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A model of set-theory in which every 
set of reals is Lebesgue measurable* 

By ROBERT M. SOLOVAY** 

We show that the existence of a non-Lebesgue measurable set cannot be 
proved in Zermelo-Frankel set theory (ZF) if use of the axiom of choice is 
disallowed. In fact, even adjoining an axiom DC to ZF, which allows 
countably many consecutive choices, does not create a theory strong enough 
to construct a non-measurable set. 

Let ZFC be Zermelo-Frankel set theory together with the axiom of 
choice. Let I be the statement: There is an inaccessible cardinal'. 

THEOREM 1. Suppose that there is a transitive s-model of ZFC + I. 
Then there is a transitive s-model of ZF in which the following propositions 
are valid. 

(1) The principle of dependent choice (= DC, cf. III. 2.7.) 
(2) Every set of reals is Lebesgue measurable (LM). 
(3) Every set of reals has the property of Baire.2 
(4) Every uncountable set of reals contains a perfect subset (P). 
(5) Let {Ax: x e R} be an indexed family of non-empty set of reals with 

index set the reals. Then there are Borel functions, h1, h2 mapping R into 
R such that 

(a) {x I h,(x) e Ax} has Lebesgue measure zero. 
(b) {x I h2(x) Ax} is of first category. 

Remarks. 1. It is known that the theory ZFC + I has a transitive 
s-model if ZF + DC + P does; cf. [10, pp. 213-214]. Thus the hypothesis of 
Theorem 1 (that ZFC + I has a transitive s-model) cannot be weakened. 
However it does seem likely that the existence of a transitive model of 
ZF + DC + LM is a consequence, in ZFC, of the existence of a transitive 

* The main results of this paper were proved in March-July, 1964, and were presented 
at the July meeting of the Association for Symbolic Logic at Bristol, England. 

** The author is a Sloan Foundation Fellow. During part of the period when this 
paper was prepared, he received support from NSF contract GP-8746. 

l In the presence of the axiom of choice, we identify cardinals with initial ordinals. 
A cardinal x is regular, if each order unbounded subset of x has power x. A cardinal x is 
inaccessible, if it is regular, uncountable, and for a' < a, 2W' < x. 

2 A set of reals A has the Baire property if there is an open set U such that 
(A - U) U (U - A) is of the first category. 
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2 ROBERT M. SOLOVAY 

model of ZFC. 
2. Our proofs use Cohen's forcing method. In the usual way (cf. 

[8, pp. 132-1331), they can be recast as finitistic relative consistency proofs. 
3. We take this opportunity to describe some recent work on the model 

of Theorem 1. Mathias has shown that the following Ramsey-like theorem 
holds in the model. Divide the set of all infinite subsets of w into two dis- 
joint pieces. Then there is an infinite subset A of w such that every infinite 
subset of A lies in the same piece as A. 

Levy and the author have shown that in this model every set of reals is 
the union of 8t Borel sets. This should be contrasted with the following 
consequence of DC and the axiom of determinateness (AD), due to Moscho- 
vakis: Every union of t, Borel sets is ?2. It follows that AD fails in the 
model. 

This result might seem to throw cold water on a conjecture of the author 
that a suitable large cardinal axiom will imply that AD holds in L[R]. 
Closer inspection shows that there is no conflict between the conjecture and 
this result. 

4. It is fairly easy to deduce parts (2) and (3) of Theorem 1 from part (5). 
Nevertheless, we have included our original proofs of (2) and (3) since they 
are much simpler and more natural than the proof of (5). (The ideas in our 
proof of (2) will be used in a forthcoming paper of the author to show that 
the existence of measurable cardinals implies that every ; set of reals is 
Lebesgue measurable.) 

5. Proposition (5) of Theorem 1 was suggested to the author by Mycielski. 
According to Mycielski, (5) implies that every subset of R3 has a newtonian 
capacity. The author is totally ignorant of the theory of capacities, so will 
simply pass on (slightly re-phrased) the relevant portion of Mycielski's letter 
in the hope that some knowledgeable reader may understand it. 

Let C be Choquet's paper, Theory of capacities, Annales de l'Institute 
de Fourier, 5 (1955), 131-292. Mycielski's remark is that using (5), we can 
establish 37.1 of C for arbitrary subsets A of R2. This statement generalized 
to the case A c X x Y where X is an arbitrary separable measure space 
implies capacitability of all sets with respect to the classical capacities inter- 
preted as in 49.3 and 49.4 of C. (In the application, X is the set of brownian 
trajectories with the Wiener measure, and Y = [0, oo).) 

6. The reader will find in [10] a detailed discussion of various forms of 
the axiom of choice whose failure follows from (1)-(4) of Theorem 1, e.g., the 
axiom of choice for families of two-element sets. 

We add a brief discussion on the Hahn-Banach theorem. Of course the 
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A MODEL OF SET-THEORY 3 

Hahn-Banach theorem for separable Banach spaces follows readily from DC. 
On the other hand, one can deduce from (3) of Theorem 1 that there is no 
finitely additive probability measure on the power set of o which vanishes 
on singletons. It follows that the Hahn-Banach theorem fails in the model of 
Theorem 1. 

Of course, the axiom of choice is true, and so there are non-measurable 
sets. It is natural to ask if one can explicitly describe a non-Lebesgue 
measurable set.' Our next theorem bears on this question. 

We say that a set of reals A is definable from a set x0 if there is a set- 
theoretical formula T(x, y) (having free only the variables x and y) such that 

A ={y C R: P(x0, y)} . 

Because of the familiar difficulties about the "undefinability of truth" it is 
not clear how to express the notion "definable" by a set-theoretical formula. 
However, Myhill and Scott [11] have shown that the notion "A is definable 
from some countable sequence of ordinals" is expressible by a set-theoretical 
formula. Thus we can formulate in set-theory the propositions referred to 
in the following theorem. 

THEOREM 2. Suppose that ZFC + I has a traensitive s-model. Then so 
does the theory ZFC + GCH together with analogs of (2) through (5) of 
Theorem 1. (We state the analog of (2): 

(2') Every set of reals definable from a countable sequence of ordinals 
is Lebesgue measurable.) 

Remark. Since a real can be coded into a countable sequence of zeros 
and ones, every set definable from a real is, ipso facto, definable from a 
countable sequence of ordinals. In particular, every projective set of reals is 
definable from a countable sequence of ordinals. 

McAloon has simplified the author's original proof of Theorems 1 and 2. 
(We present McAloon's version of the proof below.) As McAloon and the 
author independently noticed, McAloon's version of the proof allows one to 
prove the following 

THEOREM 3. Assume the hypotheses of Theorem 1. Then there is a 
transitive s-model of ZFC in which 28O = 82 and the analogs of (2)-(5) of 
Theorem 1 referred to in Theorem 2 are valid. 

Remarks. 1. It is clear from the proof (cf. III 3.9) that Theorem 3 
remains true if "2R? = 82" is replaced by "21? = PA" for a wide variety of 
reasonable A; e.g., A = 3, A = 8A2, etc. 

3 This question was suggested to the author by Milnor. 

This content downloaded from 128.135.12.127 on Thu, 26 Feb 2015 17:40:49 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


4 ROBERT M. SOLOVAY 

2. A natural question suggested by Theorem 3 is whether there are 
models of the sort described in Theorem 3 in which Martin's axiom holds. 
We can construct such models using a remark of Kunen but we need to take 
the large cardinal in the ground model weakly compact as well as strongly 
inaccessible. It seems likely that this large cardinal assumption can be 
appreciably weakened. 

Our paper is divided into three main sections. Section I begins with 
general remarks on the notion of forcing. I.1 gives a precise mathematical 
interpretation of the concept of "generic". (Cohen did not need such a 
definition; he simply constructed and studied one generic filter.) The advan- 
tage of having such a precise notion is shown in I.2, where we relate generic 
filters on various partially ordered sets; cf. especially Lemma 2.3 relating a 
generic filter on the product of two partially ordered sets with the filters on 
the factors. I.3 describes a model due to A. Levy [9], which is the model of 
our Theorem 2 and gives proofs of basic facts about this model (also due to 
Levy). In I.4, we prove an important lemma which allows us to enlarge the 
ground model of Levy's construction so as to absorb a specified real of the 
extension. 

Section II.1 contains foundational material about the relations between 
Borel sets of a transitive s-model OR and an extension 9A of DR. We show 
that there is a natural way to prolong the Borel sets of OR to sets of 9I which 
preserves most properties of the Borel set. II.2 defines and studies one of the 
main technical devices of the paper, the notion of a random real. (Roughly 
speaking a real is random if it avoids all the sets of measure zero that one 
can explicitly define. An alternative heuristic definition is that random 
reals are those reals whose binary expansions are obtained by tossing an 
honest coin infinitely many times.) 

Finally III puts the material of I and II together and proves Theorems 1 
through 3. 

We close this introduction by thanking various people who in one way 
or another materially helped us in this work. The original problem of showing 
ZF + LM consistent was suggested to the author by Paul Cohen. (And of 
course Cohen's idea of forcing [2] is the sine qua non of our proof.) We are 
grateful to Levy for sending us a preprint of his work on the model 01 (of 
Theorem 2) and for permission to incorporate proofs of his results into our 
paper. Ken McAloon made a vital simplification in our proof which reduced 
our original cumbersome verification of DC to a triviality. Finally, we are 
grateful to Hao Wang and the Rockefeller University for hospitality during- 
the year when this paper was finally written. 
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A MODEL OF SET-THEORY 5 

I. THE MODEL 

1. Generic filters 

1.1. We are going to review briefly the formalism of forcing in a form 
suitable for applications in this paper. Proofs will not be given for these 
results. The reader familiar with [8] and [1] should be able to reconstruct 
the proofs, cf. ? 1.10 for some discussion of the proofs. 

1.2. ZF is Zermelo-Frankel set theory. ZFC is ZF plus the axiom of 
choice. Let '3n be a transitive model of ZFC. We do not assume that Oi is 
countable, but we shall assume, for convenience, that OR is a set. 

Let U) be a non-empty partially ordered set lying in OlR. We suppose in 
addition that the partial order < on WP is reflexive, i.e., if x e $P, x < x. 
(We assume, of course, that the ordering < lies in OlR.) 

Two elements of CP, x and y, are compatible if (3z e C) (x < z and y < z). 
Otherwise, they are incompatible. 

A subset X of 9P is dense if 
(1) ifxeX, ye if, and x < y, then yeX; 
(2) if xe9P, there is a yeXwith x < y.4 

1.3. Let G be a subset of W. We say that G is an 911-generic filter' 
on 9P if: 

(1) If x, yeG, then there is a zeG, with x < z, and y < z. 
(2) If xeG, yeIP, and y < x, then yeG. 
(3) Let X c 9P, X e OR, and suppose that X is dense. Then X n G is 

non-void. 

1.4. Let G be an OR-generic filter on W. Then there is a transitive model 
911[G] of ZF with the following properties: 

(1) 9Oi C 911[G]; 
(2) G e Ol1[G]; 
(3) if OT is a transitive model of ZF such that Oe c Ad and G e 91 then 

0l1[G] f)1. 
It is clear that (1)-(3) characterize 911[G]. OR[G] has the following 

additional properties: 
(4) The axiom of choice holds in 911[G]. 
(5) Let a be an ordinal. Then a e 91R[G] if and only if a e Oil. 

1.5 We introduce a first order language 2 as follows: the predicates of 

4 Our conventions are such that if x _ y, y "gives more information" than x. 
5 Our original definition of generic was based on "complete sequences". The present 

approach is due to Levy [8]. 
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6 ROBERT M. SOLOVAY 

2 are e and a one-place predicate S. We interpret 2 in 911[G] as follows: e is 
interpreted in the obvious way; Sx holds in 911[G] if and only if x e 911. 

We can formulate new instances of the replacement axiom involving the 
predicate S. All these instances are valid in O9[G]. 

1.6. Let A e 911[G], with A c Oil. Then there is a model O9[A] of ZFC 
with the following properties: 

(1) OR c OR[A]. 
(2) A e 9RJA]. 
(3) If 91 is a transitive model of ZF, O9 c 91, and A e 91, then 9k1[A] c DI. 
It is clear that (1)-(3) uniquely characterize 91R[AJ, and that 9kR[A] c 'D[G]. 

If we interpret 2 in OR[A], by interpreting s in the obvious way and inter- 
preting S as before, then all the instances of the replacement axiom expres- 
sible in 2 hold in OR[A]. 

1.7. If (d is a relational system, and (D a sentence, we use the notation 

to mean: (D is true in Cf. 
There is a formula (D(v,, v2, v3) of 2 with the following properties: 

(1) O9[G] k (D(x, y, z) x e 91R, y C 9k1. 
(2) If O9[G] l= ((x, y, z) and OR[G] l= ((x, y, z'), then z = z'. 
(3) Let A c 9k, A e 9k[G]. Then 

9R[G] t (4(x, A, z) - z e 9R[A]. 

(4) Let A be as in (3), and let z e O9[A]. Then 

911[G] t= (D(x, A, z) o OR[A] t- (D(x, A, z) 

(5) 9k[A] = {z I (3x e 91)(9k[G] 1= ((x, A, z)}. 
Roughly speaking (P is constructed as follows. We can describe 911[A] as 

the set of denotations of terms of a certain ramified language 2,; if t is a 
term of 2*, and X is the collection of sets of 9k of rank ? rank (t), then we 
can "compute" the denotation of t from t, at, and A. Then (D(<t, i>, A, z) 
holds just in case z is the denotation of t. 

The existence of (P with the properties just stated has several important 
consequences: 

(a) Let A be as above. Let x e O9[A]. Then x is definable in 

<9111[A]; , S, A> 

from some element y of 9k. 
(b) The predicate "y e 9R[A]" is expressible in <91[G]; e, S> (by 

(3x)(P(x, A, y)). Thus we can lay our hands on 911[A] inside 911[G]. 
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A MODEL OF SET-THEORY 7 

1.8. We now make the following countability assumption on OR, 9J: 
there are only countably many subsets of 9 lying in OR. This has the follow- 
ing important consequence. Let p e J. Then there is an OlZ-generic filter G 
on J with peG. 

1.9. Forcing. Let DR, 9 be as in ? 1.8. We enlarge 2 to a language 2' 
as follows. If x e OR, we introduce a term x; we also have a term G. If G is 
a generic filter on P, we interpret 2' in OR[G] by letting x denote x, and 
letting G denote G. 

We can arrange matters so that each formula of 2' is (coded by) a set of 
OR, and all the usual syntactical properties relevant to 2' are expressible 
in OR. 

Let (D be a sentence of 2', and p e 9. We say that p forces (D if 

OR[G] I= ( 

whenever G is an OR-generic filter containing p. (Notation: p H- (P.) 
A fundamental fact about forcing is the connection between forcing and 

truth: If G is an OR-generic filter on JO and 

OR[G] F (D 

then (D is forced by some p e G. 
It follows that if p does not force (P, there is an extension p' of p such 

that p' forces m (D. 

We say that p decides (D if p v- (D or p H- m (D. (Notation: p I (D.) We 
write L-iz, if for every p e 9, p F- (D. 

