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AN ARITHMETIC-GEOMETRIC METHOD IN THE STUDY OF 

THE SUBGROUPS OF THE MODULAR GROUP 


1. Introduction (1.1). Let r = PSL2(Z) denote the inhomoge- 
neous modular group acting on the upper half plane H in the standard 
way: 

We shall denote the element in (1.1.1) sometimes by its matrix form 

with the understanding that A and -A define the same element. Among 
the subgroups of l- the congruence subgroups such as 

have been the objects of detailed studies due to their significance in the 
arithmetic of elliptic curves, integral quadratic forms, elliptic modular 
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forms etc., cf. [HI, [Fri], [FK] for the early accounts, and [An], [ 0 ] ,  
[R],,,,,, [S] for the modern accounts. In these studies as a means of 
potentially useful geometric visualization one often tries to construct 
fundamental domains. Thus there is an explicit fundamental domain for 
T O ( p )where p is a prime, cf. [S] p. 88, and for r , ( p )  in [Z], p. 377, cf. 
also Fricke, [Fri] Chapter 3, p. 349. This is constructed out of certain 
tiles of the well-known modular tessellation T. In a related work 
J.  Nielsen, cf. [N], constructed a fundamental domain for the subgroup 
of the triangle group A,,,,, which uniformizes the surface r (p ) \H  com-
pactified by adjoining its cusps. This is done for p > 5 for which 2 is 
either a primitive root or a square of a primitive root. Besides these 
constructions except for certain low values of N no general method for 
constructing the fundamental domains for T ( N ) or T , ( N )  seems to be 
known. 

(1.2). H .  Rademacher, in connection with his work on modular 
forms and Dedekind sums, cf. [R],.,, was led to introduce another facet 
to the study of these congruence subgroups. H e  notes that l- - Z, * Z, 
as an abstract group, and so by Kurosh's theorem any of its subgroups 
is a free product of a certain number of the copies Z ; s ,  Z i s ,  and Z ' s .  
A system of generators S for a subgroup Q, of T is said to be independent 
if Q, is a free product of the cyclic subgroups ( x ) ,  as x runs over S. In 
[R], Rademacher asked for a construction of an independent system of 
generators for r , ( N ) ,  and using the Reidemeister-Schreier process gave 
a procedure for such a construction in the case of T O ( p ) ,where p is a 
prime. See also Frasch, [F]. Only relatively recently this work has been 
extended by Chuman, cf. [C], for r O ( N ) ,where N is an arbitrary natural 
number. In [R],, [F], or [C] the problem is not related to the construc- 
tions of fundamental domains. Now it is well-known that once a hy- 
perbolic polygon which is a fundamental domain for a group is con- 
structed such that its translates by the group form a locally finite 
tessellation then its side-pairing transformations form a system of gen- 
erators for the group. However this procedure in general may not lead 
to an independent system of generators. In fact it is easy to see that the 
side-pairing transformations for the fundamental domains for T U ( p )or 
T,(p)  referred to in (1.1) do  not form an independent system of gen- 
erators. 

(1.3). A motivation for this paper was to construct fundamental 
domains for r ( N )  and T , ( N )  so that the side-pairing transformations 



1055SUBGROUPS OF THE MODULAR GROUP 

form an independent set of generators. In the process however we were 
led to a partly geometric, partly arithmetic method which applies to all 
subgroups of finite index in the modular group. The geometric part goes 
as follows. First it is essential to replace the standard modular tessellation 
by the extended modular tessellation 9"corresponding to the extended 
modular group T* which is generated by r and z ++ -2. A special 
polygon is a convex polygon of finite hyperbolic area in H which is made 
up of the tiles of 9"and which satisfies certain other conditions. Each 
of its sides is either a r-translate of the complete hyperbolic geodesic 
joining 0 to a or  else it is a geodesic segment joining a fixed point of 
an elliptic element of order 3 to a cusp. Moreover there are certain 
admissible procedures for the side-pairing, cf. Section 2 for details. In 
Section 3 we prove 

THEOREM.A special polygon is a fundamental domain for the sub- 
group generated by  the side-pairing transformations and these transfor- 
mations form an  independent set of  generators for the subgroup. Con-  
versely every subgroup of  finite index in r admits a special polygon as a 
fundamental domain .  

(1.4). The arithmetic part of the method goes as follows. A special 
polygon has one vertex at and its other vertices which lie in R U {a) 
are rational numbers which form a generalized Farey sequence--or a 
g.F.S.  for short-in the sense that for any two consecutive vertices :, 
$ (reduced fractions) we have ad - bcl = 1.  Moreover the side-pairing 
of the special polygon imposes a certain additional structure on this 
g. F.S.. This motivates the notion of a Farey symbol  which is a gener- 
alized Farey sequence with a certain extra structure, cf. Section 5 for 
details. The special polygons are in a natural 1-1correspondence with 
the Farey symbols. A procedure for a construction of the fundamental 
domains for T(N) and r , ( N )  is given in terms of appropriate Farey 
symbols. This program is carried out in Sections 12-13, and Appendices 
2-4. 

(1.5). We now indicate the contents of the paper in more detail. 
Besides a special polygon and a Farey symbol we introduce two other 
graph-theoretic objects: tree diagrams and bipartite cuboid graphs in 
Section 4.  The relationships among these various notions may be readily 
discerned from the diagram in (5.4). An important geometric result is, 
cf. Theorem (4.2), The  bipartite cuboid graphs are in  a 1-1 correspon-



1056 RAVI S.  KULKARNI 

dence with the conjugacy classes of subgroups of finite index in T. An 
earlier version of this result appears as a special case of a more general 
result on finitely generated noncocompact Fuchsian groups, cf. [K]. In 
a completely different context related to computing volumes of the 
moduli spaces of Riemann surfaces this result has come up in some work 
of R .  Penner, cf. [PI. 

In Theorem (6.1) there is a procedure for obtaining an independent 
set of generators for a subgroup given by a Farey symbol. Section 7 
contains procedures to compute the geometric invariants such as the 
genus, the number and widths of cusps etc. for a subgroup given by its 
Farey symbol or tree diagram. We also give there a very short proof of 
a theorem of Millington, cf. [Mi]. The geometric interpretation of a 
finite continued fraction is given in Section 8. It implies that if a g.F.S. 
contains a given rational number x ,  then it must also necessarily contain 
some other rational numbers which can be determined from the con- 
vergents of x. This property of a g.F.S. is very useful in constructing a 
Farey symbol for an arithmetically or otherwise given subgroup. 

(1.6). In Sections 9 to 11 we study conjugations in the extended 
modular group T" and its subgroups. This study was largely motivated 
by some of the remarkable regularities we observed in the Farey symbols 
for r,(N) when N is a prime and their lack of it when N is not a prime. 
A geometric reason for this lies in the following fact: let T$(N) denote 
(r,,(N), z H -5).Then the boundary of ro*(N)\H, when N is a prime, 
has a relatively simple structure. Let @* be an arbitrary subgroup of 
finite index in r"containing a reflection. In r" there are two conjugacy 
classes of reflections, cf. (9.6), whereas in a general @* there are usually 
several. Roughly speaking they are classified by the boundary compo- 
nents of @*\H,cf. (10.5) for a precise statement. An interesting fact is 
that there are precisely six possible geometric structures on a neigh- 
borhood of a boundary component of @"\H,cf. (10.6). Let @ = @* n 
T which is subgroup of index 2 in @*. There is a canonical reflection 0 
on @ \ H  and @\HI(0)= @"\H in a natural way. In Section 11 we have 
investigated the question whether it is possible to lift 0 to a reflection 
on a suitable special polygon which is a fundamental domain for @. A 
necessary and sufficient condition is given in (11.3). 

(1.7). The main arithmetic applications are in Sections 12, 13, and 
(14.11)-(14.14). In Sections 12 and 13 we note some special properties 
of T1(N)and r , (N)  and show how they lead to a convenient procedure 



1057 SUBGROUPS OF THE MODULAR GROUP 

for constructing a Farey symbol, hence a fundamental domain, for 
r l ( N ) ,  r o ( N ) ,  and T(N). In particular for Tu(p), where p is a prime, it 
is possible to lift 0 on r ,*(p) \H to a reflection on a special polygon which 
is a fundamental domain for Tu(p), cf. Theorem (13.5). So the work of 
constructing a Farey symbol for To(p) is reduced by 50%! The Appendix 
3 which was constructed quite easily by hand lists Farey symbols for 
To(p), where p is a prime less than 100. Such calculations could be 
extended quite substantially especially using a computer. The work in 
Section 14 was motivated by a desire to recover (13.5) for T,(N) for a 
general N. We first use the work in Section 10 and briefly outline a 
procedure for obtaining fundamental domains for an arbitrary subgroup 
of finite index in T*. Two modifications of the notion of a special poly- 
gon, namely a special "-polygon and a weak *-polygon are developed 
and the arithmetic procedures are suitably modified. Roughly speaking, 
two consecutive vertices :, $ (reduced fractions) in a *-g.F.S. satisfy 
lad - bcl = 1,  o r  2, and the extra structure to make it into a *-Farey 
symbol allows for conjugations in T* and encodes information about 
corners with angles o r  ? in the boundary. Every subgroup of finite 
index in T* (except T* itself and one other subgroup of index 2 in T*) 
admits a special *-polygon as a fundamental domain. It turns out that 
for N 2 4, the boundaries of both r l * ( N ) \ H  and r;T(N)\H contain no 
corners. This fact substantially allows to recover (13.5) for To(N), and 
correspondingly also improves the result (12.2) on T1(N) and T(N) 
partially. 

It should be pointed out that the procedures for constructing Farey 
symbols or *-Farey symbols involve some trial and error. The property 
of a g.F.S. mentioned in (1.5) above somewhat reduces this trial and 
error. However it would be of interest to develop better arithmetic 
algorithms to further reduce or eliminate this trial and error. 

Still, when N is a prime the Farey symbols for Tu(N) exhibit certain 
remarkable properties, cf. Appendix 3. A t  the beginning of (A3.7) we 
have given some empirical rules for constructing the Farey symbols for 
r ,(p),  p a prime. For p < 100 we observed that the congruences which 
need to be satisfied for constructing these Farey symbols can actually be 
lifted to equalities in natural numbers. This may well be true for all 
primes and there may be some explanation for this in "elementary" 
number theory. But as yet we are missing such an explanation, nor do  
we have an arithmetic justification whether the empirical rules men- 
tioned above will always work for all primes. 
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(1.8). The geometric interpretation of a finite continued fraction 
given in Section 8 may be useful in other contexts. It is different from 
the usual "Euclidean" interpretation as in e.g. [St], Chapter 7. The 
interpretation may be extended to the case of an arbitrary real number. 
In that form it comes close to the interpretation due to Artin, cf. [A], 
which is beautifully explained by Series, cf. [Se]. 

(1.9). As mentioned above, except for two exceptions, a subgroup 
of finite index in r*admits a special *-polygon as a fundamental domain. 
This implies an elementary structural property, cf. (14.7), which seems 
to have gone unnoticed in the vast literature on this subject: except for 
two exceptions, a subgroup of finite index in T* is isomorphic to a free 
product offinitely many copies of Z,, Z,, Z ,  Z: and S,. (Here S3denotes 
the symmetric group on three letters.) A system of generators adapted 
to this structure is called quasi-independent, cf. (14.5) for a precise 
definition. This notion is a reasonable substitute for the Rademacher's 
notion of independent system of generators of a group which in general 
cannot exist for subgroups of r*.The side-pairing transformations of a 
special *-polygon for a subgroup of T* form a quasi-independent system 
of generators for the subgroup; if a special *-polygon does not contain 
a corner with an angle f or in its boundary then the system is actually 
independent. In particular for N 4, both Tu*(N) and T'*(N) admit 
independent system of generators, cf. (14.14). 

(1.10) The work of Rademacher mentioned earlier is based on 
the Reidemeister-Schreier method which is a very general method of 
finding a presentation of a subgroup of a finitely presented group. In 
the present context of the modular group the method based on Farey 
symbols is much more efficient. Roughly speaking in the Reidemeister- 
Schreier method one starts with the computation of coset representa- 
tives. In terms of fundamental domains the coset representatives are in 
1-1 correspondence with the tiles of the modular tessellation contained 
in the fundamental domain of the subgroup in question. The number 
of vertices of a special polygon is about one-third of the number of tiles, 
cf. (7.2), and moreover since these vertices form a g.F.S. the implied 
arithmetic properties substantially reduce the work. Moreover the ad- 
ditional symmetries which may be "liftable" to a Farey symbol may 
further reduce the work. For example using the symmetries coming from 
z H z + 1 and z H 1 - Z which normalize T(N) the work for r ( N )  is 
further reduced by a factor of 2N. At  the same time the method gives 
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independent or quasi-independent generators of a subgroup in a matrix 
form. 

(1.11). There are possible uses and generalizations of the present 
work in other contexts. The method of (3.2) and (6.1) and their later 
modifications in Section 14 may be used in various construction prob- 
lems. For example it may be used to construct noncongruence subgroups 
of small indices starting with 7. (This was suggested to us by C. Moreno.) 
Also it may be easily modified to generate subgroups of infinite index 
in a concrete way which exhibit interesting function-theoretic properties. 
The method should partially extend in the case of Hecke groups 
.= Z, * Z,, where p is a prime. For example it is easy to see that the 
Theorem (4.2) generalizes to cover this case if one replaces the cuboid 
graphs by the graphs in which every vertex has valence 1 or p. The 
geometric part essentially generalizes to all Fuchsian or Kleinian groups 
with cofinite volume and precisely one cusp and the arithmetic part 
would be expected to carry over to the cases such as the Hecke groups 
and the Bianchi groups. 

(1.12) Acknowledgments. This work was begun in 1986 at the 
Max-Planck-Institut (Bonn). The author is thankful to W. Neumann, 
A.  Ogg and D. Zagier for their comments and guidance to the literature 
in the initial stages of this work. I am especially indebted to Steven 
Weintraub for detailed comments on the first draft of this paper. His 
insistance on clarity led to a careful description of the possible bound- 
aries of the quotients of the hyperbolic plane by the subgroups of T*, 
cf. (10.6), which in turn led to the major improvements now incorpo- 
rated in (14.11) and (14.12). Thanks are also due to M. Sheingorn for 
pointing out the reference [C]. The final draft of the paper was com- 
pleted at the Mittag Leffler Institute. 

2. Special polygons (2.1). In the upper half plane model H of the 
hyperbolic plane let 9*be the hyperbolic triangle with vertices at i = 

m,p = exp(?), and a.The extended modular group T*as defined 
in (1.3) is the group generated by reflections in the edges of 9*.This 
follows easily from the fact that the union of 9*and its image under 
z H -5 is the standard fundamental domain for T.Moreover r*may 
also be identified with the group PSL: (Z)  of 2 x 2 integer matrices 
with determinant 1 or - 1, modulo its center ( - I )  where I denotes the 
identity matrix. Under this identification an element 
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with determinant 1, i.e. an element of r ,  acts as in (1.1.1), whereas 
with determinant - 1 it acts by 

The r*-translates of 9"define the extended modular tessellation 9" 
of H .  The boundary of H consists of the real axis R and a.Each complete 
geodesic of H has two distinct endpoints on the boundary. The elements 
in the r*-orbit of i will be called the even vertices of 9*and those in 
the r*-orbit of p will be called the odd vertices of 9 * .  The r"-orbit of 
CXI consists of rational numbers and they are the cusps of 9 " .  The elements 
in the r*-orbit of the edge joining i to m,  resp. the edge joining p to 
will be called the even edges resp. the odd edges of 9 * .  Each of these 
edges has infinite hyperbolic length. Each of the edges in the r*-orbit 
of the edge joining i to p has finite hyperbolic length. These edges will 
be called the f-edges of 9 " .  

(2.2). The following properties of T* are presumably known. But 
since we do  not know a reference we briefly sketch the details. The 
reader should note that the following procedure involves only rational 
numbers and so it may be readily implemented on a computer to draw 
fairly accurate pictures of finite portions of 9":. Throughout we agree 
to consider a as A ,  and write rational numbers in the reduced form X 
with b > 0. An integer n is to be regarded as y.  

PR~POSITION.i) The even edges come in pairs, each pair forming 
a complete hyperbolic geodesic. These geodesics are precisely the ones 
with end-points :, satisfying lad - bcl = 1 .  Each of these geodesics 
contains an even vertex. r acts transitively o n  these geodesics and the 
stabilizer subgroup of r preserving any one of these geodesics is iso- 
morphic to Z2 which fixes the even vertex. 

ii) A pair of odd edges and a pair of  f-edges form a complete hy- 
perbolic geodesic. The geodesics obtained in this way are precisely the 
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ones which have endpoints y ,  satisfying lad - bcl = 2. Each of these 
geodesics contains an even vertex and a pair of odd vertices. Again l-
acts transitively o n  these geodesics and the stabilizer subgroup of l- pre-
serving any one of these geodesics is isomorphic to Z2 which fixes the 
even vertex. 

iii) If f ,  $ are the end-points of  a geodesic of type ii) then a = b (2) 
and c = d (2). 

