STUDY OF
 RESERVOIR INDUCED SEISMICITY

FINAL TECHNICAL REPORT
August 1979

By

Duane R. Packer, Lloyd S. Cluff, Peter L. Knuepfer and Robert J. Withers

Sponsored By The
U.S. Geological Survey Contract No. 14-08-0001-16809

WOODWARD-CLYDE CONSULTANTS
Consulting Engineers, Geologists, and Environmental Scientists Three Embarcadero Center, Suite 700

San Francisco, California 94111

REPRODUCED FROM BEST AVAILABLE COPV

The views and discussions in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the United States Government.

TITLE PAGE

1. CONTRACT NO.: 14-08-0001-16809
2. NAME OF CONTRACTOR: Woodward-Clyde Consultants
3. CO-PRINCIPAL INVESTIGATORS: Lloyd S. Cluff and Duane R. Packer
4. GOVERNMENT TECHNICAL OFFICER: Dr. Jack F. Evernden
5. SHORT TITLE OF WORK: Reservoir Induced Seismicity
6. EFFECTIVE DATE OF CONTRACT: 15 February 1978
7. CONTRACT EXPIRATION DATE: 14 February 1979 extended to 14 June 1979
8. AMOUNT OF CONTRACT: $\$ 199,433.00$
9. DATE REPORT SUBMITTED: August 1979

TABLE OF CONTENTS

Page
TITLE PAGE i
LIST OF TABLES vi
LIST OF FIGURES viii
ACKNOWLEDGMENTS xiii
1.0 INTRODUCTION 1
1.1 BACKGROUND 1
1.2 PURPOSE OF STUDY 6
2.0 DATA COLLECTION AND PROBABILISTIC 9ASSESSMENT OF RESERVOIR INDUCED SEISMICITY
2.1 INTRODUCTION 9
2.2 DATA COLLECTION PROGRAM 10
2.2.1 General Reservoir Parameters 10
2.2.2 Geologic Parameters 11
2.2.3 Faulting Parameters 13
2.2.4 Hydrology Parameters 15
2.2.5 Seismicity Parameters 16
2.3 CATEGORIZATION OF RIS 18
2.3.1 Procedure 18
2.3.2 Four Selected Cases of 24
Reported RIS
Kremasta/Kastraki 24
Porto Colombia/Volta Grande 28
Almendra 31
Sefid Rud 31
2.4 STATISTICAL ANALYSIS 36
2.4.1 Parameters Used for Statistical 36
Analysis
2.4.2 Method of Study for Statistical 39
Analysis
2.4.3 Correlations Among Attributes 46Page
2.4.4 Relationship of RIS Micro- 51seismicity and Macroseismicity
2.4.5 Shallow Compared to Deep and 54Very Deep RIS Reservoirs
2.5 A PRELIMINARY STATISTICAL MODEL OF 54
RESERVOIR INDUCED SEISMICTY
2.5.1 Single Attribute Analysis 57
2.5.2 Multiattribute Model 58
2.5.3 Preliminary Model of RIS 60
Assuming Probabilistic Independence
2.5.4 Models of RIS Assuming Dependence 62
Between Depth and Volume
2.5.5 Typical Calculations for the 64
Probability of Reservoir Induced Seismicity
2. 6 INTERPRETATION AND APPRAISAL 68
2.6.1 Interpretation of the Results 68
2.6.2 Appraisal of the Data and 70 Sensitivity Analysis
2.7 ADDITIONAL OBSERVATIONS 73
2.8 SUMMARY AND CONCLUSIONS 77
3.0 THEORETICAL MODELLING OF RESERVOIR INDUCED 81 SEISMICITY
3.1 INTRODUCTION 81
3.2 ELASTIC MODELS OF RIS 81
3.2.1 Modelling of Elastic Materials 81
3.3 MODELS OF RESERVOIR INDUCED STRESSES 86
IN ELASTIC FLUID-FILLED MATERIALS 3.3.1 Application of Biot Models of 86 Elastic Solids Containing Fluids
3.4 PREDICTION OF FAILURE 91
3.5 ADDITIONAL OBSERVATIONS 98
3.6 CONCLUSIONS 102
Page
4.0 STUDIES OF FAULTING AT SELECTED RESERVOIRS 105
4.1 INTRODUCTION AND CONCLUSIONS 105
4.2 KOYNA DAM REGION, INDIA 109
INTRODUCTION 109
REGIONAL GEOLOGIC SETTING 113
REGIONAL SEISMIC ACTIVITY 116
FAULT INVESTIGATION 117
January 1977 Study 119
October 1978 Study 125
Donechiwadi 125
Kadoli 131
Aerial Reconnaissance 136
CONCLUSIONS 136
4.3 KREMASTRA/KASTRAKI DAM REGION, GREECE 138
INTRODUCTION 138
REGIONAL GEOLOGIC SETTING 142
SEISMOLOGIC SETTING 147
FAULT INVESTIGATION 149
Pindus Thrust Fault 150
Paleophoria Fault 150
Alevrada-Smardacha Fault 152
Triklinos Fault 162
CONCLUSIONS 164
4.4 EUCUMBENE, TALBINGO, AND BLOWERING 169 RESERVOIRS, AUSTRALIA
INTRODUCTION 169
REGIONAL GEOLOGIC SETTING 174
REGIONAL SEISMIC ACTIVITY 177
Lake Eucumbene 179
Lake Talbingo 180
Lake Blowering 181
FAULT INVESTIGATION 181
Lake Eucumbene Area 181
Lake Talbingo and Blowering Areas 185
CONCLUSIONS 188
Page
4.5 LAKE BENMORE, NEW ZEALAND 189
INTRODUCTION 189
REGIONAL GEOLOGIC SETTING 194
REGIONAL SEISMIC ACTIVITY 196
FAULT INVESTIGATION 200
CONCLUSIONS 206
4.6 HOOVER DAM AND LAKE MEAD, UNITED STATES 208
INTRODUCTION 208
REGIONAL GEOLOGIC SETTING 210
REGIONAL SEISMIC ACTIVITY 210
FAULT INVESTIGATION 212
Railroad Flat-Black Mountain Area 213
Mead Slope Fault 215
Lime Ridge Area 216
CONCLUS IONS 218
5.0 SUMMARY AND CONCLUSIONS 219
REFERENCES
APPENDIX A
APPENDIX B

LIST OF TABLES

Table	Title	Page
1-1	Reported Cases of Reservoir Induced Seismicity	3
2-1	Evaluation of Reported Cases of Reservoir Induced Seismicity	21
2-2	Notation for Reservoir Attributes, Statistical Analysis	40
2-3 (A)	Likelihoods of Attribute States for Accepted RIS and NotAccepted RIS, Based on Deep, Very Deep, and/or Very Large Reservoir Data	42
2-3 (B)	Likelihoods of Attribute States for Not-Accepted RIS, Based on Deep and Very Deep Reservoir Data	43
2-4	Sampling Variance of Attribute Likelihoods	45
2-5	Illustrative Test of Independence Between Two Attributes, Using a Contingency Table, RIS Data	47
2-6	Test of Independence in Contingency Tables	50
2-7	Illustration for Depth/Volume Correlation of Macroseismic Versus Microseismic Events	52
2-8	X^{2} for Macroseismic Versus Microseismic Data	53
2-9	Shallow Compared to Deep and Very Deep RIS Reservoirs	55

Page

2-10	Conditional Probabilities of RIS for Only One Attribute	59
2-11	Likelihood Ratios - Independent Case	61
2-12	Likelihood Ratios - Dependent Case	63
2-13	Data Used for Example One Calculations	66
2-14	Sampling Variance: Example One, Discrete Model	67
2-15	Sample Calculations for Example 2, Best Case and Worst Case	69
2-16	Sensitivity Analysis of Definitions for Depth States	72
4-1	Reservoir Induced Seismic Events with Maximum Magnitude of 5 or Greater	106
4-2	Description of the Eucumbene, Talbingo, and Blowering Reservoirs	172
4-3	Description of the Benmore Dam and Reservoir	193

LIST OF FIGURES

Figure	Title	Page
1-1	Location Map of Accepted and Questionable Cases of Reservoir Induced Seismicity	2
1-2	Plot of Depth and Volume for Deep and/or Very Large Reservoirs and Reported Cases of RIS	4
1-3	Cumulative Number of Deep and/or Very Large Reservoirs by Year of Dam Completion	5
2-1	Historical Macroseismicity, Vicinity of Kremasta-Kastraki, Greece	25
2-2	Histogram of Earthquakes and Water Level Histories, Vicinity of KremastaKastraki, Greece	27
2-3	Historical Macroseismicity, Vicinity of Porto Colombia - Volta Grande, Brazil	29
2-4	Filling Histories and Reported Earthquake, Porto Colombia - Volta Grande Reservoirs, Brazil	30
2-5	Historical Macroseismicity, Vicinity of Almendra, Spain	32
2-6	Histogram of Earthquakes and Filling History, Vicinity of Almendra, Spain	33
2-7	Local Seismicity During Impoundment, Almendra, Spain	34
2-8	Historical Macroseismicity, Vicinity of Sefid Rud, Iran	35
2-9	Histogram of Earthquakes and Water Level History, Vicinity of Sefid Rud, Iran	37
2-10	Local Earthquakes (1966-1971) and Water Level Fluctuations, Sefid Rud, Iran	38
2-11	Plot of Time Between Impoundment and First Suspected RIS Event	74

		Page
2-12	Plot of Time Between Impoundment and Largest Suspected RIS Event	75
2-13	Plot of Maximum Magnitudes of Accepted RIS Events	76
2-14	Plot of Magnitude of Largest RIS Event Versus Time After Impoundment	78
3-1	Vertical Deflections at Several Depths Below Lake Kariba, Based on Elastic Halfspace Model	83
3-2	Maximum Shear Stress at Several Depths Below Lake Kariba, Based on Elastic Halfspace Model	84
3-3	Example Reservoir: Development of Mohr Circle LOci	92
3-4	Example Reservoir. Positions Below Lake and Reservoir Filling History	94
3-5	Loci of the Mohr Circle in the Normal Faulting Environment	95
3-6	Instability at Two-Dimensional Lake in a Thrust Environment	97
3-7	Instability in an Area of Normal Faulting	99
3-8	Induced Change in Pore Pressure for Various Times Using Halfspace Model with Permeable Fault Zone	100
3-9	Strength Changes as a Function of Time, Based on Halfspace Model with Permeable Fault Zone	101
3-10	Changes in Strength for Several Times, Based on Halfspace Model with Superimposed Tectonic Stresses	103
4-1	Generalized•Geologic Map of India and Location of Koyna Dam	110
4-2	Structural Geology of Western India	111
4-3	Seismicity Map of Western India from 1594 to 1969	112

		Page
4-4	Location Map of Reported Ground Cracks and Other Features	120
4-5	Offset Paddy Walls Along Alignment of Ground Cracking, India	122
4-6	Log of Bedrock Fault Exposed in Nala (Stream) Bank, Vicinity of Koyna Dam India	127
4-7	Topographic Notch in Deccan Plateau, Along Alignment of Ground Crack, Vicinity of Koyna Dam - India	129
4-8	Fault Plane Exposed in Bedrock Along River Bank, Vicinity of Koyna Dam India	133
4-9	Slickensides on Fault Plane, Vicinity of Koyna Dam - India	134
4-10	Generalized Geologic Map and Location of Kastraki and Kremasta Dams - Greece	139
4-11	Historical Seismicity Map of the Kremasta-Kastraki Area - Greece	140
4-12	Water Elevations and Seismic Activity, Kremasta Lake - Greece	141
4-13	Schematic Diagram of Plate Tectonic Setting of Western Greece	144
4-14	Faults in Lake Kremasta Area - Greece	145
4-15	Pindus Thrust Fault near Paleophoria Greece	151
4-16	East View, Paleophoria Fault near Megaohoyas Bridge, Vicinity of Kremasta-Kastraki - Greece	153
4-17	Location Map of the Alevrada-Smardacha Fault - Greece	155
4-18	Fault within Alevrada-Smardacha Fault Zone - Location A - Greece	156
4-19	Fault within Alevrada-Smardacha Fault Zone - Location B - Greece	157

		Page
4-20	```Fault within Alevrada-Smardacha Fault Zone - Location C - Greece```	159
4-21	Aerial View of Alevrada-Smardacha Fault Through the Village of Alevrada Greece	163
4-22	Aerial View of Sinistral Displacement of Frangista Stream Drainage at Triklinos Fault - Greece	165
4-23	Aerial View of Sinstral Displacement of the Alevrada-Smardacha Fault by the Triklinos Fault - Greece	166
4-24	Project Location Map, Lakes Eucumbene, Talbingo, and Blowering - New South Wales, Australia	170
4-25	Project Location Map, Lakes Eucumbene, Talbingo, and Blowering - New South Wales, Australia	171
4-26	Eucumbene Dam and Lake Eucumbene - New South Wales, Australia	173
4-27	Regional Geology, Lakes Eucumbene, Talbingo, and Blowering - New South Wales, Australia	175
4-28	Regional Seismicity, Lake Eucumbene - New South Wales, Australia	178
4-29	Berridale Wrench Fault, Vicinity of Lake Eucumbene - New South Wales, Australia	183
4-30	Jindabyne Thrust Fault, Vicinity of Lake Eucumbene - New South Wales, Australia	184
4-31	Khancoban-Yellow Bog Fault, Snowy Mountains - New South Wales, Australia	187
4-32	Location Map, Lake Benmore - South Island, New Zealand	190
4-33	Project Area, Lake Benmore - South Island, New Zealand	191
4-34	Benmore Dam and Lake Benmore - South Island, New Zealand	192

		Page
4-35	Reported Active Fault Traces, Vicinity of Lake Benmore - South Island, New Zealand	195
4-36	Historical Macroseismicity, Vicinity of Lake Benmore - South Island, New Zealand	199
4-37	Ostler Fault Zone, Vicinity of Lake Benmore - South Island, New Zealand	202
4-38	Haybarn Fault, Vicinity of Lake Benmore South Island, New Zealand	203
4-39	Haybarn Fault, Vicinity of Lake Benmore South Island, New Zealand	204
4-40	Location Map, Hoover Dam and Lake Mead Arizona and Nevada, United States	209
4-41	Geology and Reported Faults, Vicinity of Hoover Dam - Arizona and Nevada, United States	211
4-42	Lime Ridge Area, Hoover Dam and Lake Mead - Arizona and Nevada, United States	217

ACKNOWLEDGMENTS

The major authors listed on the cover page contributed to the sections of the report as follows. The classification and collection of data on the deep and/or very large reservoirs (presented in Chapter 2) was prepared by Peter L. Knuepfer and Duane R. Packer. The categorization of RIS (Chapter 2) was made by Peter L. Knuepfer, Robert J. Withers, and Duane R. Packer.

In addition to the major authors to the report, the following people were authors of or contributors to the report. Gregory B. Baecher and Ralph L. Keeney performed the probability analysis based on this data. The theoretical modelling (presented in Capter 3) was prepared and written by Robert J. Withers. The authors for the section of Chapter 4 on Koyna Dam (Lake Shivaji Sagar) in India were Robert E. Harpster, Jon R. Lovegreen, and Lloyd S. Cluff; on Lakes Kremasta and Kastraki in Greece: Jon R. Lovegreen and Robert E. Harpster; on Lakes Eucumbene, Talbingo, and Blowering in Australia: Kenneth D. Weaver and Duane R. Packer; on Lake Benmore in New Zealand: Duane R. Packer and Kenneth D. Weaver; and on Lake Mead in the United States: Kenneth D. Weaver and Robert E. Harpster. Peter L. Knuepfer prepared Appendix A.

The field studies were assisted by many individuals whose help was invaluable. Dr . David Snow freely provided results of preliminary studies he had completed at many of these reservoirs. The assistance of individuals or agencies of the following countries are gratefully acknowledged: in India-Dr. S. K. Guha and his staff at the Central Water and Power Research Station at Poona, Dr. S. S. Marathe and Dr. R. B. Gupte and their collegues at the College of Engineering, Poona University; and Dr. V. S. Krishnaswamy, Director of Indian Geological Survey and his staff; in Greece--Dr. J. Drakopouolos, Acting Director of the National Observatory of Greece, Dr. G. Bornovas, Director of the Institute for Geology and Subsurface Research, and Dr. J. H. Brunn, Universite Paris-Sud; in Australia--Ken Sharp of the Snowy Mountain Engineering Corporation; and in New Zealand--Les Oborn, Jerry Lensen, and Don Macfarlane of the New Zealand Geological Survey; Dr.'s Robin Adams, Ian Calhaem, and Warrick Smith at the New Zealand Seismological Observatory.

1.0 INMRODUCTION

1.1 BACFGROUND

As early as 1945, a relationship was recognized between the level of water impounded by Hoover Dam and the rate of occurrence of local earthquakes. Since that time, such relationships have been recognized for other reservoirs around the world. The most commonly cited examples are Yariba in Africa, Koyna in India, and Kremasta in Greece. Ry the end of 1978, 64 cases of reservoir induced seismicity (RIS) had been reported worldwide (Figure l-l; Table l-l). From theoretical and field-oriented studies, various models of the influence of reservoir impoundment on local seismicity have been developed, and factors suspected to influence earthquake activity have been recognized. In particular, a higher occurrence of RIS has been recognized at deep and/or very large reservoirs, as shown on Figure l-2 (Stuart-Alexander and Mark, 1976; Packer and others, l977; Stuart-Alexander and others, 1979). However, given the present understanding of RIS, it is not possible to adequately explain why some reservoirs influence seismicity and others do not.

The seismicity induced by reservoir impoundment is an increasingly recognized hazard. A plot of the dates of reservoir impoundment indicates that the number of reservoirs that are deep (depth of greater than 92 m) or are very large (volune greater than $10^{10} \mathrm{~m}^{3}$) is rapidly increasing (Figure l-3). This curve is expected to continue to rise sharply, as over 50 additional deep and/or very large reservoirs are to be completed by 1985.

The number of accepted cases of RIS from among these deep and/or very large reservoirs is also rising. Only a minimum

H0.*	Uam Name, Reservoir thame	Country	Classification of RIS	Magnitude Largest \qquad RIS Event
1.	Akosombo Main, Lake volta	Gnana	Accepted, macro	I.tensity V
2.	Almendza, 讠ormes Reservoir	Spain	Accepted, micro	less than 2
3.	Bajina basta	Yugoslavia	Accepred, micro	less man 3
4.	denmore	New zealand	Accepred, macro and micro	5 (?)
5.	Hlowering	Australia	Accepred, macro and micro	3.5
6.	Caoin Creek	USA	Not RIS	-
7.	Cajuru	Brazil	Questionable	approx. 4
8.	Camarillas	Spain	Accepted, macro	4.1
9.	Canelles	Spain	Accepted, macro	4.7
10.	Clark Hill	USA	Accepted, wicro (macro?)	4.3 (?)
11.	Contra, Lake Vogorno	Switzerland	Accepted, micro	less than 3
12.	Coyote Valley, Lake Mendocino	USA	Accepted, macro	5.2
13.	El Grado	Spain	Hot RIS	--
14.	Emosson	Switzerland	Accepted, micro	less than 3
15.	Eucumbene	Australia	Accepted, macro	5 (?)
16.	Fairfiela, Lake montzcello	USA	Accepted, micro	2.8
17.	chirnı	India	Questionable	--
18.	crancarevo	Yugoslavia	Accepred, macrs	less than 3
19.	Granoval	France	Accepred, macro and micro	Intensity V
2 U	Hendrix Verwoerd	South aftica	Accepted, micro	less man 2
21.	Hoover, Lake mead	USA	Accepted, macro and micro	5.0
22.	Iteznitexhl	zambia	Accepted, macro	4 or less (?)
23.	Jocassee	USA	Accepted, macro and micro	3.2
46.	Kima fusa	Japan	Accepted, micre	less tran 3
25.	Kajiba	zambia/Rnodesia	Accepted, macro and micro	6.25
26.	Kastraxı	Greece	Accepred, macro	4.6
27.	Kedan	Turkey	Accepred, macro	Less than 3
28.	Kerr, Flathead Lake	USA	Accepted, naero	4.9
	Kınarsanı	:ndsa	Questionable	--
29.	Koyna, bnivaji Sagar Lake	India	, secepted, macro and micro	6.3
3 u.	Niremasta	Greece	Accepted, macro and micro	6.3
31.	nuroce	Japan	A ccepted, macro and micro	4.9
32.	da conslia	spain	Questionable	--
13.	La Fuensanca	Spain	Questionable	--
14.	ilanyalam	India	Questionsole	--
35.	*anyla	Pakıstan	:lor RIS	--
jo.	Mantecuagan 3	Canada	Accepted, macro and arcro	4.1
37.	Maration	Greece	Accepred, macro	5.75
38.	Mrea	canada	:lot RIS	-
39.	Monteynard	France	Accepted, macro	Intensity VII
40.	Musa	Incisa	Accepted, macro	less than 1
41.	wurek	USSR	Accepred, macro and micro	4.5
42.	uroville	USA	Accepred, macro	5.7
43.	Uued roada	Algeria	Accepted, micro	less than 3
44.	Pailsades	USA	Accepted, micro	3.7 (?)
45.	Haramoikuiam	India	Questionable	--
46.	Piastra	Staly	Accepted, macro and micro	4.4
47.	Heve di Cadore	traiy	Accepted, macro and micro	Intensity V
48.	Porto Colombia	Braz2l	Accepted, macro	--
49.	Rocky reach	USA	Hot RIS	--
50.	jan Lusts	USA	Not RIS	--
jı.	saniord	USA	Hot RLS	--
52.	beniegeis	Austria	Accepred, micro	less than 2
S.	Sefia Rud	Iran	Questionable	4.7
	Snaravatni	India	Questionaole	--
54.	shasta	USA	Accepred, micro	less than 3
55.	sholayar	India	Questionabie	--
50.	Taloingo	Ausrrabia	Accepted, macro and micro	3.5
57.	Uxal	Indıa	Questionable	--
50.	Vajont	Staly	Accepted, micro	less than 3
59.	Volta Grande	Braz:1	Accepred, macro	less than 4
60.	Vouglans	Prance	Accepted, macro	4.4
61.	warragamia. Lake 3urragorang	Australia	Questionable	5.4
62.	Xanfenyjany	Cnina	Accepeed, macro and miero	6

EXPLANATION:

Deep and/or very large reservoir
Accepted case of RIS, maximum magnitude ≥ 5
Accepted case of RIS, maximum magnitude 3-5
Accepted case of RIS, maximum magnitude ≤ 3
Questionable case of RIS
Not RIS

Project No. 14087A
Wocdward-Clyde Consultants
Figure 1-2
PLOT OF DEPTH AND VOLUME FOR DEEP AND/OR VERY LARGE RESERVOIRS AND REPORTED CASES OF RIS

Project No. 14087A	Figure 1-2
Wocdvard-Ctyde Consuftants	Page 4

EXPLANATION

\rightarrow Actual

- ——— Projected

CUMULATIVE NUMBER OF DEEP AND/OR VERY LARGE RESERVOIRS BY YEAR OF DAM COMPLETION

Project No. 14087A
Figure 1-3
MoodwarebClyde Commentamis
number of actual cases of RIS have been studied because occurrence of RIS events is often delayed following reservoir completion, and no comprehensive examination of the world's reservoirs for evidence of RIS has been made. A 5-year projection of the curve showing the occurrence of RIS for deep and/or very large reservoirs over the past 20 years (shown on Figure 3-1) suggests that, among these reservoirs, approximately 10 more cases of RIS are likely to occur. The historic record indicates the potential for at least some of these RIS events to be sufficiently large to cause damage; in addition, some may occur in areas of low historical seismicity, where structures are not designed for damaging earthquakes.
1.2 PURPOSE OF STUDY

This report presents the findings and accomplishments resulting from a study of reservoir induced seismicity undertaken by Woodward-Clyde Consultants for the Farthquake Hazards Reduction Program of the United States Geological Survey. The objectives for this study have been: l) to evaluate geologic, seismologic, and hydrologic factors in order to make more meaningful and confident evaluations of the potential for RIS; 2) to develop a more reliable method for evaluating the potential for RIS at existing and proposed reservoir locations throughout the world; and 3) to evaluate the theoretical, seismological, and rock mechanics base of RIS. A large quantity of data on the deepest and largest of the world's reservoirs has been gathered and analyzed.

These data and derived conclusions have been organized in this report into three sections and two appendices. The first section (Section 2) describes data collection and the probabilistic assessment of reservoir induced seismicity. Selected examples are used to illustrate the assumptions and
techniques employed to categorize the reported cases of resevoir induced seismicity. Preliminary probabilistic models of RIS are presented and discussed. The second section (Section 3) is a description of theoretical modelling of reservoir induced seismicity. A number of models and the parameters used in these models are discussed. The third section (Section 4) presents the results of reconnaissance geologic studies of five areas that had reservoir induced seismic events of magnitude 5 or greater. The first appendix presents the data collected on deep and/or very large reservoirs and reported cases of RIS. The second appendix includes seismicity catalogs for four selected cases of RIS reviewed in Section 2.

The scope of this study consisted of the collection of data on over 250 reservoirs. However, because the size of the data sample is limited, a one-sided consideration of some data has resulted. One example of such bias involves the accepted cases of RIS. It is highly probable that the number of cases of RIS reported in the literature underestimates the total number of cases that have actually occurred; this is particularly true for reservoir induced microseismicity, which generally would go undetected except where microearthquake recording networks are established around a reservoir. Furthermore, the scope of this study did not allow evaluation of whether or not a temporal and spatial association of seismicity with the reservoir filling history was present at each of the 234 deep and/or very large reservoirs. Thus, the accepted number of RIS cases may underestimate the number of actual occurrences.

Another similar bias exists in the evaluation of active faults that have had displacement in the present tectonic regine at those reservoirs that have had a reservoir induced seismic event of magnitude greater than or equal to 5 . It was beyond
the scope of this study to evaluate how many of the other reservoirs (with or without reservoir induced seismicity) have active faulting within the hydrologic regime of the reservoir. The results of these studies, though "biased," do provide some basis for conclusions. For example, the existence of reservoirs that l) do not have active faults within their influence, and 2) have RIS events with surface fault rupture would suggest that reservoirs could induce surface faulting where the tectonic regime had not. Future studies of reservoir induced seismicity could be directed toward gathering the data needed to evaluate further some of these areas of bias.
2.0 DATA COLLECTION AND PROBAEILISTIC ASSESSMENT OF RESERVOIR INDUCED SEISMICITY

2.1 IUTRODUCTION

A search of available literature was made for cases of reservoir induced seismicity (RIS) reported as of the end of 1978. In addition, information was compiled on deep (maximum water depth of 92 m or greater) and/or very large (maximum water volume of $10^{10} \mathrm{~m}^{3}$ or greater) reservoirs completed as of the end of 1975. The data compiled for each reservoir are presented in Appendix A.

Deep and very large reservoirs were chosen as the base for this study because a relatively higher percentage of these reservoirs exhibit induced seismicity than do smaller or shallower reservoirs (Packer and others, 1977; StuartAlexander and Mark, 1976) and because data were expected to be relatively more available on these large engineering works. Data were gathered for a large number of parameters, including reservoir size and shape, water impoundment and fluctuation history, regional and local geology, stress conditions and faulting, hydrology, and seismicity. A complete list of these parameters is presented in Table A-l of Appendix A.

The data compilation studies had a three-fold purpose: l) to update and expand existing data collections on reported cases of reservoir induced seismicity; 2) to establish a consistent yet manageable data base for a probabilistic analysis of the interrelationships between certain geologic, hydrologic, and seismologic parameters and the occurrence of reservoir induced seismicity; and 3) to develop a preliminary statistical model capable of predicting the probability of RIS occurrence at an existing or proposed reservoir site.

This section of the report provides a summary of the procedures used for the data collection program, a summary and examples of the procedures used to classify reported RIS cases, results of statistical analysis, and information on a preliminary statistical model for predicting the probability of occurrence of reservoir induced seismicity.

2.2 DATA COLLECTION PROGRAM

The procedures followed in the evaluation of the data for each group of parameters are described below.

2.2.1 General Reservoir Parameters

The general parameters of interest to this study include dam and reservoir name, location (country), geographic province, river, type of dam, year of completion, dam height above lowest foundation, maximum water depth and volume, length of dam, and use of reservoir. Information on most of these parameters was obtained from the World Register of Dams, supplemented by more recent compilations such as Mermel (1978) and Simpson (1976).

Reservoirs were located on atlas maps and other available maps, and the latitude-longitude coordinates and maximum reservoir dimension were measured directly. The location of the center of the reservoir was calculated as that point (within the reservoir) closest to the midpoint of a line connecting the farthest extremities of the reservoir.

Information on reservoir filling histories, when available, was categorized according to rates and duration of initial filling as well as maximum drawdown and refilling. (Initial filling is defined for this study as filling to 90 percent of the maximum water level.) The use of the reservoir can
provide a qualitative estimate of typical water-level fluctuations. Flood control reservoirs tend to be held at relatively low levels during most of their lifetime, except during floods when they rapidly fill. Irrigation reservoirs generally undergo cyclic (seasonal) water level variations. Hydropower reservoirs normally are held at relatively constant levels, as are reservoirs used for public water supply. For multi-purpose reservoirs, the first use listed in the World Register of Dams was chosen, on the assumption that it is the primary use of the reservoir.

Reservoirs were classified according to maximum water depth rather than dam height because water depth is directly related to the stress imposed by a reservoir. Maximum water depths were obtained from engineering reports and publications where available. In many cases, water depths were calculated from detailed dam cross sections or topographic maps showing reservoir outlines. Where direct information on maximum water depth was unavailable, the depth was estimated from dam height and type. Formulae similar to those discussed by Packer and others (1977) were used for these estimations and different formulae were used depending on the type and height of the dam: for concrete dams greater than 150 m in height, 30 m was subtracted from the dam height; for concrete dams between 100 m and 150 m in height, 18 m was subtracted from the dam height; for concrete dams less than 100 m in height, the dam height was multiplied by 0.9; for earth or rock dams greater than or equal to 100 m in height, the dam height was multiplied by 0.95; and for earth or rock dams less than 100 m in height, the dam height was multiplied by 0.9 .

2.2.2 Geologic Parameters

The geologic parameters include regional and local geology, tectonic province and stress regime, and orientation and
degree of structural deformation. Geologic maps, local and regional geologic studies, engineering reports, and literature on tectonics were examined to obtain these parameters for each reservoir.

Geologic Conditions - Based on interpretations of sitespecific geologic maps or descriptions and/or regional geologic maps, the geology of a reservoir area was characterized as coarse clastic, fine clastic, carbonate, metamorphic, batholithic, or volcanic. Where more than one rock type is present, the geology was characterized by the most prevalent rock type. The coarse clastic characterization includes conglomerate and sandstone. The fine clastic classification includes siltstone, claystone, and shale. Carbonate includes limestone, dolomite, marl (using European designation), and evaporites. Metamorphic includes all metamorphic rocks, such as marble, gneiss, and schist. Batholithic includes intrusive rocks, such as granite, gabbro, diorite, and porphyry (Russian usage). Volcanic includes extrusive rocks, such as basalt, andesite, and tuff.

Regional Stress Regime - The tectonic stress in the region of a reservoir was characterized as extensional (normal), shear (strike-slip), or compressional (thrust). The type of tectonic stress active in an area was classified from focal mechanisms of shallow local or regional earthquakes, from sense and distribution of young surface faults, and/or from general plate tectonics models. The method used in the stress classification, as well as a ranking of confidence level for that classification, is indicated for each reservoir. The highest levels of confidence are applied to those cases in which site-specific stress indications are available, such as focal mechanisms for earthquakes located at or very near the reservoir. The lowest levels of confidence are assigned to classifications resulting from poorly understood tectonic
interpretations, such as those in shield areas for which little or no earthquake data exist and in which young faults have not been recognized.

Recent studies, such as Sykes (1978), suggest that areas traditionally considered tectonically "stable" are in fact undergoing compressional tectonic stress. Sykes (1978) demonstrates such compression for portions of South America, Africa, and Asia from fault distributions and limited focal mechanism data. Other focal mechanism studies of "stable" areas have yielded similar results; for example, the work by Leblanc and Anglin (1978) at the Manicouagan-3 reservoir in Canada has demonstrated compressive focal mechanisms. Focal mechanism solutions by Chandra (1977) for the Indian Peninsula indicate that shear tectonic stress, accompanied by compression, characterizes the tectonics of this intraplate region.

Degree of Structural Deformation - The degree of structural deformation of a region was assessed from geologic maps that indicate the attitudes of beds or foliation. Deformation of regions was characterized as flat-lying, shallow-dipping, steeply dipping, vertical, overturned, or strongly deformed. For example, shallow-dipping areas are those in which the characteristic dip is 35 degrees or less; conversely, strongly deformed areas are those in which strata are severely folded and faulted.

2.2.3 Faulting Parameters

Information on the geometry, style, and age of faulting near each reservoir was considered independently of other geologic conditions. To localize the study of faulting and seismicity in the vicinity of a reservoir, a procedure was adopted in which a circle is projected about the center of the reservoir,
with the radius equal to the longest dimension of the reservoir. This circle is used to define the boundary of the "local area" of a reservoir. Such a circle is consistent with theoretical models of the influence of reservoir loading on the underlying crust (Withers and Nyland, 1978).

The predominant style of faulting was assessed for each reservoir local area from local geologic maps (when available). Faults in an area are predominantly either dipslip, strike-slip, or oblique-slip. Where more than one type of fault is present, the type of faulting was characterized by those faults showing evidence of most recent activity. Similarly, information was gathered on the azimuth, dip, length, name, and distance of the most recently active fault in the local area of a reservoir. Where no faults are mapped in the reservoir local area, faults within the surrounding tectonic province were considered in assessing the style of faulting.

For this data compilation study, faults were considered active (or "young") if the literature cited evidence of displacement occurring during the active tectonic regime. Although this definition of active faults is broader than most definitions in common use in the United States, it is more applicable to worldwide studies of faults, where detailed information on Late Quaternary displacements may be lacking.

For the assessment of the recency of fault activity, at least three complicating factors were considered. First, inactive bedrock faults can have a different type of faulting than recently active faults, due to changes in stress conditions over time. In particular, reactivated faults may have a different sense of displacement than they had during their previous tectonic environment. Examples include the Foothills fault system of California, a former compressional subduction
zone undergoing present-day extension (Schwartz and others, 1979), and certain faults in West Africa, formerly transform faults that are now undergoing extensional displacement (Burke, 1971). Secondly, active faults may differ in their degree of activity. The slip rate and recurrence intervals of various faults may differ by several orders of magnitude, and maximum earthquake magnituoie and slip per event may also differ substantially. Finally, the amount of tectonic stress accumulation along a fault is a significant factor to consider in the assessment of the probability of reservoir induced seismicity. A fault that has a large amount of stress accumulation would more likely be affected by reservoir impoundment than a fault that has ruptured recently and along which stress has not yet accumulated to near-critical levels. However, within the scope of this study, it was not possible to fully assess the significance to the occurrence of RIS of these three considerations.

2.2.4 Hydrology Parameters

Limited information on hydrologic conditions at reservoirs was compiled, when available, from engineering and geologic literature examined in this review. Of particular interest was information on rock permeability beneath and adjacent to reservoirs. Ideally, the permeability information required would include data on near-surface permeability as well as on pore pressures in rocks at depth. In practice, such information can rarely be obtained. However, knowledge of the topographic relief of an area and on rock types present and their probable permeability could be used to roughly estimate the influence of reservoir impoundment on pore-water pressures. Because data were available for only a few of the reservoirs, no statistical assessment of hydrologic parameters was attempted.

2.2.5 Seismicity Parameters

Information on the seismicity in the vicinity of each reported RIS case was gathered from worldwide data sources. These sources, which were available from the Woodward-Clyde Consultants' Earthquake Data Bank, included the International Seismological Centre (ISC) and the llational Oceanographic and Atmospheric Administration (NOAA) listings. These data were supplemented with published reports of local seismicity. The published literature was the only source of data on microearthquakes, since such events are generally too small to be included in the ISC or NOAA catalogs.

The seismic data were classified as either "macro" or "micro." Typically, the cut-off between macro and micro is placed at magnitude 3. However, for the purpose of this study, the distinction between macro and micro was based primarily on the source of the data: if the earthquake was reported in NOAA or ISC catalogs with a magnitude greater than 3, it was classified as macro; if the earthquake was reported only from other souces with magnitudes less than 3, or with felt reports for only a very small area, it was classified as micro. The NOAA and ISC catalogs typically include all events above magnitude 4 to 5. In practice, seismographic coverage and reporting vary depending on the area being investigated; therefore, a magnitude cut-off to distinguish between macro and micro events differs in each of the RIS cases investigated.

Although a number of seismic parameters were defined for this study (see Appendix A, Table A-l), many values were not assigned. These include "b" values near the reservoir compared to the background level, and the variation of "b" within the tectonic province of the reservoir. Evaluations of the number of seismic events per unit area and the amount of
energy release were discontinued as the data were collected because such evaluations were found not to be feasible for two reasons:

1. It was difficult to define the boundaries of the tectonic province in which the reservoir occurred because of concentrated epicenters along boundaries. This was particularly difficult when the reservoir was on the edge of a seismic belt. Moreover, a quick: decision to include or exclude major seismic features would lead to misleading or incorrect conclusions.
2. The initial plan was to use published catalog data to assess if the seismicity near the reservoir had changed in some way after the reservoir had filled. A thorough assessment involves a comparison of energy release, rate of occurrence, and "b" slope for seismicity local to the reservoir with that for the entire tectonic province, and a further comparison of these factors before and after reservoir filling. In general, the quality of data proved to be too poor to allow such rigorous analysis. Accordingly, only generalized characterizations of seismicity changes were made (Table 2-1).

The data that were collected for several parameters were based on the seismicity catalogs, plots of seismicity, and histograms of the time of occurrence for events within one and three radii of the reservoir center. The date of the first probable RIS event was selected based upon a knowledge of the pre-impoundment seismicity or upon local microseismicity data. The date and magnitude of the largest reservoir-induced earthquake was also estimated from this data.

The increased resolution and detection capabilities of worldwide seismic networks over the past few years, particularly since 1964, has considerably improved the quality of data reported in the ISC and NOAA catalogs, and a greater number of magnitude values are being reported. However, prior to 1964, many large events listed in these catalogs have no reported magnitudes. Therefore, published reports of particular reservoir induced events were extremely useful in the selection of the maximum earthquake magnitude.

2.3 CASECORIZATIOH OF RIS

2.3.1 Procedure

Among the cases of reservoir induced seismicity (RIS) reported in the literature, some are clearly associated with reservoir impoundment, and others appear to be unrelated to the reservoir impoundment. For a statistical evaluation of RIS, those seismicity cases that are judged to be reservoir induced must be distinguished from those that apparently are not. Accordingly, a set of criteria were established to provide a systematic evaluation of each reported case of RIS.

The influence of a reservoir on the seismicity of the local area was evaluated for each of 64 reported cases of RIS (Table l-l). Three categories were identified: accepted cases of reservoir induced seismicity, questionable cases of reservoir induced seismicity, and cases of seismic activity near reservoirs that were not reservoir induced. Accepted cases are those in which seismicity at the site had demonstrable temporal and/or spatial relationships to the reservoir impoundment or water level fluctuation history. "lot RIS" cases are those for which seismic activity was clearly established as unrelated to the reservoir impoundment. Questionable cases are those for which sufficient data were
not available to discern the temporal and/or spatial relationsips of seismicity to the reservoir impoundment.

These criteria for RIS classification involve the spatial and temporal influence of the reservoir on the macroseismicity and the microseismicity of the reservoir local area. In the evaluation of each reported case of RIS, macroearthquake activity was considered independently of microearthquake activity. Macroseismic data generally were obtained from published catalogs of the International Seismological Centre (ISC) and the National Oceanographic and Atmospheric Administration (NOAA). Microseismic data were obtained from published results of local seismic networks.

For macroseismicity, the first criterion considered was the frequency of seismicity before and after reservoir impoundment: whether there was an increase, decrease, or no change in the seismicity within three to five radii of the center of the reservoir. The second criterion considered was the spatial relationship of post-impoundment seismicity to the reservoir: whether or not the post-impoundment seismicity was either beneath the reservoir or within the reservoir local area. The third criterion considered was the temporal relationship of the post-impoundment seismicity to water fluctuations: whether the local area seismicity occurred during or shortly after the initial impoundment or only after some delay and whether or not the occurrence of this seismicity may have been in response to water level fluctuations.

After applying these criteria to each reservoir, an evaluation was made as to whether or not sufficient macroseismic data were available to support the premise that the reservoir had influenced the macroseismicity of its immediate region. A similar procedure was used to evaluate available microseismic
data. These procedures allowed a consistent classification of each reported case as accepted or questionable reservoir induced macroseismicity and/or microseismicity, or as seismic activity not affected by or related to the reservoir impoundment. Results of these evaluations are presented in Table 2-1.

Of the 64 reservoirs studied, 45 were concluded to be accepted cases of PIS. Of these 14 were concluded to be accepted macro RIS, 15 micro RIS, and 16 both macro and micro RIS. Seven reported cases were concluded to be not accepted RIS, and 12 cases were questionable. In the later stages of this study, limited information was obtained on an additional 13 reported cases of RIS, although data on some of these 13 were already included in the studied population of deep and/or very large reservoirs. These 13 reservoirs are: Idikki/Cheruthoni in India; Paraibuna/Paraitinga, Capivari, Capivara, Furnas, Salto Santiago, and Oros in Brazil; Lake Gordon in Australia; Lake Pukaki (a raised glacial lake) in New Zealand; Toktogol in USSR; and three reservoirs (names unknown) in China. No evaluations were made of these reported cases of RIS, and they are not listed in Table 1-1.

Application of the classification criteria to each reservoir was, at times, quite complicated. Because of location inaccuracies in the published catalogs, certain events that were shown occurring closer to the reservoir than they actually did might be identified as reservoir induced, and the converse could also occur. For many reservoirs, no information is available in the literature about the impoundment or fluctuation history. In these instances, the relationship between water level changes and post-impoundment seismicity could not be assessed. The systematic application of classification criteria minimized the inconsistencies that these complications tended to introduce.

TABLE 2-1
EVALUATION OF REPORTED CASES OF
RESERVOIR INDUCED SEISMICITY

MACROSEISMICITY

Reservoir	Change in Seismicity Level ${ }^{1}$			Spatial Association w/ Reservoir ${ }^{2}$	Time of Seismicity		Correlation with Water Level Changes			Influence on Maczo ${ }^{3}$
	Inc.	Dec.	N/C		Initial impoundment	Delay	Yes	No	Unclear	
Akosombo (Lake Volta)			x	Y	x					Y
Almendra			x	N						N
Bajina Basta			\mathbf{x}	Y	x					Y
Benmore	X			Y	X					Y
Blowering	X			Y		x			x	Y
Cabin creek			x	N						N
Cajuru			x x	Y				X		U
Camarillas			x	\mathbf{y}	x					Y
Sanelles			x	Y	x					Y
Clark Hill			X	Y		X		X		C
Contra			X							N
Coyote valley (Take Mendocinol			X	Y	x	x	X			Y
El Grado			x	U						N
Emosson			X							N
Eucumbene	x			Y	x	x	x			Y
```Fairfield (Lake Monticello)```	.		X	N						N
Gnirns			x							N
Grancarevo			X	N						N
Grandval	x			Y		X	X			\%
Hendrik Verwoera			x	N						N
Hoover   (Take Mead)	X			\%	x	X	X			Y
Itezhitezhi			X	y?		X				$\square$
Jcrassee			X	$\mathbf{Y}$	x	X		x		$Y$
Samaftes			$x$							N
Kariba	X			Y		X	Xwe			$\Psi$
Kascraki	x ?			$\underline{\square}$	x	x		X		Y
Keban			$x$	7						V
Kers	X			\%		x				Y
Kınarsani			X							N
Yoynz	$x$			\%		x	$x$			7
Kremasta	X ?			Y	X	V			R	I
Kurobe	x			V	x	X	X			$Y$
La Coinilla										I
La Euensanta										I
Mangalam			N							N
Mangla			X	N						N
Manıcouagan 3	x			Y	3					$\geq$
Marathen				$\checkmark$	X	X		X		Yweak
Mica			X	U?						N
Monteyrard				Y	x	$\times$		$X$		$?$
Mula			X							N
Nurek			X		X					$y$
Oroville			$x$	Yweak		$x$	$\times$			y
Jued Fodda			X							N
Paiisades			X	Y?		x			x	0
Parambikulam			X							N
Piastra			X	$\because$	X					$Y$
Pieve de Cadore	*			U	x					$y$
Porto Colombia			x	$Y$	X					Yweak
Rocky Reach			X	Y						N
Sanford			X	$\stackrel{N}{ }$						N
San Euis			x	N						N
Schlegeis			X							:
Sefid Rud			x	$Y$		x			x	U
$\frac{\text { sharavathi }}{\text { Shasta }}$			X							$N$
Shasta			$\stackrel{3}{3}$							N
Sholayar			X							,
maibingo	X			1	x	$x$			Y	$\because$
Uka1			X							N
Varont			\%	?						N
Volta Grance			X	$\underline{y}$	x					Yweak
Vouqlans	X			Yweak		X	X			Y
Narragamba	x			$\underline{Y}$		$x$				U?
Xinfengjuang	x			Y		X	x			$Y$

Nores:

1. Inc. = Increase; Dec. = Decrease; $N / C=$ No Chanqe
2. $\because=$ Yes; $N=$ No; $U=$ Unclear
3. $Y=Y e s ; N=N o ; U=U n c l e a r: I=$ Insufficient Data to Evaluate

TABLE 2-1

## EVALUATION OF REPORTED CASES OF RESERVOIR INDUCED SEISMICITY

## MICROSEISMICITY

Reservoir	Pre-   Impound-   ment   Monitor-   ing	post-   Impound-   ment   Monitor-   ing	Change in Seismicity Levell   Inc. Dec. N/C	$\begin{gathered} \text { Spatial } \\ \text { Association } \\ \text { with } \\ \text { Reservoir } \end{gathered}$	Timing of Seismicity		Correlation with Water Level Changes			Influence on Micro
					Initial   Impoundment	Delay				
Akosombo (Lake Volta)										1
Almendra		x		Y	X	x			x	$Y$
Bajina Basta										I
genmore		X		7	X	X			X	Y
Blowering		x		Y		x			x	$\Psi$
Cabin Creek		X		$N$						N
Cajuru										
Camarillas										I
Clark Hill		X		$Y$		X	X			Y
Contra		x		$Y$	x	x			x	Y
Coyote Valley   (Lake Mendocino)										-
El Grado										T
Emosson	x	x		$Y$	x	X	x			$Y$
Eucumbene										I
```Fairfield (Lake Monticello)```		X	X?	N	K	X?			8	T
Ehirni										I
gizancarevo		X	x	\underline{Y}	x	2	x			$\stackrel{\sim}{*}$
Grandval		X	x x	Y	X					Y
Hendrik Verwoerd	x	X	X	Y	x	$?$	$?$			Y
:Hoover \qquad		x		\mathbf{Y}	X	X	x			Y
itzhitezhi										I
jocas see		x		Y		x		x		Y
Kamafisa	8	x	x	1						1
Kariba		X		$\underline{\square}$		X	X			\%
Kastraxi	x	X		Y	X	K		X		Y
Keban		X		\underline{Y}	X					Y
Kerr										I
Kinarsani										I
Royna		x		\underline{y}	x	8	x			Y
Kremasta	X	3		Y	X	*			X	Y
Kurgbe		X		Y	x	K	X			Y
Le Cohilla										I
La Fuensanta										!
Mangalam										i
Mangla		X	x	$\underset{4}{U}$						N
Manicouagan 3		X		\underline{Y}	X	\%		x		$\underline{\square}$
Marathon										
Mica	x	X	x							N
Monteynard										$\frac{1}{5}$
Mula		X	X	Y	x					Y
Nurek		X	X	\mathbf{Y}	X	x	X			\underline{Y}
Oroville			$?$							1
Oued Fodda		x		Y	X					Yweak
Palisades ${ }^{\text {Parambikulam }}$		X				x	X			
Plastra		X			x					Y
Pieve de Cadore		X		Y	x ?	X	x			\%
Porto Colcmbia										I
Rocky Reach	X	X	X	Y						$\stackrel{N}{N}$
Sanford										\pm
San Luis										N
Schlegeis		8		Y		X	X			Y
Sefid Rud		8		0	x	x			x	\cup
Sharavath;										\pm
Shasta			X	?	X					Yweak
Sholayar										I
Talbingo	X	x		Y	¢	x	x			$\underline{1}$
Ukai										I
Vajont		X		7	x	X	x			$\stackrel{\square}{7}$
Volta Grande										\pm
Warragamba										I
Xinfengjiang		x		Ψ	x	x	$?$			Y

Notes:

1. Inc. = Increase; Dec. = Decrease; $N / C=$ No Change
2. Inc. $=$ Increase; Dec. $=$ Decrea
3. $Y=$ yes; $N=$ No; $U=$ Unclear
4. $Y=$ Yes; $N=N o ; U=$ Unclear; $I=$ Insufficient Data to Evaluate

Although a relatively consistent seismic data base could be established from worldwide catalogs for macroearthquakes, no such consistency exists in the literature on the recording and reporting of microseismic events occuring near or under a reservoir. Therefore, a consistent data base on microearthquakes was not possible. For a few reservoirs, post-impoundment microseismicity is well documented from highgain seismic networks placed around the reservoir. In these cases, it was usually possible to assess the proximity of post-impoundment seismicity to the reservoir, although locations are not always provided in the literature. Similarly, where detailed microseismic data and water level histories are available, the relationship between water level fluctuations and the occurrence of local earthquakes could be assessed.

These complications probably explain why systematic reviews of the reported cases of RIS have not often been attempted (exceptions include Packer and others, 1977; Simpson, 1976). The classification undertaken in this study required many judgmental decisions as to the quality and implications of data.

The strongest association between a reservoir and seismicity is inferred when local post-impoundment seismic activity rises and falls in direct association with changes in water level. A strong association also is inferred when the initial impoundment of a reservoir is accompanied or quickly followed by an increase in seismic activity in the reservoir local area; the association is particularly strong if this occurs in an area previously considered to be seismically quiescent on the basis of the historical record. Conversely, when the postimpoundment seismicity occurs some time after the initial impoundment but exhibits no clear relationship to water level fluctuations, or when the spatial association of
post-impoundment seismicity to the reservoir is ambiguous, the case for RIS is considered to be weak.

The criteria adopted for this study do not distinguish between coincidental association of reservoirs and seismicity and the actual triggering of earthquakes by impoundment of a reservoir. However, the emphasis on temporal and spatial associations helps to minimize this problem. No specific tests were performed to evaluate the randomness of recognized associations. Accordingly, it was assumed that a case of RIS would be accepted if the seismicity was within the criteria defined for reservoir influence.

In the following section, four reservoirs or pairs of reservoirs having reported RIS are provided as examples to illustrate the evaluation procedure. These four examples were chosen because they reflect different levels of quality in the data, different kinds of RIS (macro versus micro), and different levels of confidence in the assessment of the influence of the reservoir on post-impoundment seismicity.

2.3.2 Four Selected Cases of Reported RIS

Kremasta/Kastraki - Kremasta reservoir and Kastraki reservoir (downstream from Rremasta) are located in southern Greece on the Acheloos River (Figure l-1). Kremasta reservoir began filling in July 1965, and Kastraki reservoir in January 1969 (see Appendix A). A plot of the historical macroseismicity of the area for the years 1912 to 1975 (Figure 2-1) indicates that the Kremasta/Kastraki area is one of moderate preimpoundment and high post-impoundment seismic activity. Pre-impoundment macroseismicity in the Kremasta/Kastraki region generally was located outside of the reservoir local area. Although seismograph coverage in the area was poor prior to mid-1965, most larger events ($M \geq 4.5$) were recorded
regional networks. Evaluations of felt reports near the dam sites indicate sparse local macroseismic activity prior to 1965 (Drakopoulos, 1974; Comninakis and others, 1969).

In August 1965, as part of an increased coverage by the Greek seismic network, a seismograph station was established on Rephallenia island, about 115 km from the Kremasta Dam (Comninakis and others, 1969). This station provided additional data on post-impoundment seismicity near Kremasta/Rastraki. Figure 2-2 illustrates the marked rise in macroseismic activity in early 1966 near Kremasta; many of these events occurred under the reservoir and were felt at the dam. This activity culminated in a main shock, ${ }^{M}$ L 6.3 , on 5 February 1966 (Comninakis and others, 1966). Following the aftershock sequence of this event, seismicity decreased to a level higher than pre-impoundment activity. Although it can be argued that the apparent increased level of seismicity reflects increased seismograph coverage rather than an actual increase in seismicity, the record of felt reports for the Kremasta/Rastraki area strongly indicates that macroseismicity for several years after impoundment was significantly more frequent than macroseismicity for the years prior to impoundment of Kremasta reservoir (Therianos, 1974; Drakopoulos, 1974).

