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THE BANACH-TARSKI PARADOX 

KARL STROMBERG 

In this exposition we clarify the meaning of and prove the following "paradoxical" theorem 
which was set forth by Stefan Banach and Alfred Tarski in 1924 [1]. We were inspired to do this 
by a recent paper of A. M. Bruckner and Jack Ceder [2], where this theorem, among others, is 
brought into their interesting discussion of the phenomenon of nonmeasurable sets. We are 
grateful to Professor R. B. Burckel for calling this paper to our attention. We warmly 
recommend it to the reader. It is our intention here to present a strictly elementary account of 
this remarkable fact that will be accessible to readers with very little mathematical background. 
We do presume a little matrix theory and the elements of real analysis. We first state the main 
theorem and then give precise definitions before launching into its proof. We may as well admit 
in advance that its proof depends on Zermelo's Axiom of Choice, which is used in a very 
obvious way in the proof of Theorem C below (the set C selected there is not specified in a 
finitely constructable way). 

BANAcH-TARsKI THEOREM. If X and Y are bounded subsets of R3 having nonempty interiors, 
then there exist a natural number n and partitions {Xj: 1 < j < n} and { Yj: 1 < j < n} of X and Y, 
respectively (into n pieces each), such that Xj is congruent to Yj for all j. 

Loosely speaking, the theorem says that if X and Y are any two objects in space that are each 
small enough to be contained in some (perhaps very large) ball and each large enough to contain 
some (perhaps very small) ball, then one can divide X into some finite number of pieces and 
then reassemble them (using only rigid motions) to form Y. This seems to be patently false if we 
submit to the foolish practice of confusing the "ideal" objects of geometry with the "real" 
objects of the world around us. It certainly does seem to be folly to claim that a billiard ball can 
be chopped into pieces which can then be put back together to form a life-size statue of Banach. 
We, of course, make no such claim. Even in the world of mathematics, the theorem is 
astonishing, but true. 

DEFINITIONS. For x = (x1, x2, x3) in R3 we define the norm of x to be the number Ix= (X2 + x2 
+ X3)1/2. The closed ball of radius r > 0 centered at a E R3 is the set {x E R3: Ix - aI r}. A subset 
X of R3 is bounded if it is contained in some such ball, and X has nonvoid interior, if it contains 
some such ball. An orthogonal matrix is a square matrix with real entries whose transpose is also 
its inverse (its product with its transpose is the identity matrix). By a rotation we shall mean a 
3 x 3 orthogonal matrix p whose determinant is equal to 1. We also regard such a p as a mapping 
of R3 onto R3 by writing p(x) for the vector obtained by multiplying p by the colunmn vector 
X : P(X) =Y = (Y1,Y2,Y3) where x = (x1, X2, X3), ( P1 P12 P13 3 

p= P21 P22 P23JX Yi pijx 
P31 P32 P33 j=1 

for i = 1, 2,3. A rigid motion (or Euclidean transformation) is a mapping r of R3 onto R3 having the 
form r(x) = p(x) + a for x ER3 where p is a fixed rotation and a ER3 is fixed. We denote the 3 X 3 
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152 KARL STROMBERG [March 

identity matrix by t. Two subsets X and Y of R3 are said to be congruent and we write X Y if 
there exists some rigid motion r for which r(X)= Y. (Here, as usual, r(X) denotes the set 
{ r(x): x E X }.) By a partition of a set X we mean a family of sets whose union is X and any two 
members of which are either identical or disjoint. Thus, to say that {Xj: 1 < j < n} is a partition 
of X into n subsets means that 

X=X1uX2u* ** U Xn and Xin Xj=4 if i j. 
It is allowed that some or all Xj be void. 

The geometrical significance of our purely algebraic definition of a rotation is perhaps 
clarified by the next proposition. 

PROPOSITION. Let p be a rotation. Then we have the following. 
(i) The image p of any line is a line: p(b + tc) = p(b) + tp(c) for all b, c ER3 and t ER. 
(ii) Inner products are preserved by p; if x, x' ER3, p(x) =y and p(x') =y', then 

3 3 
EYi Y"= Xi Xi,> 

3 i=I j=l 

(iii) Distances are preserved by p: if x ER3, then Ip(x)l = lxi. 
(iv) If p /t, then the set A = {x eR3: p,(x)= x} is a line through the origin: there is a p in R3 

such that A = {tp: t ER} and IpI = 1. We call A the axis of p. 
(v) If q is any point of R3 having the two properties of p in (iv), then q =p or q = -p. We call 

p and -p the poles of p. 

