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1 Introduction

Typically, the Fourier transformation sends suitable functions on R to functions on R.
This can be defined on the space L1(R) + L2(R), i.e. functions which can be written
as the sum of a function in L1(R) and a function in L2(R). A celebrated result (the
Hausdorff–Young inequality) states that the Fourier transform takes functions in Lp(R)
to Lq(R) for 1 ≤ p ≤ 2, where 1

p
+ 1

q
= 1.

However, this does not extend to the case when p > 2. In addition, the maps F : Lp(R)→
Lq(R) are not surjective when p < 2. Therefore it seems natural to try to extend the
Fourier transform to objects other than functions. The most complete method of doing
this is extending the Fourier transform to the space of tempered distributions, i.e. the
space of linear functionals on the Schwartz functions.

Instead, we will study the Fourier–Stieltjes transform, a slight generalisation of the
Fourier transform. We now transform complex finite Borel measures rather than func-
tions, and output a function. Bochner’s Theorem answers the question of which functions
ϕ are the Fourier–Stieltjes transform of some positive Borel measure. It states that the
function is continuous and positive–definite is a necessary and sufficient condition for it
to be a Fourier–Stieltjes transform.

We shall first explore the analogous situation on the torus (or the circle here, when the
dimension is one). Fourier–Stieltjes coefficients will be examined, and are related to
Fourier coefficients. There is much similarity between Fourier–Stieltjes coefficients and
the Fourier–Stieltjes transform. However, the theory building up to a ‘Bochner–type’
result on the torus is clearer and simpler than going directly to Bochner’s theorem on R.

2 Preliminaries

Let T be the torus [0, 2π] with the points 0 and 2π identified, i.e. the same point. In this
paper, we shall be working with two spaces of continuous functions, both equipped with
the supremum norm: C(T), continuous functions on T, and C0(R), continuous functions
that vanish at infinity.

We will also consider two spaces of finite complex Borel measures on T and R, namely
M(T) and M(R). For clarity, µ will denote a measure in M(T), while ν will denote
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a measure in M(R). The norm on both spaces are given by ‖µ‖M(T) = |µ|(T) and
‖ν‖M(R) = |ν|(R).

Recall that if V is a Banach space, then the dual space V ∗ is the set of linear functionals
ψ : V → C which are continuous/bounded. The following theorem is very useful in
multiple ways; the proof can be found in [3].

Theorem 1 (Riesz representation theorem). (1) Any linear functional ψ ∈ (C(T))∗ can
be identified with a unique measure µ ∈ M(T) such that ψ(f) = 1

2π

∫
T f(t) dµ(t). In

addition, ‖ψ‖C(T) = ‖µ‖M(T).

(2) Any linear functional φ ∈ (C0(R))∗ can be identified with a unique measure ν ∈M(R)
such that φ(g) =

∫
R g(x) dν(x). Furthermore, ‖φ‖C(R) = ‖ν‖M(R).

Recall that the Fourier series on T of an integrable function f is given by f̂(n) =∫
T f(t)e−int dt. Trigonometric polynomials are functions of the form P (t) =

∑N
n=−N ane

int.

It can be easily verified that P (t) =
∑N

n=−N P̂ (n)eint. A basic result in Fourier analysis is

that the partial sums
∑N

n=−N f̂(n)eint do not necessarily converge to the function itself.
Nevertheless, we have convergence in a related series. A proof of this statement can be
found in [2].

Lemma 2 (Fejér). For positive integer N , define the Fejér kernel by

FN(x) =
1

N + 1

sin2[(N + 1)x/2]

sin2[x/2]
.

Then for a continuous function f on T, we have the following convolution:

(FN ∗ f)(t) =
N∑

n=−N

(
1− |n|

N + 1

)
f̂(n)eint.

Furthermore, (FN ∗ f)(t) converges uniformly to f as N →∞.

As the convergents in the previous lemma are trigonometric polynomials, any function
can be approximated by trigonometric polynomials. Hence trigonometric polynomials
are dense in C(T).

