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Abstract. Several well-known examples in Probability and Operations Research are analyzed using simu-
lation with Maple.

1. Introduction

1.1. Notation and terminology. Random variables (abbreviated RV’s) are denoted by capital letters,
e.g. X , and their values (also observations) are denoted by low-case letters. Probabilities associated with
a RV X are denoted by Prob{X ∈ (−2, 5]} , Prob{X ≥ 7}, etc.
Example: X is the value returned by a fair die,

Prob{X = x} =
{

1
6 , x ∈ {1, 2, 3, 4, 5, 6}
0 , otherwise

The (cumulative) distribution function (abbreviated DF) of a RV X is the function

F (x) = Prob{X ≤ x} (1)

If X is a continuous RV it has a density function

f(x) = lim
dx→0

Prob{x ≤ X ≤ x + dx}
dx

, such that F (x) =

x∫
−∞

f(t) dt . (2)

In the discrete case the integral is replaced by a sum

F (x) =
x∑

t=−∞
f(t) , where f(t) = Prob{X = t} (3)

In either case, the DF is a nondecreasing function, rising from F (−∞) = 0 to F (∞) = 1.
The expected value E{X} and variance Var{X} of a RV X are computed by

E {X} =

∞∫
−∞

t f(t) dt , continuous case ,

=
∞∑
−∞

t f(t) , discrete case ,

Var {X} = E (X − E{X})2 .

The standard deviation of X is
√

Var{X}.
The support of a RV is the largest set where the probability (density in the continuous case) is positive.
A random sample is a set of independent observations {x1, x2, · · · , xN}. Independent RV’s with the

same DF are called independent, identically distributed (abbreviated iid).

Date : November 5, 1999.
Key words and phrases. Probability, simulation, Monte-Carlo, Maple, birthday problem, 3 doors puzzle, St Petersburg

paradox, Buffon needle problem, newsboy problem, investment problem, queuing system.

1



2 ADI BEN-ISRAEL

1.2. Simulation. Given an interval [a, b], a RV with the density function

f(x) =
{

1
b−a , x ∈ [a, b]
0 , x �∈ [a, b]

(4)

is said to be uniformly distributed (abbreviated uniform) on [a, b].
Random numbers (abbreviated RN’s) are uniform on [0, 1] and iid.

If X is a RV with DF F (x) and if {r1, r2, · · · , rN} are RN’s we can (artificially) generate a random sample
{x1, x2, · · · , rN} of X by solving

F (x) = ri , (5)

for i = 1, 2, · · · , N . If the DF F (x) has an inverse (this happens if X is continuous, F (x) is monotone
increasing in an interval I and the density f(x) is zero outside I) then (5) returns a unique value xi,

xi = F−1(ri) (6)

In the remaining cases, ambiguities in (5) are very unlikely (have zero probability) and can be resolved by
the rule,

xi is smallest x such that F (x) = ri .

Simulation (also Monte-Carlo simulation) is a process of generating samples of a RV X by using RN’s. It is
one of the most important tools for analyzing and solving problems involving uncertainty, arising in many
fields, from Nuclear Physics to Business. Often such problems are too complicated for precise analysis,
and simulation is the only option. Consequently every programming language includes a random number
generator (abbreviated RNG) giving pseudo random numbers, which are good approximations of RN’s.

Outline of this paper:
§ 2: Maple functions used in the sequel, § 3: simulation using Maple,
§ 4: the birthday problem, § 5: the St Petersburg paradox,
§ 6: the 3 doors puzzle, § 7: the Buffon needle problem,
§ 8: the newsboy problem, § 9: an investment problem,
§ 10: queuing systems.

All new Maple functions in this paper have names beginning with capital letters, e.g.
DiscreteSimulations(f,x,L,U,n). Some Maple functions occur in singular/plural pairs, e.g. Rand()
and Rands(n), Simulation(x,p) and Simulations(x,p,n), where the singular form returns a scalar, and
the plural form returns an n–dimensional vector. All Maple programs in this paper can be downloaded
from ftp://rutcor.rutgers.edu/pub/bisrael/SIMULATION.mws

2. Some Maple functions

The Maple functions collected in this section are used in the sequel. After starting Maple we load the
following packages

> restart:with(linalg):with(stats):with(plots):

The Maple function rand() generates a random number with 12 digits. For example,

> rand();

427419669081

to get a random number in [0, 1] we define the function Rand()

> Rand:=proc()
> evalf((rand()*10^(-12)),5);
> end:

For example,

> Rand();

.32111
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The function Rands(n) generates a vector with n RN’s

> Rands:=proc(n)
> local x,k;
> x:=vector(n,[]);
> for k from 1 to n
> do x[k]:=Rand();od;
> evalm(x);end:

For example, try the following three commands

> Rands(20);
> convert(%,list);
> sort(%);

Why was it necessary to convert to a list before sorting?
The function Cum(x) computes the vector of partial sums of elements of x

> Cum:=proc(x)
> local k,n,v;
> n:=vectdim(x);v:=array(1..n);v[1]:=x[1];
> for k from 2 to n
> do v[k]:=v[k-1]+x[k] od;
> evalm(v);
> end:

For example,

> Cum([1,2,3,4,5,6,7,8,9,10]);
[1, 3, 6, 10, 15, 21, 28, 36, 45, 55]

The function Lookup(x,a) finds the last occurrence of x[k]≤ a

> Lookup:=proc(x,a)
> local n,k,ka;
> n:=vectdim(x);ka:=0;
> for k from 1 to n do
> if a>=x[k] then ka:=k fi;od;
> RETURN(ka);end:

Examples:

> Lookup([1,2,3,4,5,6,5,8],5);
7

> Lookup([1,2,3,4,5,6,7,8],4.99);
4

The function Statistics(x) prints some statistics of the elements of a vector x,

> Statistics:=proc(x)
> local n,k,s,ss,w,fl;
> n:=vectdim(x);
> s:=sum(’x[k]’,’k’=1..n)/n;
> ss:=sum(’x[k]^2’,’k’=1..n)/n;
> printf("%A %G\n",’Average’,evalf(s));
> printf("%A %G\n",’Std_dev’,evalf(sqrt(ss-s^2)));
> w:=convert(x,list):w:=sort(w);fl:=floor(n/2);
> printf("%A %G\n",’Median’,w[fl]);printf("%a %g\n",’Maximum’,w[n]);
> printf("%A %G\n",’Minimum’,w[1]);
> end:

For example, the statistics of a random sample of 100 RN’s,

> Statistics(Rands(100));

Average .493814
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Std_dev .299507
Median .52543
Maximum .99299
Minimum .005863

The sample mean is close to the expected value of 0.5, and the sample standard deviation is close to the
theoretical value:

> sqrt(int((x-0.5)^2,x=0..1));
.2886751346

The function Repetitions(v) gives the number of repetitions in a vector v

> Repetitions:=proc(v)
> local n,k,r,w;
> n:=vectdim(v);r:=0;
> w:=convert(v,list);w:=sort(w);
> for k from 1 to n-1 do
> if w[k+1]=w[k] then r:=r+1;fi;
> eval(r);od;
> end:

Examples:

> Repetitions([1,-3,2,3,-3,4,5,4]);

2

> Repetitions([dog,cat,dog,cat,dog]);

3

3. Simulation with Maple

The Maple functions in this section generate random samples from discrete or continuous RV’s, by
solving (5).

3.1. Discrete RV’s. For simplicity we assume discrete RV’s to have only integer values. The functions
Simulation(x,p) (Simulations(x,p,n)) generate one observation (resp. a vector of n observations) of
a discrete RV with values x and corresponding probabilities p (the vectors x and p must have the same
dimension)

> Simulation:=proc(x,p)
> local k,cp;
> cp:=Cum(p);
> k:=Lookup(cp,Rand());
> RETURN(x[k+1]);
> end:

> Simulations:=proc(x,p,n)
> local k,v;
> v:=vector(n,[]);
> for k from 1 to n
> do v[k]:=Simulation(x,p);od;
> evalm(v);end:

Examples: A fair coin

> Simulation([H,T],[0.5,0.5]);

H

> Simulations([H,T],[0.5,0.5],20);

[T, H, H, T, T, T, T, T, T, T, H, H, T, H, T, H, T, T, T, T ]
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and a fair die

> Simulation([1,2,3,4,5,6],[1/6,1/6,1/6,1/6,1/6,1/6]);

1

Try

> v:=Simulations([0,1],[0.5,0.5],100);
> Statistics(v);
> v:=Simulations([1,2,3,4,5,6],[1/6,1/6,1/6,1/6,1/6,1/6],100):
> Statistics(v);

The above functions Simulation(x,p) and Simulations(x,p,n) work for RV’s with finitely many val-
ues (the vector x is finitely dimensional). For discrete RV’s with infinitely many values, the functions
DiscreteSimulation(f,x,L,U) (DiscreteSimulations(f,x,L,U,n)) generate one observation (resp. a
vector of n observations) from a RV X with values x and corresponding probabilities f(x). L is the smallest
possible value of X , and the values of X are truncated at U, a sufficiently large integer, possibly, U= ∞.