(Note: For the computation of "ad - bc," as remarked above a is 
to be regarded as i.Thus the half-lines x = n ,  n E Z ,  y > 0, consist 
of two even edges, and the half-lines x = n + i, n E Z, y > 0 ,  consist 
of two f-edges and two odd edges.) 

Proof. First notice that under the action of r or l-* every pair of 
rational numbers {:, $1 is equivalent to exactly one pair of the form 
{a,5)where d' = lad - bcl and 0 5 b' < d ' ,  ( b ' ,  d ' )  = 1. In particular 
lad - b c  is a complete invariant of such pairs when its value is 1 or 2. 
So the first part follows as it is true for the geodesic joining a = to 
0 = y .  Similarly the second part follows as it is true for the geodesic 
joining - 1 = to 1 = t or also for the geodesic joining rn to 4. As 
for the third part notice that it holds for the pair { - 1, 1) (or {m,i)), 
and a simple computation shows that it holds for the translates of this 
pair by T. q.e. d. 

(2.3). For simplicity the complete geodesics which are unions of 
two even edges will be called the even lines, and the complete geodesics 
which are unions of two f-edges and two odd edges will be called the 
odd lines. 

(2.4). We now define a special polygon which is a certain type of 
a convex hyperbolic polygon with certain rules for side-pairing. Let P 
be a convex hyperbolic polygon with boundary dP which is a union of 
even and odd edges. The following is assumed. 

S,)  The even edges in dP come in pairs, each pair forming an even 
line. 

S2) The odd edges in dP come in pairs. The edges in each pair meet 
at an odd vertex making an internal angle $. 

A side-pairing is an involution on edges so that no edge is carried 
into itself and the following rules hold. 
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S,) An odd edge e is paired to the odd edge f which makes an 
internal angle ? with e .  

S,) Let e ,  f be two even edges in dP forming an even line. Then 
either e is paired to f ,  or else e ,  f form a free side of P and this free 
side is paired with another such free side of P. 

The odd edges, the even edges which form a complete geodesic 
and which are paired, and the free sides as defined above will simply 
be called the sides of P.  The points of intersection of the adjacent sides 
including those on dH are called the vertices of P.  We finally assume 

S,) 0 and ~ r ; rare two of the vertices of P.  

A special polygon is a convex hyperbolic polygon satisfying S ,  -
S, . 

Notice for emphasis that a special polygon does not contain any 
f-edge in its boundary. Indeed every side of P has at least one endpoint 
which is a cusp-vertex. So in fact S2is a consequence of this fact and 
the convexity of the polygon. 

As an example for S, )  and S,) we have the even line joining 0 to 
x for which the quantity lad - bcl = 1.  We consider i as a vertex of 
P iff we are in case S,) ,  i.e. the two even edges meeting in i are paired. 
As an example for S2) we have the union of odd edges joining to p 
and p to 0. Here p will always be a vertex of P. Also notice that the 
cusp-vertices on these odd edges still satisfy lad- bcl = 1. Thus in any 
case neglecting the vertices of P which lie in H we see that any two 
consecutive cusp-vertices of P always satisfy a d  - bcl = 1.  

(2.5). Let P be a special polygon. Note that P has a canonical 
orientation induced from that of H and so it induces a canonical "coun- 
terclockwise" orientation on each of its sides. In view of the assertion 
about the stabilizers in the above proposition it follows that if e ,  f are 
two sides which are paired then there is a unique element in  r which 
carries e into f in  an orientation-reversing manner.  The elements of l-
obtained this way will be called the side-pairing transformations of P. 
Also the subgroup of l- generated by the side-pairing transformation 
will be denoted by Qp.  

(2.6). A special polygon has a shape as indicated in the following 
figure. 
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3. Admissible fundamental domains (3.1). Let @ be a subgroup 
of finite index in r. In this paper we shall consider only those funda- 
mental domains for (9 which are convex hyperbolic polygons of finite 
hyperbolic area consisting of the tiles of the extended modular tessel- 
lation T*,cf. (2.1). It is wellknown that for such a fundamental domain 
there are elements of (9 which identify its sides and these side-pairing 
transformations generate (9. Such a fundamental domain will be called 
admissible if its side-pairing transformations form an independent set 
of generators. 

(3.2) THEOREM.Let P be a special polygon, and (9, the associated 
slnbgrolnp of r as defined in  (2.5).  Then P is an  admissible fundamental 
domain for @,. Moreover Q p  is free if and only if P has only free sides. 

Proof. By the standard arguments, as in for example [Si] Chapter 
3, Section 9, Theorem 1, we see that P is a fundamental domain for 
@,. So the space obtained by identifying the sides of P by the side- 
pairing transformations associated to P ,  cf. (2.5), has a complete hy- 
perbolic metric (with singularities corresponding to the branch points). 
So the conditions for the application of the well-known theorem of 
Poincark on fundamental polygons as developed by Maskit, cf. [MI, are 
fulfilled. This allows one to see a complete set of relations among the 
generators given by the side-pairing transformations. In our case these 
relations are of the form 2 = 1 corresponding to the side-pairing of 
the type S3, and x2 = 1corresponding to the first alternative in the side- 
pairing of type s,,cf. (2.4). These relations appear if and only if P has 
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vertices in H ,  i.e. P has a nonfree side. This precisely means that the 
side-pairing transformations are independent. q.e. d. 

(3.3) THEOREM. Every subgroup @ of finite index admits an ad- 
missible fundamental domain which is a special polygon P so  that Q, = 

@ P .  

Proof. Let Q, be a subgroup of finite index in T.First we describe 
the nature of all the hyperbolic polygons which are fundamental domains 
for @ and which are made up of the tiles of T*. Let So denote @ \ H ,  
and let p : H + So denote the canonical projection. Since Q, preserves 
9"we have an induced tessellation of Sa. The p-images of the even 
vertices, . . . , f-edges, cf. (2.1), in Sa will again be called the even 
vertices etc. in So. Notice however that there are two types of even 
vertices, (resp. odd vertices) in Sa,  namely type 1: those which are 
incident to a single f-edge, and type 2: those which are incident to two 
f-edges (resp. three f-edges). Now if P is a hyperbolic polygon which 
is a fundamental domain for @ then p(P)  = So, p is injective on the 
interior of P and it identifies the sides of P in pairs. Conversely let A 
be a subset of the edges of So, and let PAbe the space obtained by 
cutting So along A.  If PAis connected and simply connected then de- 
veloping PAisometrically along the tiles of 3"we obtain a polygon P ,  
and some translate of P by an element of l- serves as a fundamental 
domain for @. (Notice that P itself may not be a fundamental domain 
for @ although it is surely a fundamental domain for some conjugate of 
@ in r.This uses the fact that r is the full group of orientation-preserving 
symmetries of 9 * . )  

Let %/denote the union of f-edges in Sa. We consider %/ as a graph 
whose vertex set consists of the even vertices and odd vertices in So and 
the edge set consists of the f-edges in So. Since the union of f-edges in 
H is a connected set so is %/. Let T be a maximal tree in %/. A vertex 
of valence 1will be called a terminal vertex. Notice that the even vertices 
and odd vertices of type 1 are necessarily terminal in %/ and so also in 
T. However some of the even vertices and odd vertices of type 2 may 
also be terminal in T although they are not terminal in %/. Let A be the 
union of all the even edges in So incident with the terminal even vertices 
in T together with all the odd edges which are incident to the odd vertices 
of type 1 in Sa. Let P A  be So cut along A. 
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We claim that PA is connected and simply connected. Indeed first 
note that all f-edges in H project to a single edge, again called the 
f-edge, in the space T*\H. The space T*\H can be retracted continu- 
ously to the f-edge it contains. So there is a r"-equivariant retraction 
of H onto the union of f-edges. Passing to the quotient by @ we see 
that So retracts continuously onto gl. Now each edge in A after cutting 
contributes two edges on the boundary of Pa and so So - A = PA -
dP is homeomorphic to int PA. 

Assertion. It suffices to show that int PA is connected and simply 
connected. 

Proof. Each component of the boundary of PA is either an even 
line or a union of a pair of odd edges. So each of these components is 
isometric to R. Clearly PA is connected iff int PA is connected. Now let 
C be any smooth Jordan curve in PA. Since C has finite length, a com- 
ponent of C n aPA can only be a compact arc possibly reduced to a 
point. It follows that we can homotop C into int PA. So PA is simply 
connected iff int PA is simply connected. q.e.d. of the Assertion. 

Now the space int PA = So - A continuously retracts to - (the 
terminal vertices in T )  = U say. So it suffices to show that U is connected 
and simply connected. Let e be an edge in gf which is not in T. It 
connects an even vertex say v which is (necessarily) of type 2 to some 
odd vertex say w. Since v is of valence 2 in %/and e is not in T i t  follows 
that v is a terminal vertex of T. On the other hand w is not a terminal 
vertex for otherwise @ = r and Zf = T which cannot happen since e 
is in gf but not in T.  It follows that if we remove v exactly one circuit 
in %, is broken. So U can be continuously retracted into T, hence U-
and so also P,-is connected and simply connected. 

Since PA is connected and simply connected it may be developed 
isometrically into H. In fact once one tile of PA is developed into a tile 
of T*, PA develops uniquely into a hyperbolic polygon P which is a 
union of the tiles in 3".We shall show that some r-translate of P is a 
special polygon which is an admissible fundamental domain for @. One 
needs to consider 3 cases depending on the nature of the terminal vertices 
in T. In the following v denotes a terminal vertex in T.  

Case 1 ( v  is an even vertex of type 1 ) .  There is a unique f-edge 
incident to v in So.Corresponding to it we obtain a pair of even edges 
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in dP which forms an even line. These edges form two sides of P which 
are paired. 

Case 2 ( v  is an  even vertex of  type 2). There is a pair of f-edges 
incident to v .  Correspondingly there is an even line incident to v in Sa. 
Correspondingly we have two free sides of P which are paired. 

Case 3 ( v  is an  odd vertex of  type 1 ) .  There is a unique odd edge 
incident to v in So. Corresponding to it we obtain a pair of odd edges 
in dP which make an internal angle 9 .These edges form two sides of 
P which are paired. 

It now follows that the conditions S,-S4 for a special polygon, cf. 
(2.5), are satisfied by P. Notice moreover that P has a shape of a 
hyperbolic polygon Po bounded by finitely many complete hyperbolic 
geodesics possibly together with a finite number of hyperbolic triangles 
with angles O,0, ? which are attached externally to P,  along a complete 
geodesic. In particular P is convex. As observed in the remarks at the 
beginning of the proof some r-translate PI of P is a fundamental domain 
for @. So H is tessellated by @-translates of P,.  Also every tile of T* 
is contained in some @-translate of P I .Let P2 be that @-translate of PI  
which contains the tile 9",i.e. the hyperbolic triangle with vertices at 
i = m,p = exp(?), and 03.NOW the boundary of P2by construction 
does not contain any f-edge. It follows that P2 must contain the tile 
which is the hyperbolic triangle with vertices at i = m,p and 0 as 
well. So O and a are among the vertices of P2.This proves that S, also 
holds, and so P2 is a special polygon which is an admissible fundamental 
domain for @. This finishes the proof. q.e. d .  

(3.4). The following is an interesting property of an admissible 
fundamental domain. In counting the sides of a fundamental domain we 
follow the convention, already introduced in (2.4), that if an even line 
is contained in the boundary of the fundamental domain and the even 
edges'contained in this even line are paired then this line counts as two 
sides of the fundamental domain. 

PROPOSITION.Let @ be a subgroup of  finite index in  T.A m o n g  all 
fundamental polygons for @ whose @-translates form a locally finite 
tessellation of  H an  admissible fundamental domain has the least number  
of  sides. If @ is isomorphic to  a free product o f  a copies of  Z 2 ,b copies 
of  Z,, and r copies of  Z then this least number  is 2(r + a + b ) .  
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Proof. If P is a fundamental polygon for @ whose @-translates 
form a locally finite tessellation of H then by [B], Theorem 9.2.7, the 
side-pairing transformations generate @. If Q, has the free product de- 
composition as stated in the theorem then by Grushko's theorem the 
least number of generators for Q, is ( r  + a + b ) .  So P has at least twice 
this number of sides. Finally if P is admissible then its side-pairing 
transformations are independent so it has exactly 2(r + a + b )  sides. 

q.e. d. 

4. Conjugacy classes of subgroups-A graph-theoretic method 
(4.1). A bipartite cuboid graph is a finite graph whose vertex set is 
divided into two disjoint subsets Vo and V ,  such that 

i) every vertex in Vo has valence 1 or  2, 
ii) every vertex in V, has valence 1 or  3, 

iii) there is a prescribed cyclic order on the edges incident at each 
vertex of valence 3 in V,, 

iv) every edge joins a vertex in Vo with a vertex in V,. 

An isomorphism of bipartite cuboid graphs is of course an isomor- 
phism of the underlying graphs preserving the cyclic orders on the edges 
of each vertex of valence 3. 

(4.2) THEOREM.The conjugacy classes of subgroups offinite index 
in r are in 1-1 correspondence with the isomorphism classes of bipartite 
cuboid graphs. 

Proof. Recall from (2.1) the hyperbolic triangle 9*with vertices 
at i = p cap(?), and co. Let S be an orientable surface. Aa,= 

modular tessellillion 3; on S is a homeomorphism with the space ob- 
tained as a union of finitely many copies 9: of 9*where each even 
edge, odd edge, f-edge is isometrically glued to another even edge, odd 
edge, f-edge respectively so that S is locally modelled on H, or Z,\H, 
or Z3\H where ZZ, Z3 act on H by a rotation around a fixed point 
through an angle 7~ or % respectively. Then S is a complete 2-dimensional 
hyperbolic orbifold in the sense of Thurston, cf. [TI, Chapter 13. We 
may obtain S from a special polygon by the process described in the 
proof of Theorem (3.3) and so it is of the form Q,\H where @ is a 
subgroup of finite index in T.Since T is the full group of orientation- 
preserving isometries of H preserving 3 * ,  ( S ,  3;) determines @ upto 
conjugacy in T, and so the tessellation-preserving isometry classes of 
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spaces (S, 9;) are in 1-1 correspondence with the conjugacy classes of 
subgroups of finite index in T. 

So to prove the theorem it suffices to set up a 1-1 correspondence 
of the tessellation-preserving isometry classes of the spaces (S, 9;) with 
the isomorphism classes of the bipartite cuboid graphs. Given (S, 9;) 
let 8f.sdenote the union of the f-edges in S.  Then %f,s has a natural 
structure of a bipartite cuboid graph by taking VO resp. V, to be the set 
of even vertices resp. odd vertices, and the cyclic order on the edges 
incident at a vertex of valence 3 being the one induced from the ori- 
entation of S. Conversely let G be a bipartite cuboid graph. Let 
9$,9:'be the two sets of copies of 9*each indexed by the edges e of 
G. Attach 9fto 9;'isometrically along e so that a vertex in Vo in one 
copy of e is attached to a vertex in Vo in the other copy of e.  We thus 
obtain 9:"which is isometric to a hyperbolic triangle with angles 0,  0, 
2w 
j.There is a canonical isometry of 9,"with the hyperbolic triangle with 
vertices 0 ,  m, and p. Using this isometry we can equip 9;"with a can- 
onical orientation and in turn the "counterclockwise" orientation on its 
boundary edges. If two distinct edges e and f share an even vertex then 
attach 9:''to 97"isometrically along the complete geodesics made up 
of even edges in the orientation reversing way. If e ,  f share an odd 
vertex v then there is a third edge g also sharing v .  By symmetry we 
may suppose that the cyclic order is e ,  f ,  g. Orient these edges so that 
they "emanate" from v. In 9:"using its orientation we can then uniquely 
determine an odd edge k which makes the angle + with e.  Similarly 
there is a unique choice of an odd edge 1 in 9;"which makes the angle 
- with f .  We attach 9:"to 97"so that k is isometrically identified 

with 1. If e has a terminal even (resp. odd) vertex v we identify the even 
(resp. odd) edges of 9:"incident at v in an orientation-reversing way. 
This procedure thus defines a (S, 9;) which is canonically attached to 
G. It is easy to see that these maps set up a desired 1-1 correspondence 
among the isomorphism classes of bipartite cuboid graphs and the tes- 
sellation-preserving isometry classes of the spaces ( S ,  9;). q.e. d .  

