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Lecture 28: Sturm-Liouville Boundary Value Problems

(Compiled 22 November 2018)

In this lecture we abstract the eigenvalue problems that we have found so useful thus far for solving the PDEs to a
general class of boundary value problems that share a common set of properties. The so-called Sturm-Liouville Problems
define a class of eigenvalue problems, which include many of the previous problems as special cases. The S — L Problem
helps to identify those assumptions that are needed to define an eigenvalue problems with the properties that we require.

Key Concepts: Eigenvalue Problems, Sturm-Liouville Boundary Value Problems; Robin Boundary conditions.

Reference Section: Boyce and Di Prima Section 11.1 and 11.2

28 Boundary value problems and Sturm-Liouville theory:

28.1 Eigenvalue problem summary

o We have seen how useful eigenfunctions are in the solution of various PDEs.
e The eigenvalue problems we have encountered thus far have been relatively simple
I: The Dirichlet Problem:

X"+ XX =0 =", n=12...
—— .
X(0)=0=X(L) S
II: The Neumann Problem:

X"+ XX =0 An=",n=0,1,2,...
X'(0)=0=X'(L) Xy () = cos (272)
III: The Periodic Boundary Value Problem:

X"+ XX =0 nx
X(iL) =0= X(L) = { Lo nwT : nwT
X/(—L) = 0= X'(L) X, (x) € {1,cos (“F2) ,sin (272) }
IV: Mixed Boundary Value Problem A:

A= 1 =0,1,2,...

X//+A2X:O )\k:W7k:071527"'
)

X(0)=0=X'(L X, (2) = sin (<2’““>”x)

2L
V: Mixed Boundary Value Problem B:

X"+ XX =0 A= BET k= 0,12,
X'(0) = 0= X(L) Xo(w) = cos (25077)



28.2 The regular Sturm-Liouville problem:

Consider the the following two-point boundary value problem

N/

(n(

)y r)y+Ar(z)y=0 0<z</{
a1y(0)

) -
+ ay (0) =0 Biy(0) +B2y'(6) =0 (28.1)

where p, p’, ¢ and r are continuous on 0 < x < ¢ and p(z) > 0 and r(z) >0on 0 <z < /L.

We define the Sturm-Liouville eigenvalue problem as:

Ly=Xry where Ly=—(py') +qy
a1y(0) + a2y’ (0) =0 and Bry(f) + B2y’ (£) =0 SL (28.2)
p(z) > 0 and r(z) > 0.

Remark 1 Note:

(1)

Iftp=1,¢g=0,r=1, 01 =1, ap =0, 4 =1, B2 = 0 we obtain Problem (I) above whereas if p = 1,
g=0,r=1, a1 =0, a0 =1, 81 =0, B2 = 1, we obtain Problem (II) above. Notice that the boundary
conditions for these two problems are specified at separate points and are called separated BC. The periodic
BC X(0) = X(2m) are not separated so that Problem (III) is not technically a SL Problem.

If p>0and r >0 and £ < oo then the SL Problem is said to be regular. If p(z) or r(z) is zero for some z or
the domain is [0, 00) then the problem is singular.
There is no loss of generality in the so-called self-adjoint form Ly = —(py’)’ + qy since it is possible to convert

a general 2nd order eigenvalue problem
—P(2)y" — Qx)y' + R(z)y = Ny (28.3)
to self-adjoint form by multiplying by a suitable integrating factor pu(z)
—p@)P(x)y” — pQ(x)y" + p(x)R(z)y = Au(z)y (28.4)
but expanding the differential operator we obtain
Ly =—py" —p'y +ay = Ary. (28.5)

Thus comparing (28.5) and (28.4) we can make the following identifications: p = pP and p’ = p@ = p’ =
/