Proof. Assertion (i) is obvious and (iii) follows from (ii) by taking x' = x. To prove (v) notice 
that if { tp: t ER) = { tq: t ER} and Iql = IPi = 1, then q = tp for some t and t2 = t2Ip12 =ItpI2= Iqlj2 
=I so t is 1 or- 1. 

To prove (ii), use the fact that p is orthogonal [ jpPk = ijk= 1 or 0 according asj = k orj #kJ 

to write 

Y = y kXk Xjk 
j k i 

To prove (iv) we need a modest amount of matrix theory and real analysis. The characteristic 
polynomial f(A) = det(p - X) of p is a cubic polynomial having real coefficients so the Inter- 
mediate Value Theorem assures that it has at least one real root. Let X1,X2,X3 be its three 
(complex) roots (counting multiplicity) where A1 is the largest real root. Then f(X) = (AX - A)(X2 - 

X)(X3-X) so 
X1X2X3 f(O)=detp = 1. (*) 

If Xk is a real root, then the system of equations 
3 

(Pij- AkLij) Xj = O (i-=1, 2, 3) 
]=1 

has a real solution x1,x2,x3 (not all 0) so there is an x ER3, JXl #0, such that p(x)=Xkx from 
which (iii) yields IXk1 = 1, and so Ak= 1 or - 1. If X2 is not real, then A3 is its complex conjugate 
and (*) becomes XI1X212= 1 SO X1 = 1. If A2 is real, then so is X3, all three roots are 1 or - 1, and 
(*) shows that XI = 1 and A2 =X3. Since XI = 1, we can take k= 1 in the above system to find a 
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1979] THE BANACH-TARSKI PARADOX 153 

vectorp ER3 with IpI= 1 such that p(p)=p. Then tpEA for all tER. Our job is to see that there 
are no other vectors in A. Assume that there is a u EA with u:/ztp for all t ER. Choose a nonzero 
vector v that is perpendicular to the plane containingp, u, and 0; that is, vjpj =f vj uj = 0. Since 
p(p) =p and p(u) = u, it follows from (ii) that p(v) is also perpendicular to this plane and thence 
from (iii) that p(v) = v or - v. Any vector x ER3 can be written as x = ap + fu + yv for 
appropriate a, /, y ER and, by (i), p(x) = ap +,fu + yp(v). Since p '4' t, we cannot have p(v) =v. 
Therefore p(v) =v. The matrix 

PI U1 VI 
a= P2 U2 V2 

P3 U3 V3 

has nonzero determinant (because p, u, and v are linearly independent) and the matrix product 
PI Us -V1 

pa= P2 U2 -V2 
p3 U3 -V3 

satisfies 
- deta = det(pa) = (detp)(deta) = deta 

so det a= 0. This contradiction completes the proof of (iv). s 
We now prove several theorems and lemmas which are of considerable interest in themselves 

as well as being vital stepping stones toward our main goal. The first three of these, of which 
Theorem C is the real key to our story, were set forth by Felix Hausdorff in 1914 [4, pp. 
469-472]. We consider the two rotations 

-1/2 -XV/2 0 

A,= V /2 -1/2 0 
0 0 1 

and 
(-cos O 0 sin 9 

4=1 0 1 0 
sin9 0 cos9 

where 9 is a fixed real number, to be chosen later. (Geometrically, 4, rotates R3 by 1200 about 
the z-axis and 4 rotates R3 by 180? about the line in the xz-plane whose equation is 
x cos I 9 = z sin I 9.) One checks that the matrix 42 iS the same as the matrix 4, except that \/ is 
replaced by - VX and that 

A3=02=l (1) 

where l is the identity matrix. Now let G denote the set of all matrices that can be obtained as a 
product of a finite number of (matrix) factors, each of which is 4 or 4. Because of (1), it is clear 
that G is a group under matrix multiplication (if p, a E G, then p - I, pa E G) and that each plt in 
G can 1e expressed in at least one way as a product 

P=OIO2 0,n (2) 
where n > 1, each aj is 4 or 4 or 42, and if 1 < j <n, then exactly one of aj and aj I is 4. We call 
such expressions reduced words in the letters 4, 4,, and 4,2. For example, the expression 4,4,24,4,2 

is not a reduced word because of the two adjacent 4's, but it is equal to the reduced word 4,, 
("equal" means that these products are the same matrix). Thus each element of G other than t, 4, 
4, and 4,2 can be expressed in at least one of the four forms 

a = 4,Pi,OOP24, ... 4%Pm+4, 
/ = 4,4P I4P2 **4,Pm, 

y = 44PI4141P2... * 4,Pm4,, a3 = 4,PI4,4,P24,... * nPm (3) 
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154 KARL STROMBERG [March 

where m > 1 and each exponent pj is 1 or 2 (for 8, m > 1). These are the reduced words having 
more than one letter. Depending on our choice of 9, it may happen that two reduced words that 
appear to be different are actually equal; i.e., when multiplied out, they equal the same matrix. 
For example, if we choose 9= =, one checks that 414 = 442 and 41+++ = t. However, we do have 
the following remarkable theorem which is the key to our later results. 