> DiscreteSimulation:=proc(f,x,L,U)
> local t,F,m;
> randomize(seed);t:=Rand();F:=0;
> for m from L to U do F:=evalf(F+subs(x=m,f));
> if F>t then RETURN(m);BREAK;fi;
> od;
> end:

> DiscreteSimulations:=proc(f,x,L,U,n)
> local v,k;
> v:=vector(n,[]);
> for k from 1 to n do
> v[k]:=DiscreteSimulation(f,x,L,U);
> od:
> evalm(v);convert(v,list);
> end:

Example: the Poisson distribution

f(x) =
λx e−λ

x!
, x = 0, 1, · · · (7)

has expected value λ and variance λ. We simulate 20 observations with λ = 2.3,

> DiscreteSimulations((2.3^x)*exp(-2.3)/x!,x,0,infinity,20);

[2, 3, 2, 3, 3, 2, 1, 2, 5, 2, 3, 3, 3, 2, 3, 5, 2, 1, 3, 2]

Try

> DiscreteSimulations((2.3^x)*exp(-2.3)/x!,x,0,infinity,100):
> Statistics(%);

Example: for 0 < p < 1, the geometric distribution

f(x) = (1− p)x−1 p , x = 1, 2, · · · (8)

has expected value 1/p. We simulate 20 observations for p = 0.5,

> DiscreteSimulations((0.5)^(x-1)*0.5,x,1,100,20);

[1, 2, 4, 1, 1, 2, 2, 3, 2, 3, 1, 4, 1, 1, 1, 2, 1, 6, 3, 1]

Try

> DiscreteSimulations((0.5)^(x-1)*0.5,x,1,100,100);
> Statistics(%);
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3.2. Continuous RV’s. The functions ContSimulation(f,x,L) (ContSimulations(f,x,L,n)) gener-
ates one observation (resp. a vector of n observations) of a random variable with probability density
function f . The user must specify the leftmost point L of the support of X , possibly, L = −∞.

> ContSimulation:=proc(f,x,L)
> local t,F;
> F:=int(f,x=L..t);
> randomize(seed);solve(F=Rand(),t);
> end:

> ContSimulations:=proc(f,x,L,n)
> local k,v;
> v:=vector(n,[]);
> for k from 1 to n
> do v[k]:=ContSimulation(f,x,L);od:
> evalm(v);convert(v,list);
> end:

Example: the uniform distribution on [0, 1],

> f:=1:ContSimulation(f,x,0);
.1508600000

> f:=1:ContSimulations(f,x,0,5);
[.8026400000, .5785700000, .1714600000, .004109700000, .6926100000]

Example: the standard normal distribution,

f(x) =
1√
2 π

e−x2/2 ,−∞ < x < ∞ (9)

> f:=exp(-x^2/2)/sqrt(2*Pi):ContSimulation(f,x,-infinity);
−1.193585880

> f:=exp(-x^2/2)/sqrt(2*Pi):L:=-infinity:ContSimulations(f,x,L,5);

[−.8772700053, .3136063975, 1.483129529, −.4936972609, −1.212764164]

Try

> f:=1:v:=ContSimulations(f,x,0,100):
> Statistics(%);
> f:=exp(-x^2/2)/sqrt(2*Pi):ContSimulations(f,x,-infinity,100):
> Statistics(%);

4. The birthday problem

We assume that birthdays are uniform throughout the year, so that the probability that a person chosen
at random will have a birthday on any date is 1/365.

Given a random sample of n people, we denote by p(n) the probability that at least two have a common
birthday. Clearly p(n) increases with n, from p(1) = 0 to p(366) = 1. Find the smallest n such that
p(n) ≥ 1/2. See also [2, p. 29].

