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Lebesgue's theory of integration is based on the notion of the measure of a

set of points, a notion introduced by Borel and subsequently refined by

Lebesgue himself. The question whether there are non-measurable sets of

points was taken up by Lebesgue f a few months ago in a memoir bearing the

title Contribution a Vétude des correspondances de M. Zermelo. While yet

unaware that the question of their existence was here considered, I constructed

recently in quite a different manner a very simple example of a non-measurable

set, an example which has some especial interest when considered after Lebesgue

in the light of correspondences. To give this example is the object of § 1. It

is obtained by splitting up the unit interval into a countable set of points and

two superimposable sets of points of upper measure 1. Each of these in turn

can be split into two non-measurable sets (§ 2), also of upper measure 1, and

so on.

§ 2 gives a brief, general analysis of non-measurable sets of points, which so

far as I know is entirely new. It is shown that when any two complementary

non-measurable linear point-sets are resolved each into two components, one of

which is a subset of maximum measure § and the other of which is not measur-

able, the sum of the two non-measurable components is measurable and its

measure is equal to the upper measure of either component.

Finally, the intimate connection between the upper and lower measures of any

linear set is revealed by showing that not only is the lower measure equal to the

measure of a subset of maximum measure, but the difference between the upper

and lower measures is equal to the upper measure of the residual non-measur-

able component (Theorem 2).

§ 1. Example of a non-measurable set of points.

Let S denote any set of points within the interval (0, 1), and let C be the

complementary set.    The upper measure of S—call it m(S) — is the lower
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limit to the sum of a countable set of intervals inclosing S in their interior.

If in the set a number of intervals successively overlap, they can be combined

into a single one. Hence a set of non-overlapping intervals may be used, the

extremities of which are points of C. To inclose a point set we shall use hence-

forth only sets of intervals whose terminal points belong to the complementary

point set.

Suppose now that m(S) <c 1 • Then S can be inclosed in a set of non-over-

lapping intervals whose sum 1 — 2 is as nearly equal to m(S) as we please, and

the points exterior to the interior of these intervals form a closed subset of C

having a measure equal to 2.

I shall now restrict S and C by the following condition : In (a, b), any sub-

interval whatsoever of ( 0, 1 ), there can be found an interval as nearly equal in

length to ab as we please and such that the subsets of C and S included in it

shall be similar to C and S. In other words, C and S can be obtained from

their subsets in this portion of ab by mere magnification. In place of a single

portion of ab having the property postulated it will serve my purpose as well if

there is a finite number of such portions, the sum of whose lengths differs

from ab by as little as we please. This condition secures for C and S what I

shall term a homogeneous character. A familiar instance will be obtained by

selecting for C the rational points in (0,1) or the points having the abscissas

m/2n, in which m and n are arbitrary positive integers.

Under this restriction it can now be affirmed that either 8 and C are

measurable and one of them has the measure 0, or they are both non-measur-

able and have an upper measure equal to 1.

To prove this, suppose first that m ( S) < 1. Inclose S in a first set of

intervals of measure 1 — 2 < 1. Then the points exterior to their interior

form a first subset CC1) of C having a measure 2. Now in each interval of this

first set of intervals we can find by hypothesis a subinterval (or a finite number

of subintervals with a total length) as nearly equal to it in length as we please

and such that the subset of C which it contains is similar to C. Consequently

in this subinterval (or in each of the finite number of subintervals) there can be

selected a set of intervals which is similar to the " first set " and which has its

end points in C. The points of the subinterval (or subintervals) exterior to the

interior of this set of intervals form a subset C of C which is similar to Cm and

exterior to C(I>. If every interval of the first set of intervals is treated in this

way we obtain a second set of intervals entirely within the first, and the measure

of this second set may be taken greater than (1 — e)(l — 2 )2, where e denotes

a small arbitrarily prescribed positive quantity. The subsets C in the first set

of intervals which are excluded from the second set form, when taken together,

a second subset Cm of C which has a measure greater than (1 — e)(l — 2)2.

Let the second set of intervals be treated in the same manner as the first, and
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so on. Continuing in this manner we find that C contains distinct subsets, the

measures of which are greater than the successive terms of the progression

2 + (l-e)(l-2)2 + (l-e/(l-2)22 + ... = ^:r^—=-y

As e is arbitrary, it follows that C has a component with a measure as nearly

equal to 1 as we please. Taking for e a sequence of values approaching 0 as

their limit, we obtain measurable components of C whose sum has a measure

equal to 1. The set of points in (0,1) complementary to this sum has the

measure 0 and consists of the remaining points of C and all of the points of 8.

Therefore we conclude that if m ( 8) < 1, the sets C and S are measurable,

and the latter has the measure 0.