Suppose now that (D(w, *., w,) is a formula of 2. Then the relation 

(1) p il <((Gx X.s.,So) 

is expressible in ORt; i.e., there is a formula T(x0, ..., x) such that (1) holds 
if and only if 

'R = t(p, x1, . n) 

1.10. We know of no proof of the results stated above which does not 
require preliminary indirect definitions of OR[G] and H-. For example, one 
can extend 2' to a ramified language 2", and define OR[G] for any G c 9 as 
the set of denotations of terms of 2"; cf. [8] for a representative special case. 
One defines an auxiliary forcing relation, say H-', by induction on some 
ordinal measure of the complexity of a sentence of 2". (For example, if 
p, q e P, we would have 

p H-' q e G 

if and only if q < p.) The correct forcing relation, p HF- (, is defined in terms 
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8 ROBERT M. SOLOVAY 

of i-' by p U- D if and only if p U-' -m -iD (" -' is the negation symbol). 
An alternative proof of these results can be given in terms of boolean 

valued models (cf. [12]). 
1.11. Recall that a cardinal Q is regular if each subset A c Q of 

cardinality less than Q has a sup less than Q. A cardinal Q is strongly 
inaccessible, if Q is regular, greater than 8,, and satisfies 

t < Q -2x < Q. 

(Here k ranges over infinite cardinals.) 
We shall need the following known result. 

LEMMA. Let OR and 9I be as in ? 1.8. Let Q e Oil be such that 
OR 1= "Q is strongly inaccessible, and the cardinality of IP is less than Q". 
Let G be an OR-generic filter on 9P. Then Q is strongly inaccessible in 

DR[G]. 
1.12. Collapsing a cardinal. Now let OR be a countable transitive model 

of ZFC. Let X be a non-zero ordinal of ODR. Let P, be the set of functions f 
whose domain is a finite subset of to and whose range is a subset of X. We 
partially order 9I by inclusion: f < g if and only if f c g. 

Let G be a generic filter on ?PA. Then UG is a function F: o -- X and F 
is surjective. It follows that X is countable in OR[G]; cf. the discussion of 
? 3.2 for proof of a related result. 

One can recover G from F as follows: 

G = {f e9I:fc F} . 

It follows that 'OR[G] = O1R[F]. 
We say that F: w -p X is a generic collapsing function (more precisely, 

an OR1-generic collapsing function), if F arises from a generic filter on PA in 
the manner just described. 

LEMMA. Let F: d -. X be an OR-generic collapsing map. Then there is 
an s c w, s e OR[F], with 

OR[F] = OR[s] J 

PROOF. We put 
s = {2n3m t F(n) ? F(m)} . 

Clearly s e ODR[F]. To complete the proof, we show that F Xe OR[s]. 
Put m - n if and only if F(m) = F(n). Clearly the relation - lies in 

DR[s]. Therefore so does the set A = W/o- of equivalence classes. We order 
A by [m] < [n] if and only if 2fl3* 0 s. Clearly F induces a map F' of <A, <> 
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A MODEL OF SET-THEORY 9 

onto <a, <> in an order preserving way. Thus <A, <> is well-ordered. 
Hence it is well-ordered in OR[s]. Let F": A--+ a' be an isomorphism of 
<A, <> with <a', <> in O'R[s]. (F" exists since 

(1) SR[sj is a model of ZFC, and 
(2) a theorem of ZFC asserts every well-ordered set is order isomorphic 

to an ordinal.) 
The map 

F"o (F')-' 

is clearly the identity map so F' e lt[s]. It follows that F e 'DR[s]. 

Remark. This lemma is the motivation for my paper [141. 

2. Some lemmas on genericity 

2.1. Throughout this section OR is a countable transitive model of ZFC. 
The following lemma is trivial but useful. 

LEMMA. Let 91p 92 be non-empty reflexive partially ordered sets tying 
in OR, and let P: 91 P92 be an order isomorphism lying in DR. If A c 9 
let 

T'Y(A) = {v(x): x e A} . 

Then for G c gu, G is an DR-generic filter on 91, if and only if TP(G) is an 
OR-generic filter on 92- Moreover, DR[GJ O=4P*(G)J 

2.2. Now let 91, 9?2 be reflexive partially ordered sets lying in DR. We 
suppose that 91, C 92, and that the order on 91 is the restriction of the order 
on 92. 

Definition. 91, is cofinal in 92 if for every X e 92 there is a y e 91 with 
; < ?Y. 

LEMMA. Let 91, 92 be non-empty reflexive partially ordered sets lying 
in DR. Suppose that 9, is coftnal in 92. Let G be an 'Dt-generic filter on 
932. Then Gn 91 is an Rt-generic filter on 91. The map P, given by 

NP(G) = G n SP1 

gives a bijection of the set of 'Dt-generic filters on 9P2 with the set of 'Rt- 
generic filters on 91. Moreover, 'DR[GJ = 9R[T(G)]. 

PROOF. Let G be a DRt-generic filter on 92. Then it is straightforward 
to verify that Gn 9 1 is an DR-generic filter on 91. To verify clause (1) of 
?1.3, let x, yeG n 91. Then there is a zeG with x < z, y < z. Since 9P1 is 
cofinal in 9i2 and G satisfies ? 1.3, (2), we can assume z e 9U,. For clause (3), 
note that if X is a dense subset of 91, 
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10 ROBERT M. SOLOVAY 

{y C09, I (3, c X)(x < y)} 

is dense in P1. Clause (2) is trivial to verify. 
Now suppose that G1 and G2 are distinct ORL-generic filters on 9'. We 

show that 

(1) T(G1) # T(G2) 

Let p C G1, p X G2. (If necessary, we interchange G1 and G2 to get such a p.) 
Let 

X= {q C P, I q > p or p and q are incompatible}. 

Then X lies in ORl and X is dense in P. Pick q C G2 n x. If q > p, we 
would have p C G2, contradicting our choice of p. Thus q is incompatible with 
p. Replacing q by an extension if necessary, we may also suppose q e W1. 
Thus q C G2 n P1, but q e G, n fI, since any two members of G1 have a common 
extension in G1, and p E G1. This proves (1) and shows that G is one-to-one. 

Let H be an OR-generic filter on P1. Put G = e E GP2 1 (3y C H)(x < y)}. 

We leave to the reader to verify that G is an OR-generic filter on PJ and that 
T(G)= H. This shows T is onto, and the lemma is proved. (The last 
sentence of the lemma is clear from our explicit description of t`.) 

2.3. We now consider the following situation: iP, and 92 are reflexive 
non-empty partially ordered sets lying in Oil. We define a partially ordered 
set 9P as follows: as a set, 

- =1I X J2, 

let <P,, P2>, <P., P'> be elements of 9@. Then 

<PI, P2> -< <PI, P2'> 

if and only if P, < p' and p2 < P' 
The following lemma characterizes the OR-generic filters on 9'. 

LEMMA. Let G be an OR-generic fitter on C. Then G = G1 x G2 where 
G1 is an OR-generic fitter on 91, and G2 is an OlR[GI]-generic fitter on IP2. 

Conversely, let G1 be an OR1-generic filter on JO1 and G2 an ORt[G1J-generic 
fitter on P2. Then G, x G2 is an OR1-generic fitter on WP. 

PROOF. Let G be an OR-generic filter on CJ. Put 

GI = {'uI: (38yGI2)(<X, y>eG)} 
G2 = e IP2: (3 y J,1)(<y, x> G)} 

Clearly, G c G1 x G2. Conversely, let <x, y> E G1 x G2. Pick x' C I2 and 
y' C P1 with <x, x'> and <y', y> C G. Let <z, z'> C G be a common extension of 
<x. x'> and <y', y>. Then 
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<x, y> ? <z, Z'> 

so <x, y> e G. This proves G = G, x G2 
We next verify that G, is an ORL-generic filter on $A. Clauses (1) and (2) 

of ? 1.3 are trivial to verify. We turn to clause (3). Let X c: 9, be dense in 

9C, 1with Xe Oil. Then X x PI is a dense subset of 9 lying in bil. Since G is 
OR-generic, G n x x Ad2 is non-empty; i.e., G, n x is non-empty. 

We now show that G, is an Oli[G,]-generic filter on 92. Again, ? 1.3 (1)-(2) 
is trivial to verify. Let X, e ORl[G,] be a dense subset of P2. By ? 1.9, there 
is a formula <>(x) of ?S' such that 

OUJ[Gl] I= $D(x) 

if and only if x X1. We use <>(x) to translate any assertion about X1 into 
a statement of A'; i.e., replace T(X) by 

(u)(0(it) ) T(U)) X 

Let p, be an element of G, which forces "(3! x)$D(x) and Vx($P(x)*x is a dense 
subset of P2)i 

Let 

X2 = {<p, q> C 9: either p is incompatible with p1 or p, < p and p iH q G X}. 

We claim X2 is a dense subset of P. 
Suppose first that <p, q> e X2 and <p, q> < <p', q'>. We must show 

<p', q'> e X2. This is trivial unless p1 < p < p'. If this is so, p' forces the 
following: 

(1) X1 is a dense subset of P2. 

(2) qeX1. 
(3) q < q'. 

Hence, p' forces q' e X, and so <p', q'> E X2. 

Next let <p, q> e WP. We show that <p, q> has an extension <p*, q*> lying 
in X2. If p is incompatible with p1, <p, q> itself lies in X,. So suppose that p 
and p, have the common extension p'. Then p' forces the following state- 
ments (since p' ? p1): 

(1) Xl is a dense subset of 02. 

(2) qG92. 
(3) (3x C $0?2)(q < x and x C X1). 

Hence there is a q* G 92, and a p* > p' such that 

p* q < q* and q* cX1," . 

It follows that <p*, q*> e X2. Clearly <p, q> < <p*, q*>. 
Thus X2 is dense. Since forcing is definable in 9R1 (? 1.9), X2 e DR. Since 
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12 ROBERT M. SOLOVAY 

G is OR-generic, there is <p*, q*> e G n X2. Now since p* and p, both lie in 
G1, they are compatible. Thus 

pi _< P* , 

and p* 1- q* E Xl. Since p* E G1, we have 

61{[G1] I= q* E X1 E 

This shows G2 n XI contains q*, and so is non-empty. Our proof that G2 is 

0T1[G1J-generic is complete. This proves the first half of the lemma. 
Now suppose that G1 is an OR-generic filter on 9P and G2 is an OVC[G11- 

generic filter on 92. Put G = GI x G2. We show G is an OR1-generic filter on 
P. As usual clauses (1) and (2) of ? 1.3 are trivial to verify. Now let X G OR 
be a dense subset of 9. We show that X n G is non-empty. 

Let X' = {q P2 1(3p e G1)(<p, q> G X)}. Clearly X' c 92, X' e OR[G1j. 
We claim X' is dense in 92. Clearly, if q e X', and q < q', then q' e X'. Next, 
let q G 92. We consider 

X =Up { 911 (3q' e=92)(q < q' and <p, q'> e X)}. 

One checks easily that X" is a dense subset of 91, lying in OR. Hence 
3p X G1 nX X". But then there is a q' G 92 with q < q' and <p, q'> E X; i.e., 
(3q' > q)(q' e X'). We have now verified that X' is dense in 92. 

Since G2 is OR[G1J-generic, there is a q G G2 n x'; i.e., there is a <p, q> 
lying in G1 x G2 n X.- This completes our verification that G1 x G2 is an 
OR-generic filter on 9. 

COROLLARY. Let G1 be an OR-generic filter on 91 and G, an R[G1-generic 
filter on 92. Then G1 is an OR[G21-generic fitter on 9SP. 

PROOF. By the lemma, G1 x G2 is an OR-generic filter on 91 x 92. By 
Lemma 2.1, G2 x G1 is an OR-generic filter on 92 x 9). By the lemma, G1 is 
an 9Th[G2J-generic filter on 91. 

2.4. Let ORT, 91, 92 be as in ? 2.3. We make the following additional 
assumption on 9) and 92: 9) and 92 have a minimal element (which we name 0) 
such that p c 9i - 0 < p). 

This assumption is quite harmless since if a reflexive partially ordered 
set 9 fails to satisfy it, we can simply add a new element 0 to 9 and decree 
that 0 < p, for all p C 9 U {O}. Since 9 is cofinal in 9 U {O}, Lemma 2.2 says 
that 9 and 9P U {O} are equivalent for all our purposes. 

LEMMA. Let P = 9, x P2. Let $D be a sentence of 2'. Let p = <p1, p2> 
be an element of PY. We suppose that 

p F- "OR[G1J t (a" . 
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A MODEL OF SET-THEORY 13 

(The sentence in quotes can be constructed by the techniques of ? 1.7.) Then 

<P19 0>iF- "tO[G1] = (DI' . 

PROOF. Suppose not. Then there is an element p' = <pg, p,> of 9P such 
that p, < p' and 

p' IF- "OR[Gl ( In . 

Select G' a generic filter on 9P with p' e G'. By Lemma 2.3, G' = GI x G, 
where GI is an OR-generic filter on 9,. Since p' e G', we have 

[G1 10 D . 

Pick an Oll[G'J-generic filter GI' on g2 with p2 e GI'. By Lemma 2.3, GI x GI' is 
OR-generic. By construction, p e GI x GI'. Thus, by our hypothesis on p, 

Ok[G1] k <D. 

This is absurd, since we know that OR[GJ] ( D P. This contradiction com- 
pletes the proof. 

2.5. LEMMA. Let O9, 9P1, 92 be as in ? 2.4. Let G = G1 x G2 be an 
OR-generic jilter on 9 P1 x 92. Let a c c lie in T[G1] n9 O[G2. Then 

PROOF. By ? 1.7, we can find a formula T(x, y, z) of 2, and elements 
x,, x2 of OR such that 

a= {n e w I Ot[GiJ t T(x, G.n)}, i= 1, 2. 

Hence there is a condition p = <p1, p2> of 91 x 912 which forces the following:. 

(a) (Vn e w)(OR[G1 I= P(x1, G, n) 4 , Or[G21 W P(X2, G, n)}. 

We claim that for all n, p decides OR[G11 W P(x1, G, n). Granting this, 

a = {n e w I p iF- "91t[G1J W P(X1, G, n I)"}, 
so a e Olt (since "forcing is expressible in the ground model"). 

Suppose then that p does not decide the statement, 

(?i) @ThJ[G1J k: P(x1, G, n), 
for some n e w. Let p', p" be extensions of p such that p' F- (,3) and p" 1 m (Is). 

We have, say, p' = <p.', p'> and p" = <p7, ps'>. Also let p = <P1, P2>. 
By Lemma 2.4, we have <p%, P2> 1- (p3). Since p" extends p, and p forces 

(a), we see that p" forces 

OrL[G2J 4 m(x2, G, n). 

Hence, by Lemma 2.4, <p1, p'> F> (y). 

Consider now <p%, p'>. As a common extension of p, <pt, P2> and <p1, p"'> 
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14 ROBERT M. SOLOVAY 

it forces (a), (/3), and (V). Since (a) contradicts "(,8) and (V)", we have a 
contradiction. Thus p does decide (/S), and the lemma is proved. 

One can in fact show that OR[GJ] n 0R[GJ] = OR. (Otherwise pick a 
counter-example a of minimal rank. We have a c D OR, and the proof of 
Lemma 2.5 adapts to show that a E OR.) 

3. Description of the model 

3.1. The model used to prove Theorem 2 is due to Azriel Levy. In this 
section, we describe the model and prove some of its elementary properties. 
The results of this section are due to Levy and are included here with his 
permission. 

Let OR be a countable transitive model of ZFC + "There is a strongly 
inaccessible cardinal". Let Q C OlR be strongly inaccessible in OR. 

3.2. Let X be an ordinal. Let 92 be the following set: f e 9Pl if 
(1) f is a function; 
(2) domain(f) is a finite subset of X) x c; 
(3) range(f) c:X; 
(4) f(<a, n>) < a whenever <a, n> e domain(f). 
We order 9'1 by c. Note that if OR c 91 are transitive models of ZF, and 

X Eco, (l ) = (9A) )= 9. 

