
The Stone Weierstrass Theorem

Theorem 1 Let 1 X be a compact Hausdorff space and let CR(X) be the real algebra of all con-
tinuous functions f : X → R. Suppose

A ⊆ CR(X)

satisfies

(1) A is a subalgebra (i.e. closed under sums and products)

(2) A contains constants (i.e. 1 ∈ A)

(3) A separates points of X (i.e. f(x) = f(y) for all f ∈ A implies x = y).

Then A is uniformly dense in CR(X).

Proof (a) Let B be the ‖·‖∞-closure of A. We have to prove that B = CR(X).

Note that B also satisfies (1),(2) and (3): Indeed (2) and (3) are obvious and (1) follows from the
norm continuity of the algebraic operations.

(b) Claim: If f ∈ B, then |f | ∈ B.

(c) Claim: If f, g ∈ B, then f ∧ g ∈ B and f ∨ g ∈ B. 2

(A closed subalgebra of CR(X) is a sublattice.)

(d) Given x, y ∈ X and s, t ∈ R there exists g ∈ B such that g(x) = s and g(y) = t.

Now fix f ∈ CR(X) and ε > 0. To find g ∈ B such that ‖f − g‖∞ < ε, i.e.

for all z ∈ X, f(z)− ε < g(z) < f(z) + ε.

By (d), given any pair {x, y} ⊆ X we can find g ∈ B such that g(x) = f(x) and g(y) = f(y).

Compactness will allow uniform approximation on all of X, in two steps, first from above, then
from below. For the first step, we keep the first equality and relax the second to a lower bound,
but uniformly on all of X:

(e) Fix x ∈ X. There exists gx ∈ B such that

gx(x) = f(x) and for all z ∈ X, f(z)− ε < gx(z).
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2(f ∧ g)(x) = max{f(x), g(x)} and(f ∨ g)(x) = min{f(x), g(x)}.
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In the second and final step, we find g ∈ B still satisfying the lower bound, and, instead of the first
equality, an upper bound uniformly on all of X.

Proof of Claim (b): If f ∈ B, then |f | ∈ B.

Note that f(X) ⊆ [a, b]. Let φ : [a, b] → R : t → |t|. By Weierstrass, or Taylor (!) there is
a sequence (pn) of real polynomials such that pn → φ uniformly in [a, b]. Then pn ◦ f → φ ◦ f
uniformly in X. Indeed given ε > 0 there is n0 ∈ N such that for all n ≥ n0 and all t ∈ [a, b] we
have |pn(t) − φ(t)| < ε, so for all x ∈ X we have |pn(f(x)) − |f(x)|| < ε. But, since pn(t) is a
linear combination of powers of t, the function pn ◦ f is a linear combination of powers of f , hence
pn ◦ f ∈ B since B is an algebra. Thus |f | ∈ B since B is closed. 2

Proof of Claim (c) : If f, g ∈ B, then f ∧ g ∈ B and f ∨ g ∈ B.

Indeed, since B is a linear space and |f − g| ∈ B from (b),

f ∨ g =
1

2
(f + g + |f − g|) ∈ B

f ∧ g =
1

2
(f + g − |f − g|) ∈ B.

Proof of Claim (d): Given x, y ∈ X and s, t ∈ R there exists f ∈ B such that f(x) = s and
f(y) = t.

Choose f1 ∈ B such that f1(x) := s0 6= t0 := f1(y) (hypothesis (3)). Now find a, b ∈ R such that

as0 + b = s and at0 + b = t.

Then set f = af1 + b1 ∈ B by (1) and (2). Now f(x) = af1(x) + b = as0 + b = s and f(y) =
af1(y) + b = at0 + b = t.

Proof of Claim (e): Fix x ∈ X. There exists gx ∈ B such that

gx(x) = f(x) and for all z ∈ X, f(z)− ε < gx(z).

Let y ∈ X. Apply (d) to s = f(x) and t = f(y): You obtain fy ∈ B which interpolates f exactly at
x and y, i.e. fy(x) = f(x) and fy(y) = f(y).

The continuous function f − fy vanishes at y; so there is an open neighbourhood Uy of y such that

z ∈ Uy ⇒ f(z)− fy(z) < ε ⇔ fy(z) > f(z)− ε. (*)

The family {Uy : y ∈ X} is an open cover of X; choose a finite subcover: X =
n⋃
i=1

Uyi and let

gx = fy1 ∨ fy2 ∨ · · · ∨ fyn .

Note that gx ∈ B by Claim (c). We have gx(x) = f(x) since fyi(x) = f(x) for each i. Also, each
z ∈ X is in some Uyi and so gx(z) ≥ fyi(z) > f(z)− ε from (*). 2
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Conclusion of the proof: For each x ∈ X the continuous function gx− f from (e) vanishes at x.
So there is an open neighbourhood Vx of x such that

z ∈ Vx ⇒ gx(z)− f(z) < ε ⇔ gx(z) < f(z) + ε. (†)

The family {Vx : x ∈ X} is an open cover of X; choose a finite subcover so that X =
m⋃
j=1

Vxj and

let
g = gx1 ∧ gx2 ∧ · · · ∧ gxm

Note that g ∈ B by Claim (c). From (e), each gxi(z) > f(z)− ε for all z ∈ X so that g(z) > f(z)− ε
for all z ∈ X. Also, each z ∈ X is in some Vxj and so g(z) ≤ gxj (z) < f(z) + ε from (†). It follows
that

for all z ∈ X, f(z)− ε < g(z) < f(z) + ε. 2

The complex case. C(X) is the complex algebra of all continuous functions f : X → C.