(4.3) Tree diagrams. We shall now describe a variant of the above 
graph-theoretic construction which is useful in practice in the construc- 
tions of subgroups of finite index in T.A cuboid tree diagram, or a tree 
diagram for short is a finite tree T with at least one edge such that 

i) all the internal vertices are of valence 3, 
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ii) there is a prescribed cyclic order on the edges incident at each 
internal vertex, 

iii) the terminal vertices are partitioned into two possibly empty 
subsets R and B where the vertices in R (resp. B) are called red (resp. 
blue) vertices, 

iv) there is an involution u on R.  

T can be embedded in the plane so that the cyclic order on the 
edges at each internal vertex coincides with the one induced by the 
orientation of the plane. Any two such embeddings are in fact isotopic 
to each other. An isomorphism of two tree diagrams is defined in the 
obvious way and amounts to an isotopy class of planar trees satisfying 
i). So a tree diagram can be best represented on paper without explicitly 
indicating the cyclic order; the red (resp. blue) vertices are represented 
by a small hollow (resp. shaded) circles; and distinct red vertices related 
by u are given the same numerical label, it being understood that the 
unlabelled vertices are fixed by u and different pairs of distinct red 
vertices related by u carry different labels. In this form they are drawn 
in Appendix 1. 

(4.4). The correspondences among the special polygons, the bi- 
partite cuboid graphs, and the tree diagrams are as follows. 

The correspondence between the bipartite cuboid graphs, and the 
tree diagrams: Let T be a tree diagram. Identifying v with u(v) one 
obtains a graph G. O n  all edges joining two internal vertices o r  an 
internal vertex with a blue vertex introduce a new vertex of valence 2. 
These new vertices and the red vertices consitute V,,. The vertices of 
valence 3 and the blue vertices constitute V,. The cyclic orders on the 
vertices in V, are defined by ii). This turns G into a bipartite cuboid 
graph. 

Conversely let G be a bipartite cuboid graph. If its cycle-rank 
(=  the first Betti number) is r we can choose r vertices of valence 2 in 
V,, so that cutting G along these vertices we obtain a tree T .  Corre-
sponding to these r cuts we have 2r terminal vertices in T. These 2r 
vertices and the terminal vertices of valence 1 in V,, constitute the red 
vertices, and the terminal vertices in V, constitute the blue vertices. Set 
up the involution u as fixing the terminal vertices of valence 1 in V, and 
interchanging the two vertices obtained by each one of the r cuts. We 
agree not to count the remaining vertices of valence 2 in Vo as vertices. 
Finally the cyclic order on the edges incident at the vertices of valence 
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3 in T is the same as that in G. This turns T into a tree diagram. Notice 
that T depends on the choices of the r cuts. 

It is clear that we have a well-defined finite-to one map from the 
isomorphism classes of tree diagrams onto those of bipartite cuboid 
graphs. 

The correspondence between the special polygons and the tree dia- 
grams: Let P be a special polygon and T the union of all the f-edges in 
P. We agree not to count the even vertices in int P as vertices. The 
even vertices resp. odd vertices in dP constitute the red resp. blue 
vertices. The involution on the red vertices is given by the side-pairing 
datum in P. Finally the cyclic order on the edges incident to the vertices 
of valence 3 is induced by the orientation of P. This turns T into a tree 
diagram. 

Conversely let T be a tree diagram. On all edges joining two internal 
vertices or an internal vertex with a blue vertex introduce a new vertex 
of valence 2. Equip T with a metric in a standard way so that each edge 
has the same length equal to the length of an f-edge (which is equal to 

In 3). T must have at least one red vertex or at least one blue vertex. 
Suppose it has a red vertex v. Isometrically develop the unique edge 
containing v onto the f-edge joining i to p. Then T itself develops 
isometrically and uniquely along the f-edges in T* so that the cyclic 
orders on the edges incident at the vertices of valence 3 in T match with 
the ones induced by the orientation of H. A t  the image of a red vertex 
v in this development assign the even line passing through that even 
vertex. These even edges are paired if the vertex v is fixed by the 
involution a. Otherwise this complete geodesic will be considered as a 
free side. It will be paired with the other free side constructed at u(v). 
Similarly at the image of a blue vertex incident to the (unique) edge say 
e assign those two 3-edges which make an angle with the image of e.  
These odd edges are paired. It is easy to see that these even sides, odd 
sides, and free sides together with their pairing defines a special polygon. 

It is fairly clear that we have a well-defined finite-to-one map from 
special polygons onto the isomorphism classes of tree diagrams. 

5. Farey symbols (5.1). A generalized Farey sequence is an expres- 
sion of the form 
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where 

i) xo and x,,are integers, and some x,= 0, 
ii) x,= 2 are rational numbers in their reduced forms and ordered 

according to their magnitudes, such that 

We shall abbreviate the expression generalized Farey sequence to 
g.F.S..  It will be convenient to set x-,= x,,+,= m, and consider the 
xls as forming a cyclic order. Moreover we recall that m = '0. 

(5.2). Recall that classically the finite sequence of rationals be- 
tween 0 and 1 and with denominators at most n is called the n-th Farey 
sequence and it has the property (5.1.2), cf. [HW], Chapter 3. The 
importance of the notion of a g.F.S.  for us is that the vertices of a special 
polygon, lying in R U {m), i.e. neglecting those in H form a g.F.S . ,  cf. 
Section 2. On the other hand if we start with a g.  F.S. and take its convex 
hull in H we obtain a convex hyperbolic polygon which is a union of 
finitely many tiles of 9. It is clear that the g.F.S.s are in 1-1 correspon- 
dence with such polygons which moreover contain 0 and w as their 
vertices. 

(5.3). We shall equip a g. F.S. with an extra structure which is an 
abstract analogue of encoding the side-pairing information of a special 
polygon. First suppose P is a special polygon and (5.1.1) is the g.F.S.  
formed by its vertices in R U {w). If the complete hyperbolic geodesic 
joiningx, to x,,,,i = -1,  0 ,  1, . . . , n + 1 consists of two sides of P 
which are paired then we indicate this information by 

We shall call x, x,,, an even interval of the g.  F.S. .  If x,and x,,, are 
I 

0 


the endpoints of two odd edges which are two sides of P and which are 
paired then we indicate this information by 
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We shall call x,  x,+, an odd interval of the g. F.S.. If xi and xi+,are the 

endpoints of a free side e of P and x,. and x,,+, are the endpoints of the 
free side of P paired to e then we indicate this information by 

Here a is a numerical symbol. If the a's occur at all they will be numbered 
from 1 to some positive integer r ,  it being understood that different 
pairs of associated free sides carry different numerical symbols. Of 
course the specific numerical values for the labels have no significance. 
We shall call each of x, x,+, and xi. xi,+ ,a free interval of the g. F.S.. 

II 

a a 

A g.F.S. (5.1.1), without any reference to P ,  adorned with an extra 
structure on each consecutive pair of xls of the type (5.2.1)-(5.2.3), will 
be called a Farey symbol. Thus a typical Farey symbol may look like 

(5.4). Conversely given a Farey symbol whose underlying g.F.S. 
is given by (5.1.1) we can construct a special polygon as follows. Let PO 
be the hyperbolic convex hull of the xls, i = - 1, . . . ,n + 1. Suppose 
we have an odd interval x,-.xi+,  in our symbol. Then the complete 

hyperbolic geodesic joining xi to xi+, together with two odd edges sit- 
uated outside Po form a hyperbolic triangle with angles 0,  0,  ?. Ad-
joining such triangles for each odd interval in the Farey symbol one 
obtains a convex hyperbolic polygon P. The side-pairing is defined by 
reversing the process described above. Thus in view of (4.5) we have 

PROPOSITION.The set of Farey symbols is in a natural 1-1 corre-
spondence with the set of special polygons. In particular a Farey symbol 
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determines a subgroup of finite index in T ,  and every subgroup of finite 
index in r arises in this way. The map 

{Farey symbols) + {subgroups of finite index in T )  

is finite-to-one. 

(5.5). The following diagram summarizes the various relationships 
among the objects introduced in Section 4 and Section 5. 

{special polygons) -+ {Farey Symbols) 

/ \ 
{tree diagrams) {the subgroups of finite index in T }  

I i
{bipartite cuboid graphs) + {the conjugacy classes 

of the subgroups of finite index in T )  

All the arrows here are finite-to-one surjective maps whereas the 
top and bottom horizontal arrows are also one-to-one. 

(5.6). In the definition of a g.F.S., cf. (5.1), the first and the last 
finite element on the real axis are integers. This imposes certain restric- 
tions on the other elements. We note two such restrictions in the next 
two propositions. Another restriction is noted in Section 8, cf. (8.7). 

PROPOSITION.Let B be a g. F.S. in the form (5.1.1). Let k be an 
integer, and b,'s the denominators of those xi's which lie in [ k ,  k  + 1). 
Then biJs determine xi's uniquely. 

Proof. Consider the diophantine equation sb, - tb,,, = 1, to be 
solved for s and t in integers. Clearly s = a;,,, t = a,, where ai7sare 
the numerators of the x,'s is one solution. Any other solution has the 
form s = a,,, + lb,,,, t = a; + Ib;, where I is an integer. It is clear that 
for any 1 # 0 the corresponding bTS;;, & lie outside the given interval 
[ k ,  k  + 1). q.e. d .  

(5:7) PROPOSITION.Let x be an element of a g. F.S. which is not an 
integer, and let k be an integer such that k < x < k + 1. Let y < x < 
z be the three successive terms in the g.F.S.. Then k -i y < x < z -i 
k + 1. Moreover let y = 4, x = :, z = with c ,  d ,  f positive. Then a + 
e = n b ,  c + f = nd where n = af - ce is a positive integer. 
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Proof. Distinct even lines d o  not intersect. So since k ,  k + 1 are  
endpoints of an  even line it is clear that y ,  z lie in the interval [k, k + 
11. Now note that since c ,  d ,  f are  positive ad - bc,  fb  - ed,  af - ce 
are  positive integers, and moreover since x ,  z and x ,  y are  endpoints of 
even lines we also have ad - bc = fb - ed = 1. In a matrix form these 
two equations become 

This gives a + e = n b ,  c + f = nd where n = af - ce is a positive 
integer. q.e.d. 

(The integer n in the above proposition has the following geometric 
interpretation. Let  P be the convex hull of the  g.F.S. in H. Then n is 
the number of tiles of 9which are  contained in P and which are  incident 
with x ,  cf. (7 .4) . )  

6. Independent generators. 

(6.1) THEOREM.Let a be a Farey symbol whose underlying g. F.S. 
is given by (5.1.1) .  Let @, be the subgroup of finite index in determined 
by a. Let x, = 2 (reduced forms) with bi positive. Let the number of 
even (resp. o d d )  intervals be a (resp. b )  and the number of pairs of free 
intervals be r. 

. . .
i) For each even interval x,  x,+ I ,  1 = 1 1 ,  1 2 ,  . . . , in in a consider-

0 

ii) For each odd interval x, x,+ I ,j = j l ,  j2 ,  . . . , jb in a consider 
I 
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iii) For each pair of free intervals xk xk+ I, xk, xk,+ I,  k = k l ,  k2, 
II 

a a 
. . . , k, in u consider 

Then the a + b + r elements A,, B,, Ckform an independent set of 
generators of @,. 

Proof. Let x = $, y = (reduced forms) with a ,  c positive be 
endpoints of an even line. If x < y then ad - bc = 1.  Notice that the 
unique element of r which carries co to y and 0 to x is 

whereas the one carrying co t o  x and 0 to y is 

Also if x = Q, y = and u = !, v = are endpoints of even lines 
satisfying ad - bc = 1 and ps - qr = 1 then the element in r which 
carries x into u and y into v is Q M - '  where 

In case i) we need the element of r interchanging x, and x,+,.By 
the above remark this element is 
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Similarly in case iii) the element carrying xk to x ~ ~ + ~to xk,isand x ~ + ~  

The case ii) is a bit more tricky. Let x = $,y = be a pair of 
consecutive rationals in a g.F.S. with positive denominators. Let z = 
-n + bc + d .  It is easy to see that the hyperbolic triangle with vertices x ,  y, z 

contains a unique fixed point of an element of order 3 in T. (Indeed 
this fixed point is the point of intersection of the odd lines joining $ to  
-, and to  -.) The element of T fixing this point and permuting 
x ,  z ,  y in this cyclic order, is given by 

Applying this to  x = x,, y = x,+, we obtain the elements B,'s. The cases 
where one of the x,'s is are easily taken care of. The conclusion in the 
theorem follows from the correspondence between the special polygons 
and Farey symbols, and Theorem (3.2). q.e. d .  

7. Geometric invariants of a subgroup (7.1). Let @ be a subgroup 
of finite index in T. Then we have a diagram of branched coverings 

The geometric invariants of @ include 

i) e2 = the number of branch points of H -.@ \ H  of order 2, 
ii) e, = the number of branch points of H -.@ \ H  of order 3, 

iii) d = (T : @) = the degree of the branched covering T \ H  -+ 
@ \ H ,  

iv) g = the genus of @ \ H ,  
v) t = the number of cusps of @, 

vi) w(Ck)  = the width of the k-th cusp, k = 1, 2, . . . , t ,  
vii) r = the rank of r I ( @ \ H ) .  

mailto:rI(@\H)
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The invariants e2, e3, d ,  and r can be described purely group- 
theoretically. Indeed d = (I': @), and e,, e3 are the number of conjugacy 
classes of subgroups of order 2 and 3 respectively in @. Also @\H is a 
noncompact surface so its fundamental group is free. The invariant r is 
the rank of v, (@\H)as a free group. It is also the rank of the free factor 
of 0.From the topology of surfaces we know that 

And the Riemann-Hurwitz formula relates these invariants by 

Recall that the usual definition of the width of a cusp is as follows. 
For the cusp w, its stabilizer is a cyclic subgroup generated by some 
translation z H z + b ,  for some integer b .  This b is nonzero since @ is 
of finite index, hence it may as well be taken to be positive. This positive 
b is the width of the cusp m. For any other cusp there is an element of 
r conjugating it to m. Using this conjugation its width can be defined 
similarly. From the point of view of hyperbolic geometry a cusp of @ 
corresponds to a "spike" o r  a "puncture" of @\H.  For the sake of 
brevity we shall refer to these punctures as the cusps of @\H. To say 
that the cusp-width of co is b amounts to the fact that a small annular 
neighborhood of the corresponding cusp on @\H, after cutting along a 
piece of an even line running into it, can be isometrically developed in 
a strip of the form x = k to x = b + k .  From this description it is seen 
that in a special polygon for @ containing w there are b copies of the 
standard fundamental domain of r incident with the cusp co, and hence 
there are 2b tiles of T* incident there. So alternately the width of a 
cusp of @ may be defined as half the total number of the tiles of T* in 
a special polygon P for @ incident with the vertices of P which are 
equivalent under @ and which define the given cusp. 

It may be remarked that all these invariants are invariants of the 
conjugacy class of @. Moreover it may be noted that these invariants 
are actually topological invariants. Perhaps the simplest selfcontained 
way to see this for the number of cusps of @ is to observe that it is the 
same as the number of ends of @ \ H in the very general sense of Freu- 
denthal, cf. [Fr]. Using surface topology it is of course the same number 
t which makes (7.1.1) right, o r  again the same number so that @\H is 
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homeomorphic to a closed orientable surface with t points removed. A 
cusp has a neighborhood homeomorphic to an annulus. The width of a 
cusp of @ is the same as the local degree of T\H -+ @\H at the corre- 
sponding cusp--it is the number of times the image of a simple closed 
nonnullhomotopic curve in an annular neighborhood of the puncture in 
@\H wraps around the unique cusp in T\H. With this formulation it is 
possible to define the end-width of an end of any finitely generated 
subgroup of any finitely generated Fuchsian group. 

We shall see below how to read these invariants when the subgroup 
is given by a Farey symbol or if its conjugacy class is given by a tree 
diagram. 

(7.2). Let u be a Farey symbol, P, the corresponding special poly- 
gon and @, the corresponding subgroup. We assume that the underlying 
g.F.S. is given by (5.1.1).Write S, for @,\H. From the way S,  is obtained 
from P, we see that e2 = the number of even intervals in u, and e, = 

the number of odd intervals in u. Again from the way S,  is obtained 
from P, we see that r = half the number of free intervals in a.We note 
the following simple formula for the index. 

Proposition. Let u be a Farey symbol with underlying g. F.S. 
(00,  X U ,X I ,. . . , x,,, m), and @, the corresponding subgroup. If u contains 
e3 odd intervals then the index d of @, in r is given by d = 3n + e,. 