Following the early 1969 impoundment of Kastraki reservoir, an increase in local macroearthquake activity was reported (Drakopoulos, 1974; Bozovic, 1974); however, this increase was less pronounced than that at Kremasta and is not clearly illustrated on ISC records (Appendix B; Figure 2-2). These post-impoundment events in the Kremasta/Rastraki area were adjacent to or under the reservoirs, whereas pre-impoundment seismicity was not located in the immediate vicinity of the reservoirs. The post-impoundment macroseismic activity is strongly spatially correlated with the reservoirs, and

EXPLANATION:

1 1. \(\left\{\begin{array}{l}(2)

(3)\end{array}\right\}\) (1) | (1) |
| :--- |
| (2) |
| Number of earthquakes within three radii of center of reservoir |
| (3) |

Note: Radius of 28.0 km for Kremasta reservoir Source: Water level histories from Bozovic (1974)

HISTOGRAM OF EARTHQUAKES	
AND WATER LEVEL HISTORIES	
VICINITY OF KREMASTA-KASTRAKI	
Greece	

particularly strongly related to initial impoundment. Subsequent post-impoundment macroseismic activity was not clearly correlated with changes in water level.

The Rephallenia seismograph station detected post-impoundment earthquakes in the Kremasta/Kastraki area with magnitudes as low as ML 2. The first small-magnitude local earthquakes at the Kremasta Dam were reported in August 1965, during initial impoundment. Larger earthquake swarms were recorded in December 1965 and January 1966, before the main shock on 24 January 1966 (Comninakis and others, 1969). The microearthquake activity is spatially correlated with the reservoir and with initial impoundment. Subsequent microseismic activity was not clearly correlated with changes in water level. Because of the clear influence of reservoir impoundment on both macroseismicity and microseismicity at Kremasta/Kastraki, this reservoir system is classified as an accepted case of RIS at both the macro and the micro levels.

Porto Colombia/Volta Grande - Porto Colombia and Volta Grande reservoirs are located in Minas Gerais, Brazil, on the Grande River, approximately 400 km northwest of Sao Paulo (Figure l-1). The region around these reservoirs is characterized by extremely low historical seismicity (Figure 2-3 and Appendix B). On 24 February 1974, subsequent to impoundment of Porto Colombia and during impoundment of Volta Grande, an earthquake occurred in the area around the reservoirs (Figure 2-4). Local reports placed the probable epicenter under or adjacent to the Porto Colombia reservoir (Brito, 1974). No other information on post-impoundment seismicity has been obtained. Although the general level of seismicity in the area remained extremely low subsequent to impoundment, the timing and location of the 24 February 1974 earthquake suggests inducement by reservoir impoundment. This event is considered a weak: but accepted case of macro RIS.

EXPLANATION:

Actual water level

- \sim Assumed water level
*Source: After de Oliveira and others (1976)

FILLING HISTORIES AND	
REPORTED EARTHQUAKE	
PORTO COLOMBIA-VOLTA GRANDE RESERVOIRS	
Brazil	

FILLING HISTORIES AND REPORTED EARTHQUAKE Brazil

Almendra - Almendra (or Tormes) reservoir is located in western Spain near the Portuguese border (Figure l-l), an area characterized by low historical seismicity (Figure 2-5 and Appendix E). A plot of macroseismic activity shows no change subsequent to impoundment (Figure 2-6). Post-impoundment macroseismicity is not spatially associated with the reservoir (Appendix B). Thus, the Almendra reservoir has had no influence on macroseismic activity in the area. Recent data on microseismic activity (Buforn and Udias, 1978) indicate a strong relationship between the impoundment of Almendra and microearthquake activity (Figure 2-7). Seismic monitoring of the area around Almendra between November 1971 and July 1972 indicated that microearthquake activity paralleled reservoir impoundment (Buforn and Udias, 1978). During rapid filling early in 1972, microearthquake activity increased, reaching a peak 45 days after the water level peaked (Figure 2-7). As the reservoir water level decreased, microseismic activity also lessened. All events were within 25 km of the dam; most were adjacent to or under the reservoir and had very shallow focal depths.

Although the period of microearthquake monitoring is limited, the study by Euforn and Udias (1978) indicates a strong correlation between the impoundment of the Almendra (Tormes) reservoir and microearthquake activity. Thus, Almendra is classified as an accepted case of micro RIS.

Sefid Rud - The Sefid Rud reservoir is located in northern Iran, 220 km west-northwest of Tehran (Figure 1-1). The region has moderate historical macroseismicity; regionally destructive earthquakes have occurred in 1119, 1167, 1639, and 1808 (Tchalenko and others, 1974). Since 1944, seismic events have occurred in scattered locations throughout the reservoir region (Figure 2-8).

EXPLANATION:

(1) Number of earthquakes within three radii of center of reservoir
(2) Number of earthquakes between one and three radii of center of reservoir
(3) Number of earthquakes within one radius of center of reservoir

Actual water level

- - Assumed water level

Note: Radius of 32.5 km for Almendra (Tormes) reservoir
Source: Filling history modified from Buforn and Udias (1978)

HISTOGRAM OF EARTHQUAKES AND FILLING HISTORY VICINITY OF ALMENDRA Spain	
Project No. 14087A Woodwrard-Clyde Consultants	
	Page 33 3

Source: Buforn and Udias (1978)

LOCAL SEISMICITY DURING IMPOUNDMENT ALMENDRA Spain	
Project No. 14087A Moodward-Clyde Conseritants	Fage 34

A comparison of the levels of macroseismicity before and after impoundment indicates no significant change (Figure 2-9). Macroseismic events that occurred in 1962 during impoundment were mainly located more than 50 km from the reservoir (Appendix B); the single closest event was a possible aftershock of a M 7.5 event that was located more than 80 km from the reservoir. The Sefid Rud reservoir, therefore, is considered to have had no influence on macroseismicity during its initial impoundment.

In 1968, several years after impoundment, a M 4.7 earthquake, having a focal depth of 36 km , was recorded near the reservoir (Figure 2-10 and Appendix B). However, no clear correlation has been observed between this event and fluctuations in the water level of the reservoir. Thus, Sefid Rud is considered a questionable case of macro RIS.

Massoud-Peyman (undated) discusses post-impoundment microseismicity at Sefid Rud. A seismograph station installed at the dam recorded an average of 120 low magnitude earthquakes per year within 100 km of the dam; however, locations for these events are not provided and therefore assessment of the spatial association of these events with reservoir impoundment is difficult. Furthermore, no clear correlation is observed between local earthquakes and water level changes (Figure 2-10). Therefore, because of the ambiguities in the data, Sefid Rud is considered a questionable case of micro RIS.

2.4 STATISTICAL ANALYSIS

2.4.1 Parameters Used for Statistical Analysis

From all the data compiled on all deep andor very large reservoirs, five parameters were chosen for statistical

Note: Radius of 35 km for Sefid Rud reservoir
Source: Water level history modified from Massoud-Peyman (undated)

HISTOGRAM OF EARTHOUAKES AND WATER LEVEL HISTORY VICINITY OF SEID RUD Iran		
Project No. 14087A Woodward-Clyde Consultants Figure 2-9 Page 37 l		

Source: After Massoud-Peyman (undated)

LOCAL EARTHQUAKES (1966-1971)	
AND WATER LEVEL FLUCTUATIONS	
SEFID RUD	
Iran	

analysis: maximum water depth, maximum water volume, type of regional stress, fault activity, and type of geology. These parameters were chosen because they may be significant factors in assessing the probability of reservoir induced seismicity and because abundant information on them was available (fault activity is an exception). Information on each of these parameters was gathered as described in the preceding sections: water depth was obtained from reports or was estimated; water volume was obtained from dam listings; regional stress regime was assessed either from focal mechanisms, faulting sense, or tectonics; and fault activity and geology were obtained from the literature. For statistical purposes, the geology of a reservoir local area was classified as sedimentary, igneous, or metamorphic, depending on the prevalent rock type.

2.4.2 Method of Study for Statistical Analysis

The five parameters utilized in the statistical analysis are termed statistical attributes of the reservoir. These attributes are denoted D, V, S, F, and G for depth, volume, stress regime, presence of active faulting, and geology, respectively. Attributes can have different states; for example, the depth attribute can have the states shallow, deep, or very deep. Therefore, state descriptions for each attribute are denoted by a lower case letter and subscript numeral (see Table 2-2). As an example, for depth D, state d_{1} means very deep, state d_{2} means deep, and state d_{3} means shallow. Furthermore, reservoirs were categorized into those with accepted induced seismicity (accepted RIS) and those with not-accepted RIS (including no report of RIS, not RIS, and questionable RIS).

The data were first examined to obtain relationships between single attribute states and the occurrence of RIS. Two data
TAPLE 2-2: NOTATION FOR PESERVOIR ATTRIBUTES, STATISTICAL ANALYSIS.
Attribute
DEPTH (D)
VOLUME (V)
STPESS STATE (S)
FAULT ACTIVITY
(F)
GEOLOGY (G)
sets were used: l) the set of reservoirs that are deep, very deep (maximum water depth greater than 150 m), and/or very large; and 2) the set of reservoirs that are deep or very deep. The first set contained 29 instances of accepted RIS and 205 instances of not-accepted RIS; the second set contained 28 instances of accepted RIS and 172 instances of not-accepted RIS. The number of occurrences of different states of each attribute are shown in Table 2-3 (A and B) for these two data sets. Numbers in parentheses indicate relative frequency of a particular attribute state. For instance, in the first data set, 10 of the 29 reservoirs with accepted RIS are categorized as very deep (state d_{1}). Therefore, the frequency of very deep reservoirs among reservoirs having accepted RIS is $10 / 29$ or 0.34 . In most of the subsequent analyses, most attention was directed at the second data set, containing only deep and very deep reservoirs.

For the first data set of reservoirs (deep, very deep, and/or very large), the frequency ("prior probability") of RIS, given no specific knowledge of the reservoir itself, is 0.12. Prior probability is the number of accepted RIS cases (29) divided by the total number of deep, very deep, and/or very large reservoirs, which is 234. The prior probability of notaccepted RIS at such a reservoir is the complement of 0.12 , or 0.88. For the second data set (deep and very deep reservoirs), the frequencies are 0.14 for RIS and 0.86 for not-accepted RIS.

For each attribute taken individually, a particular attribute state can be considered either not to occur or to occur. This corresponds to the Bernoulli model of probabilistic trials. The probability of "success" (i.e., the occurrence of a particular attribute state) is "p", and the probability of "failure" (i.e., that attribute state does not occur) is "l-p". Because of statistical fluctuation in data,

TABLE 2-3 (A): LIKELIHOODS OF ATTRIBUTE STATES FOP ACCEPTED RIS AND NOT-ACCEPTED RIS, BASED ON DEEP, VERY DEEP, AIJD/OR VERY LAPGE RESERVOIR DATA.

State

Number of Reservoirs \qquad
Accepted RIS ${ }^{\text {a }}$

| Depth | 29 | $10(0.34)$ | $18(0.62)$ | $1(0.03)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Volume | 29 | $7(0.24)$ | $11(0.38)$ | $11(0.38)$ |
| Stress State | 29 | $4(0.14)$ | $18(0.62)$ | $7(0.24)$ |
| Fault Activity | 7 | $7(1.00)$ | $0(0.00)$ | |
| Geology | 28 | $13(0.46)$ | $8(0.29)$ | $7(0.25)$ |

Not-Accepted PIS ${ }^{\text {a }}$

| Depth | 204 | $27(0.13)$ | $144(0.71)$ | $33(0.16)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Volume | 205 | $52(0.25)$ | $36(0.18)$ | $117(0.57)$ |
| Stress State | 203 | $34(0.17)$ | $138(0.68)$ | $31(0.15)$ |
| Fault Activity | 6 | $4(0.67)$ | $2(0.33)$ | |
| Geology | 165 | $57(0.35)$ | $64(0.39)$ | $44(0.26)$ |

[^0]TABLE 2-3 (B) LIKELIHOODS OF ATTRIBUTE STATES FOR ACCEPTED PIS AND IOT-ACCEPTED RIS, BASED ON DEEP AND VERY NEEP RESEP.VOIR DATA.

State

Number of
Reservoirs \qquad 2

Accepted RIS ${ }^{\text {a }}$

| Depth | 28 | $10(0.36)$ | $18(0.64)$ | 0 |
| :--- | ---: | ---: | ---: | ---: | :---: |
| Volume | 28 | $6(0.22)$ | $11(0.39)$ | $11(0.39)$ |
| Stress State | 28 | $4(0.14)$ | $18(0.64)$ | $6(0.22)$ |
| Fault Activity | 6 | $6(1.00)$ | $0(0.00)$ | |
| Ceology | 27 | $13(0.48)$ | $8(0.30)$ | $6(0.22)$ |

Not-Accepted RIS ${ }^{\text {a }}$

| Depth | 171 | $27(0.16)$ | $144(0.84)$ | 0 |
| :--- | ---: | ---: | ---: | ---: | :---: |
| Volume | 171 | $18(0.11)$ | $36(0.21)$ | $117(0.68)$ |
| Stress State | 171 | $33(0.19)$ | $109(0.64)$ | $29(0.17)$ |
| Fault Activity | 6 | $4(0.67)$ | $2(0.33)$ | |
| Geology | 143 | $44(0.31)$ | $60(0.42)$ | $39(0.27)$ |

[^1]estimates of the parameter, p , may vary from one data set to the next. To calculate the sampling variance, V, in estimates of p, the equation $p(l-p) / n$, where n is the number of data in the set, is used. (This equation is based on the model of independent trials.) Thus, for example, because 10 of the 29 reservoirs with accepted RIS are very deep, the best estimate of probability (denoted p) is 0.34 , and consequently, the best estimate of $l-\hat{p}$ is 0.66 . Since n is 29, the variance associated with this estimate of p is
$$
V[\hat{p}]=\frac{(0.34)(0.66)}{29}=0.0077
$$

The standard deviation, which is the square root of the variance, is 0.088.

Sampling variances for all the parameters of Table 2-3 are shown in Table 2-4. Because the present analysis is based on techniques of classical estimation, empty data cells yield estimates where \hat{p} equals zero. For example, for those seven accepted RIS cases having data on fault activity, all seven were "active" $\left(f_{1}\right)$. Therefore, $\hat{p}\left(f_{2} \mid R I S\right)=0$, and $V[\hat{p}]=0$. This is an aberation of the statistical techniques used; conclusions must be carefully drawn because of the small sample size.

To interpret Table 2-4, the RIS cases for very deep reservoirs can again be used as an example. The best estimate of the frequency of occurrence of the very deep RIS reservoirs is 0.34 , with a variance of 7.8×10^{-3}; the standard deviation associated with that estimate is 0.088. This means that if 34 percent of all very deep reservoirs induce seismicity, then the frequency in the sample would also be expected to be 34 percent, but with a possible standard deviation of 0.088 . More generally, if data were available on a very large number

TABLE 2-4: SAMPLINC VARIANCE OF ATTPIBUTE LIKELIHOODS. ${ }^{\text {a }}$

State

| 1 | 3 |
| :--- | :--- | :--- |

RIS Data $\left(x 10^{-3}\right)$

Depth	$7.8(8.2)$	$8.1(8.2)$	1.0
Volume	$6.3(5.9)$	$8.1(8.5)$	$8.1(8.5)$
Stress State	$4.2(4.3)$	$8.1(8.2)$	$6.3(6.1)$
Fault Activity	-	-	
Geology	$8.9(9.2)$	$7.4(7.8)$	$6.7(6.4)$

Not-Accepted PIS Data $\left(\times 10^{-3}\right)$

Depth	$0.56(0.78)$	$1.0(0.78)$	0.66
Volume	$0.92(0.55)$	$0.72(0.97)$	$1.2(1.3)$
Stress State	$0.70(0.90)$	$1.1(1.3)$	$0.63(0.85)$
Fault Activity	$37.0(37.0)$	$37.0(37.0)$	--
Geology	$1.4(1.5)$	$1.4(1.7)$	$1.2(1.4)$

[^2]of reservoirs, the frequency of very deep reservoirs among the RIS set would be between 0.34 minus one standard deviation and 0.34 plus one standard deviation (or from 0.25 to 0.43) with a probability of approximately 85 percent. (For large sample sizes, the sampling distribution of \hat{p} approaches Normality, and therefore, probabilities can be taken from tables of the Normal distribution.) A comparison of the variances of the accepted RIS with the not-accepted RIS cases in Table 2-4 shows that the variances of the not-accepted RIS cases are uniformly smaller. The reason for this is the much larger not-accepted RIS sample size.

2.4.3 Correlations Among Attributes

Statistical procedures were used to test whether apparent correlations among attributes were significant. In particular, correlations were examined for the six possible pairs of the four attributes (excluding faulting) which had sufficient data for significant tests. Because the correlations are based on the site being accepted RIS or notaccepted RIS, a total of 12 sets of data were used.

Table 2-5 is an illustration of the procedure used to examine correlation between attributes. For this example, the conditional probabilities of depth (D) and volume (V) for RIS cases for deep and very deep reservoirs are considered. (The term "conditional" will be taken as implicit when discussing probabilities unless otherwise noted; a conditional probability is the probability given the frequency of occurrence of a particular attribute state.) Because data are not available on all shallow reservoirs, this examination only considers the 28 deep and very deep accepted RIS cases (18 are deep and 10 are very deep). Consequently, the probability of a deep reservoir with accepted RIS is 18/28, and the probability of a very deep reservoir is 10/28. Similarly, for

TABLE 2-5: ILLUSTRATIVE TEST OF INDEPENDENCE BETWEEN TWO ATTRIBUTES, USING A CONTINGENCY TABLE, RIS DATA.

Volume

Depth		v_{3}	v_{2}	v_{1}	n_{1}
$\mathrm{~d}_{1}$	$4(3.93)$	$3(3.93)$	$3(2.14)$	10	
$\mathrm{~d}_{2}$	$7(7.07)$	$8(7.07)$	$3(3.86)$	18	
n_{j}	11	11	6	$\mathrm{~F}=28$	

NOTE: Numbers in parentheses are predicted occurrence of a given combination, assuming independence; numbers not in parentheses are observed occurrence.
$n_{i}=$ Observed total number in row
$n_{j}=$ Observed total number in column
this group of 28 RIS cases, the probability of a very large reservoir is $6 / 28$, of a large reservoir $11 / 28$, and of a small reservoir $11 / 28$. If depth and volume were unrelated, the probability of a reservoir being both very deep and very large would be $10 / 28$ times 6/28. Multiplying this amount by the number of reservoirs (28) gives 2.14, which would be the expected number of reservoirs which are both very deep and very large, given no correlation between the attributes. This number is shown in parentheses in Table 2-5, beside the original data.

To examine whether, in fact, a correlation exists, the observed cccurrences are tested for significant differences from the predicted occurrences assuming independence. One test method is with a Chi-squared (x^{2}) goodness-of-fit test. If the attributes were independent, the deviations observed from predicted frequencies could be predicted probabilisticaliy. Thus, the actual deviations can be compared to these predictions; if the attributes would have been very unlikely given independence, then the attributes were in fact correlated. One Chi-square test involves the quantity

$$
\begin{equation*}
y=-2 \log \left[\frac{\underset{i}{r}\left(n_{i}\right)^{n_{i}} \underset{j}{\frac{s}{\pi}\left(n_{j}\right)^{n_{j}}}}{\left(N^{N}\right) \prod_{i}^{r} \prod_{j}^{s}\left(n_{i j}\right)^{n_{i j}}}\right] \tag{1}
\end{equation*}
$$

where y is a "statistic" of the data,
$n_{i j}$ is the number of occurrences in cell ij of the table,
n_{i} is the number of occurrences along the row i, n_{j} is the number of occurrences along the column j,
N is the total number of occurrences,
r is the number of rows,
$s \quad$ is the number of columns.

If the attributes were independent, the quantity would be distributed as a Chi-squared distribution with [(r-1)(s-l)] degrees of freedom. Thus, the observed value of this statistic can be compared with published tables on x^{2} to obtain its probability of exceedance for independent attributes.

In the example for depth and volume (given RIS), Equation (1) is used to calculate the statistic y from the data in Table 2-6, and y is found to be 0.38. Two degrees of freedom are associated with this test; from a Chi-squared table, when χ^{2} has two degrees of freedom, it is less than 5.99 for 95 percent of the time. Hence, it is unlikely that a statistic of 0.38 will be obtained in this case. Fased on these discrete data, depth and volume are not strongly correlated for the RIS cases.

Chi-squared statistics for each attribute pair for both the accepted RIS and not-accepted RIS cases are shown in Table 2-6. Associated degrees of freedom are shown in parentheses. Based on these analyses, the data do not support conclusions of dependence between any attribute pair, for either the accepted RIS cases or the not-accepted RIS cases. The possible exception is depth/volume, and even this latter dependence is only weakly supported in the discrete data.

Woodward-Clyde Consultants

TABLE 2-6: TEST OF INDEPENDENCE IN CONTINGENCY TABLES.
x^{2} Statistics for Discrete Attribute Combinations ${ }^{\text {a }}$

Accepted RIS Cases
a Degrees of freedom associated with each test is indicated in parentheses (beside the associated statistic). A statistic greater than 9.49 is significant at the 95 percent level of confidence for four degrees of freedom, and a statistic greater than 5.99 is significant at that confidence level with two degrees of freedom.

Correlations of Depth and Volume from Pegression Analysis on Continuous Data

Accepted RIS Case Not-Accepted PIS Case

$$
\begin{aligned}
& 0.07 \text { for } 28 \text { reservoirs } \\
& t_{26}=0.36 \\
& \text { not significant at } 95 \%
\end{aligned}
$$

$$
\begin{aligned}
& 0.22 \text { for } 172 \text { reservoirs } \\
& t_{170}=2.94 \\
& \text { significant at } 95 \%
\end{aligned}
$$

Unlike data for the other attributes, data on depth and volume for the 200 deep or very deep reservoirs were available as continuous variables. Regression analyses were performed to examine whether correlations between depth and volume were masked by the assignment to discrete categories of deep or very deep, and small, large, or very large reservoirs (see Table 2-6). The results indicate weak correlations in both the accepted RIS and not-accepted RIS cases. The correlation coefficient between depth and the logarithm of volume for the RIS case was 0.07 and for the not-accepted RIS case was 0.22. Given the respective size of the data sets, 28 and 172 , only the correlation for the not-accepted RIS case is significant at the 95 percent level.
2.4.4 Relationship of RIS Microseismicity and Macroseismicity

In this section, microseismicity refers to sites which have had local RIS but no major events reported in worldwide catalogs. Macroseismicity refers to sites which have had RIS events, usually with magnitude greater than 3 , reported by ISC or NOAA. The purpose here is to ascertain if a difference in attributes exists between sites which have had only microseismicity and those which have had macroseismicity. Chi-squared tests, similar to those above, were used. In particular, six pairs of data (faulting was excluded because of lack of data) for the macroseismicity sites were compared to the respective sets of data for the microseismicity sites. In Table 2-7, the Chi-squared test is illustrated to examine whether the depth/volume relationship is different for the macroseismicity and microseismicity sites. The Chi-squared statistics on all attribute correlations and associated degrees of freedom are reported in Table 2-8. None of the differences are significant at the 90 percent confidence level.

TABLE 2-7: ILLUSTPATION FOR DEPTH/VOLUME CORRELATION OF MACPOSEISMIC VERSUS MICPOSEISMIC EVENTS.

Macroseismic
$\begin{array}{llll}d_{1} & 1 & 0 & 3 \\ d_{2} & 4 & 7 & 3 \\ d_{3} & 5 & 2 & 1\end{array}$
$\begin{array}{lll}v_{3} & v_{2} & v_{1}\end{array}$

Microseismic

$\begin{array}{lll}v_{3} & v_{2} & v_{1}\end{array}$

$$
\sum_{i} \sum_{j} \sum_{k} \frac{\left(n_{i j k}-N_{k} p_{i} p_{j}\right) 2}{N_{k} p_{i} p_{j}} \sim / x^{2}(r-1)(s-1)^{2}
$$

where:

```
r = number of rows
s = number of columns
k = I for macroseismic data
k = 2 for microseismic data
```

$n_{i j k}=$ number of occurrences in cell ij, table k
$p_{i}=\sum_{k} \sum_{j} \frac{n_{i j k}}{N}=\begin{gathered}\text { fraction of all data in all tables } k \\ \text { that have attribute state } i .\end{gathered}$
$p_{j}=\sum_{k} \sum_{i} \frac{n_{i j k}}{N}=\begin{gathered}\text { fraction of all data in all tables } k \\ \text { that have attribute state } j\end{gathered}$
$N_{k}=$ number in data table
$N=$ total number in both tables

Reference: Kenda11, M. G., and Stuart, A., 1973, The Advanced Theory of Statistics: Hafner, London, Third Edition, v. 2.

TABLE 2-8: X^{2} FOR MACROSEISMIC VERSUS MICROSEISMIC DATA. ${ }^{\text {a }}$

	χ^{2} depth - volume depth - stress depth - faulting depth - geology
	11.04
volume - stress	(b)
volume - faulting	9.69
volume - geology	7.96
	(b)
stress - faulting	9.64
stress - geology	(b)
faulting - geology	6.52
	(b)

[^3]
2.4.5 Shallow Compared to Deep and Very Deep RIS Reservoirs

The attributes associated with shallow reservoirs with accepted RIS were compared to those associated with deep and very deep reservoirs with accepted RIS. Chi-squared statistics for pairs of attributes involving volume, stress, and geology were calculated. Faulting was not analyzed because of the lack of data. Corresponding data tables, showing Chi-squared statistics and associated degrees of freedom, for the various pairs of attributes are presented in Table 2-9. The only significant distinction between shallow RIS and deep/very deep RIS reservoirs is the volume and stress pair of attributes, which is significant at the 95 percent confidence level.

2.5 A PRELIMINARY STATISTICAL MODEL OF RESERVOIR INDUCED SEISMICITY

From the statistical data base, a preliminary model to predict the likelihood of reservoir induced seismicity, based upon various attribute states, can be provided. For this study, the term "prior probability" refers to the likelihood of the occurrence of RIS out of all the reservoirs considered, and "conditional probability" means the probability of RIS occurring at a reservoir characterized by particular attribute states.

The probability of RIS for a reservoir categorized by the state of only one attribute was first analyzed. The association of different states of each attribute as they individually relate to the occurrence of RIS was examined. In order to calculate the probability of RIS for the states of all attributes, this information was first combined in a model that assumes probabilistic independence of the attributes. Because of the correlation between depth and volume implied by

TABLE 2-9: SHALLOW COMPARED TO DEEP AND VERY DEEP RIS RESERVOIRS.

```
Shallow Reservoirs Deep/Very Deep Peservoirs
```

s_{3}	0	1	2
s_{2}	4	2	1
s_{1}	0	2	1
	g_{1}	g_{2}	g_{3}

$$
\begin{array}{lll}
\mathrm{g}_{1} & \mathrm{~g}_{2} & \mathrm{~g}_{3}
\end{array}
$$

$$
\begin{aligned}
\chi^{2} & =10.55 \\
\chi^{2}(90 \%) & =13.4 \\
\chi^{2}(95 \%) & =15.5
\end{aligned}
$$

$$
\begin{array}{lll}
\mathrm{g}_{1} & \mathrm{~g}_{2} & \mathrm{~g}_{3}
\end{array}
$$

$$
\begin{aligned}
x^{2} & =7.32 \\
x^{2}(90 \%) & =13.4 \\
x^{2}(95 \%) & =15.5 \\
& \\
& =20.28 \\
x^{2} & \\
x^{2}(90 \%) & =13.4 \\
x^{2}(95 \%) & =15.5
\end{aligned}
$$

(continued)

TABLE 2-9: (continued)

Single Attribute Differences

	Shallow	Deep/Very Deep			
s_{1}	3	4			
s_{2}	7	16	x^{2}		$=0.42$
s_{3}	3	5	x^{2}	(90\%)	$=7.8$
v_{3}	8	9			
v_{2}	4	9	χ^{2}		$=3.44$
v_{1}	1	7	x^{2}	(90\%)	$=7.8$
g_{1}	4	12			
g_{2}	5	6	χ^{2}		$=1.38$
g_{1}	4	7	χ^{2}	(90\%)	$=7.8$

the analyses shown in Section 2.4.3 of this report, models were also developed for estimating the probability of RIS given this dependence. In particular, two specific dependent cases were analyzed: one based on correlation between discrete depth and volume, and the other based on correlations between continuous depth and volume. Finally, all three models--the independent model, the discrete dependent model, and the mixed discrete/continuous model--were used for typical calculations for reservoir induced seismicity.
2.5.1 Single Attribute Analysis

If the state of one attribute, such as depth, is known, then the conditional probability of RIS can be calculated by using Bayes' Theorem:

$$
\begin{equation*}
P\left(R I S \mid d_{i}\right)=\frac{P(R I S) P\left(d_{i} \mid R I S\right)}{P(R I S) P\left(d_{i} \mid R I S\right)+P(\overline{R I S}) P\left(d_{i} \mid \overline{R I S}\right)} \tag{2}
\end{equation*}
$$

where \begin{tabular}{ll}
d_{i} \& is the depth,

$P(R I S)$ \& is the prior probability (frequency) of an

\& | accepted RIS case, |
| :--- |

$P(\overline{R I S})$ \& | is the prior probability of a not-accepted |
| :--- |
| $P I S ~ c a s e, ~$ |

$P\left(d_{i} \mid \overline{R I S}\right)$ \& | is the conditional probability of depth d_{i} |
| :--- |
| for an accepted RIS case and, |
| is the conditional probability of d_{i} for a |
| not-accepted RIS case. |

\end{tabular}

For the 234 deep, very deep and/or very large reservoirs, the prior probability $P(R I S)$ of reservoir induced seismicity is $29 / 234$ or 0.12 . Consequently, the prior probability of notaccepted RIS $[P(\overline{R I S})]$ is 0.88 . U'sing this and the data in Table $2-3$, the conditional probability of RIS, given any
specific state of a single attribute, can be calculated. As an illustration, a very deep reservoir (State $d_{i}=d_{1}$) can be used. Equation (2) then becomes

$$
\begin{align*}
P\left(R I S \mid d_{1}\right) & =\frac{P(R I S) P\left(d_{1} \mid R I S\right)}{P(R I S) P\left(d_{1} \mid R I S\right)+P(\overline{R I S}) P\left(d_{1} \mid \overline{R I S}\right)} \\
& =\frac{(0.12)(0.34)}{(0.12)(0.34)+(0.88)(0.13)} \\
& =0.26 \tag{3}
\end{align*}
$$

The number 0.26 is the conditional probability of RIS for a very deep reservoir. All other conditional probabilities for RIS are shown in Table 2-10. From this table, it appears that the main attribute indicating whether a particular reservoir has potential for RIS is depth. Volume is the next most indicative attribute. The stress and geology attributes are not nearly as strong indicators, since the conditional probabilities of these attributes for RIS and not-accepted RIS are rather similar. Sufficient data are not available to give statistical meaning to any conditional probability for the faulting attribute states.

2.5.2 Multiattribute Model

The multiattribute model, which is analogous to Equation (2), considers all attributes simultaneously:

$$
\begin{align*}
& P(R I S \mid d, v, s, f, g)=\frac{P(R I S) P(d, v, s, f, g \mid R I S)}{P(R I S) P(d, v, s, f, g \mid R I S)+P(\overline{R I S}) P(d, v, s, f, g \mid \overline{R I S})} ; \tag{4}
\end{align*}
$$

$P(R I S) P(d, v, S, f, g \mid R I S)$
$P(R I S \mid d, v, s, f, g)=$

$$
\begin{equation*}
P(R I S) P(d, v, s, f, g \mid R I S)+P(\overline{R I S}) P(d, v, s, f, g \mid \overline{P I S}) ; \tag{5}
\end{equation*}
$$

TABLE 2-10: CONDITIONAL PROBABILITIES OF RIS FOR ONLY ONE ATTRIBUTE. ${ }^{a}$

State

Attribute	1	2	3
Depth	$0.27(0.24)$	$0.11(0.10)$	$0.03(0)$
Volume	$0.12(0.22)$	$0.23(0.21)$	$0.09(0.07)$
Stress State	$0.10(0.11)$	$0.12(0.14)$	$0.18(0.17)$
Fault Activity	$0.18(0.20)$	$0.00(0.00)$	--
Geology	$0.16(0.20)$	$0.10(0.10)$	$0.12(0.12)$

[^4]where $P(R I S \mid d, v, S, f, g)$ is the conditional probability of RIS given the combination of states d, v, s, f, g. Dividing Equation (4) by Equation (5) yields
\[

$$
\begin{equation*}
\frac{P(R I S \mid d, v, s, f, g)}{P(\overline{R I S} \mid d, v, s, f, g)}=\frac{P(R I S) P\left(d, v, s, f,\left.g\right|_{R I S}\right)}{P(\overline{R I S}) P(d, v, s, f, g \mid \overline{R I S})} \tag{6}
\end{equation*}
$$

\]

The statement of Equation (6) is "the conditioned odds of RIS equals the prior odds of RIS, multiplied by the likelihood ratio for the given states." Equations (4) and (6) are the bases for all the models that predict the likelihood of RIS.

2.5.3 Preliminary Model of RIS Assuming Probabilistic Independence

Assuming probabilistic independence among all attributes, the conditional probabilities of Equations (4) and (6) become, respectively,

$$
\begin{equation*}
P\left(d, v, s, f,\left.g\right|_{R I S}\right)=P\left(\left.d\right|_{R I S}\right) P\left(v | _ { R I S } P \left(\left.s\right|_{R I S} P\left(\left.f\right|_{R I S}\right) P\left(\left.g\right|_{R I S}\right)\right.\right. \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
P(d, v, s, f, g \mid \overline{\mathrm{RIS}})=P(d \mid \overline{\mathrm{PIS}}) P(v \mid \overline{\mathrm{RIS}}) P(\mathrm{~s} \mid \overline{\mathrm{RIS}}) P(f \mid \overline{\mathrm{RIS}}) P(g \mid \overline{\mathrm{RIS}}) \tag{8}
\end{equation*}
$$

The terms such as $P(d \mid R I S) / P(d \mid \overline{\text { RIS }})$ are referred to as individual likelihood ratios, which are calculated from Table 2-3 and displayed in Table 2-11. To use the independent model, the information from Table 2-11, along with the prior probabilities of accepted RIS and not-accepted RIS, is substituted into Equations (7) and (8) and then into either Equation (4) or Equation (6). Examples are included at the end of this section.

TABLE 2-11: LIKELIHOOD PATIOS - INDEPENDENT CASE. ${ }^{\text {a }}$

State

	1	2	3
Depth	$2.62(2.26)$	$0.87(0.76)$	0.21
Volume	$0.95(2.04)$	$2.15(1.87)$	$0.66(0.57)$
Stress	$0.82(0.74)$	$0.91(1.00)$	$1.58(1.29)$
Fault Activity	$1.50(1.50)$	$0.00(0.00)$	--
Geology	$1.34(1.55)$	$0.74(0.71)$	$0.94(0.81)$

a The likelihood ratios (in parentheses) are based on deep and very
deep reservoir data only.

If different subsets of the data are considered, for example deep and very deep instead of deep, very deep, and/or very large, both the prior probabilities and likelihood ratios change. However, except for the cells in the data matrix which are added or removed, the prior probabilities and likelihood ratios change such that the final result is unchanged (as can be seen in Table 2-10). This is not necessarily true in the dependent case.

2.5.4 Models of RIS Assuming Dependence Between Depth and Volume

A model, very similar to that above, was developed for volume and depth as not probabilistically independent. Therefore,

$$
\begin{equation*}
P(d, v, s, f, g \mid R I S)=P(d, v \mid R I S) P(s \mid P I S) P(f \mid R I S) P(g \mid R I S) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
P(d, v, s, f, g \mid \overline{R I S})=P(d, v \mid \overline{R I S}) P(s \mid \overline{R I S}) P(f \mid \overline{R I S}) P(g \mid \overline{R I S}) \tag{10}
\end{equation*}
$$

where $P(d, v \mid R I S)$ means the joint probability of certain values of depth and volume, given that RIS occurred.

For the discrete case, this information can be estimated directly from the data sets. For instance, for the 29 cases of accepted RIS, 3 cases were both very deep and large (i.e., $D=d_{1}$ and $V=v_{2}$). Thus, the conditional probability of this combination for RIS is estimated as $3 / 29$ or 0.11 . In a similar manner, the conditional probability of a very deep and large reservoir in a not-accepted RIS case is estimated as $11 / 204$ or 0.06 . The likelihood ratio for the d_{1}, v_{2} combination is the ratio of these numbers. This ratio and the likelihood ratios of all volume and depth combinations are shown in Table 2-12.

TARLE 2-12: LIKELIHOOD RATIOS - DEPENDENT CASE.

Discrete Case - Depth and Volume ${ }^{\text {a }}$

	Volume		
Depth very deep	Small	Large	Very Large
deep	$2.56(2.22)$	$1.92(1.67)$	$4.22(3.66)$
shallow	$0.46(0.40)$	$2.25(1.95)$	$1.62(1.41)$
	$-\infty$	-	0.21

Continuous Case: Depth and Volume ${ }^{\text {b }}$
$\operatorname{LP.(d,v)=} \begin{aligned} & f_{N}\left(d, v \mid \mu_{d}=141, \mu_{v}=3.21 ; \sigma_{d}=48.8, \sigma_{v}=1.0, \rho=0.2\right) \\ & f_{N}\left(d, v \mid \mu_{d}=124, \mu_{v}=2.78 ; \sigma_{d}=26.8, \sigma_{v}=0.88, \rho=0.2\right)\end{aligned}$

Both Cases: Stress, Faulting, and Geology ${ }^{\text {a }}$

State

	1	2	3	
	Stress	$0.82(0.74)$	$0.91(1.0)$	$1.58(1.29)$
Faulting	$1.50(1.50)$	0	(0.0)	--
Geology	$1.34(1.55)$	$0.74(0.71)$	$0.94(0.81)$	

[^5] reservoir data set.
${ }^{b} f_{n}(\cdot \mid \cdot)$ indicates a Normal distribution with parameters as given, following the bar. These parameters are the following:
\[

$$
\begin{aligned}
& \mu_{d}=\text { Mean of depth } \\
& \mu_{v}=\text { Mean of volume } \\
& \sigma_{d}=\text { Standard deviation, depth } \\
& \sigma_{v}=\text { Standard deviation, volume } \\
& \rho=\text { Correlation coefficient }
\end{aligned}
$$
\]

Equations (9) and (10) are useful for calculating the probability of reservoir induced seismicity from discrete, although dependent, information on volume and depth. A similar model was developed for volume and depth as continuous variables. For the deep and very deep reservoirs, regression models were run for both the accepted RIS and not-accepted RIS cases to fit bivariate, normal distributions, based upon dependence between the two attributes. Using these two distributions, the relative likelihood ratio of the occurrence of a particular d and v pair for the accepted RIS and notaccepted RIS cases can be obtained. This likelihood ratio is $\operatorname{LR}(v, d)$, which is also given in Table 2-12. The likelihood ratio from the continuous data in Equation (6) can be used to calculate the relative conditional probabilities of accepted RIS versus not-accepted RIS for a particular reservoir. Because these probabilities must sum to one, it is easy to calculate the conditional probability of RIS from this information.

2.5.5 Typical Calculations for the Probability of Reservoir Induced Seismicity

The likelihood Equation (6) can be used to calculate the probability of RIS for all three models: the independent model, the discrete dependent model, and the mixed discrete/continuous dependent model. Two examples are provided to illustrate the technique.

1) A very deep, large reservoir is in an extensional stress field; active faulting is present, and metamorphic geology is characteristic of the reservoir area. Notationally this corresponds to a designation of $\left(d_{1}, v_{2}, s_{1}, f_{1}, g_{2}\right)$. For the independent model, the data from Table 2-11 can be substituted into Equation (6) to calculate the conditional probability of reservoir induced seismicity, which is 0.35. Using the
discrete dependent model, data from Table 2-12 are applied to Equations (9) and (10) then into Equation (6) to find that the conditional probability of reservoir induced seismicity for example one is 0.17. For the continuous model for depth and volume (assumed depth of 183 m and a volume of $30 \times 10^{8} \mathrm{~m}^{3}$), the likelihood ratio in Table 2-12 is substituted into Equation (6), and the conditional probability of reservoir induced seismicity for this first example is found to be 0.32. The basic data for all three of these calculations are shown in Table 2-13. These conditional probabilities are the same for both data sets as changes in the attribute likelihood ratios are compensated by changes in the prior probabilities.

To assess the accuracy of the estimate of 0.35 for the probability of RIS in this first example (independent case), a sampling variance of the estimate has been calculated (Table 2-14). The corresponding standard deviation is 0.14, which implies that the estimate is not precise. The procedure for calculating the sampling variance of the estimate of probability of RIS is as follows. The sampling of each marginal likelihood can be calculated from the Bernoulli model:

$$
v\left[p_{i}\right]=\widehat{p}\left(1-p_{i}\right) / n
$$

where $\widehat{\mathrm{p}}_{\mathrm{i}}$ is the estimate of the probability of attribute level i, given RIS. These estimates are propagated through Bayes' Theorem for estimating the conditional probability of RIS for the various attribute values. Because the uncertainty in the estimates are multiplied, the aggregate uncertainty increases over the uncertainty in any one likelihood.
2) The second example is a deep and large reservoir having extensional stress, active faulting, and sedimentary geology. The predicted likelihood for the occurrence of RIS was

TABLE 2-14: SAMPLING VARIANCE: EXAMPLE ONE, DISCRETE MODEL ${ }^{\text {a }}$

Variance of Attribute Likelihoods

Attribute		Variance
very deep	8.2×10^{-3}	
large	8.5	0.25
laticient of Variation (COV)		
extensional	4.3	0.23
active	-	0.46
metamorphic	7.8	
		0.30

Variance of Numerator and Demoninator ${ }^{\text {b }}$

$$
\begin{aligned}
& \hat{\mathbf{P}}=\hat{\mathbf{p}}^{\circ} \text { (aIS) } \hat{\mathrm{L}}\left(\mathrm{~d}_{1} \mid \text { aIS }\right) \hat{\mathrm{L}}\left(\mathrm{v}_{2} \mid \text { RIm }\right) \hat{\mathrm{L}}\left(\mathrm{~s}_{1} \mid \text { RmS }\right) \hat{\mathrm{L}}\left(\mathrm{~g}_{2} \mid \text { RISk }\right) \\
& \hat{\mathrm{Q}}=\hat{\mathrm{p}}^{0}(\overline{\mathrm{RIS}}) \hat{\mathrm{L}}\left(\mathrm{~d}_{1} \mid \overline{\mathrm{RIS}}\right) \hat{\mathrm{L}}\left(\mathrm{v}_{2} \mid \overline{\mathrm{RIS}}\right) \hat{\mathrm{L}}\left(\mathrm{~s}_{1} \mid \overline{\mathrm{RIS}}\right) \hat{\mathrm{L}}\left(\mathrm{~g}_{2} \mid \overline{\mathrm{RIS}}\right) \\
& \operatorname{cov} \hat{\mathrm{P}}=\left\{\operatorname{cov}^{2} \hat{\mathrm{P}}^{0}+\operatorname{cov}^{2} \hat{\mathrm{~L}}_{\mathrm{d}}+\operatorname{cov}^{2} \hat{\mathrm{~L}}_{\mathrm{v}}+\operatorname{cov}^{2} \hat{\mathrm{~L}}_{\mathrm{s}}+\operatorname{cov}^{2} \hat{\mathrm{~L}}_{\mathrm{g}}\right\}=0.67 \\
& \operatorname{cov} \hat{Q}=\left\{\operatorname{cov}^{2} \hat{\mathrm{q}}^{0}{ }^{0}+\operatorname{cov}^{2} \hat{\mathrm{~L}}_{\mathrm{d}^{\prime}}+\operatorname{cov}^{2} \hat{\mathrm{~L}}_{\mathrm{v}^{\prime}}+\operatorname{cov}^{2} \hat{\mathrm{~L}}_{\mathrm{s}^{\prime}}{ }^{\prime}+\operatorname{cov}^{2} \hat{\mathrm{~L}}_{\mathrm{g}^{\prime}}\right\}=0.30 \\
& \text { where, } \hat{\mathrm{p}}^{0}=\hat{\mathrm{p}}^{0}(\text { aIS }) ; \hat{\mathrm{q}}^{0}=\hat{\mathrm{p}}^{0}(\overline{\text { RIm }}) ; \hat{\mathrm{L}}_{\mathrm{d}}=\mathrm{L}(\mathrm{~d} \mid \text { aIS }) \text {; and } \hat{\mathrm{L}}_{\mathrm{d}},=\mathrm{L}(\mathrm{~d} \mid \overline{\mathrm{RIS}}) \\
& \begin{aligned}
C(\hat{P}+\hat{Q}) & =C\left(\hat{\mathrm{P}}^{0}, \mathrm{q}^{0}\right) \cdot \hat{\mathrm{L}}_{\mathrm{d}} \cdot \hat{\mathrm{~L}}_{\mathrm{L}} \cdot \hat{\mathrm{~L}}_{\mathrm{s}} \cdot \hat{\mathrm{~L}}_{\mathrm{L}} \cdot \hat{\mathrm{~L}}_{\mathrm{d}} \cdot \hat{\mathrm{~L}}_{\mathrm{V}}+\cdot \hat{\mathrm{L}}_{\mathrm{s}} \cdot \cdot \hat{\mathrm{~L}}_{\mathrm{g}} \\
\mathrm{~V}(\hat{\mathrm{P}}) & =2.7 \times 10^{-7}
\end{aligned} \\
& V(\hat{Q})=3.1 \times 10^{-7} \\
& (\hat{P}, \hat{Q})=7.3 \times 10^{-9} \text {, where } C(\hat{P}, \hat{Q}) \text { is the covariance of } \hat{P} \text { and } \hat{Q} \text {. }
\end{aligned}
$$

Estimator Väriance

$$
\begin{aligned}
\hat{P} r(R I S) & =\hat{P} /(\hat{P}+\hat{Q}) \\
V(\hat{P} r) & =\left\{(\hat{\mathrm{P}}+\hat{\mathrm{Q}})^{-1}-\hat{\mathrm{P}} /(\hat{\mathrm{P}}+\hat{\mathrm{Q}})^{2}\right\}^{2} \cdot V(\hat{\mathrm{P}})+\left\{\hat{\mathrm{P}} /(\hat{\mathrm{P}}+\hat{\mathrm{Q}})^{2}\right\}^{2} \cdot V(\hat{\mathrm{Q}}) \\
& =2.3 \times 10^{-2}+\left\{(\hat{\mathrm{P}}+\hat{\mathrm{Q}})^{-1}-\hat{\mathrm{P}} /(\hat{\mathrm{P}}+\hat{\mathrm{Q}})^{2}\right\}\left\{\hat{\mathrm{P}} /(\hat{\mathrm{P}}+\hat{\mathrm{Q}})^{2}\right\} \cdot C(\hat{\mathrm{P}}, \hat{\mathrm{Q}}) \\
\sigma(\hat{\mathrm{Pr}}) & =0.15
\end{aligned}
$$

${ }^{\text {a Analysis }}$ for deep and very deep data set.
$b_{\text {Reference: }}$ Kendall and Stuart, 1973 (cf. Table 2-7).

TABLE 2-13: DATA USED FOR EXAMPLE ONE CALCULATIONS. ${ }^{a}$

Likelihood Ratio

CONDITIONAL ODDS RATIO:

- Prior odds ratio $=0.14 / 0.86=0.16$
- Conditional odds ratio:

$$
\begin{aligned}
\text { independent } & =0.16 \times 3.33=0.53 \\
\text { dependent discrete } & =0.16 \times 1.32=0.21 \\
\text { dependent mixed } & =0.16 \times 2.93=0.47
\end{aligned}
$$

- Conditional Probability of PIS:

$$
\begin{aligned}
\text { independent } & =0.53 / 1.53=0.35 \\
\text { dependent discrete } & =0.21 / 1.21=0.17 \\
\text { dependent mixed } & =0.47 / 1.47=0.32
\end{aligned}
$$

[^6]examined and is indicated in Table 2-15. The characteristics of those reservoirs corresponding to the least likely and most likely to be associated with RIS are also indicated in Table 2-15. The calculations illustrate the range of probabilities that can be generated by these models.

2.6 INTERPREMATION AND APPRAISAL

2.6.1 Interpretation of the Results

Several observations can be made from the results of this statistical analysis. First, depth appears to be the most discriminating attribute among the five attributes studied (Table 2-10). (The data set for this analysis does not accurately reflect the conditional probability for RIS at shallow reservoirs; only shallow reservoirs that are also very large were considered. If all 13,000 or more shallow reservoirs were considered, the conditional probability for RIS at a shallow reservoir would be near zero.)

The next best attribute for distinguishing between accepted RIS and not-accepted RIS cases appears to be reservoir volume. Only very large reservoirs were considered completely; if all large and small reservoirs were considered, the appropriate conditional probabilities would be much lower (see StuartAlexander and others, 1979). The reason for the higher conditional probability of RIS for large reservoirs, as compared to very large reservoirs (Table 2-10), is that the only large reservoirs analyzed in this study are those that are deep or very deep, while all very large reservoirs were analyzed. If the 33 very large but shallow reservoirs are excluded from the data set, the conditional probability of RIS for a very large reservoir becomes 0.22 , instead of 0.12 .
TABLE 2-15: SAMPLE CALCULATIONS FOR EXAMPLE 2, BEST CASE AND WORST CASE.

	Example Two (deep ${ }^{\text {a }}$, large, extentional, active, sedimentary)		Best Case (deep ${ }^{\text {a }}$, small, extentional no activity, metamorphic)		Worst Case (very deep ${ }^{\text {a }}$, very large, shear, active, sedimentary)	
	independent	discrete dependent	independent	discrete dependent	independent	discrete dependent
Depth	0.76		0.76		2.26	
		1.95		0.40		3.66
Volume	1.87		0.57		2.04	
Stress	0.74	0.78	0.78	0.78	1.29	1.29
Faulting	1.50	1.50	(b)	(b)	1.50	1.50
Geology	1.55	1.55	0.71	0.71	1.55	1.55
Cumulative Product	$=2.45$	3.55	0.24	0.22	13.8	11.0
Prior Odds Ratio	0.16	0.16	0.16	0.16	0.16	0.16
Conditonal Odds Ratio	0.40	0.58	0.04	0.04	2.26	1.80
Conditional Probability of RIS	0.29	0.37	0.04	0.03	0.69	0.64

[^7]Empty data cell has likelihood ratio of zero. Because this calculation is based on a very small data set, the likelihood ratio is assumed to be 1.0 .

The continuous analysis of depth and volume revealed a weak correlation between these attributes for not-accepted RIS sites. No other significant correlations have been observed. Accordingly, the continuous/discrete statistical model is the strongest of the three predictive models because it includes the dependence between depth and volume.

Very little can be concluded statistically about the relevance of the attribute of active faulting because few data were gathered on the presence of active faults near reservoirs and because of the difficulty in assessing fault activity at many sites where no specific fault studies have been conducted. As a final observation on the statistical analysis, a cause and effect relationship should not be assumed between the attributes studied and the likelihood of reservoir induced seismicity.

2.6.2 Appraisal of the Data and Sensitivity Analysis

The size of the data set has a major impact on the significance of the results. Many of the conclusions in this study were drawn from a set of 234 reservoirs, 29 of which are accepted cases of reservoir induced seismicity. Although this total size is fairly large, 162 (3 x 3 x 3 x 2 x 3) possible combinations of attribute states means that the information about various combinations of attribute levels is quite sparse. This situation is particularly acute when only 29 reservoirs are considered. Also, because of the magnitude of the data collection problem, more than 13,000 reservoirs, which are neither deep, very deep, nor very large, were excluded from this study.

The classification of the characteristics at each reservoir requires professional judgment of the available data. Additional data on site-specific conditions may prove some of
these judgments inaccurate. For some attributes, changes in only a few reservoir classifications, particularly for the accepted RIS cases, can have a significant impact on the predictive model. The following example, using data from Table 2-3(A), illustrates the sensitivity of the results to changes in the data.

If three of the RIS reservoirs were transferred from shear status (state s_{3}) to extensional status (state s_{1}), the conditional probabilities for shear and extensional stress regimes, given RIS, would become 0.11 and 0.17 , respectively (cf. mable 2-10). Such a change would reverse the conclusions drawn from the data, making an extensional stress regime the most likely to be associated with RIS, rather than shear.

The choice of cutoff levels for depth and volume also can influence the results of discrete analyses. Table 2-16 illustrates the changes in conditional probabilities if the cutoff of very deep reservoirs were chosen at 175 m instead of 150 m . The $175-\mathrm{m}$ cutoff was selected as an alternative because many of the reservoirs with depths between 150 m and 175 m are not-accepted RIS cases.

Whether or not a reservoir is classified as a case of accepted RIS will affect the analysis. For example, if ten reservoirs now classified as accepted RIS were reclassified as notaccepted RIS, all the estimated probabilities for RIS using Equation (4) would be reduced by approximately one-third. Conversely, if ten of the not-accepted RIS cases were changed to accepted RIS, the resulting 30 percent increase in the RIS data base could change much of the significance in correlations observed in this study.