THEOREM A. [4]. If cos0 is a transcendental number, then each element of G other than l has 
exactly one expression as a reduced word in the letters 04, 41, and 4,2. That is, if 

(i) ala2**an =P1P2... Pm 

where each side of this equation is a reduced word, then m = n and aj = pj for 1 6j < n. 

Proof. We need only show that no reduced word is equal to t, for then if (i) held true with n 
as small as possible it would follow that n = 1 and Pi = al. 

We first show that if a is as in (3), then a& t. We have a = am am I ... a2a1 where each a is 
either 4, or 424. That is, each a is one of the two matrices 

1 Cos + \/2 
I 
sin9 

a V 3 1 _S a= + %2 cos9 - + sin9 

sin9 0 cos9 
One checks by induction on m that if K= (0,0, 1), then amam l-I . aj(K)=(sin9Pm-1(cos9), VJ 
sin9Qm-1(cos9), Rm(cos9)) where the P, Q, and R are certain polynomials with rational 
coefficients, their subscripts are their degrees, and their leading coefficients are 

- 1(3) ?2 ()2 m 2(2) 
respectively. In fact, simple computations show that 

PO(X) 1 31Q(x)=-2 
,RI(x)=x, 

Pm (x) = 
I 

xPmi (X)? 
3 

Qm- l(X)- Rm(x) 

QM(x) = + 2 JXPm(x) + 2 Qm- l(x)- Rm(x) 

Rm+I(x)=( -X2)Pmi(X)+XRm(X). 
This done, we see that since cos 9 is a root of no polynomial with rational coefficients, it is 
impossible that a(K) = K (else Rm(cos 9)-I =0) and so a t. 

Now we see that no /8 as in (3) can equal t, for otherwise a = 4,34 = 4t4 = 42 = t. Similarly, if 
y = t, then 8 = 4y4 = t, so it remains only to rule out the possibility that 8 = t. 

Assume that 8 = t where 8 is as in (3) and m is the smallest natural number for which this is 
true. Of course m> 1. If p1 =pm then 4,P +P. is either 42 or 4A=40 so 

t = 41P34 18d1PI = 044dP2... * 4JP I +Pm 

is a reduced word of the form /3 which is impossible. Thus pi +pm =3. In case m >3, we have 
l = 041PmS41P I(A = 4JP24... (A41Pm-I 

which is again of the form 8, contrary to the minimality of m. Therefore m = 2 or 3. But m = 2 
yields t = 4P2 SOPI = ) while m =3 yields t= 4Aw03 83IP '4 = 41P2 and these results are ridiculous. We 
conclude that 8 = l is impossible. U 

We hereby choose and fix any 9 such that cos 9 is transcendental. Of course all but countably 
many real numbers 9 have this property. (Incidentally, it follows from the Generalized Linde- 

This content downloaded from 128.135.12.127 on Thu, 26 Feb 2015 17:44:31 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1979] THE BANACH-TARSKI PARADOX 155 

mann Theorem that any nonzero algebraic 9 will do; e.g., 9= 1.) 
If an element p e G is expressed in its unique way as a reduced word as in (2), we call n the 

length of p and we say that al is the first letter of p or that p begins with al. We write l(p) = n and 
l(t) = 0. 

As usual, by a partition of a set X, we mean a pairwise disjoint family of subsets of X whose 
union is X. 

THEOREM B. There exists a partition { GI, G2, G3} of G into three nonvoid subsets such that for 
each p in G we have 

(i) pEGI-)pEG2U G3, 
(ii) p E Gl<p E G2, 
(iii) p E G 4I2p E G3. 

(Note, for example, that 4p need not begin with 4. If p = 040, then 4p = 4i begins with A.) 