Proof. The number of free intervals in u is n + 2 - e2 - e,. So 
by (7.1.2) 

(7.3). The number of cusps of S, is the same as the number of 
x,'s obtained after the sides are identified according to the pairing in P,. 
To read this number from u consider the equivalence relation generated 
by the following relation. If xi ,  x,, I are the endpoints of an even interval 
o r  an odd interval then xi - xi+,. If x k , xk+I are the endpoints of a free 
interval and x k s r  x k ' + [  are the endpoints of the associated free interval 
then xk - x ~ , + ~and x k + ,- xk, .  So t is the number of the equivalence 
classes of this relation. In view of (7.1.1) we can also read g. 

(7.4). To read the widths of cusps from u is a bit more tricky. Let 
C l ,  C Z ,  . . . , C,be the cusps of S,  which we identify with the equivalence 
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classes of x:s defined above. We consider x,, i = - 1 ,  0, 1, . . . , n + 
1 in a cyclic order and write xi = 2 in reduced form with the convention 

= and b,'s are always taken to be nonnegative. Let 

We define w(x,)  the width at x,  to be d(x , ) ,  resp. d(x,)  + i, resp. 
d(x,)  + 1 according as x,  is incident to 0,  resp. 1, resp. 2 odd intervals. 

PROPOSITION.The width of the k-th cusp Ckis given by 

where x, runs over the elements in the equivalence class Ck. 

Proof. The width of a cusp is clearly r-invariant, as is the value 
of d(x , ) ,cf. (2 .2) ,so we may assume that xi is the cusp a~.Then necessarily 
x i - ,  = m and xi+ = n for some integers m and n .  Then according as 
x,  is incident to 0,  1, or 2 odd intervals the associated special polygon 
looks like 

This gives the widths w(x,) as claimed. 9.e.d. 

(7.5). As a variant to the above approach we shall now start with 
a tree diagram T and briefly show how to read the geometric invariants 
of a group belonging to the corresponding conjugacy class. Let R resp. 
B be the set of red resp. blue terminal vertices of T and a the involution 
on R. Clearly 

ez = the number of fixed points of a ,  

e3 = the number of points in B ,  

1 

r = - [the number of elements in R - {the fixed points of o)].

2 
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This also determines d by the Riemann-Hurwitz formula as noted in 
(7.2). T o  compute the other invariants consider T as actually embedded 
in the f-edges of T* as explained in (4.4), and P the associated special 
polygon. Then the terminal vertices of T lie in dP. This gives a cyclic 
order to the terminal vertices of T-say v,, v l ,  . . . , v , - ~  are these 
vertices in cyclic order. Let T T ~be the shortest path of edges from vi to 
v,+,  ( i  counted mod s . )  Consider the equivalence relation generated by 
the following relation on the set { T T ~ } .If V ,  is either a blue vertex o r  a 
vertex fixed by a then T T , - ,  - TT,.If vi is paired to v, by u then let 
vi-[- T T , + [ ,and ri+[- T T , - ~ .Then 

t = the number of classes of this equivalence relation. 

By (7.2.1) we can also read g. We may identify a cusp with an equiv- 
alence class of TT,'S.To read the cusp-widths attach the weight (resp. 
1) to an edge of T if it is incident to a red vertex (resp. otherwise). To  
each T T ~attach the weight w(ni )  = the sum of the weights of the edges 
in T T ~ .  where .rri runs over Finally the width of a cusp is the sum of W ( T T ~ )  

the equivalence class defining the cusp. The justification of this state- 
ment follows easily by relating TT!Sto the components of int P - T, and 
it is left to the reader. 

(7.6). As an application we give a new simple proof of the fol- 
lowing theorem of Millington, cf. [Mi]. This theorem was proved by 
Millington by using permutations. 

THEOREM(Millington). Let a r 0 ,  b r 0 ,  d r 0 ,  g r 0 ,  t r 1 be 
integers s. t. 

Then l7 admits a subgroup of index d ,  genus g ,  and with t cusps and a 
(resp. b )  conjugacy classes of elliptics of order 2 (resp. 3 ) .  

Proof. Let r = 2g + t - 1. Consider a g. F.S. in the form (5.1.I), 
where n = a + b + 2r - 2. There are n + 2 intervals in this g.F.S.. 
Declare the first a intervals to be the even intervals, and next b intervals 
to be the odd intervals. The next 2(t - 1)  intervals are declared to be 
free intervals. They are divided into t - 1 pairs each pair consisting of 
consecutive intervals which are paired. There now remain 4g intervals. 
These are also declared to be free intervals and the pairing is defined 
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in the usual aba lb ' - f a sh ion .  It is obvious that the corresponding sub- 
group defined by this Farey symbol has the invariants as stated. 

q.e. d. 

8. A geometric interpretation of continued fractions (8.1). Let x 
be a rational number, and let 

(8.1.1) x = a,, + 1 
1 

a ,  + 1 
a2 + 1 

be its continued fraction expansion. Here a, = [x], a ,  = [&I etc. We 
shall abbreviate (8.1.1) to x = [ao; a , ,  a2, . . . ,ak]. If x is not an integer 
the ai's, i r 1, are positive, and ak 2 2. We define the depth of x by 

and denote it by A(x). If x is an integer then A(x) = 0. Clearly A(x) 
depends only on the congruence class of x mod 1. In the following we 
shall give an interpretation of the a,'s and A(x) in terms of the modular 
tessellation. It implies an interesting property of a g. F. S.. 

(8.2). The even lines tile H into ideal triangles. Let this tessellation 
be denoted by 4. 

PROPOSITION.Let x be a rational number in (0, 1). Then there exists 
a hyperbolic polygon which is a union of finitely many of tiles of 9, 
whose boundary contains x and as vertices, and which is contained in 
the vertical strip bounded by the geodesics joining 0 to c~ and 1 to a. 

Proof. Let x = f ,  where b is positive. Let Sbbe the classical 
b-th Farey sequence, cf. [HW], Chapter 3. The hyperbolic convex hull 
of the points in Sb together with is a polygon with the desired 
properties. q.e. d. 

The vertices of any polygon given by the proposition form a g. F.S. 
of the form 
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where one of the xi's is x. Since no two even lines intersect it is clear 
that the intersection of any such polygons is again a polygon of the same 
type and so there exists a unique polygon P,(x) which is the intersection 
of all such polygons. Interpreted in terms of the g.F.S.'s this means that 
among all the g. F.S.'s of the form (8.2.1) containing x there is a unique 
minimal one. It consists of the vertices of Po(x). 

(8.3) PROPOSITION.Let X ,  be a rational number in (0, 1). Then 
there exist uniquely determined rationals u, and v,  in [0, 11, uo < xo < 
v,, with the following properties. 

i) u,, x,, v,, form the vertices of a tile of 4. Call this tile T ~ ( x ~ ) .  

ii) Any even line incident with x, has its other endpoint lying either 
in [uO, xo) or in (x,, vo] .  

iii) The tile T,(x") is contained in Po(xo). 

Proof. First consider the situation at m. The even lines incident 
to co are the vertical half lines x = n ,  y > 0 ,  where n is an integer. The 
endpoints of these lines are Z U {w) which have w as the unique ac- 
cumulation point. Now noting that distinct even lines do not intersect 
and translating the situation at xOwe see that the endpoints of the even 
lines incident to x,, have xOas their unique accumulation point and they 
are all contained in [0, 11. Let uo be the smallest and vo the largest of 
these endpoints. So the property ii) is clear. 

Now let yo and zo be any endpoints of some even lines incident to 
xosuch that y, < xo < zo. We claim that there exists a convex hyperbolic 
polygon Q satisfying i) it is a union of finitely many tiles of 4,and ii) 
it has the even lines joining y, to xo and zo to xo as sides. Indeed let A 
be an element of r which carries x, to co. Then Ay, = I and Az,  = m 
must be integers. Moreover since A preserves the orientation of the 
circle R U {m) we see that m < I .  If Q' is the convex hull of {m, m ,  
m + 1 ,  . . . , I ,  co) in H then clearly Q = A - ' ( Q ' )  fulfils our require- 
ments. Since A is determined up to a left-multiplication by an element 
of the form +, : z - z + n where n is an integer it is clear that Q' is 
determined also up to a translation by +,. In any case Q is determined 
uniquely. Notice that among all hyperbolic polygons Q" satisfying i) and 
ii) our construction produces the smallest one which is contained in all 
such Q". It has an additional interesting property that every vertex of 
Q is an endpoint of some even line incident to x,. Let u,',be the smallest 
and v,',the largest of the vertices of Q. Then clearly u,', y, < X ,  < 
z, 5 v,',and u,',,x,, v;, form the vertices of a tile of 4. If we apply this 
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construction in particular to yo = uo and zo = vo we see that ul, = uo 
and vh = vo.This proves i). 

Finally let P be any polygon containing xo as a vertex as in the 
proposition in (8.2). Let yo, Z ,  be the vertices of P adjacent to xo, such 
that yo < x, < z, and Q the corresponding polygon as above. Then Q 
is contained in P. So the tile 7,(xO)which has vertices u,, x,, vo, is also 
contained in P. Since P is arbitrary we see that this tile is contained in 
P,(xo). This proves iii). q. e. d. 

(8.4). The above proposition implies an interesting property of 9 
which for emphasis we note explicitly. Let x be a rational number which 
is not an integer. Let k be an integer such that k < x < k + 1. Then 
there exists a unique tile of 9 with vertices u ,  x ,  v such that u < x < v. 
Moreover we must have k 5 u < x < v 5 k + 1. We note a procedure 
to determine u and v. Let x = in a reduced form. First suppose that 
k = 0, i.e. x lies in (0, 1). We take a and c positive. Consider the linear 
equation -aX + cY = 1. This line has a positive slope and a positive 
X-intercept :. Let (d, b) be the uniquely determined point with integer 
coordinates on this line which lies in the first quadrant and which is 
closest to the X-axis. Then v = $ and u =5.In the general case apply 
this procedure to x - k. If u' and v' are the solutions for x - k then 
u = u' + k ,  v = v' + k are the solutions for x.  An elementary 
justification of this procedure may be left to the reader. An alternate 
procedure in terms of the convergents of x follows from the proof of 
(8.6) below. 

(8.5). Let x = [O; a , ,  a 2 ,  . . . , a,] be a rational number in (0, 1). 
Set 

y i =  [ O ; a l , a 2, . . . , a,], 1 5 i ~ k  

be the convergents of x. So y, = x .  It is convenient to put 

Then as is well-known y, = (reduced fractions), where we regard 0 
as and as A .  Moreover 
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and 

(8.6) PROPOSITION.In the notation of (8.5) all y,'s are among the 
vertices of Po(x).  

Proof. Write x = %,and let uo = 9 ,  and vo = !be the rationals 
in ( 0 ,  1 )  satisfying uo< x < vo and other properties listed in (8 .3)where 
X ,  in (8.3) is now replaced by x .  We also take b, s, r to be positive. Now 
from (8.4) we also have x = y,  = 2 and y,, y,-, are end-vertices of an 
even line. So by property ii) in Proposition (8.3) y,_,  lies in [u,, x )  or 
in ( x ,  vo].  For definiteness suppose that y k - ~lies in ( x ,  v,]. We claim 
that y,-, = v,. Indeed we have 

So r 5 9,- , .  By (8.5.1) q k - ,  < q,. On the other hand both { p ,  r )  and 
{ p k - , ,  q k - , )  are solutions in (5,q) of b( - aq  = 1 .  Since both r ,  and 
9,-I  lie in (0, q,) it is easy to see that they must be equal. Thus v, = 

y,- ,, and so yk- is a vertex of Po(x). Now it follows that PO(yk- , )C 

Po(x). So y,-z is a vertex of P,(x). Continuing in this manner we see 
that all yi's, i 2 1, are vertices of P,(x). On the other hand yo and y - ,  
are clearly among the vertices of P,(x). q.e.d. 

(8.7) PROPOSITION.Between y,-z and y,, i 2 1, there are a, - 1 
vertices of Po(x).  

Proof. By (8.5.2) y i - ,  is joined to both yi and y,-2 by even lines, 
say 1, and 1,. If m is the number of tiles of 9 which are incident with 
y i - ,  and lie in the circular sector made up by 1, and l2 then there are 
m - 1 vertices of Po(x) lying between y i - ~and y,. By the argument in 
(7.4) there are 21p,qi-2- tiles of T* which are coming into this q , ~ , - ~ l  
circular sector. Since at each vertex of a tile of 9 there are two tiles of 
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T* it follows that there are  lpiq,- ,  - q,p,-,/ tiles of 9 in this sector 
which are  incident with y,- I .  By (8.5.3) this number equals ai. q.e.d. 

(8 .8)  COROLLARY.The number of vertices of P,(x) is precisely 
A(x)  + 2 ,  and so the number of tiles of 9 in Po(x) is A(x) .  

Proof. The  y,'s are k + 2 vertices of Po(x) ,and in view of (8.4.4) 
in cyclic order they are 

These form k + 2 intervals of which k have end-points of the  form 
{ y , ,  yi-,}. By (8 .7)  these k intervals contain Cf= (a ,  - 1)  vertices. The  
remaining two intervals are  {m,  O), and {y, ,  y k - l ) .  These end-points of 
each of these two intervals are  also the end-points of an  even line, so  
these intervals contain n o  other vertex of P,(x) .  S o  in all P,(x) has 

k 

k + 2 + C (a ,  - 1) = A(x)  + 2 
I =  I 

vertices. The  last assertion follows easily by induction on  the number 
of vertices. q .  e. d .  

(8.9) THEOREM.Let x be any rational number. Let x = [a,,; a , ,  
a,, . . . , ak]  be its continued fraction expansion and let yi = [ O ;  a , ,  
a,, . . . , a,] ,  1 5 i 5 k be the convergents of x - a,,. Also set y ,  = m,  

yo = 0 .  Then any g.F.S. containing x must also contain the following 
A(x)  + 2 terms. W e  use the notation of (8.3).  

m ,  a,, + y,, i = 0, 1, 2 ,  . . . , k 

and between a, + y, and a. + y , - ~ ,  i = 1, 2 ,  . . . , k there are a, - 1 
terms 
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Proof. By the definition of a g.F.S., cf. (5 .1) ,  its first and last 
term on the real axis are integers. Since the vertical geodesics at the 
integer points are parts of 9 it follows that no interval in a g.F.S. can 
contain an integer in its interior. So a g. F.S. must contain all the integers 
lying between its first and last term on the real axis. In particular if a 
g. F.S. B contains x then it must contain a. and a. + 1. For the remaining 
assertions by translating by -ao for simplicity we may assume that 
a,, = 0 .  In the notation of (8 .2)  it is clear that B must contain all the 
vertices of P,(x). These are A(x)  in number by (8.8).  These include y,'s 
and by (8.7) between yi and yi- ,  there are ai - 1 terms. Since the 
consecutive terms among the a, - 1 terms written above together with 
yi and yi-2 satisfy the lad - bcl = 1-relation it is clear that these are 
precisely the terms one was looking for. q.e. d. 

(8.10). The following interpretation of A(x)  explains the termi- 
nology why it is called the depth of x.  The f-edges determine a cubic 
tree which may be considered as the dual complex of the tiling 9. Let 
each f-edge be assigned the length i. 

PROPOSITION.Let x be rational number in ( 0 ,  1). The shortest path 
in the cubic tree of f-edges from p = e"'I3 leading into a tile of 9 incident 
with x has length A(x )  - 1. 

Proof. We use the notation of (8.5). From the description in (8.8) 
we see that Po(x)is built as follows. We have y ,  = $. The convex hull 
11 
, , . . . , i, 1, consists of a ,  tiles of 9 and is contained 

in Po(x).T o  this region there is attached along the even line connecting 
y, to y ,  the convex hull of yo, y , ,  y2 and the a, vertices lying in (y, ,  y,). 
This region contains a2 tiles of 9 .  And so on. It is easy to see that the 
path in the tree of f-edges starting from p and leading into a tile of 9 
incident with x is the one which successively connects the "barycenters" 
of these a,  + a, + ... + ak tiles and has length 

This path is the shortest one, for in "walking down" in a tree of f-edges 
no edge is traversed backwards, so by taking one "wrong" turn in the 
above path one will miss x altogether. q.e. d. 



1087 SUBGROUPS OF THE MODULAR GROUP 

(8.11). The following example and the picture below fairly illus- 
trate the above process. Let x = 4 = [O ;  2,  3 ,  21. A g.F.S. containing
6must contain the following A(x) + 2 = 9 terms. These include w, 0 ,  
and the convergents :, 5, and A.The interval (A,i) contains one extra 
vertex $. The interval (0 ,  ;) contains two extra vertices and i, and 
finally the interval (i, m) contains one extra vertex namely 1.  For the 
sake of clear visualization the following picture illustrates only the com- 
binatorial pattern and is not drawn to the scale. The path mentioned in 
(8.10) is shown by a dotted line. 