P
@' P+ pP’ = p@ which is a linear 1st order ODE for p with integrating factor exp( B %dm)
P’ Q " Q ! ej P dw
/ - _ — P 7‘] 7 de :| —_ = N 2 .
,u—|—<P P),u O:>[e Pty 0 =|u Iz (28.6)
Example 28.1 Reducing a boundary value problem to SL form:
¢ +ad +Ap=0 (28.7)

6(0) = 0 = ¢(1) (28.8)
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We bring (28.7) into SL form by multiplying by the integrating factor

1
= Fef%dw =efwdr — ¢o*/2 P(z)=1, Q(z)=wz, R(x)=1.
em2/2¢//+€r2/2x¢/+/\er2/2¢20

2 N\ 270 (28.9)
(e 29) = e
pa)=e" 2 p(a) = e/
Example 28.2 Conwvert the equation —y" + z*y’ = \y to SL form
P=1, Q=—a p=e Jo'de — 2"/ (28.10)
Therefore — 6715/53/" + 67I5/5x4y' = e /5 (28.11)
—(e*w5/5y/)/ = Xe " /By, (28.12)

28.3 Properties of SL Problems

(1) Eigenvalues:

(a) The eigenvalues A are all real.

(b) There are an co # of eigenvalues A\; with Ay < Ay < ... < \; = 00 as j — oc.

(c) A; > 0 provided Mo 0, b >0 g(z) > 0.
Q2 B2

(2) Eigenfunctions: For each \; there is an eigenfunction ¢;(z) that is unique up to a multiplicative const. and

which satisfy:

¢
(a) ¢;(x) are real and can be normalized so that /T(m)¢2(x) dx = 1.

J
0

(b) The eigenfunctions corresponding to different eigenvalues are orthogonal with respect to the weight func-

tion r(x):
¢
/r(x)¢j(m)¢k(x) dr =0 j#k. (28.13)
0

(c) ¢;(z) has exactly j — 1 zeros on (0, ).

(3) Expansion Property: {¢;(x)} are complete if f(z) is piecewise smooth then

fl@) = X cndn(x)

[ (@)1 (@)én(c) do (28.14)
where en = +————
gr(m)¢%(r) dx
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Example 28.3 Robin Boundary Conditions:
X"+ XX =0, A= pu?

X1(0) = i X(0), X'(0) = ~haX (1) (28.15)
where hy > 0 and hy > 0.
X(z) = Acos pux + Bsin ux (28.16)
X'(x) = —Apsin px + By cos ux (28.17)
BC 2: X'(¢) = —Apsin(ul) + Bucos(ul) = —ha X (€) = —ha[A cos pl + B sin pf]
2
= B {—g sin(pf) + ucos(;w)} = —Bhy [: cos pf + sin ;LE] (28.18)
1 1
2 h
% . 2
B——+he|sinpl+ (p+-—p)cosuly =0. (28.19)
ha hq
Therefore
p(hy + ho)
t =|—= . 28.2
an(ul) Lﬂ —— (28.20)

Case I: h; and hy #0

X, = ‘;l—’; COS L@ + sin ppx, and p, ~ nw/l as n — 0o

Case II: h; #0 and hy =0

X, = % COS [T + SiN iy (28.21)
1
:cosun(ﬁ—m) (28.22)
sin g, ¢ '

tan(u ) & (u(h,+h, (H*=h;h,)

tan(u ) & (u(h,+h,)/*~h,n,)

Case I hl and h2 nonzero

Case Il h1 nonzero and and h2:0
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Case III: h; 00 hy #0

Case llI: h1—>oo and h2 nonzero

tan(u ) & (u(h, +h,)/(*~h,n,)

X, = sin(pupx) (28.23)
2 1
unw[( n2+ )Z] n=0,1,2,... asn — oo (28.24)

28.4 Appendix: Some proofs for Sturm-Liouville Theory

28.4.1 Lagrange’s Identity:
¢

/(U.Cu —ulv)dr = —p(a?)u’v|g + p(:r:)uv’|f;.

