.V. on behalf of IMACS.

E-mail addresses: manolisdiog@gmail.com (E. Bizas), mmitroul@math.uoa.gr (M. Mitrouli), ondrej.turek@osu.cz (O. Turek).

https://doi.org/10.1016/j.apnum.2024.01.013

Received 28 October 2023; Received in revised form 12 January 2024; Accepted 17 January 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
mailto:manolisdiog@gmail.com
mailto:mmitroul@math.uoa.gr
mailto:ondrej.turek@osu.cz
https://doi.org/10.1016/j.apnum.2024.01.013
https://doi.org/10.1016/j.apnum.2024.01.013


Applied Numerical Mathematics xxx (xxxx) xxxE. Bizas, M. Mitrouli and O. Turek

In this work we will present two approaches to estimating the quadratic form 𝑥𝑇 𝐴−1𝑥. In the analytical approach, we will employ 
the Taylor expansion. We will propose certain easily evaluable expressions (of quadratic complexity) for which we demonstrate that 
they have the same leading terms as the original quadratic form. Those expressions appear to be efficient estimates of 𝑥𝑇 𝐴−1𝑥. In 
the heuristic approach, we will employ the Cauchy-Schwarz inequality, and express the quadratic form as a function of the so called 
index of proximity, which can be heuristically estimated. This method extends the approach initially proposed in [8]. We will derive 
two-parameter families of estimates which require only matrix-vector products for their computation. All the obtained formulae of 
estimates are stable and fast to compute thanks to their quadratic complexity. The accuracy of the estimates will be assessed by the 
index of proximity: the closer is its value to one, the better are achieved estimates. The challenge in the heuristic estimation is that 
the whole process can be guided from the original data. By checking the index of proximity of our initial data set, we can predict if 
the heuristic estimates are appropriate to use.

The paper is structured as follows: In Section 2, we use asymptotic methods to establish efficient estimates of the quadratic form 
𝑥𝑇 𝐴−1𝑥 suitable primarily for matrices with small condition numbers. Section 3 describes the heuristic method and proposes two 
approximation schemes leading to the derivation of two families of estimates. In Section 4 we present a detailed backward error 
analysis of the estimates proving their stability and providing error bounds. Section 5 reports numerical examples that illustrate the 
performance of the proposed heuristic estimates. Finally, conclusions are drawn in Section 6.

Throughout the paper ‖ ⋅ ‖ is the 2-norm of a vector or matrix, (⋅, ⋅) is a bilinear form, the superscript 𝑇 denotes the transpose, 
the vector 𝛿𝑖 stands for the 𝑖th column of the identity matrix, and ℕ≥1 = {1, 2, 3, … }. The symbol 𝑂 is used as the “big 𝑂 notation”; 
i.e., 𝑓 (𝑡) = 𝑂(𝑔(𝑡)) as 𝑡 → 𝑎 if there is a constant 𝑀 such that |𝑓 (𝑡)| ≤ 𝑀𝑔(𝑡) in a certain neighborhood of 𝑎.

2. Analytic approach

Let 𝐴 ∈ℝ𝑛×𝑛 be a symmetric positive definite matrix and 𝑥 ∈ℝ𝑛, 𝑥 ≠ 0. Let 𝜆1, … , 𝜆𝑛 denote the eigenvalues of 𝐴. Then for every 
𝑘 ∈ℝ we have

(𝑥,𝐴𝑘𝑥) = ‖𝑥‖2 𝑛∑
𝑗=1

𝜆𝑘
𝑗 𝛼2

𝑗 , (1)

where (𝛼1, … , 𝛼𝑛)𝑇 are the coordinates of the normalized vector 1‖𝑥‖𝑥 in the eigenbasis of 𝐴 associated with the eigenvalues 𝜆1, … , 𝜆𝑛; 
i.e.,

𝑛∑
𝑗=1

𝛼2
𝑗 = 1. (2)

In particular, equation (1) with the choice 𝑘 = −1 acquires the form

(𝑥,𝐴−1𝑥) = ‖𝑥‖2 𝑛∑
𝑗=1

𝜆−1𝑗 𝛼2
𝑗 . (3)

Let �̄� = 1
𝑛

∑𝑛
𝑗=1 𝜆𝑗 be the arithmetic mean of the eigenvalues of 𝐴, and

𝜀𝑗 = 𝜆𝑗 − �̄�

for every 𝑗 = 1, … , 𝑛. Then

|𝜀𝑗 | ≤ 𝜆max − 𝜆min

and

�̄� ≥ 𝜆min ;

hence

𝜀𝑗

�̄�
≤

𝜆max − 𝜆min
𝜆min

= 𝜅 − 1,

where 𝜅 is the condition number of 𝐴. Formula (1) gives

(𝑥,𝐴−1𝑥) = ‖𝑥‖2 𝑛∑
𝑗=1

𝜆−1𝑗 𝛼2
𝑗 = ‖𝑥‖2 𝑛∑

𝑗=1
(�̄�+ 𝜀𝑗 )−1𝛼2

𝑗 = ‖𝑥‖2 𝑛∑
𝑗=1

1
�̄�

(
1 +

𝜀𝑗

�̄�

)−1
𝛼2

𝑗 .

By Taylor’s theorem, we have

(1 + 𝑡)−1 = 1 − 𝑡+ 𝑡2 +⋯+ (−1)𝓁−1𝑡𝓁 +𝑅𝑗 (𝑡),
2

and the Lagrange form of the remainder leads to the estimate
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|𝑅𝓁(𝑡)| ≤ |||| 𝑡

1 − 𝑡

||||𝓁+1 .

In particular, using (2) the choice 𝓁 = 2 gives

(𝑥,𝐴−1𝑥) = ‖𝑥‖2 𝑛∑
𝑗=1

1
�̄�

[
1 −

𝜀𝑗

�̄�
+
(

𝜀𝑗

�̄�

)2
+𝑅2

(
𝜀𝑗

�̄�

)]
𝛼2

𝑗

= ‖𝑥‖2
�̄�

[
1 −

𝑛∑
𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗 +
𝑛∑

𝑗=1

𝜀2
𝑗

�̄�2
𝛼2

𝑗 +
𝑛∑

𝑗=1
𝑅2

(
𝜀𝑗

�̄�

)
𝛼2

𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟2

]
.

The term 𝑟2 =
∑𝑛

𝑗=1 𝑅2

(
𝜀𝑗

�̄�

)
𝛼2

𝑗
can be estimated as

|𝑟2| = ||||||
𝑛∑

𝑗=1
𝑅2

(
𝜀𝑗

�̄�

)
𝛼2

𝑗

|||||| ≤
𝑛∑

𝑗=1

||||||
𝜀𝑗

�̄�

1 − 𝜀𝑗

�̄�

||||||
3

𝛼2
𝑗 ≤

𝑛∑
𝑗=1

|||| 𝜅 − 1
1 − (𝜅 − 1)

||||3 𝛼2
𝑗 =

||||𝜅 − 1
2 − 𝜅

||||3 ;
thus 𝑟2 = 𝑂

(
(𝜅 − 1)3

)
as 𝜅 → 1.

The goal of the forthcoming section 2.1 is to derive estimates that coincide with the expansion (3) up to the second powers of 𝜀𝑗

�̄�
, 

while their evaluation uses only inner products and matrix vector products.

2.1. Estimates of (𝑥, 𝐴−1𝑥) of the 2nd order

We search for an estimate of the form

(𝑥,𝐴−1𝑥) ≈ (𝑥,𝑥)𝓁0 ⋅ (𝑥,𝐴𝑥)𝓁1 ⋅ (𝐴𝑥,𝐴𝑥)𝓁2

for 𝓁0, 𝓁1, 𝓁2 ∈ℤ. Obviously, the exponents must satisfy

𝓁0 + 𝓁1 + 𝓁2 = 1 and 𝓁1 + 2𝓁2 = −1;

hence, by choosing 𝓁2, the other two exponents are fixed as 𝓁1 = −1 − 2𝓁2 and 𝓁0 = 2 + 𝓁2.

The simplest choice 𝓁2 = 0 gives the estimate (𝑥, 𝐴−1𝑥) ≈ (𝑥,𝑥)2
(𝑥,𝐴𝑥) , but one can check that it does not have the required precision. 

Therefore, let us proceed to the natural next choice, 𝓁2 = 1, corresponding to the estimate

(𝑥,𝐴−1𝑥) ≈ (𝑥,𝑥)3 ⋅ (𝑥,𝐴𝑥)−3 ⋅ (𝐴𝑥,𝐴𝑥)1 = ‖𝑥‖6 ⋅ ‖𝐴𝑥‖2
(𝑥,𝐴𝑥)3

.