3 Fourier–Stieltjes Coefficients

Fourier–Stieltjes coefficients are an extension of Fourier coefficients, defined with measures
in M(T):

Definition 3. The Fourier–Stieltjes coefficients of a measure µ ∈M(T) is a function
on Z given by the expression

µ̂(n) =
1

2π

∫
T
e−int dµ(t).
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Note that if we have an integrable function f , we can identify it with a measure dµ =
f(t) dt (dt represents the usual Lebesgue measure). Computing the Fourier–Stieltjes
coefficients gives µ̂(n) = 1

2π

∫
T e
−int dµ = 1

2π

∫
T e
−intf(t) dt = f̂(n), so we really do have

an extension of Fourier coefficients.

For Fourier transforms of functions in L2(R), an important result is Parseval’s formula:∫
R f(x)g(x) dx = 1

2π

∫
R f̂(ξ)ĝ(ξ) dξ. An analogue holds in the context of Fourier–Stieltjes

coefficients in the following sense:

Proposition 4 (Parseval’s Formula). If µ ∈M(T) and f ∈ C(T), then

1

2π

∫
T
f(t)dµ(t) = lim

N→∞

N∑
n=−N

(
1− |n|

N + 1

)
f̂(n)µ̂(n).

Proof. Suppose f is any continuous function. Then by using lemma 2, we can approximate

f uniformly as lim
N→∞

(
1− |n|

N+1

)
f̂(n)eint. As µ is a finite measure, we can exchange the

limit and integral to yield∫
T
f(t)dµ(t) = lim

N→∞

∫
T

N∑
n=−N

[(
1− |n|

N + 1

)
f̂(n)eint

]
dµ(t)

= lim
N→∞

N∑
n=−N

(
1− |n|

N + 1

)
f̂(n)

∫
T
eint dµ(t)

= lim
N→∞

N∑
n=−N

(
1− |n|

N + 1

)
f̂(n)µ̂(n).

We remark that without the
(

1− |n|
N+1

)
factor, the right hand side may not necessarily

converge.

Bochner’s theorem is about trying to determine which sequences are the Fourier–Stieltjes
coefficients of a measure. As a first step, we give a necessary and sufficient condition for
a sequence to the Fourier–Stieltjes coefficients of a measure µ:

Proposition 5. Let {an}∞n=−∞ be a sequence of complex numbers. Then the following
are equivalent:

(a) There exists µ ∈M(T) with ‖µ‖ ≤ C and µ̂(n) = an for all n.

(b) For all trigonometric polynomials P ,
∣∣∣∑ P̂ (n)an

∣∣∣ ≤ C sup
t∈T

P (t).

Proof. (a) =⇒ (b): Given any trigonometric polynomial P , use Parseval’s formula to get∣∣∣∣∣
N∑

n=−N

P̂ (n)an

∣∣∣∣∣ =

∣∣∣∣∫
T
P (t) dµ

∣∣∣∣ ≤ ‖µ‖ sup
t∈T

P (t)

where we used the Riesz representation theorem to show that |µ(f)| ≤ ‖µ‖ · ‖f‖C(T) =
‖µ‖ supt∈T f(x).
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(b) =⇒ (a): The linear map P 7→
∑
P̂ (n)an defines a linear functional on the space

of trigonometric polynomials. As trigonometric polynomials are dense in C(T), we can
extend our linear functional to C(T).

By the Riesz representation theorem our linear functional is of the form f 7→ 1
2π

∫
T f dµ

for a suitable measure µ ∈ M(T) of norm ≤ C. Substituting f = eint into both P 7→∑
P̂ (n)an and f 7→ 1

2π

∫
T f dµ immediately gives µ̂(n) = an or µ̂(n) = an.

Consider a sequence {an}n∈Z which eventually vanishes, i.e. an = 0 when |n| > K. Then
it can be checked that the measure given by dµN :=

∑K
n=−K ane

int dt satisfies µ̂N(n) = an
for all n. This allows us to make sense of the following corollary. The proof involves
algebraic manipulations and Parseval’s formula only, and hence will not be presented
here.

Corollary 6. A sequence {an}n∈Z is the Fourier–Stieltjes coefficients of some µ with
‖µ‖ ≤ C, if, and only if, ‖µN‖M(T) ≤ C for all N . Here, µN is the measure such that

µ̂N(n) = (1− |n|
N+1

)an whenever |n| ≤ N , and zero when |n| > N .

