605: Exercises I

1. Show that the set \mathcal{T} of trigonometric polynomials is a linear space, a subspace of the space of continuous functions $f:[-\pi, \pi] \rightarrow \mathbb{C}$ and that the set $\left\{e_{k}: k \in \mathbb{Z}\right\}$ (where $e_{k}(x)=e^{i k x}$) is a linear basis of \mathcal{T}, as is the set $\left\{c_{0}, c_{n}, s_{n}, n=1,2, \ldots\right\}$ (where $\left.c_{0}(x)=1, c_{n}(x)=\cos n x, s_{n}(x)=\sin n x\right)$.
Show also that \mathcal{T} is closed under pointwise multiplication and therefore for example the function $p(x)=(7-2 \cos x)^{5}$ belongs to \mathcal{T}. Examine whether \mathcal{T} contains some nonzero polynomial.
2. If a_{n}, b_{n} are (real or complex) numbers, show that

$$
\frac{a_{0}}{2}+\sum_{n=1}^{N} a_{n} \cos n x+\sum_{n=1}^{N} b_{n} \sin n x=\sum_{k=-N}^{N} c_{k} \exp (i k x)
$$

where $\exp (i t)=\cos t+i \sin t$ and $a_{n}=c_{n}+c_{-n}, b_{n}=i\left(c_{n}-c_{-n}\right)\left(n \in \mathbb{Z}_{+}\right)$and

$$
c_{k}=\left\{\begin{array}{cc}
\frac{1}{2}\left(a_{k}-i b_{k}\right), & k \geq 1 \\
\frac{1}{2} a_{0}, & k=0 \\
\frac{1}{2}\left(a_{-k}+i b_{-k}\right), & k \leq-1
\end{array}\right.
$$

3. Show that for all $x \in \mathbb{R}$,

$$
\begin{aligned}
& s_{n}(x)=\sum_{k=1}^{n} \sin k x=\sin x+\sin 2 x+\ldots+\sin n x= \begin{cases}\frac{\cos \frac{x}{2}-\cos \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}, & x \notin 2 \pi \mathbb{Z} \\
0, & x \in 2 \pi \mathbb{Z}\end{cases} \\
& c_{n}(x)=\frac{1}{2}+\sum_{k=1}^{n} \cos k x=\frac{1}{2}+\cos x+\cos 2 x+\ldots+\cos n x= \begin{cases}\frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}, & x \notin 2 \pi \mathbb{Z} \\
n+\frac{1}{2}, & x \in 2 \pi \mathbb{Z}\end{cases}
\end{aligned}
$$

Hint: Examine $c_{n}(x)+i s_{n}(x)$.
4. We have seen that for all $\delta>0$ there exists $M(\delta)<\infty$ so that for all $x \in[\delta, 2 \pi-\delta]$ and all $n \in \mathbb{N}$ we have

$$
\left|\frac{1}{2}+\sum_{k=1}^{n} \cos k x\right| \leq M(\delta) \kappa \alpha \imath\left|\sum_{k=1}^{n} \sin k x\right| \leq M(\delta)
$$

Examine whether the two sequences are uniformly bounded in $(0,2 \pi)$.
5. For which real values of x does the series

$$
2 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \sin k x
$$

converge? Recall (as shown in class) that this is the Fourier series of the 2π-periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfies $f(t)=t$ when $t \in(\pi, \pi]$.
Also find the Fourier series of the 2π-periodic function $g: \mathbb{R} \rightarrow \mathbb{R}$ which satisfies $g(t)=t$ when $t \in(0,2 \pi]$.
6. If an integrable function $f:[-\pi, \pi] \rightarrow \mathbb{C}$ is even, then its Fourier series is a cosine series (that is, $b_{n}(f)=0$ for all $n \in \mathbb{N}$). If it is odd, then its Fourier series is a sine series (that is, $a_{n}(f)=0$ for all $n \in \mathbb{Z}_{+}$). If f is real valued, then $\hat{f}(-k)=\overline{\hat{f}}(k)$ for all $k \in \mathbb{Z}$.
7. We consider the function $f(x)=(\pi-x)^{2}$ in $[0,2 \pi]$ and extend it to a 2π-periodic function defined on \mathbb{R}. Show that

$$
S[f](x)=\frac{\pi^{2}}{3}+4 \sum_{k=1}^{\infty} \frac{\cos k x}{k^{2}}
$$

8. If $0<\delta<\pi$, find the Fourier coefficients of the function $f:[-\pi, \pi] \rightarrow \mathbb{R}$ (whose graph is triangular) given by the formula

$$
f(x)= \begin{cases}1-\frac{|x|}{\delta} & (|x| \leq \delta) \\ 0 & (\delta<|x| \leq \pi)\end{cases}
$$