We get

‖𝑥‖6 ⋅ ‖𝐴𝑥‖2
(𝑥,𝐴𝑥)3

=
‖𝑥‖8 𝑛∑

𝑗=1
𝜆2

𝑗
𝛼2

𝑗(‖𝑥‖2 𝑛∑
𝑗=1

𝜆𝑗𝛼
2
𝑗

)3 = ‖𝑥‖2
𝑛∑

𝑗=1
(�̄�+ 𝜀𝑗 )2𝛼2

𝑗(
𝑛∑

𝑗=1
(�̄�+ 𝜀𝑗 )𝛼2

𝑗

)3

= ‖𝑥‖2
�̄�

⋅

𝑛∑
𝑗=1

(
1 + 𝜀𝑗

�̄�

)2
𝛼2

𝑗(
𝑛∑

𝑗=1

(
1 + 𝜀𝑗

�̄�

)
𝛼2

𝑗

)3 = ‖𝑥‖2
�̄�

⋅

1 + 2
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗
+

𝑛∑
𝑗=1

𝜀2
𝑗

�̄�2
𝛼2

𝑗(
1 +

𝑛∑
𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗

)3 . (4)

As 𝜅 → 1, we have||||||
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗

|||||| ≤
𝑛∑

𝑗=1

||||𝜀𝑗

�̄�

||||𝛼2
𝑗 ≤

𝑛∑
𝑗=1

(𝜅 − 1)𝛼2
𝑗 = 𝜅 − 1 = 𝑂(𝜅 − 1);

||||||
𝑛∑

𝑗=1

𝜀2
𝑗

�̄�2
𝛼2

𝑗

|||||| =
𝑛∑

𝑗=1

||||||
𝜀2

𝑗

�̄�2

||||||𝛼2
𝑗 ≤

𝑛∑
𝑗=1

(𝜅 − 1)2𝛼2
𝑗 = (𝜅 − 1)2 = 𝑂(𝜅 − 1)2

Let us compare the expression (4) with (𝑥, 𝐴−1𝑥). A straightforward calculation (which can be carried out using a computer) gives 
3

the following result:
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‖𝑥‖6⋅‖𝐴𝑥‖2
(𝑥,𝐴𝑥)3

(𝑥,𝐴−1𝑥)
=

1+2
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2
𝑗
+

𝑛∑
𝑗=1

𝜀2
𝑗

�̄�2
𝛼2
𝑗(

1+
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2
𝑗

)3

1 −
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗
+

𝑛∑
𝑗=1

𝜀2
𝑗

�̄�2
𝛼2

𝑗
+ 𝑟2

= 1 + 2

(
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗

)3

− 3
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗 ⋅
𝑛∑

𝑗=1

𝜀2
𝑗

�̄�2
𝛼2

𝑗 + 𝑟2 +𝑂
(
(𝜅 − 1)4

)

= 1 +𝑂
(
(𝜅 − 1)3

)
+𝑂

(
(𝜅 − 1)4

)
= 1 +𝑂

(
(𝜅 − 1)3

)
as 𝜅 → 1. (5)

To sum up, we have obtained an estimate

(𝑥,𝐴−1𝑥) ≈ ‖𝑥‖6 ⋅ ‖𝐴𝑥‖2
(𝑥,𝐴𝑥)3

(6)

with the relative error satisfying

𝑅𝑒𝑙 =

|||| ‖𝑥‖6⋅‖𝐴𝑥‖2
(𝑥,𝐴𝑥)3 − (𝑥,𝐴−1𝑥)

|||||(𝑥,𝐴−1𝑥)| = 𝑂
(
(𝜅 − 1)3

)
as 𝜅 → 1.

Let us develop another estimate coinciding with (𝑥, 𝐴−1𝑥) up to the second powers of 𝜀𝑗

�̄�
. It will be constructed as a suitably 

chosen combination of ‖𝑥‖4
(𝑥,𝐴𝑥) and (𝑥,𝐴𝑥)3‖𝐴𝑥‖4 .

We start from the expansion

‖𝑥‖4
(𝑥,𝐴𝑥)

= ‖𝑥‖4
‖𝑥‖2 𝑛∑

𝑗=1
𝜆𝑗𝛼

2
𝑗

= ‖𝑥‖2
𝑛∑

𝑗=1
(�̄�+ 𝜀𝑗 )𝛼2

𝑗

= ‖𝑥‖2
�̄�+

𝑛∑
𝑗=1

𝜀𝑗𝛼
2
𝑗

= ‖𝑥‖2
�̄�

(
1 +

𝑛∑
𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗

)−1

= ‖𝑥‖2
�̄�

⎡⎢⎢⎣1 −
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗 +

(
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗

)2

+𝑅2

(
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗

)⎤⎥⎥⎦ .

Since

||||||𝑅2

(
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗

)|||||| ≤
||||||||||

𝑛∑
𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗

1 −
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗

||||||||||

3

≤

||||||||||

𝑛∑
𝑗=1

(𝜅 − 1)𝛼2
𝑗

1 −
𝑛∑

𝑗=1
(1 − 𝜅)𝛼2

𝑗

||||||||||

3

=
|||| 𝜅 − 1
1 − (𝜅 − 1)

||||3 = ||||𝜅 − 1
2 − 𝜅

||||3 ,

we have

‖𝑥‖4
(𝑥,𝐴𝑥)

= ‖𝑥‖2
�̄�

⎡⎢⎢⎣1 −
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗 +

(
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗

)2

+𝑂
(
(𝜅 − 1)3

)⎤⎥⎥⎦ (7)
4

as 𝜅 → 1.
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Similarly, the expansion

(𝑥,𝐴𝑥)3‖𝐴𝑥‖4 =

(‖𝑥‖2 𝑛∑
𝑗=1

𝜆𝑗𝛼
2
𝑗

)3

(‖𝑥‖2 𝑛∑
𝑗=1

𝜆2
𝑗
𝛼2

𝑗

)2 = ‖𝑥‖2
(

𝑛∑
𝑗=1

(�̄�+ 𝜀𝑗 )𝛼2
𝑗

)3

(
𝑛∑

𝑗=1
(�̄�+ 𝜀𝑗 )2𝛼2

𝑗

)2

= ‖𝑥‖2
�̄�

⋅

(
𝑛∑

𝑗=1

(
1 + 𝜀𝑗

�̄�

)
𝛼2

𝑗

)3

(
𝑛∑

𝑗=1

(
1 + 𝜀𝑗

�̄�

)2
𝛼2

𝑗

)2 = ‖𝑥‖2
�̄�

⋅

(
1 +

𝑛∑
𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗

)3

(
1 + 2

𝑛∑
𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗
+

𝑛∑
𝑗=1

𝜀2
𝑗

�̄�2
𝛼2

𝑗

)2

leads to

(𝑥,𝐴𝑥)3‖𝐴𝑥‖4 = ‖𝑥‖2
�̄�

⋅
⎡⎢⎢⎣1 −

𝑛∑
𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗 + 3

(
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗

)2

− 2
𝑛∑

𝑗=1

𝜀2
𝑗

�̄�2
𝛼2

𝑗 +𝑂
(
(𝜅 − 1)3

)⎤⎥⎥⎦ . (8)

A suitable combination of expressions (7) and (8) gives

3
2
⋅

‖𝑥‖4
(𝑥,𝐴𝑥)

− 1
2
⋅
(𝑥,𝐴𝑥)3‖𝐴𝑥‖4

= 3
2
⋅
‖𝑥‖2

�̄�

⎡⎢⎢⎣1 −
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗 +

(
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗

)2

+𝑂
(
(𝜅 − 1)3

)⎤⎥⎥⎦
− 1

2
⋅
‖𝑥‖2

�̄�

⎡⎢⎢⎣1 −
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗 + 3

(
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗

)2

− 2
𝑛∑

𝑗=1

𝜀2
𝑗

�̄�2
𝛼2

𝑗 +𝑂
(
(𝜅 − 1)3

)⎤⎥⎥⎦
= ‖𝑥‖2

�̄�

[
1 −

𝑛∑
𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗 +
𝑛∑

𝑗=1

𝜀2
𝑗

�̄�2
𝛼2

𝑗 +𝑂
(
(𝜅 − 1)3

)]
.

