

ГЕЛРГIOГ МПАМПINI Ω THГ

That a linguist should be familiar with language teaching problems as well as that a language teacher should be aware of fundamental linguistic concepts, procedures of analysis and problem solving is the starting point for the author of this paper. Main objectives of teaching the mother tongue are examined. These lead, it is asserted, to a text oriented (users-uses) approach of teaching to be combined with the Functional Grammar that takes into consideration morphological structures of Modern Greek in regard to their functions. Each objective is further examined according to the reality of teaching Modern Greek in school (books, methods, etc.). Striking desiderata are pointed out and suggestions are made as to possible solutions, including a proper FunctionalCommunicative Grammar of Modern Greek.

[^0]

 vı $\sigma \mu$ oí! Avtó, $\varphi \cup \sigma \iota \kappa \alpha ́, ~ \delta \varepsilon v ~ \sigma \eta \mu \alpha i ́ v \varepsilon ı ~-~ \sigma \pi \varepsilon v ́ \delta \omega ~ v \alpha ~ \delta ı \alpha \sigma \alpha \varphi \eta ́ \sigma \omega-\pi \omega \varsigma ~ \delta \varepsilon v ~ \mu \pi о \rho \varepsilon i ́ ~ к \alpha v \varepsilon i ́ \varsigma ~$

 єилєıрькळ́v єчариоүळ́v.

 $\varepsilon \cup \rho ט ́ ~ к \alpha ı ~ \pi о \lambda ט ́, \pi \alpha ́ \rho \alpha ~ \pi о \lambda ט ́, ~ \sigma \eta \mu \alpha \nu \tau ı к o ́ ~ \gamma ı \alpha ~ o ́ \lambda о v \varsigma . ~ \Sigma \tau \alpha ́ \theta \eta \kappa \alpha ~ \varepsilon \delta \omega ́ ~ \sigma \tau о ~ \gamma \lambda \omega \sigma \sigma о \lambda o ́ \gamma o ~ \gamma ı \alpha$

 $\mu \alpha \varsigma$.

 $\alpha \gamma \gamma \lambda \iota \kappa \eta \prime \gamma \lambda \omega \sigma \sigma \sigma \alpha \eta \gamma \rho \alpha \mu \mu \alpha \tau \kappa \eta \dot{\tau} \tau \omega v$ Quirk－Greenbaum－Leech－Svartvik（1985）«A grammar of contemporary English»（London：Longman）$\kappa \alpha \imath \eta$ $\varepsilon \pi \imath \tau о \mu \eta \eta^{\tau} \eta \varsigma \gamma 1 \alpha \sigma \pi \circ \cup-$

 «Communicative grammar of English language» $\tau \omega v$ Leech－Svartvik（Longman，
 Sinclair «English Grammar»（ $\tau 00$ 1990），$\gamma \vee \omega \sigma \tau$ ó $\kappa \alpha \iota 1 \omega \varsigma$ «Collins－English Grammer» ท́， кирí $\omega \varsigma$ ，$\omega \varsigma$ «COBUILD Grammar» ${ }^{4}$ ．H $\gamma \rho \alpha \mu \mu \alpha \tau \iota ท \mathfrak{~ C o l l i n s ~ - ~ B i r m i n g h a m ~ U n i v e r s i t y ~}$

 $\lambda . \chi$ ．ol $\delta \alpha \dot{\varphi} \varphi \rho \rho \varepsilon \varsigma ~ \gamma \varepsilon v \varepsilon \tau \iota \kappa \varepsilon ́ \varsigma ~ \theta \varepsilon \omega \rho i ́ \varepsilon \varsigma ~ \tau \eta \varsigma ~ \sigma u v \tau \alpha ́ \xi \varepsilon \omega \varsigma \alpha \pi o ́ ~ \tau \eta \nu$ Government and Binding （GB）каı $\tau \nu$ Geıeralized Phrase Structure Grammar（GPSG）$\mu \varepsilon ́ \chi \rho \imath \tau \eta \nu$ Lexical Func－

