
N. N. Luzin’s Theorem

Theorem 1 If X ∈ M, λ(X) < ∞ and f : X → R measurable, then for every ϵ > 0 there exists
a closed set Fϵ ⊆ X with λ(X\Fϵ) < ϵ such that f |Fϵ is continuous. 1

Remark 1 It is not claimed that the function f is continuous at every x ∈ Fϵ (for example, the
characteristic function of Q ∩ [0, 1] is nowhere continuous).
The claim is that the function fϵ : Fϵ → R defined by fϵ(x) = f(x) for x ∈ Fϵ is continuous on the
space Fϵ. In other words, for every x ∈ Fϵ and every open neighbourhood V ⊆ R of f(x), there
exists an open neighbourhood W of x so that if y ∈ W and y ∈ Fϵ then fϵ(y) ∈ V .

Before the full proof, we treat an easier special case: We will assume that f is the characteristic
function of a measurable set E ⊆ X .

Given ϵ > 0, since X ∈ M and λ(X) < ∞, we may restrict to a closed subset Xϵ ⊆ X with
λ(X)− λ(Xϵ) <

ϵ
2
.

There exists a closed set F and an open set G so that

F ⊆ E ∩Xϵ ⊆ G and λ(F\G) <
ϵ

2
.

The required set is
Fϵ := F ∪ (Xϵ\G) .

This is closed, since F and Xϵ are closed and G is open. 2
Also, λ(X\Fϵ) ≤ λ(X\Xϵ) + λ(Xϵ\Fϵ) < ϵ.

Let us show that fϵ := f |Fϵ is continuous. For x ∈ Fϵ, let (xn) be a sequence of elements of Fϵ such
that xn → x. We show that f(xn) → f(x).

There are two cases: either x ∈ F or x ∈ Xϵ\G.

• If x ∈ F then x ∈ G, an open set, so since xn → x there is n0 ∈ N such that xn ∈ G for all
n ≥ n0. But since xn ∈ Fϵ = F ∪(Xϵ\G), this forces xn ∈ F , hence f(xn) = 1 (since x ∈ F ⊆ E)
for all n ≥ n0 and so f(xn) → 1 = f(x).

• If x ∈ Xϵ\G then x ∈ F c, an open set, so since xn → x there is n0 ∈ N such that xn ∈ F c for
all n ≥ n0. But since xn ∈ Fϵ, this forces xn ∈ Xϵ\G, hence xn ∈ Ec and so f(xn) = 0 for all
n ≥ n0 and so f(xn) → 0 = f(x). 2

This argument can be continued to yield a proof for the case where f is a simple measurable
function, and then to the general case, using the fact that f is a limit of a sequence of simple
measurable functions (see Ap. Giannopoulos’ notes).

We give an alternative proof of the general case:

Proof of the Theorem
Since X ∈ M and λ(X) < ∞ there is a closed Xϵ ⊆ X with λ(X)− λ(Xϵ) <

ϵ
2
.

Let {Vn : n ∈ N} be an enumeration of the open intervals in R with rational endpoints.

For each n ∈ N define

Bn := f−1(Vn) ∩Xϵ = {x ∈ Xϵ : f(x) ∈ Vn} .
1Σύντομα και στα Ελληνικά...
2If E = Q∩ [0, 1], F can be chosen to be the empty set, andG is the union of intervals of very small length around

each element of E; in this case, f |Fϵ = 0, hence it is trivially continuous...



Note Bn ∈ M.

By regularity , there exist a compact Fn and an open Gn with

Fn ⊆ Bn ⊆ Gn and λ(Gn\Fn) <
ϵ

2n+1
.

Define

W :=
∞∪
n=1

(Gn\Fn)

(the “bad part”). Note that W is an open set and

λ(W ) ≤
∑
n

λ(Gn\Fn) ≤
ϵ

2
.

Put Fϵ = Xϵ\W . This is a closed subset of X . Also, λ(X\Fϵ) ≤ λ(X\Xϵ) + λ(Xϵ\Fϵ) < ϵ.

We will prove that f |Fϵ is continuous. Let x ∈ Fϵ and η > 0. We will show that there is an open
neighbourhood G of x such that for all y ∈ G with y ∈ Fϵ we have

|f(x)− f(y)| < η .

Proof. Since f(x)− η < f(x) < f(x) + η, there are rationals a, b with
f(x)− η < a < f(x) < b < f(x) + η. The interval (a, b) is Vn for some n ∈ N, so for this n,

f(x) ∈ Vn = (a, b) ⊆ (f(x)− η, f(x) + η) .

Then x ∈ f−1(Vn) ∩ Xϵ = Bn so x ∈ Gn. Thus Gn is an open neighbourhood of x. For each
y ∈ Gn with y ∈ Fϵ we have y ∈ Gn ∩ Fϵ. But since Gn\Fn ⊂ W and W ∩ Fϵ = ∅, we have
(Gn\Fn)∩Fϵ = ∅ and so y ∈ Fn ∩Fϵ ⊆ Bn ∩Fϵ. Thus f(y) ∈ Vn ⊆ (f(x)− η, f(x) + η), which
shows that

|f(x)− f(y)| < η .