The limitation in the size of the data set and the sensitivity of the analysis to changes in data values require that this

TABLE 2-16: SENSITIVITY ANALYSIS OF DEFINITIONS FOR DEPTH STATES. ${ }^{\text {a }}$

	State			
	Number of Reservoirs	Deeper than 175 m	92 to 175 m	Less than 92 m
RIS data	29	8	20	1
RIS likelihood		0.28	0.69	0.03
Not-accepted RIS data	204	12	159	33
Not-accepted PIS likelihood		0.06	0.78	0.16
Likelihood ratio	4.69	0.88	0.21	
Conditional probability				
of RIS				

a Alternative definition chosen for very deep.
analysis be considered preliminary. The statistical models either consider all attributes to be independent or allow a dependence between depth and volume, assuming independence among the pair and each of the other attributes. More data or more accurate site-specific data could indicate dependence among other attributes. Such changes in recognized dependencies could then be incorporated into the general statistical model for assessing the likelihood of occurrence of reservoir induced seismicity.

2.7 ADDITIONAL OBSERVATIONS

In addition to the results of the statistical evaluation and categorization of reported cases of reservoir induced seismicity, observations of several other aspects of RIS can be made from the data. A plot of the time between the start of impoundment and the first suspected RIS event shows that nearly two-thirds (29 out of 45) of the accepted cases of RIS had suspected RIS during the first year (Figure 2-11). A similar pattern (10 out of 28) can be observed for accepted cases of RIS at deep and/or very large reservoirs.

A comparison of the time between impoundment and the first suspected RIS event to the time between impoundment and the largest suspected RIS event shows a time lag of, frequently, several years between first event and largest event to date (Figures 2-11 and 2-12). Generally, this delay between first and largest suspected RIS event is less than one year, although 9 reservoirs had delays of three years or more.

The distribution of magnitude of the maximum RIS events is shown on Figure 2-13. This graph may reflect the lack of monitoring of microearthquakes at many of the world's reservoirs; the expected distribution should have a relatively larger number of smaller magnitude events. All the reservoir

EXPLANATION:

Accepted RIS cases that are neither deep nor very large

Accepted RIS cases that are deep and/or very large

PLot of time between impoundment AND FIRST SUSPECTED RIS EVENT	
Project No. 14087A	Figure 2-11
Weodwerd-Ciyce Consultsints	Page 74

EXPLANATION:

Accepted RIS cases that are neither deep nor very large

Accepted RIS cases that are deap and/or very large

PLOT OF TIME BETWEEN IMPOUNDMENT AND LARGEST SUSPECTED RIS EVENT

EXPLANATION:

Accepted RIS cases that are neither deep nor very large

Accepted RIS cases that are deep and/or very large

NOTE:
Refer to Table 1-1 for listing of reservoirs and magnitudes.

> PLOT OF MAXIMUM MAGNITUDES OF ACCEPTED RIS EVENTS

Project No. 14087A	Figure 2-13
Woodwerco Chyde Consuitants	Page 76

induced seismic events over magnitude 6 have occurred at deep and/or very large reservoirs. There also appears to be a relationship between a larger number of years after start of impoundment and larger magnitude RIS events (Figure 2-14). All RIS cases with maximum magnitudes of 3 or less (14 cases) occurred within 2 years after start of impoundment. RIS cases with maximum magnitude of 5.5 or greater (6 cases) have a mean of 5.1 years after start of impoundment, and only two of these occurred in less than two years.

2.8 SUMMARY AND COIJCLUSIONS

A detailed literature survey was made to gather data on reported cases of reservoir induced seismicity and all deep and/or very large reservoirs. Deep and/or very large reservoirs were identified from the World Register of Dams and other compilations such as Mermel (1978) and Simpson (1976). Data were gathered from engineering literature for reservoir size and shape, reservoir impoundment, and water fluctuation history, and from geologic literature for regional and local geology, stress conditions and faulting, hydrology, and seismicity. Reported cases of RIS were identified from published accounts as well as from correspondence and discussions with various experts. The body of data resulting from this compilation is presented in Appendix A. These data have formed the basis for analysis of each case of RIS and for construction of preliminary statistical models to predict the occurrence of RIS.

The influence of the reservoir on local macro- and microseismicity has been evaluated for each reported case of RIS. Where post-impoundment seismicity had a demonstrable spatial and/or temporal relationship to the reservoir, the case for RIS is classified as accepted. Where it was clearly established as being unrelated to the reservoir, the case is

NOTES:

(1) Magnitude 4.3 event at Clark Hill may not have been resservoir induced; next largest event: M 2.7 .
(2) Largest event is a microearthquake (magnitude unknown) for 8 reservoirs included 3 M 3.
classified as not accepted RIS. Where the relationship is unclear because of insufficient data, the case is classified as questionable RIS. Of the 64 reported cases of RIS considered, 45 were assessed to have accepted RIS and 7 were assessed to be not reservoir induced. Of these 45 cases, l6 were recognized as accepted RIS at macro- and micro-seismicity levels, 14 were recognized at macro levels only, and 15 were recognized at micro levels only.

The most easily identified cases of RIS are those where microearthquakes have shown good correlation with the filling history and/or changes in water depth. However, the recognition of such a correlation requires detailed microseismicity data from local seismic networks. Decause high quality microearthquake arrays are established at very few reservoirs, many cases of reservoir induced microseismicity may not have been recognized. For many of the reported cases of reservoir induced macroseismicity, there appears to have been no change in the frequency or magnitude of background seismicity (Table 2-l). However, the seismicity often is associated in space and time with the filling of the reservoir or with water level fluctuations.

The data collected on deep and/or very large reservoirs, the data on reported cases of RIS, and the assessment of the RIS cases, were combined to construct preliminary statistical models for predicting the probability of occurrence of RIS. These statistical studies have indicated an association between maximum water depth and the occurrence of reservoir induced seismicity. A less discriminating attribute for distinguishing between accepted RIS and not-accepted RIS cases appears to be reservoir volume. Other attributes considered include geology of the reservoir area, regional stress regime, and faulting that has exhibited displacement during the active tectonic regime.

The models constructed from these attributes indicate the effects of certain combinations of attributes on the occurrence of RIS and illustrate the range of probabilities that can be obtained for combinations of the attributes; however, because of the relatively small number of cases of RIS and their distribution, these models are sensitive to changes in data classification.
3.0 THEORETICAL MODELLING OF RESERVOIR INDUCED SEISMICITY

3.1 ITMRODUCTION

From a comparison of the time and location of reported induced seismicity (discussed in Section 2.1) with the reservoir water level, two observations can be made: 1) The seismicity often occurs during the initial reservoir filling, and 2) A strong correlation exists between the frequency of seismicity and the changes in the water level. Moreover, a delay of several days to several months is often noted between rapid water level changes and peak seismic frequency.

Several numerical techniques have been developed to compute stress levels in the rock beneath a reservoir, and these stress levels have been compared to the time and place of observed seismicity at a number of reservoirs.

Modelling of elastic halfspaces, using techniques developed by Gough and Cough (1970), Lee (1972) and Nyland and Withers (1976), have been applied to induced seismicity cases. Models that consider fluid within the rock have also been used. The equations governing the behavior of a fluid-filled elastic solid were developed by Biot (194la), and expansion techniques have been developed by Withers (1977) and by Bell and Nur (1978).

3.2 ELASTIC MODELS OF RIS

3.2.1 Modelling of Elastic Materials

To understand the mechanism of the seismic stress release, the magnitude of the stresses generated by the filling of the reservoir must first be calculated. This calculation of the
response of a non-gravitating elastic halfspace to surface pressures is called the Boussinesq problem (Timoshenko and Goodier, l970; Farrell, 1972).

The Boussinesq problem involves calculation of the deflection and stress matrix beneath a surface load. The Boussinesq solution was first applied to lake loading at Kariba reservoir which was approximated into 1300 vertical point forces, each representing the average pressure over a unit area (Gough and Gough, 1970 a,b). The displacement and stresses at each load point were calculated, and their contributions were summed at the point of interest. The displacement term decreases as the inverse of the distance from the surface point force and stresses decrease as the distance squared.

As an example, the Kariba reservoir was approximated at 80 m deep (average), 25 km wide, and 200 km long. The calculated maximum shear stress was only 2.1 bars under the deepest part of the lake. The predicted deflection at the surface was a maximum of 23 cm , which is in good agreement with the observed deflection along a nearby road. This deflection extends over a larger area and decreases with depth as seen in Figures 3-1 and 3-2. This same technique was applied to the Oroville Reservoir by Beck (1976), who found the largest shear stress was 3.4 bars, again under the deepest part of the lake. Because Oroville is about twice as deep as Kariba, this larger stress is expected.

Another technique for the solution of the Boussinesq problem involves a Fourier-Bessel expansion of the elasticity equations in cylindrical coordinates (Lee, 1972). A lake is approximated by a pattern of elemental loads, each shaped as a section of an annulus. The advantage of this method is the solution of the displacements and the variance of elastic parameters with depth.

VERTICAL DISPLACEMENT (cm)
Depth $=0$, with sigme $=0.27$
Young $=0.85$ MBAR
2 cm contou: interval

VERTICAL DISPLACEMENT (cm)
Depth $=13 \mathrm{~km}$, with sigma $=0.27$
Young $=0.85$ MBAR

VERTICAL DISPLACEMENT (cm)
Depth $=3 \mathrm{~km}$, with sigma $=0.27$
Young $=0.85$ MBAR

VERTICAL DISPLACEMENT (cm)
Depth $=30 \mathrm{~km}$, with sigma $=0.27$
Young $=0.85 \mathrm{MBAR}$

Source: Withers (1977)

VERTICAL DEFLECTIONS AT SEVERAL
DEPTHS BELOW LAKE KARIBA,
BASED ON ELASTIC HALFSPACE MODEL
Project No. 14087A
Woodwerd-Ciyde Consultants

MAXIMUM SHEAR STRESS (bars)
Depth $=0$, with sigme $=0.27$
Young $=0.85$ MBAR
0.2 Bar contour intarvai

MAXIMUM SHEAR STRESS (bars)
Depth $=13 \mathrm{~km}$, with sigma $=0.27$
Young $=0.85$ MBAR

MAXIMUM SHEAR STRESS (bars)
Depth $=3 \mathrm{~km}$, with sigma $=0.27$
Young $=0.85$ MBAR
0.2 Bar contour interval

MAXIMUM SHEAR STRESS (bars)
Depth $=30 \mathrm{~km}$, with sigma $=0.27$
Young $=0.85$ MBAR

Source: Withers (1977)

MAXIMUM SHEAR STRESS AT SEVERAL DEPTHS BELOW LAKE KARIBA, BASED ON ELASTIC HALFSPACE MODEL

Figure 3-2

The third technique for solution of the Boussinesq problem was developed by Nyland and Withers (1976) and involves a Fourier transformation. The equation of elasticity may be simplified by taking the transform of the equation: derivatives become multiplications which are a much simpler computation. The boundary effects may also be simply defined in two dimensions in the Fourier Domain. The numeric procedure involves overlaying the reservoir with a regular two-dimensional grid, usually 64×64, and the values at each node are defined by the reservoir depth.

The Fourier Transform technique was applied to Kariba Reservoir, and results similar to those obtained by Gough and Gough (1970a,b) were derived. The Fourier Transform technique can be expanded by a matrix technique to model a layered halfspace beneath the reservoir (Withers and Nyland, 1976).

As demonstrated in elastic modelling demonstrated that even the very deepest reservoirs could not create more than a few bars of maximum shear stress in rock located beneath the reservoir. This amount of shear stress is two orders of magnitude too small to initiate new fractures in intact rock and is about an order of magnitude less than required to initiate movement along preexisting fractures. For this reason, the small, induced elastic forces associated with reservoir impoundment can act only as triggering forces. The material beneath the reservoir must already be fractured and prestressed by existing forces to a point very near failure. The additional load applied by the filling of the reservoir would appear to bring the rock to failure which is observed as a seismic event. Thus, cases of reported seismicity should occur in areas of high stress levels and require zones of weakness, such as active faulting, to exist close to the reservoir. The results of the modelling also suggest that because of the limited influence, the seismicity must occur
"near" the reservoir. The modelling indicates a spatial and temporal association with the reservoir, given the right conditions of a high stress level and existing faulting. Therefore, an earthquake which would have occurred later in the normal geologic sequence may be prematurely triggered by the filling of a reservoir.

3.3 MODELS OF RESERVOIR INDUCED STRESSES IN ELASTIC FLUID-FILLED MATERIALS

The elastic halfspace modelling has a basic disadvantage: it has no mechanism for exploring l) why a short delay of a few days to a few months occurs between water level fluctuations and the detected seismicity, and 2) why the seismicity does not always occur immediately after initial filling. The inability of the modelling to explain time effects indicates that other triggering mechanisms may be effective and that further research in effective stress modelling is necessary.

The effective stress can be expressed as an algebraic sum of the acting elastic stresses plus the pore fluid pressure in the rock. Such fluid may be assumed to already exist in the rock or may enter the rock by diffusion from the bottom of the reservoir, thus raising the water table. Whichever is the case, the fluid has the ability to transfer larger stresses, of about 10 bars for 100 -m-deep reservoirs, to significant depths in the rock.

3.3.1 Application of Biot Models of Elastic Solids Containing Fluids

Biot (194la) developed basic equations governing the behavior of elastic solids containing fluids. The theory was conceived for the study of consolidation of foundations in clay and sandy material but is sufficiently general to be applied to
rock located beneath a reservoir. As Rice and Cleary (1976) suggest, the recently popular theory of mixtures of interacting continuum has little advantage over the classical theory of Biot under conditions where local equilibrium of the pore fluid may be assumed.

For Biot's (194la) theory, the equilibrium equations are:

$$
\begin{align*}
& G\left[\nabla^{2} \vec{U}+(2 \eta-1) \nabla \nabla \cdot \vec{U}\right]-\alpha \nabla p=0 \tag{1}\\
& k \nabla^{2} p=\alpha \frac{\partial \nabla \cdot \vec{U}}{\partial t}+\frac{1}{Q} \frac{\partial p}{\partial t} \tag{2}
\end{align*}
$$

where $\overrightarrow{\mathrm{U}}$ is the displacement of the solid matrix, p is the pore pressure, G and η is the elastic constants of the matrix expressed in terms of Young's Modulus Y, and is Poisson's Ratio v,

$$
G=\frac{Y}{2(1+v)} \quad \eta=\frac{1-v}{1-2 v}
$$

Modelling with this theory has been extensively performed by Withers (1977) using Fourier transforms; the results of this modelling has been applied to reported cases of reservoir induced seismicity. In the elastic model solutions of the Boussinesq problem, the only rock parameters required were G and n, which were generally estimated from local rock: material. For the Biot approach, three fluid parameters are also required, k, α and Ω. k represents the permeability of the matrix and, in the development of the mathematics, arpears only to act as a linear time-scaling constant. Thus, if the permeability is doubled, the same result is obtained in exactly half the time. α may be interpreted as the ratio of the volume of fluid alone to the volume of the solid, if the
latter is allowed to compress while allowing the fluid to escape. $1 / Q$ is a measure of the amount of fluid that can be forced into the solid under pressure while the volume is kept constant.

The constants Q and α depend on the flow regime within channels in the rock and are the most difficult parameters for which reliable values can be obtained. Jaeger and Cook (1976) show that $\alpha=1$ and $\Omega=\infty$ are acceptable values for rock in laboratory conditions. This assumes that the rock is saturated and that the compressibility of water is much less than that of rock. Computations made with these parameters, using a boundary condition that the fluid pressure is continuous across the surface interface, led to results in which final equilibrium is reached instantaneously and no time lags exist. These results have not been observed during loading and must be due to a poor selection of the parameters Q and ∞.

The parameter a relates to the rock saturation. It is reasonable to assume that rocks are relatively saturated so that α is between 0.9 and 1.0. For soils, the value of α may be about 0.7. The smaller the value of α, the longer it takes for equilibrium to be established; however, if too small a value is selected, the phenomenon called the Mandel-Cryer effect may be observed. The Mandel-Cryer effect (Schiffman and others, 1969) exists when an anomalously high pressure lobe is observed at depth beneath the surface load. These pressures may exceed the applied load.

The other parameter, Ω, is specified in terms of initial (undrained) and final (drained) compressibilities. In laboratory samples, the final compressive state is almost entirely due to water volume changes, and Q is necessarily infinity. If the value of Q is lowered from infinity,
realistic time delays may be achieved with Q about 10 times larger than Young's modulus. After the load has been applied, very little post filling consolidation is observed for this example. The literature on Ω and α for rocks is limited. The results of compressive tests on drained and undrained black shales indicate that Ω is of the same order of magnitude as the drained Young's modulus.

To solve the Biot equations, certain conditions must be met at the surface. Several conditions are possible for the water boundary equation. For one, the flow through the surface may be specified; however, this is an inadequate solution since the flow is so difficult to verify. The most obvious choice for a boundary condition is defining the water pressure at the surface. This selection may be variable over length scales of tens of kilometers; however, under ideal conditions, water pressure changes can be monitored at the surface and the modelling can be verified.

Two extreme boundary conditions can be selected. If the bottom of the reservoir is sealed and no connection exists between the reservoir and the ground water, then the surface water pressure is zero. This is called zero coupling with the ground water. Full coupling exists where the ground water surface value equals that of the reservoir. In normal soil situations, full coupling may be the case; however, leakage would be a major problem and reservoirs are usually impounded on more impermeable bases. For this reason, the coupling should lie between 0 and 1 ; in the modelling studies to date, 0.25 seems to indicate a good compromise. Since the fluid connection of the reservoir and ground water is via channels and fissures that narrow with depth, it is feasible to explain the reduced coupling. This reduction of pressure by flow in confined channels is called the Bernouilli effect. It is also possible that variable hydrologic parameters at shallow
depths, incomplete fluid coupling, and capillary narrowing all affect the flow concurrently.

Biot equations (1) and (2) may be solved using the lake geometry and depth as a source function, and c, η, k, C, α, and coupling as variables. The values of G, η, and k can be reasonably estimated from the rock type and local hydrology, but considerable uncertainty exists for the variables Ω, α, and coupling. It is in this area that major research is presently directed.

Bell and Nur (1978) have reexamined the Fiot equations using an elastic and hydrclogic parameters developed by Rice and Cleary (1976). The field equations they derived are similar to equations (1) and (2)

$$
\begin{equation*}
2 G \varepsilon_{i j}=\sigma_{i j}-\frac{v}{1+v} \sigma_{k k} \delta_{i j}+\frac{3\left(v_{H}-\nu\right)}{B(1+\nu)\left(1+v_{\mu}\right)} p \delta_{i j} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial x_{i}}\left(k \frac{\partial p}{\partial x_{i}}\right)=\frac{3\left(v_{\mu}-v\right)}{2 G B(1+v)\left(1+v_{\mu}\right)} \frac{\partial}{\partial t}\left(\sigma_{k k}+\frac{3}{B} p\right) \tag{4}
\end{equation*}
$$

where ν_{μ} is the undrained (no change of mass) Poisson's ratio having limiting values $1 / 2 \geq \nu_{\mu} \geq v$. The upper 1 imit is reached for separately incompressible constituents, and the lower bound is achieved where the pore fluid is highly compressible. The constant B is expressed as a ratio of bulk modulii. B is typically 1 for water-saturated soils but can be substantially less for rocks, the constituents of which are not effectively incompressible. The constants ν_{μ} and B can be derived from a single undrained test in which the Poisson effect ard pore pressures are measured.

$$
\begin{align*}
& \Delta \mathrm{p}=-\mathrm{B} \frac{\Delta \sigma_{k}}{3} \\
& B=\frac{1 / K-1 / K_{s}^{\prime}}{\nu_{0} / K_{f}+1 / K-1 / K_{s}^{\prime}-\nu_{0} / K_{s}^{\prime}} \tag{6}\\
& 2 G \Delta \varepsilon_{i j} \equiv \Delta \sigma_{i j}-\frac{v_{u}}{1+v_{\mu}} \Delta \sigma_{k k^{\prime}} \delta_{i j} \tag{7}
\end{align*}
$$

Rice and Cleary (1976) present typical values of the variables B and ν_{μ} derived from elastic and hydraulic testing. These values indicate B is 0.8% for Ruhr sandstone, 0.85 for Westerly granite, and 0.51 for Tennessee marble. The corresponding values of v_{μ} are 0.31 , 0.34 and 0.27 , respectively. These parameters were not directly measured in the single undrained test and probably have considerable variation.

3.4 PREDICTION CF FAILURE

The Mohr failure criteria require that the sun and difference of the principal stresses be specified everywhere. Because in modelling these amounts vary in three dimensions as well as in time, they are difficult to represent. For this reason, several abbreviated representations have been used. Cne of these is the plot of the locus of a point on the Mohr circle. The representation is shown on Figure 3-3a for several times, and the Mohr circle can be reconstructed from the locus. The small anomalous stresses computed can be added to the existing stresses without using matrix rotation to obtain the principal stresses. Thus, as shown in Figure 3-3b, the initial undisturbed situation is at the origin, and movement of the

Method of determining the locus of the Mainr circle with time.
(a)

The instability is shown as a projection of the Mohr circle onto the center of the initial prestressed condition.
(b)

EXAMPLE RESERVOIR: DEVELOPMENT
OF MOHR CIRCLE LOCI OF MOHR CIRCLE LOCI

Mohr locus to the upper left quadrant is in the direction of the failure envelope. Seismicity may occur if the rock is close to failure, and the locus crosses an unknown prestressed failure envelope.

Motion into this upper left quadrant has been identified as increased "instability," as shown by Figure 3-3b. Unfortunately, the amount of instability required to activate an earthquake in a particular area is not known. Various estimates of this value for particular faults can be made from the computed stress drops during large earthquakes. These are typically 10 to 100 bars but can be as low as l bar in some instances.

To illustrate the typical analysis, a two dimensional load will be represented here. modulus of 0.85 megabars, Poisson's ratio of 0.27, permeability of 2.0 millidarcy, $\Omega=\infty, \alpha=1$, and a coupling of 0.25 were selected for this example. Because the model reservoir was approximately 30 km across, loci were examined at the depths of 3 km , 6 km and 12 km , using the offsets $1,2,3$, and 4 , as shown on Figure 3-4a. Position l is directly below the reservoir. Position 4 is offset approximately 40 km from the center. The water depth was 5 m , and the selected filling, shown in Figure 3-4b, is typical of many reservoirs.

The Mohr loci shown on Figure 3-5 are for normal faulting in which the maximum principal stress is vertical. For the selected boundary conditions, the largest instability after l year occurs at 6 km directly below the reservoir. The instability is approximately 0.12 MPa above the tectonic level and, depending on the sensitivity of the area, may trigger an earthquake. At 2 years, the maximum instability has moved to 12 km below the lake. This position is more unstable at 2 years than at 1 year and is even more unstable than the

Assumed Reservoir Filling History.
(b)

EXAMPLE RESERVOIR: POSITIONS BELOW LAKE AND RESERVOIR FILLING HISTORY

Source: Withers (1977)
NOTE:
Soe Figure 3-4 for filling history and diagram of position locations.
Scate changes according to the figure.
Time in years shown on locus.
Position of maximum instability varies with time. At one year, maximum instability occurs at position 1 , depth 6 km . At two years, it occurs at position 1 , depth 12 km . After 5.5 years, maximum instability oceurs at position 1 , dapth 12 km .

LOCI OF THE MOHR CIRCLE IN A NORMAL FAULTING ENVIRONMENT

position 6 km beneath the reservoir. Thus, if an earthquake had not occurred at 6 km earlier, it may still be triggered at 12 km 2 years after initiating filling. At positions 2, 3, and 4, the stresses are much lower. Thus, in this instance, the initial filling would have created the largest anomalous stresses. The reservoir induced seismicity at both Vayont and Kremasta are typical of failure during the initial filling.

The second part of the filling history of this example (Figure 3-4b) was associated with an unload and refill cycle. This history was chosen since it is similar to the filling of Lake Oroville, California, where the main shock (normal faulting) occurred just as the refill was completed. At the $3-\mathrm{km}$ and $6-\mathrm{km}$ depths beneath the reservoir (Figure 3-5), the stresses at 5.5 years (completion of refilling) are always less than those earlier in the filling. However, at 12 km the instability is greatest at 5.5 years. In fact, this is the greatest instability produced at any location during the entire loading cycle. Thus, if an earthquake had not been triggered by the lower stress levels earlier, then one would most likely have occurred below the reservoir at 5.5 years.

It is important to examine the stresses at 12 km at position 2. Although the stress levels are smaller there than beneath the reservoir, a marked increase in instability occurs at 5.5 years at the edge of the reservoir. If a local zone of wealness exists, it is possible, under these conditions, for the seismicity to be offset from the center of the reservoir during the refill cycle.

The examination of the loci in a thrust environment (shown on Figure 3-6) leads to different conclusions. Here the initial filling stabilizes the area beneath the lake. Offset from the reservoir, the instability increases during the initial filling, decreases during the unload, and increases again

DEPTH-6 km
POSITION 3

Source: Withers (1977)
NOTE:
Scale changes according to the figure. Time in years shown on locus.
Maximum instability occurs to the side of the lake.

Praject No. 14087A Moociveard-Ctyde Consuitunts

Figure 3-6
Page 97
during the refilling. The stress levels are smaller than those for the normal faulting case, but they indicate that the triggered seismicity would be offset from the reservoir.

3.5 ADDITIONAL OBSERVATIONS

Obviously no model is better than the parameters used and the uncertainty in choosing values for α, Q, and the coupling. Figure 3-7, which illustrates the effect that Ω has on the results for normal faulting, should be compared with Figure 3-5. Again, the seismic event would have occurred below the reservoir, but the time of the event is now less dependent on the drawdown-refill cycle. In this example, the fluid pressure is increasing with time as the pressure diffuses to depth, and this is reflected in the movement of the Mohr locus to the left. Instability increases to a steady state value or until the local conditions for failure are exceeded. Further studies should emphasize more constraint of the fluid properties of rock over large distances. Strikeslip faulting has not been modelled due to the numeric expense and representation difficulties associated with three dimensional modelling.

Bell and Nur (1978) have examined the effect of a zone of permeable material dipping beneath the reservoir. This zone can considerably alter the flow pattern. Figure 3-8 shows induced pore pressure changes plotted as a function of a scaled time unit. The permeability of the fault zone in this figure is 100 times that of the surrounding rock. The strength changes are also strongly influenced by the introduction of a permeable zone. Figure 3-9 represents the strength changes for thrust, normal, and vertical strike-slip faulting for several times. A negative sign in this figure represents weakening of the rock, and a positive sign indicates strengthening.

DEPTH-3 km POSITION 1

DEPTH-6 km
POSITION 1

Source: Withers (1977)
Time (in years) shown on locus.
O was reduced, as compared to Figure 3-5, to allow for diffusion to occur. Diffusion takes place with full pressure coupling at the surface.

INSTABILITY IN AN AREA
OF NORMAL FAULTING

PORE PRESSURE

(a)

(b)

EXPLANATION:

Permeability within fault zone
Permeability of rock
Hypothetical reservoir
\mathbf{t}^{\prime} Dimensionless (relative) time
Permeability fault zone
Strength changes in fractions;
$-0.1=10 \%$ weakening of rock strength

(c)

(d)

Source: Bell and Nur (1978))
NOTE:
The permeability of the fault zone is 100 times that of the surrounding halfspace ($k_{1} / k_{2}=10^{2}$)

Project No. 14087A	Figure 3-8
Woodward-Chyde Consuitants	Page 100

STRENGTH

(a) THRUST

(b) NORMAL

(c) STRIKE SLIP

$$
t=0.01
$$

$$
t=0.1
$$

EXPLANATION:

k_{1}	Permeebility within fault zone
k_{2}	Permeability of rock
	Hypothetical reservoir

$\begin{array}{cl}\mathrm{t}^{\prime} & \text { Dimensionless (relative) time } \\ \text { // } & \text { Permeability fault zone }\end{array}$
Strength changes in fractions;
$-0.1=10 \%$ weakening of rock strength

NOTE:

Two-dimensional $(x-z)$ representation of strength changes below hypothetical reservoir having a thrust, normal, or strike-slip fault beneath reservoir. The fault zone permeability is 100 times that of the surrounding region ($k_{1} / k_{2}=10^{2}$). A negative sign indicates weakening, and a positive sign indicates strengthening.

Source: Bell and Nur (1978)
STRENGTH CHANGES AS A FUNCTION OF TIME, BASED ON HALFSPACE MODEL WITH PERMEABLE FAULT ZONE

Woodward-Clyde Consultants

Upon comparison of Figure 3-10, where the permeable zone is absent, with Figure 3-9, several conclusions can be made: For thrust faulting, the strength patterns with and without the permeable zone are similar. However, as time increases, the effect of the fault zone greatly weakens the strength in its vicinity. The final steady state value of the strength change for thrust faulting about doubles after the introduction of the permeable zone and influences a considerably larger area when the faulting is present. For the normal faulting case, the steady state strength change also doubles and influences a larger area.

Modelling with a permeable fault zone provides a significant alternate mechanism for explaining how large, effective stresses penetrate to great depths. From Figure 3-9, the weakening in the direction of shear for normal faulting achieves a reduction of strength by un to 70 percent of the maximum applied water load. For strike-slip faulting, the reduction of strength is as much as 55 percent of the applied water load. The thrust case also contains significant strengthening zones, whereas normal and strike slip cases do not.

3.6 COINCLUSIONS

Theoretical modelling has made great advances in explaining the mechanism of induced seismicity beneath reservoirs. The elastic halfspace models have been used successfully to predict ground deflection and would indicate that only very small stresses could be generated by reservoir filling. The fluid models, based on Biot's consolidation theory, allowed for much larger triggering stresses to be generated at depth by either pressure build-ups or by zones of low permeability. Seismicity during initial filling and observed delays in the seismicity associated with small changes in water level can be
(a) THRUST

$$
q=60^{\circ}
$$

(c) STRIKE SLIP

$$
k_{1} / k_{2}=1
$$

$$
t^{\prime}=0.1
$$

2

EXPLANATION:
$k_{1} / k_{2}=1$ Permeability equal throughout halfspace
\longrightarrow Hypothetical reservoir
\mathbf{t}^{\prime} Dimensionless (relative) time
a Dip angle of fault
Strength changes in fractions;
$-0.1=10 \%$ weakening of rock strength
NOTE:
Two-dimensional ($x-z$) representation of change in strength below hypothetical reservoir where tectonic stresses favor development of (a) thrust, (b) normal, or (c) strike-stip faults. A negative sign indicates weakening, and a positive sign indicates strengthening.

Source: Bell and Nur (1978)

CHANGES IN STRENGTH FOR SEVERAL
TIMES, BASED ON HALFSPACE MODEL WITH SUPERIMPOSED TECTONIC STRESSES

Project No. 14087A
Figure 3-10
Wroodward-Cyyde Consultants
Page 103
explained by the fluid-filled models. These models also explain the occurrence of seismicity away from the center of the reservoir.

A number of uncertainties still exist in the modelling which limit its applicability. These limitations are in general due to a lack of knowledge of large-scale elastic and hydrologic behavior of the rocks. The level of saturation and the fluid/rock system compressibility behavior over large dimensions are still major uncertainties. The mechanism of coupling between the ground water and the reservoir is also not understood and yet significantly alters the results of theoretical models. Unfortunately permeability, which can be measured from well tests, is not a fundamental parameter of the model, as it only influences the time-scale of the modelling.

If more were known of the deformation behavior of watersaturated rock systems, then modelling might be used to better understand the observed seismicity at a number of reservoirs having reported induced seismicity. From such research, modelling may then be applied to risk assessments of proposed reservoirs.

4.0 STUDIES Of FAULTING AT SELECTED RESERVOIRS

4.1 INTRODUCTION AND CONCLUSIONS

Models of the stresses created by the filling of reservoirs suggest that the stresses are not sufficient to initiate new fractures and that the reservoir impoundment must trigger the release of stress along pre-stressed faults (Section 3). This implies that displacements resulting from reservoir induced seismic events on such pre-stressed, tectonically active faults must have occurred as a result of stresses created by the present or active tectonic stress regime. Since reservoir induced earthquakes are shallow, having focal depths no greater than 10 to 15 km , induced earthquakes of moderate magnitudes along these pre-stressed (active) faults might be the result of fault rupture that has extended to the surface.

Packer and others (1977) list ll reservoirs with accepted or questionable cases of reservoir induced seismicity that have maximum magnitude earthquakes of 5.0 or greater (Table 4-l). To evaluate if faults that might have been influenced by filling of these reservoirs are active (had displacement in the present tectonic stress regime), several of these reservoirs were selected for field reconnaissance studies. Data available from the literature indicate the presence of active faults within the influence of the reservoir at two of these reservoirs, Xinfengjiang and Oroville. No conclusive published evidence of active faults near the remaining nine reservoirs was available, although studies by Snow (personal communication) suggest that active faults are present at Koyna, Kremasta, and Kariba. Of these, Koyna and Kremasta were selected for field reconnaissance to confirm and collect additional data on the possible active faulting near these reservoirs. Kariba was not selected because of the logistical

TABLE 4-1
RESERVOIR INDUCED SEISMIC EVENTS WITH MAXIMUM MAGNITUDE OF 5 OR GREATER

	Packer \& Others, 1977		This Study	
	Magnitude ${ }^{\text {a }}$	$\begin{gathered} \text { Active } \\ \text { Faulting } \end{gathered}$	Magnitude	$\begin{gathered} \text { Active } \\ \text { Faulting } \end{gathered}$
Benmore	5.0	probable	5.0	yes ${ }^{\text {c }}$
Eucumbene	5.0	unknown	5.0	yes ${ }^{\text {c }}$
Hoover (Lake Mead)	5.0	probable	5.0	yes ${ }^{\text {c }}$
Xinfengjiang	6.1	yes	6.0	yes
Kariba	5.8	probable	6.25	probable
Koyna	6.5	probable	6.5	yes ${ }^{\text {c }}$
Marathon	>5	probable	5.75	probable
Oroville	5.7	yes	5.7	yes
Kremasta	6.3	probable	6.3	yes ${ }^{\text {c }}$
Kastraki	6.3	probable	4.6	yes ${ }^{\text {c }}$
San Luis	5.0	unknown	not RIS	--
Coyote Valley (Lake Mendocino)	(reservo	not uded)	5.3	yes

[^8]difficulties of conducting geologic reconnaissance in the Zambia and Zimbabwe-Rhodesia border area. No information was known about faulting around the remaining reservoirs, and several were selected for field reconnaissance.

Of these remaining reservoirs with maximum magnitude earthquakes of 5 or greater, Hoover, Benmore, and Eucumbene reservoirs were selected on the basis of geologic setting and amount of available information. Kastraki, and Talbingo and Blowering reservoirs were selected because they are geographically adjacent to Kremasta and Eucumbene reservoirs, respectively, and could be evaluated during studies at these reservoirs. The relative scope of field reconnaissance studies at these reservoirs was less than the scope for Koyna and Kremasta.

The objectives of these reconnaissance field studies were to evaluate if active faults are present within the influence of the reservoir and to collect additional data, as available, on the reservoir and on the geology, tectonics, and seismicity of the region. These studies were of limited scope and did not evaluate or attempt to locate all active faults near each reservoir. Data from these field studies and additional data from the data collection study (Section 2) resulted in changes in the assigned maximum magnitude of induced earthquakes at several of these reservoirs (Table 4-1). In addition, an RIS event of magnitude 5 or greater was recognized at one additional reservoir, the Coyote Valley reservoir.

The results of field reconnaissance evaluation studies of active faulting at the selected reservoirs are shown on Table 4-1. Of the 11 reservoirs recognized in this study to have maximum magnitude induced earthquakes greater than or equal to 5,9 have evidence indicating active faulting near the reservoir, and 2 probably have active faults, although no conclusive evidence is available as yet.

The results of these field reconnaissance studies suggest that active faults are present within the influence of all reservoirs that have triggered earthquakes with magnitudes greater than or equal to 5 , and that these reservoirs did not trigger surface displacement along inactive faults.

4.2 KOYNA DAM REGION, INDIA

INTRODUCTION

Koyna Dam impounds the Koyna River, forming the 100 m deep Shivaji Sagar Lake. The dam and reservoir are located in western India on the Deccan Plateau within the Indian Shield (Figure 4-1). The shield is characterized by Precambrian schist and gneiss of the Dharwar System which is overlain by flat-lying, generally unfaulted sequences of basaltic lava flows known as the Deccan Trap (Committee of Experts, 1968). Few earthquakes have been reported in the area, and the occurrence of faulting within the Deccan Plateau is reported to be virtually nonexistent, as shown on Figure 4-2. However, major fault systems are believed to be present near the margins of the plateau; these systems include the Tapi-Namada fault zone, the Cambay Graben, and the Western Ghats (Committee of Experts, 1968) (Figure 4-2). In addition, at least one north-south trending fault has been identified at the dam site (Committee of Experts, 1968; Snow, 1973).

On 10 December 1967, approximately 5 years after reservoir impoundment, an earthquake of magnitude 6.5 occurred at the Shivaji Sagar Lake, as shown on Figure 4-3 (Guha and others, 1970; Committee of Experts, 1968). A north-northeast, southsouthwest trending $200-m$-wide zone of cracks was reported to have occurred over a distance of approximately 3 km immediately east of the reservoir. Because of the spatial relationship of the event to the lake, numerous investigators have concluded that the occurrence of the earthquake was related to impoundment of the lake (Packer and others, 1977; Gupta and Rastogi, 1976; Rothe, 1969; Bozovic, 1974; Simpson, 1976; Gupta and others, 1972; Guha and others, 1974, Snow, 1973a,b). This earthquake is the largest reported reservoir

1 Recant Alluvium
2 Trap (Cretaceous/Mesozoic)
3 Gondwanas (carboniferous)
Vindhyan/Cuddapah (upper
Pro-Cambrian)
Crystallines (Pre-Cambrian/ Archaean)

generalized geologic map of india and location of koyna dam

Project No. 14087A Hocdverarc-Clycle Consuittants	Figure 4-1
	Page 110

© : instrumental epicenter, $M=6.3, \quad$ int $=$ VIII
(1) : instrumental epicenter, $M=5-5 \%$ Int $=$ VII
() : instrumental epicenter, $M=5, \quad$ int $=V I$
© : instrumental epicenter, $M=4.7, \quad$ Int $=1 V-V$
$O:$ instrumental epicenter, $M=4.2, \quad$ Int $=1 V$
O : instrumental epicenter, $M=$?
$\because:$: swarm of epicenters, $\quad M=3-4$

+ - : macroseismic epicenters
Q : hot springs
7 : scarp of Western Ghats range

NOTE:
Number references earthquake to Gubin (1969).

SEISMICITY MAP OF WESTERN INDIA, FROM 1594 TO 1969
induced event in the world and is the largest reported seismic event in western India.

A study was conducted to evaluate if active faults are present within the influence of the reservoir at Koyna Dam. For the purposes of this study, a fault is defined as active if it has had displacement during that area's present stress regime. Special attention was placed on locating geologic and linear features that potentially could be active faults, although no attempt was made to locate all potentially active faults.

Mwo visits to the region around Royna Dam and Shivaji Sagar Lake were made on 14 to 16 January 1977, and 22 to 26 October 1978. During the trips, limited ground reconnaissance and a brief aerial survey of the Koyna area were conducted, published and unpublished data were reviewed, and discussions with geologists and seismologists in Bombay, Calcutta, and Poona were arranged. Ground reconnaissance consisted of a general overview of the Koyna Hydroelectric Project and a specific look at the $7-k m-l o n g$ area where ground cracking had been reported to have occurred during the 10 December 1967 earthquake. The aerial reconnaissance consisted of an overview of the stratigraphic and geologic structure of the region during low-sun-angle conditions.

REGIONAL GEOLOGIC SETMIIJG

Koyna Dam and Shivaji Sagar Lake are located in the northern shield of the Peninsula of India, which is considered to be a seismically stable area. The peninsula is underlain by Precambrian metamorphic and igneous units that have been intensely folded along northwest-southeast axes and subsequently eroded, resulting in an irregular morphologic surface (Berg and others, 1969; Committee of Experts, 1968). The Deccan Trap is comprised of volcanic basalt flows of late

Cretaceous to early Eocene age that unconformably overlie the folded Precambrian units in the west-central section of the peninsula (Figure 4-1).

In the interior of the peninsula, including the Koyna region, the volcanic units are exposed at the surface or are overlain by a $3-\mathrm{m}$ - to $30-\mathrm{m}$-thick clayey layer of red laterite. The laterite contains bleached zones near the ground surface and in other deeper horizontal zones. These horizontal zones are marked by textural and tonal changes in the laterite and may be useful in detecting tectonic movement that could have occurred during the development of the laterite. The laterite is the youngest unit in the koyna region, except where overlain by alluvium along river and creek beds.

The Deccan Plateau is an upland area underlain by up to 2135 m of the Deccan basalt flows. The basalt is approximately 915-m-thick at Koyna (Berg and others, 1969), is nearly flatlying, and generally displays columnar jointing. The plateau is bordered on the west, approximately 9 km west of the reservoir, by a prominent north-south trending escarpment. Along this escarpment, known as the Western Chats, the plateau drops approximately 700 m westward to a lowland known as the Konkan (Snow, 1973b) (Figure 4-3).

The major structural features identified in the royna region include the Tapi-Namada fault zone, an unnamed offshore fault parallel to the west coast of India, the Panvel Flexure, the Cambay Graben, and the Western Ghats (Figure 4-2). These features are discussed in detail below. Seismic activity has been reported to have occurred on all of these features, except for the offshore fault.

The Tapi-Namada fault zone is a northeast-southwest trending structure marked by linear valleys, a graben with a
right-lateral strike-slip displacement, and a prominent fold system. The fault zone, which is 500 km north of Royna, is considered to be active, based on the degree of seismic activity (Guha, personal communication, 1978).

The unnamed offshore fault parallel to the Indian coast has been identified on the basis of geophysical data (Auden, 1975). The type of fault movement has not been conclusively established. Investigators have described it as an eastdipping thrust fault (Guha and others, 1973) and as a normal fault within a graben complex (Auden, 1975). The feature is approximately 140 km west of Royna and has displayed no significant seismic activity.

The Panvel Flexure, defined as a monoclinal downwarp of the Deccan Trap, occurs north of the town of Panvel and continues southward to within approximately 105 km of the dam (Auden, 1969). Although the downwarp dips 5 degrees to the west, the existence of the feature is debated within the Indian geological community (Gupta, personal communication, 1978). No reported significant seismic activity has been associated with the feature; however, seismic activity along the west coast of India has occurred near the feature (Figures 4-2 and 4-3).

The Cambay Graben is a north-south trending structural basin located approximately 470 km north of Koyna. Faults along the margins of the graben are reported to have rertiary displacement of the Eocene units (Gambher, 1978). The graben was believed to be truncated at the mouth of the Gulf of Cambay by the Tapi-Namada fault zone; however, recent studies of geophysical data suggest that the graben may continue southward, parallel to the west coast of India and approximately 140 km west of Koyna (Auden, 1975) (Figure 4-2). This postulated southern extension of the graben has been
active up to Plio-Pleistocene time (Auden, 1975); however, no significant seismic activity has been reported along the Cambay Graben and the postulated southern extension.

The Western Ghats, as described previously, is a prominent escarpment on the west border of the Deccan Plateau, along the west coast of India (Figure 4-2). The origin of the feature has been a matter of conjecture. It is generally thought to be the result of faulting (up to the east). Although no direct evidence of faulting has been obtained to date (Auden, 1975), Kailasam (1975) postulates a deep seated fault along the northern section of the Ghats (and the Panvel Flexure), based on geophysical data. Seismic activity along the western margin of India has occurred near the escarpment (Figures 4-2 and 4-3) although no causal mechanism has been shown.

REGIOIJAL SEISMIC ACTIVITY

The Peninsular Shield of India has generally been considered to be a region of relatively low seismic activity (Figure 4-3). Compilations of data on historic earthquakes by the Committee of Experts (1968) and Gubin (1969) show 50 reported earthquakes (in addition to the two major events at Koyna in September and December 1967) occurring from 1600 to 1968 on the shield (Figure 4-3).

Within a 250-km radius of the koyna site, 22 earthquakes have been reported (Gubin, l969). The majority of these earthquakes generally have been of low to moderate intensity; however, seven of the events have had reported or estimated magnitudes greater than 4 (Gubin, 1969). Of the seven events, two have had reported epicenters near Lohagad, approximately 145 km north of Koyna. These two events occurred in 1752 and 1832, and their magnitudes have been estimated at 6.3 and approximately 5, respectively (Gubin, 1969). Another event
occurred in 1965 in the Arabian Sea, approximately 80 km southwest of Koyna, and had a magnitude of 5.5. Three of the seven events were along the Western Ghats (Figure 4-3) and occurred in 1967, 1968, and 1969 with reported magnitudes of 4.7, 5.2, and 4.7, respectively. The closest of these events to Koyna, the 1968 event near the town of Pophali and the 1969 Sangemeshar event, occurred within approximately 16 km and 20 km of Koyna, respectively. One of the events occurred on the Deccan Plateau in 1764; its epicenter was approximately 55 km north of Koyna, near Mahabaleshwar.

Although from a review of the historical seismicity, the Koyna region has been generally seismically quiescent, earthquakes of moderate size have occurred. Several of these events that occurred prior to reservoir impoundment were relatively close to the dam and reservoir, the largest of which was near Mahabaleshwar and had a maximum estimated magnitude of 5.5 (Gubin, 1969).

FAULT INVESTIGATION

Following the 10 December 1967 earthquake, a number of investigators reported observing ground cracks and other geologic phenomena associated with the earthquake (Joshi, 1971; Committee of Experts, 1968). The phenomenon described included ground cracks and fissures, mole tracks, lurching of soft soil blocks, rock falls and slides, water level changes and a few minor cavings. The reported cracks and fissures were features of major interest because they represented possible surface rupture along an existing fault zone during the earthquake, although this hypothesized causal mechanism has not been completely accepted. The purpose of this study, therefore, was to investigate the ground cracking as a causal mechanism of surface rupture along an existing fault and to evaluate whether or not the fault was active prior to the 1967 event, as described by Snow (1973b).

Previous studies of the ground cracks resulting from the 10 December 1967 earthquake produced the following data and information:

1) Ground cracks were observed for a distance from 2.7 km (Committee of Experts, 1968) to 45 km (Snow, 1973b) along a linear trend.
2) The linear trend of ground cracks had a regional orientation of $\mathrm{N} 23^{\circ} \mathrm{E}$ (Snow, 1973b) and an en echelon pattern (Committee of Experts, 1968).
3) The linear trend of ground cracks formed a zone approximately 200 m wide (Committee of Experts, 1968) .
4) Individual ground cracks had generally north-south orientations of $\mathrm{N} 10^{\circ} \mathrm{E}$ to $\mathrm{N} 25^{\circ} \mathrm{E}$ (Committee of Experts, 1968).
5) Individual ground cracks were 10 m to 60 m long and varied in width from 2.5 cm to 40 cm .
6) Horizontal displacement along the zone of ground cracks was 5 cm to 10 cm (Committee of Experts, 1968). The sense of displacement is not described but can be inferred to be left-lateral, based on the en echelon pattern described by the Committee.
7) Locally vertical displacement of 10 to 25 cm up to the east was observed (Committee of Experts, 1968).
8) "A fine hair crack" was observed in a basalt outcrop near Kadoli (Committee of Experts, 1968).
9) Small ground cracks trending $N 20^{\circ} \mathrm{E}$ to $\mathrm{N} 20^{\circ} \mathrm{W}$ were observed near Rundhiv. These cracks occurred over an approximately $50-\mathrm{m}$ distance and had depths of less than 1.8 m (Committee of Experts, 1969).
10) Curved ground cracks, possibly related to slope failures, were observed near the villages of Humbarne, Panumbre, Nayari, Runhiv, and Nivle. These cracks had a general east-west trend and were 2 cm to 8 cm wide and 1 m to 1.5 m deep.
11) The zone of ground cracks (except for the curved cracks) was located within the meizoseismal zone (Committee of Experts, 1968).
12) Most of the ground cracks were in the surficial lateritic soils (Snow, l973b).
13) A man-made stone retaining wall was observed to have $30^{\circ} \mathrm{cm}$ of sinistral displacement within the zone of ground cracks (Snow, 1973b).

From the two visits to the Koyna region for the present study, the following observations were made on the ground cracking resulting from the 10 December 1967 earthquake.

January 1977 Study

During the January 1977 visit, evidence for ground cracking was investigated north of the Koyna River at a reported location approximately 8 km (by road) southeast of the Koyna Dam (Figure 4-4). Actual straight line distance between the reported line of cracks and the Koyna Dam is approximately 3.5 km to 4 km . At this location, cracks were reported to have crossed the road ("48 km to Karad" marker at 8 km south

Reported Ground Cracks

Imagory Lineaments

LOCATION MAP OF REPORTED GROUND CRACKS AND OTHER FEATURES VICINITY OF KOYNA DAM India	
Project No 14087A	Figure 4-4
Woodward-Ctyde Consuttants	Page 120

of the village of Donechiwadi), which is cut into basalt rock on the north side and built on fill on the south side. The location of the cracks were reported by the local inhabitants to extend northeast of the road through the village of Donechiwadi (Figure 4-4).

Geologic reconnaissance in the Donechiwadi area included a climb to the top of the hill north of the village where a pit had been excavated by the Geological Society of India (Figure 4-4). The pit was still open, but the walls had been affected by sloughing and erosion, thus making it difficult to observe any geologic features. From the area in which the pit was excavated, cracks were reported by the inhabitants of Donechiwadi to have extended to the southwest. A 3-m-deep erosion gully was observed from near the top of the hill to extend down the slope to the break-in-slope at the bottom of the hill (Figure 4-4). The gully may be the feature described by Snow (1973b) as evidence that surface faulting occurred before the 1967 earthquake.

Southwest of the hill are paddy fields that have been leveled and terraced for agricultural purposes. On the south side of each field are stone retaining walls to maintain level ground conditions. From a review of the location and nature of broken and repaired stone walls, in at least one zone, a systematic pattern of breaks had existed in the wall. In response to questions regarding the breaks, the farmers described a zone of cracking 3 m to 5 m wide; the pattern that they drew on the ground to represent the orientation of the cracks was right-stepping en echelon. At the location where the cracks intersected the stone retaining wall, the wall is displaced left-laterally, approximately 30 cm (Figure 4-5).

The farmers explained that, prior to their repairs, the break (offset) in the wall extended over a zone of approximately

OFFSET PADDY WALLS ALONG
ALIGNMENT OF GROUND CRACKING
India
Project 14087A
Woodward-Clyde Consultants
Figure 4-5
Page 122

3 m . Because of their repairs, the offset now appeared to be localized. The farmers were asked to show exactly where the ground cracks extended across the fields and if there were other similarly damaged retaining walls. In walking through the fields and tracing where the zone of ground cracks occurred, the zone was observed to intersect one rock retaining wall after another along a linear trend. The farmers' description of the crack pattern was consistently right-stepping en echelon. At almost every broken retaining wall the repaired walls showed 30 to 45 cm of left-slip displacement. Some variation in the amount of left-lateral offset appeared from wall to wall; however, such variation may have been more the result of the repairs rather than how much the wall had been displaced.

All of the retaining wall breaks along a linear trend also followed a general, yet somewhat subtle, topographic trend. This clearly suggests geomorphic evidence of a fault. At one locality, a small fracture branched from the main ground crack zone and had about 7 cm of vertical separation of the ground surface. That this crack would still be preserved after nine years was of interest; however, its existence could not be related to any other cause than the ground cracking.

Near the base of the steep hill north of Donechiwadi is a shallow gully following the general trend of the reported ground cracks. The local farmers were asked if this feature was the result of erosion along the zone of cracks resulting from the 10 December 1967 earthquake or whether it existed before the earthquake. The farmers answered that the erosion feature was in existence prior to the earthquake. The reported zone of cracks seemed to be parallel to and to follow the general trend of the topographic feature for some distance. Some erosion along the new zone of cracks had occurred since 1967 and, from a distance, at least three and

Woodward-Clyde Consultants

possibly four somewhat parallel shallow zones of erosion could be observed.

The farmers described three or four zones of cracks that extended almost vertically up the side of the hill north of Donechiwadi. They said that the side of the hill had been extensively shattered along these zones. All the zones are slightly west of the 3 -m-deep erosion gully that was previously noted by the field party.

A distinct topographic feature, approximately 2 m high and down on the east, trends diagonally up the hill east of and near the erosion gully (Figure 4-4). The change in elevation occurs across a scarp approximately 6 m wide. The topographic feature could be explained by differential erosion along a contact of left-slip along a fault. There is also a distinct vegetational change across this feature. At the base of the hill and in direct alignment with the apparent scarp is another retaining wall that shows evidence of approximately 1 m of left-slip. The farmers were asked how old the rock walls were, and they answered, "The walls have always been here." (This particular wall had been there for at least five generations.)