 if．W．Dressler－Siegfried J．Schmidt，Textilinguistik．Kommentierte Bibliographie（München： W．Fink 1973）．
3．Sidney Greenbaum－Randolph Quirk，A student＇s grammar of the English language（London： Longman 1990）．
4．To COBUILD عívaı，$\sigma \tau \eta \nu \pi \rho \alpha \gamma \mu \alpha \tau \iota \kappa$ ó $\tau \tau \alpha, \alpha \rho \kappa \tau \iota \kappa o ́ \lambda \varepsilon \xi$ o（CO．B．U．I．L．D．）$\alpha \pi$ ó 七o Collins Birmingham University International Language Database．
5．$\Sigma \tau \eta \nu$ í $\delta \iota \alpha \sigma \iota \rho \alpha ́ \alpha(C O B U I L D), \mu \varepsilon \varepsilon \pi \imath \sigma \tau \eta \mu \circ v \iota \kappa o ́ v \pi \varepsilon v ́ \theta v v o / \varepsilon \kappa \delta o ́ \tau \eta$（editor）$\pi \alpha ́ v \tau o \tau \varepsilon \tau o v$ John Sinclair，غ́ χ оuv モкסо日とí «A student＇s grammar»（1991），«English usage»（1992）（ $\alpha \lambda \varphi \alpha \beta \eta \tau \iota \kappa \omega ́ \varsigma$

tional Grammar (LFG), $\tau \eta \nu$ Relational Grammar (RG) $\kappa \alpha \iota \tau \eta \nu$ Head - driven Phrase

 $\delta 1 \delta \alpha \sigma \kappa о \mu \varepsilon ́ v o \cup \varsigma$ о́бо каı $\gamma \downarrow \alpha \delta_{t} \delta \dot{\sigma} \sigma \kappa о \nu \tau \varepsilon \varsigma$.

 $\sigma \tau \eta \nu \mathrm{E} \lambda \lambda \dot{\alpha} \delta \alpha . \Sigma \varepsilon \gamma \lambda \omega \dot{\omega} \sigma \varepsilon \varsigma \delta \varepsilon \mu \varepsilon \mu \varepsilon \gamma \dot{\alpha} \lambda \eta \pi \alpha \rho \alpha \dot{\delta} \circ \sigma \eta \eta \dot{\eta} \mu \varepsilon « \gamma \lambda \omega \sigma \sigma \iota \kappa \alpha ́ \zeta \eta \tau \eta \dot{\mu} \alpha \tau \alpha »$ ó $\pi \omega \varsigma \eta$

6. Пß. $\lambda . \chi$. J. McCloskey, Syntactic theory, $\sigma .18-59$ бтov Fr. Newmeyer (ed.) Linguistics: The Cambridge survey. Vol. I. Linguistic theory: Foundations (Cambridge: Univ. Press 1988).
7. Пß. Г. М $\pi \alpha \mu \pi \iota \nu \iota \omega ́ \tau \eta, ~ \Theta \varepsilon \omega \rho \eta \tau \iota \kappa \eta ́ ~ Г \lambda \omega \sigma \sigma о \lambda о \gamma i ́ \alpha, ~ \sigma .147-9$ ($А \theta \eta \dot{v \alpha}$ 1980).

 $\theta \eta \kappa \varepsilon \alpha v \varepsilon \pi \alpha \rho \kappa \eta ́ \varsigma \kappa \alpha ı \lambda \alpha v \theta \alpha \sigma \mu \varepsilon ́ v \eta$.

 $\pi \alpha ́ \mu \varepsilon \alpha \pi o ́ ~ \tau \eta \nu ~ к а \tau \alpha ́ \kappa \tau \eta \sigma \eta ~(l a n g u a g e ~ a c q u i s i t i o n) ~ \sigma \tau \eta v ~ \varepsilon \kappa \mu a ́ \theta \eta \sigma \eta ~(l a n g u a g e ~ l e a r n i n g), ~$

 $\chi ı \sigma \tau 0 v \sigma \tau \alpha \alpha \rho \chi ⿺ \kappa \alpha ́ \sigma \tau \alpha \dot{\delta} \iota \alpha$

 $\mu \varepsilon ́ \sigma \alpha \alpha \pi o ́ ~ \tau \eta ~ \chi \rho \eta ं \sigma \eta, \alpha \dot{\alpha} \rho \chi 1 \sigma \varepsilon \alpha \pi o ́ ~ к \alpha ı \rho o ́ ~ v \alpha ~ \alpha v \alpha \theta \varepsilon \omega \rho \varepsilon i ́ \tau \alpha 1 . ~ E \tau \sigma ı ~ \alpha ́ \rho \chi ı \sigma \varepsilon ~ v \alpha ~ \pi \alpha i ́ \rho v \varepsilon ı ~$

