N. N. Luzin's Theorem

Theorem 1 If $X \in \mathcal{M}, \lambda(X)<\infty$ and $f: X \rightarrow \mathbb{R}$ measurable, then for every $\epsilon>0$ there exists a closed set $F_{\epsilon} \subseteq X$ with $\lambda\left(X \backslash F_{\epsilon}\right)<\epsilon$ such that $\left.f\right|_{F_{\epsilon}}$ is continuous. ${ }^{1}$

Remark 1 It is not claimed that the function f is continuous at every $x \in F_{\epsilon}$ (for example, the characteristic function of $\mathbb{Q} \cap[0,1]$ is nowhere continuous).
The claim is that the function $f_{\epsilon}: F_{\epsilon} \rightarrow \mathbb{R}$ defined by $f_{\epsilon}(x)=f(x)$ for $x \in F_{\epsilon}$ is continuous on the space F_{ϵ}. In other words, for every $x \in F_{\epsilon}$ and every open neighbourhood $V \subseteq \mathbb{R}$ of $f(x)$, there exists an open neighbourhood W of x so that if $y \in W$ and $y \in F_{\epsilon}$ then $f_{\epsilon}(y) \in V$.

Before the full proof, we treat an easier special case: We will assume that f is the characteristic function of a measurable set $E \subseteq X$.

Given $\epsilon>0$, since $X \in \mathcal{M}$ and $\lambda(X)<\infty$, we may restrict to a closed subset $X_{\epsilon} \subseteq X$ with $\lambda(X)-\lambda\left(X_{\epsilon}\right)<\frac{\epsilon}{2}$.

There exists a closed set F and an open set G so that

$$
F \subseteq E \cap X_{\epsilon} \subseteq G \quad \text { and } \quad \lambda(F \backslash G)<\frac{\epsilon}{2}
$$

The required set is

$$
F_{\epsilon}:=F \cup\left(X_{\epsilon} \backslash G\right) .
$$

This is closed, since F and X_{ϵ} are closed and G is open. ${ }^{2}$
Also, $\lambda\left(X \backslash F_{\epsilon}\right) \leq \lambda\left(X \backslash X_{\epsilon}\right)+\lambda\left(X_{\epsilon} \backslash F_{\epsilon}\right)<\epsilon$.
Let us show that $f_{\epsilon}:=\left.f\right|_{F_{\epsilon}}$ is continuous. For $x \in F_{\epsilon}$, let $\left(x_{n}\right)$ be a sequence of elements of F_{ϵ} such that $x_{n} \rightarrow x$. We show that $f\left(x_{n}\right) \rightarrow f(x)$.
There are two cases: either $x \in F$ or $x \in X_{\epsilon} \backslash G$.

- If $x \in F$ then $x \in G$, an open set, so since $x_{n} \rightarrow x$ there is $n_{0} \in \mathbb{N}$ such that $x_{n} \in G$ for all $n \geq n_{0}$. But since $x_{n} \in F_{\epsilon}=F \cup\left(X_{\epsilon} \backslash G\right)$, this forces $x_{n} \in F$, hence $f\left(x_{n}\right)=1$ (since $x \in F \subseteq E$) for all $n \geq n_{0}$ and so $f\left(x_{n}\right) \rightarrow 1=f(x)$.
- If $x \in X_{\epsilon} \backslash G$ then $x \in F^{c}$, an open set, so since $x_{n} \rightarrow x$ there is $n_{0} \in \mathbb{N}$ such that $x_{n} \in F^{c}$ for all $n \geq n_{0}$. But since $x_{n} \in F_{\epsilon}$, this forces $x_{n} \in X_{\epsilon} \backslash G$, hence $x_{n} \in E^{c}$ and so $f\left(x_{n}\right)=0$ for all $n \geq n_{0}$ and so $f\left(x_{n}\right) \rightarrow 0=f(x)$.