Proof. Assign the elements of G inductively according to their lengths as follows. Put 

I E GI, EG2,4E G2,42 EG3. (4) 
Suppose that n > 1 is some integer such that each a E G with l(a) < n has been assigned to exactly 
one of GI, G2, and G3. We now assign all elements of length n + 1. If 1(a) = n and a begins with 4 
or i2, put 

4o xG2ifa EGI, 
)aE GI if cEG2U G3. 

If 1(a) = n and a begins with 4), put 

Oa E Gj+ 1 if a E G., (6) 

42a E Gj+2 if a E G (7) 
for j=1, 2, 3 where G4= G1 and G5= G2. By induction our partition is now formed. The 
assignment of any element of length n can be easily determined in n steps. For example, if 
p= p+p2+42, then l(p) = 7 and we note successively, beginning with the last letter, that 

p2 E G3, )2 E G1, 42A2 E G3,4 42(2 4E G 

pqp20p2 E G2, (p4/qp2qp2 E G1, p E G2. 

One easily checks that the elements of length two satisfy 

{ q)4/'042,/20 c G1, 41.E G3, 
and therefore that (i)-(iii) hold if l(p) < 1 (for example, both sides of equivalence (i) are false 
unless p = t). For an inductive proof of (i)-(iii), suppose that n > 1 is some integer and that these 
three equivalences are known to hold for all p E G having l(p) <n. Now let p E G with l(p) = n be 
given. 

CASE., 1. Suppose that p begins with +. Then (6) and (7), with a = p, imply (ii) and (iii), 
respectively. Since fp has length n - 1, our induction hypothesis yields 

pa GI#O(op)=pE G2U G3 
<=bpE GI'?:cp aG2u G3 

and so (i) also holds for p. 
CASE 2. Suppose that p begins with 41. Then (i) follows from (5) with a = p. We have 4p= -24 

where l(a) = n - 1 and a begins with 4, so (7) and (6) yield 

4p = 42a e G2<>aUe G3'p = 4a e GI'Ap = a E G3 
which proves (ii) and (iii) for p. 
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156 KARL STROMBERG [March 

CASE 3. Suppose that p begins with 4,2. As in Case 2, (i) follows from (5). Here we have 4p = a 
has length n -1 and begins with 0. So again (6) and (7) yield 

4p= aE G2.p= =p2a e Gl<.?a E G2-?.42p-4'aE G3 

proving (ii) and (iii) in this final case. U 

THEOREM C. There exists a partition {P, SI, S2, S3} of the unit sphere S {x ER3: IX12 = X2 + X2 

+ X3 = 1) into four subsets such that 

(i) P is countable, (ii) O(S1) = S2 U S3, 

(iii) 41(S1)= S2, (iV) 42(S1)= S3. 

Proof. Let P= {p ES: p(p) =p for some p E G with pl=/t}. Since G is countable and each 
p leaves just two points of S fixed (the poles of its axis of rotation) we see that (i) obtains. For 
each x E S\P, let G(x) = {p(x): p E G ). Each such G(x) is a subset of S\P (if p(x) E P for some 
p, then ap(x) = p(x) for some a -- so p - lap(x) = x, p - lap 7= t, and x E P), x E G(x)[x = t(x)], and 
any two such sets G(x) and G(y) are either disjoint or identical (if t E G(x) n G(y), say 
p(x) = t = a(y), and z E G(x), say z = T(x), then z = T(x) = Tp - '(t) = Tp - 'a(y) E G(y); whence, 
G(x) n G(y)#7fr?G(x) = G(y)). Therefore, the family of sets 6 = { G(x): xE S \P) is a partition 
of S \P. Next, choose exactly one point from each member of F and denote the set of points so 
chosen by C. The set C has the properties: 

CcS\P, (a) 

cl 7=c2 in C= G(cl) n G(C2)=4,, (b) 

x E S \P=x E G(c) for some c E C (c) 
because x E G(c).c E G(x) for all x, c E S \P. Now define 

Sj= Gj(C)= {p(c):p E Gc EC} 

forj = 1,2,3 where G1, G2, G3 are as in Theorem B. Using (a) and the fact that G(x) c S\P if 
xES\P, we see that SjCS\P for eachj. The fact that G=GIuG2uG3 and (c) imply that 
S\P=S1uS2uS3. If j]#i in {1,2,3}, then SjnS1=4, (otherwise, for xESjnSi, we have 
x = p(c) = a(c2) for some cl, c2 E C, p E Gj, a E G, so (b) yields cl = c2 = c, say, and hence a c'p(c) 
= c while c 7 P from which a - 'p = t and p = a contrary to Gj n G =4). Therefore {P, S1, S2, S3} iS 
a partition of S. 

