605: Exercises V

1. (α) If $E \subseteq \mathbb{R}$ is measurable with $\lambda(E)<\infty$, show that for all $\epsilon>0$ there exists a step function f vanishing outside a bounded interval so that $\left\|\chi_{E}-f\right\|_{1}<\epsilon$.
Hint Recall the first of the three principles of Littlewood.
Note also that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a step function vanishing outside a bounded interval if and only if there are $x_{0}, \ldots x_{n} \in \mathbb{R}, x_{0}<x_{1}<\cdots<x_{n}$ such that f is constant on each $\left(x_{i-1}, x_{i}\right)$ and $f(t)=0$ for all $t \notin\left[x_{0}, x_{n}\right]$.
(β) If $I \subseteq \mathbb{R}$ is a bounded interval and $\epsilon>0$, show that there is a continuous function g with compact support so that $\left\|\chi_{I}-g\right\|_{1}<\epsilon$.
(γ) using the above, show that the following linear spaces are dense in $L^{1}(\mathbb{R})$:
(i) The space of simple integrable functions.
(ii) The space of integrable step functions.
(iii) The space $C_{c}(\mathbb{R})$ of continuous functions with compact support.
2. Suppose that $f, f_{n}: \mathbb{R} \rightarrow[0,+\infty], n \in \mathbb{N}$, are nonnegative measurable functions and $f_{n} \searrow f$ a.e.. Show by example that one cannot conclude that $\int f d \lambda=\lim _{n \rightarrow \infty} \int f_{n} d \lambda$.
Assuming additionally that there is $k \in \mathbb{N}$ with $\int f_{k} d \lambda<\infty$, show that then $\int f d \lambda=\lim _{n \rightarrow \infty} \int f_{n} d \lambda$.
3. Let $p \in[1, \infty)$ and $f \in \mathcal{L}^{p}(\mathbb{R})$. For all $t \in \mathbb{R}$, we define $f_{t}(s)=f(s-t)$. Show that $f_{t} \in \mathcal{L}^{p}(\mathbb{R})$ and that $\lim _{t \rightarrow 0}\left\|f-f_{t}\right\|_{p}=0$.
Hint First consider the case $f \in C_{c}(\mathbb{R})$.
4. Let $f: \mathbb{R} \rightarrow[0,+\infty]$ be a measurable function. Suppose that $f>0$ a.e.. If $\int_{E} f d \lambda=0$ for some measurable set E, show that $\lambda(E)=0$.
5. Let $f: \mathbb{R} \rightarrow[0,+\infty]$ be a nonnegative measurable function. Show that

$$
\int_{\mathbb{R}} f d \lambda=\lim _{n \rightarrow \infty} \int_{[-n, n]} f d \lambda \quad \text { i.e. } \quad \lim _{n \rightarrow \infty} \int_{-n}^{n} f d \lambda=\int_{-\infty}^{\infty} f d \lambda .
$$

6. Let $f: \mathbb{R} \rightarrow[0,+\infty]$ be a nonnegative measurable function. Show that

$$
\int_{-\infty}^{\infty} f d \lambda=\lim _{n \rightarrow \infty} \int_{\left\{f \geq \frac{1}{n}\right\}} f d \lambda
$$

7. Let X be a measurable set and $f: X \rightarrow[-\infty,+\infty]$ a measurable function. Show that, for all $a \in \mathbb{R}$, the function $f_{a}: X \rightarrow[-\infty,+\infty]$ with

$$
f_{a}(x)= \begin{cases}f(x) & \text { If } f(x) \leq a \\ a & \text { If } f(x)>a\end{cases}
$$

is measurable.
8. Let $f: \mathbb{R} \rightarrow[0,+\infty]$ be a nonnegative integrable function. Show that

$$
\int_{-\infty}^{\infty} f d \lambda=\lim _{n \rightarrow \infty} \int_{\{f \leq n\}} f d \lambda
$$

9. Let $f: \mathbb{R} \rightarrow[0,+\infty]$ be an integrable function. Is it true that $\lim _{x \rightarrow \pm \infty} f(x)=0$?
10. (α) Show that for all $X \in \mathcal{M}, L^{1}(X)=\left\{f g: f, g \in L^{2}(X)\right\}$.
(β) If $f \geq 0$, show that $f \in L^{2}([-\pi, \pi])$ if and only if $f^{2} \in L^{1}([-\pi, \pi])$. Is the same true when $f([-\pi, \pi]) \subseteq \mathbb{R}$;