For A ⊆ C(X), assumptions (1) to (3) do not suffice to guarantee that A is dense in C(X)

Example. Let X = D and let A be the algebra of all complex polynomials. It is an algebra,
contains complex constants and separates points, because it contains p1 where p1(z) = z. But the
continuous function f where f(z) = z̄ cannot be approximated by polynomials uniformly in X.
Indeed if there existed a sequence (pn) of polynomials such that pn → f uniformly, then we would
have ∫ 2π

0
pn(eit)eitdt→

∫ 2π

0
f(eit)eitdt.

However the left hand side is 0 (it is a linear combination of terms of the form
∫ 2π
0 eiktdt, k > 0)

and the right hand side is 2π.

Complex conjugation is exactly what is missing:

Theorem 2 Let X be a compact Hausdorff space and let C(X) be the complex algebra of all
continuous functions f : X → C. Suppose

A ⊆ C(X)

satisfies

(1) A is a subalgebra (i.e. closed under sums and products)

(2) A contains constants (i.e. 1 ∈ A)

(3) A separates points of X (i.e. f(x) = f(y) for all f ∈ A implies x = y)

(4) A is closed under complex conjugation (i.e. f ∈ A ⇒ f̄ ∈ A).

Then A is uniformly dense in C(X).
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Proof Let C = {f ∈ A : f(X) ⊆ R}, considered as a subset of the real algebra CR(X). This is
clearly a subalgebra of CR(X): if f, g ∈ A take real values, then f + g, fg are in A and take real
values. Also, C contains (real) constants, because A contains all constants.

Finally, C separates points of X. Indeed, if x 6= y, by (3) there exists f ∈ A so that f(x) 6= f(y).
Hence either (Re f)(x) 6= (Re f)(y) or (Im f)(x) 6= (Im f)(y). But Re f = 1

2(f + f̄) and Im f =
1
2i(f − f̄) are both in C, because f̄ ∈ A by (4).

By Theorem 1, C is uniformly dense in CR(X). So given f ∈ C(X) and ε > 0, since Re f, Im f are
in CR(X), there are g, h ∈ C such that ‖Re f − g‖∞ < ε and ‖Im f − h‖∞ < ε. Now φ := g + ih is
in A and ‖f − φ‖∞ < 2ε.

Sample applications. (i) Let X = T = {z ∈ C : |z| = 1}. The set A of trigonometric polynomi-
als, i.e. linear combinations of the functions ek(z) = zk, satisfies the hypotheses of Theorem 4 (to
satisfy hypothesis (4), we need to take all integer values of k).

Conclusion: any continuous function on T can be approximated uniformly by trigonometric poly-
nomials.

(ii) Let X ⊆ R2 be any compact nonempty set. The following two sets of functions on X satisfy
the hypotheses of Theorem 4 and are therefore uniformly dense in C(X):

A1: linear combinations of functions h of the form h(s, t) = f(s)g(t) where f and g are continuous
functions on R (or suitable subsets of R).

A2: polynomials of two variables.

(iii) (variation of (ii) Let X ⊆ C be any compact nonempty set, and A the set of all polynomials
in z and z̄. Then A is uniformly dense in C(X) (we noted that polynomials in z do not suffice).

(iv) LetX be the direct (Cartesian) product of countably many copies of T. This is a compact space
(in fact a compact group with coordinate-wise operations) in the product topology (or any ‘metrikh
ginomeno’). For any i ∈ N, let ei : X → C be the i-th coordinate function, ei(z1, z2, . . . ) = zi. Let
A be the set of all linear combination of products

en1
i1
en2
i2
. . . enm

im

where nk ∈ Z and m ∈ N. The set E of all such (finite) products is closed under multiplication and
under complex conjugation and contains the constant function 1. Therefore its linear span A is an
algebra containing constants and closed under complex conjugation. Finally, E separates points of
X. Indeed, if z = (z1, z2, . . . ) 6= w = (w1, w2, . . . ) then there exists i ∈ N such that zi 6= wi and
then ei(z) 6= ei(w). It follows that A also separates points of X.

Therefore any continuous function on the infinite product X can be uniformly approximated by
elements of A, each of which depends on finitely many coordinates.

The locally compact case. A Hausdorff topological space is locally compact if every point has
a compact neighbourhood (example: (Rn, ‖·‖2) but not (`2, ‖·‖2)). Continuous functions need not
be bounded (ex: f(t) = t on R). A continuous function f : X → C on a locally compact space X
is said to vanish at infinity if given ε > 0 there is a compact subset K ⊆ X such that |f(x)| < ε for
all x /∈ K. Such a function is necessarily bounded.

4



The set C0(X) of all continuous functions f : X → C which vanish at infinity, equipped with the
supremum norm, becomes a complete normed algebra. When X is not compact, C0(X) cannot
contain nonzero constants; they don’t vanish at infinity. However it can be shown that for every
x ∈ X there exists f ∈ C0(X) such that f(x) 6= 0.

Theorem 3 Let X be a locally compact Hausdorff space. Suppose

A ⊆ C0(X)

satisfies

(1) A is a subalgebra (i.e. closed under sums and products)

(2) A vanishes at no point of X (i.e. for all x ∈ X there exists f ∈ A such that f(x) 6= 0)

(3) A separates points of X (i.e. f(x) = f(y) for all f ∈ A implies x = y)

(4) A is closed under complex conjugation (i.e. f ∈ A ⇒ f̄ ∈ A).

Then A is uniformly dense in C0(X).
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