In projecting the strike of an assumed fault across the fields at this location, several old walls were in a poor state of repair and seemed to terminate in line with the assumed fault. All of these apparently terminated walls are consistent with the concept of left-lateral slip along the assumed fault.

The reported zone of ground cracks examined across the fields was about 2 km long. All broken walls consistently showed evidence of left-slip where the walls had been broken and were displaced. The amount of left-slip displacement varied from a few centimeters to as much as 1 m , although it was difficult
to determine how much of the actual offset was due to repair of the wall. The trend of the reported ground cracks across the broken walls was 22° E.

The local farmers had indicated that the zone of ground cracks had crossed the highway pavement at the main road and near the Koyna River. Except for pavement repair over a distance of about 6 m , no other clear evidence for cracking appears at this location. This location is at a road marker indicating 48 km to Karad, Highway \#47. The farmers from Donechiwadi said the villagers across the Koyna River to the south also reported a similar zone of ground cracks, although the farmers had not personally seen the cracks.

October 1978 Study

The field study in October 1978 involved four days in the region around Shivaji Sagar Lake and Koyna Dam, one day of aerial reconnaissance, and four days of conferring with geologists and seismologists.

Donechiwadi - The zone of ground cracking was located in the village of Donechiwadi, approximately 3.5 to 4 km southeast of Koyna Dam (Figure 4-4). The ground cracks in Donechiwadi have been described previously by Sinha and Menon (1971), Snow (1973b) and Cluff (1977), among others. Discussions with village leaders permitted relatively accurate location of the zone of ground cracks within the village of Donechiwadi and northward toward the low hill (Figure 4-4). The Indian Geological Survey (GSI) had excavated a test pit on the west side of the low hill; no excavations were made on the east side of the same hill. This test pit was briefly examined. As described in the January 1977 study (Cluff, 1977), this pit is overgrown and partially filled with collapsed material. No ground cracks or remnants were observed on this side of the hill.

Two dominant trends of fracture zones were observed in the Donechiwadi area. Based on information from the local inhabitants and from studies of locations of offset retaining walls and photographs (taken by Gupta and Rastogi, 1976) of cracks crossing the roads, the trends are $\mathrm{N} 10^{\circ} \mathrm{E}$ for the western zone and $\mathrm{N} 35^{\circ} \mathrm{E}$ for the eastern zone. Other less evident or shorter crack and fissure zones may have existed: some reports state that ground cracks were observed throughout the hills near Donechiwadi (Phadke, 1968).

The eastern ($\mathrm{N} 35^{\circ} \mathrm{E}$) trend of ground cracks (on the east side of the hill north of Donechiwadi) was examined in detail, and individual ground cracks can still be observed within the zone (Figure 4-4). The most prominent of these is now a saddlelike depression trending $\mathrm{N} 35^{\circ} \mathrm{E}$ on the east hillside. The crack is now 1.3 m wide and 0.5 m deep. (The local farmers report that the feature originally was at least 15 m deep and since has been filled.) Weathered basalt and soil (clay) filling are present on either side of the crack that has clay filling, as shown in Figure 4-6. The length of the crack now is observed to be 2 m .

Several additional ground cracks were observed approximately south-southeast of the prominent zone of ground cracks described above. These additional cracks are observed to trend oblique to the slope of the hillside. They are approximately 1 to 2 m long and approximately 15 to 30 cm deep. Gullying has occurred, but the orientation oblique to the slope (in addition to the villagers' identification of the location of the zone of ground cracking) gives a high degree of confidence to the identification of ground cracks.

The total length of the ground cracks observed is approximately 30 m , and their width is approximately 0.5 m along an approximate $\mathrm{N} 35^{\circ} \mathrm{E}$ trend. In response to questioning,

LOG OF BEDROCK FAULT EXPOSED IN NALA (STREAM) BANX VICINITY OF KOYNA DAM India	
Prect No. 14087A	Figure 4-6
Woodward-Clyde Conseutants	Page 127

the villagers replied that they found no additional ground cracks in the fields below this side of the hill, adjacent to and east of Donechiwadi.

North of the village of Donechiwadi and the low hill is a prominent bluff of the Deccan basalt that rises 100 to 200 m above the plain on which Donechiwadi is located (Figure 4-4). Based on observations of topographic and stratigraphic relationships in this bluff, a notch, whose east side is topographically higher than its west side, may be in the area where the zone of ground cracks is projected to cross the scarp. (Figure 4-7). In addition, the stratigraphy on either side of the projected zone of ground cracks could not be correlated across the zone. These data strongly suggest that the zone of ground cracks occurs along an existing fault.

Within the village of Donechiwadi, the natives described a zone of ground cracks approximately 10 to 15 m wide along the west side of the village proper. The main well was reported to have ceased flowing after the earthquake of 1967; water depth at the time of the earthquake was at approximately 70 m in the well. A subsequent boring adjacent to the old well did not encounter water. Because of farming, the ground cracks have long since been cultivated out of existence. However, in the southwest part of the village, the ground cracks, as reported by the natives, passed between a large tree and the corner of a house, thus allowing relatively accurate location of the zone of ground cracking.

Projecting the trend of ground cracks toward the southwest and the Koyna River, the retaining walls, constructed to terrace the land sloping down toward the Koyna River, were examined closely for evidence of displacement, and the villagers were questioned regarding the repairing of the walls. No distinct offsets of the walls were noted along this trend of the ground

TOPOGRAPHIC NOTCH IN DECCAN PLATEAU ALONG ALIGNMENT OF GROUND CRACKS VICINITY OF KOYNA DAM India	
Project No. 14087A Woodward-Clyde Consultants	
	Figure 4-7

cracks at the location indicated by the natives. Analysis of data showed the natives had pointed out a trend of ground cracking to the west of the zone noted in 1977. The two zones of cracking observed high on the hillside north of Donechiwadi correspond to the two separate trends of ground cracking pointed out by the natives as passing east of Donechiwadi and passing through Donechiwadi.

Approximately 500 m south of the village of Donechiwadi, the reported remaining surficial expression of a ground crack was exposed. This feature is oriented normal to the slope of the low hill at the site and is 3 to 4 m long, 30 cm wide, and 15 cm deep. The villagers stated that the feature was a ground crack related to the earthquake along which erosion subsequently has occurred. The orientation of the feature relative to the slope direction does not preclude the feature being an erosional gully. Examination of the feature did not resolve the nature of its origin.

Ground cracking along the road between Koyna and Karad, immediately adjacent to the " 48 km to karad" road marker (Figure 4-4), has been reported previously (Committee of Experts, 1968). Approximately 100 m east of the road marker and the zone of ground cracking is an outcrop on the north side of the road [see also Cluff (1977) description of the location]. Stories conflicted regarding the location of the zone of ground cracking relative to this outcrop. Initially the zone was shown to cross the road at the east end of the outcrop. Subsequently, the zone is shown to cross at the west end of the outcrop, on the west facing slope of the outcrop and the adjacent gully. On the basis of this investigation, the second location is judged to be the more accurate because many, if not all, of the villagers present tended to overrule the eastern location, although the eastern location may represent the easternmost zone of the two trends of ground cracking.

The outcrop was examined in detail and consisted of prominently jointed basalt. No evidence of fault displacement was observed. The predominant joint orientation was $\mathrm{N} 15^{\circ} \mathrm{W}$ to $\mathrm{N} 20^{\circ} \mathrm{W}$ and had generally a steep northeast dip. Joints were observed to be generally tight and devoid of infilled or secondary material. In addition, no fault gouge, slickensides, or shear zones were observed to be present. The surficial soil units were thin to nonexistent. Erosion appears to be stripping away any soil cover that has developed.

Whether the origin of the western zone of ground cracking in the vicinity of Donechiwadi was from differential settlement, slumping, or fault displacement could not be readily determined from this examination. To assess if the ground cracks were of tectonic origin, a location would have to be selected for examining the zone for evidence of active faulting; finding such a location in a short period of time in the area around Donechiwadi was considered unlikely. Consequently, the zone of ground cracking (reported by the Committee of Experts, 1968) was examined for such evidence on the south side of the Koyna River near the village of Kadoli.

Kadoli - The villagers indicated the location of the zone of ground cracks in the vicinity of Kadoli (Figure 4-4, south of the Koyna River). This location appears to contradict Plate 5-1 in the report of the Committee of Experts (1968), unless the arrow (on the plate) showing the direction to Kadoli is reversed 180 degrees. The villagers were very emphatic in locating the ground cracks at the location shown on Figure 4-4, and the described zone was oriented $N 30^{\circ} E$. South of the Rain Temple, the ground cracks were observed to have continued for approximately 500 m to the crest of the hills south of the temple. The villagers did not know if the ground cracks continued south of the hill crest because no
villager had gone to the other side of the hill to look for them. The zone was reported to have been 10 m wide and to have consisted of a nearly continuous central crack flanked on either side by one to three additional cracks. When requested to draw what was observed, the villagers drew a configuration with no apparent en echelon stepping of the cracks. The main crack was reported to have been 10 cm wide and 70 to 100 cm deep. The flanking fractures were 2 to 5 cm wide, 70 to 100 cm deep, and 2 to 3 m long.

Between the Rain Temple and the Koyna River, the zone of ground cracks crossed two stream drainages. The southern-most drainage and the Koyna River bank both were examined for evidence of faulting, but none was observed. In the northern drainage, however, a fault was observed within or adjacent to the reported zone of ground cracking (Figure 4-6). The fault was located in the northeast bank of a small stream drainage south of the Koyna River (Figure 4-8). Its orientation was $\mathrm{N} 35^{\circ} \mathrm{E}$ and nearly vertical. Close inspection of the fault showed two distinct near-vertical shears in weathered basalt. The upper shear has a strike of $N 48^{\circ} \mathrm{E}$ and dips $79^{\circ} \mathrm{NW}$. The lower shear strikes $\mathrm{N} 35^{\circ} \mathrm{E}$ and dips $83^{\circ} \mathrm{N}$. Both shear zones contain zones of clay up to 8 cm thick. The surface of the margin of the clay zone and other planes within the clay are polished. Slickensides were observed on some planes and on the edge of a small cobble adjacent to and in contact with the clay zone. A polished pebble was found in the clay zone with the long direction of the pebble oriented parallel to the grooves in the slickensided clay planes (Figure 4-9). Welldefined manganese-stained slickensided planes were measured to have a strike of $35^{\circ} \mathrm{E}$ and a rake of $31^{\circ} \mathrm{SW}$. The clay-filled zone was traceable for 1.6 m from the base of the stream bank upward through weathered basalt to near the ground surface where slumped reddish brown soil (pebbly colluvium) obscured the structure, as shown in Figures 4-8 and 4-9.

Slickensides

Fault Strike $\mathrm{N} 35^{\circ} \mathrm{E}$ Dip 89° NW

SLICKENSIDES ON FAULT PLANE VICINITY OF KOYNA DAM India	
Project No. 14087A Woodward-Clyde Consultants	
	Figure 4-9

Based on observations of this exposure, a bedrock fault is demonstrated to be present at a location adjacent to or within the reported zone of cracking and fissuring that accompanied the December 1967 earthquake. The clay-filled seam has the same strike ($\mathrm{N} 35^{\circ} \mathrm{E}$) as the regional trend of the surficial ground crack zone. The low angle ($31^{\circ} \mathrm{SW}$) measured on the rake of the slickensides is consistent with other reports of strike-slip, left-lateral displacement occurring during the December 1967 earthquake (Committee of Experts, 1968). The rake of the slickensides also is consistent with the reported uplift of the ground by as much as 25 cm (Committee of Experts, 1968). Thus, the left-lateral displacement along a rake of $31^{\circ} \mathrm{SW}$ would result in the east side of the fault zone being uplifted.

The age of the weathered basalt at this location was not determined during this study. The observed thickness of the basalt was 1.6 m , and it was overlain by sediments that are probably very young (deposited within the last few years) and that were not measureably displaced by the fault. Thus, based on presently available data, displacement along this fault in this segment of the ground crack zone prior to the 1967 event can not be evaluated.

North of the bedrock fault exposed in the drainage near the Koyna River and within the zone of reported ground cracking, a retaining wall was observed to have incurred left-lateral displacement of approximately 45 cm (Figure 4-4). The time of displacement of this wall could not be determined from the local farmers; consequently, whether the observed displacement took place during the 1967 event or whether some of the displacement occurred prior to the 1967 event still is not known .

Aerial Reconnaissance - An aerial reconnaissance was made of the region between Bombay and Koyna. Reduced visibility in Bombay delayed the scheduled early morning (low-sun-angle) overflight; as a result, the reconnaissance was a mid-morning view of the Shivaji Sagar Lake region.

The ground crack zone was observed to continue as a linear feature north of the village of Donechiwadi to the crest of the ridge between Donechiwadi and the eastern arm of the reservoir (north of Koyna Dam) (Figure 4-7). The linear feature was not observed to continue northward into the arm of the reservoir. However, the feature was observed to trend to within approximately 2 km of the reservoir, which is within the hydrologic regime of the reservoir.

South of the village of Kadoli, the linear feature associated with the zone of ground cracking was observed to continue for 2 km south of the village. Therefore, the fault zone associated with the zone of ground cracking is inferred to be 8 km long, based on the ground observations and the aerial reconnaissance.

CONCLUSIONS

1) Surface faulting occurred during the 10 December 1967 earthquake, the epicenter of which was located within several kilometers of the Koyna Dam. Surface faulting occurred about 3.5 to 4 km southeast of the dam and extended for a length of at least 7 to 8 km from north of Donechiwadi, across the Koyna River, to south of Kadoli.
2) Measurements made at an exposure of weathered bedrock in a stream bank near Kadoli show a northeast-trending fault dipping slightly to the west. Measurements made on the polished slickensided surfaces in the clay gouge within
the fault zone show a rake angle of $31^{\circ} \mathrm{SW}$, indicating the occurrence of strike-slip movement (sinistral) with a normal component (west side down).
3) The general projection of the fault exposed in the stream bank was identifiable during aerial reconnaissance as a lineament defined by tonal contrasts and aligned with geomorphic features including stream courses, springs, topographic benches, and an apparent interruption in the bedding of the Deccan Trap.
4) The fault location in the stream bank and the location of geomorphic features characteristic of recent faulting are in alignment with ground cracks and fissures that originated during the 1967 earthquake, as pointed out in the field by several independent groups of local residents from Donechiwadi and Kadoli.
5) The fault location in the stream bank is also coincident with locations of ground cracks and fissures south of the Koyna River, mapped by the Geologic Society of India soon after the occurrence of the 1967 earthquake.
6) The conclusion that surface faulting occurred along a west-dipping, northeast-trending, high-angle fault as a result of the 10 December 1967 earthquake is generally compatible with reported seismic data, such as epicenter locations and fault plane solutions.
7) Offset retaining walls along the zone of ground cracking and the reported repeated offsets during historical time indicate that the ground cracking occurred along an active fault that has had displacement in historical time.

4.3 KREMASTRA/KASTRAKI DAM REGION, GREECE

INTRODUCTION

Kremasta Dam, in southwestern Greece, impounds the Acheloos River, forming Lake Kremasta, which is approximately 120 m deep (Figure 4-10). Approximately 20 km downriver from Kremasta Dam, is Kastraki Dam, which impounds Lake Kastraki. This lake is approximately 86 m deep and is backed up to Kremasta Dam. Because these two lakes essentially form a continuous reservoir from Kastraki Dam to the north end of Lake Kremasta, they are treated as a single hydrologic entity in this study and will be referred to as the Kremasta reservoir.

Prior to reservoir impoundment, the region in which the lake is located experienced historical earthquakes, as shown on Figure 4-1l. However, this seismic activity was less than that of other nearby areas in Greece, and none of the historical earthquakes was reported to have occurred in the Kremasta Dam and reservoir area (Galanopoulos, 1967; Gupta and Rastogi, 1976). Subsequent to impoundment of the reservoir on 21 July 1965, seismic activity commenced and was clustered within approximately 25 km of the reservoir. This activity appeared to be occurring along existing fault zones at focal depths ranging from less than 2 to 20 km (Comninakis and others, 1968). The largest of these events (magnitude 6.3) occurred on 5 February $1966,25 \mathrm{~km}$ from the lake, as the lake approached maximum depth for the first time after impoundment (Comninakis and others, 1968) (Figures 4-11 and 4-12).

LOCATION MAP

EXPLANATION

Neogene-Holocene Continental Deposits
Flysch, mainly Eocene
Limestone, mainly Cretaceous
Cherts, shales, limestones of the Pindus zone

GENERALIZED GEOLOGIC MAP AND LOCATION OF KASTRAKI AND KREMASTA DAMS Greece	
Project No. 14087A	Figure 4-10
Woodward-Clyde Consuftants	Page 139

MAGNITUDES

$3.5-3.9$
$4.0-4.4$
$4.5-4.9$
$5.0-5.4$
$5.5-5.9$
$6.0-6.4$

Source: Modified from Galanpoulos (1967b)

HISTORICAL SEISMICITY MAP OF THE KREMASTA-KASTRAKI AREA Greece	
Project No. 14087A Woodvard-Clyde Consuttants Figure 4-11	

Source: After Galanopoulos (1967b)

WATER ELEVATIONS AND SEISMIC ACTIVITY KREMASTA LAKE Greece

Project No. 14087A
Figure 4-12

The temporal and spatial relationship between reservoir impoundment and the seismic activity suggests that seismicity was triggered by impoundment of the reservoir. The magnitude 6.3 event is one of the largest events associated with impoundment of a reservoir (Packer and others, l977; Simpson, 1976; Gupta and Rastogi, 1976). The Kremasta reservoir area was selected for field study because of this close relation of the seismic activity to reservoir impoundment and because of the size of the largest event. The purpose of the study was to evaluate if active faults are present within the influence of the reservoir. The scope of these studies was limited and did not attempt to locate all possible active faults. For the purpose of this study, an active fault is a fault that has had displacement in the present tectonic stress regime.

Geologic reconnaissance of the Kremasta reservoir area was made from 1 to 9 November 1978, aerial reconnaissance of the region was conducted on 8 November 1978. Discussions with geologists and seismologists familiar with the Kremasta reservoir area were held in Greece and Europe.

REGIONAL GEOLOGIC SETTING

The plate tectonics setting in which the Kremasta reservoir area is located is one of the most complicated plate tectonic environments known to exist. According to prevailing plate tectonics theory, the African plate is moving northward relative to the European Plate, generally resulting in horizontal compression in a north-south direction within the Mediterranean Sea and the Alpine area (McKenzie, 1972). To explain the complex tectonic relationships within the Mediterranean region, several authors have proposed the existence and influence of a series of small plates, subplates and scholles (McKenzie, 1972; Dewey and Sengor, 1979). The Kremasta reservoir area is located near the southern margin of
a small plate identified by Dewey and Sengor (1979) as the Macedonian Plate (Figure 4-13). The boundaries of the plate are somewhat obscure in the Kremasta reservoir area, but the general plate movement is believed to be toward the southwest and results in right-lateral shearing occurring off the west coast of Greece (Drakopoulos, personal communication, 1979). In addition, the east-west to northeast-southwest (rightlateral) trend may extend into the Kremasta reservoir area in the Gulf of Korinthiakos.

Within this plate tectonic framework, the Kremasta reservoir is located in the Gavrovo Zone, a north-trending thrust zone that is bordered on the west by the Ionian Zone and on the east by the Pindus Zone (Figure 4-10) (Aubouin, 1959). The Gavrovo, Ionian, and Pindus zones are characterized by westward thrusting and folding upon which are superimposed generally north-trending thrust faults and east-northeast trending wrench faults (Gupta and Rastogi, 1976; Snow, 1971; British Petroleum Company, Ltd., 1971). The three zones are separated by generally north-trending, east-dipping thrust fault zones. The thrust fault zones developed during the Pindic orogeny in Miocene time as did the folding (Snow, 1971). The wrench fault zones, including the AlevradaSmardacha fault, cut across and post-date the Miocene age structural features. The age of these fault zones has not been determined, although the results of this study suggest that they may have experienced very recent displacement, as discussed below.

Kremasta Lake is crossed by numerous faults. The major faults that have been previously mapped in the dam and reservoir area include the north-trending, east-dipping Pindus thrust fault and the northeast-trending, right lateral Alevrada-Smardacha fault (Figures 4-10 and 4-14).

EXPLANATION:
A Subduction zone
\longleftrightarrow Shear boundary
\rightleftarrows Compressional boundary
\longleftrightarrow Extensional boundary
Note:: Lengths of arrows give approximate proportion of relative velocities.

EXPLANATION:

Locations (approximate)
reforred to in report:
(A) Pindus Thrust Fauit
(b) Village of Paleophoria
(C) Paleophoria Fault
(D) Triklinos Fault
(E) Displacement by Triklinos fault

- $-\infty$ Inferred fault

Fault trace, relative movement indicated

Source: Modified from British Petroleum Co., Ltd. (1971)

FAULTS IN LAKE KREMASTA AREA	
Greece	

The Kremasta region is underlain by eastward-dipping sedimentary strata. At depth are Cretaceous limestone units which have extensive karstification and are overlain by Eocene limestone. Uplift during early Miocene time resulted in extensive flysch deposits of mudstone and siltstone, sandstone and local conglomerate. The Ionian, Gavrovo, and Pindus zones have north to north-northwest trending belts of strata (Aubouin, 1959) that exhibit similar facies along their length but differ from the facies in adjacent zones (Aubouin, 1957; British Petroleum Company, Ltd., 1971). The boundaries between these zones are fault zones, as described previously; however, the faults are believed to be superimposed on sedimentological breaks or boundaries (British Petroleum Company, Ltd., 1971) (Figure 4-10).

Within the Ionian zone, rock units include Triassic evaporites, Jurassic limestone, chert, some shale, and upper Eocene limestone. Unconformably overlying these units are the Miocene flysch deposits, which are relatively thick in the east and become thinner and more calcareous in the west. Locally, marl and conglomerate are present in the western part of the zone. Overlying the Miocene deposits are Pliocene alluvial and lacustrine deposits and pleistocene alluvial and beach deposits of silt, sand, and gravel (British Petroleum Company, Ltd., 1971).

The Gavrovo zone contains Upper Cretaceous limestone unconformably overlain by Eocene limestone and Miocene flysch. The lowermost units, generally limited to the eastern section of the zone, are in the form of inliers in the flysch deposits. Most of the Gavrovo zone is composed of thick Miocene deposits of arenaceous flysch. Overlying the Miocene units are Pliocene and Pleistocene alluvial and lacustrine deposits (British Petroleum Company, Ltd., 1971).

Abstract

The Pindus zone is composed of Jurassic and Cretaceous siliceous limestone, shale, and radiolarite. Unconformably overlying these units are Upper Cretaceous and post-Mesozoic flysch deposits (Snow, 1971). Ophiolites, shale, and radiolarian chert were observed during this study to occur locally in the zone.

SEISMOLOGIC SETTING

Prior to reservoir impoundment, the Kremasta region had experienced historical earthquakes. However, the activity was less than that of other nearby areas in Greece, and none of the historical earthquakes were reported to have occurred in the dam and reservoir area (Galanopoulos, 1967; Gupta and Rastogi, 1976; Comninakis and others, 1968) (Figure 4-1l). Data presented by Galanopoulos (1967) indicate seismic activity in the Lake Trichonis area and northwest and northeast of the reservoir area. Moreover, an event of magnitude less than 4.4 was recorded in the vicinity of the kremasta area prior to impoundment. According to Snow (1971), Galanopoulos reported only two earthquakes in the Acheloos River area for the 265-year period prior to reservoir impoundment. Gupta and others (1972a) report no seismic activity within 40 km of the dam prior to impoundment of the reservoir.

Impoundment of kremasta Lake began on 21 July 1965. Shocks were felt in the vicinity of the lake in August 1965 and became swarms of earthquakes in December 1965 and January 1966 (Figures 4-11 and 4-12). From l January 1966 to 4 Feburary 1966, 81 earthquakes occurred within approximately 96 km of the reservoir (Snow, 1971).

From 15 January to 20 January, 1966,6 to 8 earthquakes were recorded each 24 hours, and engineers working at Kremasta Dam reported feeling sudden shocks. Engineer Stathmu reported the following events (Galanopoulos, 1967a):

16 January 1966	$4: 15 \mathrm{am}$	Strong vibrations (estimated M $=4$ or
18 J)		
Strong vibration		

Five of these events were recorded at the seismograph station on Kephallenia Island, 115 km west of Kremasta. Two of the events were recorded at the cental seismograph stations in Athens, 220 km to the southeast.

On 5 February 1966, a magnitude 6.3 earthquake occurred near the north shore of Lake Kremasta, 25 km north of Kremasta Dam, epicenter coordinates at $39^{\circ} \mathrm{N}$, $21.6^{\circ} \mathrm{E}$ (Simpson, 1976 ; Comninakis and others, 1968). Aftershocks were recorded through the remainder of 1966 . Comninakis and others (1968) reported that 740 foreshocks and 2589 aftershocks, between magnitudes 2.0 and 5.6, were recorded by the Seismological Institute of the National Observatory of Athens Network. Calculated focal depths are 24 km , 23 km , and as shallow as 20 km (Comninakis and others, 1968).

Two fault plane solutions for the main event are reported in the literature. In the Bulletin of the International Seismological Center, the calculation of first-motion data indicates that plane a is oriented $N 72^{\circ} \mathrm{E}, 62^{\circ} \mathrm{NW}$ and has a slip angle of 60 degrees. Plane b is oriented $N 58^{\circ} \mathrm{W}, 40^{\circ} \mathrm{SW}$ and has a slip angle of 48 degrees. The plane b direction is oriented parallel to the trend of one of two faults traced by Galanopoulos (1967b)
and is accepted by Gupta and others (1972b) as the fault plane. Movement on the plane is accepted to be normal sinistral, and the dip component of motion is at a 48-degree angle.

The second solution for the main event is based on P wave data recordings from 80 stations (Comninakis and others, 1968). By combining the solution with the distribution of foreshocks and aftershocks, Comninakis and others (1968) have identified a fault plane with an orientation of $N 66^{\circ} \mathrm{W}$ and a dip of 76 degrees. Displacement is explained as reverse (a vertical thrust fault) with a sinistral component.

FAULT INVESTIGATION

Three major structural features in the Kremasta area were identified during the ground and aerial reconnaissance for this study. They are the Pindus thrust fault, the Alevrada-Smardacha fault, and an unnamed northwest-trending, high-angle fault (referred to here as the Triklinos fault) not previously reported in the literature (Figures 4-10 and 4-14). All three faults are of regional nature and pass through Lake Kremasta. They are all marked by prominent linear topographic features. Although many other bedrock faults were observed in the area around the reservoir, these three faults were the most prominent and were in the proximity of the epicenter of the 5 February 1966 earthquake. In addition, a northeast-trending, high-angle fault with circumstantial evidence of recent displacement near the lake (referred to here as the paleophoria fault) was studied in some detail because of its prominence, possible recent displacement, and proximity to the reservoir (Figure 4-10). The results of the observations made along these faults during this study are presented below.

The Pindus thrust fault is a Miocene age fault along which Triassic, Jurassic, and Cretaceous age chert and limestone units were thrust to the west, overriding Miocene age flysch deposits. The fault is located in the eastern section of the Lake Kremasta area and crosses the Megdhoyas and Agraphiatis arms of the lake (Figure 4-14). The fault generally was inaccessible during this reconnaissance study except at the location where it crosses the road to the village of Frangista (Location A, Figure 4-14). In this region, however, the Pindus thrust is cut off on the east side of the road to frangista by high angle faults and was observed only on the west side of the road near a small village called Paleophoria (Location B, Figure 4-14).

Based on observations during ground and aerial reconnaissance, the leading edge of the thrust sheet appears to correspond to a prominent topographic scarp where light gray limestone of the Pindus zone lies above the dark gray siltstone flysch deposits of the Gavrovo zone (Figure 4-15). This contact, although visible from a distance, generally was inaccessible during the reconnaissance study. From short traverses on foot along ravines eroded into the scarp, the scarp was observed to be covered with landslide debris and large blocks of limestone. Springs are also present along the base of the scarp. From this review of a short segment of the Pindus thrust fault zone, no evidence of recent displacement was observed.

Paleophoria Fault

High-angle faulting was observed on the east side of the road to Frangista, approximately 4 km north of the bridge crossing the Megdhoyas arm of the reservoir (Location C, Figure 4-14). The fault can be observed in a vertical exposure of approximately 500 to 700 m in the hillside above the stream draining from

WEST VIEW

PINDUS THRUST FAULT NEAR PALEOPHORIA

Greece

Frangista to the lake (Figure 4-16). The amount of displacement could not be determined but appears to be large (at least 10 to $90 \mathrm{~m})$. The fault is oriented $\mathrm{N} 25^{\circ} \mathrm{E}$, $80^{\circ} \mathrm{NW}$ to approximately $60^{\circ} \mathrm{SE}$, its southeast side downthrown relative to its northwest side (Figure 4-16).

The fault is within the flysch deposits and separates reddishbrown siltstone on the southeast wall from grayish-white sandstone on the northwest wall. This gouge zone is 40 to 50 cm wide and contains slickensides which dip 25 degrees to the southwest. Because of the down-dragged bedding and the orientation of the slickensides, the fault may be normal, its lateral displacement resulting from a more recent reverse. The soil horizons above the fault zone generally were inaccessible; however, a topographic scarp (up on the northwest side) was observed above the fault zone. The orientation of the slickensides within the upper section of the fault zone suggests that a reverse, dextral displacement has occurred, post-dating the period of normal faulting. The orientation of the fault (cross-cutting Miocene regional trends) suggests that the original normal faulting occurred in post-middle Miocene time. Thus, although no direct evidence for recent displacement was observed; circumstantial evidence suggests that relatively recent displacement may have occurred.

Alevrada-Smardacha Fault

The northeast-trending Alevrada-Smardacha fault zone has been mapped along a distance of 28 km (British Petroleum Company, 1971) and is several hundred meters wide. The fault is shown to offset dextrally north- to northwest-trending, broadly folded structures in the lower Miocene flysch deposits in the Gavrovo zone. The Alevrada-Smardacha fault is easily identified near the village of Alevrada by a high linear cliff of white to gray massive Cretaceous and Eocene limestone on the northwest side of

Orientation of Groves $\mathrm{N} 25^{\circ} \mathrm{E}$

EAST VIEW OF PALEOPHORIA FAULT NEAR MEGDHOYAS BRIDGE VICINITY OF KREMASTA-KASTRAKI Greece

Project No. 14087A
Woodward-Clyde Consultants
Figure 4-16
Page 153
the fault zone. On the southeast side of the fault zone are lower Miocene flysch deposits, which, in places, are cut through by the fault. From the air, the fault is identified by a series of parallel linear elements. At some locations, the fault is at the contact of the flysch with limestone, and at other locations, it is within the flysch (Figure 4-17).

During ground reconnaissance, four locations were found where rock was exposed on either side of the fault. The exposures were observed at various intervals for over 8 km of the fault's length (Figure 4-17). The first site was about l km southwest of the village of Alevrada in a road cut located north of the road from Petrona to Alevrada (Location A, Figure 4-17). At this location, the main fault zone is within the flysch deposits in which siltstone on the south is brought into fault contact with fine-grained sandstone on the north. The fault contains a 90-cm-wide disturbed zone of clay gouge at both the outer contact with bedrock and the breccia in the central portion (Figure 4-18). The fault zone is oriented $40^{\circ} \mathrm{E}$ and is steeply dipping $80^{\circ} \mathrm{NW}$ to $83^{\circ} \mathrm{SE}$. The south side of the fault has moved down with respect to the north side. This interpretation is based on down-dragged bedding on the northwest side of the fault and the orientation of breccia fragments within the fault zone whose long axes have a dip of 56 degrees to the south.

A second fault location within the Alevrada-Smardacha fault zone was observed approximately 0.5 km northeast of the location described above and may represent a continuation of the same fault trace (Location B, Figure 4-17). This fault zone is oriented $N 40^{\circ} \mathrm{E}, 83^{\circ} \mathrm{SE}$. The fault is exposed on the southwest bank of a drainage ditch that is adjacent to a concrete spring box, northwest of the Petrona-Alevrada road and at the southwestern edge of the village of Alevrada. The fault contains a 25-cm-thick clay gouge zone with polished pebbles, the long axis of which is nearly vertical (Figure 4-19). The sense of

Locations approximate.
Not to scale.

\left.| LOCATION MAP OF THE | |
| :---: | :---: |
| ALEVRADA-SMARDACHA FAULT | |
| Greece | |$\right]$.

NOTE:

- Ser Figure 4-17 for location. Discussion in text refers to this © Location A on Figure 4-17.

FAULT WITHIN ALEVRADA-SMARDACHA FAULT ZONE - LOCATION A

Greece

SOUTHWEST VIEW*

NOTE:

- See Figure 4-17 for location.

Discussion in text refers to this
as Location 8 on Figure 4-17.

FAULT WITHIN ALEVRADA-SMARDACHA FAULT ZONE - LOCATION B

Greece

Project No. 14087A	Figure 4-19
Woodward-Clyde Consuhtants	Page 157

displacement was not determined. Slumped soil covers the top of the fault, and seeps were found in both the sandstone and siltstone units on the north side of the fault.

The third location where the faulting was observed within the Alevrada-Smardacha fault zone was about 0.5 km northeast of the village of Alevrada, in a cut above the main dirt road leading northeast from the village. At this point, the fault zone is about 9 m wide (Figure 4-20) and has zones of more intense deformation on either side of the main fault zone. The most intensely sheared zone is at the southern edge of the exposure and is oriented $N 50^{\circ} \mathrm{E}$, and dips $70^{\circ} \mathrm{NW}$. This zone contains slickensided clay gouge, the slickensides dipping 40 degrees to the east. Crenulation folding is preserved in the clay gouge adjacent to linear shear planes that are slickensided and contain a clay filling 1 to 4 cm thick. The central part of the fault zone is composed of distorted bedding, breccia, and linear planes along which displacement has occurred. The northern edge of the exposure of the fault zone is marked by another clay zone similar to that at the southern edge, showing shearing and crenulation folding. This clay zone has an orientation of $\mathrm{N} 67^{\circ} \mathrm{E}, 69^{\circ} \mathrm{NW}$. Bending and drag on the adjacent beds outside the fault zone and rotated blocks within the fault zone show that the relative movement is north side up. Slumped talus and loose thin soil cover the fault zone on top of the cut.

Ground reconnaissance farther to the northeast of the village of Alevrada revealed a large rock and debris slide generally on line with the projection of the fault zone traced through the village (Location D, Figure 4-17). The large slide totally destroyed a lengthy section of road from Alevrada to Triklinos. The slide most likely occurred during the 1966 earthquake, based on reports from the villagers of Alevrada. These villagers also indicated that numerous slides and ground cracks occurred north and northeast of the village, as well as within the village,

NORTHEAST VIEW*

NOTE:

- See Figure 4-17 for location. Discussion in text refers to this as Location C on Figure 4-17.

> FAULT WITHIN ALEVRADA-SMARDACHA FAULT ZONE - LOCATION C Greece
during the 1966 earthquake. Some houses were reported to have collapsed during the earthquake; however, most of the ground cracks and damage was reported to have occurred northeast of Alevrada. Four houses were reported to have been destroyed in one stream valley located about 1 km northeast of the village, and a crack about 15 cm wide and 10 m long was reported to have occurred near a house known as the Paleohoraki house. Other cracks were reported 3 km northeast of the village near a house known as the Pistiana house. Ground reconnaissance in the area where cracking was reported showed evidence of slumping, landsliding, and debris sliding. Because of the length of time since the earthquake, no cracks were observed and no conclusive evidence of surface rupture was observed.

The fourth fault location within the Alevrada-Smardacha fault zone is beneath the Smardacha Bridge (Location E, Figure 4-17) (Snow, 1971). Due to the general inaccessibility of this location and poor lighting conditions at the hour of this study, an examination of the location on the ground was not possible. However, during the aerial reconnaissance, the northern-most point of the Alevrada-Smardacha fault was observed to pass through this location. Snow (1971) reports an east-northeast trending, steeply dipping fault zone that contains slickensides dipping 45 degrees. From these data, he postulated normal displacement and dextral displacement that had displaced a fold axis for approximately 3 km along the fault.

From these five locations, as well as from observations made southwest of Alevrada, the Alevrada-Smardacha fault could be traced for approximately 15 km between the village of Petrona and the Smardacha Bridge. The sense of displacement is normal within the fault zone. Sinistral displacement was observed at one location (Location C, Figure 4-17), and dextral displacement was reported at another location (Location E, Figure 4-17) (Snow, 1971). This disparity may indicate recent displacement
has had different components along the different segments or may indicate different segments of the fault have responded to different stress regimes. Although the fault passes into the western section of the . reservoir, its relationship to seismic activity after impoundment of the reservoir remains unresolved.

During the investigation of the Alverada-Smardacha fault, the village of Alevrada, which consists of approximately 30 to 40 stone block houses, was examined in detail for evidence of ground cracking and/or building damage. No conclusive evidence of ground cracks were obtained, which may be due to the 12 -year interval since the earthquake. Reconnaissance of the fault projection through Alevrada resulted in several locations where stone houses had fallen, leaving cement slab foundations. The collapse of these buildings as the result of the earthquake could not be verified. Two churches on the projection of the fault trace were apparently undamaged. An abandoned building in the northeast section of town had a caved-in roof and prominent cracks in the walls, but fire had severely damaged the building and the relationship of its damage to the earthquake is ambiguous.

During further ground reconnaissance in the village, a rather unique thick agglomerate debris slide deposit was noted behind one of the village churches, in the central-northern part of the village. At the church, one large spring, which supplies water for the village, has developed near the base of the agglomerate. The agglomerate was formed by debris slides from the adjacent high cliff of limestone to the northwest. The agglomerate has a lobe-shaped outline in plan view and a linear boundary at its lower edge. The outline of the scarp left by the limestone forming the agglomerate is visible on the limestone cliff. The agglomerate formed a fairly sharp linear 5 - to $10-\mathrm{m}$ high scarp. The alignment of this scarp is in a northeast direction, subparallel to, and about 100 m to the northwest of, the fault
alignment (as defined by fault exposures). Rubble blocks of the coarse limestone agglomerate exist downslope from the scarp, but no part of the agglomerate deposit that looks in place was found downslope from the fault alignment.

From aerial reconnaissance of the agglomerate deposit, a clear outline of its extent is visible (Figure 4-21). Moreover, aerial reconnaissance helps define the zone as a series of linear elements marked by vegetational changes and topographic saddles and troughs. One possible explanation for the linear nature of the scarp is that it was fault-controlled, suggesting the faults have been active since the time of deposition of the agglomerate. Other similar subparallel linear elements, which may also be faults, were also noted.

Triklinos Fault

The Triklinos fault crosses the Pindus thrust fault and the Alevrada-Smardacha fault. The first evidence of this highangle, northwest-trending structure was noted while viewing the scarp of the pindus thrust fault at the village of Paleohoria, in the eastern part of the reservoir (Location B, Figure 4-14). The Pindus fault scarp in this area is very linear and may be influenced by the Triklinos fault. An oblique aerial photograph on display in the Kremasta Dam power house shows a distinct northwest-trending linear feature in the same area where the fault was noted in the field. On the photograph, the structure was observed to extend northwestward from the Megdhoyas arm of the reservoir, across the drainage from Frangista, and toward the Agraphiotis arm of the reservoir.

During subsequent aerial reconnaissance of the Lake Kremasta reservoir area for this study, the linear feature noted on the oblique photograph and the scarp studied on the ground were observed to be approximately coincidental. This linear feature

View is to the northwest

AERIAL VIEW OF ALEVRADA- SMARDACHA FAULT THROUGH THE VILLAGE OF ALEVRADA Greece	
Project No. 14087A Woodward-Clyde Consultants	
	Figure 4-21 163

was observed to trend from the Megdhoyas arm of the reservoir, through the stream drainage from Frangista, which has had a sinistral displacement of approximately a hundred meters (Location D, Figure 4-14; Figure 4-22). The linear feature continues northwestward near the prominent scarp shown on Figure 4-15 and subparallel to the trend of the Pindus fault in this area of the lake region. Northwest of the village of Paleohoria, the Pindus thrust fault trends more northerly while the linear feature continues across the Acheloos arm of the reservoir and offsets the Alevrada-Smardacha fault with sinistral displacement (Location E, Figure 4-14; Figure 4-23). The linear trend was observed to continue northwestward to the village of Triklinos beyond which it could not be observed.

The Triklinos fault's observed length is at least 25 km . The fault trends northwest and is inferred to be active, based on the youthful nature of the displaced Frangista drainage. Recurring displacement within the present tectonic stress regime has been inferred to have occurred, resulting in the offset drainage of the stream. The trend of the fault and the sense of displacment agree remarkably well with that postulated by Comninakis and others (1968) (Figure 4-10). Correlation of the field observations and the seismologic calculations is not possible at the present time, but the similarity is notable.

SUMMARY AND CONCLUSIONS

1) Faulting is prevalent in the Kremasta reservoir area.
2) The Pindus thrust fault displaces Miocene sedimentary strata and passes through the reservoir area. The time of latest displacement along this fault could not be determined.

View is to the north.

AERIAL VIEW OF SINISTRAL DISPLACEMENT OF THE ALEVRADA-SMARDACHA FAULT BY THE TRIKLINOS FAULT Greece	
Project No. 14087A Woodward-Clycle Consultants	
	Pigure 4-23 166

3) The Paleohoria fault is a northeast-trending, high-angle fault whose regional extent was not determined. Displacement is up to the northwest. Field data suggest the more recent movement may be dextral and reverse. The fault is located in the eastern part of Lake Kremasta, and its trace projects through the Megdhoyas arm of the lake. Circumstantial evidence, including a topographic scarp and slickensides, suggests that it may be active.
4) The Alevrada-Smardacha fault is a prominent northeastsouthwest trending, high-angle fault of at least 15 km length between Petrona and the Smardacha Bridge. Normal displacement down to the southeast was observed, as was sinistral and dextral displacement. Extensive landsliding occurred north of the village of Alevrada during the 1966 earthquake. The landslides apparently were triggered by the earthquake. No ground cracks were identified along the Alevrada-Smardacha fault in the Alevrada area. Clear topographic features and recent seismicity suggest this fault may be active.
5) The Triklinos fault is a northwest-trending, high-angle fault whose observed length is at least 25 km from the Megdhoyas arm of Lake Kremasta to the village of Triklinos. An offset stream drainage and offset of the AlevradaSmardacha fault show sinistral displacement of approximately a hundred meters. The youthful nature of the displaced stream demonstrates the recency of fault displacement along this feature and strongly suggests the fault is active.
6) The Triklinos fault is approximately parallel to, and very near, the fault on which the 1966 earthquake ($M=6.3$) was postulated to have occurred by Comninakis and others (1968). The sense of displacement is also the same.

Woodward-Clyde Consultants

7) Active faults, including the Triklinos fault and possibly the Alevrada-Smardacha fault and the Paleohoria fault, are present within the hydrologic regime of Lake Kremasta.

4.4 EUCUMBENE, TALBINGO, AND BLOWERING RESERVOIRS, AUSTRALIA

INTRODUCTION

Lakes Eucumbene, Talbingo, and Blowering are the largest reservoirs in the Snowy Mountain Scheme, a hydroelectric and irrigation complex located in southeastern Australia (Figure 4-24). These lakes are formed by the impoundment of the Snowy and Eucumbene Rivers which are diverted through a series of tunnels to the Murray and Murrumbidgee Rivers (Figure 4-25). The characteristics of each reservoir are presented in Table 4-2, and a photograph of Eucumbene Dam is shown in Figure 4-26.

Initial impoundment of Lakes Eucumbene and Talbingo were accompanied by high levels of seismic activity that appear to be related to the reservoir filling. No unusual seismic activity was recorded during impoundment of Lake Blowering, which is immediately downstream from Lake Talbingo and which was impounded two years earlier than Lake Talbingo. A preliminary study was undertaken to evaluate fault activity within the regime of these reservoirs. For the purposes of this study, a fault is defined as active if it has had displacement during that area's present stress regime.

PROJECT LOCATION MAP	
LAKES EUCUMBENE, TALBINGO,	
AND BLOWERING	
New South Wales, Australia	
Project No. 14087A	Figure 4-24
Woodwars-Clycle Consultants	Page 170

TABLE 4-2
DESCRIPTION OF THE EUCUMBENE, TALBINGO, AND BLOWERING RESERVOIRS

	Eucumbene	Talbingo	Blowering
Type	Earth/Rock	Earth/Rock	Earth/Rock
Water Depth	106 m	142 m	95 m
Crest Length	579 m	700 m	888 m
$\begin{gathered} \text { Reservoir } \\ \text { Area } \end{gathered}$	$145 \mathrm{~km}^{2}$	$19.4 \mathrm{~km}^{2}$	$44.5 \mathrm{~km}^{2}$
Gross Storage	$4761 \times 10^{6} \mathrm{~m}^{3}$	$935 \times 10^{6} \mathrm{~m}^{3}$	$1628 \times 10^{6} \mathrm{~m}^{3}$
Date Completed	May 1958	October 1970	September 1968
Foundation Rock	siltstone and quartzite	rhyolite lava and tuff	quartzite, metasiltstone, phyllite

The scope of work for this study consisted of the following:

- gathering and review of published and unpublished data and maps;
- discussions with scientists resident in, or familiar with, the study areas;
- aerial reconnaissance flights over the study area;
- ground reconnaissance at selected locations in the study area;
- examination of aerial photographs of portions of the study area;
- collecting and evaluation of seismologic data.

View is to the northeast, across Lake Eucumbene. Eucumbene Dam is in foreground.

The initial portion of the data gathering effort used Woodward-Clyde Consultants' library facilities and files in San Francisco. Additional data and maps were obtained from state and federal government agencies in Sydney, Canberra, and Cooma, Australia. Selected references also were reviewed in the library of the Geological Survey of New South Wales. Seismologic data were requested from the Research School of Physical Sciences of the Australian National University. Data on reservoir filling histories were solicited from the Snowy Mountains Hydro-Electric Authority. Topographic maps and photographs were obtained from the Department of Public Lands in Sydney and Canberra, Australia.

REGIONAL GEOLOGIC SETTING

The major portion of the Snowy Mountains area is underlain by granitic and gneissic rock of Silurian to early Devonian age. Most of remainder of the area is underlain by highly folded metasediments and metavolcanics of Ordovician and Silurian age, and by less-folded sedimentary and volcanic rocks of Devonian age. Relatively flat-lying Tertiary basalt flows cap the older rocks in some of the higher plateaus; these flows directly overlie unconsolidated river and lake deposits in portions of the area. Alluvial deposits and glacial deposits are present locally. The regional geologic relationships are shown in Figure 4-27.

At Eucumbene reservoir, according to mapping by White and others (1977), a major portion of the lake and much of the adjoining area to the north, east and west, are underlain by black shale, chert, sandstone, and slate of late Ordovician and early Silurian age. These rocks are strongly weathered to decomposed where exposed. In the southern portion of the Eucumbene reservoir area, and locally elsewhere, these rocks are intruded by granodiorite of late silurian or early

Ouaternary alluvium
Tb Tertiary basalt flows

Du Devonian undifferentiated, includes rhyolite, dacite, congtomerate, sandstone, shale, tuff, limestone

Silurian shaie, siltstone, sandstone, limestone, tuff
Ordovician shale, slate, schist, minor siltstone, quartzite, chert, andesite, tuff
Granitic rocks, inciuding granite, granodiorite,
m Monzonite, diorite, norite, basic rocks

Devonian limestone granitic gneiss, gneiss
p Porphyry
s Serpentine and associated rocks
\qquad Geologic contact

- - Fault

EXPLANATION:

Source:
Modified from Snowy Mountains Hydroelectric Authority, Seismic Map of the Snowy Mountains Area, and Geoloricai Survey of New South Wales, Eerridale Sheet (1976).

Devonian age. The granodiorite is overlain locally by basalt of Tertiary age, which is the youngest mapped geologic unit in the area. Unconsolidated deposits of Quaternary age are present but appear to be thin and of very limited areal extent.

At the Talbingo reservoir, the results of reconnaissance mapping by the Geological Survey of New South Wales (Adamson, 1955) indicate that this reservoir is underlain principally by volcanics and closely interrelated sedimentary rocks of Devonian age. Mapping by Brunker and others (1970) indicates that the southern end of the reservoir overlaps greywacke, siltstone, quartzite, tuff, and conglomerate of upper Silurian age. Brunker and others (1970) also show that at least one arm of the reservoir extends across serpentinite and related rocks that have been inferred to represent oceanic lithosphere of the Cowra Trough (Degeling, 1977). This overlapping of the serpentinite by the reservoir was confirmed during the field studies for this report. This band of serpentinite and related rock projects toward Lake Blowering but is mapped as pinching out approximately 6 km south of the Blowering Reservoir (Brunker and others, 1970). In addition, a prominent lineament associated with the serpentinite extends northward, subparallel to Blowering reservoir.

The Blowering reservoir area, as mapped by Brunker and others (1970), (1970), is underlain principally by quartz feldspar porphyry of upper Silurian age and by associated slate greywacke, sandstone, quartzite, tuff, and andesite. These units are closely interbedded. Similar rocks of early Silurian age are also mapped as being present beneath the southwestern arm of the reservoir.

The Snowy Mountains region is traversed by numerous faults, many of which may have developed concurrently with the older
stages of folding. Other faults are much younger and are believed to have been associated with uplift and warping that took place during Tertiary time. Complex block-faulting is particularly evident throughout much of the Snowy Mountains Region. These faults are visible as a system of intersecting lineaments, the most prominent of which has a north-northwest trend and the other has a northeast trend (Figures 4-25 and 4-27) (Moye and others, 1963; Maffi and Simpson, 1977).

The block faulting appears to be superimposed on an older tectonic trend, as delineated on various maps published by the Geological Survey of New South Wales (Pogson, 1972; Barnes and Herzberger, 1975; Brunker and others, 19.70; Degeling, 1977). This older trend consists of a belt of thrust faults that separates rock of significantly different type and age. In the vicinity of Talbingo reservoir, serpentinite and ultrabasic igneous rocks, inferred to represent oceanic upper mantle of late Ordovician to early Silurian age (Degeling, 1977), are exposed in a linear north-northwesterly trend that forms a "Y" junction with the main northeasterly trend of thrust faults (the Long Plain fault on Figure 4-27). Talbingo and Blowering reservoirs are both located within the "Y", and Talbingo locally overlies one arm of the "Y".

Left-lateral wrench faults also have been mapped in the Snowy Mountains area and include the Berridale fault, which is located near Lake Eucumbene (Figure 4-27) (White and others, 1977). In addition, a major thrust fault (the Jindabyne fault on Figure 4-27), is located in the immediate vicinity of Lake Eucembene.

REGIONAL SEISMIC ACTIVITY

The historical seismicity for the Snowy Mountains area is presented on Figure 4-28. This information was obtained
principally from the Snowy Mountains Hydro-Electric Authority and was based on data from a seismograph network established in 1957. Originally, this network consisted of four stations, each with a recorder, and was designed with the intent of ensuring detection and location of microearthquakes and larger seismic events. The data collected by the network are now telemetered directly to a recorder at the Australian National University in Canberra.

Lake Eucumbene

Impoundment of Lake Eucumbene began in June 1957, prior to establishment of the Snowy Mountains seismographic network. The pre-existing seismograph network was not capable of detecting events with magnitude less than 4 in the Snowy Mountains region. Thus, a good pre-impoundment data base is not available. However, a large body of seismic data has been accumulated since impoundment. Forty-four earthquakes of sufficient magnitude to be located accurately occurred during a 3-1/2 year period from 1958 to 1962 in a region located generally south to southeast of the reservoir (Figure 4-28). The largest of these events, which occurred near the community of Berridale in May 1959, had a magnitude of 5. Twenty-one minor shocks occurred in the vicinity of this magnitude 5 event, and they are reported to have the strain release pattern of a typical aftershock sequence. These shocks were relatively distant from the reservoir.

At the time of the main Berridale event, Lake Eucumbene had not yet reached the dead volume of approximately $432 \times 10^{6} \mathrm{~m}^{3}$; ponding of the live storage began in October 1958. Cleary and others (1964) interpret this as evidence that reservoir impoundment could not have been responsible. However, in comparison, Lake Mendocino in California, which has a total storage capacity of only $151 \times 10^{6} \mathrm{~m}^{3}$, is a well-documented
probable source of reservoir induced seismicity (Toppozada and Cramer, 1978). Lake Marathon in Greece, which has a capacity of only $41 \times 10^{6} \mathrm{~m}^{3}$, is another documented probable source of reservoir induced seismicity (Gupta and Rastogi, 1976).