(8.12). We note some initial instances of the use of (8.10). Take 
the g.F.S. in the form (8.2.1). Then x ,  must be of the form ' fo r  some 
natural number k. Now (8.2) says that if we choose x ,  = then we are 
forced to choose between and the k - 1 terms &,A, . . . , 1.  
Similarly x,,-, must be of the form 9for some natural number I .  By 
(8.2) if we choose x,,- = -I - I 

= [O ;  1 ,  1 - 11 then we have y ,  = 1 and 
I - 1yZ = ?, and we are forced to choose between y2 = -j- and yo = 0 

1-2  1 - 3the following 1 - 2 terms T ,  R,. . . , j. 
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9. A classification of conjugations (9.1). The normalizers of sub- 
groups of T in T* or  some even larger group often contains conjugations. 
For example T ( N ) ,  T 1 ( N ) ,  T o ( N )  are all normalized by z H -2, and 
z H 1 - 5. Such conjugations often provide some quite useful infor- 
mation. For example we shall make use of them to reduce the work by 
half in obtaining the fundamental domains for the above-mentioned 
congruence groups. In this section we note some generalities on con- 
jugations which may be useful in other contexts as well. Recall that a 
conjugation on a Riemann surface is an antiholomorphic homeomor- 
phism. If it has a fixed point then each component of the fixed point 
set is homeomorphic to a circle or an open interval. O n  a compact 
Riemann surface only the first possibility occurs. A conjugation with a 
fixed point will be called a reflection, whereas one without fixed points 
will be called a glide reflection. 

(9.2). A conjugation on H is an isometry with respect to the hy- 
perbolic metric. The full group of isometries of H ,  denoted by I ( H ) ,  
may be identified with PSL:(R) ,  which is defined analogously to 
PSL:(Z)  in (2.1) and whose action is given by (1.1.1) and (2.1.1).  Its 
identity component Io(H) consists of the orientation-preserving iso- 
metries and may be identified with PSL,(R);  the other component con- 
sists of orientation-reversing isometries and these are precisely the con- 
jugations in I ( H ) .  By abuse of notation we shall often again denote an 
element of I ( H )  by a matrix A with the understanding that A and -A 
define the same element. 

(9.3). It would be natural to call a conjugation in I ( H )  to be 
hyperbolic, resp. elliptic, resp. parabolic if its square, which belongs to 
10(H),is such in the usual sense. However we note at once that with 
this definition 

PROPOSITION.A conjugation in I ( H )  is either hyperbolic or else it 
is elliptic of order 2 .  A hyperbolic conjugation is a glide reflection, whereas 
an elliptic conjugation is a reflection. In I ( H )  there is a unique conjugacy 
class of reflections whose representative may be taken as 

An elliptic conjugation is algebraically characterized as follows: a matrix 
A is an elliptic conjugation if and only if trace A = 0 ,  and det A = - 1. 
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Proof. If A  is a conjugation then its determinant is - 1. So its 
eigenvalues are real and distinct. In particular it is diagonalizable. So 
A2 is also diagonalizable and so it cannot be parabolic. If A2 is hyperbolic 
then it has no fixed point in H. So A  also has no fixed point in H, and 
hence it is a glide reflection. If A2 is elliptic then the eigenvalues of A  
are necessarily 1 and - 1. So it is conjugate to 

which acts as in (9.3.1). In particular it is of order 2, and is clearly a 
reflection. The last assertion is clear. q. e. d. 

(9.4). The following is a simple but basic and essentially topo- 
logical fact. The author does not know a reference to it in the literature. 

PROPOSITION.Let X be a connected Riemann surface, G = (p) = 
Z2a group generated by a reflection p on X ,  and Y = G\X. Let A denote 
the fixed point set of G.  Then Y is a surface with boundary which is 
orientable if and only if A separates X .  In case A separates X then X is 
obtained from Y by "doubling" along the boundary. If A does not sep- 
arate X then X is obtained from Y by taking the oriented double cover 
Y, of Y and identifying the boundary components of Y, in pairs. 

Proof. Let p : X -+ Y be the orbit-space projection. Notice that 
G acts freely on X - A .  Cut X along A .  If A  separates X let C be one 
of the components of X cut along A .  Clearly C U pC is a connected 
surface without boundary. Since X is connected it follows that X = 

C U PC. In particular X - A  has two components. It is clear that X is 
obtained by doubling C along the boundary, and C is mapped homeo- 
morphically by p onto Y. So Y is orientable and X may be considered 
as obtained from Y by doubling along the boundary. Now suppose that 
A  does not separate X .  Let Y, be X cut along A .  Then Y, - aY, may 
be identified with X - A .  Moreover there is a natural projection q : 
Y, -+ Y so that q x - A  = pix-,. Since A  does not separate X it follows 
that G\{X - A) .= int Y is a connected nonorientable surface. So Y is 
a nonorientable surface with boundary. By construction each point on 
dY, has a neighborhood which is mapped homeomorphically onto a 
neighborhood of a point in a Y  by q ,  and for each point x in dY there 
are exactly two points in aY, mapped onto x by q. So each point in Y = 
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im q admits an evenly covered neighborhood. So q is a covering pro- 
jection of degree 2 and we may consider the group of covering trans- 
formations as an extension of G ~ from- x~- A = Y, - (ay , )  to Y,. 
Now notice that a point on the boundary of any smooth surface has a 
well-defined "internal normal." So a tubular neighborhood of any com- 
ponent of the boundary of any smooth surface is always orientable. 
Since q is a covering from an orientable surface to a nonorientable one 
it follows that the inverse image under q of any component of the 
boundary of Y consists of two components each of which is mapped 
homeomorphically by q. It follows that the covering group of q permutes 
the boundary components of Y, in pairs. In other words we may consider 
X as obtained from Y by taking the oriented double cover Y ,  of Y and 
identifying the boundary components of Y, in pairs. q. e. d. 

(9.5). The following is a similar general fact. 

PROPOSITION.Let X be @\H where @ is a discrete subgroup of 
I,,(H) with cofinite area. Let X be the Riemann surface obtained by ad- 
joining its cusps. Let u be a conjugation of X .  Then u extends to z as a 
conjugation. 

Proof. We may consider X as the end-compactification of X in 
the sense of Freudenthal, cf. [Fr]. So u, as any homeomorphism of X, 
extends to 2.By a standard argument of the Riemann removable sin- 
gularity theorem the extension is antiholomorphic at the finitely many 
adjoined points. q.e.d. 

(9.6). After these generalities on conjugations we come to our 
case of main interest, namely the extended modular group T*.Clearly 
r*may be identified with a subgroup of PSL:(R), cf. (9.2). The single 
conjugacy class of reflections in PSL,*(R) splits into two classes when 
restricted to r*. 

THEOREM.There are two conjugacy classes of reflections in r* 
whose representatives may be taken to be 

-
i) z H -2, and 

ii) z H 1 - 2. 

In terms of matrices: if 
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is a reflection in r * ,  then A is of type i) (resp. ii)) if and only if A is 
(resp. is not) congruent to the identity matrix mod 2. 

Proof. Let 

SUBGROUPS OF THE MODULAR GROUP 

So Jo represents the conjugation of type i), and Jl represents the con- 
jugation of type ii). We have a canonical homomorphism PSL,*(Z) -+ 

PGL,(Z,) given by reduction mod 2. Jo  is in the kernel of this homo- 
morphism and J ,  is not, so these elements are not conjugate in T*. 

Now let A as given above be any reflection in r * .  In the proof of 
(9.3) we observed that A has eigenvalues 1 and - 1. Let ( p ,  r) be a 
primitive integer vector which is an eigenvector for the eigenvalue - 1,  
and let (q,  s)  be an integer vector with ps - q r  = 1. It is easy to see 
in terms of a basis of ZZ consisting of these integer vectors, i.e. taking 
a suitable r-conjugate A takes the form J,, for some integer u. But then 

So A is conjugate to Jo or J I  as claimed. q. e. d. 

(9.7). A reflection in T* will be called even if it is conjugate to 
z H -2  and odd if it is conjugate to z H 1 - 2. 

10. Conjugations in a subgroup (10.1). Consider a subgroup @* 
of r * .  Then @* uniquely determines @ = @* n T. If @* contains a 
conjugation then @ is a subgroup of index 2 in @*. There is a canonical 
conjugation 0 defined on the surface S* = @ \ H .  It is defined as a "push- 
down" of any conjugation in @*. Of course 

We denote this surface by SO.. If @* does not contain a reflection then 
SO* is a nonorientable surface (without boundary). 

(10.2). For the remaining parts of this section we assume that @* 
contains a reflection. Our  aim is to obtain some geometric understanding 
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of the conjugacy classes of reflections in @*. By (9.4) S,* is a surface 
with boundary which is orientable if and only if the fixed point set 
separates S,*. Now a fixed point set of an even (resp. odd) reflection 
in @* is an even line (resp. an odd) line and it projects either isomet- 
rically or at worst "folded in half" in as,*. In the latter case there will 
be a "corner" in as,*. In any case it follows that no  component of as,* 
is a circle. If a boundary component is an isometric projection of an 
even (resp. odd) line it will be called an even (resp. odd)  component of 
as,.;. 

(10.3). Now consider the possibilities of corners in as,,. Obviously 
as,* contains a corner precisely when the fixed lines of two reflections 
in @* intersect. Since no two even lines intersect the only possibilities 
for the fixed lines of reflections in @* are: one is an even line and the 
other an odd line, or both are odd lines. Thus there are two types. 

Type 1. Suppose @* contains an even reflection u and an odd 
reflection p whose fixed lines intersect. Let s resp. r be the fixed lines 
of u and p which intersect in a point t. Then @ contains the element 
T = u o p of order 2 which fixes t. Also r and s cut orthogonally at t, 
so s U r projects into a component of which has a corner with angle 
? at the projection of t. Notice that u and p are not conjugate even in 
r*since one is even and the other is odd. 

Type 2. Let @* contain two odd reflections p, and p2 whose fixed 
lines r ,  resp. r2 intersect at a point t. Then Q, contains another odd 
reflection p3 = p, p2 p, whose fixed line r, also passes through t. The 
lines r , ,  r2, r3 cut H into wedges each making an angle ? at t. This picture 
(locally) projects into a component of as,* with a corner with angle j 
at the projection o f t .  Notice that p,, p2, and p3 are all conjugate to each 
other in Q,* as indeed they are already conjugate in the isotropy subgroup 
of @* at t. 

(10.4). It is reasonable to ask: when does a component of as,.; 
contain two corners? The above discussion shows that if C is such a 
component then either C has two corners with angles ? and j and thus 
consists of one even edge, one f-edge, and one odd edge, or else it has 
two corners each with angle ? and it consists of two f-edges and two 
odd edges. It is clear that in the first case the induced T*-tessellation 
of S,. contains only one tile and so S,. is isometric to a hyperbolic 
triangle with angles 0, T ,  and j and in the second case the tessellation 
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contains two tiles and so Samis isometric to a hyperbolic triangle with 
angles 0 ,  9,and i.It is easy to see that the first case occurs exactly for 
r*,and the second case occurs exactly for a unique subgroup of index 
2 in r*which is generated by reflections in the edges of the hyperbolic 
triangle with vertices e'"'" and m. Let us denote the second group 
by @$. It may be identified with (Qo, z H -2) where @,, is the unique 
subgroup of index 2 in T. 

(10.5) THEOREM.Let @* be a subgroup of T* containing a reflec- 
tion. Then S$ is a (possibly nonorientable) surface with nonempty bound- 
ary. Each component of asa.;is either an even line, or an odd line, or 
else it contains corners with angles or ?.If @* = r*(resp. = @:) then 
asaehas one component with two corners with angles T ,  and (resp. with 
angles ;, and :). In all other cases a component of asa. can contain at 
most one corner. In any case components of asavclassify the conjugacy 
classes of reflections in @* with the understanding that a component 
without a right-angled corner corresponds to a unique conjugacy class of 
reflections whereas one with a right-angled corner corresponds to two 
conjugacy classes in @*. 

Proof. Everything except the last sentence is already noted above. 
The fixed lines of reflections in a conjugacy class clearly project into 
the same component of asa*, and conversely the inverse image of a 
component of asa* in H is a union of certain fixed lines of reflections 
in @*. If a component does not contain any corner then its inverse image 
is a union of either all even lines or all nonintersecting odd lines, and 
it clearly corresponds to a conjugacy class of even resp. odd reflections 
in @*. Suppose it contains two corners. Then as noted in (10.4)@* is 
either r*or @,*, and the assertion is easily checked in these cases. 
Otherwise the component contains exactly one corner with angle T or  
exactly one corner with angle ?. In the first case (resp. the second case) 
a component of the inverse image is a union of a pair of intersecting 
lines one even and the other odd (resp. three intersecting odd lines). 
From the discussion in (10.3) it follows that in the first case there are 
two conjugacy classes of reflections in @* whereas in the second case 
there is only one such conjugacy class. q. e. d. 

(10.6) Remark. One consequence of the above discussion is that 
there are precisely the following six possibilities for the geometric shapes 
of a neighborhood of a component of asa*. (Here v) resp. vi) occurs 
only for r*resp. @,*.) 
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11. Special polygons admitting a reflection (11.1). Let @* be sub- 
group of finite index in T* containing a reflection, and @ = @* n r .  
We use the notations used in (10.1). We know that So admits a canonical 
reflection 0. Also @ admits a special polygon as an admissible funda- 
mental domain. The question we wish to study in this section is: when 
is it possible to lift 0 to a reflection symmetry of a suitable special polygon 
which is an admissible fundamental domain for @? It will turn out for 
example that r o ( N )  admits such a special polygon when N is a prime, 
but not necessarily so when N is not a prime, cf. (13.5). 

(11.2). First let us formulate the question more precisely. Let P 
be a special polygon. We say that P admits a reflection if there is a 
reflection u in r*which leaves P invariant such that if e and f are two 
sides of P which are paired then so are u(e) and u(f).  In this case if S 
is the surface obtained from P by glueing the sides by the side-pairing 
transformations then obviously u induces a reflection on S .  Now with 
@* and @ as in (11.1) we say that it is possible to lift 0 to a reflection 
on a suitable special polygon P, which is an admissible fundamental 
domain for @ if Po admits a reflection u such that the induced reflection 
on S ,  is 0.  

(11.3) THEOREM.Let @* and cP be as in (11.1). It is possible to lift 
0 to a reflection on a special polygon for @ i f f  exactly one of thefollowing 
possibilities occurs. i) @* = T*. ii) @* = @:, cf. (10.4). iii) as,. contains 
at most one odd component and no component with corners. iv) dS,* 
contains at most one component with a right-angled corner and no other 
component which is either odd or which contains corners. v) as,*contains 
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at most one component with a corner with angle ? and no  other component 
which is either odd or which contains corners. 

Proof. If @* = r*consider the special polygon for r given by 
the triangle with vertices 0,  &"I3, and m with the reflection z H f .  If 
@* = @,* consider the special polygon for @, given by the quadrilateral 
with vertices 0,  &"I3, m, and e2'"I3 with the same reflection. Now let @* 
be any other group different from T* and @,*, and suppose @ admits a 
special polygon P with a reflection u which lifts 0. Let s be the fixed 
line of u .  Then s divides P into two mutually isometric parts and it 
projects into a component of as*.. Let e and f be two sides of P which 
are paired and u(e) = f then since the pairing transformations are 
orientation-reversing on sides of P we see that e and f also project into 
a component of as,.. (Note:In the following we use the expression sides 
of P in the technical sense of (2.4).) It is clear that dS*. is a union of 
the projections of such pairs e ,  f together with the projection of s.  Note 
the three cases. a) If e and f are free sides, then the corresponding 
component of as*, is necessarily even. b) If e and f are even edges then 
they project into a component of with a single corner with angle 
4.C) If e and f are odd edges then they project into a component of 
as,* with a single corner with angle ?. 

Now if no component of as*.; contains a corner then b) and c) 
cannot occur. If moreover u is even then all components of are 
even. If on the other hand u is odd then s projects onto an odd com- 
ponent of as*. and the other components are even. This is the possibility 
iii) in the theorem. Now suppose b) occurs for some pair of even edges 
e and f .  Then e U f is an even line, say r.  Necessarily s intersects r and 
so s must be an odd line. Moreover s cannot intersect any other side of 
P since an odd line intersects precisely one even line. So if e l ,  f ,  is 
another pair of sides of P which are paired and u(e,) = f ,  then e l ,  f ,  
must be free sides and they would contribute to an even component of 
dS**. This leads to the possibility iv) in the theorem. Similarly the pos- 
sibility v) arises from case c). This proves the "only if" part of the 
theorem. 