If, on the other hand, m(C) <1, we may adjoin to S the two terminal

points 0, 1 and repeat the reasoning with the interchange of S and C. In this

repetition certain points in the ¿ successive sets of intervals (¿ = 1, 2, 3, •••),

which correspond to the terminal points 0, 1 of the initial set, must either be

neglected or be adjoined to 8. This, however, is absolutely without influence

upon the reasoning, as these points are countable and the measure of a countable

set of points is 0.

Lastly, if m(S) = m(C) = l, neither set can be measurable since the sum

of their upper measures exceeds the length of the unit-interval. We thus reach

the conclusion announced that either 8 and C are measurable and the measure

of one of them is 0, or they are both non-measurable with an upper measure

equal to the length of the interval.

We are now ready to begin the construction of two non-measurable sets #

and C. For this purpose divide the unit-interval arbitrarily into pairs of

points, x and y = 1 — x, which are the images of each other with respect to the

middle point of the interval. The middle point can be neglected or added to

8 or C. Any two point sets {x} and {y} thus constructed must have equal

upper measures, as either set, regarded as a rigid system, can be superimposed

by reflection upon the other. If they are measurable, their common upper

measure is \. To prevent this I shall secure for S and C the " homogeneous

character" previously discussed.

To this end we will associate with each x in the set 8 the countable set

{x±»t/2"} and correspondingly with each y in C the set of points

{1 — (a3±m/2B)}, in which m and n denote arbitrary positive integers.

These two sets of points are entirely distinct unless x itself and hence all points

of both sets have the form m'/2"'. Points with abscissas of this special form may

either be assigned arbitrarily to S and C or neglected. Instead of so doing,

however, we shall put aside these points into a separate point set K. This, being

countable, has the measure 0 and its removal will in no wise affect m(8) or

m(C).
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The restriction just made upon the assignment of the points of the unit inter-

val to 8 and C secures for these two point sets the following property. If the

interval is divided into 2" equal parts each of these parts, in respect to the dis-

tribution of the points of S and of C, is an exact copy of every other part.

Consequently, to secure their similarity to the initial unit interval, I have

merely to require, if possible, that whenever a point x is assigned to 8 the points

x 12, x\4, x/S, • • • shall be assigned to the same set, and conversely, x shall be

assigned simultaneously with any x/2n. This requirement will give rise to a

conflict in the distribution of the points of (0,1) to 8 and C if, and only

if, a point cc/2p' =fc m'/2"' should coincide with one having the coordinate

1 — (x/2p"±m"/2n"), in which p, m, n', p", m", n" denote non-negative inte-

gers. But clearly this can occur only when x is rational. Let all the rational

points of the unit interval be thrown into our negligible set K of measure 0.

After the rational points are thus set aside, the points of the interval may be

separated into pairs of sets of countable points,

Í   x       m \ L       / x       m\\

(1) l^^)'        (1~(,2^±2;j)    Ci», «,#=0,1, •,■•),

to be assigned respectively to 8 and C.

The homogeneous structure desired has now been obtained. Furthermore,

when the unit interval is divided into any 2" equal parts, these parts are copies

of one another in respect to the distribution of points of iT as well as S and C,

and are similar to the whole interval. Consider now the two complementary

sets iSand C + K. If any subinterval (a, b) of (0,1) is taken, two points

d=mx¡2n and V = m2/2" may be found in the interior so near to a and b

respectively that ab — a'b' is as small as we please, and d b' consists of m2 — mx

equal portions of length 1/2" which are similar to the initial unit interval in

respect to the distribution of the points of 8 and C+ K. Since these two sets

are of equal upper measure, it follows from the preceding discussion that they

are non-meaaurable and have an upper measure 1. By subtraction of K from

C + JE" the same is seen to hold for C.

In dividing thus the unit interval into two non-measurable sets the separation

has been left indeterminate, in so far as it was permitted to assign arbitrarily

one of two image points x and 1 — x to 8, each of the two points determining

then one of the groups (1). To remove the arbitrary element of choice it is not

at all necessary to give a law which will pick out uniquely a principal element

from each group (x/2*p ± wi/2"). This appears, in consequence of a remark

of Lebesgue,* to be impossible. Eather, the removal of the arbitrary feature

depends on our ability to give a law which, out of an uncountable infinity of

pairs of groups, will select one of each pair.    Suppose now that we express any

*See Lbbesgue's footnote, loo. oit., p. 210.License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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point x in the binary system ; thus

x = -axa2a3 • •• (a,=0orl).

Then

1-X=.ßxß2ß3--- (a, + /?( = l).