LEMMA. Let G be an OR-generic fitter on 9'1. Let 0 < a < X. Define 
wox x a by 

fa ={<, />: {<<a, n>, />} e G} . 

Then fa is a surjective map of a) onto a. 

PROOF. Suppose first that <n, /8> c fib, and <n, /3'> E f,. Then 

{<<a, n>, />} U {<<a, n>, /'>} 

for some h E Cl. Since h is a function, / = -/'. This proves fa is a function. 
Since {h e 91 <a, n> e dom (h)} is dense (since a > 0), there is an h E G, 

h(<a, n>) = /, say. But then {<<a, n>, />} E G, by ? (1.3.2), so n E domain(fs). 
Thus domain(f^) w o). Now let / < a. Since the set 

{he C2 !(3n < w))(h<a, n>) = /} 

is dense, one sees similarly that /8 E range(fd). This proves the lemma. 

COROLLARY. Let G be an OR-generic fitter on 91. Then X < Farg. 

PROOF. If 0 < a < X, then there is a surjective map fa: o- a in OR[G] 
(by the lemma just proved). 

3.3. The model 01 used to prove Theorem 2 is obtained as follows. Let 
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A MODEL OF SET-THEORY 15 

G be an ?11-generic filter on 9?'. Then ?X = OR[G]. 
We are going to show that Q W ' We first prove the following lemma. 

LEMMA. Let 2 e O1i, 2 C tJ'Q Suppose that any two distinct elements 
'5? are incompatible. Then, in 91T, 2 has cardinality less than Q. In fact, 
there is a; < Q such that 2 c gP. 

PROOF. We work inside Mh. By Zorn's lemma we may assume that 2 is 
a maximal pairwise incompatible family of elements of 9fl. 

We define a sequence of ordinals {I, i < w}. Put co =. Suppose then 
that H has been defined, and ij < Q. Then since Q is inaccessible, jei has 
cardinality less than Q. 

Let h e 9?Pi. By the maximality of X, there is an fh e 2F with fh compatible 
with h. Since Q is regular and card (9pi) < Q, we can find dj, with 

it < j+i K Q 

and he 91i-fh e gti+i. 

Let a=- sup {et, i e w}. Then ?, < Q. We claim 2 c god. 
Suppose not. Let g e 2, g & 911-. Let g' be the restriction of g to h,,, x w. 

Then since domain (g) is finite, g' e 9n for some n. By construction, there is 
a g" e Pn+1 n 2 compatible with g'. But g" is not compatible with g (since 
both lie in 2 and g 2 Sits.) So there is an <a, n> e domain (g) n domain (g") with 

g(<a, n>) # g"(<a, n>) . 

Since <a, n> e domain(g"), a < $n+, < $,1. By the definition of g', 
g(<a, n>) = g'(<a, n>) # g"(<a, n>). But this contradicts the fact that g' and 
g" are compatible. 

So 2 c Sue.. But then the cardinality estimate of the lemma is clear. 

COROLLARY. 1 = Q. 

PROOF. In view of Corollary 3.2, we have to show that if fe OR[G], 
f: cow)Q, then f is not onto. But this follows in a known way (cf. [1, p. 132]) 
from the lemma. 

3.4. Let GI = G n 9g. By ? 2.3, GI is an OTR-generic filter on 9IP. We are 
going to prove the following lemma. 

LEMMA. Let f e 01 be a function such that 

f: C! -OR 

(OR is the class of ordinals). Then for some X< QK 

f f E s[G ch t 

PROOF. Let (D(x, y) be a formula of 2' such that 
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16 ROBERT M. SOLOVAY 

f = {<x, y>: KY I= (D(x, y)} 

Let p, e G force 

"{<x, y>: $(x, y)} is a function from w to OR". 
Let n e co. We say that p ? p0 decides the value of f(n) if for some 

ordinal X of On 

p i- $D(n, X). 

Since p extends p0, the ordinal X is uniquely determined by p and n. Since 

p0 e G, and OR' = ORk'D, for each n e co, there is a p e G which decides f(n). 

We work inside On. Let 

93n = {p e 9P): p > p0 and p decides f(n)} . 

Let ye be a maximal pairwise incompatible subfamily of (,,. By Lemma 3.3,. 

there is a e < Q such that, for all n e a, 

It follows that p0 e JO'. 

Claim. Let n e w. Then there is a p e GI such that p decides f(n). In 

fact, let X. c 9}) be the set of p such that 
(1) if p is compatible with po, p > pP; 

(2) If p > p0, then p decides f(n); 
(3) if p > po, then p ? q for some qE ye 

One can verify easily that if p e X., and p < p', then p' e X.. Let p e Q. 

Then either p is incompatible with po (and so p e X), or there is a Pt E 9n 

extending both p and p0. Since p1 > po, there is a P2 > p, which decides f(n). 

Thus p2 e n,,. By the maximality of TnY there is a q e ye with P2 compatible 

with q. Let p3 be a common extension of p2 and q. Then by construction, p3 

is an extension of p lying in X,. Thus X. is dense. Since X. clearly lies in. 

OR, and G is an DR-generic filter on 9Q, there is a p e G, with p e Xn. 
Now po e G, and any two elements of G are compatible. By clause (1) of 

the definition of X., p > po, By clause (3) of the definition of X., there is a 

q e n with q < p. Hence q e G, since p is. Since q e GI, and q decides f(n), 

our claim is clear. 
But now 

f = {<n, X>: (3p e Gl)(p IF- (?(n, a)} 
so that lemma is clear. 

COROLLARY 1. Let s e 01 be a subset of Cl. Then s e On[GI,for some <Q. 

COROLLARY 2. Let se 01 be a subset of w. Then Q is inaccessible in 
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A MODEL OF SET-THEORY 17 

OT[s]. The set A8 = it c co I t e 9R[sJ} is countable in 91. 

PROOF. By the lemma, we can pick e < Q, such that s e DR[GeJ. It 
follows that 

'D[s] c 'DR[GI] . 

By Lemma 1.11, Q is inaccessible in OR[GIJ. A fortiori, it is inaccessible in 
OTl[s]. Let a be the cardinal of A, in DR[s]. Then a < Q, since Q is inacces- 
sible in ORis]. By Corollary 3.3, a is countable in M. 

3.5. Symmetry. Let w be a permutation of oe lying in DR. Define 
wT*: $'Q g by 

wr*(h)(<a, n>) = h(<a, 7w(n))>) . 

Then w* is an automorphism of 9P- lying in OR. If G is an DR-generic filter 
on Q, so is r*[G], by Lemma 2.1. Clearly, 

DR[G] = DR[w*[G]1 . 

Let $D be a statement of 2', not involving G. We claim p IF- D if and only if 
wr*(p) 1F- (D. To see this, we construct the following chain of equivalent state- 
ments. 

(1) p !F- (. 

(2) For all DRC-generic filters G on 9Q which contain p, 

OR[G] J (D . 

Since (D does not contain G, and OR[G] = 9R[wr*(G)], (2) is equivalent to 
(3) For all DRC-generic filters G containing p, 

R[wr*(G)] ( . 

Now p e G if and only if 11*(p) e 11*(G). Moreover, as G ranges over the set of 
DR-generic filters on Q, so does r*(G). It follows that (3) is equivalent to 

(4) For all OR-generic filters G containing 11*(p) 

DR[G] t= (D 

But (4) just says that 11*(p) IF- (. 

LEMMA. Let (D be a sentence of 2' iwt containing G. Let 0 be the 
minimal element of Q. Then 0 decides O. 

PROOF. Otherwise there are p1, P2 E 9PQ, with p, F- (D, P2 A1 ( D. We can 
find a permutation w e OR such that 7r*(p1) has domain disjoint from P2. By 
our previous remark, wr*(p,) IF- (. But then r*(p1) must be incompatible with 
p2 since p2 F- m (D. This is absurd since wr*(p,) and p2 have disjoint domains. 

COROLLARY. Let a C Cl, a e 91. Suppose that there is a formula $D(x) 
of 2' not containing G such that a is the unique z such that 
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18 ROBERT M. SOLOVAY 

91 ~=( z 
Then acfRl. 

PROOF. There is a formula P(z) of 2', not containing G, such that 

a = {ne 9 = P-T(n)}. 

By the lemma, 

a = {n E I 0 IF- T(n)} 

Since "forcing is expressible in the ground model"; (cf. ? 1.9), this shows 
that acfRl. 

4. An important lemma 

4.1. This section is devoted to the proof of the following result. It is 
the key technical fact we need about 91. 

THEOREM. Let f: ow - OR, f e Ot. Then there is an Rt[f ]-generic filter 
G' on Q, such that 9i = 9R[fI[G'J. 

The effect of this theorem (which is the "important lemma" of the section 
title) is to give us excellent control on the extension 9/1fl[fJ. 

COROLLARY. Let s c w, s E M)l. Then there is an Dt[s]-generic filter G' 
on Q, such that 91 = Df[s][G'J. 

4.2. We begin with some easy lemmas. 

LEMMA 1. Let a be an ordinal of DR. Let 1 be the cardinal of or in 'DR. 
Let F: Ad - a be an DR-generic collapsing map. Then there is an DR-generic 
collapsing map G: GO -fS such that 

(1) Df[F] = R[G]J 

Conversely, let G: co -, be an DR-generic collapsing map. Then there is 
an 9)-generic collapsing map F: Ad - a such that (1) holds. 

PROOF. Let A: a -,8 be a bijection lying in DR. Let 9a, 9p be as in 
?1.12. Then * induces an order isomorphism of 91a with 9p lying in DiR. The 
lemma now follows from Lemma 2.1. 

LEMMA 2. Let a be an ordinal. Let F: wo a be a generic collapsing 
map. Define F1, F2: Ad - a by 

F1(n) = F(2n); F2(n) = F(2n + 1) . 

Then F1 is an DR-generic collapsing map, and F2 is an rt[FJ-generic 
colapsing map. 

Conversely let F1, F2: o a be respectively an DR-generic and a 7n[F1J- 
generic collapsing map. Then if we define F: Ad - a by 
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A MODEL OF SET-THEORY 19 

F(2n) = F1(n); F(2n + 1) = F2(n) 

then F is an OR-generic collapsing map. In either case, we have 

OR([F] = OR[F1, F21 . 

PROOF. Define an isomorphism 

*: 9a -- X 9( 

by *(h) = <h1, h2>, with h1(n) = h(2n), h2(n) = h(2n + 1). Let G be the 

OR-generic filter on 9), associated to F. By Lemma 2.1, +,*(G) is an OR-generic 

filter on 9, x 9S,. By Lemma 2.3, 

+*(G) = G, x G2 

with G1 an 9OR-generic filter on 95a, and G2 an OR[G1]-generic filter on 9)a. It 

is clear from the definition of * that 

UG1 = F1; UG2 =F2. 

Thus the first half of the lemma is clear. The second half is proved similarly. 

4.3. LEMMA. Let a be an ordinal > co of OR. Let G be an OR-generic 

filter on 911+1. Then there is an OR-generic collapsing function F: Ad - a 
such that OR[G] = OR[F]. Conversely, if F: GO >a is an OR-generic collapsing 

map, there is an OR-generic filter G on 9)p+1 with OR[G] = OR[F]. 

PROOF. We first prove the lemma under the additional assumption that 

,a is countable in OR1. We then show how to remove this assumption. 

Since a is countable in OR, there is a bijection A: w - (a + 1 - {0}) x w 
lying in OR, such that *(2n) = <a, n>. Let 9(n) be the first component of 

+(n). Thus :o a + 1- {0}, 9(2n) = a, all new. 

Let 9' be the following collection of functions: h e 9' if and only if domain(h) 

is a finite subset of c, range (h) c a, and h(n) < (n) for all n e domain(h). We 

order 9' by c. 
The map {h- hojr} is clearly an order isomorphism of 9)+' with 91'. 

Let 9)" be the following subset of 9': h e 9" if and only if h e 9' and 

(Vn e G)) (2n e domain (n) - 2n + 1 e domain (h)). 9" is clearly a cofinal subset 

of 9'. We are going to set up an isomorphism of 9" with 9ar, lying in OR. 

To describe this isomorphism, let 

S = {<7, 7, 73> 72 < -1 < a and y3 < a}. 

Let i': S a a be a map lying in ORl such that 

<si2a a 3> w 07<12 ? a.3) 

--is a bijection of -y, x ar with ar whenever 0 < ^i, < cr. 
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20 ROBERT M. SOLOVAY 

Define A": 9C" -- JO, as follows. A"(h) is defined at m E co if and only if 
h(2m) and h(2m + 1) are defined. In that case, 

A"(h)(m) = l'(9p(2m + 1), h(2m + 1), h(2m)) . 

A moments reflection shows that A" gives an isomorphism of CP" with Id. 

Under the assumption that a is countable in 9Th the lemma is now clear. 
Suppose, for example, that G is an 9DR-generic filter on Oja+'. By applying 
Lemma 2.1 and 2.2 we get a filter G' on P, such that 9R[G] = 9R[G'J. It 

suffices to take F = UG'. 
Now drop the assumption that a is countable in 9o. Let G be an 

OR-generic filter on 9a1. Writing c9-1' - Wc x Ct, we see that there is an 
OR-generic collapsing map F1: w - a and an 9R[Fl]-generic filter, G1, on 9` 
such that 

9R[G] = OR[Fl, G1l . 

We apply Lemma 4.2.2, to get collapsing maps F2, F3: w - a, generic over 

'DR and 9R1[F2] respectively, with 

'R[Fil = 'DR[F2][F3]. 

Again using the isomorphism 9pa+' =- X x JO, we can coalesce F3 and G, 
into an DlR[Fl]-generic filter on 9c+', G2. So 

9t[G] = 9t[FlJ[G2]J 

But a is countable in 'DR[F1J. By the special case of the lemma previously 

proved there is an DR[Fl]-generic collapsing map, F4: co -a with 

9T[G] = 9R[FlJ[G2] = 9l[Fl][F4] J 

But Lemma 4.2.2 allows us to coalesce F1 and F4 into a single generic 

collapsing map F, with 

9T[G] = 9R[Fil[F4] = 1TR[F] . 

To prove the converse, run the argument backward. 

4.4. The following lemma is the crucial step in the proof of Theorem 4.1. 

LEMMA. Let a e AR, a _ a). Let F1, F2: GO -a be collapsing maps 
generic over mR and 9R[F11 respectively. Let s C OR be a set of 9t[FIJ. 
Then there is a collapsing map F: Ad - a, generic over 9R[s] with 

9Rh[s1[F] = OR[F1, F2J . 

PROOF. We begin by describing a certain cofinal subset 9), of Pc, x 9Id. 
A pair <h1, h2> lies in 9), if and only if domain(h) = domain(h2) and domain(h) 
is a finite initial segment of the integers. If <hi, h2> - ?1, then we put 
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l(<h,, h2>) = domain(h,). Thus if x e 9,1, I(x) e co. Let G' be a generic filter on 
9, Then there is a pair of functions, F', F: co ) a, say, and 

GI = {<F'In,F, Ii>:nea)} . 

We fix a definition of s e OR[F1]. Thus X X s if and only if Rl[F1 ]= $D(X, F1), 
and $D is a formula involving only s, S, and terms denoting elements of en. 

By Lemma 2.3, F, and F2 determine a generic filter, G1, on pa x EPa. Let 
G be the associated filter on 9)1 given by Lemma 2.2: G = G1 n 9,1. 

Our next step is to define a certain subset ? of 91. Roughly speaking, 
? has the following motivation: The fact that 

S = {X I OR[Fil H I(X, E1)} 

gives a certain amount of information about G. This information is summed 
up in the fact that G c ?. 