As for the "if" part, omitting the simple cases i) and ii), we may 
suppose that we are in one of the three cases iii) to v)  listed in the 
theorem. In particular by (10.5) every component of dS** contains at 
most one corner and there is at most one such component. As in the 
proof of (3.3) let %J denote the union of f-edges in S;. Notice that there 
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is at least one even vertex and none, o r  one, o r  exactly two f-edges on 
dS,* situated as described in (10.6). We choose a maximal tree T* in 
%,? which contains these f-edges. Following the argument of (3.3) we 
can cut S$ open into a space which is isometric to a connected simply 
connected convex hyperbolic polygon P;"with the property that at most 
one component of dP;" is odd or contains a corner with angle i resp. 
i and one resp. two f-edges. (The condition that T* contains the 
f-edges in dS,. ensures the last property.) Moreover except for the 
components of dPT which correspond to the components of the 
other components may be subdivided suitably into "sides" and there is 
a natural pairing on these sides obeying the rules for the sidepairing of 
a special polygon. 

Clearly the theorem is true for @* iff it is true for any conjugate 
of @* so we may argue for a suitable r-translate of P;" which allows to 
make special choices for its sides. (This is not strictly necessary but it 
simplifies the argument.) There are four cases corresponding to the first 
four cases of (10.6). 

Case 1:All components of dP;"are even. Choose one, say C ,which 
corresponds to a component of aso..We may assume that C is the even 
line joining 0 to m.  Let P2 be the reflection of P:' across C, and let P = 

P:' U P? The partial sidepairing defined on P:' gives one on P2 and 
hence one on P ,  which can be extended to a total sidepairing by pairing 
each pair of components which corresponds to the same component of 
dS,*. 

Case 2: dP: has an odd component C.  We may assume that C is 
the odd line joining to i. Then proceed as above. 

Case 3: aP: has a component C containing a corner with angle 
4. We may assume that C is a union of two segments C' and C" where 
C' is a part of the odd line joining to and C" is a part of the even 
line which is a semicircle joining 0 to 1. Let dP; be the reflection of 
d P f  across C' and set P = P: U P:. Now proceed as above, noting 
further that P has this even line on the boundary, and in the side-pairing 
we pair the two even edges on this line. 

Case 4:  dP: has a component C containing a corner with angle 
?. We may assume that C is a union of two segments C' and C" where 
C' is a part of the odd line joining to and C" is a part of the odd 
line which is a semicircle joining to 1. Proceed as in Case 3, noting 
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that at the end we have two odd edges as part of dP forming an angle 
2 n
T which will be paired. q.e. d. 

12. Balanced Farey symbols (12.1). Consider a g. F.S. of the form 

Let xi = 2 (reduced form) such that a ,  = 0 ,  b ,  = 1, the rest of the a,, 
b, are positive, the leftmost is taken to be i, and the rightmost m is 
taken to be ?.Let N be a natural number. We say that the g.F.S. 
(12.1.1) is balanced for N if for each i = 0, 1, . . . , n - 1 ,  there exists 
an i* = 0 ,  1,  . . . , n - 1 ,  such that either 

(12.1.2) bi = bi.+ I ( N ) ,  and b,,  , = -b i w ( N ) ,  

(12.1.3) b ,  = -bi.+ , ( N ) ,  and b,- , = b i , ( N ) .  

Here n is even and ( i ,  i * )  are disjoint pairs containing all vertices 
except x,, = 1. We equip the structure of a Farey symbol on the g. F.S. 
given by (12.1.1) by pairing the intervals { a ,  0 }  with ( 1 , m} and {x , ,  x,. ,}, 
0 5 i r n - x,.,,}. We shall also call this 1 with the corresponding { x , ~ ,  
Farey symbol balanced for N .  The significance of this notion is the 
following result. 

(12.2) THEOREM.Let N 2 4 and 

Then there exists a g. F.S. in the form (12.1.1) which is balanced for N 
and the corresponding Farey symbol is a Farey symbol for T 1 ( N ) .  More- 
over consider the g. F.S. 

Then this g.F.S. can be equipped with the structure of a Farey symbol 
for T ( N ) .  
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The proof extends over (12.3)-(12.7). First we prove three lemmas 
on T 1 ( N ) .  

(12.3) LEMMA. If N 2 4 then T 1 ( N )  is torsionfree, and any special 
polygon for T 1 ( N )  has only free sides. 

Proof. The only elements of finite order in T - {e}are of order 
2 and 3 ,  and they are characterized by the fact / trace( = 0 and 1 re-
spectively. If 

is an element of T 1 ( N )then we have a = 1 + a'N and d = 1 + d ' N  
for suitable integers a ' ,  d ' .  So 

l t r a c e ~ l= J a  + d J  = 12 + (a' + d l ) ~ J  

This equals 0 or 1 only if N 5 3. The claim about a special polygon 
follows from (3.2).  q .  e. d. 

(Note: T 1 ( N )  is not torsionfree for N = 2 ,  or 3. Indeed for these 
values 

(12.4) LEMMA. There is a special polygon P for T 1 ( N )  such that 
dP contains the sides x = 0 ,  y > 0 and x = 1, y > 0 paired by the 
transformation z H z + 1. 

Proof. Since the stabilizer of the cusp a in T 1 ( N )is generated by 
z H z + 1 we see that a has cuspwidth 1. So there is a unique even 
edge running into its image cusp on T1(N) \H.  While constructing a 
special polygon for T 1 ( N ) ,cf. the proof of Theorem (3.3),  one has to 
cut along this even edge (and possibly also along an adjoining even edge 
if there exists one). In other words a special polygon for T 1 ( N )containing 
a necessarily has two sides of the form x = k, y > 0 and x = k + 1, 
y > 0 where k is an integer, and these two sides are paired by the 
transformation z H z + 1. By a further translation z H z - k,  which 
is contained in T 1 ( N ) ,we can ensure the claim. q.e.d. 
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(12.5) LEMMA. Let N 2 4 and <P a subgroup of finite index in T.  
Then <P is a subgroup of T 1 ( N )  if and only if a Farey symbol for <P 
satisfies (12.1.2), (12.1.3). (Clearly if one Farey symbol satisfies (12.1.2), 
(12.1.3) then all do.)  

Proof. First suppose that 0 is a subgroup of T 1 ( N ) .Since N 2 4 ,  
by (12.3) <P is torsionfree. So all the intervals in its any Farey symbol 
are free. If a free interval with end-points x, = 2 ,x , + ~= is paired 

0,.
with x,* = 7;;;,x,.+[ = then the condition that the pairing trans- 
formation belongs to T 1 ( N )amounts to 

where it is to be recalled that all these matrices are determined upto a 
sign. This condition implies (12.1.2) or (12.1.3). 

Conversely suppose that the conditions (12.1.2), (12.1.3) hold. We 
need to show that a pairing transformation (using the above notations) 

By (12.1.2), (12.1.3) the Azl-entry is clearly - O(N).  For definiteness 
assuming (12.1.2) the A ,,-entry is 

A similar calculation shows that the A,,-entry is -= 1 ( N ) also. A similar 
conclusion follows assuming (12.1.3). q.e. d. 

(12.6). It is well-known that the index of T ( N )  in T is 
N 3,nPI,(1  - :)
 for N 2 3 ,  cf. [S], p. 76. It is easy to see that the index 
of T ( N ) in T 1 ( N )is N and so the index of T 1 ( N )in T is $ nPIN-( 1  
$). On the other hand since for N r 4 ,  T 1 ( N )  is torsionfree its index 
by (7.2) is 3n where n is as in (12.1.1). This value of n agrees with the 
one in (12.2.1). If we now choose a special polygon for T 1 ( N )as given 
by (12.4) then by (12.5) the corresponding Farey symbol is balanced for 
N .  Conversely any Farey symbol balanced for N ,  and with the underlying 
g.F.S. of the form (12.1.1) and n as in (12.2.1) defines a subgroup of 
T 1 ( N )and has the same index in T as T 1 ( N ) .So this subgroup must 
equal T 1 ( N ) .This proves the first part of the theorem. 
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(12.7). Now consider a new g.F.S. consisting of and y ,  as in 
(12.2.2). From (7.2) we see that the index of any subgroup of I? based 
on this g.F.S. is 3nN which is the index of T ( N ) .So if we can show that 
this can be given a structure of a Farey symbol such that the side-pairing 
transformations lie in T ( N )  we are done. Indeed let i e i* be the 
correspondence given as in (12.1.2)or (12.1.3).For definiteness suppose 
that for a pair ( i ,  i*)  the relation (12.1.2) holds. Given 0 5 j < N we 
look for 0 5 j* < N such that the transformation pairing the side {y,,y,+ ,,} 
to {y,~, .y , -+l ,~}lies in T ( N ) .  Note first that since iZ i* these sides are 
distinct. The corresponding side-pairing transformation lies in T ( N ) iff 

In view of (12.1.2) the bottom rows of the two matrices are already 
congruent mod N .  To solve for j* so that the top rows are also congruent 
mod N we need 

It is easy to see that in view of the condition (12.1.2) this is possible for 
the unique value of j* given by 

0 5 j* < N ,  and 

If instead of the condition (12.1.2) the condition (12.1.3) is satisfied the 
proof is similar. This completes the proof of the Theorem (12.2).  

q.e.d.  

(12.8). The above result excludes the cases N = 2 ,  and 3. But it 
is easily verified that the Farey symbols 
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lead to the subgroups r (2 ) ,  and r (3 )  respectively and the Farey symbols 

lead to the subgroups r1(2),  and r1(3)  respectively. 

(12.9) Remark. The Theorem (12.2) will be partially improved in 
(14.12). 

(12.10) Example. The case N = 6 already fairly illustrates the 
above process. Here n = 4. There is not much choice for the corre- 
sponding g. F.S.'s. Yet it is not unique. The g. F.S.'s 

with the indicated pairing are all balanced for 6. Each of them can serve 
as a Farey symbol for r1(6) .  Let us make the first choice. The side- 
pairing transformations are 
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These are then the independent generators of r1(6). For example the 
second generator is obtained as 

cf. (6.1.3). Easy calculations using Section 7 show that r1(6)  has genus 
0, and four cusps a,0, i, and with widths 1, 6,  3, and 2 respectively. 

Applying the construction in the theorem to this Farey symbol for 
r1 (6)  gives the Farey symbol for r (6) .  

Since r (6)  is normal all cusps have the same widths. Since its index is 
72, and a has width 6, it follows that r (6)  has 12 cusps each of width 
6, and has genus 1. A set of independent generators for r (6 )  given by 
the above Farey symbol is 
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The corresponding fundamental domain is 

13. Semi-balanced Farey symbols (13.1). Let N be 2 2 and d ,  e,, 
e,. r, t ,  g be the invariants of T,,(N) as described in Section 7. These 
invariants as functions of N are given as follows, cf. [S], Chapter 4 ,  
Section 8. First of all the index is 

Here p runs over all primes dividing N .  Secondly if N is divisible by 4 
or by a prime - - 1(4) , then e, = 0. If N is 2 then e, = 1. Otherwise 
N is of the form 2'm where E = 0, or 1 and m is a product of say u r 
1 primes = 1(4). Then e, = 2". Thirdly if N is divisible by 9 or by a 
prime - - 1(3) , then e? = 0. If N is 3 then e, = 1. Otherwise N is 
of the form 3'm where E = 0, or 1 and m is a product of say v r 1 
primes - l ( 3 ) . Then e3 = 2". Now (7.1.2) determines r. Lastly 

where cp denotes the Euler's totient function. Now (7.1.1) determines 

g. 
Let 
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A g. F.S. of the form 

(13.1.2) { a ,  0 = XO,X I ,. . . , x,, = 1, w), 

where xi = 2 (reduced fractions with a,, bi nonnegative, and with usual 
conventions about a as in (5.1)) is said to be semi-balanced for N if 

i) there are e2 values i ,  0 5 i 5 n - 1, s. t. 

ii) there are e3 values i ,  0 5 i 5 n - 1, s.t. 

iii) the remaining 2r - 2 values of i ,  0 5 i 5 n - 1,  are paired 
i e i* s.t. 

The significance of this notion is the following result. 

(13.2) THEOREM.Let N 2 2 and n as in (13.1.1). Then there exists 
a g. F.S. in the form (13.1.2) which is semi-balanced for N. Moreover 
there exists a canonical structure of a Farey symbol on  this g. F.S. such 
that the corresponding special polygon is an admissible fundamental poly- 
gon for To(N). 

Proof. The proof parallels the proof of Theorem (12.2), so we 
shall be brief. First of all a semi-balanced g.F.S. is made into a Farey 
symbol by declaring the e2 (resp. e,) intervals {xi x,+,) as in the case i) 
(resp. ii)) as described above to be even intervals (resp. odd intervals). 
The remaining intervals are to be considered as free intervals. The 
interval {a 0 )  is paired to the interval {1 a ) ,  and for the remaining 
2r - 2 values of i ,  0 5 i 5 n - 1, paired i ++ i* as in iii) above, the 
interval {x,  x , + ~ )  is paired to {x,. xi*+,).This pairing-without any 
reference to semi-balancing-leads to a subgroup of the same index as 
To(N). So if we can ensure that the side-pairing transformations belong 
to To(N) then the subgroup defined by this Farey symbol is To(N). The 
conditions i), ii), iii) in (13.1) for semi-balancing precisely ensure this. 
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To show the existence of a semi-balanced g.F.S. for a given N r 
2 ,  observe again that the width of the cusp of T o ( N )defined by is 1. 
As in the case of T 1 ( N )in the proof of (12.2),since the interval {a 0 )  
is paired to the interval {1 a ) ,  and since the transformation z H z + 
1 is contained in T,,(N), we see that there is a special polygon which has 
the sides x = 0 ,  y > 0 and x = 1, y > 0 paired by the transformation 
z H z + 1. Now the condition that the side-pairing transformations 
belong to T O ( N )ensures in view of (6.1) that the g. F.S. defined by this 
special polygon is necessarily semi-balanced. q.e.d. 

(13.3). The subgroup T, , (N)is normalized by the conjugation J l ,  
where as in the proof of (9 .6) ,  J l  denotes z H 1 - 2. Let 

Suppose now that N is a prime which we naturally denote by p. By the 
discussion in (11. I ) ,  in this case d = p + 1, and T O ( p )has two cusps. 
Let P be a special polygon for T, , (p)constructed in the proof of (13.2).  
Since a has width 1 it follows that all the other vertices of P represent a 
single cusp of T o ( p )  and this cusp has width p.  Now T,,(p)\H has a 
canonical conjugation 0 induced by J l .  It is not hard to check that n = 

l i f p  = 2 o r 3 ,  b u t n  > 1 i f p  r 5 .  

(13.4) PROPOSITION.Let p 2 5. Then the projection of the lines 
which join a to 0 and cc to in To(p)\H is the full fixed point set of 0. 

Proof. First of all J ,  fixes the line joining to f and both J ,  and 
the transformation z H z + 1 map the line joining a to 0 onto the line 
joining a to 1. So the projection of the lines which join a to 0 and a 

to i is contained in the fixed point set of 0. 
Next notice that each of these lines is mapped injectively into 

To(p)\H. Indeed choose a special polygon P a s  in (13.2).The line joining 
a to 0 is mapped by a pairing transformation of P onto the line joining 

to 1. So the line joining cc to 0 is mapped injectively into To(p)\H. 
(This step is valid for all primes p.) Now if p 2 5 then the g.F.S. 
corresponding to P contains i as one of the vertices, cf. (8.11). So the 
line joining a to i is contained in the interior of P. So this line is also 
mapped injectively into T,(p)\H. 

Now consider the compact Riemann surface X which is obtained 
by filling the punctures of To(p)\H, i.e. by adding the points say x and 
y. Then 0 extends to a conjugation 8 on X, and the fixed point set of 8 
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consists of one or more disjoint circles, cf. (9 .1 )  and (9.5) .  For p r 5 
the projections of the lines joining a to 0 and together with x and y 
clearly form one such circle, say C. On the other hand the fixed point 
set of 0 on To(p)\H itself contains no circles, cf. (10 .2) .  So each com- 
ponent of the fixed point set of 0 has to end in one or two cusps, i.e. 
to say that each component of the fixed point set o f 8  has to pass through 
x or y. Since the fixed point set of the conjugation on X consists of 
mutually disjoint circles it follows that C is the full fixed point set of 8. 
This also proves the proposition. q.e. d. 