4 Hergoltz’s Theorem

Hergoltz’s theorem is the analogue of Bochner’s theorem on the torus, as in it gives
necessary and sufficient conditions for a sequence to be the Fourier–Stieltjes coefficients
of a positive measure. To prove this, we first need the following lemma:

Lemma 7. A sequence {an}n∈Z is the Fourier–Stieltjes series of a positive measure if,
and only if, for all N and t ∈ T,

σN(t) :=
N∑

n=−N

(
1− |n|

N + 1

)
ane

int ≥ 0.

Proof. First suppose µ̂(n) = an for some positive measure µ ∈ M(T). Let f ∈ C(T) be
an arbitrary non-negative function. Then

1

2π

∫
T
f(t)σN(t) dt =

1

2π

∫
T
f(t)

[
N∑

n=−N

(
1− |n|

N + 1

)
ane

int

]
dt

=
N∑

n=−N

(
1− |n|

N + 1

)
f̂(n)µ̂(n)

=
N∑

n=−N

(
1− |n|

N + 1

)
f̂(n)

∫
T
eint dµ(t)

=

∫
T

(
1− |n|

N + 1

)
f̂(n)eint dµ

=

∫
T
(FN ∗ f)(t) dµ (from lemma 2).
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Now note that the Fejér kernel is non-negative. As f is non-negative, the convolution
(FN ∗ f) is also non-negative. From the positivity of the measure µ, our quantity is
non-negative. As this is true for any non-negative function f , we get that σN(t) ≥ 0.

Now suppose
∑N

n=−N

(
1− |n|

N+1

)
ane

int ≥ 0. As before, denote µN as the measure with

Fourier–Stieltjes coefficients
(

1− |n|
N+1

)
an. Then we want to compute ‖µN‖M(T). By

the Riesz representation theorem we just need to compute the norm of the functional

f 7→ 1
2π

∫
T f dµN . However, from earlier discussion, dµN =

(
1− |n|

N+1

)
an dt. Therefore

‖µN‖M(T) = sup
‖f‖C(T)=1

1

2π

∫
T
f(t) dµN = sup

‖f‖=1

1

2π

∫
T
f(t)σN(t) dt.

As σN(t) is positive, µN is a positive measure and the above quantity is maximised when
f(t) = 1. This means that

‖µN‖M(T) =
1

2π

∫
T

N∑
n=−N

(
1− |n|

N + 1

)
ane

int dt = a0.

This must be true for all N . Therefore, ‖µN‖M(T) are uniformly bounded by a0. By
corollary 6, we can find a µ ∈ M(T) such that µ̂(n) = an for all n. To show that µ is a
positive measure, take an arbitrary non-negative function f . Then∫

T
f dµ = lim

N→∞

∫
T
f dµN ≥ 0

as this convergence comes from taking the limit in Parseval’s formula. Thus µ is positive.

We remark in the above proof that one can replace the condition σN(t) ≥ 0 for all N
with σN(t) ≥ 0 for infinitely many N . The proof remains the same, except that we only
take a subsequence Nj where σNj

(t) ≥ 0.

Definition 8. A sequence {an}n∈Z is positive definite if for all sequences of complex
numbers {zn}n∈Z which have all but a finite number of terms zero, we have∑

n,m∈Z

an−mznzm ≥ 0.

The work from the last few pages can now be combined to prove Herglotz’s theorem:

Theorem 9 (Herglotz). A sequence {an}n∈Z is the Fourier–Stieltjes transform of a pos-
itive measure µ ∈M(T) if, and only if, the sequence is positive definite.

Proof. If µ is a positive measure with µ̂(n) = an, then

∑
n,m∈Z

an−mznzm =
∑
n,m∈Z

∫
e−inteimtznzm dµ =

∫ ∣∣∣∣∣∑
n∈Z

zne
−int

∣∣∣∣∣
2

dµ ≥ 0.
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On the other hand, suppose {an} is positive definite. Fix values t, N . Define numbers

zn =

{
eint, |n| ≤ N

0, else
. By direct substitution, one can verify that

∑
n,m an−mznzm =∑

j Cj,Naje
ijx, where Cj,N = max(0, 2N + 1− |j|). Therefore by positive–definiteness,

σ2N(t) =
2N∑

j=−2N

(
1− |j|

2N + 1

)
aje

ijx =
1

2N + 1

2N∑
j=−2N

Cj,Naje
ijx

=
1

2N + 1

∑
n,m∈Z

an−mznzm ≥ 0.