The answer, n = 23, comes as a surprise to students who typically guess a much larger number.
The function ProbCommonBirthday(n,N) computes the probability of at least one common birthday in

a group of n, if a year has N days. This is computed using the probability of the complementary event,
i.e. no common birthday

> ProbCommonBirthday:=proc(n,N)
> local k;
> evalf(1-product((N-k+1)/N,k=1..n));
> end:

As claimed, for n = 23 the probability goes above 1/2,

> ProbCommonBirthday(23,365);
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.5072972343

In a planet with a longer year of 10, 000 days, the answer to the birthday problem is n = 119,

> v:=vector(150,[ ]):for k from 1 to 150 do v[k]:=ProbCommonBirthday(k,10000);od:
> 1+Lookup(v,0.5);

119

We now use simulation to illustrate the above results. The function Birthdays(n,N) generates n random
dates from a year with N days (on earth N = 365)

> Birthdays:=proc(n,N)
> local v,k;
> v:=vector(n,[]);
> for k from 1 to n do
> v[k]:=floor(Rand()*N);od;
> evalm(v);end:

For example,

> Birthdays(10,365);

[343, 264, 240, 120, 199, 252, 291, 94, 298, 225]

> convert(%,list):sort(%);
[94, 120, 199, 225, 240, 252, 264, 291, 298, 343]

Now simulate 23 random birthdays,

> Birthdays(23,365);

[356, 167, 306, 357, 270, 141, 264, 257, 289, 176, 318, 253, 172, 22, 255, 216, 28, 162,

53, 214, 97, 35, 4]

> Repetitions(%);
0

i.e. no common birthday in this sample. With many replications of this simulation, we get 0 repetitions
about 1/2 of the time.

5. The St Petersburg paradox

Two players, A and B. A fair coin is tossed until H first appears. If this happens on trial number n then
B pays A the amount 2n−1, and the game stops, see [2, p. 199]. What is the value of the game for A? In
other words, if B were to sell tickets for this game, how much should A be willing to pay for a ticket? A
reasonable answer is the expected value of A’s gain.

The probability of first H in trial n is (1/2)n, therefore the expected value of A’s income is infinite,

> evalf(sum(’2^(k-1)*(1/2)^k’,’k’=1..infinity));
∞

hence the paradox (if you ask how much people would be willing to pay, the typical answers are below 20).
When simulating the St Petersburg game we must truncate it, i.e. put a limit n on the number of trials

(if H has not appeared before trial n, then B pays A the amount 2n−1 and the game ends). The function
Petersburg(n) simulates A’s income in such a truncated game.

> Petersburg:=proc(n)
> local v,k,x,p,temp;
> x:=[H,T]:p:=[1/2,1/2]:v:=array(1..n):temp:=0;
> for k from 1 to n do
> v[k]:=Simulation(x,p);
> if v[k]=H then break;fi;od;
> eval(2^(k-1));
> end:

Example: the St Petersburg game with at most 20 trials,
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> Petersburg(20);
4

Now we simulate 1000 games, each limited to at most 20 trials, and compute statistics

> v:=array(1..1000):for k from 1 to 1000 do v[k]:=Petersburg(20);od:
> Statistics(v);

Average 13.723
Std_dev 120.329308
Median 2
Maximum 2048
Minimum 1

showing that the upper bound n = 20 was not exceeded in this simulation (the longest game lasted 12
trials, giving a return of 211 = 2048).

Note: In one of the many attempts to explain this paradox, Daniel Bernoulli (1738) suggested that
wealth w is actually worth C log(w) (logarithmic utility), for some C > 0. Accordingly, the value of the
game for A is his expected utility

> evalf(sum(’C*log(2^(k-1))*(1/2)^k’,’k’=1..infinity));
.6931471806 C

6. The three doors puzzle

We owe this gem to Marilyn vos Savant, [5].
There are three closed doors. Behind one door (unknown to you) is a prize. The two other doors offer

nothing. You want to pick the door with the prize. After making your choice, but before your door is
opened, one of the other doors is opened to reveal that it is empty. At this point you are given the option
of keeping the door you have selected, which is then opened, or switching to the other unopened door,
which is then opened.

Should you stay with your original choice, or should you switch? Intuition tells us that there is no reason
to switch (after all, the door that was opened did not contain the prize), however analysis shows that

• if you keep the original selection, your probability of winning is 1/3, and
• if you switch doors, the probability of winning is 2/3,

i.e. the winning chances are doubled by switching! See [4] for detailed analysis.
The function ThreeDoors(n) simulates n plays of this game, under the policy of non-switching, and

computes the frequency of wins, which for n sufficiently large should be close to the theoretical value of
1/3.

