N. N. Luzin's Theorem

Theorem 1 If $X \in \mathcal{M}, \lambda(X) < \infty$ and $f : X \to \mathbb{R}$ measurable, then for every $\epsilon > 0$ there exists a closed set $F_{\epsilon} \subseteq X$ with $\lambda(X \setminus F_{\epsilon}) < \epsilon$ such that $f|_{F_{\epsilon}}$ is continuous.¹

Remark 1 It is not claimed that the function f is continuous at every $x \in F_{\epsilon}$ (for example, the characteristic function of $\mathbb{Q} \cap [0, 1]$ is nowhere continuous).

The claim is that the function $f_{\epsilon}: F_{\epsilon} \to \mathbb{R}$ defined by $f_{\epsilon}(x) = f(x)$ for $x \in F_{\epsilon}$ is continuous on the space F_{ϵ} . In other words, for every $x \in F_{\epsilon}$ and every open neighbourhood $V \subseteq \mathbb{R}$ of f(x), there exists an open neighbourhood W of x so that if $y \in W$ and $y \in F_{\epsilon}$ then $f_{\epsilon}(y) \in V$.

Before the full proof, we treat an easier special case: We will assume that f is the characteristic function of a measurable set $E \subseteq X$.

Given $\epsilon > 0$, since $X \in \mathcal{M}$ and $\lambda(X) < \infty$, we may restrict to a closed subset $X_{\epsilon} \subseteq X$ with $\lambda(X) - \lambda(X_{\epsilon}) < \frac{\epsilon}{2}$.

There exists a closed set F and an open set G so that

$$F \subseteq E \cap X_{\epsilon} \subseteq G$$
 and $\lambda(F \setminus G) < \frac{\epsilon}{2}$.

The required set is

$$F_{\epsilon} := F \cup (X_{\epsilon} \backslash G) \,.$$

This is closed, since F and X_{ϵ} are closed and G is open.² Also, $\lambda(X \setminus F_{\epsilon}) \leq \lambda(X \setminus X_{\epsilon}) + \lambda(X_{\epsilon} \setminus F_{\epsilon}) < \epsilon$.

Let us show that $f_{\epsilon} := f|_{F_{\epsilon}}$ is continuous. For $x \in F_{\epsilon}$, let (x_n) be a sequence of elements of F_{ϵ} such that $x_n \to x$. We show that $f(x_n) \to f(x)$.

There are two cases: either $x \in F$ or $x \in X_{\epsilon} \setminus G$.

• If $x \in F$ then $x \in G$, an open set, so since $x_n \to x$ there is $n_0 \in \mathbb{N}$ such that $x_n \in G$ for all $n \ge n_0$. But since $x_n \in F_{\epsilon} = F \cup (X_{\epsilon} \setminus G)$, this forces $x_n \in F$, hence $f(x_n) = 1$ (since $x \in F \subseteq E$) for all $n \ge n_0$ and so $f(x_n) \to 1 = f(x)$.

• If $x \in X_{\epsilon} \setminus G$ then $x \in F^c$, an open set, so since $x_n \to x$ there is $n_0 \in \mathbb{N}$ such that $x_n \in F^c$ for all $n \ge n_0$. But since $x_n \in F_{\epsilon}$, this forces $x_n \in X_{\epsilon} \setminus G$, hence $x_n \in E^c$ and so $f(x_n) = 0$ for all $n \ge n_0$ and so $f(x_n) \to 0 = f(x)$.

This argument can be continued to yield a proof for the case where f is a simple measurable function, and then to the general case, using the fact that f is a limit of a sequence of simple measurable functions (see Ap. Giannopoulos' notes).

We give an alternative proof of the general case:

Proof of the Theorem

Since $X \in \mathcal{M}$ and $\lambda(X) < \infty$ there is a closed $X_{\epsilon} \subseteq X$ with $\lambda(X) - \lambda(X_{\epsilon}) < \frac{\epsilon}{2}$.

Let $\{V_n : n \in \mathbb{N}\}$ be an enumeration of the open intervals in \mathbb{R} with rational endpoints.

For each $n \in \mathbb{N}$ define

$$B_n := f^{-1}(V_n) \cap X_{\epsilon} = \{x \in X_{\epsilon} : f(x) \in V_n\}.$$

 $^{^1\}Sigma$ ύντομα και στα Ελληνικά...

²If $E = \mathbb{Q} \cap [0, 1]$, F can be chosen to be the empty set, and G is the union of intervals of very small length around each element of E; in this case, $f|_{F_{\epsilon}} = 0$, hence it is trivially continuous...

Note $B_n \in \mathcal{M}$.

By regularity, there exist a compact F_n and an open G_n with

$$F_n \subseteq B_n \subseteq G_n$$
 and $\lambda(G_n \setminus F_n) < \frac{\epsilon}{2^{n+1}}$.

Define

$$W := \bigcup_{n=1}^{\infty} (G_n \backslash F_n)$$

(the "bad part"). Note that W is an open set and

$$\lambda(W) \le \sum_n \lambda(G_n \setminus F_n) \le \frac{\epsilon}{2}.$$

Put $F_{\epsilon} = X_{\epsilon} \setminus W$. This is a closed subset of X. Also, $\lambda(X \setminus F_{\epsilon}) \leq \lambda(X \setminus X_{\epsilon}) + \lambda(X_{\epsilon} \setminus F_{\epsilon}) < \epsilon$.

We will prove that $f|_{F_{\epsilon}}$ is continuous. Let $x \in F_{\epsilon}$ and $\eta > 0$. We will show that there is an open neighbourhood G of x such that for all $y \in G$ with $y \in F_{\epsilon}$ we have

$$|f(x) - f(y)| < \eta.$$

Proof. Since $f(x) - \eta < f(x) < f(x) + \eta$, there are rationals a, b with $f(x) - \eta < a < f(x) < b < f(x) + \eta$. The interval (a, b) is V_n for some $n \in \mathbb{N}$, so for this n,

$$f(x) \in V_n = (a, b) \subseteq (f(x) - \eta, f(x) + \eta).$$

Then $x \in f^{-1}(V_n) \cap X_{\epsilon} = B_n$ so $x \in G_n$. Thus G_n is an open neighbourhood of x. For each $y \in G_n$ with $y \in F_{\epsilon}$ we have $y \in G_n \cap F_{\epsilon}$. But since $G_n \setminus F_n \subset W$ and $W \cap F_{\epsilon} = \emptyset$, we have $(G_n \setminus F_n) \cap F_{\epsilon} = \emptyset$ and so $y \in F_n \cap F_{\epsilon} \subseteq B_n \cap F_{\epsilon}$. Thus $f(y) \in V_n \subseteq (f(x) - \eta, f(x) + \eta)$, which shows that

$$|f(x) - f(y)| < \eta.$$