(13.5)  THEOREM.There exists a special polygon P for T o ( p )  with 
a reflection which lifts 0. Moreover we may choose P so that P has sides 
x = 0 ,  y > 0 and x = 1 ,  y > 0 paired by the transformation z H z + 
1 and the reflection on  P is induced by J l .  In other words there exists a 
Farey symbol for T o ( p )which is semi-balanced for p and whose denom- 
inators have a symmetry around 6 .  

Proof. First let p 2 5 .  The above proposition shows that 
T t ( p ) \ H  has exactly two boundary components one of which is an even 
line and the other is an odd line. So by (11.3)  we get a special polygon 
PI for T o ( p )with a reflection which lifts 0. Consider the tessellation of 
H corresponding to P I  and consider a tile P of this tessellation which 
contains a as a vertex. Since a is a cusp of width 1 ,  as in (13.2)  by a 
further translation if necessary we may assume that P has x = 0 ,  y > 
0 and x = 1, y > 0 as its sides which are paired by the transformation 
z Hz + 1. By construction P, and hence P have a reflection which lifts 
0, and the fixed line of this reflection is an odd line passing through the 
cusp of width 1. It follows that the fixed line has to be the line which 
joins a to and so the reflection on P is induced by J l .  

F o r p  = 2 and 3 we simply exhibit the appropriate special polygons. 
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(13.6) Example. Consider the cases To(p) where p = 11 and 13. 
By the formulas in (13.1) in the first (resp. second) case we have e2 = 

e, = 0 (resp. 2), and r = 3 (resp. 1). In both cases the value of n in 
(13.1.1) is 4. The only g.F.S. with n = 4 and whose denominators are 
symmetric around is 

The corresponding Farey symbol for p = 11 is 

whereas for p = 13 it is 

The corresponding fundamental domains are 

Notice that the fundamental domain for To(l l )  shows the handle! 
(As is well-known To(l l )  has genus 1, and N = 11 is the least integer 
for which To(N) has genus greater than 0.) 

A set of independent generators for To(l l )  is 
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and that for r0(13) is 

14. Fundamental domains for subgroups of r*(14.1). In this sec- 
tion we shall consider arbitrary subgroups of finite index in the extended 
modular group T* and briefly point out the modifications needed to 
extend the previously outlined procedures for obtaining the fundamental 
domains in this case. Geometrically speaking some modifications are 
necessary due to the fact that the odd reflections fix odd lines, and the 
boundaries of the corresponding surfaces may contain corners. If 0 is 
a subgroup of r whose normalizer contains a conjugation then the fol- 
lowing modifications would usually lead to better-looking fundamental 
domains for 0 which are not necessarily special polygons. 

(14.2). Let P be a hyperbolic polygon and e and f two arcs con- 
tained in its boundary. The boundary of P and so any arc contained in 
it inherits a canonical orientation. An element y in T* is said to pair e 
and f if y(e) = f or y(f) = e and y(int P)  f? int P = +. Note that if 
y is in r then the pairing is orientation-reversing, and if y is a conjugation 
then the pairing is orientation-preserving. Notice also that given two 
even (resp. odd) lines e and f in d P  there is a unique element in r which 
pairs them in an orientation-reversing way, and a unique conjugation 
in r*which pairs them in an orientation-preserving way, cf. the dis- 
cussion in (2.2), (2.3), and (10.3). 

(14.3). We now consider the following two modifications of the 
notion of a special polygon. Consider a convex hyperbolic polygon P 
of finite area containing 0 and as vertices and so that each component 
of dP is of one of the forms i), ii), iii), iv) noted in (10.6) (and thus is 
a union of a certain number of even, odd, or f-edges) or is a union of 
two odd edges which meet at an odd vertex making an internal angle 
? as in S2) of (2.4). 
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A side-pairing is of 4 types: 

i) An even line is divided into two even edges and they are paired 
by a unique element of T. These edges are among the sides of P .  

ii) Two odd edges making an internal angle are paired to each 
other again by a unique element of T. These edges are also among the 
sides of P .  

iii) An even (resp. odd) line is paired to another such line by an 
element of T*. This element is determined uniquely once it is specified 
that the pairing preserves or reverses the orientation. Notice that in con- 
trast to the special polygons, it is now possible to pair a line with itself 
of course necessarily by a reflection. These lines are also considered as 
the sides of P .  

iv) A n  even edge, or an odd edge, or an f-edge which is a part of 
a component containing a corner of the form i)-iv) of (10.6) is paired 
to itself by an appropriate reflection in T*. The parts of such components 
which connect a vertex in R U {a}to a vertex incident to a corner with 
angle i or ? are also among the sides of P .  

A special *-polygon is a polygon with a side-pairing of the type 
described above. A convenient geometric way to think about it is that 
it can be obtained as a convex hull of its vertices lying in R U {a}and 
attaching externally across even lines certain triangles each with two 
angles 0 and the third angle 2, or q ,  or ?. 

(14.4). A further weakening of the notion of a special polygon is 
a weak *-polygon. Its geometric shape is the same as a special *-polygon, 
but the side-pairing rule iv) is weakened to the following 

iv)' Let e and f be two sides of P making a corner as defined 
in iv). A side-pairing transformation y is either a reflection in e or 
else it maps e onto another such side e' of a corner so that y(int P)  n 
(int P )  = +. We require that in the first case there must also be a side- 
pairing transformation which is a reflection in f ,  whereas in the second 
case there must also be a side-pairing transformation which maps f onto 
f' so that e' and f' form a corner of P .  

(14.5). It easily follows from surface topology that a torsionfree 
subgroup of T* is free, but in general the subgroups of T* containing 
elements of finite order are not free products of cyclic groups. So now 
the Rademacher's notion of independent generators does not make sense. 
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The following notion appears to be a reasonable substitute. A system 
of generators (xi) ,  i E I for a group is said to be quasi-independent if 
the only relations are of the following types 

where all subscripts i ,  j, . . . are distinct. Let Z: resp. Ss denote 
Z2 x Z2 resp. the symmetric group on three letters. 

PROPOSITION.A group admits a quasi-independent system of gen- 
erators iff it is isomorphic to a free product of groups isomorphic to Z2, 
Zs, Z,  Zi and Ss. 

Proof. The relations of type b) resp. c) clearly define subgroups 
isomorphic to Z resp. S,. q.e.d. 

(14.6) THEOREM.Let P* be a special *-polygon, and @;T* the sub- 
group of T*generated by the side-pairing transformations. Then @;* is 
a subgroup of finite index in T*, P* is a fundamental domain for @:., 
and the side-pairing transformations form a quasi-independent system of 
generators for a;*. If d P *  does not contain a corner with angle q or T 
then the system of generators is independent. 

Proof. The argument is exactly as in (3.2). It is only a corner in 
dP* with angle or which gives rise to a relation of the type b) or c) 
respectively. So the last assertion is clear. q.e.d. 

(14.7) THEOREM.Let a *  be a subgroup of finite index in  T* but 
# T* or @ X ,  cf. (10.4). Then it admits a fundamental domain which is 
a special *-polygon. There are only finitely many choices of such fun- 
damental domains. In particular @* is an internal free product of sub- 
groups isomorphic to Z,, Zs, Z,  Z: and S3. 

Proof. The argument is as in (3.3) or rather as in (11.3). We use 
the notation in (10.1). Let %f* denote the union of f-edges in S$ and let 
T* be a maximal tree in %? which contains the f-edges in asa*.Now as 
in (3.3) or (11.3) cut S$ open into a space which is isometric to a 
connected simply connected convex hyperbolic polygon P* and then 
obtain a special *-polygon which is a fundamental domain for @*. Since 
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we require that 0 and are among the vertices of a special *-polygon 
it is clear that there are only finitely many choices for such polygons. 
The last assertion follows from (14.5). 9.e.d. 

( A  note concerning T* and @;: Since by definition a special 
*-polygon has 0 and a as vertices it is not difficult to see that T* and 
(3; do not admit a special *-polygon as a fundamental domain. Their 
presentations as given by their fundamental domains described at the 
beginning of the proof of (11.3) are 

It may be noted that T* (resp. @,*) is isomorphic to a free product of 
Z: and S3 (resp. two copies of S3) each amalgamated over Z2.From this 
fact, and from a general fact in combinatorial group theory that a finite 
subgroup of a free product of groups is conjugate to a subgroup of one 
of the free factors, one may see that r*and (3; in fact do not admit a 
quasi-independent system of generators.) 

(14.8). There is an analogue of the arithmetic part of Section 5 
in the present case. This is perhaps the most succinct way of describing 
a subgroup. A *-g.F.S. is exactly a g.F.S. as in (5.1) except that we 
allow xo and x,, to be integers or half-integers, and in (5.1.2) we allow 
the possibility that la,bi+l - b,a,+l1 equals 1 or  2. A *-Farey symbol 
based on a *-g. F.S. is as before corresponding to the sidepairing rules 
i) or ii) of (14.3) with the following additional stipulation for iii) and 
iv). As for iii) of (14.3) if the pairing is by a conjugation it will be 
indicated by a symbol 

in case two distinct intervals are paired, and by 
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in case the interval is paired to itself by a reflection. For iv) we use one 
of the following symbols. 

Here the markings c2 and c3 indicate a corner with an angle and ? 
respectively, and the direction indicates that the "smaller" side, i.e. the 
one not containing one or two f-edges, is incident to the initial end- 
vertex of the arrow. 

The special *-polygons are in an obvious natural one-to-one cor- 
respondence with *-Farey symbols which in turn classify the subgroups 
of finite index in r * .  

(14.9). There is a more or less obvious modification of Theorem 
(6.1) to get a set of quasi-independent generators for a subgroup given 
by its *-Farey symbol. For the convenience of the reader we merely 
record some computations beyond (6.1) needed for this modification. 
Notice first that if $, are two reduced fractions which are endpoints 
of an even line so that ad - bc = 1. then 

are the unique orientation-preserving and orientation-reversing ele-
ments of r*mapping a to and 0 to $. From these we easily get the 
unique orientation-preserving and orientation-reversing elements of r* 
carrying one even line onto the other. On the other hand if :and $ 
(reduced fractions) are the endpoints of an odd line so that ad - bc = 

2, then a * b, c k d are necessarily even integers, cf. (2.3). So the 
unique element of r carrying to :and to $ is 

b - a  
az + 7 

L 
Z H 

cz + -d - c  
2 
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and the unique conjugation in r*carrying to and to $ is 

We now easily get the unique orientation-preserving and orientation- 
reversing elements of r*carrying one odd line onto the other, and so 
eventually a set of quasi-independent generators for the subgroup given 
by its *-Farey symbol. 

(14.10). The following theorem partially extends and further clar- 
ifies the Theorem (11.3). We use the notation of (10.1). Our concern 
is whether we can lift the reflection 0 on S* to a reflection on some 
"nice" fundamental domain for @. 

THEOREM.The reflection 0 o n  Sa can be lifted to a reflection o n  a 
special "-polygon P which is a fundamental domain for @ iff dSg has at 
most one component with a corner. In this case in fact the side-pairing 
transformations of P are independent. In any case the reflection 0 always 
lifts to a weak "-polygon which is a fundamental domain'for @. 

Proof. If @* is r*or @:, cf. (10.4), then the assertions are clear. 
So we assume that this is not the case. In particular a component of 
as; contains at most one corner. Suppose a special *-polygon P exists 
and u is the reflection on P which lifts 0.  Notice that no side-pairing 
transformation of P can be a reflection since it is a fundamental domain 
for a subgroup of r .  So aP itself has no corners with angles or ? and 
the side-pairing transformations of P are independent. Since no two 
even lines intersect, an even line can intersect exactly one odd line, and 
an odd line intersects exactly two other odd lines it is clear that the fixed 
line of u can pass through at most one even vertex or at most one odd 
vertex on aP. If it does, there will be a corner on the corresponding 
component of dS$ and this is the only way a corner on dS$ can occur. 
So has at most one component with a corner. Conversely as in (11.3) 
we take two copies PT, P$ of a special *-polygon P* for @*, and glue 
them along the boundary-components which correspond to the same 
component of as$. We then obtain a fundamental domain P for 4). In 
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general P is a weak *-polygon. If dS$ has only one component with a 
corner we glue along the larger sides of the corresponding components 
of aP:, dP,* and actually obtain a special *-polygon. q.e:d. 

(14.11). We can now extend the Theorem (13.5) to the case of 
To(N) where N is not necessarily a prime. A *-g. F.S. is said to be semi-
balanced for N if it satisfies the conditions i), ii), for a semi-balanced 
g.F.S., cf. (13.1), where in i) or ii) the reduced fractions 2 ,  must 
satisfy la, bi+ , - biai+, 1 = 1, whereas iii) is replaced by 

iii)' the remaining 2r - 2 values of i ,  0 5 i 5 n - 1, are paired 
i ++ i* s.t. 

bibi* + b i+,  b i++,  = O(N) (resp. 2N) 

according as 1 a, bi+ , - b,ai+, 1 = 1, (resp. 2). We call the corresponding 
*-Farey symbol also as being semi-balanced for N. (The difference in 
iii) and iii)' arises from the differences for the expressions for the pairing 
of even and odd edges as explained in (14.9). These conditions are 
necessary and sufficient for the pairing transformations to be contained 
in T,(N).) 

THEOREM.There exists a special *-polygon P for To(N) with a re- 
flection which lifts the canonical reflection o n  To(N)\H. Moreover we 
may choose P so that P has sides x = 0, y > 0 and x = 1, y > 0 paired 
by the transformation z H z + 1 and the reflection o n  P is induced by 
JI : z H 1 - E .  In other words there exists a *-Farey symbol for T,(N) 
which is semi-balanced for N and whose denominators have a symmetry 
around i. 

Proof. Let Y(N) resp. Y*(N) denote the surfaces To(N)\H resp. 
T;(N)\H. In view of (14.10) to prove the first part of the theorem we 
need only prove that Y*(N) has at most one boundary component with 
a corner. A more precise statement in this direction is the following 

Assertion. i) dY*(2) contains only one corner and its angle is f. ii) 
dY*(3) contains only one corner and its angle is 9.iii) For N 2 4, dY*(N) 
has n o  corner. 

Proof. Consider the fundamental domains for T,(2) and T,(3) 
which were exhibited in (13.5). The parts of these lying within the strip 
bounded by x = 0 and x = can serve as fundamental domains for 
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r t ( 2 )and r t ( 3 ) respectively. These are special *-polygons in which each 
side is paired to itself. The one for T t ( 2 )  resp. ro*(3)contains a corner 
of angle q resp. in its boundary. This proves the first two parts. Now 
assume N r 4. By (10.3) iii) amounts to the fact that for N r 4,  
TX(N)  does not contain two reflections fixing an even or odd vertex. 
There are two cases to consider. 

Case 1: T ; ( N )  contains two reflections fixing an even vertex. Then 
these reflections are conjugate by an element of r with the reflections 
z H and z H which fix i = In terms of matrices the -2 a. 
conjugates of these latter reflections by an element 

in r are 

and 

If these lie in TX(N)  then we have 

If p is an odd prime dividing N then by (14.11.3) either p divides c or 
d, and p divides c + d or c - d. These equations are incompatible. So 
N must be a power of 2. If N 2 4 we again see that 2 divides c or d, 
and 2 divides c + d or c - d. Again these equations are incompatible. 
So the Case 1 does not occur. 

Case 2: T t ( N )  contains two reflections fixing an odd vertex. Then 
these reflections are conjugate by an element of with the reflections 
z H 1 - 2 and z H jwhich fix p = &"I3. Their conjugates by 
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are given by (14.11.2) and 

In turn this implies 2cd + d 2  = O(N) .  It is easy to see that N cannot 
be even. If p is an odd prime dividing N then either p divides c or c + 
2d,  and p divides d or 2c + d .  These equations are incompatible unless 
p divides c + 2d and 2c + d .  So p must divide 3(c + d ) .  Now if p r 
5 then p divides c + d .  Now again it is easy to see that these equations 
are incompatible. So N must be a power of 3. If N > 3 then as above 
3 divides c + d ,  and we again see that these equations are incompatible. 
So the Case 2 does not occur. q.e.d. of the assertion. 

Now to prove the latter half of the theorem we may omit the simple 
cases N = 2 and 3 ,  and first observe that since Jl normalizes T o ( N )it 
induces the canonical reflection 0 on Y ( N ) ,and by the above assertion 
its fixed line projects onto a boundary component say C of Y * ( N ) .Let 
P: be the space isometric to a special *-polygon obtained by cutting 
Y * ( N ) ,and Po the space obtained by doubling P,* along C. We can now 
isometrically develop Po onto a J,-invariant special *-polygon P so that 
C is mapped onto the fixed line of Jl taking care that the "cusp" on C 
corresponding to is indeed mapped onto a.By this construction the 
canonical projection H + Y ( N ) maps the interior of P homeomorph-
ically onto an open dense set of Y ( N ) .  So P is indeed a fundamental 
domain for To(N).Since the width of is 1 for T o ( N )the other assertions 
in the theorem are now clear. q.e.d. 