Finally, we apply (i)-(iii) of Theorem B to write 

O(SI1)= {p(c):pEGI,cEC}= {T(c):TEG2U G3,cEC}=S2US3, 
iP(51)= {4'p(c):pEGI,cEC} = {T(c):TEG2,cEC} =S2, 

+2(Sl) ={2p(c) : p E GI,c E C) T={r(c)C: T E G3,c E C) = S3 

which proves (ii)-(iv). U 
The following lemma and its use in deducing Theorems D and E from Theorem C are 

contributions of W. Sierpiniski (see [6]). 

LEMMA. If P is any countable subset of S, then there exists a countable set Q and a rotation X 

such that P c Q c S and o(Q)= Q \P. 

Proof. The idea of the proof is very simple. We first select an axis of rotation for W that 
contains no point of P, then we use the countability of P x P x N to select one of the 
uncountable supply of angles of rotation for w that make w satisfy P n Wn(P)p for all n> 1, 
and finally we put 

00 

Q=PU U &n(P) (8) 
n=1 
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1979] THE BANACH-TARSKI PARADOX 157 

We now give details. 
Among all vectors v = (vI, v2, V3) in S having V3 = 0, there are only countably many for which v 

or -v is in P. Select any v = (vI, v2, 0) E S such that neither v nor -v is in P. Writing u = (1, 0, 0) 
and 

VI V2 ? 
a=-V2 VI ? 

O 0 
0 

we see that a is a rotation, a(v) = u, and the set a(P) contains neither u nor - u. For real 
numbers t, consider the rotations 

(1 0 0 
Tt= 0 cost -sint 

0 sint cost 

that leave u fixed. For each triple (x,y,n) with x,y e a(P) and n EN, it follows easily from the 
fact that x2 + x2 > 0 that there exist either exactly n or exactly 0 values of t in [0, 24r for which 
Ttn(x)=y according as xl =YI or xl #,Yy. Since there are only countably many such triples in all, 
there are only countably many t for which the equality 

00 

a(P)n U Tna(P)=4 (9) 
n=1 

fails. Fix any t eR for which (9) obtains and write T = Tt. Now define w = e - 'Ta and define Q as 

in (8). Since Tr=an'n for all n, (9) yields a(Pnw(Q))=a(Pn U w(n(p))= from which we 
n=1 

have Pnw(Q)=p. But Q=Puw(Q) so the proof is finished. * 
THEOREM D. There exists a partition { Tj: 1 <j < 10) of the unit sphere S into ten (disjoint) 

subsets and a corresponding set {pj: 1 <j<10) of rotations such that {pj(Tj): 1 <j6) is a 
partition of S into six subsets and {pj(Tj): 7 ]j < 10) is a partition of S into four subsets. Moreover, 
we can take T7, T8, and Tg to all be rotates of SI and take TI, T2, T3, and T10 to all be countable. 

Proof. We continue our previous notation and define 

Ul =4 (S2), U2== O(S2), U3= 4A2(S2), 

VI = 4(S3), V2 = 4'(S3), V3 = 420(S3). 
By Theorem C it is clear that { Uj, Vj) is a partition of Sj for j= 1,2,3 and that these six sets 
along with P form a partition of S into seven subsets. Now let 

T7= U1, T87= U2, Ts9= U3, T10= P, 

P7= 20 P8 =0!,p2p9= P4',plo=i 
and check that pIo(T,0)=P and pj(Tj)=Sj-6 forj=7,8,9 so that {pj(Tj)):7j< 10) is indeed a 
partition of S. We shall now divide S \(T7 U T8 u Tg U T10)= V1U V2 U V3 into six pieces. Let Q 
and w be as in the preceding Lemma and define 

T7=P8(SIn Q),T2=P9(S2n Q),T3=p7(S3n Q) 
T4=p8(SI\Q), T5 = p9(S2\ Q), T6= p7(S3\ Q). 

Plainly, 

{ TI, T4) partitions P8(SI)= VI, 
{ T2, T5) partitions pg(S2)= V2, 

{ T3, T6) partitions p7(S3)= V3, 
and thus we see that { Tj: 1 <j < 10) partitions S. Next define 
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P4 = P8 , P5 - P9 I P6 = P7 and p P+3 

for j = 1, 2,3. Evidently, 

pj+3(Tj+3)= Sj\Q (j= 1, 2,3) 
and, since P c Q, the union of these three sets is S \Q. Finally, we have 

p1(7))=1-p+3(T7))=&P-'(Sjn Q) (j= 1,2,3) 
so these three sets are disjoint and their union iso -1(Q\P)= Q. U 

If, for a subset T of S, we write T'={tx:x ET,O<t< 1), then S'={y ER3:0<IyI 61) is 
the punctured ball obtained from the solid unit ball B = { y ElR3: IyI I 1) by removing the origin 
0 = (0, 0,0), and it is clear that the first sentence of Theorem D remains true if we replace S by 
S' and Tj by TJ' throughout. We use this observation in the next proof. 