Comparing this result with (3), we conclude that

3
2
⋅

‖𝑥‖4
(𝑥,𝐴𝑥)

− 1
2
⋅
(𝑥,𝐴𝑥)3‖𝐴𝑥‖4 = (𝑥,𝐴−1𝑥) + ‖𝑥‖2

�̄�
𝑂
(
(𝜅 − 1)3

)
as 𝜅 → 1. A more precise calculation gives the following formula, which is close to the result obtained in equation (5):

3
2 ⋅

‖𝑥‖4
(𝑥,𝐴𝑥) −

1
2 ⋅

(𝑥,𝐴𝑥)3‖𝐴𝑥‖4
(𝑥,𝐴−1𝑥)

=1 + 2

(
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗

)3

− 3
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗 ⋅
𝑛∑

𝑗=1

𝜀2
𝑗

�̄�2
𝛼2

𝑗 + 𝑟2 +𝑂
(
(𝜅 − 1)4

)
=1 +𝑂

(
(𝜅 − 1)3

)
. (9)

Therefore, the estimate

(𝑥,𝐴−1𝑥) ≈ 3
2
⋅

‖𝑥‖4
(𝑥,𝐴𝑥)

− 1
2
⋅
(𝑥,𝐴𝑥)3‖𝐴𝑥‖4 (10)

has the relative error satisfying

𝑅𝑒𝑙 =

|||| 32 ⋅ ‖𝑥‖4
(𝑥,𝐴𝑥) −

1
2 ⋅

(𝑥,𝐴𝑥)3‖𝐴𝑥‖4 − (𝑥,𝐴−1𝑥)
|||||(𝑥,𝐴−1𝑥)| = 𝑂

(
(𝜅 − 1)3

)
.

Observe that both estimates (6) and (10) derived above have the relative error 𝑂
(
(𝜅 − 1)3

)
as 𝜅 → 1. Consequently, they can be 

combined as follows, generating a parametric family of estimates

−1 ‖𝑥‖6 ⋅ ‖𝐴𝑥‖2 (
3 ‖𝑥‖4 1 (𝑥,𝐴𝑥)3

)

5

(𝑥,𝐴 𝑥) ≈ (1 − 𝑝) ⋅
(𝑥,𝐴𝑥)3

+ 𝑝 ⋅
2
⋅
(𝑥,𝐴𝑥)

−
2
⋅ ‖𝐴𝑥‖4 (11)
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Table 1

Formulae of second-order estimates.

est_2(−1) (𝑥,𝐴−1𝑥) ≈ 2 ⋅ ‖𝑥‖6 ⋅‖𝐴𝑥‖2
(𝑥,𝐴𝑥)3

− 3
2
⋅ ‖𝑥‖4
(𝑥,𝐴𝑥)

+ 1
2
⋅ (𝑥,𝐴𝑥)3‖𝐴𝑥‖4

est_2(0) (𝑥,𝐴−1𝑥) ≈ ‖𝑥‖6 ⋅‖𝐴𝑥‖2
(𝑥,𝐴𝑥)3

est_2( 1
2
) (𝑥,𝐴−1𝑥) ≈ 1

2
⋅ ‖𝑥‖6 ⋅‖𝐴𝑥‖2

(𝑥,𝐴𝑥)3
+ 3

4
⋅ ‖𝑥‖4
(𝑥,𝐴𝑥)

− 1
4
⋅ (𝑥,𝐴𝑥)3‖𝐴𝑥‖4

est_2(1) (𝑥,𝐴−1𝑥) ≈ 3
2
⋅ ‖𝑥‖4
(𝑥,𝐴𝑥)

− 1
2
⋅ (𝑥,𝐴𝑥)3‖𝐴𝑥‖4

est_2(2) (𝑥,𝐴−1𝑥) ≈ − ‖𝑥‖6 ⋅‖𝐴𝑥‖2
(𝑥,𝐴𝑥)3

+ 3 ⋅ ‖𝑥‖4
(𝑥,𝐴𝑥)

− (𝑥,𝐴𝑥)3‖𝐴𝑥‖4

with a parameter 𝑝 ∈ℝ such that all those estimates have the relative error of the same order

Rel =

||||(1 − 𝑝) ⋅ ‖𝑥‖6⋅‖𝐴𝑥‖2
(𝑥,𝐴𝑥)3 + 𝑝 ⋅

(
3
2 ⋅

‖𝑥‖4
(𝑥,𝐴𝑥) −

1
2 ⋅

(𝑥,𝐴𝑥)3‖𝐴𝑥‖4
)
− (𝑥,𝐴−1𝑥)

|||||(𝑥,𝐴−1𝑥)| = 𝑂
(
(𝜅 − 1)3

)
.

In particular, the choice 𝑝 = 0 gives the estimate (6), and the choice 𝑝 = 1 corresponds to the estimate (10). Since for each 𝑝, these 
estimates coincide with the exact value of (𝑥, 𝐴−1𝑥) up to the 𝑂((𝜅 − 1)2)-terms, we will denote these estimates as est_2(𝑝).

Table 1 expresses some of the estimates that we can build.

2.2. Estimates of (𝑥, 𝐴−1𝑥) of the 3rd order

A detailed calculation shows that the estimates (11) satisfy

(1 − 𝑝) ⋅ ‖𝑥‖6⋅‖𝐴𝑥‖2
(𝑥,𝐴𝑥)3 + 𝑝 ⋅

(
3
2 ⋅

‖𝑥‖4
(𝑥,𝐴𝑥) −

1
2 ⋅

(𝑥,𝐴𝑥)3‖𝐴𝑥‖4
)
− (𝑥,𝐴−1𝑥)

(𝑥,𝐴−1𝑥)

=1 + 2

(
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗

)3

− 3
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗 ⋅
𝑛∑

𝑗=1

𝜀2
𝑗

�̄�2
𝛼2

𝑗 +
𝑛∑

𝑗=1

𝜀3
𝑗

�̄�3
𝛼2

𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑂
(
(𝜅−1)3

)
+𝑂

(
(𝜅 − 1)4

)
.

(12)

The goal of this section is to amend the estimates (11) with the view of eliminating the error terms 𝑂
(
(𝜅 − 1)3

)
. In this way, we will 

find a family of estimates of (𝑥, 𝐴−1𝑥) coinciding with (𝑥, 𝐴−1𝑥) up to the terms of order (𝜅 − 1)3.

Let us begin from expanding (𝑥, 𝐴−1𝑥) up to the 3rd order terms:

(𝑥,𝐴−1𝑥) = ‖𝑥‖2 𝑛∑
𝑗=1

𝜆−1𝑗 𝛼2
𝑗 =

‖𝑥‖2
�̄�

𝑛∑
𝑗=1

(
1 +

𝜀𝑗

�̄�

)−1
𝛼2

𝑗

= ‖𝑥‖2
�̄�

[
1 −

𝑛∑
𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗 +
𝑛∑

𝑗=1

𝜀2
𝑗

�̄�2
𝛼2

𝑗 −
𝑛∑

𝑗=1

𝜀3
𝑗

�̄�3
𝛼2

𝑗 +
𝑛∑

𝑗=1
𝑅3

(
𝜀𝑗

�̄�

)
𝛼2

𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟3

]
.

Using the Lagrange form of the remainder, we easily obtain

|𝑟3| ≤ 𝑛∑
𝑗=1

||||||
𝜀𝑗

�̄�

1 − 𝜀𝑗

�̄�

||||||
4

𝛼2
𝑗 ≤

𝑛∑
𝑗=1

|||| 𝜅 − 1
1 − (𝜅 − 1)

||||4 𝛼2
𝑗 =

||||𝜅 − 1
2 − 𝜅

||||4 = 𝑂
(
(𝜅 − 1)4

)
as 𝜅 → 1. Now let us focus on the quantity ‖𝑥‖4(𝐴𝑥,𝐴2𝑥)‖𝐴𝑥‖4 . (As we will show below, combining (11) with this quantity allows to achieve 
a 3rd order precision.) Performing an expansion in the same manner as in the previous section, one gets

‖𝑥‖4(𝐴𝑥,𝐴2𝑥)‖𝐴𝑥‖4
(𝑥,𝐴−1𝑥)

= 1 + 4

(
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗

)3

− 6
𝑛∑

𝑗=1

𝜀𝑗

�̄�
𝛼2

𝑗 ⋅
𝑛∑

𝑗=1

𝜀2
𝑗

�̄�2
𝛼2

𝑗 + 2
𝑛∑

𝑗=1

𝜀3
𝑗

�̄�3
𝛼2

𝑗

+𝑂
(
(𝜅 − 1)4

)
as 𝜅 → 1. (13)
6

Comparing (13) with (11), we observe that
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Table 2

Formulae of third-order estimates.

est_3(−1) (𝑥,𝐴−1𝑥) ≈ 4 ⋅ ‖𝑥‖6 ⋅‖𝐴𝑥‖2
(𝑥,𝐴𝑥)3

− 3 ⋅ ‖𝑥‖4
(𝑥,𝐴𝑥)

+ (𝑥,𝐴𝑥)3‖𝐴𝑥‖4 − ‖𝑥‖4 (𝐴𝑥,𝐴2𝑥)‖𝐴𝑥‖4
est_3(0) (𝑥,𝐴−1𝑥) ≈ 2 ⋅ ‖𝑥‖6 ⋅‖𝐴𝑥‖2

(𝑥,𝐴𝑥)3
− ‖𝑥‖4 (𝐴𝑥,𝐴2𝑥)‖𝐴𝑥‖4

est_3( 1
2
) (𝑥,𝐴−1𝑥) ≈ ‖𝑥‖6 ⋅‖𝐴𝑥‖2

(𝑥,𝐴𝑥)3
+ 3

2
⋅ ‖𝑥‖4
(𝑥,𝐴𝑥)