0
Proof: Let u and v be any sufficiently differentiable functions, then
‘ ‘
/vﬁu dx = /v {—(pu’)/ + qu} dz
0 0
I ¢
o e I
= —vpu \O—i-/upv dx—i—/uqux
0 0
u {—(pv’)' + qv} dx

= —opu'[o + upv']y +

ulvdx. O

S O~

¢
Therefore /vﬁu dr = —pvu’\é + puv'|€ +
0

Now suppose that u and v both satisfy the SL boundary conditions. L.E.

aqu(0) + azu/(0) = 0 Bru(l) + fou’'(£) = 0
a1v(0) + a0’ (0) = 0 Brv(l) + Bav'(£) = 0

then

= p({) {—&-g:u(f)v(f) + u() (—'B;U(E))}
#910) {= 200000 - w0) (- 22010 |

¢ ¢
Thus / vLudx = / wlv dx whenever v and v satisfy the SL boundary condition.
0 0

(28.25)

(28.26)

(28.27)

(28.28)

(28.29)

(28.30)

(28.31)

(28.32)

(28.33)
(28.34)
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Observations:

¢
e If £ and BC are such that /vﬁu dx = /uﬁv dx then L is said to be self-adjoint.
0 0

¢
e Notation: if we define (f,g) = /f(x)g(w) dx then we may write (v, Lv) = (u, Lv).
0

28.4.2 Proofs using Lagrange’s Identity:

(1a) The A, are real: Let Ly = Ary (1) ayy(0) + a2y’ (0) = 0 Biy(€) + B2y’ (¢) = 0. Take the conjugate of (1)
L = Mrjj. By Lagrange’s Identity:

0=(y,Ly) — (y,LY) (28.35)
= (9, 7\y) — (y,77) (28.36)
4 4
= /gj(m)r)\y(x) dx—/y(x)r(x);\g(x) dx (28.37)
0 . 0
— 0= [r@ly) do (25.38)
0

Since 7 (x)|y(z)|> > 0 it follows that A = A = X is real.
(1c) A; > 0 provided a;1/a < 0 B1/B2 > 0 and ¢(z) > 0. Consider Ly = —(py’)’ + qy = Ary (SL) and multiply
(SL) by y and integrate from 0 to ¢:

L L
(y, Ly) = /—(py’)’y +qy?de = A/r(x) [y(@)]” do (28.39)

¢
[=y)'y + qy® da
Therefore A = 2

; this is known as Rayleigh’s Quotient.
[ ry?dx
0
‘
[=py'yl6 + [ p(y')* + qy® da
= (28.40)

= 0 . (28.41)

Therefore A > 0 since the RHS is all positive.
Note: If g(z) = 0 and @3 = 0 = S; then with 3/(0) = 0 = y'(¢) we have nontrivial eigenfunction y(z) = 1 and

eigenvalue A = 0.
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(2b) Eigenfunctions corresponding to different eigenvalues are orthogonal. Consider two distinct eigen-
values A\j # A Aj 1 Lo = rAj¢; and Ay : Lo = rAgdy. Then

0= (¢r, Lb;) — (¢j,Lor) by Lagrange’s Identity (28.42)
= (k:rAjd5) — (D5, 7 Akdr) (28.43)

0
= O = M) [ r@)nla)es(e) da (25.44)

now Aj # A implies that O

¢
/T(x)qbk(m)(bj(x) dx = 0. (28.45)
0

(3) The eigenfunctions form a complete set: It is difficult to prove the convergence of the eigenfunction series

expansion for f(x) that is piecewise smooth. However, if we assume the expansion converges then it is a simple

o0
matter to use orthogonality to determine the coefficients in the expansion: Let f(z) = Z Cndn(T).
n=1

14

f oo
[ 1@én@ria)ds =" en [ r@)om(@én(o) ds (28.46)
0

n=1 0
orthogonality implies
¢
Jr(@) f(@)dm(z) da
Cm =25 : (28.47)
[ (@) [om(@)]" da