THEOREM E. There exists a partition ( Bk: 1 S k 6 40) of the closed unit ball B into forty subsets 
and a corresponding set {rk: 1 < k 6 40) of rigid motions such that {rk(Bk). 1 6k 6 24) partitions B 
into twenty-four subsets and { rk(Bk): 25 6 k 6 40) partitions B into sixteen subsets. 

Proof. Apply the above Lemma to the case that P is the singleton set { u) where u = (1,0,0) E 
S to obtain a countable set Q with u E Q c S and a rotation po such that po(Q) = Q \{ u). Next 
let N1 = {2(q-u): q E Q) and define the rigid motion ro by 

ro(x) = po(x + 2 u) - u. 
Plainly the vector 0 is in N1 and rO(N1)=N1\{O). Writing N2=B\Nl, sl=rO, s2=t, and 
Mh=sh(Nh) for h=1 and 2, we see that (N,,N2) partitions B and {M,,M2) partitions 
S' =B\{O). We complete the proof by combining these partitions and rigid motions with the 
partition { Tj': 1 1 i10) of S' and the rotations {pj: 1 1j? 0) as in the remark following 
Theorem D. 

Notice that, for each j(l S j < 10), the family Tj' n pj- I(M): I 6 i 6 2) partitions TJ' and that 
in turn {Mhn Tj'npj- I(Mi): 1 ?h<2) partitions Tj'npj- y(M) for i=l and i=2. Thus {Mh n TJ' 
n pj- I (M;): 1 < h 6 2, 1 < i 6 2, 1 6 j 10) is a partition of S' into forty subsets and the forty sets 

Bhy =S*-'[ Mhn Tj'npj- I(Mi)] 

form a partition of B while for each fixed j the four sets 

pjsh(Bh j) = Mi n pj(Mh n Tj') (10) 
(1 S h ? 2, 1 6 i < 2) form a partition of pj(Tj'). We now invoke Theorem D to see that the families 

{Pjsh(Bhy): 1 6h < 2,1 ?i<2,1 ?j16) 

{Pjsh(Bhy): 1 6 h < 2, 1 < i 6 2,7 <j < 10) 

are each a partition of S' while, for fixed i, (10) shows that the respective families of twelve and 
eight sets are each a partition of M, which we can in turn map to partitions of Ni via s7 '. 
Therefore, writing rh = s' lpjsh, we infer that 

{rhj(Bhj). 1 6hS2,1 SiS2,1 ??< 6) 
and 

{rh,(Bh,): 1 h < 2, 1 6i 6 2,77 Sj < 10) 

are partitions of B into twenty-four sets and sixteen sets, respectively. Finally, relabel the forty 
sets Bhi and the forty rigid motions rhii with single subscripts k = 1,2,. .. ,40. m 

DEFINITION. We shall say that two subsets X and Y of R3 are piecewise congruent and we 
write X- Y if, for some natural number n, there exist a partition {Xj: 1 < j6n) of X into n 
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subsets and a corresponding set {ff: 1 j < n) of rigid motions such that {f1(Xj): 1 j 6n) is a 
partition of Y. In case X is piecewise congruent to a subset of Y, we shall write XC5 Y. 

Our next theorem gives some simple properties of the relations just defined. 

THEOREM F. For subsets X, Y, and Z of R3 we have 

(i) X'X, 
(ii) X Y==>Y'X, 
(iii) X- Y and Y-Z=>X-~Z, 
(iv) X- Y=?'XC Y, 
(v) X-< Y and Y-<Z=>X-5Z, 
(vi) X c Y=>Xc Y, 
(vii) XC5 Y and Y-<X=>X- Y. 

Proof. Since Y c Y, (iv) is banal. Since t is a rigid motion, (i) and (vi) are obvious (with n= 1). 
Assertion (ii) follows from the fact that inverses of rigid motions are rigid motions. 

