1. (a) If $E \subseteq \mathbb{R}$ is measurable with $\lambda(E) < \infty$, show that for all $\epsilon > 0$ there exists a step function f vanishing outside a bounded interval so that $\|\chi_E - f\|_1 < \epsilon$.

Hint Recall the first of the three principles of Littlewood.

Note also that $f : \mathbb{R} \to \mathbb{R}$ is a step function vanishing outside a bounded interval if and only if there are $x_0, \ldots, x_n \in \mathbb{R}$, $x_0 < x_1 < \cdots < x_n$ such that f is constant on each (x_{i-1}, x_i) and f(t) = 0 for all $t \notin [x_0, x_n]$.

(β) If $I \subseteq \mathbb{R}$ is a bounded interval and $\epsilon > 0$, show that there is a continuous function *g* with compact support so that $\|\chi_I - g\|_1 < \epsilon$.

- (γ) using the above, show that the following linear spaces are dense in $L^1(\mathbb{R})$:
- (i) The space of simple integrable functions.
- (ii) The space of integrable step functions.
- (iii) The space $C_c(\mathbb{R})$ of continuous functions with compact support.
- Suppose that f, f_n : ℝ → [0, +∞], n ∈ N, are nonnegative measurable functions and f_n \sqrsp f a.e.. Show by example that one cannot conclude that ∫ fdλ = lim ∫ f_ndλ. Assuming additionally that there is k ∈ N with ∫ f_kdλ < ∞, show that then ∫ fdλ = lim ∫ f_ndλ.
- Let p∈ [1,∞) and f ∈ L^p(ℝ). For all t ∈ ℝ, we define f_t(s) = f(s-t). Show that f_t ∈ L^p(ℝ) and that lim_{t→0} ||f f_t||_p = 0.

Hint First consider the case $f \in C_c(\mathbb{R})$.

- 4. Let $f : \mathbb{R} \to [0, +\infty]$ be a measurable function. Suppose that f > 0 a.e.. If $\int_E f d\lambda = 0$ for some measurable set E, show that $\lambda(E) = 0$.
- 5. Let $f : \mathbb{R} \to [0, +\infty]$ be a nonnegative measurable function. Show that

$$\int_{\mathbb{R}} f d\lambda = \lim_{n \to \infty} \int_{[-n,n]} f d\lambda \quad \text{i.e.} \quad \lim_{n \to \infty} \int_{-n}^{n} f d\lambda = \int_{-\infty}^{\infty} f d\lambda.$$

6. Let $f : \mathbb{R} \to [0, +\infty]$ be a nonnegative measurable function. Show that

$$\int_{-\infty}^{\infty} f d\lambda = \lim_{n \to \infty} \int_{\{f \ge \frac{1}{n}\}} f d\lambda.$$

7. Let X be a measurable set and $f: X \to [-\infty, +\infty]$ a measurable function. Show that, for all $a \in \mathbb{R}$, the function $f_a: X \to [-\infty, +\infty]$ with

$$f_a(x) = \begin{cases} f(x) & \text{If } f(x) \le a \\ a & \text{If } f(x) > a, \end{cases}$$

is measurable.

8. Let $f : \mathbb{R} \to [0, +\infty]$ be a nonnegative integrable function. Show that

$$\int_{-\infty}^{\infty} f d\lambda = \lim_{n \to \infty} \int_{\{f \le n\}} f d\lambda.$$

- 9. Let $f : \mathbb{R} \to [0, +\infty]$ be an integrable function. Is it true that $\lim_{x \to \pm\infty} f(x) = 0$?
- 10. (a) Show that for all $X \in \mathcal{M}$, $L^1(X) = \{fg : f, g \in L^2(X)\}$.

(β) If $f \ge 0$, show that $f \in L^2([-\pi,\pi])$ if and only if $f^2 \in L^1([-\pi,\pi])$. Is the same true when $f([-\pi,\pi]) \subseteq \mathbb{R}$;