Fault-plane analysis of the Berridale earthquake suggests that the event originated on either a high-angle reverse fault with a strike of about $\mathrm{N} 50^{\circ} \mathrm{W}$ degrees, or a low-angle, south- or southeast-dipping reverse fault with a possible range of strikes between $N 40^{\circ} \mathrm{W}$ degrees and east-west (Cleary and others, 1964). The first solution, which suggests a highangle reverse fault parallel to the Crackenback escarpment, was selected as correct by Cleary and others (1964). However, the results of recent geologic mapping (White and others, 1977) indicate that the Crackenback fault does not extend east of Lake Jindabyne. Moreover, the earthquake epicenters, as plotted, do not line up along the Crackenback fault. In fact, they are so widely scattered that selected groups could be attributed to the Jindabyne fault, the Berridale fault, and to a number of minor faults in the area between Berridale and Lake Eucumbene. Therefore, the alternative solution (involving a northeast or east-west trending, low-angle thrust fault) warrants further consideration. This solution would represent a plane subparallel to the Khancoban-Yellow Bog fault system in which bedrock has been thrust over Pleistocene(?) or more recent river gravels. This fault system appears to be related to the Long Plain fault, which is the most prominently visible structural feature on satellite imagery of the area (Figure 4-25).

Lake Talbingo

Lake Talbingo was outside the quadrangle of the original seismograph network, but a station was added in 1969, two years prior to filling. The additional station made it
possible to locate events with magnitudes of 1 or less in this area. Prior to 1 May 1971, when filling began, seismic activity had been monitored for 13 years, including two years of nearby monitoring by the Talbingo station. The only earthquake recorded during that period was a minor one located about 19 km north of the dam site. Increased seismic activity commenced on 19 May 1971 with a small event and was followed by two more small earthquakes during May. The activity in June increased to 39 recorded events, of which four were of sufficient magnitude to be located (maximum magnitude recorded was 2.4). In July and August, an average of 20 locatable events per month occurred as reservoir filling continued. The rate of filling dropped sharply after August, and there was a correspondingly sharp decrease in the number of locatable events. However, the number of microearthquakes remained fairly constant, initially at several hundred per month (Timmel and Simpson, 1972). The locations of the larger earthquakes are shown on Figure 4-28).

Lake Blowering
Located immediately downstream from Talbingo Dam (Figure 4-25), the Blowering reservoir essentially has the same pre-impoundment seismic history as that described above for Lake Talbingo. During the 16 -month period following impoundment, one microearthquake was located within 1 km of the reservoir.

FAULT INVESTIGATION

Lake Eucumbene Area

The geologic maps of the Lake Eucumbene area indicate that two faults, the Berridale wrench fault and the Jindabyne thrust fault, converge toward the Eucumbene Dam and that their joint
continuation may extend beneath the reservoir (Figure 4-27). These features were examined during the field reconnaissance studies.

Berridale Wrench Fault - The Berridale wrench fault is a major northwest-trending feature described in the literature as exhibiting approximately 11 km of left-lateral offset and as showing evidence of vertical displacement (Lambert and White, 1965; White and others, 1977). The left-lateral displacement is believed to have occurred during the Devonian period, whereas the inferred vertical displacement apparently has offset basalts of Tertiary age. Clear evidence of this displacement was not observed during field reconnaissance conducted for the study. However, during aerial reconnaissance, the Berridale fault was recognizable on the basis of linear tonal changes in grassy areas, gross changes in vegetation, linear sidehill depressions, and aligned saddles (Figure 4-29).

Lambert and White (1965) state that the Berridale fault has produced linear scarps in alluvium southeast of Berridale, where the current reconnaissance started. They also show an aftershock sequence in the Berridale area as having a northwest-striking, left-lateral, stike-slip component. Thus, on the basis of stratigraphic, geomorphic, and seismic evidence, the Berridale fault was classified as active for the purposes of this study.

Jindabyne Thrust Fault - The Berridale fault appears to join the north-trending Jindabyne thrust fault immediately south of Eucumbene Dam (Figure 4-27). White and others (1976) state that the Jindabyne fault is marked by a prominent scarp over much of its mapped length (Figure 4-30), and they infer that this fault was a factor in impounding the postulated Pleistocene-aged Lake Jindabyne. White and others (1976) also

View is to the northeast. Arrows denote break in slope along Berridale fault.

View is to the east, across Jindabyne fault near Hollins Crossing. The prominent topographic expression is shown.

point out that all faults mapped east and west of the Jindabyne fault are terminated by this fault. White and others (1976) identify a recent uplift along the Crackenback and Mowamba faults, both of which join or are cut off by the Jindabyne fault. The structural picture of the region, therefore, can best be explained as the Jindabyne fault being contemporaneous with the strike-slip faulting and having absorbed all the strike-slip displacement.

During the field reconnaissance for the current study, the mapped trace of the Jindabyne fault was observed as characterized by alignments of linearly grooved saddles, vegetational changes, and springs. For the purposes of this study, the Jindabyne fault is considered active, based upon the structural relationships.

Lake Talbingo and Blowering Areas

Long Plain Fault - Talbingo reservoir is located at the juncture of a "Y" that is formed by a splay in a major tectonic feature that could be construed to represent a fossil plate boundary (Figure 4-27). For the purposes of this report, this major tectonic line will be referred to as the Long plain fault. (This nomenclature has been used previously by Maffi and Simpson, 1977.) This feature, which is shown on numerous geologic maps of the area (Pogson, 1972; Barnes and Herzberger, 1975; Brunker and others, 1970; and Degeling, 1977), extends southeastward into Victoria. In the project area, the Long plain fault forms a dividing line between the Devonian-aged rock of the Kosciusko Plateau and Silurian- and Ordovician-aged rocks to the northwest (Figure 4-27). It is bordered by a broad zone of block faults and thrust faults. In the vicinity of Talbingo reservoir, this fault is characterized in part by the presence of a linearly extensive band of serpentinite and ultrabasic igneous rocks in a series of outcrops that are prominently visible from the air.

Individual faults within or evidently closely related to this system have been inferred to have been reactivated in post-mid-Tertiary time. K. R. Sharp of the Snowy Mountains Engineering Corporation (personal communication, 1978) cites as evidence of this reactivation thrusting of bedrock over gravel along the Khancoban-Yellow Bog fault in the Khancoban area (Figure 4-3l) and a l25-m scarp that is across the Long Plain fault in 20 million-year-old basalt near Tumut Pond. He also cites extraordinarily deep accumulations of post-midTertiary warping, or "tectonic ponding," that could be construed to suggest activity of faults along the major tectonic line. Gill and Sharp (1956) cite data establishing the age of the Kiandra deposits as Tertiary. However, the gravels at Khancoban are in a currently active river valley and may represent pleistocene or younger deposition. Unfortunately, the exposure exhibiting bedrock thrust over gravel has become overgrown since the visit by Sharp, and it could not be located during the recent field studies. One road cut exhibiting evidence suggestive of thrusting of decomposed granite over gravels was observed near Khancoban, but the evidence was equivocable.

An unmapped feature that may represent an active branch of the Long Plain fault is present near the shore of Blowering reservoir. This feature is identifiable from the air on the basis of an alignment of linear depressions, saddles, and blocked or offset drainages. For the purposes of this study, the geomorphic and structural relationships along faults associated with the Long Plain fault have been considered to be evidence of fault activity during the active tectonic regime.

Bedrock thrust over gravel, vicinity of Khancoban. Photograph courtesy of Mr. Kenneth R. Sharp, Snowy Mountain Engineering Corporation, Cooma, N.S.W., Australia

KHANCOBAN-YELLOW BOG FAULT SNOWY MOUNTAINS New South Wales, Australia	
Project No. 14087A Woodward-Clyde Consultants	
	Figure 4-31

CONCLUSIONS

Lake Eucumbene

The most extensive faults to which earthquakes in the Lake Eucumbene area could be attributed are the Jindabyne and Berridale faults. The mapped geologic relationships and geomorphic features observed during the aerial and field reconnaissance for the present study indicate that these faults are relatively young or have had a history of activity that has continued into late Cenozoic time.

Lakes Talbingo and Blowering
The seismic activity associated with the filling of Lake Talbingo may be related to faults associated with the long Plain fault in the Lakes Talbingo and Blowering area. On the basis of the geomorphic evidence along these faults, and evidence of thrusting of bedrock over Pleistocene(?) or younger gravel along the Khancoban-Yellow Bog fault in the Khancoban area, these faults have been considered active.

4.5 LAKE BEMMORE, NEW ZEALAND

IIMRODUCTION

Benmore Dam impounds the Waitaki River and its six tributaries, forming Lake Benmore, the largest man-made lake in New Zealand (Figures 4-32, 4-33, and 4-34; Mable 4-3). Lake Benmore, located in the central portion of South Island (Figure 4-32), is a key feature of the Upper and Middle Waital:i Power Scheme. Two other large reservoirs, Lales Pukaki and Ohau, are located on the headwaters of the Waitaki River within 25 km of Lake Benmore, and a third, Lake Tekapo, lies within 50 km of Lake Benmore (Figure 4-33). These three reservoirs were natural lakes that have been modified to serve as reservoirs.

After impoundment of Lake Renmore in 1964, seismicity within 80 km of Benmore Dam (including the area of the three subsidiary reservoirs) increased three to six times over the pre-impoundment seismicity (Adams, 1974). Recause of this increase in seismicity upon the impoundment of Lake Benmore, a preliminary study was undertaken to evaluate if active faults are present within the influence of Lake Benmore. For the purposes of this study, a fault is defined as active if displacement has occurred during that area's present stress regime. For the Lake Benmore area, this would be Late Cenozoic time.

PROJECT AREA
LAKE BENMORE
South Island, New Zealand

View is to the north, across Lake Benmore: Benmore Dam is in foreground and Lake Pukaki in distance.

```
TABLE 4-3
DESCRIPMION OF THE
BENMORE DAM AND RESERVOIR
```

mype
Structural Height
Hydraulic Head
Crest Length
Reservoir Area
Gross Storage
Date Completed

Foundation Rock:

Earthfill
110 m
95 m
820 m
$2.04 \times 10^{9} \mathrm{~m}^{2}$
$2.2 \times 10^{8} \mathrm{~m}^{3}$
November 1964
(filling started)
graywacke and argillite

Whis investigation incorporates the results of studies of seismicity and faulting in the vicinity of Lake fenmore by personnel of the New Zealand Geological Survey in Hew zealand. The studies for this report were selective and limited in scope; it was not intended that all faults in the area be identified and evaluated. For the purposes of this study, it was assumed that any Late Cenozoic faults within the hydrologic regime of the reservoir may be influenced by impoundment of the reservoir.

The scope of this study's work consisted of the following:

- gathering and reviewing published and unpublished data and maps;
- questioning scientists resident in, or familiar with, the study area;
- making aerial reconnaissance flights over the study area;
- performing ground reconnaissance at selected locations in the study area;
- examining LANDSAT imagery and aerial photographs of portions of the study area; and
- collecting and evaluating seismic data.

The initial part of the data gathering effort was performed in our offices in San Francisco, using Woodward-Clyde Consultants' library facilities and files. Additional data and maps were obtained from government agencies in Lower Hutt, Wellington, and Twizel, New Zealand. Selected references also were reviewed in the library of the New Zealand Ceological Survey, and complete seismologic data were obtained from the Seismological Observatory in Wellington. A reservoir filling history was requested from the Ministry of Works and Development, and aerial photographs were purchased from the Department of Lands and Survey.

REGIOIAL GEOLOGIC SEMTING

Benmore Dam and Reservoir area is a complexly faulted basin and has a range topography in which regional uplift is believed to have continued into the Pleistocene period (Shaw and Stevens, 1966). However, much of the faulting in the region probably occurred during Tertiary time (McKellar and others, 1967).

The only recognized major historically active fault in the region is the Alpine fault, which is located 32 km northwest of Benmore Dam (Figure 4-32). However, evidence of Holocene activity along segments of other faults of potentially significant extent has been reported (Gair, 1967). The Ostler fault zone (Figure 4-35), which is described in detail later in this report, is an example.

EXPLANATION:

Geologic contact

Active fault trace; relative movernent indicated
Microseismic station
Epicentar of December 1978 M4.6 earthquake
Undifferentiated Quaternary deposits, principsily alluvium, till, and glacial outwash

Undifferentiated Mesozoic bedrock, principaily graywecke and argillite

Source: Gair (1967), Mutch (1963), and MacFariane (1979)

REPORTED ACTIVE FAULT TRACES VICINITY OF LAKE BENMORE

South Island, New Zealand

The available geologic maps (Mutch, 1963; Gair, 1967) indicate that Benmore Dam and much of Lake Benmore are located on graywacke and argillite of Silurian age (Figure 4-35). A relatively minor portion of the reservoir is mapped as being located on similar materials of Permian age. The northern end of the reservoir is mapped as being located on Pleistocene alluvium and glacial till. The Pleistocene deposits are believed to reach a thickness in excess of 1518 m upstream from the reservoir (Mansergh and Read, 1973). A total of seven Pleistocene units have been recognized in the project area. In general, these consist of glacial till, outwash gravels, interglacial deposits, and alluvium.

REGIOHAL SEISMIC ACTIVITY

Lake Benmore is located in an area of relatively low seismicity. During the pre-impoundment period (1955 to 1964), only 7 earthquakes of magnitude 4 or greater vere reported to have been located within 80 km of Benmore Dam (Adams, 1974). During the post-impoundment period (1965-1972), a total of 29 earthquakes occurred within 80 km of the dam. Two of these events had a magnitude of 5 , whereas the highest magnitude recorded between 1955 and 1964 was 4.4.

Earthquakes within radii of 40 and 60 km also show a statistical difference between pre-impoundment and postimpoundment seismicity: the number of earthquakes having magnitudes equal to or greater than 4 has increased by factors of 3.1 and 6.5 since impoundment of Lake Benmore. The factor of 3.1 applies to earthquakes within 60 km of the dam, and the factor of 6.5 relates to earthquakes within 40 km of the dam. In considering distance and azimuth together, Adams (1974) found that 50 percent of the earthquakes examined occurred in 10 percent of the area considered (upstream of the dam and within 40 km of it). However, reservoir impoundment in

December 1964 was not followed immediately by an increase in earthquake activity; the first magnitude 5 event did not occur until July 1966. The second magnitude 5 event occurred nearly 5 years later, in April 1971. Neither event could be correlated with changes in reservoir water level, as it has remained essentially constant since the intitial filling (Adams, 1974).

Woodward-Clyde Consultants reexamined the data base and incorporated additional data with that studied by Adams (1974). The locations of these events are shown on Figure 4-36.

The first magnitude 5 earthquake to occur following impoundment of Lake Benmore was plotted near the Otemata fault, about 17 km west of the dam (Adams, 1974). This fault is not mapped as a Suaternary feature (llew Zealand Geological Survey, 1973). The second magnitude 5 earthquake to occur following impoundment was located approximately 14 km north of the dam, adjacent to the western shore of the reservoir and away from any known fault. This event suggests the possibility of the existence of a fault along the margin of the mountains where they join the Mackenzie Basin (Adams, 1974). A number of smaller events fall within a northeasttrending alignment, extending roughly along the mountain front (Adams, 1974). No surface evidence of the existence of a fault in this location has been reported.

Several post-impoundment earthquakes have been plotted within or adjacent to the Ostler fault zone. This zone, including its probably northern extension, is the only relatively welldocumented Quaternary fault in the project area (Mansergh and Read, 1973). The largest and most recent earthquake that appears to be related to this fault zone was a magnitude 4.6 event that occurred on 17 December 1978. The epicenter was
located on the northern extension of the Ostler fault zone, west of Lake Pukaki (Figure 4-36). The available data suggest a focal depth of approximately 4 km . Personnel of the New zealand Geological Survey conducted a detailed examination of known fault traces in the epicentral area but found no evidence of surface fault rupture or other ground damage (Don Macfarlane, personal communication, December 1978). The pattern of first motions is reported to be consistent with sinistral strike-slip movement on a north-south fault. This interpretation is supported by the strong motion data, which showed most of the seismic energy to be in a north-south direction and of anomalously low amplitude in the epicentral area (Calhaem, 1978).

The seismic energy released in the December 1978 earthquake is reported to be more than 600 times the total energy released during the $31 / 2$ year period immediately preceding that event (Calhaem, 1978). This earthquake occurred during rapid filling of Lake Pukaki. Lake Pukaki is a natural lake, the capacity of which has twice been increased by construction of dams designed to increase the power production capacity of the Upper and Middle Waitaki Power Scheme. The new Pukaki High Dam, which was completed in 1978, ultimately will create a reservoir with a maximum depth of 108 m and a storage capacity of more than $10 \times 10^{9} \mathrm{~m}^{3}$. As a precaution against further seismic activity, the rate of filling of this reservoir was reduced by 50 percent following the 17 December 1978 earthquake (Calhaem, 1978).

During 1973, the New Zealand Institute of Geophysics recorded an l8-day survey of microearthquakes in the project area. This was done to establish in more detail the locations and mechanisms of earthquakes in the Benmore area and to ascertain the base level of seismicity prior to raising the level of Lake Pukaki. This portable network was capable of detecting

and locating seismic events with magnitudes less than 0 , as ompared to a higher limit of magnitude for the pre-existing fixed network. Two linear trends were identified from plotting located events. One extended in a northerly direction, from the vicinity of the town of Omarama to the Ben Ohau Range (Figure 4-35); this trend corresponds quite closely with the mapped position of the Ostler fault zone. The second trend extended in a northeasterly direction, from the northern arm of Lake Benmore along the edge of the Grampian Mountains (Figure 4-35). The most active areas along these two trends correspond closely to the postions of the two magnitude 5 earthqakes that had been recorded previously (Adams and others, 1974).

Although the main trend of epicenters appears to correspond closely with the Ostler fault zone, the calculated mechanisms indicate that the fault planes of individual earthquakes strike approximately 45 degrees from this alignment. This strike is consistent with that of the trend noted along the base of the Grampian Mountains. Both the computer microearthquake mechanisms and the geologically observed faulting are consistent with east-west regional compression (Adams and others, 1974).

FAULT INVESTIGAMION

A small-scale map of active faults in New Zealand (Lensen, 1965) indicates the presence of a number of relatively minor active faults in the region surrounding Lake Benmore. The most extensive of these, and the one closest to the reservoir, is the Ostler fault zone (Figure 4-35). It is located approximately 10 km west of the western arm of Lake Benmore and approximately 18 km west of the center of the main body of the reservoir. It extends for at least 56 km , from the Ahuriri River on the south to the headwaters of the mwizel

River on the north (Gair, 1967). From there, the mapped relationships suggest that the fault may join a less recent fault system that extends northward into the Southern Alps, where it dies out in a fold. The axis of this fold is located subparallel to, and approximately 21 km southeast of, the Alpine fault, which is the most significant tectonic feature in New Zealand. The northern extension of the Ostler fault is approximately 40 km long and has been mapped as being active during Pleistocene, but not Holocene, time (New Zealand Geological Survey, 1973).

The Ostler fault zone, due to its proximity to a power plant site, has been studied in some detail by the New Zealand Geological Survey. These studies have included exploratory trenching and profiling. As described by Mansergh and Read (1973), the Ostler fault zone is made up of a series of individual traces within a band that locally may be as much as 5500 m wide (Figure 4-37). The most prominent of these traces in the study area are, from west to east, the Haybarn fault, the "Y" fault, and the Ruataniwha fault (Figures 4-38 and 4-39). Mansergh and Read (1973) state that the individual fault blocks within the zone generally are downthrown to the east and suggest that the locus of movement has migrated to the east with time. Tilted surfaces and folds are present within the zone.

The New Zealand Geological Survey (Mansergh and Read, 1973) has recognized two and possibly three areas where displacement of 1.8 to 2.7 m in alluvium occurred along the ostler fault zone. Moreover, a total maximum displacement of 20 m was measured in 14,000-year-old glacial deposits, and 21 m in 16,000-year-old glacial deposits. On this basis, the average rate of fault movement has been estimated to be 14 m per thousand years. However, based upon maximum and minimum recognized individual episodes of offset of 6.1 to 6.7 m and

View is to the south, along the Ostler fault zone. Arrows indicate variations in scarp height in Quaternary units of different ages.

View is to the north, along the Haybarn trace of the Ostler fault zone. The left-lateral drainage offset can be seen near excavation scar.

HAYBARN FAULT VICINITY OF LAKE BENMORE South Island, New Zealand	
Project No. 14087A Woodward-Clyde Consultants	
	Pigure 4-38 203

View is to the north, along the Haybarn trace of the Ostler fault zone. The degraded fault scrap is visible. Left-lateral offset of small drainage crosses slope adjacent to geologist (in center of photograph).

1.8 m , respectively, the recurrence interval of episodes of surface fault rupture has been estimated as 2800 years (Mansergh and Read, 1973).

The studies performed by the New Zealand Geological Survey indicate that the Ostler fault zone is the result of thrusting, with the west side moving up. Lake Benmore is located on the lower plate of the thrust, approximately 15 km to the east of the zone. An alignment of earthquake epicenters, all recorded since the filling of the reservoir in 1964, have been mapped within or immediately west of the zone. This seismicity has been described in detail by Adams (1973) and has been summarized previously in this report.

The Ostler fault zone was examined on the ground, from the air, and on aerial photographs. The three fault traces mapped in the Twizel area by the New Zealand Geological Survey (Mansergh and Read, 1973) are prominently visible in the aerial photographs. On these photographs and from the air, the Ostler fault zone is identifiable principally on the basis of aligned scarps. Some of the scarps are substantially higher than others and may represent erosional remnants. The ground surfaces on the western side of both the high scarps and the low scarps have, in general, a gentle westward tilt. This westward tilt also was observed in bedding planes exposed in road cuts and stream banks. Landslides were noted on a number of the higher scarps; however, no landslides were observed at locations away from the fault zone.

Some of the scarps, particularly the lower ones, are quite irregular and tend to follow the trace inferred by the New Zealand Geological Survey (Mansergh and Read, 1973). However, in gross aspect, the zone is quite linear. This is particularly true west of Lake Pukaki where the probable northern extension of the ostler fault zone appears
essentially as a straight line marking a break in slope along a precipitous mountain front. This pronounced linear trend, particularly when considered with the reported alignment of earthquake epicenters along the surface trace of the Ostler fault zone, strongly suggests that the major portion of the fault plane is nearly vertical, although it may "roll over" somewhat where it passes through deep alluvial and glacial deposits.

For the present study, the surface reconnaissance of the Haybarn trace of the Ostler fault zone found pronounced evidence of left-lateal ofset of small drainages. The amount of left-lateral offset appears to be substantially greater than the vertical displacement. This evidence of a strong left-lateral strike-slip offset supports the previously described evidence fointing to the existence of a nearly vertical fault plane. It also supports the focal mechanism interpretation for the December 1978 earthquake. The strongest geomorphic expression suggestive of recurrent offset was seen on the Ruataniwha fault trace, immediately north of the Ohau River. At this location, two fault traces appear to be closely intertwined, producing a scarp-like feature. The results of the present study and of evaluation of the mechanism of the December 1978 earthquake indicate that the Ostler fault zone, which previously had been considered to be a westward-dipping thrust fault, is a nearly vertical, leftlateral strike-slip fault along its eastern portion.

COIICLUSIOIIS

The available data demonstrate a pronounced and significant increase in local seismicity following impoundment of Lake Benmore. Some of the earthquakes that have occurred since impoundment of Lake Benmore and that have been suspected of being induced by it have been located along or closely
adjacent to the Ostler fault zone. (The center of Lake Pukaki is located about 8 km to the east of the Ostler fault zone.) The Ostler fault zone contains faults that have had surface displacement during the current tectonic regime, as expressed by scarps in Pleistocene deposits and on Holocene surfaces. The most recent earthquake on this fault, which occurred on 17 December 1978, may have been triggered by rapid filling of Lake Pukaki.

4.6 HOOVER DAM AIJD LAFE MEAD, UNIITED STATES

IITMRODUCMIOIJ

Lake Mead, impounded by construction of Hoover Dam across the Colorado River at the Arizona-Nevada border in Black Canyon (Figure 4-40), is one of several large, deep reservoirs that have been responsible for inducing or triggering an increased level of local seismicity. This report describes the results of preliminary studies undertaken to evaluate the possibility that the reservoir is underlain or closely bordered by one or more active faults. For the purposes of this study, an active fault is one on which displacement has occurred during that area's present stress regime; for the Lake Mead area, this would be Late Cenozoic time.

In part, these studies are an extension of earlier work by others who had correlated some of the recorded seismic events with mapped geologic structures. However, the present studies were selective and limited in scope; it was not intended that all faults in the area be evaluated. For the present study, a brief review of pertinent available data was made. The locations of selected faults and seismically active areas described in the literature were marked on topographic maps to facilitate the field studies. Selected areas were examined for regional trends on aerial photographs (scale l:80,000) provided by the U.S. Geological Survey. Areas and linear trends of potential interest and significance were then viewed during aerial reconnaissance flights. Selected areas accessible by foot or four-wheel drive vehicle were examined during the ground reconnaissance. Extensive 35 mm photo coverage of the study areas was taken for reference during data evaluation.

Sourcs: After Longwell (1963)
LOCATION MAP
HOOVER DAM AND LAKE MEAD
Arizona and Nevada, United States
Project No. 14087A Wooctward-Clyde Consultants

Figure 4-40

REGIONAL GEOLOGIC SETTIHG

Hoover Dam impounds the Colorado River in northwestern Arizona and southeastern Nevada forming Lake Mead; the maximum depth of the reservoir is approximately 166 m . The dam and reservoir are located in the Basin and Range physiographic province, which is characterized by regional extension, resultant normal faulting, and horst and graben structures (Figure 4-4l). The dam itself is underlain by Tertiary volcanic deposits of basalt and andesite. The reservoir also is underlain by Tertiary volcanic deposits and by Tertiary conglomerate, sandstone, clay, salt, and gypsum deposits, Precambrian metamorphic units, and Precambrian granite (Longwell, 1936; Rogers and Lee, 1976).

Faulting is prevalant in the vicinity of the dam site and in the reservoir area. The faults are late Tertiary in age and are primarily strike-slip faults that trend northeast and normal faults that trend north (Anderson and Laney, 1975). The two major strike-slip faults, the Las Vegas shear and the Hamblin Bay fault, are estimated by Rogers and Lee (1976) to be approximately 64 to 80 km long. Cumulative displacements on the normal faults measure approximately 1800 m , according to the same authors. A large number of faults of lesser extent have been mapped (Figure 4-41).

REGIONAL SEISMIC ACTIVITY

Prior to reservoir impoundment in 1936, no historical earthquakes had been reported near the reservoir, and the area was considered to be one of extremely low seismicity. Seismic activity, which commenced subsequent to reservoir impoundment, was clustered within 25 km of the reservoir. During an 8-year monitoring period beginning in 1937, epicenters were centered primarily along existing faults at focal depths of less than

9 km . The largest earthquakes were assigned Richter magnitudes of 5 and occurred in 1939, 1942, 1948, 1952, and 1958 (Rogers and Lee, 1976). Studies of these earthquakes (occurring between initial maximum impoundment in 1938 until about 1948 or 1949) suggest that a correlation exists between seasonal variations in reservoir level and variations in the frequency of seismic activity (Carder, 1970). However, subsequent seismic activity from 1949 to 1976 shows no correlation with a 20 percent increase in reservoir load. Analysis of the data from monitoring of the lake area during 1972 and 1973 showed seismic activity to be no different than that of the surrounding region.

Carder (1968, l970) suggests that the post-impoundment seismicity may be the result of stresses generated by the weight of Lake Mead triggering renewed activity along preexisting normal faults. The bases for this hypothesis are that the basin in which Lake Mead is impounded settled 18 to 20 cm (Carder and Small, 1948; Lara and Sanders, 1970) and that the time between initial maximum impoundment (1938) and the largest reported events (the first occurring in 1939) was relatively short. Information on surface rupture along these faults or the duration and nature of ground motion associated with the post-impoundment seismicity was not presented in the reports reviewed during this study.

FAULT INVESTIGATION

A relatively large number of faults within the Lake Mead reservoir area and surrounding region are described in the literature. It was not possible within the scope of this study either to document all the available data on each or to examine each one in any significant detail. Therefore, it was necessary to be selective and to choose only a few faults for study. Because the emphasis of this preliminary study was on
recognition of geologically recent faulting, the greatest attention was directed to features that either border alluvium or have been reported to offset alluvium. Twelve geographic areas were studied: three of these areas yielded information most significant to this study, and the geologic reconnaissance findings from these areas are discussed below (Figure 4-41).

Railroad Flat - Black Mountain Area

A fault, largely concealed by alluvium, is possibly located southwest of Railroad Pass (Longwell, 1963). The findings from another study in the area (Woodward-McNeil \& Associates, 1974) strongly suggest geologically recent surface rupture on a fault that may correspond with the one referred to by Longwell (1963). Rogers and Lee (1976) indicate the presence of a fault in this same general vicinity, but do not show any corresponding lineation of epicenters. Nevertheless, Carder (1945) indicates that some seismic activity has occurred in this area.

The geologic features noted during the current study include two adjacent lines of scarps with a northeast trend, parallel to the base of Black Mountain, which is located about ll km southwest of Boulder City, Nevada. These lines of scarp, which presumably represent a fault zone, are intermittent and are traceable for a distance of about 3 km across colluvial fans, a boulder debris flow, and a pediment surface. One scarp is most distinctive where it crosses the debris flow. The northwest side of this scarp is 3.5 to 4.5 m higher than the east side and can best be seen during the late afternoon, when the sun angle produces a shadow on the east side of the scarp, enhancing its expression.

The sense of displacement on the fault appears to be mainly normal. No obvious indication of a strike-slip component was noted, although the channel of one wash may be shifted to the right across the fault. A steep-sided topographic slope about 3.5 to 4.5 m high is evident near the crest of the debris flow east of a gorge in Black Mountain. The fan surface consists principally of very large boulders, as large as 1.8 m in diameter. The scarp continues beyond the main portion of the youngest debris flow. Within the main channel of the fan complex, the older debris material is exposed and is overlain by younger, fresher granitic rock slide and debris flow material. The older material is coated with desert varnish and is also granitic in composition.

The line of scarp feature is traceable to the north as far as Highway 93 and projects into a notch in a foothill ridge of the River Mountains just north of Highway 93. Evidence for the location of the line of scarps becomes less clear both to the north and south of the debris flow. Traces of the scarp are clearly seen across two drainages just to the north of the debris flow and are marked by a vertical displacements of a pediment surface between the drainages. The scarp is also marked by a line of vegetation that is aligned with the more prominent scarp that crosses the apex of the debris flow. Another, less evident subparallel feature exists to the southeast and is marked by a vegetational line. These geologic features are judged to represent surface expressions of faulting during the present tectonic regime and may represent late Holocene displacement.

During aerial reconnaissance, no definitive evidence was observed to demonstrate that this geologic structure exists as far northeast as Lake Mead; however, there is the possibility that it still exists, based on several topographic saddles and other subtle features along the projection of the fault.

The Mead Slope fault has been described as one of a group of four faults in the vicinity of Fortification Hill (Longwell, 1963). According to Longwell, this is a reverse fault that may have originated after the older river gravels (presumably of Pleistocene age) were deposited. The Mead Slope fault is shown to cut the Muddy Creel: Formation of Pliocene(?) age, and its northwesterly side is indicated to be relatively downthrown (Longwell, 1963, Plate l). Moreover, a number of earthquake epicenters have been found to be closely associated with faults in the vicinity of Fortification Hill (Mead and Carder, 1941). The Mead Slope fault is marked by strong linear trends of scarps, drainage alignments, and vegetational contrasts. Two parallel lineaments were noted from the aerial photographs, aerial reconnaissance, and ground reconnaissance. The scarps are oriented in a northvest direction and are traceable across a gently northwest-sloping, dissected surface on the south shore of Lake Mead, just northwest of Fortification Hill. The fault cuts northward-dipping Tertiary-age fanglomerates, caliche beds, 2.4 to 3 m thick, that are associated with the upper pediment surface, low terrace surfaces, and debris flows in present-day channels.

The fault is exposed in the cliff above Castle Cove and is traceable almost continuously for a distance of 3 km across the northwest-sloping suface. Scarps are exposed at the north end of the northeast projection of the fault across Lake Mead towards Hamblin Bay. The northeastern end of the scarp is down on the northwest side. The scarp appears to be about 3 m in height. The southwestern end of the trace is represented along its strike by an eroded trough that contains a relatively lower density of basalt cobbles and, in some places, exposures of an underlying caliche unit. Stream beds appear to have been diverted or displaced along this trough.

The younger material is on the northwest side of the fault; however, the sloping surface on the younger northwestern side of the fault where it crosses the second nose of the pediment surface to the north of Castle Cove appears to be even with or slightly higher than the older material to the southeast. A second, less-prominent subparallel feature, marked by a vegetational line, is located to the northwest of the main trace.

Lime Ridge Area

Longwell (1928) mapped a normal fault along the base of the hills east of the lower Virgin River Valley, which is now the Overton Arm of Lake Mead (Figure 4-40). This north-south trending feature, as mapped, is offset by three northeaststriking normal faults, and it forms the boundary between Quaternary alluvium and the Callville limestone of Pennsylvanian age. The youngest formation offset by this fault, as mapped, is the Overton fanglomerate of Miocene age.

A geologic feature reflecting young faulting is located between the north-south trending Overton arm of Lake Mead and Lime Ridge. This feature shows as two separate subparallel lineament trends that are recognizable on 1:80,000 scale black and white photographs (Figure 4-42) and during aerial reconnaissance. The lineaments trend in a northeast direction and are 6 to 8 km in length. They are marked by topographic scarps and indicate the boundaries of a graben structure across a gently sloping, dissected erosional surface of Tertiary deposits. The easternmost scarps are west-facing and are higher than the westernmost, which are east-facing. From the air, the western-facing scarps appear to be about 3 to 6 m high, and the eastern-facing scarps appear to be about 1.5 to 3 m high. No clear evidence for strike slip movement was observed.

NOTE:
Lineaments indicated by arrows.

LIME RIDGE AREA
HOOVER DAM AND LAKE MEAD Arizona and Nevada, United States

The graben structure is not evidenced south of the westwardflowing Quail Springs Wash and not as clearly marked north of the westward-flowing Lime Wash. The easternmost scarp appears well marked in alluvium and terrace material by a scarp crossing the mouth of Lime Canyon. It can be traced for several miles to the north as a west-facing scarp. Less well defined westward-trending strike slip fault planes may offset or terminate the north-trending normal faults.

CONCLUSIONS

Geologic and topographic evidence strongly suggestive of Late Cenozoic fault activity was observed at three locations in or near the Lake Mead reservoir area. These are: the Railroad Flat-Black Mountain area, the Fortification Hill area (Mead Slope fault), and the Lime Ridge area. Of these three areas, only the Fortification Ifill area contains faults that underlie the reservoir. However, the other areas are within a few kilometers of the reservoir and can reasonably be considered to be within its influence.

5.0 SUMMARY AIJD CONCLUSIONS

The number of impounded reservoirs having maximum water levels greater than 92 m (deep) and/or maximum water volume greater than $10^{10} \mathrm{~m}^{3}$ (very large) has increased from approximately 60 in 1960 to more than 230 in 1979, and is projected to increase to approximately 275 by 1985. Projections from the past 20 years suggest that at least 10 more cases of reservoir induced seismicity is likely to occur prior to 1985 at deep and/or very large reservoirs alone. In the past, some RIS occurred in areas of low historical seismicity where the design of dams had not fully anticipated an earthquake as large as that which occurred, and, therefore, the potential for damaging reservoir induced earthquakes is also increasing.

The impoundment of many reservoirs has significantly influenced the temporal and spatial patterns of earthquake occurrence in the vicinity of the reservoir. For some of the more than 75 reported cases of reservoir induced seismicity, the seismicity is clearly related to reservoir impoundment and water fluctuations, whereas for others it is not. For more accurate evaluations of the theoretical mechanisms of reservoir induced seismicity of the methods to mitigate potential effects, or of the prediction of occurrence of reservoir induced seismicity, those cases of actual reservoir induced seismicity must be distinguished from those cases where reported seismicity most likely was not related to the reservoir impoundment. In this study, the influence of the reservoir on local macro- and micro-seismicity has been evaluated for each reported case of reservoir induced seismicity. Where post-impoundment seismicity had a demonstrable spatial and/or temporal relationship to the reservoir, the case for reservoir induced seismicity is
classified as accepted. Where it was clearly established as being unrelated to the reservoir, the case is classified as not reservoir induced seismicity. Where the relationship is unclear because of insufficient data, the case is classified as questionable reservoir induced seismicity. Of the 75 or so reported cases of reservoir induced seismicity, 64 were considered in our classification; 45 were assessed to have accepted reservoir induced seismicity, 7 were assessed not to have reservoir induced seismicity, and 12 were assessed as questionable. Of these 45 cases of accepted RIS, 16 were recognized as accepted reservoir induced seismicity at macroand micro-seismicity levels, 14 were recognized at macro levels only, and 15 were recognized at micro levels only.

A population of 234 deep and/or very large reservoirs having maximum depths greater than 92 m and/or maximum volume greater than $10^{l 0} \mathrm{~m}^{3}$ was selected to investigate the probability of occurrence of reservoir induced seismicity. There are 29 accepted cases of reservoir induced seismicity among these reservoirs and the prior probability of RIS is 0.12. Data on the depth, volume, regional stress regime, and predominant rock type of reservoir geology were collected for each reservoir. Data on active faulting in the vicinity of the reservoirs were obtained in some cases, but data were insufficient for the statistical analysis. A multivariate probabilistic model was constructed for the conditional probability of reservoir induced seismicity at a reservoir characterized by its depth, volume, stress, rock type, and faulting. The analysis suggested a higher occurrence of reservoir induced seismicity with increasing depth, with increasing volume, among reservoirs with predominantly sedimentary rock underlying the reservoir, and among reservoirs in a strike-slip (shear) stress regime. Of these four variables, depth and volume were most strongly correlated with reservoir induced seismicity. A sensitivity analysis
indicated that these conditional probabilities are very sensitive to changes in data classification among the reservoir induced seismicity cases because of the relatively small size of the reservoir induced seismicity data set. This is particularly true for the regional stress regime and geology data; therefore no strong conclusions about the relationship between reservoir induced seismicity and the regional stress regime or geology were drawn.

A review of theoretical models of reservoir induced seismicity, including fluid-filled models, show that models have been used to successfully predict ground deflection and can explain seismicity occurrence during initial filling and observed delays in the occurrence of seismicity associated with small changes in water level. The fluid-filled models allow for much larger stresses to be generated at depth either by pressure increase or by zones of low permeability. These models also explain the occurrence of seismicity away from the center of the reservoir.

Models of the stresses created by the filling of reservoirs suggest that reservoir filling does not provide sufficient stress to initiate new fracturing and must trigger the release of stress along pre-stressed faults. This implies that displacements resulting from reservoir induced earthquakes on such pre-stressed, tectonically active faults must have occurred as a result of the present or active tectonic stress regime. The existence of active faults was investigated by field reconnaissance at 6 of the 11 reservoirs that had induced earthquakes of maximum magnitudes greater than or equal to 5. Of these 11 reservoirs, 9 have evidence indicating active faulting near the reservoir and two probably have active faults, although the evidence is not conclusive. The results of these field reconnaissance studies suggest that active faults are present within the influence of reservoirs

Woodward-Clyde Consultants

that have triggered earthquakes with magnitudes greater than or equal to 5 and that these reservoirs have not triggered surface displacement along inactive faults.

REFERENCES

1. Abu-Wafa, T., and Labib, A. H., 1970, Investigation and observation of seepage losses from the Aswan High Dam reservoir: Tenth International Congress on Large Dams, Q. 38, R. 55, p. 1047-1069. (Saad-El-Aali, Hydrology, Geology-Africa).
2. Ackerman, W. C., White, G. F., and Worthington, E. B. (eds.), 1973, Man-made Lakes--Their Problems and Environmental Effects: American Geophysical Union, Geophysical Monograph Series, no. 17, 847 p. (General Reservoir Information).
3. Adams, R. D., 1968, Seismic effects at Mangla Dam, Pakistan: UNESCO, Serial No. 975/BMS.RD/SCE, 15 p. (Mangla, Seismicity-Asia).
4. Adams, R. D., 1974, Statistical studies of earthquakes associated with Lake Benmore, New Zealand: Engineering Geology, v. 8, p. 155-169. (Benmore, RIS Report, Seismicity-Australia, New Zealand).

Adams, R. D., and Asghar, A., 1969, Seismic effects at Mangla Dam, Pakistan: Nature, v. 222, p. 1l53-1155. (Mangla, Seismicity-Asia).

Adams, R. D., Gough, D. I., and Muirhead, K. J., 1973, Seismic surveillance and artificial reservoirs: UNESCO Working Group on Seismic Phenomena Associated with Large Reservoirs, Annexure 1, Third Meeting, London, England, Report, 8 p. (Seismicity-General, Hydrology).

Adams, R. D., Robinson, R., and Lowry, M. A., 1974, A microearthquake survey of the Benmore-Pukaki region; February-March, 1973: Geophysics Division, Department of Scientific and Industrial Research, New Zealand, Report No. 86, 18 p. (Benmore, Seismicity-Australia, New Zealand).
8. Adamson, C. L., 1955, Reconnaissance geology of the Snowy Mountains area, progress report no. ll, Yarrangobilly: New South Wales Department of Mines, Technical Reports, v. 3, p. 34-42. (Geology-Australia, New Zealand).

8A. Adamson, C. L., 1957, Reconnaissance geology of the Snowy Mountains area, progress report no. l6 Tumut: New South Wales Department of Mines, Technical Reports, v. 5, p. 138-154.
9. Adyalker, P. G., and Mani, V. V., 1972, Geohydrological study in parts of Sholapur District and its bearing on the feasibility of tubwells in the Deccan Trap: Current Science, v. 41, no. 12, p. 441-445. (Hydrology-Geology, Asia).
10. Agashe, L. V., Gupte, R. B., 1970, Some dikes of Deccan traps in Poona, Nagar, and Nasik Districts, Maharashtra: West Commemoration Volume 1970, p. 405-419. (Geology-Asia).
11. Agashe, L. V., and Gupte, R. B., 197la, The Koyna earthquake and igneous activity, Indian Journal of Power and River Valley Development, p. 61-62. (Koyna, Seismicity-Asia, Geology-Asia).
12. Agashe, L. V., and Gupte, R. B., 1971b, Mode of eruption of the Deccan Trap basalts, Bulletin Volcanologique, v. 35, p. 591-601. (TectonicsAsia).

Agashe, L. V., Gupte, R. B., and Chitale, M. A., 1972, Geology and foundation difficulties at Mula Dam, Maharashtra: Dr. J. B. Auden Commemorative Volume, Indian Society of Engineering Geology, p. 235-262. (Mula, Geology-Asia).
14. Ager, D. V., and Brooks, M., 1975, Europe from crust to core: John Wiley \& Sons, 202 p. (GeologyEurope).
15. Agrawal, P. N., 1971, Observation of earth surface tilting in Koyna-Pophali Region, Maharashtra, India: Bulletin of the Seismological Society of America, v. 61, no. 4, p. 975-982. (Koyna, Tectonics-Asia).

Agrawal, P. N., 1972, December 11, 1967, Koyna earthquake and reservoir filling: Bulletin of the Seismological Society of America. v. 62, no. 2, p. 661-662. (Koyna, RIS Report, Post-Impoundment Seismicity).
17. Agrawal, P. N., and Gaur, V. K., 1970, Source region for Koyna earthquake: Fourth Symposium on Earthquake Engineering, p. 375-377. (Koyna, Seismicity-Asia).
18. Ahnorner, L., 1975, Present-day stress field and seismotectonic block movements along major fault zones in central Europe: Tectonophysics, v. 29, no. l-4, p. 233-249. (Stress, Faulting-Europe, Seismicity-Europe).
19. Algermissen, S. T., 1969, Seismic risk studies in the United States: Fourth World Conference on Earthquake Engineering, Santiago, Chile, p. 20. (Seismicity-North America).
20. Ambraseys, N. N., and Sarma, S. K., 1968, Large earthquake forces on gravity dam: Nature, v. 219, p. 1354-1356. (Koyna, Seismicity-Asia, Hydrology).
21. Anderson, R. E., 1971, Thin skin distension in Tertiary rocks of southeastern Nevada: Geological Society of America Bulletin, v. 82, p. 43-58, (Hoover, Geology-North America, Tectonics-North America).
22. Anderson, R. E., and Laney, R. L., 1975, The influence of late Cenozoic stratigraphy on distribution of impoundment-related seismicity of Lake Mead, Nevada-Arizona: Journal of Research of the U.S. Geological Survey, v. 3, p. 337-343. (Hoover, RIS Report, Geology-North America, Post Impoundment Seismicity).
23. Anderson, R. E., Longwell, C. R., Armstrong, R. L., and Marvin, R. F., 1972, Significance of K-Ar ages of Tertiary rocks from the Lake Mead region, Nevada-Arizona: Geological Society of America, Bulletin, v. 38, p. 273-288. (Hoover, GeologyNorth America).
24. Andric, M., Roberts, G. T., and Tarvydas, R. K., 1976, Engineering geology of the Gordon Dam, South West Tasmania: Quarterly Journal of Engineering Geology, v. 9, no. 1, p. 1-24. (Gordon, Geology-Australia-New Zealand, Hydrology).
25. Angelier, J., 1978, Tectonic evolution of the Helenic Arc since the Late Miocene: Tectonophysics, 49, p. 23-26. (Tectonics-Europe).
26. Anonymous, 1962, Programme and guide to LivingstoneKariba excursion: Northern Rhodesia Geological Survey (Kariba, Geology-Africa).
27. Anonymous, 1968, The queer Koyna earthquake: Science and Technology, p. 66-69, (Koyna, SeismicityAsia).
28. Anonymous, 1974, An observation of microearthquake at the Nagawado Dam in Nagano Prefecture Hokushin Observatory of microearthquakes and crustal deformation: paper presented at 1974 Annual Meeting, Seismological Society of Japan (Nagawado, Seismicity-Asia, Geology-Asia).
29. Anonymous, 1975, Geology and mineral resources of the states of India: Part VIII-Andhra pradesh: Geological Survey of India, Miscellaneous Publication 30, 51 p. (Geology-Asia).
30. Anonymous, 1976, Geology and mineral resources of the states of India: Part IX-Kerala: Geological Survey of India, Miscellaneous Publication 30, 34 p. (Geology-Asia).
31. Arhippainen, E., 1967, Earth-rock dam of the YlaTuloma hydro plant: Ninth International Congress on Large Dams, Istanbul, Turkey, v. IV, Q. 35, R. 11, p. 195-211. (Verkhnetulomskiy).
32. Arnold, A. B., 1964, Relief wells on the Garrison Dam and Snake Creek embankment, North Dakota: Geological Society of America, Engineering Geology Case Histories, v. 5, p. 287-294. (Garrison).
33. Athavale, R. N., 1975, Induced seepage along a coastal parallel system of faults as a possible cause of the Koyna earthquake: Bulletin of the Seismological Society of America, v. 65, no. 1, p. 183-191. (Koyna, RIS, Hydrology, FaultingAsia).

33A. Aubouin, J., 1957, Essai de correlations stratigraphiques en Grece occidentale, Bull. Soc. Geol. Jr. (6) 7, P. 281-304.

34AA. Aubouin, J., 1959, Contribution a petude geologique de la Grece septentrionale: les confins de L'Epire et la Thessalie: Annals Geol. Payshell (l), 9, XXVII, 484 p.
34. Auden, J. B., 1970, Report on the possible ages of earth movement in the vicinity of the Tarbela Dam, West Pakistan: unpublished paper. (Tarbela, Geology-Asia, Faulting-Asia).
35. Auden, J. B., 1975, Seismicity associated with the Koyna Reservoir, Maharashtra: UNESCO, Serial No. FMR/SC/GEO/75/136, 24 p. (Koyna, RIS Report, Seismicity-Asia, Geology-Asia).

35A. Balakrishna, S., and Gowd, T. N., 1970, Role of fluid pressure in the mechanics of transcurrent faulting at Koyna (India): Tectonophysics, v. 9, p. 301321. (Koyna, Faulting-Asia, Hydrology).
36. Balasundaram, M. S., and Srinivasan, P. B., 1971, Koyna earthquake and its effect on the Koyna hydroelectric project: India Journal of Power and River Valley Development, Special Number 1971, p. ll-14. (Koyna, RIS Report, Seismicity-Asia).
37. Banghar, A. R., 1972, Focal mechanism of Indian earthquakes: Bulletin of the Seismological Society of America, v. 62, no. 2, p. 603-608. (Seismicity-Asia).
38. Barnes, R. G., and Herzberger, G. A., 1975, Bega metallogenic map: Geological Survey of New South Wales, scale 1:250,000. (Geology-Australia, New Zealand).
39. Barooah, B. C., 1972, The tectonic history of the Precambrian complex south-east of Tura, Meghalaya: Current Science, v. 4l, no. ll, p. 419-422. (Tectonics-Asia).
40. Beavis, F. C., 1960, The Tawonga fault, northeast Victoria: Royal Society of Victoria Proceedings, v. 72, p. 95-100. (Faulting-Australia, New Zealand).
41. Bechtel Corporation, 1963, Principal dams designed by Bechtel Corporation, in Topmost Dams of the World: Japan Dam Association, p. 98-99. (Swift Creek, Round Butte, Union Valley, New Don Pedro).

Beck, J. L., 1976, Weight-induced stresses and recent seismicity of Lake Oroville, California: Seismological Society of America Bulletin, v. 66, no. 4, p. 112l-1131. (Oroville, RIS Report, Stress, Seismicity-North America).

42A. Bell, M. L., and Nur, A., 1978, Strength changes due to reservoir induced pressure and stresses and application to Lake Oroville: Journal of Geophysics Research, v. 83, p. 4469-4483. (RIS Theory).
43. Bellier, Fabreguettes, Laroche, Puyo, Langlois, Terrassa, Neviere, Bertrand, and Le May, 1964, Resultats des mesures d'auscultation effectuees sur les barrages du Lanoux (boute mince) et de Grandval: 8th Congress on Large Dams, Q. 29, R. 13, p. 219-237. (Grandval).
44. Benassini, A., Casales, V., Hungsberg, U., Canales, R., and Esquivel, R., 1976, Mexican National Committee on Large Dams, General Paper: l2th International Congress on Large Dams, G. P. 9, p. 609-660. (La Angostura).
45. Benoit, M., Crepeau, R. M., and Laroque, G. S., 1967, Influence of foundations on the conception of the Manicougan 3 Dam (in French): Ninth Congress on Large Dams, Istanbul, Turkey, v. 1, p. 775-792. (Manicougan 3).
46. Berberian, M., 1976, Contribution to the seismotectonics of Iran, Part II: Geological Survey of Iran, Report No. 39, 516 p. (FaultingAsia, Tectonics-Asia, Seismicity-Asia).
47. Berg, G. V., Das, Y. C., Gokhale, K. V. G. K., and Setlur, A. V., 1969, The Koyna, India earthquakes: proceedings of the Fourth World Conference on Earthquake Engineering, v. III, section J-2, p. 44-57. (Koyna, Seismicity-Asia).
48. Besker, M., 1978, Intake and penstock design at Agua Vermelha: Water Power \& Dam Construction, October, 1978, p. 46-50. (Agua Vermelha).
49. Bhandari, L. L., and Chowdhari, L. R., 1975, Stratigraphic analysis of Kadi and Kalol formations, Cambay Basin, India: American Association of Petroleum Geologist Bulletin, v. 59, no. 5, p. 856-871. (Geology-Asia).
50. Bhaskara Rao, B. V., Satynaragana Murty, B. V., and Satyanarayana Murty, A. V. S., 1969, Some geological and geophysical aspects of the Koyna India earthquake, December 1967: Tectonophysics, v. 7, no. 3, p. 265-271. (Koyna, Geology-Asia, Seismicity-Asia).

50A. Biot, M. A., 194la, General theory for three dimensional consolidation: Journal Applied Physics, v. 12, p. 155-164. (RIS Theory).
51. Biswas, S., 1973, Limnological observations during the early formation of Volta Lake in Ghana: in Man-made Lakes--Their Problems and Environmental Effects: Geophysical Monograph Series 17, American Geophysical Union, p. 121-128. (Akosombo Main).
52.