> ThreeDoors:=proc(n)
> local k,p,q,d,w;w:=0; #w = number of wins in n trials
> for k from 1 to n do
> p:=Simulation([1,2,3],[1/3,1/3,1/3]);#door with prize
> q:=Simulation([1,2,3],[1/3,1/3,1/3]);#door chosen by cotestant
> d:=p+Simulation([1,2],[1/2,1/2]) mod 3;#empty door openned
> if p=q then w:=w+1 fi;od; #contestant stays with original choice
> printf("%A %G\n",’Frequency_of_wins’,evalf(w/n));
> end:

For example,

> ThreeDoors(100);

Frequency_of_wins .34

To simulate n plays under the policy of switching, change the line

> if p=q then w:=w+1 fi;od; #contestant stays with original choice

to

> if p<>q then w:=w+1 fi;od; #contestant switches

For a generalization to more than 3 doors see the webpage [1].
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7. The Buffon needle

A needle of length L is dropped into a plane marked by parallel lines, D apart. Assume that the ratio
L/D is sufficiently small, say L/D < π/2. Then

Prob {the needle will cross any line} =
2L

πD
. (10)

This result is often stated for L = D = 1, see [3, p. 61].
The function Buffon(L,D,n) simulates n needles, and records the frequency of line crossings, as well as

the theoretical result (10).

> Buffon:=proc(L,D,n)
> local k,c,x;
> c:=0;
> for k from 1 to n do
> x:=evalf(D*Rand()+L*cos(2*Pi*Rand()));
> if (x>D or x<0) then c:=c+1 fi;
> od;
> lprint(’Frequency_of_crossings’);
> lprint(’Simulated_value’,evalf(c/n));
> lprint(’Theoretical_value’,evalf(2*L/(Pi*D)));
> end:

Example: 100 needles with D = L = 1,

> Buffon(1,1,100);

Frequency_of_crossings
Simulated_value .5600000000
Theoretical_value .6366197722

We next illustrate the agreement between the theoretical result (10) and the simulated frequencies of
line crossings. Since the result depends on the ratio L/D we can fix D = 1, and vary only L. The
function Buffons(n) displays the theoretical probabilities (straight line) and the simulated frequencies of
Buffon(L,1,n) for 12 needle lengths L=0.1(0.1)1.2, see Figure 1.

> Buffons:=proc(n)
> local m,L,k,c,x,V,W;
> V:=array(1..24);W:=array(1..24);
> for m from 1 to 24 do
> L:=evalf(m/20);
> W[m]:=[L,evalf(2*L/Pi)];
> c:=0;
> for k from 1 to n do
> x:=evalf(Rand()+L*cos(2*Pi*Rand()));
> if (x>1 or x<0) then c:=c+1 fi;
> od;
> V[m]:=[L,evalf(c/n)];
> od;
> V:=pointplot(V,color=black,connect=true):
> W:=pointplot(W,color=red,connect=true,thickness=3):
> display(V,W);
> end:

> Buffons(100);

8. The newsboy problem

This problem concerns the optimal stock a company should carry if demand is uncertain. The usual
story (see [6, p. 802]) is about a newsboy who must decide on the number of newspapers, x, to order every
day. Daily demand is random, taking on values d with (respective) probabilities p, for example,

• d = [6, 7, 8, 9, 10, 11, 12, 13, 14],
• p = [0.05, 0.1, 0.15, 0.2, 0.25, 0.15, 0.05, 0.03, 0.02].
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Figure 1. The x-axis is the ratio L/D, the y-axis is probability or frequency

A newspaper costs c$, sells for r$ and can be returned for s$ if unsold. Typically r > c > s, where r − c
is the profit per sold newspaper, and c − s is the loss if a newspaper in stock has not been sold. In some
examples the salvage value s is negative, i.e. it is costly to dispose of unsold stock.

The function DailyProfit(x,d,c,r,s) computes the daily profit if the stock ordered is x, and the
demand realized is d,

> DailyProfit:=proc(x,d,c,r,s)
> evalf(r*min(x,d)+s*max(x-d,0)-c*x);
> end:

Example:

> DailyProfit(9,6,.2,.4,.1);

.9

The function DailyProfits(x,d,p,c,r,s,n) simulates daily profits for a period of n days, for a stock x,
demand = d (vector of values) with probabilities p

> DailyProfits:=proc(x,d,p,c,r,s,n)
> local k,temp,dapr;
> dapr:=array(1..n);
> for k from 1 to n do
> temp:=Simulation(d,p);
> dapr[k]:=DailyProfit(x,temp,c,r,s);
> evalm(dapr);od;
> end:

Example: for the following demand distribution

> d:=[6,7,8,9,10,11,12,13,14]:
> p:=[0.05,0.1,0.15,0.2,0.25,0.15,0.05,0.03, 0.02]:

c = 0.2, r = 0.4, s = 0.1 we simulate (but do not show) 100 daily profits under the policy x = 10,