− 1
2
⋅ (𝑥,𝐴𝑥)3‖𝐴𝑥‖4 − ‖𝑥‖4 (𝐴𝑥,𝐴2𝑥)‖𝐴𝑥‖4

est_3(1) (𝑥,𝐴−1𝑥) ≈ 3 ⋅ ‖𝑥‖4
(𝑥,𝐴𝑥)

− (𝑥,𝐴𝑥)3‖𝐴𝑥‖4 − ‖𝑥‖4 (𝐴𝑥,𝐴2𝑥)‖𝐴𝑥‖4
est_3(2) (𝑥,𝐴−1𝑥) ≈ −2 ⋅ ‖𝑥‖6 ⋅‖𝐴𝑥‖2

(𝑥,𝐴𝑥)3
+ 6 ⋅ ‖𝑥‖4

(𝑥,𝐴𝑥)
− 2 ⋅ (𝑥,𝐴𝑥)3‖𝐴𝑥‖4 − ‖𝑥‖4 (𝐴𝑥,𝐴2𝑥)‖𝐴𝑥‖4

2 ⋅
[
(1 − 𝑝) ⋅ ‖𝑥‖6⋅‖𝐴𝑥‖2

(𝑥,𝐴𝑥)3 + 𝑝 ⋅
(
3
2 ⋅

‖𝑥‖4
(𝑥,𝐴𝑥) −

1
2 ⋅

(𝑥,𝐴𝑥)3‖𝐴𝑥‖4
)]

− ‖𝑥‖4(𝐴𝑥,𝐴2𝑥)‖𝐴𝑥‖4
(𝑥,𝐴−1𝑥)

=1 +𝑂
(
(𝜅 − 1)4

)
.

Therefore,

2
[
(1 − 𝑝)‖𝑥‖6 ⋅ ‖𝐴𝑥‖2

(𝑥,𝐴𝑥)3
+ 𝑝

(
3
2
⋅

‖𝑥‖4
(𝑥,𝐴𝑥)

− 1
2
⋅
(𝑥,𝐴𝑥)3‖𝐴𝑥‖4

)]
− ‖𝑥‖4(𝐴𝑥,𝐴2𝑥)‖𝐴𝑥‖4

= (𝑥,𝐴−1𝑥) ⋅
[
1 +𝑂

(
(𝜅 − 1)4

)]
as 𝜅 → 1. Consequently, for each 𝑝 ∈ℝ, the estimate

(𝑥,𝐴−1𝑥) ≈ 2(1 − 𝑝) ⋅ ‖𝑥‖6 ⋅ ‖𝐴𝑥‖2
(𝑥,𝐴𝑥)3

+ 3𝑝 ⋅ ‖𝑥‖4
(𝑥,𝐴𝑥)

− 𝑝 ⋅
(𝑥,𝐴𝑥)3‖𝐴𝑥‖4 − ‖𝑥‖4(𝐴𝑥,𝐴2𝑥)‖𝐴𝑥‖4 (14)

has the relative error satisfying

Rel =

||||2(1 − 𝑝) ⋅ ‖𝑥‖6⋅‖𝐴𝑥‖2
(𝑥,𝐴𝑥)3 + 3𝑝 ⋅ ‖𝑥‖4

(𝑥,𝐴𝑥) − 𝑝 ⋅ (𝑥,𝐴𝑥)3‖𝐴𝑥‖4 − ‖𝑥‖4(𝐴𝑥,𝐴2𝑥)‖𝐴𝑥‖4 − (𝑥,𝐴−1𝑥)
|||||(𝑥,𝐴−1𝑥)| = 𝑂

(
(𝜅 − 1)4

)
.

Estimates (14) coincide for each 𝑝 with the exact value of (𝑥, 𝐴−1𝑥) up to the terms of order (𝜅 − 1)3. We will denote these estimates 
as est_3(𝑝).

Table 2 expresses some of the estimates that we can build.

3. Heuristic approach

Let 𝐴 ∈ℝ𝑛×𝑛 be a symmetric positive definite (spd) matrix and 𝑥 ∈ℝ𝑛, 𝑥 ≠ 0. From the Cauchy-Schwarz inequality [11], we get:

|(𝑥,𝐴𝑥)| ≤ ‖𝑥‖ ⋅ ‖𝐴𝑥‖⇒ (𝑥,𝐴𝑥)2 ≤ ‖𝑥‖2 ⋅ ‖𝐴𝑥‖2
⇒ (𝑥𝑇 𝐴𝑥)2 ≤ ‖𝑥‖2 ⋅ (𝑥𝑇 𝐴2𝑥)

⇒ 1 ≤ ‖𝑥‖2 ⋅ (𝑥𝑇 𝐴2𝑥)
(𝑥𝑇 𝐴𝑥)2

We introduce the following definition:

Definition 1. Let 𝐴 ∈ℝ𝑛×𝑛 be a symmetric positive definite matrix and 𝑥 ∈ℝ𝑛, 𝑥 ≠ 0. The quantity

𝜌(𝑥) = ‖𝑥‖2(𝑥𝑇 𝐴2𝑥)
(𝑥𝑇 𝐴𝑥)2

is called index of proximity.

The index of proximity can be regarded as an easily computable measure of closeness of 𝑥 to an eigenvector of 𝐴, in accordance 
with the following lemma:

Lemma 1. Let 𝐴 ∈ℝ𝑛×𝑛 be a positive definite matrix and 𝑥 ∈ℝ𝑛 be a nonzero vector. Then 𝜌(𝑥) ≥ 1, and furthermore 𝜌(𝑥) = 1 if and only 
if 𝑥 is an eigenvector of 𝐴.

Proof. The inequality 𝜌(𝑥) ≥ 1 follows from the Cauchy–Schwarz inequality. Furthermore, we have;‖𝑥‖2 ⋅ ‖𝐴𝑥‖2 𝑇
7

𝜌(𝑥) = 1 ⇔
(𝑥𝑇 𝐴𝑥)2

= 1 ⇔ |𝑥 𝐴𝑥| = ‖𝑥‖ ⋅ ‖𝐴𝑥‖.
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Table 3

Multi-parameter formulae of estimates.

hest_𝑚(1,0,0) (𝑥,𝐴−1𝑥) ≈ ‖𝑥‖4
𝑥𝑇 𝐴𝑥

𝜌(𝑥)0 = ‖𝑥‖4
𝑥𝑇 𝐴𝑥

hest_𝑚(1,0,−2) (𝑥,𝐴−1𝑥) ≈ ‖𝑥‖4
𝑥𝑇 𝐴𝑥

𝜌(𝑥)−2 = (𝑥,𝐴𝑥)3‖𝐴𝑥‖4
hest_𝑚(2,1, 1

2
,0,−1) (𝑥,𝐴−1𝑥) ≈ ‖𝑥‖4

𝑥𝑇 𝐴𝑥
𝜌(𝐴𝑥)

1
2 𝜌(𝑥)−1 = ‖𝑥‖2 ⋅‖𝐴2𝑥‖⋅(𝑥,𝐴𝑥)‖𝐴𝑥‖⋅(𝑥,𝐴3𝑥)

hest_𝑚(3,1, 1
2
,0,−1,1,−1) (𝑥,𝐴−1𝑥) ≈ ‖𝑥‖4

𝑥𝑇 𝐴𝑥
𝜌(𝐴𝑥)−

1
2 𝜌(𝑥)−1 = ‖𝑥‖2 ⋅(𝑥,𝐴𝑥)⋅(𝑥,𝐴3𝑥)‖𝐴2𝑥‖⋅‖𝐴𝑥‖3

hest_𝑚(4,1, 1
2
,0,−1,1,−1,0,2) (𝑥,𝐴−1𝑥) ≈ ‖𝑥‖4

𝑥𝑇 𝐴𝑥
𝜌(𝐴𝑥)−

1
2 𝜌(𝑥) = ‖𝑥‖6 ⋅‖𝐴𝑥‖⋅(𝑥,𝐴3𝑥)‖𝐴2𝑥‖⋅(𝑥,𝐴𝑥)3

By the Cauchy–Schwarz inequality, |𝑥𝑇 𝐴𝑥| = ‖𝑥‖ ⋅ ‖𝐴𝑥‖ if and only if the vectors 𝑥 and 𝐴𝑥 are linearly dependent, i.e., 𝑥 = 0 or 
𝐴𝑥 = 𝜆𝑥 for some 𝜆 ∈ℝ. But the case 𝑥 = 0 is excluded by assumption. Hence, 𝜌(𝑥) = 1 iff 𝑥 is an eigenvector of 𝐴. □

Furthermore, the index of proximity is characterized by the following properties:

Lemma 2. Let 𝐴 ∈ℝ𝑛×𝑛 be a positive definite matrix and 𝑥 ∈ℝ𝑛 be a nonzero vector. The following statements are equivalent:

• 𝜌(𝑥) = 1;

• 𝜌(𝐴− 1
2 𝑥) = 1;

• 𝜌(𝐴𝑘𝑥) = 1 for any 𝑘 ∈ℝ.