Blum, R., 1975, Seismische uberwachung der SchlegeisTalsperre und die ursachen induzierter seismizitat: Dissertation, Faculty of Physics, University of Karlsruhe (in German), 170 p. (Schlegeis, RIS Report).
53. Blum, R., and Fuchs, K., 1974, Observation of lowmagnitude seismicity at a reservoir in the eastern Alps: Engineering Geology, v. 8, p. 99-106. (Schlegeis, RIS Report).
54. Blum, R., Bock, G., and Fuchs, K., 1975, Correlation between micro-activity and variation of water level at the Schlegeis Reservoir (abs.): First International Symposium on Induced Seismicity, Banff, Canada, p. 48. (Schlegeis, RIS Report).
55. Bock, G., 1978, Induzierte seismizitat: modelle und die beobachtun-gen am Schlegeis und Emossonstausee: Dissertation, Faculty of Physics, University of Karlsruhe (in German), 175 p. (Emosson, Schlegeis, RIS Report).
56. Bock, G., and Mayer-Rosa, D., 1975, Seismic observations at Lake Emosson, Switzerland (abs.): First International Symposium on Induced Seismicity, Banff, Canada, p. 48. (Emosson, RIS Report).
57. Bolt, B. A., and Hudson, D. E., 1975, Seismic instrumentation of dams: Journal of the Geotechnical Engineering Division, v. l0l, no. GTll, p. 1095-1104. (RIS General, SeismicityGeneral).
58. Bolt, B. A., and Miller, R. D., 1975, Catalogue of earthquakes in northern California and adjoining areas, 1 January 1910, to 31 December 1972: Seismograph Stations, University of California, Berkeley, Calif., 567 p. (Seismicity-North America, Seismicity Catalog).
59. Bond, G., 1953, The origin of thermal and mineral waters in the middle zambezi Valley and adjoining territory: Geological Society of South Africa Transactions, v. 56, p. 131-148. (Geology-Africa, Hydrology).
60. Borovoi, A., Koudoyarov, L., Sapir, I., and Sheinman, L., 1977, Large dams of some hydroelectric stations in the USSR, in World Dams Today, 1977: Japan Dam Association, p. 527-538. (Saratov, Volga-Lenin, Volga-22nd Congress, Chirkey, Nurek, Krasnoyarsk, Zeya, Toktogul, Vilyui).
61. Bordet, P., 1978, The western border of the Indian Plate. Implications for Himalayan geology: Tectonophysics, 51, p. T71-T76. (Geology-Asia).
62. Boughton, N. O., and Hale, G. E. A., 1967, Foundation studies for Cethana Arch Dam: Ninth International Congress on Large Dams, Istanbul, Turkey, v. l, Q. 32, R. 10, p. 143-163. (Cethana).
63. Bowman, W. G., 1965, Alpine dams produce kilowatts and scenery: Engineering News-Record, v. 175, no. 16, p. 96-98, 101-102, 104, l09. (Mauvoisin, Grande Dixence, Mattmark, Gebidem, Goscheneralp, Curnera, Kops, Gepatsch).
64. Bozovic, A., 1974, Review and appraisal of case histories related to seismic effects of reservoir impounding: Engineering Geology, v. 8, p. 9-27. (RIS General).
65. Brace, W. F., 1972, Pore pressure in geophysics: AGV Geophysical Monograph 16, p. 265-273. (Hydrology General, RIS Theory).
66. Bravo, G., 1967, La fondation du barrage de Iznajar: Ninth International Congress on Large Dams, Istanbul, Turkey, v. l, no. 32, p. 573-582. (Iznajar).

66A. British Petroleum Company Ltd., 1971, The geological results of petroleum exploration in western Greece.
67. Brito, S., 1974, Seismic activity around the Cajuru Reservoir: International Association of Engineering Geology, Second International Congress, v. 1, p. ll-5.1 to ll-5.9. (Cajuru, RIS Report).
68. Brown, E. L., Charalambakis, S., Crepeau, P. M., and le Francois, P., 1970, Les fondations du barrage Daniel-Johnson (Manicouagan 5): Tenth International Congress on Large Dams, v. ll, Q. 37, R. 35, p. 631-650. (Daniel Johnson).
69. Brown, R. L., 1974, Seismic activity following impounding of Mangla Reservoir: Engineering Geology, v. 8, p. 79-93. (Mangla).
70. Brunker, R. L., Offenberg, A. C., and West, J. L., 1970, Monaro 1:50,000 geological series: Geological Survey of New South Wales, scale 1:50,000. (Geology-Australia, New Zealand).
71. Budweg, F. M., G., Eckschmidt, H. R., and Magnoli, D., 1970, Pressure compensation chambers in the transversal contraction joints of the intake structure of the Ilha Solteira Dam, Brazil: Tenth International Congress on Large Dams, v. IV, Q. 39, R. 24, p. 471-486. (Ilha Solteria).
72. Bufe, C. G., Lester, F. W., Lahr, K. M., Lahr, J. M., Seekins, L. C., and Hanks, T. C., 1976, Oroville earthquakes: Normal faulting in the Sierra Nevada foothills: Science, v. 192, p. 72-74. (Oroville, Seismicity-North America, Faulting-North America).

72A. Buforn, E., and Udias, A., 1978, Seismicidad inducia por grandes presas en Espana [in Spanish]: preprint. (Almendra, Camarillas, Canelles, El Grada, La Cohilla, La Fuensanta, RIS Report).
73. Bureau de Recherches Geologiques et Minieres, 1977, Carte Geologiques de la France, St-Flour: Mininstere de l'Industrie, Map 185, scale 1:80,000. (Geology-Europe).
74. Burke, K., 1971, Recent faulting near the Volta Dam: Nature, v. 231, p. 436-440. (Akosombo Main, Faulting-Africa).
75. Burke, K., Dewey, J. F., and Kidd, W. S. F., 1977, World distribution of sutures - the sites of former oceans: Tectnophysics, v. 40, p. 69-99. (Geology-Europe).
76. Butorin, N. V., Vendrov, S. L., Dyakonov, K. N., Reteyum, A. Yu., and Romanenko, V. I., 1973, Effect of the Rybinsk reservoir on the surrounding area: in Man-made Lakes--Their problems and Environmeñal Effects: Geophysical Monograph Series 17, American Geophysical Union p. 246-250. (Rybinsk).

76A. Buyukdoluca, K., Ural, O., and Arkun, K., 1967, Turkish National Committee on Large Dams: Ninth International Congress on Large Dams, Istanbul, General Paper 4, p. 639-667. (Gokcekaya).
77. Byerlee, J. D., and Brace, W. F., 1972, Fault stability and pore pressure: Bulletin of the Seismological Society of America, v. 62, no. 2, p. 657-660. (RIS Theory - Hydrology).
78. Caldwell, J. G., and Frohlich, C., 1975, Microearthquake study of the Alpine zone near Haast, South Island, New Zealand: Bulletin of the Seismological Society of America, v. 65, no. 5, p. 1097-1104. (Seismicity-Australia, New Zealand).

78A. Calhaem, I. M., 1978, Pukaki earthquake of l7th December 1978: unpublished internal document, New Zealand Department of Scientific and Industrial Research, 11 p.
79. Caloi, P., 1966, L'evento del Vajont ne: suoi aspetti geodinamici (in Italian with English abstract): Annali di Geofisica (Rome), v. 19, no. l, p. l74. (Vajont, RIS Report, Geology-Europe).
80. Caloi, P., 1970, How nature reacts on human intervention--responsibilities of those who cause and who interpret such action. Annali di Geofisica (Rome), v. 23, no. 4, p. 283-305. (Pieve di Cadore, RIS Report).
81. Capelle, J. F., Dascal, O., and Larocque, G. S., 1970, Behavior of the main Outardes 4 Dam during construction and impounding of the reservoir: World Dams Today, Japan Dam Association, p. 325334. (Outardes 4).

Carder, D. S., 1945, Seismic investigations in the Boulder Dam area, 1940-1944, and the influence of reservoir loading on earthquake activity: Seismological Society of America Bulletin, v. 35, p. 175-192. (Hoover, RIS Report, Seismicity-North America).
83. Carder, D. S., 1968, Reservoir loading and local earthquakes: Sixth Annual Symposium on Engineering Geology and Soils Engineering, Boise, Idaho, p. 225-241. (Hoover, RIS-General).
84. Carder, D. S., 1970, Reservoir loading and local earthquakes, in Adams, W. M. (ed.), Engineering Geology Case Histories--Number 8: Geological Society of America, Boulder, Colo., p. 51-61. (Hoover, RIS General).
85. Carder, D. S., and Small, J. B., 1948, Level divergences, seismic activity, and reservoir loading in the Lake Mead area, Nevada and Arizona: American Geophysical Union Transactions, v. 29, p. 767-771. (Hoover, RIS Report, Seismicity-North America).
86. Cardwell, D. H., Erwin, R. R., and Woodward, H. P., 1968, Geologic map of West Virginia: West Virginia Geological and Economic Survey, 2 sheets. (Geology-North America).
87. Casado, J. L. G., Duelo, C., Rosello, J. G., Garcia, V., and Peironcely, J. M., 1973, Spanish National Committee on Large Dams, General Paper: llth International Congress on Large Dams, G. P. 13, p. 679-751. (Las Portas).
88. Castillo, M., and Navalon, N., 1970, Testing and control of concrete for the Alcantara Dam: Tenth International Congress on Large Dams, v. IV, Q. 39, R. 2, p. 35-56. (Alcantara).
89. Castle, R. O., Grantz, A., and Clark, M. M., 1973, Recognition and characterization of active tectonic environments: International Colloquium on Seismic Effects of Reservoir Impounding (COSERI), (summaries), The Royal Society of London. (RIS General, Tectonic - General).
90. Castle, R. O., Clark, M. M., Grantz, A., and Savage, J. C., 1975, Tectonic state: Its significance and characterization in the assessment of seismic effects associated with reservoir impounding: printout of paper presented at Banff Conference, 48 p. (RIS General, Tectonics - General).
91. Centrais Electricas de Minas Gerais S. A., Belo Horzonte, 1963, Tres Marias Dam in Topmost Dams of the World: The Japan Dam Association, p. 125-131. (Tres Marias).
92. Chadwick, W. L., 1973, Environmental effects of large reservoirs: unpublished summary by the USCOLD Committee on Environmental Effects, Regarding Seismic Effects of Large Reservoirs, p. 8. (General Reservoir Information, RIS General).
93. Chandra, U., 1977, Earthquakes of Peninsular India--a seismo-tectonic study: Seismological Society of America Bulletin, v. 67, no. 5, p. 1387-1413. (Seismicity-Asia, Tectonics-Asia).
94. Chandrasekharam, D., and Parthasarathy, A., 1978, Geochemical and tectonic studies on the coastal and inland Deccan Trap volcanics and a model for the evolution of Deccan Trap volcanism: Neus Jahrbuch fuer Mineralogi, Abhandlungen (Stuttgart), v. 132, p. 214-229. (Geology-Asia, Tectonic-Asia).
95. Chopra, A. K., and Chakrabarti, P., 1971, The Koyna earthquake of December 11, 1967 and the performance of Koyna Dam: College of Engineering, University of California, Berkeley, Report No. EERC 71-1. (Koyna, Seismicity - Asia, RIS Report).
96. Chopra, M. R., Handa, C. L., Murthy, Y. K., Nag, P. C., and Shak, R. B., 1964, India's large dam projects: General Paper No. ll, Indian National Committe on Large Dams, 8 th International Congression Large Dams. (Sharavathi).
97. Chowdhary, L. R., 1975, Reversal of basement-block motions in Cambay Basin, India, and its importance in petroleum exploration: American Association of Petroleum Geologists Bulletin, v. 59, no. 1, p. 85-96. (Tectonics-Asia).
98. Chowdhary, L. R., and Lakshman, S., 1978, Early Eocene subaerial erosional valleys in Cambay Basin, India: American Association of Petroleum Geologists Bulletin, v. 62, no. 3, p. 442-454. (Geology-Asia).
99. Cleary, J. R., 1967, The seismicity of the Gunning and surrounding areas, 1958-1961: Geological Society of Australia Journal, no. 14, pt. 1, p. 23-29. (Seismicity - Australia New Zealand).
100. Cleary, J. R., Doyle, H. A., and Moye, D. G., 1964, Seismic activity in the Snowy Mountains region and its relationship to geologic structure: Geological Survey of Australia Journal, v. 1l, pt. l, p. 89-106. (Seismicity-Australia, New Zealand, Geology-Australia, New Zealand).
101. Cluff, L. S., 1977, Notes of visit to Koyna Dam, India, January 14, 15, 16, 1977: unpublished report to the U.S. Bureau of Reclamation, 13 p. (Koyna, Faulting-Asia).
102. Collet, L. W., 1974, The structure of the Alps: Robert E. Krieger Publishing Company, Huntington, N.Y., reprint of 2nd ed. (1935), 304 p. (Geology-Europe).
103. Collins, P. G., 1967, Major dams of the Snowy Mountains scheme: World Dams Today, Japan Dam Association, p. 313-316. (Eucumbene).
104. Comite National Argentin des Grands Barrages, 1967, Report de synthese No. 13, Ninth international Congress on Large Dams, Istanbul, R.S. 13, P. 907929. (El Chocon, RIS General).

104A. Comite Nacional Espanol de Grandes Presas, 1973, Un testimonio de las presas espanolas: Ministerio de Obras Publicas, Direccion General de Obras Hidraulicas, 300 p. (General Reservoir Information) .
105. Comite National Portugais des Grands Barrages, 1967, Rapport de synthese No. ll, de L'ensemble d'etudes, project et ouvrages et de L'evolution et progres des techniques, Ninth International Congress on Large Dams, Istanbul, R.S. 11, p. 871888. (Cabora Bassa, General Reservoir Information).
106. Commission International des Grands Barrages (CIGBICOLD), 1968, World register of dams: International Commission on Large Dams, Paris, France, v. 4. (General Reservoir Information).
107. Commission International des Grands Barrages (CIGBICOLD), 1973, World register of dams: International Commission on Large Dams, Paris, France, 998 p. (General Reservoir Information).
108. Commission International des Grands Barrages (CIGBICOLD), 1976, World register of dams--first updating, December 31, 1974: International Commission on Large Dams, Paris, France, 299 p. (General Reservoir Information).
109. Committee of Experts, 1968, Report on the Koyna earthquake of December 11, 1967: Government of India Press, New Delhi, India, p. 75, (Koyna, RIS Report, Seismicity-Asia).
110. Comninakis, P., Drakopoulas, J., Moumoulides, G., and Papazachos, B., 1968, Foreshock sequences of the Kremasta earthquake and their relation to the water loading of the Kremasta artificial lake: Annali de Geofisica, v. 2l, p. 39-71, (Kremasta, RIS Report, Seismicity-Europe).
111. Cook, N. G. W., 1970, Seismicity due to deep-level mining: Geological Society of America Abstracts with Programs, Annual Meeting, Milwaukee, Wisc., p. 525-526. (Seismicity General, Geology General).
112. Corns, C. F., and Nesbitt, R. H., 1967, Sliding stability of three dams on weak rock foundations: Ninth International Congress on Large Dams, Istanbul, Turkey, v. $1, \mathrm{Q} 32, \mathrm{R} 29, \mathrm{p} .463-486$. (Green Peter).
113. Daly, W., Judd, W., and Meade, R., 1977, Evaluation of seismicity at U.S. reservoirs: USCOLD Committee on Earthquakes, 27 p. (RIS General, Seismicity-North America).
114. Dann, H. E., 1970, The Snowy Mountains scheme-sixteen large dams: World Dams Today, Japan Dam Association, p. 471-476. (Talbingo).
115. Davis, Gregory A., 1977, Tectonic evolution of the Pacific Northwest, Precambrian to present: PSAR for WNP-1/4 Subappendix 2R-C, 46 p. (TectonicsNorth America).
116. DeBeer, J. H., Gough, D. I. and van $\mathrm{Zij} 1,1975$, An electrical conductivity anomaly and rifting in southern Africa: Nature, v. 225, no. 5511, p. 678-680. (Kariba, Tectonics-Africa).
117. Degeling, P. R., 1977, Wagga Wagga 1:250,000 metallogenic map: Geological Survey of New South Wales, Sydney, scale l:250,000. (GeologyAustralia, New Zealand).
118. del Campo, A., Guitart, J. L., and Alvarez, A., 1970, Spanish National Committee on Large Dams, General paper No. ll: 12th International Congress on Large Dams, G. P. 11, p. 909-963. (Almendra, El Atazar, Las Portas, El Grado, Iznajar, Susqueda, Alcantara).
119. de Oliveira, H. G., Bourdeaux, G. H. M., Mori, R. T., Freitas, M. S., and Orlanda S. Moreira, M., 1976, Analysis of percolation through the embankment and foundations of Porto Colombia Dam: 12th International Congress on Large Dams, Q.4S, R.64, p. 1075-1089. (Porto Columbia).
120. Department of Water Resources, 1974, Dams within jurisdiction of the State of California: State of California, Department of Water Resources Bulletin No., 17-74. (General Reservoir Information).
121. Department of Water Resources, 1976, Dams within jurisdiction of the State of California: State of California, Department of Water Resources, Bulletin No. 17-76, 76 p. (General Reservoir Information).
122. Deshpande, B. G., and Jagtap, P. N., 1971, Interpretation of aerial photographs of Koyna region: Indian Journal of Power and River Valley Development, Special Number 1971, p. 25-26. (Koyna, Geology-Asia).
123. Dewey, J. F., 1977, Suture zone complexities: A review: Tectonophysics, v. 50, p. 53-67. (Geology-Europe, Tectonics-Europe).
124. Dewey, J. F., Pitman, W. C., III., Ryan, W. B. F., and Bonnin, J., 1973, plate tectonics and the evolution of the Alpine system: Bulletin of the Geological Society of America, v. 84, no. 10, p. 3137-3180. (Tectonics-Europe).

124A. Dewey, J. F., and Sengor, A. M. Celal, 1979, Aegean and surrounding regions: Complex multiplate and continuum tectonics in a convergent zone: Geological Society America Bulletin, Part 1 , v. 90, p. 84-92. (Geology-Europe).
125. Diacon, A., Constatninescu, C., Ionescu, St., and Caciulescu, St., 1976, Drainage des fondations de quelques barrages de Roumanie: Twelfth International Congress on Large Dams, Mexico, v. 2, Q. 45, R. 52, p. 859-876. (Vidraru, VidraLotru, Bicaz).

125A. Diesendorf, W., ed., 1961, The Snowy Mountains scheme; Phase I - the upper Tumut projects: Horwitz Publications Inc., Sydney, N.S.W., 167 p.
126. Direccion General de Obras Hidraulicas, 1973, Un testimonio de las presas Espanolas: Ministerio de Obras Publicas, Spain, Comite Nacional Espanol de Grandes Presas, 300 p. (General Reservoir Information).
127. Director General of the Royal Irrigation Department, Kingdom of Thailand, 1963, Yanhee multipurpose project, Thailand: Topmost Dams of the World, Japan Dam Association, p. 290-292. (Bhumiphol).

127A. Douglas, R. J. W. (ed.), 1970, Geology and economic minerals of Canada: Geological Survey of Canada, Economic Geology Report No. 1, $838 \mathrm{p} ., 2 \mathrm{v}$. (Geology-North America).
128. Doyle, H. A., 1971, Seismicity and structure in Australia: Recent crustal movements: Royal Society of New Zealand, Bulletin 9, p. 149-152. (Seismicity-Australia, New Zealand, GeologyAustralia, New Zealand).
129. Doyle, H. A., Cleary, J. R., and Gray, N. M., 1968, The seismicity of the Sydney basin: Journal of the Geological Society of Australia, v. 15, pt. 2, P. 175-181. (Seismicity-Austria, New Zealand).
130. Doyle, H. A., Everingham, I. B., and Sutton, D. J., 1968, Seismicity of the Australian continent: Journal of the Geological Society of Australia, v. 15, pt. 2, p. 295-312. (Seismicity-Australia, New Zealand).
131. Drakopoulos, J., 1974, Conditions and triggering mechanism of earthquake activity in the region of Kremasta-Kastraki dams, Greece. National Observatory of Athens, 144 p. (in Greek with English summary). (Kremasta, Kastraki, RIS Report, Seismicity-Europe).
132. Dreville, F., Pare, J. J., Capelle, J. F., Dascal, O., and Larocque, G. S., 1970, Diaphragme en beton moule pour l'etancheite des fondations du barrage Manicouagan 3: Tenth International Congress on Large Dams, Q. 37, R. 34, p. 607-613. (Manicougan 3).
133. Drysdall, A. R., and Weller, R. K., 1966, Karoo sedimentation in Northern Rhodesia: Geological Society of South Africa Transactions, v. 69, p. 39-69. (Geology-Africa).
134. Dukleth, G. W., Jabara, M. A., Willis, H. B., and Sarkaria, G. S, 1976, General paper by U.S. Committee on Large Dams: 12th Congress on Large Dams, General Paper 2, p. 417-451. (Fort Peck, Jocassee).
135. Dunphy, G. J., 1973, Earthquakes near Flathead Lake, Montana, 1967-1971 (abs.): Earthquake Notes, v. 44, p. 66. (Kerr, Post Impoundment Seismicity).
136. Dutta, T. K., 1971, Recent earthquake series in Koyna Region, a possible mechanism at the source: Indian Journal of Power and River Valley Development, Special Number 1971, p. 63-66. (Koyna, RIS Report, Seismicity-Asia).
137. Dutta, T. K., 1969, A note of the source parameter of the Koynanagar earthquake of loth December 1967: Bulletin of the Seismological Society of America, v. 59, no. 2, p. 935-944. (Koyna, SeismicityAsia).
138. Eldridge, J. G., and Little, A. L., 1967, The seismic design of earth dams of the Mangla project: Ninth International Congress on Large Dams, Q. 35, R. 3, p. 39-57. (Mangla).
139. Ellis, R. M., 1973, Monitoring of seismic activity during loading of Mica Reservoir: University of British Columbia, Department of Geophysics and Astronomy, Tecnical Report to British Columbia Hydro and Power Authority, 17 p. (Mica, RIS Report, Seismicity - North America).
140. Ellis, R. M., and Dragert, H., 1975, Monitoring of seismic activity during loading of Mica Reservoir (abs.): First International Symposium on Induced Seismicity, Banff, Canada, p. 41-42. (Mica, RIS Report, Seismicity - North America).
141. Ellis, R. M., Draggert, H., and Ozard, J. M., 1977, Seismic activity in the McNaughton Lake Area, Canada (abs.): Geotechnical Abstract, GA 137.06, E-8, Published by German National Society of Soil Mechanics and Foundation Engineering. (Mica, RIS Report, Seismicity-North America).
142. El-Zarka, S. E. D. ' 1973, Kainji Lake, Nigeria, $\begin{aligned} & \text { in } \\ & \text { Man-Made Lakes: Their problems and environmental }\end{aligned}$ effects: Geophysical Monograph Series 17, American Geophysical Union, p. 197-219. (Kainji).
143. Emmelin, L. O., 1977, Itezhitezhi Dam: Word Dams Today, Japan Dam Association, p. 406-409. (Itezhitezhi).
144. Engineering and Power Development Consultants, 1970, The Kainji Dam on the River Niger: World Dams Today, p. 138-144. (Kainji).
145. Engineering Staff, National Power Corporation Manila, 1967, Large dams in Philippines: World Dams Today, Japan Dam Association, p. 383-389. (Ambuklao, Angat).
146. Equipment Division, Electricite de France, 1970, Design and construction of the Vouglans Dam: World Dams Today, Japan Dam Association, p. 170-178. (Vouglans).
147. Erdahl, C. A., 1970, Design and construction features of Mossyrock Dam: World Dams Today, Japan Dam Association, p. 373-377. (Mossyrock).
148. Erdmann, C. E., and Jones, B. E., 1944, Geology of dam sites on the upper tributaries of the Columbia River in Idaho and Montana, Part 2; Hungry Horse Dam and Reservoir site, South Fort Flathead River, Flathead County, Montana: U.S. Geological Survey Water-Supply Paper 866-B, 116 p. (Hungry Horse).
149. Esen, T., and Seyhun, S., 1970, Foundation problems in Keban Dam and the cut-off wall: Tenth International Congress on Large Dams, v. II, Q. 37, R. 43, p. 811-826. (Keban).
150. Evans, D. M., 1967, Man-made earthquakes - progress report: Geotimes, v. 12, no. 6, p. 19-20. (Fluid Injection Seismicity, Cabin Creek, RIS Report).
151. Fairhurst, C., and Roegiers, J. C., 1972, Estimation of rock mass permeability by hydraulic fracturing - a suggestion, in Proceedings, Symposium on Percolation Through Fissured Rock: International Society for Rock Mechanics, p. D2-1 through D2-5. (Hydrology).

151A. Farrell, W. E., 1972, Deformation of the earth by surface loads: Review of Geophysics and Space Physics, v. 10, p. 761-797. (RIS Theory).
152. Fels, E., and Keller, R., 1973, World register on man-made lakes, in Man-made Lakes--Their Problems and Environmental Effects: Geophysical Monograph

Series 17, American Geophysical Union p. 43-49. (General Reservoir Information).
153. Fitch, T. J., and Muirhead, K. J., 1974, Depths to larger earthquakes associated with crustal loading: Geophysical Journal of the Royal Astronomical Society v. 37, p. 285-296. (RIS Theory, Seismicity-General, RIS General).
154. Fletcher, J. B., and Sykes, L. R., 1977, Earthquakes related to hydraulic mining and natural seismic activity in western New York State: Journal of Geophysical Research, v. 82, no. 26, p. 3767-3780. (Fluid Injection Seismicity, Seismicity-North America).
155. Fogle, G. H., White, R. M., Benson, A. F., Long. L. T., and Sowers, G. F., 1976a, Reservoir induced seismicity at Lake Jocassee, northwestern South Carolina (abs.): Transactions, American Geophysical Union, v. 57, p. 759. (Jocassee, RIS Report).
156. Fogle, G. H., White, R. M., Benson, A. F., Long, L. T., and Sowers, G. F., 1976b, Reservoir induced seismicity at Lake Jocassee, northwestern South Carolina: Report to Duke Power Company by Law Engineering Testing Co., Marietta, Georgia, 45 p. (Jocassee, RIS Report).
157. Fujii, T., 1970, Fault treatment at Nagawado Dam: Tenth International Congress on Large Dams, v. Z, Q. 37, R. 9, p. 147-170. (Nagawado, FaultingAsia).
158. Gair, H. S., 1967, Sheet 20, Cook, Geological Map of New Zealand: New Zealand Geological Survey, scale l:250,000. (Geology-Australia, New Zealand).
159. Galanopoulos, A. G., 1967a, The large conjugate fault system and the associated earthquake activity in Greece: Annales Geologiques des Pays Helleniques (Athens), v. 18, p. 119-134 (in Greek with English abstract). (Faulting-Europe, Seismicity-Europe).
160. Galanopoulos, A. G., 1967b, The influence of the fluctuation of Marathon Lake elevation on local earthquake activity in the Attica Basin area: Annales Geologiques des Pays Helleniques (Athens), v. 18, p. 281-306. (Marathon, RIS Report, Seismicity-Europe).
161. Galindez, A., Guinea, P. M., Lucas, P., and Aspuru, J. J., 1967, Spillways in a peak flow river: Ninth International Congress on Large Dams, v. 2, Q. 32, R. 22; p. 365-389. (Almendra).

161A. Gallico, A., 1976, Foundation drainage of arch dams: Water Power and Dam Construction, v. 28, no. 4, p. 54-59. (El Novillo).
162. Gambhir, S. C., 1978, Reversal of basement-block motions in Cambay Basin, India, and its importance in petroleum exploration Discussion l: American Association of Petroleum Geologist Bulletin, v. 62, no. 12, p. 2489-2497. (Tectonics-Asia).
163. Ganapati, S. V., 1973, Man-made lakes in south India, in Man-made Lakes--Their Problems and Environmental Effects: Geophysical Monograph Series 17, American Geophysical Union p. 63-73. (Nagarjunasagar).
164. Ganser, O., 1970, Kops Dam instrumentation; methods of observation and interpretation of results: Tenth International Congress on Large Dams, v. III, Q. 38, R. 7, p. 92-112. (Kops).
165. Garg, S. K., and Nur, A., 1973, Effective stress laws for fluid-saturated porous rocks: Journal of Geophysical Research, v. 78, no. 26, p. 5911-5921. (Stress, Hydrology).
166. Gastescu, P., and Breier, A., 1973, Artificial lakes of Romania, in Man-made Lakes--Their Problems and Environmental Effects: Geophysical Monograph Series l7, American Geophysical Union p. 50-55. (Bicaz, Vidraru).
167. Gay, N. C., 1975, In-situ stress measurements in southern Africa: Tectonophysics, v. 29, no. 1-4, p. 447-459. (Stress, Tectonics-Africa).
168. Geological Survey of Greece, 1971, The Geological results of petroleum exploration in Western Greece: Geology of Greece, no. 10, IGSR, Athens. (Geology-Europe).
169. Geological Survey of India, 1968, A geological report on the Koyna earthquake of llth December 1967: Calcutta, India, 242 p. (Koyna, Seismicity-Asia).
170. Geological Survey of New South Wales, 1972, Geology of New South Wales: Geological Survey of New South Wales, sheets l-4, scale l:1,000,000 (Geology-Australia, New Zealand).
171. Geological Survey of New South Wales, 1974, Tectonic map of New South Wales, sheets 1,3 , and 4 , scale l:1,000,000. (Tectonics-Australia, New Zealand).
172. Geological Survey of New South Wales, 1975, Metalogenic Map of Bega, Australia, scale l:1,250,000. (Geology-Australia, New Zealand).
173. Geological Survey of New South wales, undated, Schematic Tectonic Map of New South Wales, scale l:1,000,000. (Tectonics-Australia, New Zealand).
174. Geological Survey of New South Wales, undated, Geological Map of New South Wales, scale 1:3,000,000. (Geology-Australia, New Zealand).
175. Gete-Alonso, A., and Buil, J. M., 1976, Les infiltrations au barrage de Canelles sur la riviere Noguers Ribagorzana: Twelfth International Congress on Large Dams, v. II, Q. 45, R. 59, p. 989-110. (Canelles).
176. Gicot, H., 1967, Some new arch dams in Switzerland and Austria: World Dams Today, Japan Dam Association, p. 92-102. (Gebidem, Hongrin Nord, Contra, Kops).

176A. Gignoux, M., and Barbier, R., 1955, Geologie des Barrages et des Amenagements Hydrauliques: Masson et Cie., Paris, 339 p. (General Reservoir Information).
177. Gilg, B., 1970, Punt dal Gall arch dam: World Dams Today, Japan Dam Association, p. 188-198. (Punt dal Gall).
178. Gilg, B., 1975, Mattmark - a dam founded on alluvial and morainic deposits: American Society of Civil Engineers, Foundations for Dams, An Engineering Foundation Conference, Pacific Grove, Calif., p. 215-248. (Mattmark).
179. Gill, E. D., and Sharp, K. R., 1956, The Tertiary rocks of the Snowy Mountains, eastern Australia: Journal of the Geological Society of Australia, v. 3, p. 21-40. (Geology-Australia, New Zealand).
180. Gilligan, L. B., 1977, Canberra l:250,000 Metallogenic Map: Geological Survey of New South Wales, scale 1:250,000. (Geology-Australia, New Zealand).
181. Gilmore, J. J., 1977, Recent Ebasco achievements in dam construction: World Dams Today, Japan Dam Foundation, p. 5l7-52l. (Kastraki, Keban, Gokcekaya) .
182. Gordon, A. Y., and McCreath, D. R., 1977, The world's highest concrete faced rock fill dam for the Alto Anchicaya hydroelectric project: World Dams Today, Japan Dam Foundation, p. 158-162. (Alto Anchicaya).
183. Gough, D. I., (in press), Induced seismicity: University of Alberta, Department of Physics, Institute of Earth and Planetary Physics, preprint revised June, 1976, 52 p. (RIS General, RIS Theory).
184. Gough, D.,I., and Gough, W. I., 1970a, Stress and deflection in the lithosphere near Lake Kariba--I: Geophysical Journal of the Royal Astronomical Society v. 2l, p. 65-78. (Kariba, RIS Report, Stress).
185. Gough, D. I., and Gough, W. I., 1970b, Load-induced earthquakes at Lake Kariba--II: Geophsyical Journal of the Royal Astronomical Society, v. 2l, p. 70-101. (Kariba, RIS Report, SeismicityAfrica).
186. Gough, D. I., and Gough, W. I., (in press), Time dependence and trigger mechanisms for the Kariba earthquakes: Department of Physics, Institute of Earth and Planetary Physics, University of Alberta, Edmonton, Alberta, Canada, p. 16. (Kariba, RIS Theory).
187. Grieve, R. A. F., and Floran, R. J., 1978, Manicouagan impact melt, Quebec(2); chemical interrelations with basement and formational processes: Journal of Geophysical Research, v. 83, no. B6, p. 276l-2772. (Daniel Johnson, Geology-North America).

187A. Grubaugh, P. L., 1972, Instrumentation of Green Peter Dam and foundation: Association of Engineering Geologists Bulletin, v. 9, no. 3, p. 159-176. (Green Peter).
188. Gubin, I. E., 1969, Koyna earthquake of 1967: International Institute of Seismology and Earthquake Engineering Bulletin, v. 6, p. 45-62. (Koyna, Seismicity-Asia).
189. Guha, S. K., Gosavi, P. D., Padale, J. G., and Marwadi, S. C., 1971, An earthquake cluster at Koyna: Seismological Society of America Bulletin, v. 61, no. 2, p. 297-315. (Koyna, RIS Report, Seismicity-Asia).
190. Guha, S. K., Gosavi, P. D., Varma, M. M., Agarwal, S. P., Padale, J. G., and Marwadi, S. C., 1970, Recent seismic disturbances in the Shivajisagar Lake area of the Koyna hydroelectric project, Maharashtra, India: Central Water and Power Research Station, 52 p. (Koyna, RIS Report, Seismicity-Asia).
191. Guha, S. K., Agrawal, S. P., and Gosavi, P. D., 1972, Acceleration of Koyna earthquake of December 11, 1967: Bulletin of the Seismological Society of America, v. 62, no. l, p. 413. (Koyna, RIS Report, Seismicity-Asia).
192. Guha, S. K., Gosavi, P. D., Agarwal, B. N. P., Padale, J. G., and Marwadi, S. C., 1973, Case histories of some artificial crustal disturbances: Paper presented at the International Collouium on the Seismic Effects of Reservoir Impounding (COSERI), London, England, 45 p. (RIS General, Seismicity-Asia, RIS Report).
193. Guha, S. K., Gosavi, P. D., Padale, J. G., and Marwadi, S. C., 1974, Some premonitory changes in Koyna reservoir area and possible physical basis of prediction of large seismic events: International Association of Engineering Geology, Second International Congress, p. 11-6.1 to 116.9. (Koyna, RIS Report, RIS Theory, SeismicityAsia).
194. Guha, S. K., Gosavi, P. D., Nand, K., Padale, J. G., and Marwadi, S. C., 1974, Koyna earthquake (October 1963 to December 1973): Central Water and Power Research Station, Indian 52 p. (Koyna, RIS Report, Seismicity-Asia).
195. Guha, S. K., Gosavi, P. D., Nand, K., Agarwal, B. N. P., Padale, J. G., and Marwadi, S. C., 1974, Artificially induced seismicity and associated ground motions: International Association of

```
Engineering Geology, Second International
Congress, p. ll-PC-1.1 to 1l-PC-1.l4. (RIS
General, RIS Report).
```

196. Guha, S. K., Gosavi, P. D., Padale, J. G., and Marwadi, S. C., 1975, Reservoir impounding and ultra-microearthquake activities (abs): First International Symposium on Induced Seismicity, Banff, Canada, p. 65-66. (Ukai, Koyna, RIS Report, Post Impoundment Seismicity).
197. Gupta, H. K., Narain, H., Rastogi, B. K., and Mohan, I., 1969, A study of the Koyna earthquake of December 10, 1967: Seismological Society of America Bulletin, v. 59, p. 1149-1162. (Koyna, Post Impoundment Seismicity, Seismicity-Asia).
198. Gupta, H. K., Mohan, I., and Narain, H., 1970, The Godavari Valley earthquake sequence of April 1969: Seismological Society of America Bulletin, v. 60, no. 2, p. 601-615. (Koyna, post Impoundment Seismicity, Seismicity-Asia).
199. Gupta, H. K., Mohan, I., and Narain, H., 1972, The Broach earthquake of March 23, 1970: Seismological Society of America Bulletin, v. 62, no. 1, p. 47-6l. (Seismicity-Asia).
200. Gupta, H. K., Rastogi, B. K., and Narain, H., 1972a, Common features of the reservoir-associated seismic activities: Seismological Society of America Bulletin, v. 62, no. 2, p. 48l-492. (RIS General).
201. Gupta, H. K., Rastogi, B. K., and Narian, H., 1972b, Some discriminatory characteristics of earthquakes near the Kariba, Kreamasta, and Koyna artificial lakes: Seismological Society of America Bulletin, v. 62, no. 2, p. 493-507. (Kariba, Kremsta, Koyna, RIS General).
202. Gupta, H. K., and Rastogi, B. K., 1974, Will another damaging earthquake occur in Koyna: Nature, v. 24, no. 5445, p. 215-216. (Koyna, SeismicityAsia).
203. Gupta, H. K., and Rastogi, B. K., 1976, Dams and earthquakes: Elsevier Scientific Publishing Co., New York, N.Y., 229 p. (RIS General).
204. Gupta, H. K. and Combs, J., 1976, Continued seismic activity at the Koyna reservoir site, India: Engineering Geology, v. 10, p. 307-313. (Koyna, Post Impoundment Seismicity, Seismicity-Asia).
205. Gupte, R. B., undated, Dykes in Deccan Trap in western Maharashtra: Indian National Science Academy, Bulletin no. 45, p. 291-296. (GeologyAsia).
206. Gupte, R. B., 1971, Engineering aspects of the Deccan Trap Basalts, Maharashtra Public Work Journal, v. VII, no. 3-4, 21 p. (Geology-Asia).
207. Gupte, R. B., Murty, C. R. K., and Sahasradbuddhe, P. W., 1968, A Recent flow in the Deccan traps: Geological Society of India Bulletin, v. 5, no. l, p. 26-28. (Geology-Asia).
208. Gupte, R. B., and Rajguru, S. N., 1971, Late Pleistocene geomorphological history of rivers of western Maharashtra: Bulletin Volcanologique, v. 35, p. 686-695. (Geology-Asia).
209. Gupte, R. B., Marathe, S. S., Kulkarni, S. R., and Karmarkar, B. M., undated, The nature of Deccan Trap volcanicity in western Maharashtra: Recent Researches in Geology, v. 4, p. l4l-l58. (Geology-Asia, Tectonics-Asia).

209A. Hadley, L. M., 1975, Seismicity of Colorado: vicinity of the Cabin Creek pumped storage hydroelectric plant: M. S. Thesis, Colorado School of Mines, Golden, Colo., 74 p. (Cabin Creek, Post Impoundment Seismicity).
210. Hagiwara, T., and Ohtake, M., 1972, Seismic activity associated with the filling of the reservoir behind the Kurobe Dam, Japan, 1963-1970: Tectonophysics, v. 15, p. 241-254. (Kurobe, RIS Report).
211. Haimson, B. C., 1978, The hydrofracturing stress measuring method and recent field results: International Journal of Rock Mechanics, Mineral Science, and Geomechanical Abstracts, v. 15, p. 167-178. (Stress).
212. Hamilton, D. H., and Meehan, R. L., 1971, Ground rapture in the Baldwin Hills: Science, v. l72, p. 333-344. (Fluid Injection Seismicity).
213. Handin, J., and Raleigh, C. B., 1972, Man-made earthquakes and earthquake control: International Association of Engineering Geologist Symposium, Stuttgart, Paper T2-d, p. 1-10. (Fluid Injection Seismicity).
214. Hanks, T. C., and Johnson, D. A., 1976, Geophysical assessment of peak accelerations: Seismological Society of America Bulletin, v. 66, no. 3, p. 959-968. (Seismicity General).
215. Harbison, R. N., and Bassinger, B. G., 1970, Seismic reflection and magnetic of Bombay (India): Geophysics, v. 35, p. 603-612. (Geology-Asia, Tectonics-Asia).
216. Hart, E. W., and Rapp, J. S., 1975, Ground rupture along the Cleveland Hill fault, in Sherburne, R. W., and Hauge, C. J. (eds.), Oroville, California, Earthquake, 1 August 1975: California Division of Mines and Geology Special Report 124, p. 61-72. (Oroville, Faulting-North America).
217. Hast, N., The state of stresses in the upper part of the earth's crust: Engineering Geology, v. 2, no. 1, p. 5-17. (Stress).
218. Hatcher, R. D., Jr., 1978, Tectonics of the western Piedmont and Blue Ridge, southern Appalachians: review and speculation: American Journal of Science, v. 278, no. 3, p. 276-304. (TectonicsNorth America).
219. Herget, G., 1974, Ground stress determination in Canada: Rock Mechanics v. 6, p. 53-64. (Stress).
220. Hileman, J. A., Allen, C. R., and Nordquist, J. M., 1973, Seismicity of the southern California region, 1 January 1932 to 31 December 1972: Seismological Laboratory, California Institute of Technology, Pasadena, Calif., 404 p. (Seismicity Catalog).
221. Hitchon, B., 1958, The geology of the Kariba area: Northern Rhodesia Geological Survey Department, Report No. 3, 41 p. (Kariba, Geology-Africa).
222. Hofman, R. B., 1973, Seismic activity and reservoir filling at Oroville and San Lui dams, in Man-made Lakes--Their Problems and Environmental Effects: American Geophysical Union, Geophysical Monograph Series, no. 17, p. 468-471. (Oroville, San Luis, RIS Report).
223. Hooker, V. E., and Johnson, C. F., 1967, In-situ stresses along the Appalachian Piedmont: 4 th Canadian Symposium on Rock Mechanics, P. 137-154. (Stress, Geology-North America).
224. Housner, G. W. 1969, Seismic events at Koyna Dam, in, Someton, W. H. (ed.), Rock Mechanics - Theory and Practice: llth Symposium of Rock Mechanics, University of California, Berkeley, p. 54l-558. (Koyna, Geology-Asia, Seismicity-Asia).
225. Howard, K. A., Aaron, J. M., Brabb, E. E., Brock, M. R., Gower, H. D., Hunt, S. J., Milton, D. J., Muehlberger, W. R., Nakata, J. K., Plafker, G., Prowell, D. C., Wallace, R. E., and Witkind, I. J., 1978, Preliminary map of young faults in the United States as a guide to possible fault activity: U.S. Geological Survey, Miscellaneous Field Studies Map MF-916, scale l:5,000,000. (Faulting-North America).
226. Hsu Tsung-ho, Lo Hsuch-hai, Ho Tu-Lsin, and Uant Cheng-jung, 1975, Strong-motion observation of water-induced earthquakes at Hsinfengkiang Reservoir in China: Peking, China, May 1975, 16 p. (Xinfengjiang, RIS Report).
227. Hubbert, M. K., and Rubey, W. W., 1959, Role of fluid pressure in mechanics of overthrust faulting; 1. Mechanics of fluid-filled porous solids and its application to overthrust faulting: Geological Society of America Bulletin, v. 70, p. 115-166. (Hydrology).
228. Hukku, D. M., 1975, Bhakra Nangal Project, Punjab: Geological Survey of India, Miscellaneous Publication \#29, Engineering Geology Case Histories, p. 1-10. (Bharkra).

228A. Ingenieros Civiles Asociados, 1963, Some of the latest dam construction jobs: Topmost Dams of the World, The Japan Dam Association, p. 122-124. (El Infiernillo).

228B. Jacob, K. H., Armbruster, J., Seeber, L., and Pennington, W., 1975, Tarbela Reservoir, Pakistan: A region of compressional tectonics with reduced seismicity upon initial reservoir filling: Paper presented at First International Symposium on Induced Seismicity, Banff, Canada. (Tarbela, Post Impoundment Seismicity, Seismicity-Asia).
229. Jaeger, J. C., and Browne, W. R., 1958, Earth tremors in Australia and their geological importance: The Australian Journal of Science, v. 20, no. 8, p. 225-228. (Seismicity-Australia, New Zealand, Geology-Australia, New Zealand).

229A. Jaeger, J. C., and Cook, N. G. W., 1976, Fundamentals of Rock Mechanics, 2nd Edition, Wiley, New York, p. 585. (RIS Theory).
230. Jathal, M. N., Mistry, J. F., Buch, D. T., and Purohit, M. U., 1967, Cut-off for the earth dam in the river and on the right bank at Ukai: Ninth International Congress on Large Dams, Q. 37, R. 69, p. 1089-1094. (Ukai).
231. Jalaote, S. P., Jaiswar, H. P., and Ghosh, D. K., 1972, Role of geology in the planning, design and the first phase of construction of the Beas Dam project, Punjab: Dr. J. B. Auden Commemerative Volume, Indian Society of Engineering Geology, p. 279-288. (Beas).
232. Jalaote, S. P., and Tikku, A. K., 1975, Beas Dam project, Punjab job: Geological Survey of India, Miscellaneous Publication 29, p. 107-117. (Beas).
233. Japanese National Committee on Large Dams, 1970, Dams in Japan: published by Japanese National Commission on Large Dams, 59 p. (Shimokubo, Yagisawa, Nagawado, Takane No. 1, Kuzuryu).
234. Jeanrichard, F., 1975, Summary geodetic studies of recent crustal movements in Switzerland: Tectonophysics, v. 29, no. 1-4, p. 189-292. (Tectonics-Europe, faulting-Europe).
235. Jennings, C. W., 1975, Fault map of California with locations of volcanoes, thermal springs, and thermal wells: California Division of Mines and Geology, Geologic Data Map Sheet No. 1, scale 1:750,000. (Faulting-North America, TectonicsNorth America).
236. John, K. W., and Gallico, A., 1974, Engineering geology of the site of the upper Tachien project: proceedings of the Second International Congress, Sao Paulo, Brazil, v. 2, Theme VI-9.2-VI-9.ll. (Tachien, Geology-Asia).
237. Johnson, S. J., Krinitzsky, E. L., and Dixon, N. A., 1973, Preliminary review of reservoir filling and associated earthquakes: Paper prepared for International Colloquim on the Seismic Effects of Reservoir Impounding. (RIS General).
238. Johnson, S. J., Krinitzsky, E. L., and Dixon, N. A., 1977, Reservoirs and induced seismicity at Corps of Engineers projects: U.S. Army Engineers Waterways Experiment Station, Miscellaneous Paper S-77-3, l4 p. (RIS General).
239. Joshi, R. N., 1971, Study of damage and throws in Koyna earthquake: Indian Journal of Power and River Valley Development, Special Number 1971, p. 39-46. (Koyna, Seismicity-Asia).
240. Judd, W. R., 1973, Report on the International Colloqium on Seismic Effects of Reservoir Impounding: unpublished report from the files of the United Nations Educational and Scientific Cultural Organization, ll p. (RIS General).
241. Judd, W. R., (ed.), 1974, Seismic effects of reservoir impounding: Engineering Geology, v. 8, 212 p. (RIS General).

241A. Kailasam, L. N., 1975, Epeirogenic studies in India with reference to recent vertical movements: Tectonophysics, v. 29, no. 1-4, p. 505-521. (Seismicity-Asia, Tectonic-Asia).
242. Kailasam, L. N., Murty, G. K., and Chayanulu, A. Y. S. R., 1972, Regional gravity studies of the Deccan Trap areas of Peninsular India: Current Science, v. 41, no. ll, p. 403-407. (GeologyAsia).
243. Kailasam, L. N., Pant, P. R., Lahiri, S. M., and Simha, K. R. M., 1969, Seismic investigations in the Deccan Trap areas of Maharashtra and parts of Mysore and Andhra Pradesh: Memoirs of the Geological Survey of India, v. 100 Chapter 11, p. 113-116. (Seismicity-Asia).
244. Kall, R., and Charalambakis, S., 1970, Impounding of Manicouagan 5 reservoirs as possible trigger cause of local earthquakes: loth International Congress on Large Dams, Q. 38, R. 41, p. 795-814. (Daniel Johnson, Post Impoundment Seismicity).
245. Kanasewich, E. R., 1977, Instrumentation for observation of induced seismicity: Engineering Geology, p. 139-147. (RIS General).
246. Kansai Electric Power Co. Inc., The Construction Department, Japan, 1967, Mechanical behaviour of Kurobe IV Dam and its foundation, especially the difference from the result of calculation: 9th International Congress on Large Dams, Q. 34, R. 4, p. 53-71. (Kurobe).
247. Karmarkar, B. M., 1973, Fractures in Deccan Trap basalts of Bor Ghat: Bulletin of Earth Sciences, 2, p. 41-44. (Geology-Asia).
248. Karmarkar, B. M., 1978, The Deccan Trap basalt flows of the Bor Ghat section of central railway: Journal of the Geological Society of India, v. 19, no. 3, p. 106-114. (Geology-Asia).
249. Karunakaran, C., and Mahadeuan, T. N., 1971, Some aspects of the seismicity of the Peninsular Shield: Indian Journal of Power and River Valley Development, Special Number 1971, p. 15-24. (Seismicity-Asia).
250. Khan, N., and Siddiqui, W. A., 1967, The design criteria adopted for Tarbela Dam situated in seismic zone: 9th International Congress on Large Dams, v. IV, Q. 35, R. 31, p. 505-527. (Tarbela).
251. Khattri, K. N., 1970, The Koyna earthquake-seismic studies: 4th Symposium on Earthquake Engineering, India, p. 369-374. (Koyna, Seismicity-Asia).
252. Khilnani, K. S., and Webster, J. L., 1976, Mica Dam drainage system: l2th International Congress on Large Dams, Mexico City, Mexico, V. II, Q. 45, R. 9, p. 129-146. (Mica).
253. Kiessling, H., Rienossl, R., and Schober, W., 1976, Austrian National Committee, General Paper: 12th International Congress on Large Dams, G.P.4, p. 465-493. (Gepatsch).
254. Kinawy, I. Z., and Shenouda, W. K., 1973, Nile regime, design floods and operation rules of the Aswan High Dam: llth International Congress on Large Dams, Q. 41, R. 22, p. 291-406. (Saad-ElAali, Hydrology).
255. Kinawy, I. Z., and Shenouda, W. K., 1976, Seepage control and drainage in the Aswan High Dam: l2th International Congress on Large Dams C. 21, p. 1099-1114. (Saad-El-Aali, Hydrology).
256. King, P. B., 1969a, Tectonic map of North America: U.S. Geological Survey, Map No. G67154, 2 sheets. (Tectonics-North America).
257. King, P. B., 1969b, The tectonics of North America--a discussion to accompany the tectonic map of North America. (Tectonics-North America).
258. Kirkham, R. M., and Rogers, W. P., 1978, Earthquake potential in Colorado: Colorado State Geological Survey, 131 p. (Seismicity-North America).
259. Kisslinger, C., 1976, A review of theories of mechanism of induced seismicity: Engineering Geology, v. 10, p. 85-98. (RIS Theory).

259A. Kliner and Acker, 1971, [complete citation unavailable]. (Mossyrock).
260. Knill, J. L., and Jones, K. S., 1965, The recording and interpretation of geological conditions in the foundations of the Roseires, Kariba, and Latiyan Dams: Geotechtonique, v. 15, no. 1, p. 94-124. (Kariba).
261. Knutson, C. F., and Bohor, B. F., 1963, Reservoir rock behavior under moderate confining pressure in Rock Mechanics, Fairhurst (ed.), New York, Pergamon Press, p. 627-660. (Hydrology).
262. Koshechkin, B. I., Markov, G. A., Nikonov, A. A., Panasenko, G. D., and Strelkov, S. A., 1975, Postglacial and recent crustal movements in the northeast of the Baltic shield: Tectonophysics, v. 29, no. l-4, p. 289-292. (Stress).
263. Krishna, J., Chandrasekaran, A. R., and Saini, S. S., 1969, Analysis of Koyna accelerogram of December 11, 1967: Seismological Society of America Bulletin, v. 59, no. 4, p. 1719-1731. (Koyna, Seismicity-Asia).
264. Krishnan, M. S., 1956, Geology of India and Burma: Higginbothams (Private) Ltd., Madras. (GeologyAsia).
265. Krishnan, M. S., 1968, The evolution of the Indian Peninsula: Journal of the Indian Geoscience Association, v. 8, p. 1-1l. (Geology-Asia).
266. Ku, W. K., 1967, Dams and dam construction projects in Taiwan: World Dams Today, Japan Dam Association, p. 365-377. (Shihmen, Tachien, Tsengwen).
267. Ku, W. K., 1970, The Tsengwen Reservoir project: World Dams Today, Japan Dam Association, p. 491, 492, 501. (Tsengwen).
268. Kumi, E. N., 1973, Environmental effects of the Volta River Project: llth International Congress on Large Dams, Q. 40, R. 56, p. 907-921. (Akosombo Main, RIS Report).

268A. Lahr, K. M., Lahr, J. C., Lindh, A. G., Bufe, C. G., and Lester, F. W., 1976, The August 1975 Oroville earthquakes: Seismological Society of America Bulletin, v. 66, p. 1085-1099. (Oroville, Post Impoundment Seismicity).
269. Lambert, A., and Monjuvent, G., 1968, Quelques vues nouvelles sur l'histoire quarternaire de la vallee du Drac: Geologie Alpine, v. 44, p. 117-137. (Geology-Europe).
270. Lambert, I. B., and White, A. J. R., 1965, The Berridale wrench fault--a major structure in the Snowy Mountains of New South Wales: Geological Society of Australia Journal, v. 12, p. 25-33. (Faulting-Australia, New Zealand).
271. Lane, R. G. T., 1971, Seismic activity at man-made reservoirs: Institute of Civil Engineers, Proceedings, v. 50, p. 15-24. (RIS General).
272. Langston, C. A., and Butler, R., 1976, Focal mechanism of the August 1,1975 , Oroville earthquake: Seismological Society of American Bulletin, v. 66, p. 1111-1120. (Oroville, post Impoundment Seismicity, Focal Mechanisms).