> DailyProfits(10,d,p,0.2,0.4,0.1,100):
> Statistics(%);

Average 1.739
Std_dev .335826
Median 2.0
Maximum 2.0
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Minimum .8

The average daily profit for a period of n days is similarly computed by the function

> AverageDailyProfit:=proc(x,d,p,c,r,s,n)
> local k,temp,cump;cump:=0;
> for k from 1 to n do
> temp:=DailyProfit(x,Simulation(d,p),c,r,s);
> cump:=cump+temp;od:
> evalf(cump/n);
> end:

Example: for the above demand distribution

> d:=[6,7,8,9,10,11,12,13,14]:
> p:=[0.05,0.1,0.15,0.2,0.25,0.15,0.05,0.03, 0.02]:

we simulate the average daily profits for 100 days under all possible policies x=6(1)14,

> for k from 6 to 14 do lprint(’stock’,k,’average_daily_profit’,
> AverageDailyProfit(k,d,p,0.2,0.4,0.1,100));od:

stock 6 average_daily_profit 1.200000000
stock 7 average_daily_profit 1.391000000
stock 8 average_daily_profit 1.555000000
stock 9 average_daily_profit 1.626000000
stock 10 average_daily_profit 1.682000000
stock 11 average_daily_profit 1.747000000
stock 12 average_daily_profit 1.593000000
stock 13 average_daily_profit 1.421000000
stock 14 average_daily_profit 1.369000000

In this simulation the highest average daily profit occurs for the policy x = 11. The optimal policy can be
shown to be x = 10.

9. An investment problem

This problem is how to allocate wealth between a safe asset (e.g. a bank account) and a risky asset (e.g.
a stock).

Your initial wealth is w0. Investments decisions are annual. Your strategy is to invest a fixed fraction f
of your wealth at the beginning of each year in stocks (and deposit the rest in a one-year bank certificate).
The bank’s annual interest rate is i% (fixed). The investment in stocks is multiplied by a factor r during
a year. The annual multiplier is random, assuming the values r with probabilities p. The wealth after n
years is simulated by

> Wealth:=proc(f,i,r,p,w0,n)
> local k,v;
> v:=array(0..n);v[0]:=w0;
> for k from 1 to n do
> v[k]:=evalf(f*v[k-1]*Simulation(r,p)+(1-f)*(1+i/100)*v[k-1])
> od;
> RETURN(v[n]);
> end:

Example: a policy of allocating 50% of wealth to stocks is simulated for 3 years. The bank’s annual interest
rate is 8%. The annual multiplier of stocks assumes the values [0,1,2] with probabilities [0.3,0.2,0.5], i.e.
each year the investment doubles with probability 0.5, stays unchanged with probability 0.2, and is lost
with probability 0.3. The initial wealth is 1000$.

> r:=[0,1,2]:p:=[0.3,0.2,0.5]:Wealth(0.5,8,r,p,1000,3);

1280.664000
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To approximate an optimal policy (the optimal fraction f to be invested in stocks), we simulate the final
wealth after n years for many values of f. The function Policies(i,r,p,w0,n) does this for n years, and
11 values of f= 0(0.1)1. The extreme cases f= 0 and f= 1 correspond to wealth invested only in bank and
only in stocks, respectively.

> Policies:=proc(i,r,p,w0,n)
> local f,m;lprint(’Return_after’,n,’years’);
> for m from 0 to 10 do f:=evalf(m/10);
> printf("%A %6G %-6s %12G\n",’Fraction_invested’,f,’Return’, evalf(Wealth(f,i,r,p,w0,n),9));
> od;
> end:

> r:=[0,1,2]:p:=[0.3,0.2,0.5]:Policies(5,r,p,1000,10);

Return_after 10 years
Fraction_invested 0 Return 1628.89462
Fraction_invested .1 Return 1353.62163
Fraction_invested .2 Return 584.232572
Fraction_invested .3 Return 13940.2879
Fraction_invested .4 Return 698.844896
Fraction_invested .5 Return 3212.61001
Fraction_invested .6 Return 78385.4223
Fraction_invested .7 Return 167.335548
Fraction_invested .8 Return 4245.19520
Fraction_invested .9 Return 532.207023
Fraction_invested 1 Return 0

In this simulation the policy of investing 60% of wealth in stocks gave the highest return.