Let T(x) be a formula involving only a, S, and terms denoting elements of 
OR and G such that Oii[G] I= T(X) if and only if OR[Fj] H $(X, F1). Then, if P is 
constructed in a reasonable manner, the following will be true (by Lemma 2.4): 

If <hl, h2> and <Kh, h3> e 91, then <h1, h,> H T(X) if and only if <h1, h3> iF P(X). 
We work in Olj[s]. Define a sequence of subsets of 9, {Aa}, by transfinite 

induction. 
(1) p e A, if either p u- P(X) and X X s (for some X e ORE) or p H m P(X) 

and X e s). 
(2) Let a = ,8 + 1. p E Aa if for some dense subset X of 9), lying in OR1, 

every extension of p in X is in A,. 
(3) Let a be a limit ordinal. Then Aa = U<a As. 
We note the following facts about {Ai}. 
(Al) If peA., andp < q, thenqeAca. 

(This is easily checked by induction on a.) 
(A2) If a < A, then A, c AA. 

(The crucial case is when 9 = a + 1. Take the dense set X to be 91 itself 
and use Al.) 

(A3) Let p = <h1, h2>, q = <h1, h3>, and suppose p, q X 9I, Then p e A,, if 
and only if q e A,. 

Since Ol1[s] is a model for ZF, there is an ordinal a such that A8 = Aa+,. 
We put 

We next list some properties of S. 
(?l) G C ?. 
Otherwise, there is an x E G such that x e As. Pick x, ,8 so that 2 is 
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minimal. Clearly , is not zero, since in 91t[F1, F2J, 

s = {x I 4(X)j . 

Also, ,8 is not a limit ordinal since for X a limit ordinal A; -U,<A;. Thus 
,8 = a + 1. Since x E Ac, there is a dense set X with each extension of x in 
X lying in A,, and X E 91R. Since G is 91t-generic, there is a y E G n x. Let 
z E G be a common extension of x and y. Then z E X, since y is; thus, z E Ai 
(since z extends x). But this contradicts the minimality of ,G. 

(?2) Let p E E. Let X be a dense subset of 9' lying in )1t. Then there 
is a p' E ? n X with p' extending p. 

Proof. Since p A,+1, there is a p' > p, with p'GeX, p'C A,; i.e., 

P, G i n x. 
(?3) Let p E E. Let q < p. Then q E ?. (This follows from (A2) since I 

is the complement of A,.) 
(?4) Let p G E. Then there is an 911-generic filter, G', on ??, such that 

p e G' and 
s = { 9R[G'J t X 

Proof. Since 9e is countable, we can enumerate the dense subsets of 9P, 
in a sequence: {XX, i E w}. Using (?2), we can construct an increasing sequence 
of elements of ?, {pn}, with p0 = p, and pn?, E Xn. Put G' = {x E W, I x < pit 
for some n}. Then G' has the desired properties. 

(?5) G is an OR[s]-generic filter on ?. 

Proof. Clauses (1) and (2) of ? 1.3 are clear. We turn to clause (3). Let 
X be a dense subset of ? lying in 9TC[s]. We must show that X n G # 0. 
We assume the contrary and get a contradiction. 

We fix a formula Ol(x, y) of 2It, not containing G, such that 1D, defines X 
from s in 9Rh[s] (i.e., D1(y, s) holds in 9R[s] if and only if y = X). We now form 
a sentence T1 of ?' such that for any generic filter G' on O, we have 9R1[G'] t TP 
if and only if 

(1) if s' ={ e OR I 9R1[G'] t T(X)} then s' is a set and there is a unique 
X' G 9R[s'J such that 

$1(X', s'). 

(2) X' is a dense subset of ?', where E' is the set obtained by applying 
our definition of I inside OR[s']. 

(3) X' nG' = 0. 
By our assumptions T1 holds in 9R[G]. Let p e G force T1P. By (?1), 

p E2. Since X is dense in ?, there is a q E X, with q > p. Let G' be an 
91iR-generic filter on SP, such that q G G' and s' -x G OR I Ol[G'] t = s. 
(G' exists by (?4).) Then with notations as in our description of 'F1, we have 
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?'- and X' = X (since E' and X' are defined in 1[4s'] by the definitions 
that yield ? and X in Jt[s], and s' = s). But q e G' n X'. Thus STJ is false in 
OR[G']. But this is absurd since q > p, and p F- P1. 

Let 9' be the following cofinal subset of 9,a: h e P' if and only if h e 9g and 
domain (h) is a finite initial segment of co. 

(?6) In O1[s], ? is isomorphic to 9'. 

Proof. We work inside 911s]. Recall that if <hl, h2> e 9J, l(<hl, h2>) = 
domain (hl). It follows from (A3) and (?2) that if p e ? and 1(p) = k, then 
{q e X I q ? p and 1(q) = k + 1}- Sp, has the same cardinality as a. Let *, 
be a bijection of Sp onto a. Let now p e ?, with 1(p) = n. We can find pi, 
o < i < n, with pi _ p, and l(pi) = i. Let X(p): n- ca be defined by X(p)(i) = 
*.j(pj+,). Then X is easily seen to be an isomorphism of I with 9'. 

We can now easily prove the lemma. Let X[G] be the image of G in @'. 
By (?5), (?6), and Lemma 2.1, 9R[G] = 9rt[s][G] = 9R[sJ[X[GJ1. Moreover, 
X[G] is an OR[s]-generic filter on 9'. Hence if we put 

F= UX[G]J 
then F is an DR[s]-generic collapsing map of co onto a. Since clearly, 
)1T[s][F] = 9R[s][X[G]I = [G] = OR[F1, F2], the lemma is proved. 

4.5. We can now easily prove Theorem 4.1. Let AJ be as in Theorem 4.1, 
and G a generic filter on 9lPQ such that 91 = OR[G]. Let f: co OR, fe AX. By 
Lemma 3.4, we have f E OR[GW], where GW = G n 9V and R < Q. We may as 
well suppose that o < ,8; put a = ,8 + 2. 

We have an obvious isomorphism 
J)Q - f)a X ORa 

Here iRa = {If e 9)Q | domain (f ) n a x wt) = 0}. Hence, by Lemma 2.3, 6A = 

9R1[GaJ[G,1, where Ga - Gn fJoa is ORT-generic and G1 is an R[G1-generic filter 
on Ra. 

We have 9ga = 9?+P X qP+1, up to canonical isomorphism. Hence by 
Lemma 4.2.1 and Lemma 4.3, there are generic collapsing maps F1: a >R.l 
F2: wce9 such that 

(1) F1 is O-generic and 9R[Fj] = '9t[GW+']. (Here Gc = G n g), 
(2) F2 is OR[F1J-generic and T[F1, F2] = OR[Gaj. 
We now apply Lemma 4.4 with f in the role of s. We get an OR[f]- 

generic collapsing map F3: ow -+S such that OR[Ga1 = OR[f][F3]. 
We are now almost home. By Lemma 4.3 (and Lemma 4.2.1) there is an 

OR[f]-generic filter, G2, on 91c, such that 

[f ] [G2 I= OR[fI[F3] = rlR[Ga]. 
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Apply Lemma 2.3 to G2, G, and the isomorphism 

9jp = Sjpa x 9z a 

We get an DR[f]-generic filter G' on 9?P, such that 9r[fI[G'J = 93R[f, G2, G1j = 

9R[Ga, Gj = 91. This proves Theorem 4.1. 

4.6. LEMMA. Let 91R, 91, Q be as above. Let w < a < Q. Let G1 be an 
'DR-generic filter on 9P'+l with G, E 9Di. Then there is an 'DR-generic filter 
G, on 9P' with 

91 = 91[G2J 

and G1 = G2n Ra+. 

PROOF. By Lemma 4.3 and Theorem 4.1, there is an 9R[GJ-generic filter 
G, on g1P with 91 = 9RL[G1, Gj]. 

We now write 

(a) = -a+l X 9,a+l X gka+2 

Applying ? 2.3, we see that G3 determines filters G4, G5, G, on 9 a+, 9fal,, U2+? 

such that G4, G5, G, are generic over DR[Gj1, D1[G1, G41, DR[Gl, G4 G5j respec- 
tively, and 

91 = 91R[GI, G4, G5, G6J 

By ? 4.2 and ? 4.3, there is an 911[G,]-generic filter G7 on 9ia+l such that 

DR[G,, G7J = 9R[G1, G4, Gs]. 

We now again apply ? 2.3 to the isomorphism (a) and get an 9DR-generic 
filter G2 on 9f0 with 

Mt[G21 = DR[G1, G7, G6J = 91 

and G2 n Px'+l = G_ This proves the lemma. 

II. THE CONCEPT OF A RANDOM REAL 

We first discuss, in II.1, the relation between Borel sets of a countable 
transitive model O'D and Borel sets of the real world. This is a preliminary 
to a study of the key concept of this paper, the concept of a random real. 
This is our main tool in adapting Cohen's method to measure theoretic 
problems. 

1. Extending Borel sets 

We let DC be the principle of dependent choices. A precise statement of 
DC will be given in III. For our present purposes it suffices to know the 
following: 
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(1) All the positive results of measure theory and point set topology on 
the real line (such as the existence of Lebesgue measure and the Baire 
category theorem) can be proved in ZF + DC. 

(2) DC justifies a countable sequence of consecutive choices. In partic- 
ular, it has the following corollary (known as AC,, or the countable axiom 
of choice): 

Let {Ai: i E co} be a sequence of non-empty sets. Then there is a function 
f with domain w such that f(i) E Ai. 

Throughout this section II.1 all theorems of mathematical nature (i.e., 
theorems not relating to models of set theory) will be theorems of ZF -,,- DC. 
Therefore they will hold in any model Ort of ZF + DC. 

1.1. We use functions from w to co to code (or G6del number) Borel 
subsets of R.6 

Let {ri} be an arithmetical enumeration of Q; let J be the pairing function 

J(a, b) = 2a(2b + 1) . 

The coding is defined recursively as follows: 

Definition. (1) a codes [ri, rj] if a(O) 0 (mod 3), a(1) = i, and a(2) =j. 

(2) Suppose ai codes Bi, i = 0, 1, 2, *--; then a codes UiBi if a(O) 1 
(mod 3) and 

a(J(a, b)) = aa(b) . 

(3) Suppose f8 codes B, a(O) - 2 (mod 3) and a(n + 1) = ,8(n). Then a 
codes the complement of B. 

(4) a codes B only as required by (1)-(3). 

LEMMA 1. Suppose a codes B1, and a codes B2. Then B, = B2. 

PROOF. Let I = (<a, B>: a codes B}. Let I, = {<a, B>: a codes only B}. 
Then I is closed under (1)-(3) of Definition 1. By (4), I = I,, q.e.d. 

We write Ba for the Borel set coded by a. If a e 9R1 and a codes a Borel 
set in OR, we denote this set with B,21. 

LEMMA 2. Every Borel set is coded by some a. 

PROOF. The family of sets coded by some a is closed under complements 
and countable unions (DC!) and contains all sets [r, sJ with rational endpoints. 
Thus it contains all Borel sets. 

LEMMA 3. Every set coded by an a is a Borel set. 

PROOF. (Similar to proof of Lemma 1 and left to the reader.) 

6 R is the field of real numbers; Q is the field of rational numbers. 
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1.2. THEOREM. There are H1 predicates Aj(a), A2(a, x), A3(a, x) which 
are provably equivalent, (in ZF + DC) to the following concepts: 

(1) a codes a Borel set; 
(2) a codes a Borel set and x c Ba; 

(3) a codes a Borel set and x X Ba. 

PROOF. We let {sj} be a recursive enumeration without repetitions of the 
finite sequences of integers (including the void sequence), arranged so that 
if the sequence sn, is an initial segment of the sequence s^, then n < m. (Thus 
so is the void sequence.) We define a function I((a, n), taking values in )',, as 
follows: 

(1) n = O. Then D(a, n) = a. 
(2) n > 0. Then sn, is a non-empty sequence, of length k, say. Let s" be 

the initial segment of sun of length k - 1, and let r be the last element of sn. 
(So r Eo ).) Note that m < n. 

Case 2.1. $D(a, m)(O) 0 (mod 3). Then put $((a, n) equal to the identi- 
cally zero function. 

Case 2.2. ID(a, m)(O) 1 (mod 3). Then put 

4(D (, n) (x) = 4(D (, m) (J(r, x)) , (t cc A))- 

(Here r, m are as in the preceding paragraph, and J is defined in ? 1.1.) 
Case 2.3. $(a, rm)(O) - 2 (mod 3). Then put 

D(D(a, n)(x) = 1(D(a, m)(x + 1). 

(1&(D, *) allows us to recover those Borel sets from which Ba is constructed.) 
The following lemma is easily checked by induction on m. 

LEMMA 1. Let a code a Borel set. Then for all m, 'P(a, m) codes a 
Borel set. 

Let A: a cl). Define a function A: w - by 

Sf(n) = </3(0), ..., 9(n - 1)> . 

(Here the right hand side denotes the finite sequence consisting of the first n 
members of f.) 

We can now define the fil predicate, A, 

A1(a) =(i9)(3n)4D(a, /3(n)) = 0 . 

An argument similar to the proof of Lemma 1.1.1 shows that if a codes 
a Borel set, then A1(a) holds. Conversely, suppose that a fails to code a Borel 
set. Then one can construct a function f8: a co by induction on n, so that for 
all n, (D(a, 1(n)) fails to code a Borel set. But then, for all n, ((a, ;3(n))(O) # 0 
(since otherwise, D(Dx, ,8(n)) codes by Case 1 of the definition (? 1.1)). 
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Now suppose that a codes a Borel set, and that x is a real. We define a 
function a: oc --a oa, as follows: if x lies in the Borel set coded by ID(a, n), then 
a(n) = 1. Otherwise, a(n) = 0. (Lemma 1.2.1 states that 'D(a, n) always 
codes a Borel set.) 

LEMMA 2. There is an arithmetic predicate, A4(a, 1S, x) such that 
A4(a, /3, x) holds if and only if S is the function y of the preceding paragraph. 

PROOF. We can describe A4 as follows: 
(1) Suppose that $(a, n)(O) _ 0 (mod 3). Let $((a, n)(1) = i, $D(a, n)(2) =j. 

Then /3(n) = 1 if and only if x E fri, rj]. 
(2) Suppose that $(a, n)(0) -1 (mod 3). Let <j> be the length one 

sequence whose one element is j; let sp(nj) be the concatenation 

sn-i <j>. 

Then /3(n) = 1 if and only if for some j, /3(9(n, j)) = 1. 
(3) Suppose that (D(a, n)(0) -2 (mod 3). Then 8(n) = 1 if and only if 

fl(9(n, 0)) = 0. 
(4) 13(n) = or 1 for all n. 
It is clear that the predicate A4(a, A, x) is arithmetic, and that if y is as 

in the paragraph prior to the statement of Lemma 2, then A4(a, a, x) holds. 
Now suppose that a codes a Borel set, that x is a real, that v is as above, 

and that a': -) o is such that A4(a, y', x). We want to show y' a. Suppose 
not. Then for some n, y'(n) # a(n). Say s,, has length r. Then we can 
define a function 8: wt -w with the following property. 

(1) a(r) = n 

(2) If m > r, 
0 

(One defines 0(m) for m > r, by induction on m so that (2) holds. Indeed, if 
7(j(m)) # Y'(J9(m)), we see first that 

$D(a, 6(m))(O) E 0 (mod 3) . 

(Otherwise Y(8(m)) ='(o(m)) by clause (1) of the definition of A4.) Moreover, 
by clauses (2) and (3), of the definition of A4, we see that for at least one 
extension sn of 6(m), of length m + 1, we have y(n) Y'(n). We now select 
8(m) so that 8(m + 1) = n.) 