Proof. By Lemma 1, 𝜌(𝑥) = 1 iff 𝑥 is an eigenvector of 𝐴. This is further equivalent with 𝐴− 1
2 𝑥 and 𝐴𝑘𝑥 being eigenvectors of 𝐴, 

and so with 𝜌(𝐴− 1
2 𝑥) = 1 and 𝜌(𝐴𝑘𝑥) = 1 for any 𝑘 ∈ℝ. □

By the following proposition, a quadratic form can be expressed as a function of the index of proximity:

Proposition 1. Let 𝐴 ∈ℝ𝑛×𝑛 be an spd matrix and 𝑥 ∈ℝ𝑛, 𝑥 ≠ 0. It holds that

(𝑥,𝐴−1𝑥) = ‖𝑥‖4
𝑥𝑇 𝐴𝑥

𝜌(𝐴− 1
2 𝑥)

Proof. From an explicit evaluation of 𝜌(𝐴− 1
2 𝑥), we get:

𝜌(𝐴− 1
2 𝑥) = ‖𝐴− 1

2 𝑥‖2 ⋅ ‖𝐴 1
2 𝑥‖2

((𝐴− 1
2 𝑥)𝑇 𝐴

1
2 𝑥)2

= ((𝐴− 1
2 𝑥)𝑇 𝐴− 1

2 𝑥)((𝐴
1
2 𝑥)𝑇 𝐴

1
2 𝑥)

(𝑥𝑇 𝑥)2
= (𝑥𝑇 𝐴−1𝑥)(𝑥𝑇 𝐴𝑥)‖𝑥‖4 □

Thus, by specifying an appropriate approximation of 𝜌(𝐴− 1
2 𝑥), it would be possible to derive an estimation formula of the 

quadratic form (𝑥, 𝐴−1𝑥).
Since the lowest value that the index of proximity can take is 𝜌(𝑥) = 1, we propose the following approximation scheme, which 

becomes exact for vectors and matrices having index of proximity equal to 1:

Approximation Scheme I

Let 𝐴 ∈ ℝ𝑛×𝑛 be an spd matrix and 𝑥 ∈ ℝ𝑛, 𝑥 ≠ 0. Let 𝑘1, … , 𝑘𝑙 non negative integers and 𝑝1, … , 𝑝𝑙 ∈ ℝ. The quantity 𝜌(𝐴− 1
2 𝑥)

can be approximated by the expression

𝜌(𝐴− 1
2 𝑥) ≈ 𝜌(𝐴𝑘1𝑥)𝑝1 ⋯𝜌(𝐴𝑘𝑙𝑥)𝑝𝑙

Since the integers 𝑘𝑖 and 𝑝𝑖 can be arbitrary selected, from the above scheme we can derive a multi parameter family of heuristic 
estimates which will be denoted as hest_𝑚(𝑙, 𝑘1, 𝑝1, … , 𝑘𝑚, 𝑝𝑚).

Table 3 expresses some of the estimates that we can build.

Remark 1. Since the approximation scheme I becomes exact when 𝜌(𝑥) = 1, the accuracy of the estimates hest_𝑚 will be satisfactory 
if the index of proximity of the selected vectors 𝑥 is close to 1. In section 4, we will examine if given data sets will have index of 
8

proximity close to 1 and thus the heuristic estimates will be appropriate for their process.
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Table 4

Single-parameter formulae of estimates.

hest_𝑠(0) (𝑥,𝐴−1𝑥) ≈ ‖𝑥‖6 ⋅‖𝐴𝑥‖2
(𝑥,𝐴𝑥)3

hest_𝑠(1) (𝑥,𝐴−1𝑥) ≈ ‖𝑥‖8 ⋅‖𝐴𝑥‖8
(𝑥,𝐴𝑥)6 ⋅(𝑥,𝐴3𝑥)

hest_𝑠(−1) (𝑥,𝐴−1𝑥) ≈ ‖𝑥‖4 ⋅(𝑥,𝐴3𝑥)‖𝐴𝑥‖4
hest_𝑠(2) (𝑥,𝐴−1𝑥) ≈ ‖𝑥‖10 ⋅‖𝐴𝑥‖14

(𝑥,𝐴𝑥)9 ⋅(𝑥,𝐴3𝑥)2

hest_𝑠(−2) (𝑥,𝐴−1𝑥) ≈ ‖𝑥‖2 ⋅(𝑥,𝐴𝑥)3 ⋅(𝑥,𝐴3𝑥)2‖𝐴𝑥‖10

Another approximation scheme can be derived on the basis of the previous one:

Approximation Scheme II

Let 𝐴 ∈ℝ𝑛×𝑛 be an spd matrix and 𝑥 ∈ℝ𝑛, 𝑥 ≠ 0. Let 𝜅 ∈ℤ. The quantity 𝜌(𝐴− 1
2 𝑥) can be approximated by the expression

𝜌(𝐴− 1
2 𝑥) ≈ 𝜌(𝑥)1+𝜅𝜌(𝐴

1
2 𝑥)−𝜅

According to the arbitrary selection of 𝜅, we can derive a single-parameter family of heuristic estimates which will be denoted as 
hest_𝑠(𝜅).

Table 4 shows some of the estimates that can be built. Notice that the estimate hest_𝑠(0) coincides with est_2(0), established in 
Section 2.1.

Finally, let us observe that the analytic estimates are related to the heuristic estimates, as shown in the following lemma.

Lemma 3. We have:

est_2(𝑝) = (1 − 𝑝) ⋅ hest_𝑠(0) + 3𝑝
2

⋅ hest_𝑚0 − 𝑝

2
⋅ hest_𝑚1 (15)

est_3(𝑝) = 2 ⋅ est_2(𝑝) − hest_𝑠(−1) (16)

4. Complexity and stability of the estimates

Let 𝐴 ∈ ℝ𝑛×𝑛 be an spd matrix and 𝑥 ∈ ℝ𝑛, 𝑥 ≠ 0. Then it holds (𝐴𝑥, 𝑦) = (𝑥, 𝐴𝑦). Using this property of spd matri-

ces, all the derived formulae of estimates can be reformed to minimize the required number of matrix vector products. Ta-

bles 5, 6 outline the modified formulae of estimates which were adapted for a more efficient computation. The estimates 
hest_𝑚0, hest_𝑚1, hest_𝑚2, hest_𝑚3, hest_𝑚4 denote the estimates of the multi-parameter family derived from the approximation scheme 
I.

4.1. Complexity

We notice that the dominant operations involved in the computation of the estimates are inner products (ip’s) and matrix vector 
products (mvp’s). Let 𝐴 ∈ℝ𝑛×𝑛 be an spd matrix and 𝑥 ∈ℝ𝑛. The computation of an ip requires (𝑛) flops, whereas the mvp requires 
(𝑛2) flops. We consider that multiplications and divisions between inner products, as well as square roots, cost (1) time. Also, 
we assume that the vector 𝑥 is not normalized when we count the required ip’s in every formula. Table 7 and Table 8 show the 
computational complexity for each estimator.

Remark 2. It can be seen from Tables 7 and 8 that the evaluation of the estimates is computationally very cheap. The maximum 
complexity of all the formulas is 2 mvp’s and 5 ip’s. This guarantees their fast computation.

4.2. Stability

4.2.1. Stability of the heuristic estimates

We present the error analysis of the computation

𝑓𝑙(hest_𝑚1) = 𝑓𝑙( (𝑥,𝐴𝑥)3

(𝐴𝑥,𝐴𝑥)2
)

We apply the backward error analysis approach as it was introduced by J. Wilkinson in [15], as well as the comprehension analysis 
in [16].

We adopt the following assumptions: In the inner product operation, the error will be equally splitted to the two vectors. In the 
9

matrix vector product operation, all the error will be accumulated to the matrix.
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Table 5

Modified formulae of analytic estimates.