 $\pi \alpha \rho \alpha \mu \varepsilon \lambda \eta \theta \varepsilon i ́$. E $\rho \gamma \alpha$, ó $\pi \omega \varsigma \varsigma \nu \tau \alpha ́ ~ \pi o v ~ \alpha v \alpha \varphi \varepsilon ́ \rho \alpha \mu \varepsilon ~(\tau \omega v$ Quirk - Greenbaum к. α. $\tau \omega v$ Leech - Svartvik $\kappa \alpha ı, 1 \delta i \omega \varsigma, \eta$ COBUILD Grammar tov Sinclair), $\sigma \cup \mu \beta \dot{\alpha} \lambda \lambda о \cup v \alpha \kappa \rho \iota \beta \dot{\omega} \varsigma$

 $\kappa \eta ̆ \varsigma \omega \varsigma \pi \rho \omega ́ \tau \eta \varsigma ~ \kappa \alpha \imath \omega \varsigma ~ \delta \varepsilon u ́ \tau \varepsilon \rho \eta \varsigma ~ \gamma \lambda \omega ́ \sigma \sigma \alpha \varsigma$.

 $\mu \pi$ о оои́v va $\sigma v v o \psi ı \sigma \theta o v ́ v ~ \omega \varsigma ~ \varepsilon \xi \eta ́ \varsigma: ~$

A. H $\delta \iota \delta \alpha \sigma \kappa \alpha \lambda i ́ \alpha ~ \tau \eta \varsigma ~ E \lambda \lambda \eta \nu ı к \eta ́ \varsigma ~ \sigma \eta ́ \mu \varepsilon \rho \alpha ~ \sigma \tau \eta \nu ~ E \lambda \lambda \alpha ́ \delta \alpha \alpha-\Gamma \lambda \omega \sigma \sigma о \lambda о \gamma ı к \eta ́ ~$

 $\varepsilon \vee \omega ́ ~ \varphi \alpha i ́ v \varepsilon \tau \alpha ı ~ v \alpha ~ \pi \rho о \eta \gamma \varepsilon i ́ \tau \alpha ı ~ к ı ~ \alpha \pi o ́ ~ о \rho ı \sigma \mu \varepsilon ́ v \varepsilon \varsigma ~ \alpha ́ \lambda \lambda \lambda \varepsilon \varsigma . ~ Т а ~ \beta ı \beta \lambda i ́ \alpha ~ \delta ı \delta \alpha \sigma \kappa \alpha \lambda i \alpha \varsigma ~ \tau \eta \varsigma ~$

 $\kappa \alpha v o ́ v \omega v ~ \kappa \alpha ı ~ \gamma \varepsilon v ı \kappa \alpha ́ ~ \eta ~ \alpha \pi \lambda \eta ́ ~ \varphi о \rho \mu \alpha \lambda ı \sigma \tau ı к \eta ́ ~ \pi \rho о \sigma \varepsilon ́ \gamma \gamma ı \sigma \eta ~ \alpha v \eta ́ \kappa \varepsilon ı ~ \pi ı \alpha ~ \sigma \tau о ~ \pi \alpha \rho \varepsilon \lambda \theta o ́ v$,

A π^{\prime} ó $\lambda \alpha \alpha v \tau \alpha ́ ~ \kappa \alpha ı ~ \sigma ט ́ \mu \varphi \omega v \alpha \mu \varepsilon \tau \alpha ~ \imath \sigma \chi v ́ o v \tau \alpha ~ \sigma \eta ́ \mu \varepsilon \rho \alpha ~ \sigma \tau \eta ~ \delta ı \delta \alpha \sigma \kappa \alpha \lambda i ́ \alpha ~ \tau \eta \varsigma ~ \gamma \lambda \omega ́ \sigma \sigma \alpha \varsigma, ~$

[^1]

 тоט $\gamma \gamma \eta{ }^{\circ} \sigma \varepsilon \iota ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \iota \kappa \alpha ́$.
 $\pi о \cup$ عival корíwऽ $\tau \rho \varepsilon \iota \varsigma$:

 $\mu \varepsilon \rho \omega ́ \varsigma ~ \chi \rho \eta \sigma \tau \mu о \pi о \iota \varepsilon i ́ ~ \eta ́ \delta \eta ~ \tau о ~ \pi а ı \delta i ́, ~ a \rho \chi i \zeta о \nu \tau а \varsigma ~ \tau \eta ~ \sigma \chi о \lambda ı \kappa \eta ́ ~ \varphi о i ́ \tau \eta \sigma \eta$.