We have already remarked that since 

-o(n)) 7(j(n)) 
for all n > r, we have 

P(a, k(n))(0) 0 0, for n > r. 
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If (D(a, 8(n))(O) = 0 for some n less than r, then it would also be zero for all 
larger n (cf. Case 2.1 of the definition of (D). Thus 

(Vn)q(Dca, j(n)) # O. 

i.e., A1(a) is false. We have already shown that this implies that a fails to 
code a Borel set. This contradicts our assumption on a, and shows that 'r = 
The proof of Lemma 2 is complete. 

We now define A2(a, x) as follows: 

A2(a, x)- (f)(A4(a, fi, x) -kf(0) = 1) A A1(a) . 

Clearly A2 is 11. Let a code a Borel set. Let x be a real, and let y be as in the 
statement of Lemma 2. Then A2(Q, x) if and only if a(O) = 1, by Lemma 2. 
Moreover, a(O) = 1 if and only if x lies in the Borel set coded by $(a, 0). But 
P(a, 0) = a. Thus A2(a, x) if and only if a codes a Borel set and x lies in the 
Borel set coded by a. 

The treatment of A3 is similar. We put 

A3(a, x) _ (,f)((D(a , fi, x) - R (0) = 0) A A1(a) . 

COROLLARY. There are 1ll predicates A4(a, ,8), A5(a, fi) which are prov- 
ably equivalent in ZF + DC to the following concepts 

(4) Ba C Be. 
(5) Ba = Be. 

PROOF. Put 

A4(a, )-- A1(a) A A1(R) A (x)(A3(a, x) V A2(8, X)) 
and 

A5(a, 9) -A4(a, f) A A4(fl, a) . 

This suffices. 

1.3. Kleene has shown that there is an extremely close relation between 
f1' relations and the concept of well-orderings (cf. [71). Moreover, if OJR is a 
transitive model of ZF, then the ordinals of OR are an initial segment of the 
ordinary ordinals (cf. [1, p. 941). Putting these facts together, one has the 
following lemma (cf. [13, pp. 137-1381). 

LEMMA. Let $D(a) be a HI predicate. Let OR be a transitive model of ZF. 
Let a: c -a o, be an element of 'R. Then 

O k ((a) 

if and only if ?D(a) holds in the real world. 

1.4. We have two situations to consider simultaneously. 
(a) 'DR and 9l are transitive models of ZF + DC, and R c A; 
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(b) OR is a transitive model of ZF + DC, and 'Di is the universe of all 
sets (so the axiom of choice holds in Or). 

THEOREM. Let DR, 9I be as in (a) or (b) above. Let a, 8 e (wo)ft, and 
x e ROK. Then the following statements hold in 'DR if they hold in X1. 

(1) a codes a Borel set. 
(2) a codes a Borel set, Ba, and x e Ba. 
(3) a, fi code Borel sets and Bar = BA. 
PROOF. Case (a) of the lemma follows easily from case (b). Case (b) 

follows from Lemma 1.3 and the results of ? 1.2. 

1.5. Theorem 1.4 implies that the assignment 

(1) {B-+ By} 

gives a 1-1 correspondence between the Borel sets of reals in '1t and a 
certain subcollection of the Borel sets of reals in 01. The map (1) is, in general, 
not surjective. For example, if OTt is countable, and 01 is the real world, (1) 
is certainly not surjective. 

Let C be a Borel set in A1. We say that C is rational over DR, if C = B.,< 
for some code a lying in 'R. By part (2) of Theorem 1.4 the Borel set in Ot 
corresponding to C is then 

C nRe. 

Similarly, we say that a sequence of Borel sets in A, {Ci}, is rational over 'D 
if there is a sequence of codes, {ai}, lying in 'R such that 

Ci-BG. 

(Note carefully that we require not only that each ai lie in 'R but that the 
function {i- ai} also lie in 'Dt.) Since DC holds in 'R it is equivalent to require 
that there is in 'R a sequence of OR-Borel sets, {Bi}, such that for each i, B. 
corresponds to Ci under (1). 

The correspondence just described clearly possesses the following natu- 
rality property. Let iR c A be transitive models of ZF + DC. Let V be the 
real world. Let B be a Borel set in OR and let B91, Bv be the corresponding 
Borel sets in 'D and V respectively. Then B, is the Borel set in V corre- 
sponding to the Borel set Bee of M. 

1.6. We are going, eventually, to use the map (1) to identify the Borel 
sets of 'DR with certain of the Borel sets of M. As a temporary piece of nota- 
tion, if B is a Borel set of OR, we write BI for the corresponding Borel set of 
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)1. We proceed to verify that certain properties and operations are "absolute" 
with respect to the map {B - B)}. 

LEMMA 1. (1) Boolean operations are absolute. 

(2) Let {An} be a sequence of Borel sets of 'DR, with {An} e DR. Then 

(U. A.)'= U. AX 

(ln A.)' - flt AS . 

(3) The relation A c B is absolute. 
(4) The relation A _ 0 is absolute. 

PROOF. (1) Consider for example, the intersection operation. Given A, B 
Borel in OR with codes a and 8 respectively. One constructs easily from a and 
G a code y which codes AnB in Ot and A, nqB in A. Thus 

(A n B)l = A, r B1. 

(2) Similar to the proof of (1). 
(3) ACB -A U B= B. By Theorem 1.4 and (1) of this lemma, we have (3). 
(4) Clear from Theorem 1.4. 

LEMMA 2. The following operations and notions are absolute. 
(1) Interior (int); 
(2) "Open"; 
(3) Closure; (Cl) 
(4) "Closed"; 
(5) "Closed nowhere dense"; 
(6) "Compact". 

PROOF. (1) A = int B if and only if 

A = U{(r, s):r, seQ and (r, s)CB} 

(2) A is open=- A = int A. 
(3) Cl (A) = R-int (R-A). 
(4) A is closed A = Cl (A). 
(5) A is closed nowhere dense- A is closed and int (A) = 0. 
(6) A is compact if and only if A is closed and for some N e ,A A [-N,NJ. 

LEMMA 3. Let r, s be reals of DR. Then (r, s)l = (r, s); [r, sIl = [r, s]; 
{}= {r}. 

PROOF. 

(r, s) = U {[t, uI: r < t < ? < s; t, u e Q} 
[r, sI = nf {(r - 1/n, s + 1/n): n e (o} 

{r} = [r, r] 
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LEMMA 4. Let , be Lebesgue measure. Let B be a Borel set in DR. Then 

p;911(B) = pxn(BI). 

Case 1. B is the union of a finite number of disjoint open intervals with 
rational endpoints. 

Say r1< s1?r2< s?._ ?r< Urn < sn, and B= Un ,(ri,s) in both Ot 
and A1. Then p(B) = -> (s,-rj), which is absolute. 

There are clearly only countably many sets of the sort considered in case 
1; let { W} be an enumeration of these sets in DR. 

Case 2. B compact. 
We have p(B) = inf {,i( W): B C WJ} which proves , is absolute in this 

case. 

Case 3. B open. 
Clear since j(B) = sup {i( W): W, 9 B}. 

Case 4. B arbitrary. 
p[ I(B) = sup {ji(K): K compact, Kc B, and K rational over DR} < sup {J(K): 

K compact, Kc B1, and K rational over -l} = p ,(B1). 
Similarly 1ri.(B) = inf {Ip( U): U open, B C U and U rational over DRt} > 

inf {ji( U): open, B* c U and U rational over 9A} = p,,(B#). These two inequali- 
ties show qen(B) = u,"(BI). 

COROLLARY. "Set of measure zero" is an absolute notion. 
Recall that the symmetric difference of two sets, A and B, (notation: 

AA B) is 

(A-B) U (B-A) . 

We recall some elementary constructions from the theory of boolean alge- 
bras. This material is all contained in Halmos [4]. 

Let A be an ideal of subsets of R. This means that if A, B E 4 then 
A U BeS, and if AeS, and BcA, then Be S. We say that two sets A and 
B are equal mod 5 if 

A A B e 4. 

Equality mod 4 is an equivalence relation. The set of equivalence classes of 
Borel sets is, in a natural way, a boolean algebra, since the boolean operations 
"'pass to quotients". 

If J is a u-ideal (i.e., is closed under countable unions), then the boolean 
algebra of equivalence classes mod S is a u-algebra. 

The two basic examples of u-ideals in the power set of R are: 
(1) the u-ideal 5, of sets of Lebesgue measure zero; 
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(2) the a-ideal 52 of sets of the first category. 
Two Borel sets equal mod 54 are said to be equal "almost everywhere"; two 
Borel sets equal mod 52 are "equal modulo a set of the first category". 

The following lemma will be useful in a moment. For the proof see 
Halmos [4, p. 58]. 

LEMMA 5. Let B be Borel. Then B is equal to an open set U modulo a 
set of the first category. 

LEMMA 6. "First category" is an absolute notion. 

PROOF. Using Lemma 1 parts (2) and (3), and Lemma 2 part (5), we see 
that if B is first-category in 'DR, B is first-category in 91. 

Suppose now that B is not first category in 'DR. By Lemma 5 in 'DR, there 
exists U open, rational over OR such that B A U is first-category in Dt. By 
the preceding paragraph, B A U is first-category in 91. If U = 0, B = BA U 
and so B is first category in 'OR. Thus U + 0, and by the Baire category 
theorem U is not first category in 91. Since 

UcBU(BA U), 

B is not first category in 91. The proof is complete. 
The following lemma is not needed in the present paper but will be used 

in another paper of the author [15]. 

LEMMA 7. The following notions are absolute. 
(1) X has at least two points. 
(2) X has exactly one point. 
(3) X is perfect. 
(4) X is countable. 

PROOF. (1) X has at least two points if and only if there exist rationals: 
r < s < t < u such that xn (r, s) # 0; xn (t, u) ? 0. 

(2) Immediate from (1). 
(3) X is perfect if and only if X is closed, X # 0, and for all r, s e Q,. 

x n (r, s) # 0 X n (r, s) has at least two points. 
(4) By (2) and (2) of Lemma 1, X countable in OR implies X countable in 

A1. If X is not countable in OR, X contains a perfect subset K. In 91, K is. 
perfect (by (3)) and K C X. Thus X is uncountable in 91. 

1.7. The following concept will be needed in ? 2 below. 
Let C = {a I a codes a real}. Let 

X: C -+OR 

be defined as follows. 
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(1) If a codes by case 1 of Definition 1.1, then X(a) = 0. 
(2) If a codes by case 2, then 

X(a) = sup {X(aj) + 1} 

(notation as in case 2 of Definition 1.1). 
(3) If a codes by case 3, 

x(a) = X(0) + 1. 

It is easy to see that domain X = C by an argument similar to the proof of 
Lemma 1.1.1. 

We write >ell for the relativization of X to OR. 

1.8. Our results would apply to any of the standard spaces, such as 2w, 
mutatis mutandis. 

1.9. Let j = 1 or 2. Let 5j be the ideal described in ? 1.6. Let ?Bj be the 
quotient algebra of the a-algebra of Borel sets associated to the ideal gj. Then 
the following facts are proved in [4]: gj is a complete boolean algebra satisfy- 
ing the countable chain condition. 

2.1. Let 'DR be a fixed transitive model of ZFC. A real x is random over 
'R if it lies in no Borel set of measure zero rational over OR. Similarly a sub- 
set of w is random over Oit if it lies in no Borel set of measure zero of 20 rational 
over SR. 

Notice that if x is random over Si, then x i SR. (Proof. x e DR {x} is 
a Borel set of measure zero, rational over SR, and containing x.) This defini- 
tion is in accord with the usual intuitive requirements for a random real. For 
example if we let $(x, N) be the number of l's in the first N digits of the 
decimal expansion of x, then for x random the limit as N-+ o? of e(x, N)/N 
exists and equals 1/10. (A proof would show that the set of reals x for which 
this is false form a Borel set of measure zero rational over DR.) 

The following lemma provides for the existence of many random reals (if, 
for example, Oit is countable): 

LEMMA. If (2Ro)m is countable, then almost all reals are random over 
SR. (In fact, the non-random reals form a Borel set of measure zero.) 

PROOF. If (29o)m is countable, we can enumerate the Borel sets of measure 
zero rational over OR in a sequence No, N1, *-.. Then x is random over SR if 
and only if x 0 Uj Ni. But Uj Ni is a Borel set of measure zero. 

2.2. There is an analogous notion of a real (or set of integers) being 
generic over DR. A real x is generic over OR if it lies in no Borel set of the 
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first category rational over Oil. We shall see below that this is essentially the 
same as the notion introduced by Cohen. (Cohen worked with sets of integers; 
for reals, the conditions analogous to Cohen's have the form r < x < s, where 
r, s are rationals.) 

It is true that no real x is both generic and random over DR. We shall 
not stop to prove this here. (For example, the set of reals x in which 1 has 
the frequency 1/10 in the decimal expansion of x form a set of first category, 
rational over DR, and containing all random reals.) 

All the results we prove for random reals in this section have analogues 
for generic reals with "the same proofs". The translation consists in replac- 
ing "random" by "generic" and "measure zero" by "first category". We leave 
this translation to the reader. 

2.3. We are going eventually to show that the random reals are in natural 
one-one correspondence with the generic filters on a certain partially ordered 
set 9 O DR. The following discussion is a heuristic motivation for the correct 
choice of 9. 

Let x be a real random over OR. An observer stationed in OR cannot have 
total knowledge about x (since x is not in OR). However, he can have partial 
knowledge about x. For example, if B is a Borel set rational over 9k, then a 
natural question the observer can ask about x is "Is x e B?" If [(B) = 0, 
then the answer is certainly no. On the other hand, if [(B) > 0, it is possible 
for x to be in B (cf. Lemma 2.1). A similar discussion shows that if B1 and B2 
are Borel sets rational over 9k1, and [(B1 A B2) 0 0 (i.e., B1 and B2 are equal 
almost everywhere, then for x random over 9kR, the questions "Is x e B?"' and 
"Is x e B2?" are equivalent. 

We therefore make the following definition. 

Definition 1. C? is the set of equivalence classes of non-null Borel sets of 
reals (in 9k1). Two sets B1 and B2 are equivalent if and only if B1 A B2 has 
measure zero. (Let [B] be the equivalence class of B. We think of the con- 
dition [B] as telling us x e B.) 

We order 9 by an order < as follows. [B] < [B'] if and only if B'Rc B 
almost everywhere (i.e., B' - B is a set of measure zero). 

2.4. Let $J e 9k. Then clearly $ is a boolean algebra in Oil if and only 
if $ is a boolean algebra in the real world. However, $ can be complete in 
91k (cf. [4, p. 25]) without being complete in the real world, since there may 
be subsets S c $ such that sup S is not defined, but S i Om. We say that @ is 
9k11-complete if and only if OR t $I is complete. 

Let now $ E OR be a boolean algebra, and 
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h: 93-2 

be a homomorphism. (We do not require that h lie in 01k.) We say that h is 
'9R-completely additive if whenever S 5 EB, S e 9k1, and sup S exists in i3, then 

h (sup S) = sup (h(s): s e S)} 

Let 93 be a boolean algebra lying in 9k. Let < be the usual order on 
E3: b, < bk if and only if b, V b2 = b2. Let 9 be the set of non-zero elements of 
93. We provide 9 with the order < inverse to <: b1 -< b2 if and only if b2 < b,. 

LEMMA. Let h: @ 2 be an 9k1-completely additive homomorphism. 

Then 

( 1 ) G = {b I h(b) = 1} 

is an 9kR-generic filter on1 9. Conversely, if G is an 9k-generic filter on 9e, 
there is a unique homomorphism 

h: Ej3 2 

such that (1) holds. 