ESTIMATES FORMULA

est_2(−1) 2 (𝑥,𝑥)3(𝐴𝑥,𝐴𝑥)
(𝑥,𝐴𝑥)3

− 3
2

(𝑥,𝑥)2

(𝑥,𝐴𝑥)
+ 1

2
(𝑥,𝐴𝑥)3

(𝐴𝑥,𝐴𝑥)2

est_2(0) (𝑥,𝑥)3(𝐴𝑥,𝐴𝑥)
(𝑥,𝐴𝑥)3

est_2( 1
2
) 1

2
(𝑥,𝑥)3(𝐴𝑥,𝐴𝑥)

(𝑥,𝐴𝑥)3
+ 3

4
(𝑥,𝑥)2

(𝑥,𝐴𝑥)
− 1

4
(𝑥,𝐴𝑥)3

(𝐴𝑥,𝐴𝑥)2

est_2(1) 3
2

(𝑥,𝑥)2

(𝑥,𝐴𝑥)
− 1

2
(𝑥,𝐴𝑥)3

(𝐴𝑥,𝐴𝑥)2

est_2(2) − (𝑥,𝑥)3(𝐴𝑥,𝐴𝑥)
(𝑥,𝐴𝑥)3

+ 3 (𝑥,𝑥)2

(𝑥,𝐴𝑥)
− (𝑥,𝐴𝑥)3

(𝐴𝑥,𝐴𝑥)2

− − − −−−

est_3(−1) 4 (𝑥,𝑥)3(𝐴𝑥,𝐴𝑥)
(𝑥,𝐴𝑥)3

− 3 (𝑥,𝑥)2

(𝑥,𝐴𝑥)
+ (𝑥,𝐴𝑥)3

(𝐴𝑥,𝐴𝑥)2
− (𝑥,𝑥)2(𝐴𝑥,𝐴2𝑥)

(𝐴𝑥,𝐴𝑥)2

est_3(0) 2 (𝑥,𝑥)3(𝐴𝑥,𝐴𝑥)
(𝑥,𝐴𝑥)3

− (𝑥,𝑥)2(𝐴𝑥,𝐴2𝑥)
(𝐴𝑥,𝐴𝑥)2

est_3( 1
2
) (𝑥,𝑥)3(𝐴𝑥,𝐴𝑥)

(𝑥,𝐴𝑥)3
+ 3

2
(𝑥,𝑥)2

(𝑥,𝐴𝑥)
− 1

2
(𝑥,𝐴𝑥)3

(𝐴𝑥,𝐴𝑥)2
− (𝑥,𝑥)2(𝐴𝑥,𝐴2𝑥)

(𝐴𝑥,𝐴𝑥)2

est_3(1) 3 (𝑥,𝑥)2

(𝑥,𝐴𝑥)
− (𝑥,𝐴𝑥)3

(𝐴𝑥,𝐴𝑥)2
− (𝑥,𝑥)2(𝐴𝑥,𝐴2𝑥)

(𝐴𝑥,𝐴𝑥)2

est_3(2) −2 (𝑥,𝑥)3(𝐴𝑥,𝐴𝑥)
(𝑥,𝐴𝑥)3

+ 6 (𝑥,𝑥)2

(𝑥,𝐴𝑥)
− 2 (𝑥,𝐴𝑥)3

(𝐴𝑥,𝐴𝑥)2
− (𝑥,𝑥)2(𝐴𝑥,𝐴2𝑥)

(𝐴𝑥,𝐴𝑥)2

Table 6

Modified formulae of heuristic estimates.

ESTIMATES FORMULA

hest_𝑚0 (𝑥,𝑥)2

(𝑥,𝐴𝑥)

hest_𝑚1 (𝑥,𝐴𝑥)3 ⋅ 1
(𝐴𝑥,𝐴𝑥)2

hest_𝑚2 (𝑥,𝑥)(𝑥,𝐴𝑥) ⋅
√

(𝐴2𝑥,𝐴2𝑥)
(𝐴𝑥,𝐴𝑥)

⋅ 1
(𝐴𝑥,𝐴2𝑥)

hest_𝑚3 (𝑥,𝑥)(𝑥,𝐴𝑥) ⋅ 1
(𝐴𝑥,𝐴𝑥)

√
(𝐴2𝑥,𝐴2𝑥)(𝐴𝑥,𝐴𝑥)

⋅ (𝐴𝑥,𝐴2𝑥)

hest_𝑚4 (𝑥,𝑥)3

(𝑥,𝐴𝑥)3
⋅
√

(𝐴𝑥,𝐴𝑥)
(𝐴2𝑥,𝐴2𝑥)

⋅ (𝐴𝑥,𝐴2𝑥)

− − − −−−

hest_𝑠(0) (𝑥,𝑥)3

(𝑥,𝐴𝑥)3
⋅ (𝐴𝑥,𝐴𝑥)

hest_𝑠(1) (𝑥,𝑥)4

(𝑥,𝐴𝑥)6
⋅ (𝐴𝑥,𝐴𝑥)4 ⋅ 1

(𝐴𝑥,𝐴2𝑥)

hest_𝑠(−1) (𝑥,𝑥)2 ⋅ 1
(𝐴𝑥,𝐴𝑥)2

⋅ (𝐴𝑥,𝐴2𝑥)

hest_𝑠(2) (𝑥,𝑥)5

(𝑥,𝐴𝑥)9
⋅ (𝐴𝑥,𝐴𝑥)7 ⋅ 1

(𝐴𝑥,𝐴2𝑥)2

hest_𝑠(−2) (𝑥,𝑥)(𝑥,𝐴𝑥)3 ⋅ 1
(𝐴𝑥,𝐴𝑥)5

⋅ (𝐴𝑥,𝐴2𝑥)2

Table 7

Computational complexity of analytic estimates for 𝑝 ∈
[0 ∶ 1

4
∶ 1].

ESTIMATES mvp’s ip’s COMPLEXITY

est_2(𝑝) 1 3 𝑛2 + 3𝑛+(1)

− − − −−− −−− −−−

est_3(𝑝) 2 4 2𝑛2 + 4𝑛+(1)
10
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Table 8

Computational complexity of heuristic estimates where 
𝑖1 = 0, 1, 𝑖2 = 2, 3, 4, and 𝑖3 = −2, 1, 2.

ESTIMATES mvp’s ip’s COMPLEXITY

hest_𝑚 𝑖1 1 2 𝑛2 + 2𝑛+(1)

hest_𝑚 𝑖2 2 5 2𝑛2 + 5𝑛+(1)

− − − −−− −−− −−−

hest_𝑠(0) 1 3 𝑛2 + 3𝑛+(1)

hest_𝑠(−1) 2 3 2𝑛2 + 3𝑛+(1)

hest_𝑠(𝑖3) 2 4 2𝑛2 + 4𝑛+(1)

We introduce two more notations. Let 𝑥 ∈ ℝ𝑛 be a vector. Then the symbol �̃�(𝑘) stands for a vector that was obtained from 𝑥
by 𝑘 floating point operations; in other words, �̃�(𝑘) has been burdened 𝑘 times with some error during floating point operations. 
Similarly, if 𝐴 ∈ℝ𝑛×𝑛 is a matrix, then �̃�(𝑘) stands for a matrix obtained by contaminating 𝐴 with round off error; the superscript (𝑘)
denotes the number of times that the matrix has been burdened with rounding error during the matrix vector product floating point 
operations.

Theorem 1 (Backward stability of hest_𝑚1). Let 𝐴 ∈ℝ𝑛×𝑛 be an spd matrix and 𝑥 ∈ℝ𝑛, 𝑥 ≠ 0. Then the heuristic estimate hest_𝑚1 computed 
using floating point arithmetic with round off error 𝑢1, satisfies

𝑓𝑙( (𝑥,𝐴𝑥)3

(𝐴𝑥,𝐴𝑥)2
) = (�̃�(1), �̃�(1)�̃�(1))3

(�̃�(1)�̃�(2), �̃�(1)�̃�(2))2

with the following error-bound characteristics:

• �̃�(1) = 𝑥(1 + 𝜖), |𝜖| ≤ 𝑛+1
2 𝑢1

• �̃�(2) = 𝑥(1 + 𝛿), |𝛿| ≤ 𝑛+3
2 𝑢1

• �̃�(1) = 𝐴 + 𝛿𝐴(1), ‖𝛿𝐴(1)‖∞ ≤ 𝑛𝑢1 ⋅ ‖𝐴‖∞
Proof. We have that:

𝑓𝑙( (𝑥,𝐴𝑥)3

(𝐴𝑥,𝐴𝑥)2
) = 𝑓𝑙( 𝑓𝑙((𝑥,𝐴𝑥)3)

𝑓𝑙((𝐴𝑥,𝐴𝑥)2)
)

= 𝑓𝑙((𝑥,𝐴𝑥)3)
𝑓𝑙((𝐴𝑥,𝐴𝑥)2)

⋅ (1 +𝐸4)

=
(𝑓𝑙((𝑥,𝐴𝑥)))3 ⋅ (1 +𝐸1)(1 +𝐸2)