10. Queuing systems

10.1. Arrivals. We are concerned with certain time events, called arrivals. The inter-arrival times (times
between arrivals) are assumed iid with density f(t). It is often the case that inter-arrival times have the
exponential density

f(t) = λ e−λ t , t ≥ 0 , (11)

where λ is the expected number of arrivals per unit time, called the arrival rate. The number of arrivals
X in any period of length T can then be shown to be Poisson distributed (7) with parameters λ T , i.e.

Prob{X = x} =
(λ T )x e−λ T

x!
, x = 0, 1, 2, · · ·

Such arrivals are therefore called Poisson or exponential, e.g. [6, p. 860].
The function ArrivalTimes(f,t,L,T) simulates the inter-arrival times with density function f(t) dur-

ing the time interval [0, T ]. The 3rd argument L is the leftmost point of the support of f.

> ArrivalTimes:=proc(f,t,L,T)
> local a,v,n;
> a:=0;v:=vector(1,[0]);t:=’t’;
> while a<T do
> a:=evalf(a+ContSimulation(f,t,L));
> if a<T then v:=concat(v,vector(1,[a]));fi;
> evalm(v);od;
> end:

Example: Poisson arrivals occur at an hourly rate of λ = 5. Simulate the arrivals in 4 hours.

> f:=5*exp(-5*t):ArrivalTimes(f,t,0,4);

[0 , .3066065162 , .3264989939 , .4009640632 , .5688624114 , 1.319013383 ,
1.511668888 , 1.558669103 , 2.032307273 , 2.044055041 , 2.113683049 ,
2.136709110 , 2.161735605 , 2.497621862 , 2.753310851 , 3.124250705 ,
3.226365836 , 3.347323512 , 3.430775390]
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Example: inter-arrival times are uniform on [0, 1] and iid. Simulate the arrivals in 10 hours.

> f:=1:ArrivalTimes(f,t,0,10);
[0 , .1348300000 , .3175800000 , 1.234480000 , 2.202280000 , 2.232799000 ,

3.086759000 , 3.910949000 , 4.017519000 , 4.256649000 , 4.630179000 ,
5.339369000 , 5.868629000 , 6.780309000 , 7.621939000 , 7.722309000 ,
8.257649000 , 8.818969000 , 9.357239000]

10.2. The inspection paradox. The function NextBus(f, t, L, T) simulates the waiting time of a
person arriving at random in a bus station, if the bus inter-arrivals times are distributed with density f
and T is the duration of simulation. The 3rd argument, L, is the leftmost point of the support of f .

> NextBus:=proc(f,t,L,T)
> local v,k,s;t:=’t’;
> v:=ArrivalTimes(f,t,L,T);v:=convert(v,vector);
> s:=evalf((T/2)*Rand());
> k:=Lookup(v,s);
> evalf(v[k+1]-s);
> end:

The time since the last bus, the spent time, is similarly simulated by LastBus(f,t,L,T),

> LastBus:=proc(f,,t,L,T)
> local v,k,s;t:=’t’;
> v:=ArrivalTimes(f,t,L,T);v:=convert(v,vector);
> s:=evalf(T*Rand());
> k:=Lookup(v,s);
> evalf(s-v[k]);
> end:

Example: buses arrive exponentially at an hourly rate of λ = 2. In a period of 5 hours we collect 20 waiting
times of in the vector Next, and 20 spent times in a vector Last

> f:=2*exp(-2*t):
> n:=20:Next:=array(1..n):for m from 1 to n do Next[m]:=NextBus(f,t,0,10);od:evalm(Next):
> n:=20:Last:=array(1..n):for m from 1 to n do Last[m]:=LastBus(f,t,0,10); od:evalm(Last):

A statistical analysis of these vectors

> Statistics(Next);

Average .403627
Std_dev .425477
Median .251768
Maximum 1.725911
Minimum .009675

> Statistics(Last);

Average .3404
Std_dev .284394
Median .25049
Maximum .980071
Minimum .027908

The expected inter-arrival time of buses is 0.5 hour. We expect

average waiting time + average spent time ≈ 0.5 hour ,

but instead we get .403627+.3404 = .744027. We see here an instance of the well known inspection paradox,
[3, p. 185].
Example: the inter-arrival times of buses are uniform on [0, 1] and iid. Simulate 20 waiting times and spent
times for T = 5 hours.