We proved that σN(t) ≥ 0 for even N . The result then follows from lemma 7.

5 The Fourier–Stieltjes Transform

We define the main object of interest here, the Fourier–Stieltjes transform.

Definition 10. The Fourier–Stieltjes transform of a measure ν ∈ M(R) is a function
on R given by the expression

ν̂(ξ) =

∫
R
e−iξx dν(x).

Like Fourier–Stieltjes coefficients, there is consistency between the definition here, and
the Fourier transform of L1 functions. If g is an integrable function, identify it with a
measure dν = g dx. Hence ν̂(ξ) =

∫
R e
−iξxg(x) dx = ĝ(ξ), which shows consistency in the

transforms.

The Riemann–Lebesgue lemma on the ordinary Fourier transform states that if g ∈ L1(R),
then ĝ(ξ) is uniformly continuous and goes to 0 as |ξ| → ∞. The uniform continuity still
holds for the Fourier–Stieltjes transform, but ν̂(ξ) does not necessarily go to 0. A simple
example is ν = δ0, the measure with mass at 0. It can be easily verified that ν̂(ξ) = 1 for
all ξ.

We can deduce another version of Parseval’s formula in this new context:

Proposition 11 (Parseval’s Formula). If ν ∈M(R) and both g, ĝ are in L1(R), then∫
R
g(x)dν(x) =

1

2π

∫
R
ĝ(ξ)ν̂(−ξ) dξ.

Proof. If both g and ĝ are integrable, then the Fourier inversion formula holds: g(x) =
1
2π

∫
R ĝ(ξ)eiξx dξ. Therefore,∫

R
g(x)dν(x) =

1

2π

∫∫
R
ĝ(ξ)eiξx dν(x) dξ =

1

2π

∫
R
ĝ(ξ)ν̂(−ξ),

where we used the integrability of ĝ(ξ) to justify the usage of Fubini’s theorem.
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The following proposition gives a necessary and sufficient statement for a function to be
the Fourier–Stieltjes transform of a measure, and is the first step to Bochner’s theorem
on R.

Proposition 12. If ϕ is a continuous function defined on R, then it is the Fourier–
Stieltjes transform of a measure if, and only if, there exists a constant C such that∣∣∣∣ 1

2π

∫
R
ĝ(ξ)ϕ(−ξ) dξ

∣∣∣∣ ≤ C sup
x∈R
|g(x)|

for every continuous function g ∈ L1(R) such that ĝ has compact support.

Proof. Firstly, suppose that ϕ = ν̂. Then the statement follows directly from Parseval’s
formula by setting C = ‖ν‖M(R).

On the other hand, suppose our inequality is valid. Then the linear functional ψ which
maps g to 1

2π

∫
R ĝ(ξ)ϕ(−ξ) dξ is a bounded, continuous linear functional on the set of

continuous functions g such that ĝ is compactly supported. This is a dense subset of
C0(R). Therefore we can extend ψ to a bounded functional on C0(R).

By the Riesz representation theorem, ψ can be represented by a measure ν ∈ M(R),
where ‖ν‖M(R) ≤ C. Therefore ψ maps g to

∫
R ĝ(x) dν(x). Using Parseval’s formula

here yields that 1
2π

∫
R ĝ(ξ)ϕ(−ξ) dξ = 1

2π

∫
R ĝ(ξ)ν̂(−ξ) dξ. This must hold for all g, so

ϕ = ν̂.

6 Connection to Fourier–Stieltjes Coefficients

We have a natural covering map p : R→ T sending x to x mod 2π. This can be used to
pushforward a measure ν ∈ M(R) to a measure µ ∈ M(T). If we extend a continuous
function f on T to a 2π-periodic function g on R (which do not necessarily go to zero),
then we get that ∫

R
g(x) dν(x) =

∫
T
f(t) dµ(t).

An immediate consequence is that ν̂(n) = µ̂(n) for all integers n. This allows us to relate
the original problem on R to the problem on T. The following theorem is a key step in
doing this:

Theorem 13. If ϕ is a continuous function defined on R, then it is the Fourier–Stieltjes
transform if, and only if, there exists a constant C > 0 such that for any choice of λ > 0,
{ϕ(λn)}∞n=−∞ are the Fourier–Stieltjes coefficients of a measure of norm ≤ C on T.