273
Lara, J. M., and Sanders, J. I., 1970, The 1963-1964 Lake Mead survey: U.S. Bureau of Reclamation, Denver, Colo., Report REC-OOCE-70-21, 174 p. (Hoover, Tectonics-North America).
274. L. J. H., 1977, Pyramid Dam: World Dams Today, Japan Dam Foundation, p. 502-507. (Pyramid).
275. Leblanc, G., and Anglin, F., 1978, Induced seismicity at the Manic 3 reservoir, Quebec: Seismological Society of America Bulletin, v. 68, no. 5, p. 1469-1485. (Manicougan 3, RIS Report).
276. Lee, P. K., 1967, Design of Tsengwen Dam: World Dams Today, Japan Dam Association, p. 378-381. (Tsengwen) .

276A. Lee, T., 1972, A method for computing the deformation of the crust caused by the filling of large lakes: Seismological Society of America Bulletin, V. 62, p. 1597-1610. (RIS Theory).
277. Lemperiere, F., and Vigny, J. P., 1977, Civil engineering works of the Cabora Bassa hydorelectric scheme on the Zambezi River: World Dams Today, Japan Dam Foundation, p. 342-349. (Cabora Bassa).
278. Lensen, F. J., 1965, Active faults and major earthquakes in New Zealand: New Zealand Journal of Geology and Geophysics, v. 8, no. 6. (Faulting-Australia, New Zealand).
279. Lindner, E. N., and Halpern, J. A., 1978, In-situ stress in North America: A compilation: International Journal of Rock Mechanics, Mineral Science, and Geomechanical Abstracts, v. 15, p. 183-203. (Stress).
280. Lombardi, J., 1967, Quelques problemes de mechanique des roches etudies lors de la construction du barrage de Contra (Verzasca): 9th International Congress on Large Dams, Q. 32, R. 15, p. 235-252. (Contra).
281. Lomnitz, C., 1974, Earthquakes and reservoir impounding -- state of the art: Engineering Geology, v. 8, p. 191-198. (RIS General).

281A. Longwell, C. R., 1928, Geology of the Muddy Mountains, Nevada, with a section through the virgin range to the Grand Wash Cliffs, Arizona: U.S. Geological Survey Bulletin 798, 152 p. (Geology-North America).
282. Longwell, C. R., 1936, Geology of the Boulder Reservoir floor, Arizona, Nevada: Geological Society of America Bulletin, v. 47, p. 1393-1476. (Hoover, Geology-North America).

282A. Longwell, C. R., 1963, Reconnaissance geology between Lake Mead and Davis Dam, Arizona-Nevada: Geological Survey Professional Paper 374 E, 51 p. (Geology-North America, Hoover).
283. Lovell, L. A., 1970, Design features of Tarbela Dam in West Pakistan: World Dams Today, Japan Dam Association, p. lll-114. (Tarbela).
284. Lovell, L. A., Lowe, J., III., and Binger, W. V., 1972, Tarbela Dam construction reaches half-way mark: Water Power, September and October, 1972. (Tarbela).

284A. Mackintosh, I. B., 1967, Yellowtail Dam and tunnel: Water Power, v. 17, no. l, p. 5-13. (Yellowtail).

284AA. Maffi, C., and Simpson, C. J., 1977, Skylab photography for geological mapping: BMR Journal of Australian Geology and Geophysics, v. 2, p. 719.

284B. Mahendra, A. R., 1972, Occurrence and Engineering Significance of Shear Zones in Basalts of the Right Bank of the Tapti River, Ukai Dam Site, Gujarat: Dr. J. B. Auden Commemorative Volume, Indian Society of Engineering Geology, p. 201-208. (Ukai).
285. Mahendra, A. R., and Mathur, S. K., 1975, Ukai Project, Gujarat: Geological Survey of India, Miscellaneous Publication 29, p. 154-163. (Ukai).
286. Major, M. W., and Simon, R. B., 1968, A seismic study of the Denver (Derby) earthquakes, in Hollister and Weimen (eds.), Geophysical and Geological Studies of the Relationships Between the Denver Earthquakes and the Rocky Mountain Arsenal Well: Colorado School of Mines Quarterly, v. 63, no. l, p. 9-55. (Fluid Injection Seismicity).
287. Makris, J., 1978, Some geophysical considerations on the geodynamic situation in Greece: Tectonophysics, 46, p. 25l-268. (TectonicsEurope).
288. Mallory, W. W., (ed.), 1972, Geologic Atlas of the Rocky Mountain Regions, United States of America: Rocky Mountain Association of Geologists, Denver, Colo., 331 p. (Geology-North America).
289. Mandzhavidze, N. F., and Mamradze, G. P., 1963, The high dams of the world; systematic tables of data and bibliography on dams over 75 m high: Izdatel'stvo Akademii Nauk Gruzinskoi SSR, translated from Russian, 179 p. (General Reservoir Information).
290. Mann, A. G., 1967, Investigations on jointing associated with the Deka fault, Rhodesia: A copy of this paper was provided by D. T. Snow, the source is unknown; p. 24-28. (Faulting-Africa).
291. Mansergh, G. D., and Read, S. A. L., 1973, The Ostler fault zone, Sl09, ground movement near the Ohau A powerhouse site. New Zealand Geological Survey Engineering Geological Report No. EGl5l, 12 p. (Faulting-Australia, New Zealand).
292. Mark. R.K., and Stuart-Alexander, D.E., 1977, Disasters as a necessary part of the benefit-cost analyses: Science, v. 197, no. 9, p. 1160-1162. (RIS General).
293. Marks, S., and Lindh, A., 1976, Regional seismicity of the Sierran foothills in the vicinity of Oroville, California (abs): EOS, v. 57, no. 12, p. 958. (Seismicity-North America).
294. Marsal, R. J., 1975, Geotechnical studies for La Angostura project, Mexico: American Society of Civil Engineers, Foundations for Dams, An Engineering Foundation Conference, Pacific Grove, California, p. 425-464. (La Angostura).
295. Martin, J. C., 1975, The effect of fluid pressure on effective stresses and induced faulting: Journal of Geophysical Research, v. 80, no. 26, p. 3783-3786. (Hydrology, Stress, Faulting, RIS Theory).
296. Massoud-Peyman, undated, Correlation between the seismic activities around the Empress Farah Dam and the water level of the lake: Atomic Energy Organization of Iran, Environmental Protection Division, 10 p. (Sefid Rud, RIS Report).
297. Maver, J. L., and Michels, V., 1977, Australia's highest dam - Dartmouth: World Dams Today, Japan Dam Association, p. 76-83. (Dartmouth).
298. Mayor-Mora, R., 1977, The Idikki Arch Dam: World Dams Today, Japan Dam Association, p. 244-248. (Idikki).
299. McFie, H. H., 1973, Biological, chemical, and related engineering problems in large storage lakes of Tasmania, in Man-made Lakes--Their Problems and Environmental Effects: Geophysical Monograph Series 17, American Geophysical Union, p. 56-62. (Cethana, Gordon).
300. McGinnis, L. D., 1963, Earthquakes and crustal movement as related to water load in the Mississippi Valley Region, Illinois State Geological Survey Urbana, Circular $34,20 \mathrm{p}$. (RIS General).
301. McKellar, I. C., Mutch, A. R., and Wood, B. L., 1967, Geology and mineral resources of Otago: New Zealand Department of Scientific and Industrial Research, National Resources Survey, Otago Region, p. 23-33. (Geology-Australia, New Zealand).
302. McKenzie, D., 1972, Active tectonics of the Mediterranean region: Geophysical Journal of the Royal Astronomical Society, v. 30, p. 109-185. (Tectonics-Europe, Tectonics-Asia).

302AA. Mead, T. C., and Carder, D. S., 1941, Seismic investigations in the Boulder Dam area in 1940: Bulletin of the Seismological Society of America, v. 31, no. 4., p. 321-324. (Hoover, PostImpoundment Seismicity).

302A. Medvedev, S. V., (ed.), 1968, Seismic zoning of the U.S.S.R.: Joint Council on Seismology and Earthquakeproof Construction, USSR Academy of Sciences, translated in 1976 by Israel Program for Scientific Translations, 533 p. (Tectonics-Asia).
303. Mendes, L. P., Brown, E. L., Moreau, R., and Boyer, B., 1970, Surveillance du comportement du barrage Daniel Johnson (Manicouagan 5): loth International Congress on Large Dams, v. III, Q. 38, R. 61, p. 1183-1205. (Daniel Johnson).
304. Mermel, T. W., 1970, World's highest and largest dams: Civil Engineering, ASCE, July, 1970, p. 73-76. (General Reservoir Information).
305. Mermel, T. W., 1975, The world's highest dams, largest earth and rock dams, greatest man-made lakes, largest hydroelectric plants, major dams: Paper published by Bureau of Reclamation, unnumbered pages. (General Reservoir Information).
306. Mermel, T. W., 1978, Major dams of the world: Water Power and Dam Construction, v. 30, p. 43-54. (General Reservoir Information).
307. Metropolitan Water Sewerage \& Drainage Board, Sydney, 1963, Warragamba Dam: Topmost Dams of the World, The Japan Dam Association, p. 254-258. (Warragamba).
308. Mickey, W. V., 1971, Reservoir seismic effects: Paper published by U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Survey, Rockville, Maryland, 21 p. (RIS General).
309. Mickey, W. V., 1972, Seismic effects of reservoirs: Military Engineer, v. 64, p. 248-250. (RIS General) .
310. Mickey, W. V., 1973, Reservoir seismic effects, in Man-made Lakes-Their Problems and Environmental Effects: American Geophysical Union, Geophysical Monograph Series no. 17, p. 472-479. (RIS General).
311. Mills, J. M., and Fitch, T. J., 1977, Thrust faulting and crust-upper mantle structure in East Australia: Geophysical Journal of The Royal Astronomical Society, v. 48, p. 351-384. (Warragamba, RIS Report, Seismicity-Australia, New Zealand).
312. Milne, W. G., Rogers, G. C., Riddihough, R. P., McMechan, G. A., and Hyndman, R. D., 1978, Seismicity of western Canada: Canadian Journal of Earth Sciences, v. 15, no. 7, p. ll70-1193. (Seismicity-North America).
313. Mimura, S., 1976, Design and construction of the Takase River dams: Water Power and Dam Construction, v. 28, no. 8, p. 35-42. (Takase, Nanakura).
314. Mizukoshi, T., 1970, Azusa River project: World Dams Today, Japan Dam Association, p. 512-517. (Nagawado).
315. Mizukoshi, T., 1972, The Takase River pumped-storage project: Water Power, v. 24, no. 2, p. 64-70. (Takase, Nanakura).
316. Mizukoshi, T., Tanaka, H., and Inouye, Y., 1967, A geologic investigation on the stability of reservoir banks: 9th International Congress on Large Dams, v.l, Q. 32, R. 4, p. 47-65. (Hitotsuse, Kamishiiba, Nagawado).
317. Monjuvent, G., 1973, La transfluence Durance-Isere; essai de synthese du Quaternaire du bassin du Drac (Alpes francaises): Geologie Alpine, v. 49, p. 57-118. (Geology-Europe).
318. Morad, F., 1970, Dam construction in Iran: World Dams Today, Japan Dam Association, p. ll7-l26. (Dez, Sefid Rud, Karadj).
319. Morikawa, T., 1977, Design and construction features of Iwaya Dam: World Dams Today, Japan Dam Association, p. 298-302. (Iwaya).
320. Morrison, P. W., Jr., Stump, B. W., and Uhrhammer, R., 1976, The Oroville earthquake sequence of August l975: Seismological Society of America Bulletin, v. 66, p. l065-l084. (Oroville, Post Impoundment Seismicity).
321. Moye, D. G., 1957, Report on the geology of Murrumbidgee-Eucumbene diversion, Volume 1: New South Wales, Snowy Mountains Hydro-Electric Authority, 21 p. (Eucumbene, Geology-Australia, New Zealand).
322. Moye, D. G., Sharp, K. R., and Stapledon, D. H., 1963, Geology of the Snowy Mountains region: Snowy Mountains Hydro-Electric Authority, Cooma N.S.W., 67 p. (Geology-Australia, New Zealand).
323. Murthy, Y. K., 1977, Recent high dams in India: World Dams Today, Japan Dam Association, p. 226-234. (Beas, Ukai, Nagarjunasagar, Koyna, Idikki).
324. Murti, N. G. K., Bansal, B. S., Agnihotei, S. N., and Malhotra, A. N., 1970, Supervision of Bmakra Dam and Reservoir: loth International Congress on Large Dams, Q. 38, R. 57, p. l087-lll0. (Bhakra).
325. Mutch, A. R., 1963, Sheet 23, Oamaru, Geological Map of New Zealand: New Zealand Geological Survey, scale 1:250,000. (Geology-Australia, New Zealand).
326. Naomura, T., and Aki, S., 1976, Long-term persistence of turbid water phenomenon in Hitotsuse Reservoir: l2th International Congress on Large Dams, v. 3, Q. 47, R. 7, p. 813-839. (Hitotsuse, Hydrology)
327. Narain, H., and Gupta, H., 1968a, Observations on Koyna earthquake: Journal of the Indian Geophysical Union, v. 5, no. 1, p. 30-34. (Koyna, Seismicity-Asia).
328. Nairin, A. E. M., Kanes, W. H., and Stehli, eds., 19, The ocean basins and margins; Volume 4A, The Eastern Mediterrranean: Plenum Press. (GeologyEurope, Tectonics-Europe).
329. Narain, H., and Gupta, H., 1968b, Koyna earthquake: Nature, v. 217, p. 1138-1139. (Koyna, SeismicityAsia).
330. Nason, R., 1975, Fault and earthquake activity related to removal of underground fluids (abs.): lst International Symposium on Induced Seismicity, Banff, Canada, p. 73-74. (Fluid Injection Seismicity).

330A. National Science Foundation, 1963, Large dams of the U.S.S.R. [complete citation unavailable]. (General Reservoir Information).
331. National Academy of Sciences-National Academy of Engineering, 1972, Earthquakes related to reservoir filling: National Research Council, Division of Earth Sciences, Washington, D.C., 24 p. (RIS General).
332. New South Wales Geological Survey, 1971, New South Wales, Monaro, Geological Series, First Edition, scale l:500,000. (Geology-Australia, New Zealand).
333. New Zealand Geological Survey, 1967, Geological Map of New Zealand, Sheet 20: Mt. Cook, scale l:250,000. (Geology-Australia, New Zealand).
334. New Zealand Geological Survey, 1973, Quaternary Geology of New Zealand, South Island: New Zealand Geological Survey Miscellaneous Series Map 6, scale $1: 1,000,000$ (Geology-Australia, New Zealand).
335. New Zealand Geological Survey, 1975, Geological Map of New Zealand, Sheet 23, Oamaru, scale 1:250,000. (Geology-Australia, New Zealand).
336.

New Zealand Geological Survey, 1977, Late Quaternary Tectonic Map of New Zealand, First Edition, scale 1:2,000,000. (Tectonic-Australia, New Zealand).
337. Newton , V. C., Jr., and Peterson, N. V., 1973, Geologic criteria for siting nuclear power plants in Oregon: Oregon State, Oregon, 65 p. (Faulting-North America).
338. Nguyen, D. K., and Dascal, O., 1977, Postconstruction behavior of the Outardes 4 Main Dam: World Dams Today, Japan Dam Foundation, p. 152-156. (Outardes 4).
339. Nicol, T. B., 1964, Warragamba Dam: Institution of Civil Engineers, Proceedings, v. 27, Paper No. 6721, p. 492-548. (Warragamba).
340. Noorishad, J., Witherspoon, P. A., and Maini, Y. N. T., 1972, The influence of fluid injection on the state of stress in the earth's crust: IAEG Symposium Stuttgart, Percolation through fissured rock proc., p.dT2-H1-1l. (Fluid Injection Seismicity, Stress, Hydrology).
341. Nowroozi, A. A., 1971, Seismotectonics of the Persian Plateau, eastern Turkey, Caucasus, and Hindu-Kush regions: Seismological Society of America Bulletin, v. 61, p. 317-341. (Tectonics-Asia).
342. Nur, A., and Byerlee, J., 1971, An exact effective stress law for elastic deformation of rock with fluids: Journal of Geophysical Research, v. 76, no. 216, p. 6414-6419. (Stress, Hydrology).

342A. Nyland, E., and Withers, R. J., 1976, A fast method for computing load induced stress in the Earth. Geophysical Journal of the Royal Astronomical Society, v. 44, p. 689-698. (RIS Theory).
343. Obeng, L. E., 1973, Volta Lake: Physical and biological aspects, in Man-made Lakes--Their Problems and Environmental Effects: Geophysical Monograph 17, American Geophysical Union, p. 8798. (Akosombo Main).
344. Oborn, L. E., 1974, Seismic phenomena and engineering geology: 2nd International Congress of the International Association of Engineering Geology, v. 1, Theme 2, General Report, p. II-GR.1-.31. (RIS General).
345. Ohtake, M., 1974, Seismic activity induced by water injection at Matsushiro, Japan: Journal of Physics of the Earth, v. 22, p. 163-176. (Fluid Injection Seismicity).
346. Okamoto, S., Yoshida, M., and Nakayama, K., 1964, Observations of dams during earthquakes: 8th International Congress on Large Dams, v. II, Q. 29, R. 15, p. 26l-193. (Miboro, Shimokotori, Tagokura).
347. Oliver, J., Johnson, T., and Dorman, J., 1970, Postglacial faulting and seismicity in New York and Quebec: Canadian Journal of Earth Sciences, v. 7, p. 579-590. (Faulting-North America, Seismicity-North America).
348. Ozis, U., and Kocak, Y., 1977, The first arch dam in Turkey: Water Power and Dam Construction, v. 29, no. 4, p. 30-36. (Gokcekaya).
349. Packer, D. R., Lovegreen, J. R., and Born, J. L., 1977, Reservoir induced seismicity: Earthquake Evaluation Studies of the Auburn Dam Area, unpublished consultants' report for the U. S. Bureau of Reclamation by Woodward-Clyde Consultants, San Francisco, California, v. 6, 345 p. (RIS General).
350. Palta, B. R., 1970, Design and construction features of Beas Dam: World Dams Today, Japan Dam Association, p. l01-110. (Beas).
351. Palta, B. R., and Aggarwala, S. K., 1967, Foundation problems at Bhakra Dam and their treatment: Ninth International Congress on Large Dams, v. 1, Q. 32, R. 66, p. 1037-1050. (Bhakra).
352. Papazachos, B. C., 1971, Aftershock activity and aftershock risk in the area of Greece: Annali di Geofisica, v. 24, p. 439-456. (SeismicityEurope).
353. Papazachos, B. C., 1974, On the relation between certain artificial lakes and the associated seismic sequences: Engineering Geology, v. 8, p. 39-48. (RIS General).
354. Papazachos, B. C., Delibasis, N., Liapis, N., Moumoulidis, G., and Purcaru, G., 1967, Aftershock sequences of some large earthquakes in the region of Greece: Annali di Geofisica, V. 20, p. 1-93. (Seismicity-Europe).
355. Papazachos, B. C., Comninakis, P., Drakopoulos, L., and Moumoulides, G., 1968, Foreshock and aftershock sequences of the Cremasta earthquake and their relation to the water loading of the Cremasta artificial lake: Seismology Institute, National Observatory of Athens, Greece, 27 p. (Kremasta, RIS Report).
356. Patton, R. E., 1970, The Dworshak project: World Dams Today, Japan Dam Association, p. 348-362. (Dworshak, General Reservoir Information).
357. Pavoni, N., 1977, Erdbeben im gebiet der Schweiz: Ecologae Geologicae Helvetiae, v. 70, p. 350-370. (Seismicity-Europe).
358. Pavoni, N., and Mayer-Rosa, D., 1977, Seismotektonische Karte der Schweiz: 1:500,000: Institut Fur Geophysik, ETH-Zurich. (GeologyEurope).
359. Pavoni, N., and Mayer-Rosa, D., 1978, Seismotektonische Karte der Schweiz: 1:750,000: Ecologae Geologicae Helvetiae, v. 71, p. 293-295. (Geology-Europe).
360. Persson, T., 1964, The Trangslet Dam; results and interpretation of measurements made on the dam: Eighth International Congress on Large Dams, v. II, Q. 29, R. 19, p. 335-340. (Trangslet).
361. Phadke, A. V., 1968, Significance of fissures and cracks developed in the earthquake affected area around Koynanagar, Maharashtra: Current Science, v. 37, no. 5, p. 126-128. (Koyna, SeismicityAsia, Faulting-Asia).
362. Phadke, A. V., and Sukhtankar, R. K., 1971, Topographic studies of Deccan Trap Hills around Poona, India: Bulletin Volcanologique, v. 35, p. 609-718. (Geology-Asia).
363. Phinney, W. C., Dence, M. R., and Grieve, R. A. F., 1978, Investigation of the Manicouagan impact crater, Quebec: An introduction: Journal of Geophysical Research, v. 83, no. B6, p. 2729-2735. (Daniel Johnson).
364. Pigeon, Y. 1974, Manicouagan 3 cut-off, in Foundations for Dams: American Society of Civil Engineers, p. 289-342. (Manicouagan 3).
365. Pigeon, Y., 1977, Manicouagan 3 "Foundations": World Dams Today, Japan Dam Foundation, p. 142-150. (Manicouagan 3).
366. Pogson, D. J., 1972, Geological Map of New South Wales: Geological Survey of New South Wales, scale l:1,000,000. (Geology-Australia, New Zealand).
367. Portland Cement Association, 1962, Dams of the world: Booklet published by Portland Cement Association, 52 p. (General Reservoir Information).
368. Priscu, R., Diacon, A., and Petcu, A., 1970, Quelques resultats obtenus a l'observation de quatre grands barrages de Roumanie: Tenth International Congress on Large Dams, v. III, Q. 38, R. 42, p. 815-834. (Bicaz, Vidraru).
369. Psycharis, I., 1978, The Salonica (Thessalonike) earthquake of June 20, 1978: California Institute of Technology, Earthquake Engineering Researh Laboratory, Report EERL 78-03, 28 p. (SeismicityEurope).
370. Puric, V., Radukic, V., and Tucovic, I., 1976, Yugoslav Committee on Large Dams: l2th International Congress on Large Dams, G.P.8, p. 583-607. (Bajina Basta).
371. Raheja, P; C., 1973, Lake Nasser, in Man-made Lakes--Their Problems and Environmental Effects: Geophysical Monograph Series 17, America Geophysical Union, p. 234-245. (Saad-El-Aali).
372. Raju, A. T. R.: 1968, Geological evolution of Assam and Cambay Tertiary basins of India: American Association of Petroleum Geologists Bulletin, v. 52, no. l2, p. 2422--2437. (Geology-Asia).
373. Raleigh, C. B., l972a, Earthquakes and fluid injection, in Underground Waste Management and Environmental Implications: Proceedings of the U.S. Geological Survey-American Association of Petroleum Geologists Symposium, Cook, T.D. (ed.), p. 273-279. (Fluid Injection Seismicity).
374. Raleigh, C. B., l972b, Investigations of seismic activity related to reservoirs: Association of Engineering Geologists v. 9, p. 177-183. (RIS General).
375. Raleigh C. B., 1974, Crustal stress and global tectonics, in Advances in Rock Mechanics: Proceedings of the Third Congress of the International Society of Rock Mechanics, v. l, part A, p. 593-6l0. (Stress, Tectonics General).
376. Raleigh, C. B., Healy, J. H., and Bredehoeft, J. D., 1976, An experiment in earthquake control at Rangely, Colo: Science, v. 191, p. l230-1237. (Fluid Injection Seismicity).
377. Rao, B. S. R., Prakasa Rao, T. K. S., and Rao, V. S., 1975, Focal mechanism study of an aftershock in the Koyna region of Maharastra State, India: Pageoph, v. 113, p. 483-488. (Koyna, Post Impoundment Seismicity).
378. Rao, K. L., and Palta, B. R., 1973, Great man-made lake of Bhakra, India, in Man-made Lakes--Their Problems and Environmental Effects: Geophysical Monograph Series 17, American Geophysical Union, p. 170-185. (Bhakra).
379. Rao, V. R., 1975, Parambikulam Aliyar project, Coimbatore District, Tamilnadu: Geological Survey of India, Miscellaneous Publication 29, p. 75-82. (Parambikulam).
380. Raphael, J. M., 1954, Crustal disturbances in the Lake Mead area: Bureau of Reclamation, Technical Information Branch, Engineering Monograph, No. 2l, 14 p. (Hoover, Tectonics-North America).
381. Rau, A. N., 1976, Construction planning of Iduki and Cheruthoni Dams: Twelfth International Congress on Large Dams, v. III, Q. 46, R. 25, p. 389-405. (Idikki).
382. Rebaudi, A., 1970, Behaviour of Place Moulin archgravity dam during the first reservoir test fillings: Tenth International Congress on Large Dams, v. III, Q. 38, R. 30, p. 507-536. (Place Moulin).
383. Reeve, W. H., 1963, The geology and mineral resources of northern Rhodesia: Northern Rhodesia, Ministry of Labour and Mines, Bulletin of the Geological Survey no. 3, 29 p. (Geology-Africa).
384. Restelli, A. B., and Tornaghi, R., 1974, Multi-stage chemical treatment of cataclastic-mylonitic rock to reduce seepage under an arch-gravity dam: proceedings of the Second Congress of the International Association of Engineering Geology, v. 2, Theme VI, Paper 20, p. VI-20.1-.11. (Place Moulin).
385. Ribarovic, G., 1973, Construction of the Mratinje Arch Dam: Eleventh International Congress on Large Dams, v. 3, Q. 43, R. 9, p. 1093-1111. (Mratinje).

385A. Rice, J. R., and Cleary, M. P., 1976, Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Reviews of Geophysics and Space Physics, v. 14, p. 227-242. (RIS Theory).
386. Richardson, J. T., 1947, A summary of seismological investigations made in the Lake Mead area, with comments on data obtained at the Shasta and Grand Coulee Dams: U.S. Department of the Interior Bureau of Reclamation, Technical Memorandum No. 634. p. 7. (Hoover, Shasta, Grand Coulee).
387. Richter, C. F., 1958, Elementary Seismology: W. H. Freeman and Company, San Francisco, 768 p. (Seismicity-General).
388. Rogers, A. M., and Lee, W. H. K., 1976, Seismic study of earthquakes in the Lake Mead, Nevada-Arizona region: Seismological Society of America Bulletin, v. 66, No. 5, p. 1657-1681. (Hoover, Post Impoundment Seismicity).
389. Rogers, T. H., l966, Geologic map of California, Olaf P. Jenkins edition, San Jose sheet: California Division of Mines and Geology, scale l:250,000. (Geology-North America).
390. Rogers, T. H., 1969, Geologic map of California, Olaf P. Jenkins edition, San Bernardino sheet: California Division of Mines and Geology, scale 1:250,000. (Geology-North America).
391. Roksandic, M. M., 1970, Influence of the reservoir loading to seismic activity: proceedings of the 2nd Congress of the International Society for Rock Mechanics, v. 3, Paper 8-12. (Grancarevo, RIS Report).
392. Rothe, J. P., 1968, Fill a lake, start an earthquake: New Scientist, v. 39, no. 605, p. 75-78. (RIS General).
393. Rothe, J. P., 1969, Earthquakes and reservoir loadings: Fourth World Conference on Earthquake Engineering, $v .1$, section A-1, p. 28-38c. (RIS General).
394. Rothe, J. P., 1970, Seismies artificiels (man-made earthquakes): Tectonophysics, v. 9, p. 215-238. (RIS General).
395. Rothe, J. P., 1973, Summary: Geophysics Report, in Man-made Lakes--Their Problems and Environmental Effects: American Geophysical Union Monograph 17, p. 451-454. (RIS General).
396. Rothe, J. P., 1975, Activite seismique en relation avec l'exploitation du gisement petrolifere et gazefiere de Lacq (France) (abs., in French): First International Symposium on Induced Seismicity, Banff, Canada, p. 73. (Fluid Injection Seismicity).
397. Rouse, G. C., l970, Seismic activity in the vicinity of San Luis Reservoir: U.S. Bureau of Reclamation, Report REC-OCE-70-52, 5 p. (San Luis, RIS Report).
398. Sahasrabduhe, Y. S., Rane, V. V., and Deshmulch, S. S., 1971, Geology of the Koyna Valley: Indian Journal of Power and River Valley Development, Special Number 1971, p. 47-54. (Koyna-GeologyAsia).
399. Savage, J. C., Lisowski, M., Prescott, W. H., and Church, J. P., 1977, Geodetic measurements of deformation associated with the Oroville, California earthquake: Journal of Geophysical Research, v. 82, no. 11, p. 1667-1671. (Oroville, Tectonics-North America).
400. Savage, W. U., Tocher, D., and Birkhahn, P. C., 1975, Historical seismicity and micro-aftershock study, Oroville, California, earthquakes of August 1975, in Sherburne, R. W., and Hauge, C. J. (eds.), Oroville, California, Earthquake, 1 August 1975: California Division of Mines and Geology Special Report l24, p. l23-129. (Oroville, SeismicityNorth America).
401. Sbar, M. L., and Sykes, L. R., 1973, Contemporary compressive stress and seismicity in eastern North America: An example of intra-plate tectonics: Geological Society of American Bulletin, v. 84, p. 1861-1882. (Focal Mechanisms, Stress, Seismicity-North America).
402. Scheidegger, A. E., 1964, The tectonic stress and tectonic motion direction in Europe and western Asia as calculated from earthquake fault plane solutions: Seismological Society of America Bulletin, v. 54, no. 5, pt. A, p. 1519-1528. (Stress, Tectonics-Europe, Faulting-Europe, Focal Mechanisms).
403. Schewe, L. D., 1977, Earth dam to augment Athens water supply: Water Power and Dam Construction, v. 29, no. 2, p. 27-33. (Mornos).

403A. Schiffman, R. L., Chen, A. T. F., and Jordan, J. C., 1969, An analysis of consolidation theories: American Society Civil Engineers, v. SM95, p. 285312. (RIS Theory).
404. Schleicher, D., 1975, A model for earthquakes near Palisades Reservoir, southeast Idaho: U. S. Geological Survey Journal of Research of the U. S. Geological Survey, v. 3, p. 393-400. (Palisades, RIS Report).
405. Schnitter, N. J., 1970, Emosson Arch Dam: World Dams Today, Japan Dam Association, p. 182-187. (Emosson).
406. Schnitter, N. J., and Schneider, T. R., 1970, Abutment stability investigations for Emosson Arch Dam: Tenth International Congress on Large Dams, Q. 37, R. 4, p. 69-87. (Emosson).

406A. Schwartz, D. P., Cluff, L. S., and Coppersmith, K. J., 1979, Fault reactivation: An example from the western Sierran Foothills, CA [abs.]: EOS, v. 60, no. 18, p. 320.
407. Service de la Carta Geologiques et Minieres, 1977, Carte Geologiques de la France, St-Flour: Mininstere de l'Industrie, Map 185, scale 1.80,000. (Geology-Europe).
408. Servicio Geologico, 1967, Informaciones y estudios: Ministerio de Obras Publicas, Direccion General de Obras Hidraulicas, Servicio Geologico, Spain, Boletin No. 27, 139 p. (Camarillas, El Grado, Beas, Geology-Europe).

408A. Seshagiri, D. N., 1975, Idikki hydro-electric project, Kerala: Geological Survey of India, Miscellaneous Publication 29, p. 238-247. (Idikki).
409. Severy, N. I., Bollinger, G. A., and Bohannon, H. W., (in press), A seismic comparison of Lake Anna and other piedmont province reservoirs in the eastern U.S.A.: preprint of paper, p. 24. (SeismicityNorth America).
410. Shaw, G. C., and Stevens, G. R., 1966, New Zealand Geology, in A. H. McLintock, (ed.), An Encyclopedia of New Zealand: New Zealand Geological Survey, p. 769-804. (GeologyAustralia, New Zealand).
411. Sheibner, E., 1974, Tectonic map of New South Wales: Geological Survey of New South Wales, Sydney, scale 1:l,000,000. (Tectonics-Australia, New Zealand).
412. Shen Chung-kang, Chen Hou-chgun, Chang Chu-han, Huang Li-sheng, Zi Tzu-Chiang, Yang Cheng-Yung, Y., Wang Ta-Chun, and Lo Hsueh-Hai, L., 1974, Earthquakes induced by reservoir impounding and their effect on Hsinfengkiang Dam: Scientia Scinica, v. l7, p. 239-272. (Xinfengjiang, RIS Report).
413. Sherlock, P., Scoville, J. A., Jr., and Borges, A. R., 1970, Mangla main spillway design features for weak foundations: Tenth International Congress on Large Dams, v. II, Q. 37, R. 19, p. 315-336. (Mangla).
414. Shurbet, D. H., 1969, Increased seismicity in Texas: Texas Journal of Science, v. 21, p. 37-41. (Sanford, RIS Report).
415. Siddique, W. A., 1970, Possible effect of Tarbela Reservoir on the seismicity of the area: The Pakistan Engineer, p. 1189-1200. (Tarbela).
416. Simon, R. B., 1969, Seismicity of Colorado: Consistency of recent earthquakes with those of historical record: Science, v. 165, p. 897-899. (Seismicity-North America).
417. Simon, R. B., 1972, Seismicity of Colorado, 1969-1970-1971: Earthquake Notes, v. 43, no. 2, p. 5-12. (Seismicity-North America).
418. Simpson, D. W., 1976, Seismicity changes associated with reservoir loading: Engineering Geology, v. 10, p. 123-150. (RIS General).

418A. Simpson, D. W., and Negmatullaev, S. Kh., 1978, Induced seismicity studies in Soviet central Asia: Earthquake Information Bulletin, v. 10, no. 6, p. 209-213. (Nurek, RIS Report, Post Impoundment Seismicity).
419. Sinha, K. K., and Menon, P. K. (eds.), 1971, Proceedings of the Symposium on Koyna earthquake and related problems: Indian Journal of Power and River Valley Development, Special No. 1971, 118 p. (Koyna, General Reservoir Information).
420. Sleigh, R. W., 1969, How Kariba dented the earth: The Rhodesia Science News, v. 3, no. 5, p. 129-134. (Karibar).
421. Sleigh, R. W., Worrall, C. D., and Shaw, G. H. L., 1969, Crustal deformation resulting from the imposition of large mass of water. Department of the Surveyor General, Salisbury, Rhodesia, 9 p. (RIS Theory, Kariba).
422. Smil, V., 1976, Exploiting China's hydro potential: Water Power and Dam Construction, v. 28, no. 3, p. 19-26. (General Reservoir Information).
423. Smith, P. J., 1978, Mining triggers earthquakes: Nature, v. 271, p. 207-208. (RIS General).
424. Smith, W. E. T., 1962, Earthquakes of eastern Canada and adjacent areas 1534-1927: Dominion Observatory of Canada Publication, v. 26, p. 271-301. (Seismicity Catalogs, SeismicityNorth America).
425. Smith, W. E. T., 1966, Earthquakes of eastern Canada and adjacet areas 1928-1959: Dominion Observatory of Canada Publication, v. 32, p. 87-121. (Seismicity Catalogs, Seismicity-North America).
426. Snow, D. T., 1971, The hydraulic and tectonic setting for earthquakes in the vicinity of Kremasta Reservoir, Greece: U.S. Geological Survey, Special Technical Report on the Hydraulic and Tectonic Setting of Reservoirs, Preliminary Draft, Contract No. 14-08-0001-12284, 39 p. (Kremasta, Hydrology, Tectonics-Europe).
427. Snow, D. T., 1972, Geodynamics of seismic reservoirs in Symposium on Percolation Through Fissured Rocks, Proceedings: Deutsche Gesellschaft fur Erd und Grundbau, Stuggart, Germany, T2-J, p. l-19. (RIS Theory).
428. Snow, D. T., 1973a, The geologic, hydrologic, and geomorphic setting of earthquakes at Lake Kariba: Final Technical Report to U.S. Geological Survey, Contract No. USGS 14-08-0001-13079, 45 p. (Kariba, Geology-Africa, Hydrology).
429. Snow, D. T., 1973b, The geologic, hydrologic, and geomorphic setting of earthquakes at Koyna Reservoir, India: Final Technical Report to U.S. Geological Survey, Contract No. USGS 14-08-0001-13079, 73 p. (Koyna, Geology-Asia, Hydrology, Seismicity-Asia).
430. Snowy Mountains Hydro-Electric Authority, undated, Engineering features of the Snowy Mountains scheme: Snowy Mountains Hydro-Electric Authority, Cooma, N.S.W., Australia, 166 p. (General Reservoir Information).
431. Snowy Mountains Hydro-Electric Authority, undated, Seismic map of the Snowy Mountains area: SMHEA Drawing No. gl/l67A. (Seismicity-Australia, New Zealand).
432. Soboleva, O. V., and Mamadaliev, U. A., 1975, The influence of the Nurek Reservoir on local earthquake activity: Preprint for First International Symposium on Induced Seismicity, Banff, Canada, 17 p. (Nurek, RIS Report).
433. Spencer, J. M., 1977, Cabora Bassa Dam: World Dams Today, Japan Dam Foundation, p. 350-360. (Cabora Bassa).
434. Spicher, A., 1972, Carte geologique-tectonique de la Suisse, 1:500,000: Commission Geologique Suisse, 1 sheet. (Tectonics-Europe, Geology-Europe).

434A. Staatz, M. H., and Morris, R. H., 1976, Resume of the regional geology of the Grand Coulee area, Washington: U.S. Geological Survey Open File Report 76-782, 26 p. (Grand Coulee).
435. Stevenson, D. A., Talwani, P., and Amick, D. C., 1976, Recent seismic activity near Lake Jocassee, Oconee County, South Carolina, preliminary results and a successful earthquake prediction (abs.): American Geopysical Union Transactions, v. 57, p. 290. (Jocassee, Post Impoundment Seismicity).
436. Stocklin, J., 1968, Structural history and tectonics of Iran--a review: American Association of Petroleum Geologists Bulletin, v. 52, p. 1229-1258. (Tectonics-Asia).
437. Stuart-Alexander, D. E., and Mark, R. K., 1976, Impoundment induced seismicity associated with large reservoirs: U.S. Geological Survey Open File Report 76-770, 1 plate. (RIS General).

437A. Stuart-Alexander, D. E., Mark, R. K., Newman, E. B., and Smith, L. N., 1979, A statistical approach to reservoir induced seismicity (abs.): Geological Society of America Abstracts with Programs, v. ll, no. 3, p. 131. (RIS General).
438. Sun, R. J., 1977, Possibility of triggering earthquakes by injection of radioactive wastes in shale at Oak Ridge National Laboratory, Tennessee: Journal of Research, U.S. Geological Survey, v. 5, no. 2, p. 253-262. (Fluid Injection Seismicity).
439. Suzuki, Z., 1975, Induced seismicity at the Kamafusa Dam, Japan (abs.): First International Symposium on Induced Seismicity, Banff, Canada, p. 59-60. (Kamafusa, RIS Report).
440. Swardt, A. M. J., 1965, Rift faulting in Zambia: Symposium on the East African Rift System I, UNESCO, p. 95-114. (Faulting-Africa).

440A. Swiss Geologic Commission, 1972a, Geologische Karte der Schweiz: Schweizerischen Geologischen Kommission, scale 1:500,000. (Geology-Europe).

440B. Swiss Geologic Commission, 1972b, Tektonische Karte der Schweiz: Schweizerischen Geologischen Kommission, scale 1:500,000. (Tectonics-Europe).
441. Sykes, L. R., 1978, Intraplate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonism postdating continental fragmentation: Reviews of Geophysics and Space physics, v. 16, no. 4, p. 621-688. (Stress, Focal Mechanisms, Tectonics General).
442. Sykes, L. R., and Sbar, M. L., 1973, Intraplate earthquakes, lithospheric stress and the driving mechanism of plate tectonics: Nature, v. 245, p. 298-302. (Tectonics General, Focal Mechanism, Stress).
443. Szpilman, A., and Ren, C., 1976, The effect of landslide on Furnas Reservoir: Twelfth International Congress on Large Dams, Mexico, v. III, Q. 46, p. 1109-1119. (Furnas).
444. Takahashi, M., 1972, The ll25MW pumped-storage scheme at Shintoyone: Water Power, v. 24, no. 2, p. 5156. (Shintoyone).
445. Talwani, P., 1976, Earthquakes associated with the Clark Hill Reservoir, South Carolina - a case of induced seismicity: Engineering Geology, v. lo, p. 239-252. (Clark Hill, RIS Report).
446. Talwani, P., Secor, D. T., and Scheffler, P., 1975, Preliminary results of aftershock studies following the 2 August 1974, South Carolina earthquake: Earthquake Notes, v. 46, no. 4, p. 21-29. (Clark Hill, Post Impoundment Seismicity).
447. Tandon, A. N., and Chaudhury, H. M., 1971, Seismometric study of the Koyna earthquake of December 11, 1967: Indian Journal of Power and River Valley Development, Special Number 1971, p. 103-118. (Koyna, Post Impoundment Seismicity).
448. Tchalenko, J. S., 1975, Seismotectonic framework of the North Tehran fault: Tectonophysics, v. 29, no. l-4, p. 4ll-420. (Faulting-Asia, Karadj, Seismicity-Asia, Tectonics Asia).
449. Tchalenko, J. S., Berberian, M., Iranmanesh, H., Bailly, M., Arsovsky, M., and Ambraseys, N. N., 1974, Materials for the study of seismotectonics of Iran: North-central Iran, Geological Survey of Iran, Report No. 29, 138 p. (Seismicity-Asia, Tectonics-Asia).
450. Teichert, C., 1958, Concepts of facies: American Assocation of Petroleum Geologist Bulletin, v. 24, no. 11, p. 2718-2744. (Geology-General).
451. Terracini, C., 1970, Behavior of Alpe Gera Gravity Dam in its operational stages, comparison between the measurements in situ and the analytical and experimental results: Tenth International Congress on Large Dams, v. IV, Q. 39, R. 7, p. 119-138. (Alpe Gera).
452. Thelestram, G., 1967, Design and construction of the Yla-Tuloma power project in the Soviet Union: World Dams Today, Japan Dam Association, p. 140141. (Verknetulomskiye)
453. THEMAG Engenharia, 1977, The Ilha Solteira Dam: World Dams Today, Japan Dam Foundation, p. 118124. (Ilha Solteira)
454. Therianos, A. D., 1974, The seismic activity of the Kremasta area, Greece, between 1967 and 1972: Engineering Geology, v. 8, p. 49-52. (Kremasta, Seismicity-Europe, RIS Report).
455. Thomas, H. H., 1976, The Engineering of Large Dams: John Wiley \& Sons, New York, 777 p. (General Reservoir Information).
456. Timmel, K. E., and Simpson, D. W., 1972, Seismic events during filling of Talbingo Reservoir: Australian National Committee on Large Dams (ANCOLD) Bulletin, v. 36, p. 27-33. (Talbingo, Blowering, Eucumbene, RIS Report).

456A. Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, 3rd Edition: McGraw-Hill, New York, p. 567. (RIS Theory).
457. Toppozada, T. R., and Cramer, C. H., 1978, Ukiah earthquake, 25 March 1978; seismicity possibly induced by Lake Mendocino: California Geology, p. 275-281. (Coyote Valley, RIS Report).
458. Turkish National Committee, 1976, Investigation of leakages at Keban Dam: Twelfth International Congress on Large Dams, v. II, Q. 45, R. 27, p. 459-484. (Keban).
459. Ullmann, F., 1970, Particular features of the Gebidem Dam of the Massa hydroelectric scheme: World Dams Today, Japan Dam Association, p. 199-206. (Gebidem).
460. Underwood, R., 1972, Studies of Victorian seismicity: Royal Society of Victoria Proceedings, v. 84, p. 27-48. (Seismicity-Australia, New Zealand).
461. UNESCO, 1973, Summaries, International Colloquium on seismic effects of reservoir impounding. (RIS General).
462. U.S. Bureau of Reclamation, 1976, Deep large reservoirs built or operated by the U.S. Bureau of Reclamation: unpublished data sheets, 7 p. (General Reservoir Information).
463. U.S. Geological Survey, 1975, Large reservoirs and induced earthquakes: Earthquake Information Bulletin, v. 7, no. 5, p. 9-11. (RIS General).
464. Van Bemmelen, R. W., 1965, The evolution of the Indian Ocean-mega-undation (causing the IndicoFugal spreading of Gondwana fragments): Tectonophysics, v. 2, no. 1, p. 29-57. (GeologyAsia).
465. Veltrop, J. A., Wengler, R. P., and Azri, S., 1964, Structural behavior of Karadj Arch Dam: Eighth International Congress on Large Dams, Edinburgh, Great Britain, v. II, Q. 29, p. 97-123. (Karadj).
466. Volta River Authority, 1977, Volta River Project: World Dams Today, Japan Dam Foundation, p. 198-200. (Akosombo Main).
467. Von Thun, L., 1976, Background statement on reservoir induced seismicity: Statement presented to U. S. Congress, 5 p. (RIS General).
468. Wallace, R. E., 1976, The Talas-Fergana Fault, Kirgiz and Kazakh, U.S.S.R.. Earthquake Information Bulletin, v. B, no. 4, p. 4-13. (Toktogol, Faulting-Asia).

468A. Walters, R. C. S., 1962, Dam Geology: lst edition, Butterworths, London, 335 p. (General Reservoir Information).

468B. Walters, R. C. S., 1971, Dam Geology: 2nd edition, Butterworths, London. (General Reservoir Information).
469. Wang, C. H., 1970, Design and construction of Tachien Dam: World Dams Today, Japan Dam Association, p. 493-501. (Tachien).

469A. Wang Miao-yueh, Yang Mao-yuan, Hu Yu-liang, Li Tzuchiong, Chen Yun-tai, Chin Yen, and Feng Jui, 1975, Mechanism of the reservoir impounding earthquakes at Hsinfengkiang and a preliminary endeavor to discuss their cause: Paper presented at First International Symposium on Induced Seismicity, Banff, Canada. (Xinfengjiang, RIS Report).
470. Water Resources Development Public Corporation, 1970, WRDPC's contributions of the water resources development on the Tone River system: World Dams Today, Japan Dam Association, p. 502-506. (Yagisawa, Shimokubo).
471. Water Resources Development Public Corporation, 1977, Water resources development by the public corporation: World Dams Today, Japan Dam Foundation, p. 283-297. (Yagisawa, Shinokubo, Inaya).
472. Werner, B. D. I. E., 1972, The Malta hydroelectric scheme: Water Power, v. 24, no. 8, p. 301-307. (Kolnbrein).
473. Westergaard, H. M., and Adkins, A. W., 1934, Deformation of earth's surface due to weight of Boulder Reservoir: U.S. Department of the Interior - Bureau of Reclamation, Technical Memorandum No. 422, 5 p. (Hoover, Stress).
474. White, A. J. R., Williams, I. S., and Chappel, B. W., 1976, The Jindabyne Thrust and its tectonic, physiographic and petrogenetic significance, Journal of the Geological Society of Australia,
v. 23, Pt. l, p. 105-112. (Tectonics-Australia, New Zealand).
475. White, A. J. R., Williams, I. S., and Chappell, B. W., 1977, Geology of the Berridale, 1:l00,000 sheet, 8625, Geological Survey of New South Wales, 138 p. (Geology-Australia, New Zealand).
476. Withers, R. J., and Nyland, E., 1976, Theory for the rapid solution of ground subsidence near reservoirs on layered and porous media: Engineering Geology, v. 10, p. 169-185. (RIS Theory) .
477. Withers, R. J., and Nyland, E., 1978, Time evolution of stress under an artificial lake and its implication for induced seismicity: Canadian Journal of Earth Sciences, v. 15, p. 1526-1534, 20 p. (RIS Theory, RIS General, Stress).

478A. Withers, R. J., 1977, Seismicity and stress determination at man-made lakes: Ph.D. Dissertation, University of Alberta. Unpublished. (RIS Theory).
478. Witherspoon, P. A., and Gale, J. E., 1977, Mechanical and hydraulic properties of rocks related to induced seismicity: Engineering Geology, v. 11, no. 1, p. 23-55. (RIS Theory, Hydrology).
479. Witherspoon, P. A., and Maini, Y. N. T., 1973, Influence of fluid injection on stress in the earth's crust: Fifth World Conference on Earthquake Engineering, Session 6D, 4 p. (Fluid Injection Seismicity, Stress).
480. Woodward-Clyde-Sherard and Associates, 1968, Preliminary geological reconnaissance of the Esmeralda project: unpublished report submitted to Ingetec LTDA, Bogota, Columbia, by Woodward-Clyde-Sherard and Associates, Oakland, California, 11 p. (Geology-South America).
481. Woodward-Lundgren and Associates, 1974a, Preliminary seismicity and seismic-geology evaluation of the Dartmouth Dam region, southeastern Australia: unpublished report submitted to State Rivers and Water Supply Commission, Victoria, Australia, by Woodward-Lundgren and Associates, Oakland, California, 11 p. (Dartmouth, Geology-Australia, Seismicity-Australia).
482. Woodward-Lundgren and Associates, 1974b, Earthquake engineering studies and field measurements, surge tank and powerhouse, New Melones Dam, California: unpublished consultants' report to U.S. Army Corps of Engineers.

482A. Woodward-McNeil \& Associates, 1974, Information concerning site characteristics--Vidal Nuclear Generating station geology and seismology: unpublished report submitted to Southern California Edison Company by Woodward-McNeil \& Associates, Orange, Calif., v. 2, 243 p. (Geology-North America).
483. Woodward-Moorhouse and Associates, 1972, Technical Report VI, Tocks Island study: unpublished consultants' report submitted to General Pubic Utilities, proposed Portland Nuclear Power Station. (RIS General).
484. Xu Zeng Yan, He Sui Xin, and Fu Bing Jun, 1976, Control of seepage through the dam foundation at the Liujiaxia hydropower station: Twelfth International Congress on Large Dams, v. l, Q. 45, R. 67, p. 1125-1143. (Liujiaxia).
485. Yaralioglu, M., 1974, Seismic activity investigation at Keban Dam, Turkey: Engineering Geology, v. 8, p. 53-58. (Keban).
486. Yerkes, R. F., and Castle, R. O., 1975, Seismicity and faulting associated with fluid extraction (abs.): First International Symposium on Induced Seismicity, Banff, Canada, p. 74-75. (Fluid injection seismicity).

STUDY OF
RESERVOIR INDUCED SEISMICITY
APPENDIX A
DATA FOR RESERVOIRS STUDIED

FINAL TECHNICAL REPORT
August 1979

By
Duane R. Packer, Lloyd S. Cluff, Peter L. Knuepfer and Robert J. Withers

Sponsored By The U.S. Geological Survey Contract No. 14-08-0001-16809

WOODWARD-CLYDE CONSULTANTS
Consulting Engineers, Geologists, and Environmental Scientists Three Embarcadero Center, Suite 700

San Francisco, California 94111

The views and discussions in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the United States Government.

TITLE PAGE

1. CONTRACT NO.: 14-08-0001-16809
2. NAME OF CONTRACTOR: Woodward-Clyde Consultants
3. CO-PRINCIPAL INVESTIGATORS: Lloyd S. Cluff and Duane R. Packer
4. GOVERNMENT TECHNICAL OFFICER: Dr. Jack F. Evernden
5. SHORT TITLE OF WORK: Reservoir Induced Seismicity
6. EFFECTIVE DATE OF CONTRACT: 15 February 1978
7. CONTRACT EXPIRATION DATE: 14 February 1979 extended to 14 June 1979
8. AMOUNT OF CONTRACT: $\$ 199,433.00$
9. DATE REPORT SUBMITTED: August 1979

Woodward-Clyde Consultants

APPENDIX A
DATA FOR RESERVOIRS STUDIED

Table of Contents
Page
Title Page A-i
A-1 Explanation A-1
A-2 Computer Listing of Reservoirs A-1 2
(alphabetical)
A-1 List of Explanations of Data A-3 Parameters

APPENDIX A

DATA FOR RESERVOIRS STUDIED

A. 1 EXPLANATION

Data have been gathered on all deep (maximum water depth of 92 m or greater) and/or very large (maximum water volume of $10^{10} \mathrm{~m}^{3}$ or greater) reservoirs completed as of the end of 1975 and for all cases of reservoir induced seismicity (RIS) reported as of the end of 1978. These data include reservoir size, water impoundment and fluctuation history, regional and local geology, stress conditions and faulting, hydrology, and seismicity. A full list of the data categories identified for compilation is included in Table A-1. Data for some of these categories were more readily available, and particular emphasis was placed on collecting complete data on regional stress, local geology, depth, and volume that could be used in statistical analysis. Data collection techniques are discussed in Section 2.2 of this report.

The listings of data for each reservoir are arranged in alphabetical order, according to dam name. For reservoirs with more than one major dam, the data are listed under the name of the largest dam; information on other major dams associated with a reservoir is provided within the data listing under the largest dam.

Certain data entries contain parentheses; these indicate which case or numeric entry was selected for comparison with other reservoir data. An example is "earth () and rock fill dam with concrete gravity spillway"; here, "earth" is selected for comparison with other reservoirs.