 $\kappa \alpha \iota \tau \omega v \tau \rho \iota \omega v$ бтó $\chi \omega v$.

[^2]

 $\kappa \omega ́ v \chi \alpha \rho \alpha \kappa \tau \eta \rho ı \sigma \tau \iota \kappa \omega ́ v \kappa \alpha \iota \mu \eta \chi \alpha v ı \sigma \mu \omega \dot{v} \tau \eta \varsigma \gamma \lambda \omega \dot{\sigma} \sigma \alpha \varsigma$.

 $\sigma \tau \eta v i \delta \alpha \alpha$ $\tau 0 \cup \tau \eta v$ ט́ $\tau \alpha \rho \xi \eta$.

 $\beta \alpha \theta \mu o ́ ~ \tau \eta \nu \pi \rho o ́ \sigma \lambda \eta \psi \eta$ $\varepsilon v o ́ s ~ к \varepsilon \mu \mu \varepsilon ́ v o v, ~ \delta \varepsilon v ~ \varepsilon i ́ v \alpha ı ~ \pi \alpha \rho \alpha ́ ~ \eta ~ \sigma v \sigma \sigma \omega \rho \varepsilon \cup \mu \varepsilon ́ v \eta ~ \gamma \lambda \omega \sigma \sigma ı \kappa \eta ́ ~$

[^3]

 $\lambda \varepsilon \xi ı \lambda o \gamma i ́ o v \tau \omega v \mu \alpha \theta \eta \tau \omega ́ v \sigma \tau \circ$ Г $\nu \mu \nu \alpha ́ \sigma \iota o$.

 $\mu \varepsilon \varepsilon v \varepsilon \rho \gamma \eta \tau \iota \kappa o ́ \eta$ ŋ́ $\pi \alpha \theta \eta \tau \iota \kappa o ́ \rho \eta \dot{\mu} \mu, \delta \varepsilon v \pi \rho \varepsilon ́ \pi \varepsilon \imath v \alpha \pi \varepsilon \rho \alpha ́ \sigma \varepsilon \imath \alpha \sigma \chi \circ \lambda i ́ \alpha \sigma \tau \eta \sigma \varepsilon \mu \imath \alpha \varepsilon \pi \iota \kappa о \imath v \omega-$

 $\pi о \lambda \nu \varepsilon \pi i ́ \pi \varepsilon \delta \eta \quad \alpha v \tau \mu \mu \tau \dot{\omega} \pi \iota \sigma \eta$ т $\tau \varsigma$.

 $\sigma \tau \eta v \kappa \alpha \tau \alpha ́ \chi \rho \eta \sigma \dot{\eta} \tau \eta \varsigma(\delta \eta \mu \alpha \gamma \omega \gamma i \alpha)$. Oı $\pi \alpha \lambda \alpha \iota \circ$ о́ $\sigma о \varphi \iota \sigma \tau \varepsilon ́ \varsigma \kappa \alpha \iota-\tau \eta \rho о \nu \mu \varepsilon ́ v \omega v, \beta \varepsilon \beta \alpha i \omega \varsigma$

 $\mu ı \rho о \delta о \mu \eta ́ ~ \sigma \tau \eta \mu \alpha \kappa \rho о \delta о \mu \eta ́, \alpha \pi о ́ ~ \tau \eta \nu \pi \rho o ́ \tau \alpha \sigma \eta ~ \sigma \tau о ~ к \varepsilon i ́ \mu \varepsilon v o ~ \beta \alpha ́ \sigma \varepsilon ı ~ \tau \eta \varsigma ~ a \rho \chi \eta ́ \varsigma ~ \tau \eta \varsigma ~ \sigma v \nu \theta \varepsilon-$

 sis» (1950) ${ }^{17}$, о́ $\pi о \cup \pi \rho \omega \tau о \chi \rho \eta \sigma \iota \mu о \pi о є \varepsilon і \tau \alpha \iota ~ к \alpha ı ~ \eta \pi \varepsilon \rho i \varphi \eta \mu \eta ~ \alpha \rho \gamma о ́ \tau \varepsilon \rho \alpha ~(\mu \varepsilon \alpha ́ \lambda \lambda о \beta \varepsilon \beta \alpha i \omega \varsigma$