PROOF. Let h: E@ 2 be a homomorphism. Then if G is defined by (1), 
then G satisfies clauses (1) and (2) of Definition I.1.3. Conversely, if G C 9 
satisfies clauses (1) and (2) of Definition I.1.3, then G is, in the usual termi- 
nology of the theory of boolean algebras, a filter on $9. If G also satisfies (3) 
*of Definition I.1.3 then G is an ultrafilter on 93. (For any bo e G, the set 
{b C 9P: b < b. or be b0 = 0} is dense in 9.) Hence there is a unique homomor- 
phism h: E1 2 such that (1) holds. 

Now let X be dense in 9, X e 9. We say sups (X) = 1g. Otherwise 
there is a b > 0 with b * x = 0, for all x C X. But X is dense, so for some x0 C X, 
x0 < b. But then be x. = x0 # 0. This contradiction proves our claim. 

It follows that if h: $q -+2 is 91-completely additive and X is as above, we 
have h(x) = 1 for some x C X. Thus x C G n X, and G satisfies clause 3 of 
Definition I.1.3. 

Conversely, suppose that G is 9R-generic. Let S c E1, S C OR, sup S = s0. 
We want to show 

( 2) h(s0) =sup {h(s): s C S}. 
We may as well suppose that s. = 1B. (Otherwise, replace S by S U {1 -s..) 
Let 

X= {aWla < b forsome bcS}. 

Then X is dense in 9 (cf. Definition I.1.2). Indeed, clause (1) of the definition 
of "dense" is obvious; we verify clause (2). Let x C .9. Then x # 0. Since 
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supS = 1, xAs # 0 for some scS. Hence xAscX, and x < xAs. This 
verifies clause (2). 

Since X is dense in 9C, and X lies in OR, we have G n x # 0o. Hence there 
is an a C G and a b C S with a < b. Since h(a) = 1, we have h(b) = 1. Since 
b E S, and so = 1, (2) is proved. 

2.5. We now suppose in addition that q is 91-complete, and that only 
countably many subsets of _1?3 lie in OR. 

LEMMA. Let (P be a sentence of 2'. Then there is a bo E _1? such that if 
G is an 'DR-generic filter on JP, and h: gB - 2, then OR[G] t (P if and only if 
h(b0) = 1. Moreover, b, is uniquely determined by (D. 

PROOF. Let 

S= {be 9P I b 1v- } . 

Since forcing is expressible in DR, S E DR. Let b. = sup S. (If S = 0, we take 

bo= 0, and the lemma is clear. So we may assume S # 0.) We maintain 

bo ( D. Otherwise, there is a c X 9? with 

0 < c ? bo , 

i.e., b. < c, and c (D -. Since b= supS, there is a bcS with bAc # 0. 

But then 

c < b, c 

so b, A c H m (P. On the other hand, b, 1H- (, since b, C S; since b, < bi A cy 
b A c CF- (D. This contradiction shows bo H- O. 

If h(bo) = 1, then bo C G, so ORBG] ( DP (since b. H- O.) Conversely, if 
BR[G] t (D, there is a bC S fl G, so h(b,) = 1, so h(bo) = 1. Thus bo has the 
desired properties. 

Suppose now that b, has the same relation to (P as b,. We show b, = bo. 
Otherwise, let b2 = b, A bo. Then if h is 'DR-completely additive, h(bo) = h(b,) = 
truth value of (D, so h(b2) = 0. If b, # bo, then b2 # 0. By I.1.8, there is an 
DR-generic filter G with b2 e G. But then, h(b2) = 1, contradicting our remark 
that h(b2) = 0. This shows b, = bo. 

2.6. The following theorem provides the link between the abstract 
material of ? 2.4-5 and the concept of a random real introduced in ? 2.1. 

Let ,31 (resp. @2) be the algebra of OR-Borel sets modulo the ideal of sets 
of measure zero (resp. of first category). By ? 1.9, these algebras are Ot- 
complete. 

THEOREM. There is a canonical 1-1 correspondence between the reals 
random over 'TD and the DR-completely additive homomorphisms of 9,. 
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PROOF. Let h be an OR-completely additive homomorphism of ?3, (0, 1}. 
Set 

Xh = X {r C Q: h((r, co)) = 1}. 

(To abbreviate, we sometimes use the same symbol to denote an OT(-Borel set 
and its image in %.) 

LEMMA 1. x is an irrational left Dedekind cut in Q. 

PROOF. (1) x # 0: Since h((-a, cx)) = 1, for some necw(, we have 
h((-n, cao)) = 1, so -ne Cx. 

(2) x # Q: Since h(0) = 0 and 0 = fl(n, c), we have h((n, c)) 0, 
for some n e w. But then n X x. 

(3) r2< r1 C x=r2 C x: Since (r1, o) (r2, ), h((rl, ))=1=-h((r2, ))=1. 
(4) x is irrational: Let r C Q. Since {r} = fr (r - 1/n, r + 1/n), 

h((r - 1/n, r + 1/n)) = 0 for some n. But then r - l/n C x =r + 1/n e x, so 
x is not the Dedekind cut centered at r. (Similarly, we see that x X OR.) 

LEMMA 2. Let A be a Borel set rational over OR. Then x e A if and only 
if h(A) = 1. 

PROOF. Let a be a code for A, lying in OR. The proof proceeds by induc- 
tion on x! (a) and is straightforward (cf. ? 1.7). (Note that X69(a) e OR 1 (OR, 
so the induction is legitimate, even though h X OR.) 

It is now easy to show that x is random over OR. Let N be a set of 
measure zero rational over OR. Then x e N if and only if h([NI) = 1. But 

[N] = 0 in 9, so h([NI) = 0. 
Now suppose that x is random over OR. Define h,: 1{0, 1}, by 

h=([A]) = 1 if and only if x e A. (A rational over M.) (To see that h" is well 
defined, let A, and A2 be Borel sets rational over OR such that [All = [A21. 
Then [(A1 A A2) = 0 so x 2 A1 A A2 (since x is random over OR). It follows 
that x C Al _ x e A2-) 

It is not hard to check that hx is OR-countably additive. The proof that 
hx is OR-completely additive is based on the following lemma (Halmos [4, p. 61]). 

LEMMA 3. Let i3 be a complete boolean algebra satisfying the countable 
chain condition. Let S c 6. Then S has a countable subset SO such that 

Vs = Vs0. 

Let S c $3 S e OR. Since hx is finitely-additive, hx(VS) > V{hx(s): s C S}. 
To get the reverse inequality, we apply Lemma 3, within OR, to Jq,. Let 

So , So countable in OR, such that VSo = VS. Since hx is OR-countably 
additive 

hx(V S) = hx(VSo) = V {h(s): s E So} V {hx(s): s E S} . 
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The reverse inequality has already been proved. Thus h, is OR1-completely 
additive. 

We have shown that if h is OR-completely additive, Xh is random over ORl. 
Lemma 2 shows that h can be recovered from Xh and the discussion just com- 
pleted shows that every x random over ORl arises in this way. The theorem is 
proved. The theorem has an analogue for random elements of 2'. (In that 
case. Lemma 2 is unnecessary.) There is a corresponding theorem, of course, 
identifying reals generic over OR) with the OR-completely additive homomor- 

phisms of 92 

2.7. Let OR, 93k, be as above. Let x be a real random over OR1, and G the 
associated filter on 931. It is clear from the discussion in ? 2.6 that x X OR[G]. 
Moreover, in view of Lemma 2.6.2 and Lemma 2.4, it is clear that if 01 is any 
transitive model of ZFC with x e OR and OR1 c 01, then G C 01. By I.1.4, we 
then have OR[GI c 01. 

Notations being as in the preceding paragraph, we write OR[x] for OR[G]. 
Thus the discussion of the preceding paragraph shows that OR[xI is the 
minimal transitive model, 0A, of ZFC such that OlR ( 01 and x e 01. 

Because we know that OR[x] = OR[G], it is clear that OR)R[xl has the same 
ordinals as OR. Moreover, using the fact that @1 satisfies the countable chain 
condition in OR, it would be easy to show that OR and OR[x] have the same 
cardinals. (This is true for all reals random over OR, and hence for almost 
all reals.) 

2.8. We can now prove our fundamental result about random reals. We 
alter the language 2' of Chapter I slightly, by replacing the constant G by a 
constant x. Call the resulting language 2". If x is a real random over O, 
we interpret 2" in OR1[xJ in the obvious way. In particular, we let x denote x. 

THEOREM. Let $D be a sentence of 2". Then there is a Borel set A 
rational over OR such that for all x random over Oil, we have 

(1) OnR[xJ W= o x-A. 

PROOF. Let h.: 931 -- 2, Gx be the homomorphism and filter determined 

by x. Since OlR[x] = OR[GZ] and x is definable in OR[x] from 93k, G., we can 

find a sentence $D' of 2' such that for all x random over OR, 

DR[x] l= D4) o 9lR[GJ] t= (DI 

By Lemma 2.5, there is an element b, of 931, not depending on x, such 

that for all x random over OR, 

OR[GXJ t , P' 4-* h (b,) = 1 
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Let a C bw code a Borel set in OR whose equivalence class lies in b,. Let 
A be the Borel set coded by a in the real world. Then by Lemma 2.6.2, 

h,(bo) =1 x G A. 
The theorem is proved. 

2.9. We show that the notion of a generic subset of w introduced by 
Cohen is the same as the notion of "generic" introduced in ? 4.2. The result 
will not be used in this paper, but is included for its historical interest. 

We recall the precise definition of "generic" given by Levy in [8]. Let 
90 be the set of Cohen conditions: an element p E 90 is a function with domain 
a finite subset of co and range a subset of {O, 1}. 

Let OR be a transitive model of ZF + DC. A subset D of 9P0 is dense if 
(Vp e 90)(3p' e D)(p c p'). An element f X 20 is I-generic over 'Dt if for each 
dense D G (On, there exists p G D such that p c f. (This definition is essentially 
that of Levy [8]. It comes, via Easton [3], from an idea of the author.) An 
element f e 2o is II-generic over OR if it lies in no first category Borel set 
rational over Oi. We shall prove that the following properties of f are 
equivalent: 

(1) f is I-generic over DR; 
(2) f lies in each dense open set rational over DR; 
(3) f is II-generic over DR. 
Proof. The essential point is that Lemma I.2.2 allows us to relate generic 

filters on the two different partially ordered sets implicit in the notions 
"I-generic" and "II-generic". The details are as follows. 

Let 92 be the boolean algebra of OR defined (in OR) as the quotient of the 
v-algebra of Borel subsets of 20 modulo the v-ideal of first category Borel sets. 

We shall need an alternative description of 92. We recall that an open 
set U is regular if and only if U is the interior of the closure of U. Then 
each element of 932 is the representative of a unique regular open set. In this 
way, we get a bijective correspondence between F9, and the regular open sets 
rational over Oit. This correspondence is order preserving if we order the 
regular open sets by inclusion. 

Let 9P2 be the set of non-zero elements of ,2 equipped with the order, <, 
inverse to that of 9%. Thus 9P2 is canonically isomorphic to the set of non-void 
regular open sets rational over DR. Call this latter set 92% 

Now let G be a generic filter on 9P2, x the II-generic element of 2w deter- 
mined by G (cf. ? 2.6). Let G' C 9P2 correspond to G. Using the analogue of 
Lemma 2.6.2, one sees that 

{x} = nG'. 
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We map ?P, into ?'P as follows: if p e &Yo, put Wp = {f e 2-: p c f}. 
Then Wp is open-closed and hence regular. It is clearly rational over OR. 

The map 
{p > Wp} 

is order-preserving. (PY carries the order induced by the given order on &P2.) 
Moreover, the image, 9", of &PJ in 9) is cofinal since sets of the form Wp form 
a basis for the open sets in 2w. 

By definition, an element x e 2w is I-generic if and only if {p E 9P0: p c x} is 
a generic filter on 90. It follows that the I-generic elements of 2o are obtained 
as follows: take an OR-generic filter G on 9), copy it onto a filter G' on 9P, and 
take nG'. 

Now if G1 is an 911-generic filter on 9P0, there is an OR-generic filter G2 on 
9P2 such that G, = {p: Wp e G'} (cf. Lemma I.2.2). Moreover, all generic filters 
on 9P0 arise in this way. Thus x is I-generic if and only if x = nG' for a generic 
filter G1 on 9P0 if and only if x = nG' for some generic filter G2 on 9P2 if and 
only if x is II-generic. 

We can now drop the prefixes I, and II. Let x be generic over ThR. If U 
is a dense open set rational over 9k1, then the complement of U, U', is first 
category. So x e U'. So x e U. 

Conversely, suppose that x lies in each dense open subset of 2w rational 
over 91J. We prove that x is generic. Let N be a first category set rational 
over OR, and N63R the corresponding Borel set of 91R. By Lemma 1.6.6, N)1' is 
first category in DR. Hence, in OR, there is a countable sequence {F,')Il} of 
closed nowhere dense sets, with 

NJ)11 C UjeFi`R 
Let Fi be the Borel set of the real world corresponding to Fj'9 (by ? 1). Then 
results in ? 1 imply that Fi is closed nowhere dense and 

NC UjFi 

Our assumption on x implies x V Fi, for any i. Hence x e N. So x is generic. 

III. PROOF OF THEOREMS 1-3 

1. Proof of Theorem 2 

1.1. Let 9DR be a countable transitive model of ZFC + "There exists an 
inaccessible cardinal". Let Q be inaccessible in OR. Let 9fl be as in I ? 3.2. 
Let G be an 'R-generic filter on 9)l. We put 9i = OR[G]. 

1.2. Let t be a real of 9J. 

LEMMA. Almost all reals of ON are random over OR[t]. Precisely, there 
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is a B e '9I such that 6eJ t B is a Borel set of reals of measure zero and 
x e &Sf n R is random over 'Oit if and only if x i B. 

PROOF. By Corollary I.3.4.2 (2j)9jR[t] is countable in 91. The lemma 
follows from Lemma II.2.1 applied inside ?1. 

1.3. A set x E 01 is Olt-R-definable if and only if there is a real t E 91 and 
an element y e 9O and a formula 1D(v,, v2, v3) of 2 such that x is the unique z e 01X 
for which 

6D 0 q(t, y, Z)- 

An argument of Scott and Myhill [11] shows that there is a predicate 
T(v1) of 2 such that 

DI ' T(y) 

if and only if y is DR-R-definable. 
(There is a similar notion of 91O-definable, which is obtained by omitting 

all mention of the real t in the definition of "KR-R-definable".) 

1.4. LEMMA. Let U be a set of reals in 91. which is 'D9R-R-definable. 
Then Th t U is Lebesgue measurable. 

PROOF. We fix a set-theoretical formula 'P1(vl, v2, V3), an element x e 91R, 
and a real t C A1 such that for y E A1 we have 01 t $Dl(x, t, y) if and only if y = U. 

Using $>, we construct a set-theoretical formula $2(v1, v2, V3) such that 
for y e 1 we have 01 = $2(x, t, y) if and only if y e U. 

Let DR, = 9k[t]. Then by Corollary I.3.4., Q is inaccessible in 9R11. By 
Theorem I.4.1, there is an O1R,-generic filter G, on Q such that A1 = DR,[GI. 
We put x1 = <x, t>. Then x1 e DR, and there is a set-theoretical formula 
$D3(v1, v2) such that for all y e 01, 

( 1 ) OT $@3(X1, Y) if and only if y e U. 

Thus all our assumptions about the pair <K1; INR> hold for <K'; 91l',> as 
well. All the results of I ? 3-4 can be applied to <9O; OR1>. 