To prove (v), suppose that {Xj: 1 j<n) and {Yi: 1 i<m) are partitions of X and Y, 
respectively, and that {ff: 1 <j n) and { gi : 1 i < m) are sets of rigid motions such that 
{(f(Xj):1Ij<n) is a partition of some Y0ocY and { gi(Y):Ii<m) is a partition of some 
Z0oc Z. Then one readily checks that the mn sets A. =Xjnfj-'(Y,) form a partition of X (for 
fixedj, the m sets Alj,A2j*..., Amj are pairwise disjoint and their union is Xj) and, for fixed i, the 
n sets f(AU) = Yinfj(Xj)(1 <j <n) form a partition of Yin YO so { g1f1(Au): 1 6i <6m, 1 <j <n) is 
a pairwise disjoint family whose union is some subset Z1 of Z. Each composite mapping gj) is a 
rigid motion, so we have X-Z1 and hence X-<Z. This proves (v). The same argument proves 
(iii) by taking Y0 = Y and Z = Z. 

To prove (vii), suppose that X- Y0 and Y-X0 where Y0 c Y and X0 CX. Let the notation be 
as in the preceding paragraph with X = Z and X0 = Z0. We prove that X-, Y by copying a 
well-known proof of the Schroder-Bernstein Theorem. First define f on X and g on Y by 
f(x) =fj(x) if x E Xj and g(y) = gi(y) if y E Yi. For E c X, define E'c X by 

E'= X\g[ Y\f(E)]. (11) 
Plainly, 

EcFcX= >E'cF' (12) 
Let 6D ={E: E CX,E cE'). Notice that f E 6D. Let D= U6D be the union of all the sets that 
belong to 6D. For each EE6D we have E'CD' by (12) so ECD'. Thus DCD' and so (12) 
yields D'C(D')'; hence, D'C6D, D'ccD, and D'=D. Put E=D in (11) to obtain 

D =X\g[ Y\f(D)],X\D =g[ Y\f(D)] 
Clearly, X\D cXO. Now define, for 1 <j<n and 1 <i<m, 

A-=D n Xj,An+i=g[Yi\f(D)],hj=fj, and hn+i= gi-. 

It follows that {A1,...,An) partition D, {An+l,-..,An+m} partitions X\D, {h1(Al),....hn(An)) 
partitions f(D), and {hn+1(An+1), .. .,hn+m(An+m)} partitions Y\f(D). Therefore X- Y. m 

Recall that a closed ball in RI is any set of the form A = {x CR3: Ix - a I <} where a cR3 and 
E > 0 are given. Recall also that a translate of a set A cR3 is any set of the form A + b = {x + b: x 
EA } where b eR3 is given. 

THEOREM G. If A cR3 is a closed ball and if A 1,A2,... An are a finite number of translates of 
A, then 

n 
A- U A1. 

j=1 
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Proof. We may suppose that A = {x ER3: IxI <E} for some E > 0. Choose any a ER3 for which 
laI> 2e and letA'=A+a={yER3:ly-a I<e}. We use Theorem E to show that A-(AuA'). 
So let the Bk and rk be as in that theorem. For any set D cR3 and any 8 > 0, let SD ={x: x E 
D }. We consider the partition {EBk: 1 < k < 40) of A. Define rigid motions Sk by 

Sk(X)=Erk( x) if I <kS24, 

sk(x) = erk( x) +a if 25 <k < 40. 

(Note that if r is a rigid motion (r(x) = p(x) + b where p is a rotation) and s(x) = Er( , then s 
is a rigid motion because s(x) = p(x) + eb.) From Theorem E we see that {sk(eBk): 1 k 24} 
partitions A, {sk(eBk): 25 < k < 40} partitions A', and so, since A n A' = +. {sk(eBk): 1 < k < 40} 
partitions A U A'. This proves that 

A (A U A'). 
We now prove the theorem by induction on n. The theorem is obvious if n= 1. Suppose that 

n > 1 is such that A is piecewise congruent to the union of any n - 1 of its translates and 
let A1,,... An by any n of its translates. By hypothesis A [A 1 U ... U An- j and it is obvious that 
An\[A1U ... U An-1] is congruent (by translation) to a subset of A' so we have 

Aiu ... A -<A uA'-A. 
But clearly A -A 1 u ... u A so Theorem F yields A -A 1u U. A. U 

We now state the Banach-Tarski Theorem again and then prove it. 

THEOREM H. If X and Y are bounded subsets of R3 having nonvoid interiors, then X- Y. 