Any other point x¡2*p ± wi/2" in the same group as x will agree with x in the

succession of digits 0 and 1 after the omission of a finite number of initial ele-

ments, a'x, a'2, ■ ■ -, a'k and a,, • • -, a.., in the two numbers compared. The prob-

lem, therefore, which presents itself is to make a choice between x = .ax a2 • ■ ■

and 1 — x = .ßx ß2 ■ • ■ based on the ultimate form of the binary decimal and

not at all on the initial elements. Such a choice can be made, if not for the

continuum ( 0, 1 ), at least for many subsets. For example, suppose the ratio

of the number of zeros to the number of l's in .a. a, • • • a to have as the

abscissas of its largest and smallest points of condensation, for increasing n, the

values A and B. Then the corresponding values for 1 — x are 1/2? and 1 ¡A.

Unless A = 1/B it is clearly possible to give a rule for selecting one point from

each pair, x and 1 — x. Take now in the unit-interval the set which consists

of all points for which A + 1/B. This has a homogeneous character and is

its own image with respect to x = J. If its upper measure is not 0, it may

replace the unit-interval in our previous reasoning, and can be split up into two

non-measurable superimposable subsets in precisely the same way as the unit

interval. Thus it seems to me possible, and perhaps not difficult, to remove

the arbitrary element of choice in my example by confining one's attention to a

proper subset of the continuum, though as yet I have not succeeded in proving

that this is possible.

It remains to ascertain to what categories the sets 8 and K belong. By Baire's

definition a point set of the first category is one that can be created by putting

together a countable number of sets, each of which is nowhere dense. Now 8

and C are superimposable, and this is true also for their subsets included in any

portion ah of our unit interval. This shows that they are throughout of the

second category,* for otherwise some subinterval of the unit interval would be

obtained as the sum of point sets, 8, C, and iTof the first category, but this is

impossible.

§ 2.  On the theory of non-measurable sets.

In the preceding section an interval has been split up into two complementary

non-measurable sets, each of which has an upper measure equal to the measure

of the sum. That a similar decomposition always takes place whenever a

measurable linear set is resolved into two non-measurable sets will appear from

the following analysis.

* I use here the term second category to denote a set which is not of the first category, rather

than in the sense of Baibe.   Cf. Lebesgue, 1. c, p. 212.License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Take for consideration any two complementary non-measurable sets S and C

in the unit interval. If m(8) and m(C) are not both equal to 1, suppose

m(S) < 1, and adjoin to C, if necessary, the points x = 0, x = 1. Then S

may be so inclosed within a set of intervals having their end points in C that the

closed sets of points exterior to the interior of these intervals shall have a measure

differing from 1 — m ( S) by less than a small, arbitrarily assigned, positive €.

Taking for e a sequence of values having 0 as its limit we obtain a countable set

of measurable closed subsets ôf C. The sum of these subsets has a measure

not less than 1 — m (8). Clearly also its measure can not exceed this amount,

for otherwise the measure of the complementary set would be less than m (8),

and hence also the upper measure of S which is included in it. This shows

that C contains a subset Cx of maximum measure 1 — m (8). Similarly 8 has

a subset 8X of maximum measure 1 — m ( C).

Place now

8=8x+8',       C = CX + C.

Together S' and C" make a measurable set T such that

(2) m(Sx) + m(Cx) + m(T) = l.

But

(3) l = m(S) + m(Cx),        l=m(C) + m(8x),

and

(4) in(S) = m(Sx) + m(S'),        m(C) = m(Cf) + m(C).

Multiplying equation (2) by 2 and then adding to them (3) and (4), we find that

(5) 2m(T) = m(S') + m(C).

Since S' and C are subsets of T, this can be only if

m(S') = m(C') = m(T).

The analysis and result hold also when we assume m(8) = 1, also if we split up

8 and C in any other way, each into a subset of maximum measure (necessarily

the same maximum) and a non-measurable subset. We reach therefore the fol-

lowing result :

Theorem 1. If 8 is any non-meaaurable linear aggregate and C is its

complement, let them each be resolved in any way into a subset of maximum

measure and a non-measurable subset. Then the two non-measurable com-

ponents taken together make a measurable set, and the tipper measure of either

component is equal to the measure of their sum.

It is to be noticed that the use necessarily of the sign of equality in (5) carries

with it the use of the same sign in (4).    Or in other words :

Theorem 2.    For any non-meaau^able set 8 we have

m(8) = m(Sx) + m(S'),License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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in which Sx denotea any subset of 8 of maximum meaaure and S' is the

residual non-measurable subset.

Lebesgue's lower measure m(S) is by definition 1 —m(C) or, by virtue

of the last theorem, 1 — m(Cx) — m(C'). Since also m(C') — m(T), we see

from equation (2) that the lower measure m (8) of any linear point set S is

equal to the measure of the subset m(8x) of maximum measure which it contains.

This is equivalent to W. H. Young's definition of the inner content * of a set

as " the upper limit of the content of its closed components."