 $\tau \circ \mathrm{N} . \mathrm{M} \eta \dot{\tau} \tau \boldsymbol{\eta}$.
15. Пß. Г. М $\pi \alpha \mu \pi \imath v \iota \omega ́ \tau \eta, ~ Г \lambda \omega \sigma \sigma o \lambda o \gamma i ́ a ~ к а ı ~ \Lambda o \gamma о \tau \varepsilon \chi v i ́ a, ~ \sigma . ~ 185 ~ к . \varepsilon \xi . ~ к \alpha ı ~ 247 \kappa . ~ \varepsilon \xi . ~$
16. B λ. J. Lyons, Language meaning and context, $\sigma .144 \kappa . \varepsilon \xi$. (London: Fontana 1981).
 Г $\lambda \omega \sigma \sigma$ одоүía каı ムоүотєұvía, б. 26.
18. Пß. Г. М $\pi \alpha \mu \pi \imath \nu і \dot{\tau} \tau \eta, \dot{\varepsilon} . \alpha ., \sigma .305 \kappa . \varepsilon \xi$.

 $\gamma 1 \alpha \pi 10$ оибı $\alpha \sigma \tau \iota \kappa \varepsilon ́ \varsigma \pi \rho о \sigma \varepsilon \gamma \gamma i \sigma \varepsilon \iota \varsigma$.

E $\delta \dot{\omega} \theta \alpha \mu \pi$ орои́ $\sigma \varepsilon$ к $\alpha v \varepsilon i \varsigma ~ i ́ \sigma \omega \varsigma ~ v \alpha ~ \pi \alpha \rho \alpha \tau \eta \rho \eta ́ \sigma \varepsilon ı ~ o ́ \tau ı ~ \tau о ~ \zeta \eta \tau о u ́ \mu \varepsilon v o ~ \varepsilon i ́ v \alpha ı ~ \eta ~ \alpha u ́ \xi \eta \sigma \eta ~$

 $\lambda ט ́ \tau \varepsilon \rho \alpha \alpha \pi о \tau \varepsilon \lambda \varepsilon \dot{\varepsilon} \sigma \alpha \tau \alpha$.

 $\chi \alpha \rho \alpha \kappa \tau \eta \rho ı \sigma \tau ı \kappa \alpha ́$ о к $\alpha \theta \varepsilon ́ v \alpha \varsigma, \pi$,

В. $\mathrm{H} \boldsymbol{\alpha} \omega \boldsymbol{\gamma} \eta \dot{\eta} \tau \eta \varsigma \Gamma \lambda \omega \sigma \sigma о \lambda 0 \gamma i ́ \alpha \varsigma-П \rho о о \pi \tau \iota \kappa \varepsilon ́ \varsigma$

 $\tau \omega v \pi \rho \circ \beta \lambda \eta \mu \alpha ́ \tau \omega \nu \pi \circ \nu \theta i \xi \alpha \mu \varepsilon \sigma \varepsilon \sigma \chi \varepsilon ́ \sigma \eta \mu \varepsilon \tau \eta \nu \varepsilon \pi i \tau \varepsilon \cup \xi \eta \eta \tau \omega v \beta \alpha \sigma \iota \kappa \omega ́ v \sigma \tau o ́ \chi \omega v \delta \iota \delta \alpha-$

 tov Mackridge к. $\dot{\alpha}$.

 tov Martinet.

 $\sigma \tau \eta \rho i \zeta \omega$ ó $\tau \imath \eta \gamma \lambda \omega ́ \sigma \sigma \alpha$ عivaı $\mu \varepsilon v \mu \varepsilon ́ \sigma o, \mu \varepsilon ́ \sigma o ~ \varepsilon \pi ı \kappa o \imath v \omega v i ́ \alpha \varsigma, ~ \alpha \lambda \lambda \alpha ́ ~ \delta \varepsilon v ~ \pi \alpha ט ́ \varepsilon ı ~ v \alpha ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~$

 $\varepsilon \pi \imath \kappa o \imath v \omega v ı \alpha \kappa \eta ́ s ~ \gamma \rho \alpha \mu \mu \alpha \tau ı \kappa \eta ́ s ~ \theta \alpha ~ \varepsilon \pi \imath \tau v \gamma \chi \alpha ́ v \varepsilon \tau \alpha \iota ~ \sigma v \sigma \tau \eta \mu \alpha \tau \iota \kappa \alpha ́, \mu \varepsilon \varepsilon \pi \imath \lambda \varepsilon \gamma \mu \varepsilon ́ v \eta ~ \sigma \varepsilon \imath \rho \alpha ́$