Proof. Choose interior points a and b of X and Y, respectively, and then choose E > 0 such 
that A = {x eR3: IxI <E} satisfies A + a c X and A + b c Y. Since X is bounded, there exist a 
finite number A,,..., An of translates of A whose union contains X. We therefore have, using 
Theorem G, 

A5<Xc(Alu ... uA -A 
so it follows from Theorem F that X-A. Similarly Y-A. Another application of Theorem F 
gives X- Y. U 

REMARKS. 1. The number 40 that appears in Theorem E is not the smallest possible. In fact, 
R. M. Robinson showed in 1947 [5] that there is a partition of B into five sets (one of them a 
singleton) which can be reassembled by rigid motions to form two disjoint closed balls of unit 
radius. Moreover, T. J. Dekker and J. deGroot proved [3] that these five sets can be chosen so 
that each is both connected and locally connected. 

2. It follows from Theorem C that, since Lebesgue measure 3 on R3 is rotation invariant, 
none of the three sets S;' = { tx : x Sk, 0 < t < 1), 1 < k ? 3, can be Lebesgue measurable. 

3. A poor analogue of Theorem C can be explicitly constructed (no Axiom of Choice) in the 
plane as follows. Fix any transcendental complex number c with ci = 1 (plenty of these exist, 
since there are only countably many z with IzI= 1 that fail to be transcendental; we can take 
c = e'). Now let X be the set of all complex numbers of the form 

n 

z= E ajc 
j=O 

where n and ao, a,,.. ., an are nonnegative integers. Each z E X has a unique such expression. Let 
XO be the set of those z for which ao = 0 and let X, =X\Xo. Then {Xo,X1} partitions X. Define 
the rotation p of the plane by p(z) = cz and define the translation T by T(z) = z +1. Then 
p(X) = Xo and T(X) = X1 so the sets XO and X1 are each congruent to X. The reason that this 
analogue is "poor" is twofold: X is both countable and unbounded. 
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SEX DIFFERENCES IN MATHEMATICS: 
HOW NOT TO DEAL WITH THEM 

EDITH H. LUCHINS 

Even casual observation of this distinguished assemblage reveals sex differences among 
mathematicians. There are both male and female mathematicians! This may seem to be a 
vehement way of expressing the obvious. But it seems to be not at all obvious to those who 
portray the history of mathematics. A case in point is an important collection of portraits and 
biographies of mathematicians throughout the ages on a wall map entitled "Men of Modem 
Mathematics" [7]. There is a woman among them, Emmy Noether. But absent are other women 
who, despite enormous obstacles, contributed significantly to mathematics, e.g., Sophia Germain 
and Sonya Kovalevsky. In a similar vein, a well-known and otherwise excellent textbook on the 
history of mathematics has no women listed in the name index-and seemingly not mentioned 
in the text-not even Emmy Noether, although her father, Max Noether, is listed [3]. Still 
another well-known text on the history of mathematics referred to Hypatia of the fourth century 
as the first woman mathematician to be mentioned in the history of mathematics-but it 
referred to no other women, at least not in its first three editions, even as recently as 1969; 
however, there is a brief reference to Emmy Noether in the most recent edition of the text [5]. 

These are illustrations of ways in which not to deal with sex differences in mathematics. Do 
not ignore or overlook or hide the achievements of one sex. Let us find out more about these 
achievements and make them known to our colleagues, our students and the general public. 

True, famous women mathematicians throughout history can be counted on one's fingers. 
But when mathematics students were asked to name such women, they usually did not reach 
even the first finger. For example, when the request to name famous women mathematicians was 
made of 26 mathematics majors in a junior-senior level algebra class, 24 did not list any names. 
In contrast, when they were then asked to name three to five famous mathematicians, 22 
students answered, listing an average of four (male) mathematicians. It is important to increase 
the awareness of the contributions of women mathematicians in the past (cf. [4], [20]). 

Nor should we belittle the women's contributions. At a recent conference on women in the 
history of mathematics, one of the participants remarked that on the whole she was disappointed 

Edith H. Luchins did graduate work at New York University with Kurt Friedrichs and the late Richard 
Courant. She obtained her Ph.D. in Banach algebras with Bertram Yood from the University of Oregon, where she 
was research associate under a fellowship of the American Association of University Women. Before going to 
Rensselaer Polytechnic Institute, where she is Professor of Mathematical Sciences, she held faculty positions at 
Brooklyn College and the University of Miami. She is concerned about why there are not more women in 
mathematics. Her interests in applications of mathematics to philosophy and psychology are reflected in eleven 
books and monographs and some fifty articles, many of which (she wishes to point out) are collaborative efforts 
with her husband, Professor Abraham S. Luchins of SUNY-Albany.-Editors 
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