This argument can be continued to yield a proof for the case where f is a simple measurable function, and then to the general case, using the fact that f is a limit of a sequence of simple measurable functions (see Ap. Giannopoulos' notes).

We give an alternative proof of the general case:

Proof of the Theorem

Since $X \in \mathcal{M}$ and $\lambda(X)<\infty$ there is a closed $X_{\epsilon} \subseteq X$ with $\lambda(X)-\lambda\left(X_{\epsilon}\right)<\frac{\epsilon}{2}$.
Let $\left\{V_{n}: n \in \mathbb{N}\right\}$ be an enumeration of the open intervals in \mathbb{R} with rational endpoints.
For each $n \in \mathbb{N}$ define

$$
B_{n}:=f^{-1}\left(V_{n}\right) \cap X_{\epsilon}=\left\{x \in X_{\epsilon}: f(x) \in V_{n}\right\} .
$$

[^0]Note $B_{n} \in \mathcal{M}$.
By regularity, there exist a compact F_{n} and an open G_{n} with

$$
F_{n} \subseteq B_{n} \subseteq G_{n} \quad \text { and } \quad \lambda\left(G_{n} \backslash F_{n}\right)<\frac{\epsilon}{2^{n+1}}
$$

Define

$$
W:=\bigcup_{n=1}^{\infty}\left(G_{n} \backslash F_{n}\right)
$$

(the "bad part"). Note that W is an open set and

$$
\lambda(W) \leq \sum_{n} \lambda\left(G_{n} \backslash F_{n}\right) \leq \frac{\epsilon}{2} .
$$

Put $F_{\epsilon}=X_{\epsilon} \backslash W$. This is a closed subset of X. Also, $\lambda\left(X \backslash F_{\epsilon}\right) \leq \lambda\left(X \backslash X_{\epsilon}\right)+\lambda\left(X_{\epsilon} \backslash F_{\epsilon}\right)<\epsilon$.
We will prove that $\left.f\right|_{F_{\epsilon}}$ is continuous. Let $x \in F_{\epsilon}$ and $\eta>0$. We will show that there is an open neighbourhood G of x such that for all $y \in G$ with $y \in F_{\epsilon}$ we have

$$
|f(x)-f(y)|<\eta
$$

Proof. Since $f(x)-\eta<f(x)<f(x)+\eta$, there are rationals a, b with $f(x)-\eta<a<f(x)<b<f(x)+\eta$. The interval (a, b) is V_{n} for some $n \in \mathbb{N}$, so for this n,

$$
f(x) \in V_{n}=(a, b) \subseteq(f(x)-\eta, f(x)+\eta) .
$$

Then $x \in f^{-1}\left(V_{n}\right) \cap X_{\epsilon}=B_{n}$ so $x \in G_{n}$. Thus G_{n} is an open neighbourhood of x. For each $y \in G_{n}$ with $y \in F_{\epsilon}$ we have $y \in G_{n} \cap F_{\epsilon}$. But since $G_{n} \backslash F_{n} \subset W$ and $W \cap F_{\epsilon}=\emptyset$, we have $\left(G_{n} \backslash F_{n}\right) \cap F_{\epsilon}=\emptyset$ and so $y \in F_{n} \cap F_{\epsilon} \subseteq B_{n} \cap F_{\epsilon}$. Thus $f(y) \in V_{n} \subseteq(f(x)-\eta, f(x)+\eta)$, which shows that

$$
|f(x)-f(y)|<\eta
$$

[^0]: ${ }^{1} \Sigma v ́ v \tau о \mu \alpha \kappa \alpha \iota ~ \sigma \tau \alpha$ E $\lambda \lambda \eta \nu \iota \kappa \alpha ́ . .$.
 ${ }^{2}$ If $E=\mathbb{Q} \cap[0,1], F$ can be chosen to be the empty set, and G is the union of intervals of very small length around each element of E; in this case, $\left.f\right|_{F_{\epsilon}}=0$, hence it is trivially continuous...