1.5. Let t ei 01 be random over OR11. By Theorem I.4.1, there is an 

931,[t]-generic filter, G, on 9 such that 

At = Ol1d[t][GtJ - 

Also, by Corollary I.3.4., Q is inaccessible in R11[t]. 
We now apply Lemma I.3.5., considering VY as a Cohen extension of 

9R1[t]. We thus have 

(2) 'DIO V --3(X1, t) if and only if 0 F- 3(X1, t) 

Since "forcing is expressible in the ground model", there is a set-theoretical 
formula $4(vl, v2) and an element X2 (which we can take to be <xl, Q>) such that 
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42 ROBERT M. SOLOVAY 

(3) O F- q)3(X1, t) if and only if Ofl[t] 4(X2, t) . 

We now invoke Theorem II.2.8. There is a Borel set B, rational over 1t, 
such that for any y random over 91O1, 9111[Y] F IiJ4(X2, Y) if and only if y e B. 

Let B1 be the Borel set of Di corresponding to B. Then B, =B n 9i. 
Hence if t e 01 is random over O1,l, we have 

(4) 01t1[t] t I4(X2, t) if and only if t e B, . 

If we string (I)-(4) together, we get, for all reals t random over 91,1 

(5) t U if and only if teB, . 

Let U A B1 be the symmetric difference of U and B1. Then (5) says 

(6) UAB1 c {t e D1 i t is not random over Of1} . 

By Lemma 1.2, the right hand side of (6) is a Borel set of measure zero 
of D1. So U differs from the Borel set B1 by a subset of a Borel set of measure 
zero, i.e., U is Lebesgue measurable in J1. 

1.6. Let U be a set of reals of 91 which is OR-R-definable. By an argu- 
ment similar to the proof of Lemma 1.4 (obtained by replacing "random" by 
"generic" and "measure zero" by "first category" we can show that every 
OR-definable set of reals is equal to a Borel set modulo a set of the first 
category. We can in fact do slightly better. It is known (cf. [4, p. 58]) that 
every Borel set is equal to an open set modulo a set of the first category. 
Thus every 9R-R-definable set is equal to an open set off a set of the first 
category. 

1.7. Now let U be a set of reals, in 'Xt, which is OR-R-definable and 
which is uncountable in D1. We are going to show that U contains a perfect 
subset. Before giving details, we outline the proof. 

(1) By extending 'DR if necessary, we may assume that U is OR1-definable. 
(2) We pick s, e U - Oi. (We can do this since U is uncountable and 

Ot R is countable.) 
(3) s, lies in 9R[G], for some e < Q. Exploiting the connection between 

forcing and truth, we can find f e JO such that for any F: w -+ X extending f 
which is OR-generic, `l[F] n (u - On) # 0. In fact, we will construct an 
explicit s(F) e U - O1R, with s(F) e- 9UI[F]. 

(4) We show that s(Fl) # s(F2) if F1 is OR[F2]-generic. 
(5) We construct a perfect set K of generic collapsing maps of . and 

show that 
Fm s(F) 

maps K homeomorphically into U. 
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A MODEL OF SET-THEORY 43 

We turn to the details. Defining '1l, as in ? 1.4, and replacing 91t by ill1 
if necessary, we may assume that U is Ok-definable. 

By Corollary I. 3.4.2, the reals of 1l1 are countable in 91. Since U is 
uncountable in 'N, we can select a real s, of U, not lying in . 

Let G1 be an 911-generic filter on JO' such that 'D = O1l[G1]. By Lemma I.3.4, 
there is a e < Q such that s, e OS[G' l]. Here Gl'+ = G, no q is an 9k-generic 
filter on Coil. We may assume that w < i. 

By Lemma 1.4.3, there is an OR-generic collapsing map F,: c o such 
that 

OlR[F1j = 911[GV11. 

By I.1.7, there is a set-theoretical formula /(v1, v2, v3) and an element x, 
of Oil such that 

s, = {q e Q: 9II[FI] I= VJ(x,, F1, q)} . 

LEMMA. There is an f1 e 9, with the following property. Let F: a ) 
be an OR-generie collapsing map. Suppose F E 9t, f1 C F, and put 

s = s(F)- E q Q: 9r[F] W -,r(xj, F, q)} 

Then s is a real, s E U, and s X DRl. 

PROOF. We can construct a formula A1(v1, v2) of 2' and an element x2 of 
On such that 

91. W r1(X2, F) 
if and only if s has the stated properties. Moreover, f l and x2 do not depend on F. 

By Theorem I.4.1 and Lemma I.3.5, there is a formula V2(vj, v2) and an 
element x3 of OR (not depending on F) such that )I [= P1(x2, F) if and only if 

9IR[F] i= *2(X3, F) (cf. ? 1.5). 
Suppose now that F = F1. Then s = s, so s has the stated properties and 

6g1)11[Fl]~= W2(X3 F1) 

Hence, by the connection between forcing and truth, there is an fi c F1, 

fi e e,, such that 

If hifi'2(X'39 F,) . 

The lemma is now clear. 

1.8. Let F1, F2 be 0)-generic collapsing maps of co onto $, lying in 91. 

Suppose f1 c Fi, i = 1, 2. Suppose further that the pair <F1, F2> is generic 
over 9li (i.e., if Gi is the OR1-generic filter on JO, associated to Fi, then G1 x G2 
is an OlR-generic filter on R, x JO,). Then 
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44 ROBERT M. SOLOVAY 

In fact, if s(F1) s(F2), then s(F1) e ORl, by Lemma I.2.5. But this contradicts 

Lemma 1.7. 

1.9. Lemma 1.7 and ? 1.8 indicate how to manufacture many elements 
of U. We are going to construct a "perfect set" K of OR-generic collapsing 
maps of d. We shall also arrange that if F1, F2 lie in K and F1 # F2, then 

<F1, F2> is OR-generic. Finally, we shall arrange that if F e K, then fi c F. 

It will then be shown that the map 

{Fee s(F)} 

maps K onto a perfect subset of U. 

1.10. Since Q is strongly inaccessible in 'lJ and equals , we can 

enumerate the dense subsets of ,E lying in OR in a sequence {XJ} within 6.X. 

Similarly, let { Wj} be an enumeration, in '91, of the dense subsets of 9P x Ad 
lying in Ol1. 

Let E be the set of finite sequences of zeros and ones. Thus f e ? if and 

only if f is a function, domain f e w, and range (f ) c (0, 1}. We partially order 

? by inclusion. 

LEMMA. There is in 01 a function 

with the following properties: 

(1) A(0) = Aig 
(2) If f, f' are elements of I and f c f', then i(f ) c *(f'). 
(3) If f, f' in ? are incompatible, then *r(f) and h(f') are incompatible. 
(4) If domain (f) = n, and f E ?, then domain (*(f )) D n, and *(f ) e Xmt 

for m < n. 
(5) If f, f'e I, and domain (f) = domain(f') = n, and f # f', then 

<v(f)g ),fr(f')> E Win, for m < n. 

PROOF. We define *(f ) by induction on the domain of f. So put i( 0) )f1. 

Suppose A(h) is defined for domain(f) < n. We provisionally pick A(f) for 
domain(f) = n + 1 so that 

(a) *(f) extends *(f I n). (f I n is the restriction of f to n.) 
Replacing *(f ) (for f of length n + 1) by an extension, and relabeling, we may 
assume 

(b) n G domain(*(f)), 
(c) '*'(f) E Xn (since X, is dense). 

Continuing to extend *(f ) (for f of length n + 1) and relabeling, we may assume 

(d) if f, f' are sequences of length n + 1, and f # f', then *(f) # +(f') 
and 
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A MODEL OF SET-THEORY 45 

<1kf)9 I( f )> G W. (m e n) . 

(We use here that Wf, is dense.) 
We can now "freeze" our definition of AY(f) for length (f) = n + 1, and 

turn to f of length n + 2 * A . 
It is clear that * has the properties stated in the lemma, and that +r can 

be constructed inside Oc. 

1.11. We now define, inside Ot, a map 

*: 20c ) U. 

Let h: wt 2. Then from Lemma 1.10, 

Une.*(h I n) 

is a function mapping w into d. We denote it by X(h). It follows from clause 
(4) of Lemma 1.10 that X(h) is an 911-generic collapsing map of w onto I. 
Moreover, it is clear that f1 c A(h) from (1) of Lemma 1.10. We put A*,(h) 
s(X(h)). (It is important to realise that A* can be defined inside 91, but this 
is clear) (cf. Lemma 1.7 for s(-)). By Lemma 1.7, A*'(h) is an element of U. 

We show next that *, is one-one. Indeed, if h1, h2 e 2w n 9 and hl # h29 

then <X(h,), X(h2)> is an 9Th-generic pair of collapsing functions. Hence by 
?1.8, V*(h1) # **(h2). 

We show next that A* is continuous. Let Ne X, N > 1. Consider the set, 
X, of p e 9) such that 

(a) if p is compatible with fi, then p 2 f'. 
(b) if p : fl, then for some q e Q, p forces I s(F) - q I < 1/(2N). 

Using Lemma 1.7, we see that X is dense, Hence, since X e OR, X = Xm 

for some m. It follows that if hl, h2 are functions in 20o n 9, and h1 I m + 1 -- 

h2Im ? 1, then 

I **(hi) - **(h2) I < 1/N . 

(In fact, let g = hi I m + 1. Then, by Lemma 1.10 (4), A(g) e X. It follows 
that for some q e Q. 

A(g) IF- s(F)- q < 1/(2N) . 

Hence I I*(hi) - q I < 1/(2N), i 1, 2.) It is now clear that A* is continuous. 

So A* is, in 9, a continuous one-one map of 2w into U. Since 2w is com- 

pact, A* is a homeomorphism. Hence U contains the perfect set 

(A* [2s]co 

(Our proof that every DRl-R-definable subset of 'A is countable or contains 
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46 ROBERT M. SOLOVAY 

a perfect subset is, essentially, a slight refinement of the following result of 
Levy [9]: Every uncountable 911-R-definable subset of 91 has power 2w0.) 

1.12. We now wish to consider the following situation. Let A c R2, in 
91. Suppose that 

VX3y<X, y> e A 

holds in 01; here x, y range over R. Suppose finally that A is 61R-R-definable. 
We shall show that there is a Borel function, h: R R in Ol such that 

<x, h(x)>eA 
for almost all x. Thus h is a choice function, which selects a y in 

A= {yI<x, y>A}l 
for almost all x. 

Since the axiom of choice holds in 01, there is a choice function h in '9 
defined for all x. Later, we will give an example of an A for which there is 
no OR-R-definable h such that for all x, h(x) e A,. 

We now give an outline of the proof. 
(1) We construct a provisional h which is 911-R-definable and is defined 

almost everywhere. Using the fact that 9R-R-definable subsets of R are 
Lebesgue measurable, it will then be easy to alter h on a set of measure zero 
to make h Borel. 

(2) We may reduce ourselves to the case that A is OI-definable. 
(3) Since almost all reals in 9l are random over Oil, we need only define 

h(x) for x random over DR. 
(4) Using an argument similar to that of Lemma 1.7, we show that there 

is an 9ll-definable function q(x, y) and an ordinal ? < Q such that whenever 
x is random over OR, and F: O - is an 9ll[x]-generic collapsing map, then 
q(x, F) e Ax. 

(5) To complete the proof, we show that there is an DR-R-definable 
function A(x) such that whenever x is random over 9Dl, *(x) is an DR[x]- 
generic collapsing map mapping co onto s. (We then put h(x) = (x, A(x)).) 

We turn to the details. 

LEMMA 1. Let h e A map R into R; suppose that h is OR-R-definable. 
Then there is a Borel function h, such that 

{x I h(x) = hj(x)} 
has measure zero. 

PROOF. For r e Q, let 

U, = {x h(x) < r}. 
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A MODEL OF SET-THEORY 47 

Since U, is Oll-R-definable, there is a Borel set B7 and a Borel set of measure 
zero N, such that 

U, A B, C N,.. 

Let N = UN,. Then N is a Borel set of measure zero. Put h1(x) = h(x) for 
x N; h,(x) = O if xeN. 

If r _ 0, re Q, 

{x h,(x) < } = U, - N. 

If r > 0, r e Q. 

{Ix h,(x) < r} = U, U N. 

Thus h, is Borel. The lemma is now clear. 
As usual, we may assume that A is 9)1-definable (by extending 'OR if 

necessary). 
We use a1, a2, etc. to denote parameters from en. Since A is 9D-definable, 

there is a set-theoretical formula, *1(a,, x, y) such that 

'19 I= Al(a1, a, Y) < o<x, y> e A . 

Now let x, be random over en. Then we can find an 9r(x1]-generic filter 
G, on Q such that 9 = OR9[x1][GJ]. Select a y, e Az1. By the results of I. 3.4, 
y1 e 9lR[x][Gf1] for some t, < Q. Apparently ? depends on our choice of x, and 
G1. However, we have the following lemma. 

LEMMA 2. There is a < K Q such that for all reals x random over 9k 
and all filters G on fl generic over 911[x], the set 

Ax n 9R[x][Ge] 

is non-empty. 

PROOF. We extend $Q to a language M" as follows: for each a G 9k1, we 
adjoin a constant a; there are two additional constants x and G. 

Let x be a real random over OR and G an 9111x]-generic filter on 9l. We 
interpret 2" in OR[x, GI in the obvious way. (Thus, variables range over 
91R[x, GI; x denotes x; G denotes G, etc.) 

Let TP2() be a formula of 2" which expresses the following: 
e is an ordinal less than Q, and 

Ax n f91[x][Gt] # 0. 

We now fix a real x random over 9O1 and an 9I[x]-generic filter G on a. 
By Lemma I.3.4, there is a e < Q such that 

OR1[x][G] 1= TA,0 
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48 ROBERT M. SOLOVAY 

Let p e G force P2(e). (We are viewing Ol[x]J[GI as a Cohen extension of 911[x].) 
We say that in fact 

0 1H N2()Av 

Otherwise, there is a p' e 9iP such that p' 1 i 2(e). We select a bijection 
AT of co such that w,,(p') is compatible with p. (Notation as in I ? 3.5.) A glance 

at the definition of i*,, shows that 

R[7f*(G)I] = R[GI. 

Hence an argument similar to the proof of Lemma I.3.5 will show that 

wr*(p') 1 -7 NPAO - 

This is absurd since p 1 T2($) and p and wr*(p') are compatible. 
We can find a formula T3(X, i) such that ?[x] t P3(X, i) if and only if 

DR[x][G] K "0 K P2(e)" 

We know (viewing D1[x1 as a Cohen extension of OT) that the following 

are forced: 

(1) 3d < Q P3(X, $), 

(2) e < d' < Q and P3(X, i) T3(x, i'). 

By Zorn we pick inside On a maximal family {<bi, Hi>: i e I} such that 

(3) {bi: i e I} is a pairwise disjoint family of non-zero elements of 93,; 

<i K Q. 
(4) bi 1lF 4rAX9 ti) 

Using (1) and (3), we see that sup {b,: i e I} is the unit of 93,. Using the 

fact that f13, satisfies C.C.C., we see that I is countable. Hence if d 

sup fti: i eI19 d < Q. By (2), 

bi 1_ NPAX9 0) 9 i G 

It follows that KF P3(X, 0). (For example, from Theorem 2.8 of II.) Using the 

relation between T3 and T2 we see that d satisfies the requirements of the 

lemma. 
We let i0 have the property ascribed to e in Lemma 2. We may assume 

d= t+ 1. 