 $\pi \alpha \rho \alpha ́ ~ v \alpha$ вívaı ка $\rho \pi$ ós $\sigma \nu \lambda \lambda о \gamma ı \kappa \eta ́ \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i a \varsigma ~ \pi \varepsilon \rho \iota \sigma \sigma о \tau \varepsilon ́ \rho \omega v ~ \gamma \lambda \omega \sigma \sigma о \lambda o ́ \gamma \omega v, ~ \kappa \alpha \tau \alpha ́ \lambda \lambda \eta \lambda \alpha$ $\pi \rho о \sigma \alpha v \alpha \tau о \lambda 1 \sigma \mu \varepsilon ́ v \omega v$.

20. J. Sinclair (ed.), English grammar, σ. V (Collins COBUILD, 1990): «Peopie who study and use a language are mainly interested in how they can do things with the language -how they can make meanings, get attention to their problems and interests, influence their friends and colleagues and create a rich social life for themselves. They are only interested in the grammatical structure of the language as a means to getting things done. A grammar which puts together the patterns of the language and the things you can do with them is called a functional grammar».
21. Sto $\theta \varepsilon ́ \mu \alpha \alpha \nu \tau о ́ \alpha v \alpha \varphi \varepsilon ́ \rho \varepsilon \tau \alpha \iota ~ \tau о ~ \beta ı \beta \lambda i ́ o ~ \mu о v ~ « H ~ \gamma \lambda \omega ́ \sigma \sigma a ~ \omega \varsigma ~ a \xi ̌ i a » ~(A \theta \eta ́ v \alpha: ~ E \kappa \delta . ~ G u t e n b e r g ~ 1993) . ~$.

 yias

 $\kappa \alpha \iota ~ \varepsilon ı \kappa o ́ v \varepsilon \varsigma ~(\alpha \kappa o ́ \mu \eta ~ \kappa \alpha ı ~ к ı v o u ́ \mu \varepsilon v \varepsilon \varsigma) ~ \pi o v ~ \varepsilon i ́ v \alpha ı ~ \gamma v \omega \sigma \tau o ́ ~ \pi o ́ \sigma o ~ \mu \pi о \rho o u ́ v ~ v \alpha ~ \beta o \eta \theta \eta ́ \sigma o u v ~$

 $\kappa \lambda \eta \sigma \eta, \alpha \lambda \lambda \alpha \dot{\alpha} \pi \rho o ́ \sigma-\kappa \lambda \eta \sigma \eta \kappa \alpha 1 \varepsilon ́ \kappa-\kappa \lambda \eta \sigma \eta \pi \rho \circ \varsigma \tau 0 \cup \varsigma \gamma \lambda \omega \sigma \sigma о \lambda o ́ \gamma o \cup \varsigma$. E $\lambda \pi i \zeta \omega \eta \alpha v \alpha \pi \tau \tau-$

Г. Мпаилıvı́́тクऽ
Паvєлıбти́цıo AӨทขळ́v

[^0]:

 4, 39-46• γ) 1988: Problèmes d' enseignement de la langue maternelle: Le cas du grec. Σ to Journée d'études (Paris), no 12, $0.77-96 \cdot \delta$) 1992: The teaching of Modern Greek as a first and a second

 $\delta \eta \mu \circ \sigma i ́ \varepsilon \cup \sigma \iota v]$ (A $\theta \eta \dot{v}$ а: Екס. Gutenberg).

 1. R. Jakobson, Linguistics and poetics, $\sigma .377$. Σ rov Th. Sebeok ($\varepsilon \kappa \delta$.), Style in language (Cambridge, Mass.: The MIT Press 1960).
[^1]: (NP), рұдатєко́ бv́voдо (VP) к.т.о́.

[^2]: 10.F. de Saussure (Cours de linguistique générale, 1916 [$\alpha v \alpha \tau$. 1972], 157: «La langue est encore comparable à une feuille de papier: la pensée est le recto et le son le verso; on ne peut découper le recto sans découper en même temps le verso; de même dans la langue on ne saurait isoler ni le son de la pensée, ni la pensée du son; on n' y arriverait que par une abstraction dont le resultat serait de faire de la psycologie pure ou de la phonologie pure».

[^3]: 11. Beaugrande - Dressler, $\dot{\varepsilon} . \alpha ., \sigma .182 \kappa . \varepsilon \xi$.