(𝑓𝑙((𝐴𝑥,𝐴𝑥)))2 ⋅ (1 + Δ3)
⋅ (1 +𝐸4)

= (𝑓𝑙((𝑥,𝐴𝑥)))3

(𝑓𝑙((𝐴𝑥,𝐴𝑥)))2
⋅ (1 +𝐸1)(1 +𝐸2)

1
(1 + Δ3)

(1 +𝐸4)

where |𝐸1|, |𝐸2|, |Δ3|, |𝐸4| ≤ 𝑢1. Rewriting 1 +𝐸𝑖 =
1

1+Δ𝑖
with |Δ𝑖| ≤ 𝑢1, we get:

𝑓𝑙( (𝑥,𝐴𝑥)3

(𝐴𝑥,𝐴𝑥)2
) = (𝑓𝑙((𝑥,𝐴𝑥)))3

(𝑓𝑙((𝐴𝑥,𝐴𝑥)))2
⋅

1
(1 + Δ1)(1 + Δ2)(1 + Δ3)(1 + Δ4)

where:

• 𝑓𝑙((𝑥, 𝐴𝑥)) = 𝑓𝑙((𝑥, 𝑓𝑙(𝐴𝑥))) = 𝑓𝑙((𝑥, �̃�(1)𝑥)) = (�̃�(1), �̃�(1)�̃�(1))
• 𝑓𝑙((𝐴𝑥, 𝐴𝑥)) = 𝑓𝑙((𝑓𝑙(𝐴𝑥), 𝑓𝑙(𝐴𝑥))) = 𝑓𝑙((�̃�(1)𝑥, �̃�(1)𝑥)) = (�̃�(1)�̃�(1), �̃�(1)�̃�(1))

So:

𝑓𝑙( (𝑥,𝐴𝑥)3

(𝐴𝑥,𝐴𝑥)2
) = (�̃�(1), �̃�(1)�̃�(1))3

(�̃�(1)�̃�(1), �̃�(1)�̃�(1))2
⋅

1
(1 + Δ1)(1 + Δ2)(1 + Δ3)(1 + Δ4)

= (�̃�(1), �̃�(1)�̃�(1))3
11

(�̃�(1)�̃�(2), �̃�(1)�̃�(2))2
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Table 9

Estimation of a quadratic form for Heatflow ma-

trix.

𝑛 = 10000, 𝑢 = 0.2 𝑥 = 𝛿1 − 2𝛿2 + 𝛿20
𝜅 = 2.5986

exact value (𝑥,𝐴−1𝑥) = 3.1963

Analytic Relative Time

estimates error (sec.)

est_2(−1) 0.00331 0.07691

est_2(0) 0.00423 0.08288

est_2(1∕2) 0.00469 0.10753

est_2(1) 0.00515 0.09782

est_2(2) 0.00607 0.09505

est_3(−1) 0.00122 0.16973

est_3(0) 0.00062 0.16961

est_3(1∕2) 0.00154 0.16715

est_3(1) 0.00246 0.17344

est_3(2) 0.00430 0.16456

where:

• �̃�(1) = 𝑥(1 + 𝜖), |𝜖| ≤ 𝑛+1
2 𝑢1

• �̃�(2) = 𝑥(1 + 𝛿), |𝛿| ≤ 𝑛+3
2 𝑢1

• �̃�(1) = 𝐴 + 𝛿𝐴(1), ‖𝛿𝐴(1)‖∞ ≤ 𝑛𝑢1 ⋅ ‖𝐴‖∞
Since the relative errors Rel(�̃�(1)), Rel(�̃�(2)), Rel(�̃�(1)) are of order (𝑛), we conclude that hest_𝑚1 is backward stable. □

Remark 3. The error analysis of all the other heuristic estimates can be performed in a similar way and thus all of them are stable.

4.2.2. Stability of the analytic estimates

The analytic estimates est_2(𝑝) and est_3(𝑝) are related to the heuristic estimates by the equations (15) and (16). In view of the 
proven backward stability of heuristic estimates, we have: If the following conditions are satisfied, then the possibility of subtracting 
approximate equal terms in the algebraic expressions (15) and (16) is eliminated.

est_2(−1) stable ⇔ hest_𝑚0 ≉ 4
3

hest_𝑠(0)

∀0 ≤ 𝑝 ≤ 1 [est_2(𝑝) stable ⇔ hest_𝑚0 ≉ 1
3

hest_𝑚1]

est_2(2) stable ⇔ hest_𝑚0 ≉ 1
3
(hest_𝑠(0) + hest_𝑚1)

and

∀𝑝 ∈ℝ [est_3(𝑝) stable ⇔ (est_2(𝑝) stable) and (est_2(𝑝) ≉ 1
2

hest_𝑠(−1))]

The above conditions are realistic and hold for almost all the estimates. Thus, the stability of the analytic estimates can be 
guaranteed.

5. Numerical implementation

In this section, numerical experiments are presented. We will use the aforementioned methods for estimating quadratic forms, 
bilinear forms, and the matrix diagonal of various spd matrices which appear in applications, and compare the results in terms of 
accuracy and execution time. All computations were performed in JULIA [17] 64-bit on an Intel Core i5-1135G7 computer with 8 
GB RAM. The exact values reported in this section are those given by the function inv of JULIA.

Example 1 (The Heatflow matrix). Let us consider the Heatflow matrix. This matrix is symmetric, block tridiagonal (sparse) and 
comes from the discretization of the linear heat flow problem using the simplest implicit finite difference method. The coefficient 
matrix 𝐴 of the resulted linear system of equations is a 𝑚2 × 𝑚2 block tridiagonal matrix 𝐴 = tridiag(𝐶, 𝐷, 𝐶), where 𝐷 is a 𝑚 × 𝑚

tridiagonal matrix 𝐷 = tridiag(−𝑢, 1 + 4𝑢, −𝑢), 𝐶 = diag([−𝑢, −𝑢, … , −𝑢]), 𝑢 = Δ𝑡∕ℎ2, Δ𝑡 is the timestep, and ℎ is the spacing interval. 
The Heatflow matrix 𝐴 is symmetric positive definite for 𝑢 > 0. We tested this matrix for 𝑢 = 0.2. In Table 9 we see the results 
for estimating (𝑥, 𝐴−1𝑥), for 𝑥 = 𝛿1 − 2𝛿2 + 𝛿20, while Table 10 shows the results for approximating the same quadratic form for 
12

𝑥 = 𝛿256.
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Table 10

Estimation of a diagonal element for Heatflow 
matrix.

𝑛 = 10000, 𝑢 = 0.2 𝑥 = 𝛿256
𝜅 = 2.5986

exact value (𝑥,𝐴−1𝑥) = 0.5865

Analytic Relative Time

estimates error (sec.)

est_2(−1) 0.00278 0.09160

est_2(0) 0.00603 0.08726

est_2(1∕2) 0.00766 0.08865

est_2(1) 0.00928 0.08928

est_2(2) 0.01253 0.08793

est_3(−1) 0.00686 0.17081

est_3(0) 0.00036 0.17394

est_3(1∕2) 0.00289 0.17428

est_3(1) 0.00614 0.16158

est_3(2) 0.01264 0.16303

Table 11

Estimation of a quadratic form for KMS matrix.

𝑛 = 5000, 𝑟 = 0.2 𝑥 = 𝑟𝑎𝑛𝑑(5000)
𝜅 = 2.25

exact value (𝑥,𝐴−1𝑥) = 1290.47873

Analytic Relative Time

estimates error (sec.)

est_2(−1) 0.02071 0.01699

est_2(0) 0.02235 0.01748

est_2(1∕2) 0.02318 0.01614

est_2(1) 0.02400 0.01957

est_2(2) 0.02565 0.01816

est_3(−1) 0.00496 0.03949

est_3(0) 0.00826 0.04456

est_3(1∕2) 0.00991 0.03424

est_3(1) 0.01155 0.03722

est_3(2) 0.01485 0.03571

Example 2 (The Kac–Murdock–Szegö matrix). We consider the Kac-Murdock-Szegö (KMS) matrix 𝐴 = [𝑎𝑖𝑗 ] which is symmetric 
positive-definite and Toeplitz. The elements of this matrix are 𝑎𝑖𝑗 = 𝑟|𝑖−𝑗|, 0 < 𝑟 < 1. The matrix is important within the context 
of digital signal processing because it characterizes first-order stationary Markov random signals, which can be decorrelated via the 
Karhunen–Loéve Transform.

We test this matrix for 𝑟 = 0.2 and dimension 𝑛 = 3000, 5000. In Table 11 we see the relative error, as well as the execution times, 
that were obtained by the 𝑒𝑠𝑡 estimations of the quadratic form (𝑥, 𝐴−1𝑥) for random vector 𝑥 with entries in the interval (0, 1). 
Table 12 summarizes the relative errors, as well as the execution times, that were obtained by the ℎ𝑒𝑠𝑡 estimations of the bilinear 
form (𝑥, 𝐴−1𝑦) for random vectors 𝑥 and 𝑦 with entries in the interval (0, 1).