LEMMA 3. Let x be a real of O6 random over OR and let GI( be an 
DR[xJ-generic filter 91o. Then 

DR[xJ[GfoJ n Ax 0 0 

PROOF. Suppose not. Fix x, G?o witnessing the fact that the lemma is 

false. By Lemma I.4.6, we can find an OlR[x]-generic filter G on 9fl with 

G n zoo = G?o, and such that 

A = O[x][G] . 
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A MODEL OF SET-THEORY 49 

But now our assumption on x and Gio contradict Lemma 2. 

LEMMA 4. Let \ - 2card(e0) as computed in enR. Then X is countable in 
91. Let F: w A, be surjective. Then for any real x random over O1i, 

(TR[x,F]flnAx 0 . 

PROOF. Since Q is inaccessible in OR, X < Q. Hence X is countable in ')I. 
It is easy to see that 

card (FI,) = card (e%) 

in OR. Moreover, standard arguments show that if x is random over OR, then 
OR and Of[x] have the same cardinals, and that 

(2 card(eo) )6 =(card(1,)),, (2 )m (2 mx 
(The essential point is that U, satisfies C.C.C. For details, cf. e.g. [12].) 

Thus, in ODR[F, x], we can enumerate the dense subsets of 9)1o lying in 
OR[x]. It follows that there is an 9R[x] generic filter on 9C, G, lying in OR[F, x]. 
The lemma now follows from Lemma 3. 

The following lemma is standard, and we omit the proof. Let F be as in 
Lemma 4. Note that F is definable from a real, by I. 1.12. 

LEMMA 5. There is an OR-R-deflnable function *r(x) such that for any 
real x, +(x) is a well-ordering of the reals of O1f[F, x]. 

We now put it all together. Define h: R O R as follows: h(x) is the 

*(x)-least member of Ax n OR[F, x] if this set is non-void. Otherwise, h(x) = 0. 
By Lemma 5, h(x) is OlR-R-definable. By Lemma 4, h(x) e A. for all x random 
over OR. By Lemma II.2.1, it follows that h(x) e A. for almost all x. By 
Lemma 1, we can alter h on a set of measure zero, so that it is Borel. 

1.13. In a totally analogous way, we can prove that if A is as in 1.12, 
there is a Borel function h such that h(x) e A. for all but a first category set 
of X.'s. 

The following lemma is known. 

LEMMA. Let h: R -O R be Borel. Then there is a set N of the first 
category such that h I R - N is continuous. 

The proof is similar to the proof of Lemma 1.12.1. We omit the details. 
The lemma implies a similar property for OR-R-definable functions. 

1.14. It is now easy to complete the proof of Theorem 2. It follows from 
the results recalled in I.14 that 01 is a model of ZFC. 

From work of Gidel (cf. [1, Ch. 3]) it is known that if ZFC + I has a 
transitive model, then so does ZFC + I + GCH. We now sketch a proof that 
if GCH holds in DR, it also holds in M. (Our proof would be slightly more 
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natural in terms of the concepts of [12].) 
Since GCH holds in O91, Q is strongly inaccessible in 'DR. 
We let 6 be the collection of subsets of ffl in 911 of cardinality less than 

Q. 6 has cardinality Q. Let 0 be a cardinal of 91. Let (6 be the collection 
of maps of 0 into 6 lying in O9i. We define a map h: 6& P(0)c, in 91, as 
follows: if g C),, h(g) = {a < 0: g(a) n G # 0}. Using the GCH in 911, the 
cardinality of 6. is easily computed. We leave this to the reader. This 
computation shows that GCH holds in 9i provided h is surjective. 

To see that h is surjective, let A e P(0)0,. We fix a definition $D of A. 
Thus A = {a: 91 # $((a, G)}. For each a < 0, let T, be a maximal pairwise 
incompatible family of conditions that decide $((a, G) and let 9a be the subset 
of WFa consisting of conditions that force $Q(x, G). Then Lemma I.3.3 shows 
that a e G6. Define g e &3 by g(a) = Id. We leave it to the reader to verify 
that h(g) = A (cf. the proof of Lemma I.3.4). This completes our discussion 
of the GCH in 91. 

To complete the proof of Theorem 2, we must verify that the analogues 
of (2) to (5) of Theorem 1 hold in 91. In view of the results of ?? 1.1-1.13, it 
suffices to cite the result proved in ? 2.8 below, that every set of reals definable 
from a countable sequence of ordinals is OlR-R-definable. 

1.15. We now give an example of an A which has no O9-R-definable 
cross-section. We put 

A ={<x, y>: y is not 911-definable from x} . 

It follows from the techniques of [11] that A is 9K-definable. 

LEMMA. Let x e R. Then there is a y not O)R-definable from x. 

PROOF. Using the techniques of [11], one shows that 

A'= {y y y is 911-definable from x} 

has an O9-R-definable well-ordering. If A' = R, then we would have an 911-R- 
definable well-ordering of R. Using this, one could construct an O91-R-definable 
non-Lebesgue measurable set. This contradicts our result of 1.5. Thus 

Ax,# 0. q. e. d. 
Suppose now that h is an 91-R-definable function mapping R into R. 

Say h is 91-definable from x c R. Then h(x) is 9R-definable from x, i.e., 
h(x) X Ax. 

2. Proof of Theorem 1 

2.1. The present method of presenting Theorems 1 and 2, in which 
Theorem 1 is essentially a corollary of Theorem 2, is due to Ken McAloon. 
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Our original approach was to prove Theorem 1 directly. (Theorem 2 is then 
an easy corollary.) Our original approach had the disadvantage that the 
verification of DC in the model for Theorem 1 was extremely delicate. With 
the present approach, it is a triviality. 

2.2. Let 9 be as in ? 1. We say that x is definable from a sequence of 
ordinals (in 91), there is an f: (o - OR, f e 91, and a set-theoretical formula 
D(v1, v2) such that, for any y e 91, 91 1= $(f, y) if and only if y = x. 

2.3. Let x be a set. It is known that there is a minimal transitive set y 
such that x e y. (The set y consists of x, the members of x, the members of 
the members of x, etc.) We call y the transitive hull of x. We say that x 
hereditarily possesses some property P if each member of the transitive hull 
of x has the property P. 

2.4. Let 91i be the set of elements hereditarily definable from a sequence 
of ordinals in 1A. (Thus 91, c 91.) 

The methods of Myhill and Scott [11] allow one to prove the following 
lemma. 

LEMMA. 0l1 is a transitive model of ZF. There is a single formula, 
P,(v,, v,), of set-theory such that for any x e 91,1 there is an f e 91, f: To HOR, 
and x is the unique y E 91 such that 

91 = (FD0(f, y)e 

Thus the formula "x e Mll" is expressible in 9A, by a set-theoretical 
formula, viz., 

(3f)(f: o OR A (y)(y = x Do(f, Iy))). 

2.5. The following lemma is clear. 

LEMMA. Every real of 9i, and every sequence of ordinals of 91 lies in 9k1. 

2.6. LEMMA. Let h: C l) Ol1, h e 91. Then h 2 911. 

PROOF. We work in 91. Let x e 911. Define an ordinal, Y(x), as follows: 
y(x) is the least ordinal X such that for some fP o - X, x is the unique y such 
that $Do(f, y). 

Let y = sup {I(h(n)): n e (ol. Well-order the set {f: f maps a into v}. Let 
wf. (o) y be the least f (with respect to this well-ordering) such that h(n) is 
the unique y such that 1j(f, y). 

Define g: Ao OR by: 

g(2m3 ) = fm(n) 

otherwise g(r) = 0. Clearly h is definable from {fm: m E w} and {fm} is definable 
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from g. Thus h is definable from a sequence of ordinals. Since, by assump- 
tion, h C 9fi it follows that h e 9O1. 

2.7. We now state the principle of dependent choices, DC. 
Let X be a set, R a binary relation on X. Suppose further that X # 0. 

Finally, we assume that 

(Vx e X)(3y e X)(xRy) . 

Then there is a map h: c - X such that, for all n e c, h(n)Rh(n + 1). 
Note that DC follows easily from AC (the axiom of choice); one simply 

defines h(n) by induction on n. 

LEMMA. DC holds in 91k. 

PROOF. Let X, R e Di, satisfy the hypotheses of DC. Since AC holds in 
9N, there is an h: w - X, h e 60, such that for all n e w, <h(n), h(n + 1)> C R. 
By Lemma 2.5, h e 9(1. Thus DC holds in DI,. 

2.8. LEMMA. Let Ae t. Then, in 91, A is 91R-R-definable. 

PROOF. We may as well assume that A is a map f of co into OR. 
By Lemma I.3.4, fe DR[GE] where c < e < Q, and e = $' + 1. By 

Lemmas I.4.3 and 1.1.12, there is a real s such that f e OR[s]. So the lemma 
is clear. 

2.9. LEMMA. In 9)l1, every set of reals is Lebesgue measurable. 

PROOF. Let A be a set of reals in 9t1. By Lemma 2.8, A is 911-R-definable 
in M. Thus by Lemma 1.4, A is Lebesgue measurable in OL. Thus there is 
a Borel set B and a Borel set N of measure zero, in 'l, such that 

(1) BAA c N. 

Let a,, a, be codes for B and N in 91. Trivially, a1 and a2 lie in C01. 

(Lemma 2.5.) By Lemma 2.5, 9N and AJ, have the same reals. Thus, by 
Theorem II 1.4, a, and a, code B and N also in 't. Clearly (1) holds in )1. 
By Lemma II.1.6.4, N has measure zero in Ot1. Thus A is Lebesgue measur- 
able in N1. 

2.10. The proof of the following lemma is totally analogous to that of 
Lemma 2.9. 

LEMMA. In M,, every set of reals has the property of Baire. 

2.11. LEMMA. In (11, every uncountable set of reals contains a perfect 
subset. 

PROOF. Let A be a set of reals in 91,. By Lemma 2.8, A is 911-R-definable 
in M. 
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Suppose first that A is countable in O1. Then Lemma 2.6 shows that A 
is countable in 01, On the other hand, suppose A is uncountable in Al. Then, 
since A is OR-R-definable in 91, there is, in 91, a perfect set K with K c A. 

Let , be a code for K. Then , e 91, and f8 codes K in 91, (cf. the proof 
of Lemma 2.9). By Lemma II.1.6.7, K is perfect in 911, and the lemma is 
clear. 

2.12. The following lemma is the key to verifying (5) in 91, 

LEMMA. Let f be, in 'R.i, a Borel function mapping R into R. Then 
f e91. 

PROOF. Using Lemma 2.5 and Theorem II.1.2 we see that every Borel 
set of reals of 0A lies in -A1. Hence, by Lemma 2.6, the indexed family 

ff-,((_ 010o q)): q e Q} 

lies in 01, It follows easily that f E:011. 
It is now easy to verify that (5) holds in 01. Let {Ax: x e R} be as in the 

statement of (5). Applying (5a) in 9I, we get a Borel function h and a Borel 
set of measure zero N such that 

x (2 N h(x) 
e 
Ax, . 

Since h, N lie in 0X1, this instance of (5a) holds in 9t11. The verification of 
(5b) is similar. 

2.13. The material in ?? 2.7-2.12 establishes Theorem 1. 

3. Proof of Theorem 3 

3.1. McAloon's idea of directly proving Theorem 2 allows one to prove 
Theorem 3 as well. (This fact was first noticed by McAloon.) We are going 
now to sketch the proof of Theorem 3. Using our sketch and the detailed 
proof of Theorem 2 given above, the reader should be able to fill in the details 
without trouble. 

3.2. 9e is a countable transitive model of ZFC + GCH + "There is an 
inaccessible cardinal". Q is an inaccessible cardinal in 911. 0 is a cardinal of 
91t with cofinality > Q. 

Let C,, be the partially ordered set appropriate to adding e generic sets 
of integers. Thus 9C, is the set of all functions f such that 

(1) domain(f) is a finite subset of E) x c; 
(2) range(f) c {O, 1}. 
Let 9 = .9 x 9.. Let G be an M91-generic filter on 9. Let 912 be 91l[G]. 
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3.3. LEMMA. Let Xc Oil be a pairwise incompatible family of elements 
of 91P. Then, in Oir, 

card (X) < Q. 

(The proof is similar to that of Lemma I.3.3.) 
This lemma has the following consequences. 
(1) Q - 8 )l1 (cf. Corollary I.3.3). 
(2) If X > Q. X is a cardinal in r01 if and only if X is a cardinal in 0it2 

By standard methods, one can compute 28- in N.2. One gets 
(3) 210 = 0 in N')12. 

(Example. Suppose 0 is the least cardinal of O)R > Q. Then in 0112, 2` 1 2.) 

3.4. Let A C OR, A c 0. Let W'1 = {f e 9: domain (f) c A x o)}. 
The following lemma is the analog of Lemma I.3.4 and has a similar 

proof. 

LEMMA. Let f: a ) OR, f 2 A,. Then there is a Q < Q, and a subset A 

of 0 such that: 
(1) A C Olt, and in OR, card (A) < Q. 
(2) f e OR[G n( xA). 

3.5. The following lemma is the analog of Lemma I.4.3 and has a similar 

proof. 

LEMMA. Let A e R11, A c 0, and suppose 

card (A) ? card (v) < Q 

in OU. Let G be an 'AT-generic filter on cP';+- x O A.Then there is an OR- 

generic collapsing map F: wt) t with Oll[G] = O1R[F]. 

3.6. Using Lemmas 3.4 and 3.5, one can adapt the proof of Theorem I.4.1 
to prove 

LEMMA. Let fc 0T12, f: w) OR. Then there is an ORl[f]-generic filter, 

G1, on such that 
011[f ] [G1] = ()12 

3.7. The following is the analog of Lemma I.3.5 and has a similar proof. 

LEMMA. Let (P be a sentence of 2' not containing G. Let 0 be the 

minimal element of CP. Then 0 decides (D. 

3.8. Using Lemmas 3.6 and 3.7, one can imitate the discussion of ? 1 and 

prove 

LEMMA. Let A e 0I2 be a set of reals which is Oil-R-definable in 2 

Then A is Lebesgue measurable and has the Baire property. If A is un- 

countable, A contains a perfect subset. 
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The proof of Theorem 3 is now clear. 

3.9. Using the product lemma (Lemma I.2.3), we see that the model of 
Theorem 3 is obtained from the model of Theorem 2 by the (extremely well- 
understood) process of adding generic reals. Hence the possible cardinalities 
of 28 in the models provided by the proof of Theorem 3 are equally well 
understood. 

4. An extension of Theorems 1 -through 3 

4.1. Theorems 1 through 3 state that certain subsets of the reals are 
well-behaved. In this section we replace R by an arbitrary complete separable 
metric space X, and Lebesgue measure by a totally a-finite measure space e. 
We shall discuss, very sketchily, a proof of the following theorem. 

THEOREM. The following is valid in 91,: Let X, ,e be as above, and let 
A c X. Then A is , measurable, A has the property of Baire, and A is 
either countable or contains a perfect subset. 

PROOF. One first re-does the material of II for the space X. (There are 
a few technical tricks needed to re-do II in this generality, which we shall 
not discuss.) One then works with, e.g., the e-random elements of X in 
proving that A is Lebesgue measurable (first in ',,A, and then in .1) Similarly, 
one proves A has the Baire property. 

To prove that if A is uncountable, it contains a perfect subset, we invoke 
the following theorem of ZF + DC: Any separable metric space imbeds 
homeomorphically into the Hilbert cube (cf. [6, p. 125]). This reduces the 
problem to the special case when X is the Hilbert cube. The argument given 
in ? 1 in the case X = R adapts easily to this case. 

UNIVERSITY OF CALIFORNIA, BERKELEY 
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