1. Let $A \subseteq \mathbb{R}$. Show that the following are equivalent:

- 1. A is measurable.
- 2. For every $\varepsilon > 0$ there exists a closed set $F \subseteq \mathbb{R}$ with $F \subseteq A$ and $\lambda^*(A \setminus F) < \varepsilon$.
- 3. There exists an F_{σ} -set C such that $C \subseteq A$ and $\lambda^*(A \setminus C) = 0$.

2. (a) Let $A \subseteq \mathbb{R}$ and $t \in \mathbb{R}$. Show that

$$\lambda^*(A) = \lambda^*(A+t)$$

(outer measure is invariant under translation).

(β) If additionally A is measurable, then A + t is measurable.

3. (a) Let A be a bounded subset of \mathbb{R} . Show that $\lambda^*(A) < +\infty$.

(β) Suppose that $A \subseteq \mathbb{R}$ has at least one interior point. Show that $\lambda^*(A) > 0$.

4. (a) If $A, B \subseteq \mathbb{R}$ and $\lambda^*(B) = 0$, show that $\lambda^*(A \cup B) = \lambda^*(A)$.

(β) If $A, B \subseteq \mathbb{R}$ και $\lambda^*(A \triangle B) = 0$, show that $\lambda^*(A) = \lambda^*(B)$ (the symbol $A \triangle B$ denotes the symmetric difference $(A \setminus B) \cup (B \setminus A)$ of A and B).

5. (a) Let $A \subseteq \mathbb{R}$ and $t \in \mathbb{R}$. Write tA for the set $tA = \{tx \mid x \in A\}$. Show that $\lambda^*(tA) = |t| \lambda^*(A)$.

(β) Let $B \subseteq \mathbb{R}$ and let $f : B \to \mathbb{R}$ be a Lipschitz function with constant C, that is, satisfying $|f(x) - f(y)| \le C|x - y|$ for all $x, y \in B$. Show that

$$\lambda^*(f(A)) \le C\lambda^*(A)$$

for all $A \subseteq B$.

(γ) Let $A \subseteq \mathbb{R}$ with $\lambda(A) = 0$. Show that the set $A' = \{x^2 \mid x \in A\}$ also has measure $\lambda(A') = 0$. *Hint:* First consider the case $A \subseteq [-M, M]$ for some M > 0.

6. Let $E \subseteq \mathbb{R}$ with $0 < \lambda^*(E) < +\infty$ and let $0 < \alpha < 1$. Show that *there exists* an open interval I with the property

$$\lambda^*(E \cap I) > \alpha \,\ell(I).$$

Hint: Assume the opposite and, for an arbitrary $\varepsilon > 0$, consider a sequence of intervals I_k such that $E \subseteq \bigcup_{k=1}^{\infty} I_k$ and $\sum_{k=1}^{\infty} \ell(I_k) < \lambda^*(E) + \varepsilon$.

7. Let A be a measurable set and let $\delta > 0$ be such that $\lambda(A \cap I) \ge \delta \ell(I)$ for every open interval I. Show that $\lambda(A^c) = 0$.