> f:=1:n:=20:
> Next:=array(1..n):for m from 1 to n do Next[m]:=NextBus(f,t,0,5);od:evalm(Next):
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> Last:=array(1..n):for m from 1 to n do Last[m]:=LastBus(f,t,0,5); od:evalm(Last):
> Statistics(Next);

Average .359556
Std_dev .262997
Median .261565
Maximum .84241
Minimum .01939

> Statistics(Last);

Average .281846
Std_dev .175078
Median .260432
Maximum .59076
Minimum .022917

Again,

average waiting time + average spent time = .359556 + .281846 > 0.5 = expected inter-arrival time

Observe the paradox by repeating the above simulations over longer periods and for larger values of n.

10.3. The M/M/1 system. When customers arrive for service, they may have to wait for an available
server. Queuing theory is the study of queuing systems, comprised of customers, servers and queues.

An M/M/1 system is a queuing system with:
• a single server,
• Poisson arrivals with arrival rate λ, and
• Poisson service times with service rate µ.

It is assumed that

µ > λ ,

otherwise the server will be unable to cope with the incoming customers (resulting in an infinite queue).
M/M/1 is the simplest queuing system, and many of its characteristics can be computed explicitly, see

[6, p. 868]. For example,

server efficiency =
λ

µ
, (the fraction of time the server is busy) , (12)

expected waiting time =
λ

µ (µ− λ)
. (13)

The function Queue(lambda,mu,T) simulates an M/M/1 system over T hours, recording for each cus-
tomer the arrival time, the waiting time (0 if the server is free, positive otherwise) and the time of service
completion. The server efficiency and the expected waiting time are then computed and compared with
the theoretical values (12)–(13). Finally, the maximum waiting time is returned.

> Queue:=proc(lambda,mu,T)
> local a,b,c,f,g,k,w,cumw,cumb,maxw,server;
> f:=lambda*exp(-lambda*t);g:=mu*exp(-mu*t):#arrival & service densities
> a:=0;c:=0;w:=0;cumw:=0;maxw:=0;cumb:=0;
> k:=1;
> printf("%-6s %6s %6s %12s %8s\n",’Customer’,
> ’Arrival’,’Waiting’,’Service’,’Server’);
> printf("%-6s %6s %9s %9s %12s\n",’No’,’Time’,’Time’,’End’,’Status’);
> while a<T do
> a:=evalf(a+ContSimulation(f,t,0),5);#a=arrival time
> if c<a then w:=0;server:=’free’
> else w:=evalf(c-a);server:=’busy’ fi;#w=waiting time
> cumw:=evalf(cumw+w,5);maxw:=max(maxw,w);
> c:=max(a,c);#c=time service can start,b=service duration
> b:=ContSimulation(g,t,0);cumb:=cumb+b;c:=evalf(c+b,5);
> printf("%3g %9G %9G %9G %6s\n",k,a,w,c,server);
> k:=k+1;od;
> lprint();
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> lprint(Server_efficiency);
> printf("%a %g %a %g\n",’Theoretical’,evalf(lambda/mu),
> ’simulated’,evalf(cumb/T,5));
> lprint(’Average_waiting_time’);
> printf("%a %0g %a %g\n",’Theoretical’,evalf(lambda/(mu*(mu-lambda))),
> ’simulated’,evalf(cumw/k));
> lprint(’Max_waiting_time’,evalf(maxw));
> end:

Example: an M/M/1 system with λ = 3, µ = 5, is simulated for 50 hours. Only the first 15 and last 7
customers are shown.

> Queue(3,5,50);

Customer Arrival Waiting Service Server
No Time Time End Status

1 .30106 0 .30684 free
2 .54296 0 .92687 free
3 .62022 .30665 .95558 busy
4 .79308 .16250 1.1179 busy
5 1.1295 0 2.0077 free
6 2.1128 0 2.1909 free
7 2.4385 0 2.6645 free
8 2.7792 0 2.7885 free
9 3.2359 0 3.5401 free
10 3.4641 .0760 3.6518 busy
11 3.5363 .1155 3.8148 busy
12 3.6676 .1472 4.0242 busy
13 4.1893 0 4.2228 free
14 4.9919 0 5.1096 free
15 5.2142 0 5.4417 free

150 48.253 .028 48.450 busy
151 48.779 0 48.889 free
152 49.024 0 49.751 free
153 49.526 .225 49.760 busy
154 49.607 .153 50.087 busy
155 49.925 .162 50.150 busy
156 50.431 0 50.462 free

Server_efficiency
Theoretical .6 simulated .59144

Average_waiting_time
Theoretical .3 simulated .246471

Max_waiting_time 1.552
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