Example 3 (The covariance matrix). Let us consider a symmetric positive definite matrix 𝐴 = [𝑎𝑖𝑗 ], whose entries are computed via a 

decaying positive definite covariance function, i.e. 𝑎𝑖𝑖 = 1 + 𝑖𝑎 and 𝑎𝑖𝑗 =
1|𝑖− 𝑗|𝑏 for 𝑖 ≠ 𝑗, where 𝑎, 𝑏 ∈ℝ and 𝑏 ≥ 1. The elements of 

this matrix show a decaying behavior away from the main diagonal, which simulates the decreasing correlation of high dimensional 
data samples in covariance matrix analysis.

We consider simulations of covariance matrices 𝐴 = [𝑎𝑖𝑗 ] for 𝑎 = 1 and 𝑏 = 1. Tables 13 and 14 report the mean relative error and 
the execution time in seconds for the estimation of the whole diagonal of the matrix 𝐴−1 of dimension 𝑛 = 10000.

Example 4 (The Poisson matrix). Let us consider the Poisson matrix which is symmetric positive-definite, block tridiagonal (sparse) 
and arises from the five-point finite difference approximation of the Poisson equation in a unit square with an 𝑚 × 𝑚 mesh. The 
Poisson matrix is of the form 𝐴 = tridiag(−𝐼𝑚, 𝑇 , −𝐼𝑚), where each block 𝑇 = tridiag(−1, 4, −1) has dimension 𝑚. We test this matrix 
for 𝑚 = 100. In Table 15 we see the relative errors, as well as the execution times, that were obtained by the estimations of the 
quadratic form (𝑥, 𝐴−1𝑥) for vector 𝑥 =

∑10000
𝑖=1 (−1)𝑖𝛿𝑖.

Example 5 (Random matrix). In this example we generate a random spd matrix 𝐴 = 𝑄Λ𝑄𝑇 , by selecting random eigenvalues from 
13

the interval (0, 1] (in order to set a diagonal matrix Λ) and extracting an orthogonal matrix 𝑄 from the QR-analysis of a random 
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Table 12

Estimation of a bilinear form for KMS matrix.

𝑛 = 3000, 𝑟 = 0.2 𝑥, 𝑦 = 𝑟𝑎𝑛𝑑(3000)
𝜌(𝑥+ 𝑦)=1.02016, 𝜌(𝑥− 𝑦)=1.08303

𝜅 = 2.25
exact value (𝑥,𝐴−1𝑦) = 505.6259540

Heuristic Relative Time

estimates error (sec.)

hest_𝑚0 0.02296 0.01442

hest_𝑚1 0.03403 0.01417

hest_𝑚2 0.03127 0.03490

hest_𝑚3 0.02530 0.04508

hest_𝑚4 0.01580 0.04381

hest_𝑠(0) 0.01968 0.02342

hest_𝑠(1) 0.01091 0.03950

hest_𝑠(−1) 0.02837 0.04527

hest_𝑠(2) 0.00207 0.04194

hest_𝑠(−2) 0.03698 0.03760

Table 13

Analytic estimation of the whole diagonal for co-

variance matrices of order 10000.

𝑛 = 10000, (𝑎, 𝑏) = (1,1)
𝜅 = 7274.5915

Analytic Relative Time

estimates error (sec.)

est_2(−1) (10−5) 0.76354

est_2(0) (10−5) 1.22598

est_2(1∕2) (10−5) 0.73289

est_2(1) (10−5) 0.78936

est_2(2) (10−5) 0.77095

est_3(−1) (10−5) 21.2278

est_3(0) (10−5) 21.6131

est_3(1∕2) (10−5) 22.5864

est_3(1) 0.00013 21.7935

est_3(2) 0.00018 21.6341

Mean time 35.7707

of diag(inv(⋅))

Table 14

Heuristic estimation of the whole diagonal 
for covariance matrices of order 10000.

𝑛 = 10000, (𝑎, 𝑏) = (1,1)
𝜅 = 7274.5915

Heuristic Mean Relative Time

estimates Error (sec.)

hest_𝑚0 0.00011 0.00457

hest_𝑚1 0.00033 1.46202

hest_𝑚2 0.00133 54.6736

hest_𝑚3 0.00076 56.3275

hest_𝑚4 0.00643 55.3931

hest_𝑠(0) (10−5) 2.13158

hest_𝑠(1) (10−5) 31.1815

hest_𝑠(−1) 0.00014 26.6270

hest_𝑠(2) 0.00012 27.9058

hest_𝑠(−2) 0.00027 28.1999

Mean time 35.7707

of diag(inv(⋅))
14
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Table 15

Estimation of a quadratic form for Poisson ma-

trix.

𝑛 = 10000, 𝑥 = −𝛿1 + 𝛿2 −⋯+ 𝛿10000,

𝜌(𝑥) = 1.00245, 𝜅 = 4133.6429
exact value (𝑥,𝐴−1𝑥) = 2513.7515245

Heuristic Relative Time

estimates error (sec.)

hest_𝑚0 0.00547 0.06886

hest_𝑚1 0.01033 0.11449

hest_𝑚2 0.00634 0.20192

hest_𝑚3 0.00946 0.19586

hest_𝑚4 0.00460 0.18515

hest_𝑠(0) 0.00303 0.10505

hest_𝑠(1) 0.00302 0.21474

hest_𝑠(−1) 0.00305 0.19147

hest_𝑠(2) 0.00300 0.18929

hest_𝑠(−2) 0.00307 0.19829

Table 16

Analytic estimation of the whole diagonal for a 
random symmetric positive definite matrix of or-

der 3000.

𝑛 = 3000
𝜅 = 2341.50

Analytic Relative Time

estimates error (sec.)

est_2(−1) 0.61783 0.10575

est_2(0) 0.64796 0.08495

est_2(1∕2) 0.66303 0.11080

est_2(1) 0.67810 0.08748

est_2(2) 0.70823 0.10614

est_3(−1) 0.53299 0.75705

est_3(0) 0.59326 0.74724

est_3(1∕2) 0.62339 0.75358

est_3(1) 0.65352 0.73928

est_3(2) 0.71379 0.75002

Mean time 0.77821

of diag(inv(⋅))

Table 17

Heuristic estimation of the whole diagonal for a ran-

dom symmetric positive definite matrix of order 3000.

𝑛 = 3000
𝜅 = 2341.50

Heuristic Mean Relative Time

estimates Error (sec.)

hest_𝑚0 0.73577 0.00012

hest_𝑚1 0.85110 0.09751

hest_𝑚2 0.79509 1.22826

hest_𝑚3 0.80801 1.26786

hest_𝑚4 0.65925 1.30938

hest_𝑠(0) 0.64796 0.10991

hest_𝑠(1) 0.58317 0.66231

hest_𝑠(−1) 0.70267 0.65829

hest_𝑠(2) 0.50643 0.68983

hest_𝑠(−2) 0.74887 0.67497

Mean time 0.77821

of diag(inv(⋅))

real matrix. Tables 16 and 17 outline the mean relative error, as well as the execution time, for estimating the whole diagonal of a 
15

random spd matrix 𝐴 being in moderate condition.
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6. Conclusions

In this work we derived four parametric families of analytic and heuristic estimates for the approximation of the quadratic form 
𝑥𝑇 𝐴−1𝑥, where 𝐴 is a symmetric positive definite matrix of order 𝑛, and 𝑥 ∈ℝ𝑛. The proposed estimates are easily implemented and 
require only the computation of few mvp’s, therefore the whole diagonal of a matrix inverse can be heuristically estimated in a few 
seconds. A detailed error analysis of the proposed formulae of estimates is presented and establishes their stability. All the numerical 
results supported the basic idea of machine learning, i.e., to learn from the data [13]. Indeed, all the tested data sets indicated 
that they can be processed either analytically or heuristically in a fast and stable way, producing very satisfactory estimations of 
the required quadratic forms. It is fascinating that all the matrices tested so far and for various choices of vectors 𝑥, 𝑦, have the 
index of proximity close to one, which indicates that the heuristic estimates are ideal for a stable and fast approximation of related 
quadratic forms. Furthermore, even though the construction of estimates est_2 and est_3 employs the assumption that the matrix 𝐴
has a small condition number, numerical experiments show that the estimates work well for large matrices with a large condition 
number too. This is visible from Tables 14 and 15: the estimate hest_𝑠(0), which coincides with est_2(0), gives good results even if 𝜅
goes far beyond 1000. Further research concerning the extension of the heuristic approach for estimating other quantities useful in 
applications is in process.
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