Proof. First suppose ϕ = ν̂. Then ϕ(n) = ν̂(n) = µ̂(n), where µ is the pushforward
measure of ν with respect to the covering. Note that ‖µ‖M(T) ≤ ‖ν‖M(R). Denote ν(x/λ)
the measure on R which satisfies the following equation for all g:∫

R
g(x)dν(x

λ
) =

∫
R
g(λx) dν(x).
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We get that ‖ν(x/λ)‖M(R) = ‖ν‖M(R) and ν̂(x/λ)(ξ) = ν̂(ξλ). Setting ξ = n yields that
ϕ(λn) = µ(x/λ)(n), so {ϕ(λn)}n∈Z form the Fourier–Stieltjes coefficients of norm at most
‖ν‖M(R).

To show the converse, we shall use theorem 12. Let g be continuous such that ĝ is contin-
uous and compactly supported. Then by those conditions the integral 1

2π

∫
R ĝ(ξ)ϕ(−ξ) dξ

can be approximated by its Riemann sums (where the width of each rectangle is λ). For
arbitrary ε, choose sufficiently small λ to obtain∣∣∣∣ 1

2π

∫
R
ĝ(ξ)ϕ(−ξ) dξ

∣∣∣∣ <
∣∣∣∣∣ λ2π∑

n

ĝ(λn)ϕ(−λn)

∣∣∣∣∣+ ε.

Note that λ
2π
ĝ(λn) is the Fourier coefficient for the function Gλ(t) =

∑
m∈Z

g((t+ 2πm)/λ)

on T. If λ is sufficiently small, then by the decay of g, we have

sup
t∈T
|Gλ(t)| ≤ sup

x∈R
|g(x)|+ ε.

By assumption, ϕ(λn) = µ̂λ(n) for some µλ ∈M(T), with ‖µλ‖M(T) ≤ C. Then Parseval’s
formula for T gives∣∣∣∣∣ λ2π∑

n

ĝ(λn)ϕ(−λn)

∣∣∣∣∣ =

∣∣∣∣∣∑
n

Ĝλ(n)µ̂λ(−n)

∣∣∣∣∣ ≤ C sup
t∈T
|Gλ(t)|.

Combining all inequalities gives∣∣∣∣∣ λ2π∑
n

ĝ(λn)ϕ(−λn)

∣∣∣∣∣ < C sup
x∈R
|g(x)|+ (C + 1)ε.

As ε > 0 was arbitrary, the condition for proposition 12 is satisfied.

Now here is a necessary and sufficient condition for a function ϕ to be a Fourier–Stieltjes
transform of a positive measure. The proof is very similar to theorem 13, so it will not
be presented here.

Proposition 14. If ϕ is a continuous function defined on R, then it is the Fourier–
Stieltjes transform of a positive measure if, and only if, there exists a constant C > 0
such that for any choice of λ > 0, {ϕ(λn)}∞n=−∞ are the Fourier–Stieltjes coefficients of
a positive measure on T.

7 Bochner’s Theorem

Definition 15. A function ϕ defined on R is positive definite if for all ξ1, . . . , ξN ∈ R
and z1, . . . , zN ∈ C, we have

N∑
j,k=1

ϕ(ξj − ξk)zjzk ≥ 0.
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Finally, we have the machinery to prove the main subject of this paper.

Theorem 16. A function ϕ defined on R is the Fourier–Stieltjes transform of a positive
measure if, and only if, it is continuous and positive definite.

Proof. First assume that ϕ = ν̂ for a positive measure ν ∈ M(R). Given numbers
ξ1, . . . ξN ∈ R and z1, . . . zN ∈ C, we get

N∑
j,k=1

ϕ(ξj − ξk)zjzk =

∫
R

N∑
j,k=1

e−iξjxzje
−iξkxzk dν(x)

=

∫
R

∣∣∣∣∣
N∑
j=1

zje
−iξjx

∣∣∣∣∣
2

dν(x) ≥ 0.

For the other direction, if ϕ is positive definite, then by definition, {ϕ(λn)} is a positive
definite sequence for all λ. Herglotz’s theorem guarantees a measure µλ, such that µ̂λ(n) =
ϕ(λn). By proposition 14, there must exist ν such that ν̂ = ϕ.
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