(14.12). We can now also partially refine the Theorem (12.2). As 
observed there a g.F.S. which is balanced for N naturally leads to a 
Farey symbol for T 1 ( N ) .Now T 1 ( N )equals T o ( N )for N = 2 and 3 and 
in any case it is a subgroup of T o ( N ) . It is easily checked that it is 
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normalized by Jo and J I  and its cusp-width at a is 1. So the Assertion in 
the theorem in (14.11) concerning the corners in dT$(N)  and the rest 
of the proof is valid also for d T 1 * ( N ) ,where naturally T 1 * ( N )= ( T 1 ( N ) ,  
z H -f). A purely arithmetic notion describing a *-Farey symbol for 
T 1 ( N )is the following modification of (12.1): a *-g.F.S. is said to be 
balanced for N if the conditions (12.1.1) and (12.1.2) are replaced by: 

(14.12.1) b i = b ; . + l ( N ) ,  and b , + , = - b i , ( N ) ,  

b -b ,  I N ) ,  and b,+, = bi.(N) 

if la,bi+ - bia,+,1 = 1 ,  whereas 

(14.12.2) b, = b i * + , ( N ) ,  b = -b , )  and 

b,  = bj .+,(2N)  iff b i+,= -bi.(2N),  

bi = -bi*+, ( N ) ,  b = b ) and 

b = -b ( 2 iff b,+, = b, , (2N)  

if la,b,+,- bia,+,1 = 2.  An elementary but a bit tedious calculation 
using (14.9) along the lines of (12.5) shows that these are indeed the 
necessary and sufficient conditions for the side-pairing transformations 
to be in T 1 ( N ) .To summarize: the Theorem (12.2) partially improves 
to the following. 

THEOREM.Let N ,  n be as in (12.2). Then there exists a *-g. F. S. in 
the form (12.1.1) which is balanced for N ,  and whose denominators have 
a symmetry around i. It leads to a special *-polygon P for T 1 ( N )  with a 
reflection which lifts the canonical reflection o n  T1(N)\H and we may 
choose P so that P has sides x = 0, y > 0 and x = 1 ,  y > 0 paired by  
the transformation z H z + 1 and the reflection o n  P is induced by  J ,  : 
z H 1 - 2. Moreover let y,, be defined as in (12.2.2). Then there exists 
a unique structure of a *-Farey symbol o n  a *-g. F.S. containing y ,  and 
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such that the corresponding special *-polygon is an admissible fun- 
damental polygon for T(N). 

(14.13) Remark. Instead of having a special *-polygon bounded 
by x = 0, y > 0 and x = 1, y > 0 to be symmetric around $ it may be 
convenient to replace it by a special *-polygon bounded by x = - i, 
y > 0 and x = i, y > 0 and symmetric around 0. This luxury was not 
available with special polygons. The reader may think of some other 
variations of this theme. 

i) To* (2) = T1*(2)- Z2 * Z:. 
ii) T;T(3) = T1*(3)- Z2 * S3 .  

iii) For N 2 4 both T;T(N)and T1*(N)admit an independent system 
of generators. 

Proof. It is easy to see that T1*(N) = T,*(N) for N = 2 or 3. So 
the assertion is immediate from (14.6) and the statements concerning 
the fundamental domains for Tt(N) and T1*(N) in the proofs of (14.11) 
and (14.12). q.e.d. 

(14.15) Example. Let us consider the case N = 8. A Farey symbol 
for r0(8) is 

It is easy to check that there is no Farey symbol in this case in which 
the denominators are symmetric around i. On the other hand there is 
a *-Farey symbol which has such symmetry. Namely it is 

Similarly a Farey symbol for r '(8) is 
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Again it is easily checked that there is no Farey symbol in this case in 
which the denominators are symmetric around t. On the other hand a 
*-Farey symbol with this symmetry is 

Even when N is a prime p ,  in contrast with T o ( p ) ,in general T 1 ( p )does 
not admit a special polygon with a reflection symmetry. This happens 
already for p = 5. 

In Appendix 4 we have described the *-Farey symbols for I',(N), 
for the values of N 5 25 which are not primes, and in Appendix 5 the 
*-Farey symbols for T 1 ( N ) ,for the values 4 5 N 5 12. 

Appendix 1 subgroups of index 5 6 (Al . l ) .  A special polygon 
for T is the triangle with vertices m, 0, and p = e""3.Its Farey symbol 
is 

The tree diagram is 

(A1.2). The unique subgroup of index 2 in T has a Farey symbol 

The tree diagram is 

-. 

(A1.3). The possible tree diagrams for index 3 subgroups are 
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The Farey symbol 

corresponds to the first possibility. It is a normal subgroup. Its inde- 
pendent generators are 

The Farey symbols 

correspond to three subgroups in the same conjugacy class. These sub- 
groups are respectively 

(A1.4). We list the tree diagrams for the subgroups of indices 4 
through 6.  The corresponding Farey symbols for the subgroups in the 
corresponding conjugacy classes and their independent generators may 
be found by the procedures in Section 4 and Section 6 .  
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Appendix 2. Balanced Farey symbols for 4 5 N 5 12. In these 
symbols we label the intervals by the pairing which is a part of the 
definition of a balanced Farey sequence. We agree not to list the initial 
and final a.As it stands it is a Farey symbol for T 1 ( N ) .T o  obtain the 
Farey symbol o r  the corresponding special polygon for T ( N )  we shall 
need to follow the procedure of Theorem (12.2). The following con- 
structions were made by using the remarks in Section 5 and Section 8 ,  
especially (5 .7) ,  (8.12),  to generate candidates and then checking them 
by some trial and error. 
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Appendix 3. Semibalanced Farey symbols (A3.1). For simplicity 
we shall omit the initial and final in a semi-balanced Farey symbol. 
We have already considered r,(2) in (A1.3). Moreover r0(3) has index 
4 and has a Farey symbol 

(0, 1). (Note: 1' + 1 . 1  + l2= 0(3).) 

(A3.2). To(9) has index 12 and has r = 3, ez = e3 = 0.  It has a 
Farey symbol 

Correspondingly its independent generators are 

Z--
22 - 1 

(Note: 1 . 3  + 3 .2  = 0(9).)
92 - 4' 

Z H -
52 - 4 

(Note: 2 . 3  + 3 .1  = 0(9).)
92 - 7' 

(A3.3). To(12)has index 24 and has r = 5, ez = e3 = 0. It has a 
Farey symbol 

Correspondingly its independent generators are 

Z -
52 - 1 

(Note: 1 .6  + 6 . 5  = 0(12).)
362 - 7' 
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5.2 - 4 
Z H  (Note: 5 . 4  + 4 . 1  = 0(12).)

242 - 19' 

72 - 5 
z H (Note: 4 . 3  + 3 . 4  = 0(12).)

242 - 17' 

52 - 3 
Z H  (Note: 3 . 2  + 2 . 3  = 0(12).)

12.2 - 7' 

(A3.4). Now we shall concentrate on the case of To(p), where p 
is a prime. Here is some basic data. 

i) P " 1(3), p = l(4). Then T,)(p)has r = i (p  - 7), e2 = 2, e3 = 
2. 

ii) P '1(3), p = - l(4). Then Tll(p)has r = i (p  - I) ,  e2 = 0, 
e, = 2. 

iii) P '- 1(3), p = l(4). Then Tll(p)has r = i ( p  + I),  e2 = 2, 
e3 = 0. 

iv) P '- 1(3), p - l(4). Then To(p) has r = i (p + 7), e2 = 
0, e, = 0. 

Also in cases i) and ii) a semi-balanced Farey sequence has ? terms, 
and in cases iii) and iv) it has ? terms. 

(A3.5). We shall now list the Farey sequences which are semi-
balanced for the primes 5 100. They exhibit certain remarkable features. 
One of these features, as observed in the theorem in (13.5), is that the 
denominators in this Farey symbol have a symmetry around i, or what 
is the same the corresponding special polygon has a reflection symmetry 
in the vertical line x = t ,  y > 0. 

Due to this symmetry it will be convenient to reduce the Farey 
symbol to a symbol of the form 

{0, x,,  x2, . . . . . . . . .i / reflect). ___ I 

0 1 

Here the even intervals and the odd intervals are symmetrically placed 
around i. In fact an even interval (resp. an odd interval) occurs exactly 
once to the left of 4 iff p = 1(4), (resp. p = l(3)); otherwise it does not 
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occur. On the other hand if there is a free interval with a label a to the 
left of then its reflection in 4 has necessarily a different label at-they 
are not paired. On the left of there will be another free interval with 
a label either a or a ' ,  and its reflected interval will have a label a' or a 
respectively. 

Example. A Farey symbol for r"(41) is 

This will be shortened to 

(A3.6). In the definition of a semi-balanced Farey sequence for 
N ,  cf. (12.1),  we require the congruences b f  + b f+l  = O ( N ) ,  to be 
satisfied by the denominators. For N = a prime 5 100 it is possible to 
construct semi-balanced Farey sequences where these congruences can 
be lifted to equalities in natural numbers! The author has not been able 
to justify these on general grounds. 

Example. A Farey symbol for To(43)is 

I 2 I 2 1
{O, , f, s ,  7,  3, J ,  i l ref lect l .  

0 1 2 3 2 ' 1 3  

Corresponding to the odd interval {0 ,  i)we have not only l 2  + 1 . 6  + 
62 = O(43) but actually l2 + 1.6 + 6' = 43. Similarly corresponding 
to the paired free intervals {i,$1 and {i,i)we have not only 6 . 3  + 
5 . 5  3 O(43) but actually 6 . 3  + 5 . 5  = 43. 

(A3.7). The modified Farey symbols for T , (p) ,  where p is a prime, 
5 a p 5 100: The following Farey symbols were constructed by hand. 
The following empirical rules were followed. i) The first nonzero term 
was chosen to be where a = [%I.ii) Whenever a ,  b are the denom- 
inators in two consecutive terms we solved ax + by = p ,  in natural 
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numbers x, y and we looked for terms with x, y in the denominators. 
The rest of the terms were more or less forced by the remarks in (8.12), 
(A3.5) and (A3.6). 

p = 7. (0, ( reflect). 

I I p = 13. (0, s, 3 1 reflect). 
_hl. 0 


I 1 1 p = 19. (0, z, , 7 I reflect). ____.1 1' 
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1 1 2 1 2
(0, , , 7, i, i ,  s ,  3, , t / reflect}. 

1 2 3 4 1 3 ' 2 ' 4 0  
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Appendix 4. *-Farey symbols for r o ( N ) ,  N  5 25, N f a 
prime. Again it will be convenient to omit the initial and final a from 
these *-Farey symbols. Moreover as in (A3.5)-now using the theorem 
in (14.11)-we shall reduce the symbol to the form 

(0, xl, xZ, . . . . . . , 1 reflect). 
_h_l J 

1 0 2 3 

In contrast to the observations in the case when N is a prime, cf. (A3.5), 
it is now possible that if there is a free interval with a label a to the left 
of : then its reflection in : may have a label a or a different label a ' .  If 
the free interval and its reflection have different labels a and a' then 
again on the left of : there will be another free interval with a label 
either a or a ' ,  and its reflected interval will have a label a' or a respec-
tively. 

N = 4. (0,- I reflect). 

1 

I 1
N = 6. (0, 3, 5 I reflect). 

1 1

N = 8. (0, s ,  5 I reflect). 

1 I
N = 9. (0, 7 ,  5 reflect). 
_hJ 

1 1  

N = 10. (0, f ,  , reflect).-
0 1 2 
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I 1(0, 7, 3 ,  , i 1 reflect}. 

1 1 ' 2 3  
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Appendix 5. *-Farey symbols for rl(N),4 5 N 5 12. In writing 
these symbols we follow the pattern used in the previous appendix. 

N 

N 

= 

= 

4. 

5 .  

(0, 1 reflect}-
1 

2 1(0, 5, 5 / reflect). 
_*J 

N = 7. (0, , 

1 

, 

2 

, 

3 

i 

4 

/ reflect} 

CITY UNIVERSITY OF NEW YORK 



RAVI S. KULKARNI 

REFERENCES 

[An] Modular Functions of One Variable. Proceedings of the Summer School at Antwerp, 
Lecture Notes in Math.. Springer Verlag. volumes 320, 349, 350, 476, 601 ed.  by 
Birch. Deligne. Kuyk, Serre. Zagier. 

[A] Artin E.,  Ein Mechanisches System mit Quasi-ergodischen Bahnen, Collected Papers, Ad-
dison Wesley, Reading, Mass., 1965, 499-501. 

[B] A .  F. Beardon, The Geometry of Discrete Groups, Grad. Texts in Math.,  Springer Verlag, 
91, 1983. 

[C] Y .  Chuman, Generators and Relations of T o ( N ) ,  Jour. Math. Kyoto Univ . ,  13-2 (1973), 
381-390. 

[F] H. Frasch, Die Erzeugenden der Hauptkongruenzgruppen fur Primzahlstufen, 	Math. Ann . ,  
108 (1932), 229-252. 

[Fr] H .  Freudenthal, iJber die Enden topologischer Raiime und Gruppen, Math. Zeit., 33 
(1931), 692-713. 

[Frl] R.  Fricke, Die elliptischen Funktionen und ihre Anwendungen, part 11, Teubner, 1922, 
reprinted 1972. 

[FK] and F. Klein. Vorlesungen iiber die Theorie der elliptischen Modulfunktionen, 2 
volumes, Leipzig: Teubner, 1890, reprinted 1966. 

[GI R .  C. Gunning. Lectures on Modular Forms. Ann .  of Math. Studies No.  48, Princeton 
University Press, 1960. 

[HW] G .  H .  Hardy and E .  M. Wright, A n  Introduction to The Theory of Numbers,  Oxford 
University Press, 1960, Fourth Edition. 

[HI A .  Hurwitz, Grundlagen einer independenten Theorie der elliptischen Modulfunktionen 
. . . , Math. A n n . ,  18 (1881). 528-592. 

[K] R .  S. Kulkarni, An extension of a theorem of Kurosh and applications to fuchsian groups, 
Mich. Math. Jour.,  30 (1983), 259-272. 

[MI B. Maskit, On  Poincare's Theorem for Fundamental Polygons, Advances in Math., 7 (1971). 
219-230. 

[Mi] M. H. Millington, i) On cycloidal subgroups of the modular group, 	Proc. London Math. 
Soc.,  19 (1969), 164-179. ii) Subgroups of the classical Modular Group, Jour. of 
the London Math. Soc . ,  1 (1969), 351-357. 

[N] 	J .  Nielsen, A Study concerning the Congruence Subgroups of the Modular Group, Danske 
Vid .  Selsk. Mat. Phys. Medd.,  25 (1950). 

[ 0 ]  A .  Ogg, Modular Forms and Dirichlet Series, Benjamin, 1969. 

[PI R. Penner, Moduli Space of a Punctured Surface and Perturbative Series, Bull. A .  M.  S. ,  


15 (1986), 73-77. 
[R], H. Rademacher, i jber  die Erzeugenden der Kongruenzuntergruppen der Modulgruppe, 

Abh.  Hamburg, 7 (1929), 134-148. 
[R]] , Zur Theorie der Modulfunktionen, Jour. fur die reine und angewandte Mathe- 

matik,  167 (1932). 312407. 
[R]? , The Ramanujan Identities under Modular Substitutions, Transactions of the Amer. 

Math. Soc., 51 (1942), 609-636. 
[S] B. Schoeneberg, Elliptic Modular Functions, 	Die Grundlehren der Math. Wissen., 203, 

Springer Verlag, 1974. 
[Se] C. Series, The Modular Surface and Continued Fractions, J. London Math Soc.(2),  31 

(1985). 69-80. 



1133 SUBGROUPS OF THE MODULAR GROUP 

[Si] C .  L. Siegel. Topics in Complex Function Theory, vol. 11, lnlerscience Tracls in Pure and 
Applied Math.,  No. 25. Wiley Interscience, 1971. 

[St] H.  M. Stark, A n  lntroduclion to Number Theory. The M.I.T. Press. 1984. 
[TI W. Thurston, Geometry and Topology of  3-Manifolds. Princeton University Lecture Notes, 

1978. 
[Z]  	D.  Zagier, Modular Parametrizations of Elliptic Curves, Canad. Math. Bull., 28 (1985), 

372-384. 