Theorems 1 and 2 seem to me to advance considerably the theory of measure

and of non-measurable point sets. In particular, theorem 2 throws new light

on the connection between the upper and lower measures. Young's definitions

of the two measures, unlike Lebesgue's, were of very diverse nature. Equa-

tion (2) shows that he, nevertheless, was concerning himself with the essential

nature of a point-set. By treating the residue S', neglected by Young, I have

brought out the close connection between the definitions of Young, and the

development has been simple and rapid, connecting closely with both Lebesgue

and Young.

Several corollaries f can be developed rapidly from theorems 1 and 2. For

example, it follows at once that the upper meaaure of the sum of a measurable

and non-meaaurable aet which have no point in common ia the aum of their

upper measures.

I scarcely need to remark that any subset of the non-measurable component

S' is likewise non-measurable, unless, of course, it is of measure 0.

The inference should not be hastily made on the basis of theorem 1 that a new

and more comprehensive definition of measure is possible ; to wit, as the measure

of the maximum measurable component plus one-half of the irreducible residue.

For such a definition it is not true, in general, that the measure of the sum of

two sets without a common point is the sum of their measures. To see this it

will suffice to show that just as the unit interval was resolved into two subsets

of upper measure 1, so either of these can be resolved into turn into two subsets

of upper measure 1, and so on ad infinitum.

To effect such a resolution return to the non-measurable set S of § 1. In

this we put together groups of points having the abscissas x+zm/2n. For a

fixed value of x and of n a series of 2" equidistant points is obtained. These

we will now separate into two groups of 2n_l points in the following manner.

If, for convenience, the points are denoted in the order of increasing abscissa by

xx, x2, • • -, Xp,, let the first two points be assigned one to one group and one to

the other ; let the next two be assigned in the opposite way so that xx and x3 do

•Young's Theory of Point Seis, p. 96. His definition is reconciled with Lebesgue's defini-

tion on p. 106.

t See, in particular, the latter part of Young's Chap. 5.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



244 E. B. VAN vleck:   non-measurable sets of points

not belong to the same group, nor x2 and xi ; the next four points in a manner

opposite to that of assigning the first four so that xi+i and ¡r{ (¿ = 1,2,3, 4)

belong to different groups ; the next eight so that a:j+8 and xi ( ¿ = 1, 2, • • •, 8 )

do not fall in the same group ; and so on. Now x itself, being one of the 2n

points x¡, falls in one or the other of our two groups. According as the group

does or does not contain x, we will assign it to one or the other of two compo-

nents S', S" into which 8 is to be split. It is seen very easily that this sepa-

ration of the points { x ± m/2" } into two groups for fixed x and for two con-

secutive values of n is consistent the one with the other ; in fact, the assignment

of the points {x ± m'/2n+l } is completely determined by the previous assign-

ment of the points of its subset {x ± m/2" } .

Let this separation be effected first for any fixed x belonging to S and for all

values of n. FinaUy, by varying x within S we effect a decomposition of 8 into

two components 8', S". These two components must be of equal upper measure,

for by construction x and x ± £ belong the one to 8' and the other to 8". Thus

the upper measure of the subset of 8' or of S" in the interval (0, £) is the same

as the upper measure of 8" or of 8' respectively in (J, 1).

To secure a quasi-homogeneous structure for S' and 8" we will add the

requirement that the entire sequence of points x, x/2, x/4, x/S, • •• shall

belong to 8' (so also to 8") whenever any one point x/2" of the sequence so

belongs. This insures that the subsets of 8', 8" in (0, 1/2") shall be similar

in distribution to the whole sets 8', 8" in the unit interval. Furthermore,

from our mode of separating the points (x ± m/2") for fixed n and x into two

groups, it follows that if the unit interval is divided into 2" equal parts, 2"_1 of

these parts will be identical in respect to distribution of the subsets of 8' and

S" which they contain and will be similar therefore to the unit interval, as well

ps the first half of the same. The other 2"_1 parts are also identical and are

obtained from the preceding parts by the interchange of the points of S' and

those of 8", being similar to the second half of the unit interval. Consider

now any portion ab of the unit interval. Two points a'= mx/2", 6'= m2/2"

in the interior may be selected as near to a and b as we please, and the inter-

vening intervals consist of 2(mx — mf) equal parts of length l/2"+l. The

half of this number are similar to the first half of unit interval, and the

other mx — m2 parts are similar to the second half of the unit interval. The

argument of § 1 may therefore be applied with immaterial change to the com-

plementary sets S' and S" + C + K. Because 8' and 8" have by construc-

tion equal upper measures at least as great as J, it follows from § 1 that S' and

hence S" Í3 not measurable, and that their common upper measure is 1.

Slight reflection will make it apparent that 8', S" can be resolved on similar

principles each into two components of upper measure 1, and so on indefinitely.

Univebsity of Wisconsin, Madison, Wk.,
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