Reference sources are numbered for each dam listing. These
reference numbers are keyed to citations in the List of References, Section 6 of this report. During this study, papers referring to engineering, geologic, and seismologic features of reservoirs or regions have been listed under the general heading "geologic references."

TABLE A-1
LIST AND EXPLANATIONS OF DATA PARAMETERS

Data Items
Type of Data*
Comments
RESERVOIR IDENTIFICATION AND LOCATION

Dam
Reservoir
name
Country a
River
Location of
center of reservoir

Lat/Long
(1/2 way along length of reservoir from dam)

Location of dam
Province or region

Dam type

Date dam completed

Lat/Long
a
case
date
a
a
a
floating point number or day--month-year-

[^9]
Table A-1 (continued)

Data Items
HISTORY OF IMPOUNDMENT
Notes on history of impoundment

Date of start of filling

Rate of
initial
filling
Years re-
N
quired from
initial
to maximum
fill
Maximum rate of filling

Maximum rate of drawdown

Expected fluctuations based on primary use
a

N

N

Type of Data
Comments
date

N
meters/month; month is $1 / 12$
of year
decimal years
meters/month
meters/month
tlood control, irrigation, hydropower, public water
supply; can also
put in rate or
volume as long
form information
include degree of confidence
form information

ORIENTATION AND SIZE
Notes a

Orientation of reservoir	dir
Structural height of dam	N
Length of dam	N
Maximum depth of reservoir	N
Reservoir depth (com- puted from dam height)	N

Table A-1 (continued)

Data Items
Maximum volume
of reservoir
Surface area
of reservoir
Longest dimension of reservoir

GEOLOGY
Notes on regional geology

Kegional geology

Age of regional
geology
Tectonic province

Regional stress regime

Evidence for
regional stress regime

Confidence in regional stress regime evaluation

Notes on geology site

Site geology

Type of Data
N

N

N
a
case
a
a
case
case
case
a
coarse clastic fine clastic carbonate metamorphic batholithic volcanic

Geologic epoch or numerical age
extensional compressional shear
measurements focal mechanism faulting sense tectonics
high medium low
coarse clastic fine clastic carbonate metamorphic batholithic volcanic

Woodward-Clyde Consultants

Table A-1 (continued)

Data Items
Age of site geology
Structural grain orientation

Degree of detormation

Type of Data a
direction
case

Comments

```
flatlying shallow dipping steeply dipping vertical overturned strongly deformed
```

FAULTING
Faulting notes
Predominant fault type
a
case
e
thrust strike-slip normal right-slip left-slip reverse oblique normal right normal left reverse right reverse left
kilometers
upthrown block downthrown block

Table A-1 (continued)

Data Items

Name of
closest known fault

Distance to closest known fault

Age of most recent displacement on closest known fault

Rate of slip on
local faults
Activity of
local faults

Seismicity
associated
with faults
in local area

Type of Data
a

N
a

N
case
case

Notes on hydrology a

Permeability

of rocks

Type of permeability
Ground-water
gradient

Relief
case
case
case
case

LOW
medium
high
(numeric data can be added)
fracture
intergranular cavernous
impervious
low
medium
high
low
moderate
high

Table A-1 (continued)

Data Items
SEISMICITY

Seismic province	a	name
	N	kilometers2, area
Seismic subprovince	a	name
	N	kilometers2, area
Radius of Reservoir Local Area	N	kilometers2
Distance from dam to nearest earthquake before filling	N	kilometers
Distance from dam to nearest earthquake after filling	N	kilometers
Time to first earthquake after filling in Reservoir Local Area	N	decimal years
```Date of first catalog entry```	date	
```Date of last catalog entry```	date	
Maximum depth of earthquakes in province before reservoir impoundment	N	kilometers

Table A-1 (continued)

Data Items

Maximum
depth of earthquakes
in province after
reservoir impoundment

Minimum depth of earthquakes in province before reservoir impoundment

Minimum depth of earthquakes in province after reservoir impoundment

Maximum depth of earthquakes in Reservoir Local Area before reservoir impoundment

Minimum	k	ilometers
depth of		
earthquakes		
in Reservoir		
Local Area		
before		
reservoir		
impoundment		
Date of first		
suspected RIS		
event		
Magnitude of intensity	N	
of largest suspected		Magnitude)
RIS event		

Table A-1 (continued)

Data Items
Date of largest suspected RIS event

Mean Event

Number of foreshocks to largest RIS event

Character of foreshocks

Number of
aftershocks to largest RIS event

Character of aftershocks

Network history before reservoir impoundment

Network
history after
reservoir impoundment

Notes on seismicity before impoundment

Notes on seismicity after impoundment

Type of Data
Comments
Date

N
N

N

N
year -1
year -1
a
a
a
a
${ }^{M}$ L (Richter magnitude)

N

Data Items
Type of Data Comments

NOTES

General notes
RIS category

Type of RIS

Geology references
Seismology references
a
case
case

N

N
accepted questionable not-accepted
macro micro
macro and micro
refers to numbers on List of References

A. 2

COMPUTER LISTING OF
RESERVOIRS (alphabetical)

CaM TYPE: Earth () buttress with concrete gravity spilluays DATE DAM COMPLETED: 1978

EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
ORIENTATION OF RESERVGIR: E
STRUCTURAL HEIGHT DF DAM : 90. (m)
E.NGTH OF DAM 3790. m .

REEERVOIR DEPTH COMPUTED
REGIONAL STRESS REGIME: Compressional
REGIONAL STRESS REGIME
EVIDENCE FOR REGIONAL S
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: 1 ow
$A-13$
Akosombo Main
DAM NAME: Akasombo Main DAM NAME
RESERVAIR CIUNTRY: Ghana
RI'ER: Volta
RIWER : VOITA $A T I N$ QF CENTER OF RESERVOIR : 7.SON, O. 2SE LDCATION OF DAM: 6.27N, O.D5E
LAM TVPE : ROCV () f111
DATE DAM COMPLETED ING
EXFECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
DRIENTATION OF RESERVOIR : N (). NW
ETRUCTURAL HEIGHT OF DAM : $134 . \mathrm{m}$
MAXIMUM DEPTH OF RESERVOIR : 109.0
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 112.00 m
MAXIMUM VOLUME OF RESERVOIR : $165000 . \mathrm{m} 3 \times 10 E 6$
LONGEST DIMENSION OF RESERVDIR: 400.0 km
REGINAL
AGE OF REGIONAL GEOLOGY. COMPressional
EVIDENCE FOR REGIONAL STRESS REGIME: faulting sense
CINFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON SITE GEOLQGY: Alluvial sand up to 38 m depth removed to reach bedrock PGEDOMINANT FAULT TYPE: Reverse MAXIMUM LENGTH OF FAULTS : 65. OO (km) km or greater
dAME OF CLOSEST KNOWN FAULT : Akwapim fault
DISTANCE TO CLOSEST KNOWN FAULT : 20.0 (km)
AFE LOCAL FAULTS ACTIVE? : yes
DATE OF FIRST SUSPECTED RIS EVENT : NOV-1964
MAGNITUDE OR INTENSITY OF LARGEST SUSPECTED R
MAGNITUDE OR INTENSITY OF LARGEST SUSPECTED RIS EVENT: MM V
DATE OF LARGEST SUEPECTED RIS EVENT: NOV- 1964
raservior.
MOTES ON SEISMICITY AFTEF IMPOUNDMENT
faslt. Event occurred when reservoir
dam.
1 mpoundment.
genderal nates
prisbably the
等

GEDLOGY REFERENCES : $51,74,106,268,343,466$
Alsantara
LAM NAIE : ALEantara
REEERVDIR NAME : Embalse da Alcantara
CIUNTRY: Spain
FIVER: Tajo (T
LIUER : TajO (TagUS)
LICATIDN DF CENTER DF RESERVDIR: 39.72N, 6. 48W
LICATIDN DF DAM: 37.73N, 6. BEW
FRIVINCE DR REGION: CaCeres
EXPECTED FLUCTUATIGNS EASED DN PRIMARY USE : Hydropouer
OIENTATION OF RESERUOIR:E
ETRUCTURAL HEIGHT DF DAM: 130. m
EENGTH OF DAM : 570. m
FESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 112.00 m
MAXIMUM VOLUME OF RESERVOIR : 3137. m3x10EG
SURFACE AREA OF RESERVOIR: 104.00 km 2
LINGEST DIMENSION GF RESERVOIR STRESS REGIME:COMPresional
EVIDENCE FDR REGIONAL STRESS REGIME: tectonics
SINFIDENCE IN REGIDNAL STRESS REGIME EVALUATION: low
GTES ON SITE. GEOLOGY: Cambrian sub-vertical slatish

SiE of SITE GEOLOGY: Cambrian
CEGREE OF DEFORMATION: Steeply dipping
A-15

PROVINCE OR REGION : Salamanc
DAM TYPE : Concrete gravity
DATE DAM COMPLETED: 1763
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
NUTES ON DAM
IfIENTATION OF RESERVOIR : NE
GTRUCTURAL HEIGHT OF DAM : 137. m
REEERVOIR DEPTH COMPUTED FROM DAM HEIOHT :
REEERVOIR DEPTH COMPUTED
MAXIMUM VOLUME OF RESERVO
ORFACE AREA OF RESERVOIR:
LONGEST DIMEMSION OF RESERVOIR
$10 w$
STRESS REGIME: tectonics REGIONAL STRESS
GEOLOGY: Granite
Batholithic

GEDLDGY REFERENCES: 104A, 106
ALmenifa
Almendra NAME Spain
ormes
RIVEF Tormes DF RESERVOIR $41.21 \mathrm{~N}, 1 \mathrm{KN}$
L.OCATITM DF DAM $41.27 \mathrm{~N}, 6.36 \mathrm{~W}$
FFOUIHCE OR REGION: Salamanca
C:AM TYPE : Cancrete arch
LATE DAM COMPLETED: 1970
EXFECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropouer
DRIENTATION OF RESERVOIR : S5SE
ETFUCTURAL HEIGHT DF DAM : 202.
LENGTH OF DAM : 567 . m
MAXIMUM DEPTH OF RESERVOIR : 185. O (m) m (calculated from drawing)
REEERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 185.00 m
LONGEST DIMENSION OF RESERVOIR : 32. 5 km
EVIDENCE FOR REGIGNAL STRESS REGIME: Tectonics
BONF IDENCE IN REGIDINAL SIRESS REGIME EVALUATION
DATE OF FIRST SUSPECTED RIS EVENT : Jan-1972
DATE OF FIRST SUSPECTED RIS EVENT
NGTES ON SEISMICITY AFTER IMPOUNDM

association in macroseismicity.
PISCATEGORY: Accepted
GEOLDGY REFERENCES: 7こA, 107,161
DRIENTAFION OF RESERVOIA: NE $17 日$ m STRUCTURAL HEIGHT OF DAM
LENGTH OF DAM: 520 . m
MAXIMUM DEPTH OF RESERVOIR
RESERVOIR DEPTH COMPUTED FR
MAXIMUM VOLUME OF RESERVOIR: 6S. m3xIOEG
LONGEST DIMENEIUN OF RESERVOIR: $2.2(\mathrm{~km}) \mathrm{km}$
TECTONIC PROVINCE: AIPS
REGIGNAL STRESS REGIME
EVIDENCE FOR REGIONAL ST
SONF IDENCE IM REGIUNAL STRESS REGIME EVALUATION : medi UM
SITE GEOLDGY: Metamorphic
SEOLOGY REFERENCES: 106, 451
$A-18$
Alto Anchicaya
DAIA NAME : Alto Anchicaya
countrir: Colombia
RIVER : Anchicaya
LDCATION OF CENTER OF RESERVIIR : 0. 5OS, 77.01W
PROVINCE OR REGION: Valle de Cauca
DATE DAM COMPLETED: 1974 concrete-faced
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
STRUCTURAL HEIGHT OF DAM: $140 . \mathrm{m}$
MAXIMUY DEPTH OF RESERVIIR : 126.0 m
RESERVIIR DEPTH COMPUTED FROM DAM HEIGHT: 126.00 m
MAXIMUM VOLUME OF RESERVOIR : 45. m3xIOEG
REGIONAL STRESS REGIME : Shear
EVIDENCE FOR REGIGNAL STRESS REGIME : faulting sense
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: mediun
MOTES ON SITE GEOLDGY: FOIded schist intruded by large and
Hornfels found in 500 m -wide zone around intrusives. Small
SITE GEOLOGY: Metamorphic
NOTES ON FAULTING: No major regional faults
GEOLOGY REFERENCES: $107,108,182$
Ambuklao
DAM NAME: Ambuklao
RIVER : Agno
75E
PROVINCE OR REGION: Benguet, Luzon
DAM TYPE : ROCK () fill
EXPECTED FLUCTUATLONS BASED ON PRIMARY USE: HYdropower
NOTES ON DAM: Dam 124 m above graund
ORIENTATION DF RESERVOIR : NIOE
GTRUCTURAL HEIGHT OF DAM : 129. m
RESERVOIR DEPTH CQMPUTED FROM DAM HEIGHT : 116.10 m
MAXIMUM VOLUME DF RESERVOIR : 327. $m 3 \times 10 E 6$
EVIDENCE. FDR REGIONAL STRESS REGIME: fauIting sense
COMFIDENCE IN REGIONAL STRESS REGIME EVALUATION: madiun
NTES ON SITE. GEOLOGY. Diarite, meta-andesite, metawsediments (metatuffs and metasediments)
EITE GEQLOGY: Matamorphic
GEQLOGY REFERENCES: 106.145
$A-20$
Angat
DAM NAME: Philippines RIVER : Angat
LOCATION OF CENTER OF RESERVOIR
Bulacan, Luzon
11
196
14. 90N. 121. 18E
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 115.20 m
STRESS REQIME: faulting sense
STRESS REGIME EVALUATION : med
STRESS REGIME EVALUATION: medium
Pre-Tertiary metamorphosed lavas

RESERVOIR DEPTH COMPUTED FROM DAM HEICHT
LONGEST DIMENSION OF RESERVOIR : 5.0 km
REOIONAL STRESS REGIME : Shear
EVIDENCE FOR REOIONAL GTRESS REOIME
COMFIDENCE IN REGIONAL STRESS REGIME
NOTES ON SITE GEOLOGY: Conglomerate, greywacke. Some slate intrugion and a liparite dike.
EITE GEQLOGY: Coarse clastic
MOTES ON SEISMICITY AFTER IMPOUNDMENT : none
TYPE OF RIE : Knone'
GEDLDOY REFERENCES: 106.46日A
$A-23$
Bajina Basta
DAM NAME : Bajina Basta
RESERVOIR MAME : Bajina Basta COUNTRY: Yugos
RIVER: Drina
LOCATION OF CENTER OF RESERVOIR : 43. 97N, 19. 37E
LOGATIEN OF DAM: 43.95Nilq. 42E
DATE DAM COMPLETED: 1966
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
NDTES ON DAM: Dam is 89 m above ground
ORIENTATION OF RESERVOIR : NTOW
MAXIMUM DEPTH OF RESERVOIR : BO.
RESERVOIR DEPTH COMPUTED FROM

NOTES ON REGIONAL GEQLOGY:
compression. Regional iow- and highal
EVIDENCE FQR REGIONAL STRESS REGIME
EVIDENCE FOR REGIONAL STRESS REGIME: focal mechanism
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medi
NOTES ON SITE GEOLOGY: Dam foundation is Paleozoic claystone with a large melaphyre lens. Reservoir is underlain by severely faulted and jointed massive Triassic limestone.
SITE GEOLOGY: Carbonate
DATE OF FIRST SUSPECTED RIS EVENT : Jun-1967
DATE OF LARGEST SUSPECTED RIS EVENT : microearthquakes
NOTES ON SEISMICITY AFTER IMPOUNDMENT : Tremor suarm feit in mid-1967 during initial impoundment. 1967 main hypocenter beneath
reservoir at 7 km depth. Although level of macroseismic activity unchanged after inpoundment, very strong temporal and spatial relationship of seismicity to impoundment. GENERAL NOTES : Data reliability is low RIS CATEGORY: Accepted TYPE OF RIS: micro
GEOLOGY REFERENCES:
GEOLOGY REFERENCES : 64,106,370,418

LOCATION OF CENTER OF RESERVOIR : $42.21 \mathrm{~N}, 7.14 \mathrm{~W}$ Province or region : Orense

DAM TYPE : Concrete gravity
DATE DAM COMPLETED : 1960
EXPECTED FLUCTUATIDNS BASED
NOTES ON DAM : Dam height of
ORIENTATION OF RESERVOIR : S
ORIENTATION OF RESERVOIR: 10
LENGTH OF DAM : 257. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 90.00 m
SURFACE AREA OF RESERVOIR : E. 64 km 2
LOMGEST DIMENSION OF RESERVOIR
LINGEST DIMENSION OF RESERVOIR: 16.0 km
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
COMFIDENCE IN REGIONAL STRESS REGIME EVALUATION: low
NOTES ON SITE GEOLOGY
SITE GEOLOGY: Metamorphic
GEOLOGY REFERENCES: $104 A, 106$
$A-25$
STRUCTURAL HEIGHT OF DAM : $153 . \mathrm{m}$
LENGTH OF DAM : $1951 . \mathrm{m}$
MAXIMUM DEPTH OF RESERVOIR : B8. 0
EXPECTED FLUGTUATIONS BASED ON PRIMARY USE : Irrigation (), hydropower
ITATION OF RESERVOIR : E
MAXIMUM DEPTH OF RESERVOIR : BE. O (m) m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT
RESERVOIR DEPTH COMPUTED FRO
GURFACE AREA OF RESERVOIR:
SURFACE AREA OF RESERVOIR: 254.00 kma
LONGEST DIMENSIGN OF RESERVOIR: 42.0 km
DAM NAME : Beas
DAM NAME
COUNTRY:
RIVER:
RIVER : Beas
LOCATION OF CENTER OF RESERVOIR : 31.97 N .76. OOE
PROUINCE OR REGION. Himachal Pradesh
Himachal Pradesh

(Pong)

HEIGHT: 97.80 m
NOTES ON REGIONAL GEOLOGY: Himalayan foo
and anticlines, axes coalesce to form dome-type tructure at dam site
REGIONAL GEOLOG
AGE OF REGIONAL GEOLGGY: Pieistocene
EVIDENCE FOR REOIONAL STRESS REGIME
EVIDENCE FOR REOIONAL STRESS REGIME : tectonics
CONFIDENCE IN REOIUNAL STRESS REOIME EVALUATION
CONFIDENCE IN REQIONAL BTRESS REQIME EVALUATION: medium
NOTES ON SITE GEQLOGY: Dam: Upper Siwalik Fm. (upper pi
fine-grained alluvium
BITE GEOLQGY: Fine clastic
AGE OF SITE GEOLOGY: Pleistacene
PREDOMINANT FAULT TYPE: tihrust
MAME OF CLOSEST KNOWN FAULT : Satlitta fault
DISTANCE TO CLOBEST KNOWN FAULT : $1.5(\mathrm{~km}) \mathrm{km}$
GEOLOOY REFERENCES : 108, i14A, 231.237,350, 377
Beauregard
DAM NAME : Beauregard
COUNTRY Dors di Valgrisanche
LOCATION OF CENTER OF RESERVOIR : 45.6ON,7.05E
PROVINCE OR REGION
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
NOTES ON DAM: Dam height of 94 m above ground
HEIGHT : 114.00 m
HEIGHT
m3×1OEG LONGEST DIMENSION OF RESERVOIR: $4.0(\mathrm{~km}) \mathrm{km}$
TECTONIC PROVINCE : AIPS
REGIONAL STRESS REGIME : medium
EVIDENCE FOR REGIONAL STRESS REGIME : medium
CONFIDENCE IN REGIOMAL BTRESS REGIME EVALUATION: Medium
GEOLOGY REFERENCES : 107 DA
74. ${ }^{m}$ MPUTED FROM $394 . \frac{m}{2}$
COMPUTED RESER LONGEST DIMENSION OF RESERVOIR: $4.0(\mathrm{~km}) \mathrm{km}$
TECTONIC PROVINCE : AIPS
REGIONAL STRESS REGIME : medium
EVIDENCE FOR REGIONAL STRESS REGIME : medium
CONFIDENCE IN REGIOMAL BTRESS REGIME EVALUATION: Medium
GEOLOGY REFERENCES : 107 114.00 GEOLOGY REFERENCES : 107

COMPLE
eater Za
COMPLETED

LOCATION OF CENTER OF RESERVOIR : 42.78N, 7.61W
DAM TYPE : Concrete arch
DATE DAM COMPLETED: 1963
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
NOTES ON DAM : Dam height of 129 m above ground
sTRUCTURAL HEIGHT OF DAM: 132. (m) m above foundation
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 114.00 m
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
NOTES ON SITE GEOLOGY: Porphyritic granite, fra
NOTES ON SITE GEOLOGY : Porphyritic granite, fractured on right abutment
SITE GEOLOGY: Batholithic GEDLOGY REFERENCES : 104A, 106

A-29
Benmore
Benmore
DAM NAME : BAME: Lake Benmore DAM NAME
REGERVOIR COUNTRY: RIVER : W DCATION
DCATION GDCATION OF DAM: 44. 56S. 170. 21E
PROVINCE OR REGIOM: South Island PROVINCE OR REGION: South Island
DAM TYEE : Earth () fill SATE DAM COMPLETED: 1965

The syncline is
Bersimis and Des Roches
DAM NAME : Bersimis and Des Roches
DAM NAME Gersimis and Des Roches (Lac Gouin)
COUNTRY: Canada
RIVER : Bersimis and Des Roches
LOCATION OF CENTER OF RESERVOIR : $49.36 N, 69.75 W$
LOCATION OF DAM : 49. E2N, 70. 50W () (Bersimis)
PROVINCE OR REGION: Quebec
DAM TYPE : ROCk () fill
DATE DAM COMPLETEDIONS BASED
dOTES ON DAM : Large reservoi
GRIENTATION OF RESERVOIR : W
RESERVOIR DEPTH COMPUTED FROM
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 59. 日5
MAXIMUM VOLUME OF RESERVIIR : 12700 . m3xIOES
LONGEST DIMENSION OF RESERVOIR : 86. 0 (km) km
EVIDENCE FOR REQIONAL STRESS REGIME tectonics
EVIDENCE FOR REQIONAL
CONF IDENCE IN REGIONAL STRESS REGIME EVALUATION: I OW GEOLOQY REFERENCES : 106. 152
$A-31$
Bhakra
Bhakre
NAME:
DAM NAME : NAME: Gobind Sagar RESERVOIR India
RIVER. Sutled
LOCATION OF CENTER OF RESERVOIR : 31. 3ON, 76.60E LOCATION OF DAM: $31.42 N, 76.43 E$ PROVINCE OR REGION: Punjab
DAM TYPE: Concrete gravity
DATE DAM COMPLETED 1963 . Jul-1958 RATE INI MAL FILLING : 2 . 40 (m/month) mimonth ar yags VEARS FROM EEGINNING TO MAXIMUM FILL : 4. So (years) years
MAXIMUM RATE OF FILLING : 12.00 (m/month) m/month, 1959 MAXIMUM RATE OF FILLING
MAXIMUM RATE OF DRAWDOWM MAXIMUM RATE OF DRAWNOWM
EXPECTED FLUCTUATIONS BA NOTES ON DAM : L-shaped ORIENTATION OF RESERVOIR
ETRUCTURAL HEIGHT OF D
MAXIMUM DEPTH OF RESERV
RESERVOIR DEPTH COMPUTED FROM DAM HEIOHT: 155.00 m
MAXIMUM VOLUME OF RESERVIIR: 9868. m3×10EG
LONGEST DIMENSION OF RESERVGIR: 97.0 km
NOTES ON REGIONAL GEOLOGY: Himalayan foo
zones of post-Miocene age in dam and reservoir area
REGIONAL GEOLOGY: Coarse clastic
TECTONIC PROVINCE: Himalayan foothills
REGIONAL STRESS REGIME : COMPressional
EVIDENCE FOR REGIONAL STRESS REGIME : focal mechanism () and tectonics CONFIDENCE IN REGIONAL. STRESS REGIME EVALUATION: high
MOTES ON SITE GEOLOGY: Siwaliks, Dagshai, Sabathu and SITE GEOLOGY: Coarse clastic
AGE OF SITE OEDLOGY: Plio-Pleistocene
PREDOMINANT FAULT TYPE: thrust
NAME OF CLOSEST KNOWN FAULT : Bhakra, Shali, Nahan
DISTANCE TO CLOSEST KNOWN FAULT: O. O (km) kmi beneath dam and reservoir
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAUL.T : Pliocene to Holocene
ARE LOGAL FAULTS ACTIVE? : yes
DEGREE OF TOPOGRAPHIC RELIEF: Moderate
GEOLOGY REFERENCES : 106,228, 378
Bhumiphol
DAM NAME : Bhumiphol
(Yanhee)

(Yanhee)

 COUNTRY: ThailandRIVER: Ping-Chao p
RIVER : Ping-Chao Phraya
LOCATION OF CENTER OF RESERVOIR: 17.78N, 9日. 74E LOCATION OF DAM : 17.27N,99. O2E
PROVINCE OR REGION
DAM TYPE : Concrete gravity
DATE DAM COMPLETED : 1964
EXPECTED FLUCTUATIONS BASED
NOTES ON DAM: Reservair trends west for 35 km , then north for 150 km or more
ORIENTATION OF RESERVOIR
STRUCTURAL HEIGHT OF DAM :
LENGTH OF DAM : 486 . m
MAXIMUM DEPTH OF RESERVOIR : 124.0 (m)
RESERVOIR DEPTH COMPUTED FROM DAM HEIG
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 124.00 m
MAXIMUM VOLUME OF RESERVOIR : $12200 . m 3 \times 10 E G$
SURFACE AREA OF RESERVOIR: 300.00 (km2)
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: low
GEGLOGY REFERENCES : 106, 127
$A-33$

MAXIMUM VOLUME OF RESERVOIR : 1230.

 CONFIDENCE IN REGIONAL STRESS REGIME GEOLOGY REFERENCES : 107,125, 166, 368

DAM NAME : Bin 1 Ouidane

LOCATION OF CENTER OF RESERVIIR: 32. 09N, 6. 40W
PROVINCE OR REGION
PROVINCE OR REGION: Beni-Mellal
DAM TYPE : Concrete arch
DATE DAM COMPLETED : 1953
MTES ON DAM : Dam height of
NOTES ON DAM : Dam height
ORIENTATION OF RESERVOIR
STRUCTURAL HEIGHT OF DAM :
LENGTH OF DAM: 290 . m
RESERVOIR DEPTH COMPUTED
MATES ON REGIONAL GEOLOGY
NOTES ON REGIONAL GEOLOGY: Jurassic limestone regionally faulted and folded
REGIONAL GEOLOGY : Carbonate
AGE OF REGIONAL GEOLOGY: Jurassic
AGE OF REGIONAL GEOLGG
REGIONAL STRESS REGIME
EVIDENCE FOR REGIONAL STRESS REGIME: focal mechanism
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : medium
NOTES ON SITE GEOLOGY
shallow dip SEOLOGY: Carbonate
SITE GEOLGGY : CAR SITE GEOLOGY: Jur
AGE OF SITE GEOLOGY: Jurassic
DEGREE OF DEFORMATION: Shallow
DEGREE OF DEFORMATION: Shallow dipping
GEOLOOY REFERENCES : 106,176A
$A-35$
Blowering
DAM NAME : Blowering
RESERVOIR NAME
COUNTRY: Australia
RIVER: Tumut
RIVER : Tumut
LOCATION DF C
35. 505, 148. 26E
NAME : Lake Blowering LOCATION DF CENTER OF RESERVOIR :
LOCATION OF DAM : 35. 4OS. $148.25 E$
DAM TYPE: Earth () fill
DATE DAM COMPLETED: SEP-1968
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower (), irrigation
NOTES ON DAM : Dam height 101 m above ground.
GTRUCTURAL HEIGHT OF DAM: 112 . (m) above found.
ETRUCTURAL HEIGHT OF DAM
LENGTH OF DAM : 8OE. m
LENGTH OF DAM : 8OE.
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 95.00 m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT
MAXIMUM VOLUME DF RESERVOIR : 1628 . $m 3 \times 1$
SURFACE AREA DF RESERVOIR: 44. $50(\mathrm{kmz}) \mathrm{km} \mathrm{e2}$
LONGEST DIMENSIDN OF RESERVOIR : $25.0(\mathrm{~km}) \mathrm{km}$

 northeast-trending thrust faults and northwest-trending strike-silip faults.
REGIONAL GEOLOGY: Batholithic
AGE GF REGIONAL GEOLOGY: Paleozoic
REGIDNAL STRESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME: faulting sense
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: med

locally by sedimentary rocks
SITE GEDLOG CEOLOGYOLTHE
AGE OF SITE GEDLOGY : Paleozoic
DATE OF FIRST SUSPECTED RIS EVENT : JUN- 1971
MAGNITUDE OR INTENSITY OF LARGEST SUSPECTED RI
MACNITUDE DR INTENSITY OF LARGEST SUSPECTED RIS EVENT: Mag 3. 5 (ISC)
DATE OF LARGEST SUSPECTED RIS EVENT : 6-Jan-1973

Mountains in 1958 . An additional station was installed 3 km north of Talbingo Dam in 1969.
NETWORK HISTOFY AFTER RESERUOIR IMPGUNDMENT: Three temporary seismograph stations were in

local seismicity.
RIS CATEGORY: Ac
TYPE OF RIS : macro and micro (): see Talbingo
GEDLOGY REFERENCES: $40.99,100,106,203,456,460,481$
Blue Mesa
DAM NAME : BLue Mesa
RESERUDIR NAME : Blue Mesa COUNTRY: USA
LOCATION OF CENTER OF RESERVDIR: 3日. $47 \mathrm{~N}, 107.22 \mathrm{~W}$
LOCATION OF CENTER
DAM TYPE : Earth () 111
DATE DAM COMPLETED: 1966
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Multi-purposei Irrigation () is principle use
ORIENTATIGN OF RESERVOIR
STRUCTURAL HEIGHT OF DAM: 119. m
MAXIMUM DEPTH OF RESERVOIR
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 104.00 m
MAXIMET DIMENSION OF AESERVOIR: 300 km
LONGEST DIMENSION OF RESERVOIR : 30.0 km
NOTES ON REGIONAL GEQLOGY: Volcanic upland
REOIONAL GEDLOGY: Volcantc
EVIDENCE FOR REGIONAL STRESS REGIME : faulting sense
CONFIDENCE IN REGIONAL. STRESS REGIME EVALUATION : Medium
SITE GEOLOGY: Metamorphic
PREDOMINANT FAULT TYPE: Narmal
AZIMUTH OF PREDOMINANT FAULTING: NGOW () average
MAXIMUM LENGTH OF FAULTS : 13.00 (km) km with Neogene activity
fault
Offsets Miocene deposits
Two
DAM TYE : Concrete arch ") with gravity secondary dam
DATE DAM COMPLETED: 1951
EXPECTED FLUCTUATINS BASED ON PRIMARY USE : Hydrapower
ORIENTATION OF RESERVOIR: N
DAM TYPE :Concrete arch " with gravity secondary dam
DATE DAM COMPLETED: 1951
EXPCTED FLUCTUATIONS BASED ON PRIMARY USE : Hydrapower
OIENTATION OF RESERVOIR : N
STRUCTURAL HEIOHT OF DAM
LENGTH DF DAM : 390. m
MAXIMUM DEPTH OF REEERVOIR: 120
RESERVOIR DEPTH COMPUTED FROM DA
MAXIMUM DEPTH OF RESERVOIR: 120.0
RESERVOIR DEPTH COMERVOIR: 120.0 m
MAXIMUM VOLUME OF RESERVOIR: DAM HEIGHT: 120.00 m
MAXES ON REGIONAL GEOLOGY:
reservoir geology: Metamorphic
REGIONAL GEOLOGY: Metamorphic
TEGTONIC PROVINCE: Massif Central
TECTONLC PROVINCE: Massif Central
EVIDENCE FOR REGIONAL STRESS REGIME: tactonics
CONFIDENE IN REGIONL STRESS REGIME EVALUATION
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : low
clay in portions of foundationi dam built astride fault
SIGE GEOLOGY: Metamorphic
NOTES ON FAULING: Dam Gui
DITES ON FAULTING: DAM built astri
DIP PREDOMINANT FAULTING AKSE
DISTANCE TO CLCSEST KNOWN FAULT: 0.
DISTANCE TO CLOSEST KNOWN FAULT: $0.0(\mathrm{~km}) \mathrm{km} /$ at dam site
GEOLOGY REFERENCES: 106.176A, 468 BA
Bratsk
DAM NAME : Bratsk
RESERVOIR NAME: Bratskoje Vodochranilisce
COUNTRY: USSR
LOCATION OF CENTER OF RESERVOIR : $56.17 \mathrm{~N}, 102.17 E$
LOCATION OF DAM : S6. OBN, 101. BOE
PROVINCE OR REGION: Irkutsk
DAM TVPE : Earth () buttress with gravity dam at spillways
DATE DAM COMPLETED: 1964
EXPECTED FLUCTUATIONS BAS
NOTES ON DAM : Reservair or
ORIENTATION OF RESERVOIR : S
SIRUCTURAL HEIGHT OF DAM : 125. m HEIEHT . 112.50 m
MAXIMUM VOLUME OF RESERVOIR
SURFACE AREA OF RESERVIIR:
LONGEST DIMENSION OF RESERVOIR : 425.0 km
REGIONAL STRESS REGIME : COMPTESSIonal
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: I OW
NOTES ON SITE GEOLOGY: Dense diabase, few fractures
SITE GEDLOGY: Batholithic
GEGLOCY REFERENCES : 106. 152, 289
Brownlea
DAM NAME : Brownlee
DAM NAME : Brownlee
RESERVIIR NAME: Brownlee
COUNTRY: USA
RIVER: Snak
RIVER: Snak
LOGATION OF
LOCATION OF CENTER OF RESERVOIR: 44.63N, 117.10W
LOCATION DF DAM : 44. B3N, 116.9OW
PROVINCE OR REGION: Idaho
DAM TYPE : ROCk () File DAM COMPLETED : 1959
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower (), flood control
NOTES ON DAM : Dam height of 93 m above ground
NOTES ON DAM : Dam height of 93 m above ground
STRUCTURAL HEIGHT OF DAM: 120. m
LENGTH OF DAM: 518. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIOHT: 108.00 m
MAXIMUM VOLUME OF RESERVOIR
LONGEST DIMENSIDN OF RESERVOIR : $65.0(\mathrm{~km}) \mathrm{km}$
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
GEDLOGY REFERENCES : 107
DAM NAME : Bukhtarma COUNTRY: UESR
RIVER: Irtish
LOCATION OF CENTER OF RESERVOIR: $48.95 N, 83.68 E$
LOCATION OF DAM: $49.72 N, 83.33 E$ PROVINCE DR REGION: AItay
DAM TYPE: HOIIOW
DATE DAM COMPLETED
COMPLETED: 1960

67.0
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 67.00 m
MAXIMUM VOLUME OF RESERVOIR : 53000 . $\mathrm{m3} \times 10 E 6$
STFACE AREA OF RESERVOIR 5500.00 (kmal
REGIONAL STRESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME :
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON SITE GEOLOGY: Gabbro and amphibolite
gealogy references : 106, 152, 289,330A
DAM NAME : cabin Creek
FESERVDIR NAME: Cabin Creek COUNTRY: USA RIVER: Clear
LOGATION OF CENTER OF RESERVOIR: 39.62N, 105.72W LOCATION OF DAM : 39. G3N. 105. 71 W
PROUINCE OR REGION: Colorado
DAM TYPE : Rock () 1111
DATE DAM COMPLETED : 1967
NOTES ON HISTORY OF IMPOUNDMENT : Lower Cabin Creek reservoir was filled in Summer lybbi upper Cabin Creak reservoir was filled in March-April 1967.
DATE OF START OF FILLING: Mar-1967
YEARS FROM BEGINNING TO MAXIMUM FILL : 0.18 (years) yeargi two months
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE Hydropower (li pumped storage
DRIENTATION OF RESERVOIR: SW
ETRUCTURAL HEIGHT OF DAM : 49. m
LENGTH DF DAM : 454. m
REXIMUM DEPTH OF RESERVOIR : 46.0 m (OMT : 46.00 m
MAXIMUM VOLUME OF RESERVOIR: 18. m3×10E6
LONGEST DIMENSION OF RESERVOIR : $1.0(\mathrm{~km}) \mathrm{km}$

to regions to the east and west.
AGE OF REGIONAL GEOLOGY: Pre-Cambrian
REGIONAL STRESS REGIME : Extensional
EVIDENCE FOR REGIONAL STRESS REGIME
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : medium
DEGREE OF TOPOGRAPHIC RELIEF: high
MOTES ON SEISMICITY AFTER IMPOUNDMENT : Increase in micraseismic recordings in 1967 and 1968 due to blasting for highway construction, unrelated to reservair impoundment.
RIS CATEGORY: Not RIS
GEOLOGY REFERENCES : 106,150,209A, 288, 331,417,41日
Cabore Bassa
DAM NAME: Cabora Bassa
COUNTRY: Mazambique
RIVEATION OF CENTER OF RESERVOIR: 19.64S.31.91E
LOCATION OF CENTER OF RESERVOIR
LOCATION OF DAM: $15.575,32.72 E$
PROVINCE DR REGION: Near Tete
DATE DAM COMPLETED : 1974
EXPECTED FLUCTUATIONS BABED ON PRIMARY USE : Hydropower
ORIENTATION OF RESERVOIR : W
STRUCTURAL HEIGHT OF DAM : 171 . (m) (height above lowest foundation)
MAXIMUM DEPTH OF RESERVOIR : 141. O (m) calculated from scale drawing
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 141.00 m
MAXIMUM VOLUME OF RESERVOIR: 63000 . m3xiOEG
SURFACE AREA OF RESERVOIR: 2700. $00 \mathrm{km2}$
LONGEST DIMENSION OF RESERVOIR: 250.0 km
REOIONAL STRESS REGIME: Extensional
EVIDENCE FOR REGIDNAL STRESS REGIME : tectonics
CONFIDENGE IN REGIONAL STRESS REGIME EVALUATION
SITE GEDLOQY: Metamorphic () (gneiss)
AGE OF SITE GEOLOGY: Pre-Cambrian
GEOLOGY REFERENCES : 105,107,108.277,433
Cabril
NAME
DAM MAME : Cabril
RESERVIIR NAME:Cabril
REEERVOIR
COUNTRY:
RIVER :
RIVER L Zezere
PROVINCE OR REGION: Casteio Branco
DATE DAM COMPLETED: 1954 EXPECTED FLUCTUATIONE BASED ON PRIMARY USE: Hydropower
NOTES ON DAM : Dam height of 132 m above ground
LENGTH OF DAM : 290. m.
MAXIMUM DEPTH OF RESERVGIR: APProximately 124.0 m
MAXIMUM VOLUME OF RESERVOIR: 700. m3xiOEG
REGIONAL STRESS REGIME: Compressional
CONFIDENCE IN REQIONAL STRESS REGIME EVALUATION: $10 w$
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
NOTES ON SITE QEOLOGY: GRanite
SITE GEDLDGY: Batholithic
GEOLOGY REFERENCES : 106, 289,367
Cajuru
DAM NAME : Cajuru
DAM NAME
COUNTRY:
RIVER : Para of peservotr : 20 305, 44 70W LOCATION OF CENTER OF RESERVOIR DAM TYPE : Concrete gravity
DATE DAM COMPLETED : 1953
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
ORIENTATION OF RESERVOIR : SW
STRUCTURAL HEIGHT OF DAM : 23. m
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
ORIENTATION OF RESERVOIR : SW
STRUCTURAL HEIGHT OF DAM : 23. m
LENGTH OF DAM: 438. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 20. 70 m
MAXIMUM VOLUME OF RESERVOIR : 192. m3x10EG
NOTES ON REGIONAL GEDLOGY: Precambrian gneiss
schist are present
REGIONAL GEOLOGY:
REGIONAL GEOLOGY: metamorphic
AGE OF REGIONAL GEGLOGY: Pre Cambrian
REGIONAL STRESS REGIME : Compressional
EVIDENCE FOR REGIDNAL STRESS REGIME: tectonics
CONFIDENCE IN REGIDNAL STRESS REGIME EVALUATION
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : low
NOTES ON SITE GEOLOGY: Precambrian gneiss with gaboro
GITE GEOLOGY : Matamorphic
AGE DF SITE GEOLOGY: Pre Cambrian
DATE OF FIRST SUSPECTED RIS EVENT: Dec- 1970
MITES ON SEISMICITY AFTER IMPQUNDMENT : No sei
MOTES ON SEISMICITY AFTER IMPOUNDMENT : No seismicity reported for 16 years after impoundment. $1970-1971$ seismicity not clearly
GENERAL NOTES: Data reliability is lou. Few data were obtained. Reservoir impounded 17 years prior to reports of seismic activity
Shallow, small reservoir.
RIS CATEGORY : Questionable
TYPE OF RIS : macro
GEOLOGY REFERENCES : 67. 106
$A-45$
Camarillas
COUNTRY :
RIVER MUN OF CENTER OF RESERVIIR : 39 . $36 \mathrm{~N}, 1.65 \mathrm{~W}$ LOGATION OF DAM : $38.33 \mathrm{~N}, 1.66 \mathrm{~W}$ DAM TYPE : Concrete gravity
DATE DAM COMPLETED : 1960
DATE OF START OF FILLING: NOV-1960
EXPECTED FLUCTUATIONS BASED ON PRIMARY
NDTES ON DAM : Dam height of 36 m above ground.
ORIENTATION OF RESERVOIR : NNE (D) m above foundation
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: low
Local diapiric structures reported.
Activity
DAM NAME : Camarillas
SITE GEOLOGY: Carbonate
NOTES ON FAULTING : Quaternary normal faults. Location and orientation not obtained.
PREDOMINANT FAULT TYPE : Normal
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAULT : Quaternary
MAGNITUDE OR INTENSITY OF LARGEST SUSPECTED RIS EVENT: Mag 4. 1 (ISC)
DATE OF FIRST SUSPECTED RIS EVENT: 16-Mar-1961
NOTES ON SEISMICITY AFTER IMPOUNDMENT: Good spatial
bejan when reservoir reached $2 / 3$ maximum water depth, correlated with peaks in cyclic loading history
Cever sal nos Data reliability is low
GERHERAL NOTES
RIS CATEGORY
RIS CATEGORY
GEOLOGY REFERENCES : 64,72A, 106, 393,408
NOTES ON SITE GEOLGGY
SITE GEDLGY: Carbonate
GEGLOGY REFERENCES : 106, 289
$A-47$
DAM NAME
RESERVOIR
COUNTRY: Spain
LIGATION OF CENTER OF RESERVOIR: 42.03N, 0.65E
LOCATION OF DAM: 41.97N, 0.62E
PROVINCE OR REGION : Lerida
DAI4 TYPE: Concrete arch
DATE DAM COMPLETED : 1960
DATE OF START OF FILLING: Oct-1960
EXPECTED FLUCTUATIONS BASED ON PRIMAR
EXPECTED FLUCTUATIUNS BASED ON PRIMARY USE : Hydropower
STRUCTURAL HEIGHT OF DAM : 150 . m HEIOHT . 132.00 m
RESERVOIR DEPTH COMPUTED FROM
MAXIMUM VOLUME OF RESERVOIR :
SURFACE AREA OF RESERVOIR:
LONGEST DIMENSION OF RESERVOIR
NOTES ON REGIGNAL GEOLOGY : C
REGIONAL GEOLOGY: Carbonate
REGIONAL STRESS REGIME : COMp
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : 10ω
NOTES ON SITE GEOLOGY: NW-SE anticline at dam, syncline in reservoir
SITE GEOLOGY: Carbonate
DATE OFIRST SUSPECTED RIS EVENT : 9-JUn-1962 EVENT:Mag 47 (ISC)
DATE OF LARGEST SUSPECTED RIS EVENT : 9-JUn-1962
NDTES ON SEISMICITY AFTER IMPOUNDMENT : Macroseismic event has good spatial and temporal association with initial impoundment
GENERAL NOTES : Datareliability is low. Few data were obtained
RIS CATEGORY: Accepted
RIS CATEGORY: Accepted
TYPE OF RIS: macro
GEGLOGY REFERENCES : 64, 72A, 106,175,203,331,393

Castelo de Bode
DAM NAME : Castelo de Bode
RESERVOIR NAME : Barragem do Castelo de Bode
country: Portugal
LOCATION OF CENTER OF RESERVOIR: 39.69N.8.23W
PROVINCE OR REGION
DAM TYPE : ROCK ()
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
NOTES ON DAM: Dam height of 109 m above ground
QRIENTATION OF RESERVOIR : N1OE
STRUCTURAL HEIGHT OF DAM: 115.
LENGTH OF DAM : 402. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 103.50 m
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: 1 ow
Nunging upstram
SITE GEOLOGY: Metamorphic
GEDLOGY REFERENCES : 106,152,289

DAM NAME : Cethana

 RIVER : ForthRIVER : FOT
LOCATION OF
LOCATION OF CENTER OF RESERVOIR: 41.55s, 146. 15E
DAM TYPE : Rock () fill
DATE DAM COMPLETED : 1971.
DATE OF START OF FILLING: Began 1971
EXPECTED FLUCTUATIONS BASED ON PRIMARY
EXPECTED FLUCTUATIONS BASED
ORIENTATION OF RESERVOIR: S
ORIENTATION OF RESERVOIR:
MAXIMUM DEPTH OF RESERVOIR: 94
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 94.50 m
MAXIMUM VOLUME OF RESERVGIR
SURFACE AREA OF RESERVIIR :
SURFACE AREA OF RESERVIIR : S. 00
LONGEST DIMENSION OF RESERVOIR
LONGEST DIMENSION OF RESERVIIR: 30.0
REGIONAL STRESS REGIME : COMPTESIONA
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: low
SITE GEOLOGY: Metamorphic
DIP OF PREDOMINANT FAULTING: N (Ji north-dipping
DIP OF PREDOMINANT FAULTING
LOCATION OF RESERVOIR IN REL
GEOLOGY REFERENCES : 62,107,10日,299
dam Name
CDUNTRY: USSR
RIVER: Chirchi
PROVINCE OR REG
DAM TYPE: EATt
CDUNTRY Chirchi
PRDVINCE OR REG
DAM TYPE : EATt
DATE DAM COMPLETED
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
ETRUCTURAL HEIGHT OF DAM: 16日. (m) above lowest foundation
o
IOHT $:$
$m 3 \times 1$ OE
: Compressional
STRESS REGIME:
STRESS REGIME EVALUATION: medium
Pal
Paleozatc LENGTH DF DAM : 764
MAXIMUM DEPTH OF RES

MAXIMUM VOLUME OF RES
EGIONA
\circ
号
0
EOLOGY
SITE GEOLOS
AGE OFOLOG REFERENCES : 106,330A
$A-52$
Chirkey
USSR
near Makhackula, North Caucasas
ch
975
BAS
Hydropower
205.00 m
OEG tectonics REGIONAL STRESS REGIME EVOLOGY: Limestone, maderately to highly jainted IGY: Carbonate GEOLOGY REFERENCES : 60,107,100
Faults and shear zones in the
Guartzite, phyllite, and locally shale.
Clark Hill DAM NAME
RESERVOIR CDINTRY: USA RIVER : Savannah
LOCATION OF CENTER
33. 85N. 82. 38W LDCATIDN DF DAM: 33. G6N, B2. 2OW DAM TYPE : Concrete gravity
DATE DAM COMPLETED: 1952
 DRIENTATION OF RESERVOIR: NW
STRUCTURAL HEIGHT OF DAM : 60
a 331 ndwOJ H1d 30 810n 3338

SURFACE AREA OF RESERVOIR
LONGEST DIMENSIDN OF RESERV
NOTEES ON REGIONAL GEOLOGY:
se pawaogep hit5ry ase sazins
REGIONAL GEDLOGY: Metamorphic
ASE OF REGIONAL GEOLOGY: Paleozaic
REGIONAL STRESS REGIME: Extensional
EVIDENCE FOR REGIONAL STRESS REGIME
EVIDENCE FOR REGIONAL STRESS REGIME: focal mechanism
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NDTES ON SITE GEOLOGY: Dam is underlein by Paleazoic gne
muscovite schist, and locally by Mesozoic gabbro.
EITE GEOLQGY: Metamorphic
AIPE DF SITE GEOLOGY : Paleozoic

CATE DF FIRST SUSPECTED RIS EVENT : 2-AUg-1974
MAGNITUDE OR INTENSITY OF LARGEST SUSPECTED RIS
 on this earthquake is unclear.

$$
\begin{aligned}
& \text { No } \\
& \text { than } 20 \text { years } \\
& \rightarrow \angle G I-D T \\
& \text { level } \\
& \begin{array}{l}
\text { TYFE OF RIS: micro (), questionable marro } \\
\text { GEDLOGY REFERENCES: } 106,445,446
\end{array}
\end{aligned}
$$

FE: EERVOIR NAME: Lago di Vogorno CocNTfir: Suitzerland GEH: Verzasca
J:GATION DF CENTER OF RESERVOIR: 46.23N, 8. B3E L.OCATIDN OF DAM : 46. 20N, 8.85E
DAM TYPE : Concrete arch
DATE DAM COMPLETED: 1965
EXFECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
ORIENTATION OF RESERVOIR : N
ETRUCTURAL HE. MEEERVOIR DEPTH COMPUTED FROM DAM HEIGHT
MAXIMUM VOLUME OF RESERVOIR: 86 . m3xIOEG
SURFACE AREA OF RESERVOIR : 233. 00 km 2
MAXIMUM VOLUME OF RESERVOIR: $86 . \mathrm{m3} \mathrm{\times 10EG}$
LONGEST DIMENSION OF RESERVOIR: 4.8 km LONGEST DIMENSION OF RESERVOIR
NGTES ON REGIONAL GEOLOGY : In Nates
nappes resulting from Mes gneiss.
REGIONAL GEOLOGY: Metamorphic
AGE OF REGIONAL GEOLOGY: late Paleozoic TECTONIC PROVINCE: AIPS
FEGGIONAL STRESS REGIME: Compressional
EVIDENCE FIR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
NOTES ON SITE GEOLOGY: Greissi folded and faulted. The gneiss is described as being mechanically competent.
EITE GEOLOGY: Metamorphic
AGE DF SITE GEULOGY: Permian
NOTES ON FAULTING: Two faults
sotained. A fault
obtained
region.
region.
PREDOMI
PREDOMINANT FAULT TYPE : Thrust
Maximul Length of faults 27.00 (km)
LOSATIDN OF RESERVOIR IN RELATION TO FAULTS : MOst of reservoir within upthroun black
Whal E of CLOSEST KNOWN FAULT : Unnamed
ITETANCE
GE:GREE DF TOPGGRAPHIC RELIEF: high
D.ATE DF FIRST SUSPECTED RIS EVENT: May-1765
CTES ON SEISMICITY AFTER IMPDUNDMENT : Microseismicity near reservoir associated with rapid initial fillingi additional activity iffer filiing may te iplated to water level fluctuations. After reservoir drained and refilled, seismic activity returned to pre-impountment levels
GE dehal. Notes. Dataleliョbility is moderate. Baseline data not obtainedi pre-impoundment seismicity not obtained; interpretations strongly suggest temporal and spatial relationships of seismicity during initial impoundment.
$\begin{aligned} & \text { TYFE OF RIE micri } \\ & \text { GEMLOGY RUFERENCES }\end{aligned} \leq 4,102,106,176,203,280,331,434$
IDCATIUN OF CENTER DF RESERVDIR: 44.1ON,122.2OW PROVINCE OR REGIDN: Oregon
DAM TYPE : ROCK () fil
$\because \triangle F E C T E D$ FLUCTUATIONS BASED ON PRIMARY USE: Multi-purposei Flood control () is listed first MOTES ON DAM : Dam height of 127 m above ground ORIENTATION OF RESERVOIR: S 136.
EFIGTH OF DAM : 527. m
NEEERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 122.40 m
MAXIMUM VOLUME OF RESERVOIR: 270. $m 3 \times 10 E G$
TECTONIC PROUINCE: Cascades
REGIONAL STRESS REGIME : Shear
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
NOTES ON SITE GEOLOGY: Tuff, sandstone, and basalts, overlain by alluvial deposits
AGE OF SITE GEOLOGY: Tertiary
PREDOMINANT FAULT TYPE: Normal
AZIMUTH DF PREDOMINANT FAULTING: N () to NN
NAME OF CLOEEST KNDWN FAULT: Sueet Home fault
DISTANCE TO CLDSEST KNDWN FAULT: $45.0(\mathrm{~km}) \mathrm{km}$
AGE. OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAULT : late Tertiary $A-57$

1. Ifote 'vallay
ins: NAME : Coyste Valley
जEERNGIR NAME: Lahe Mendocino COUNTRY: UEA HCATION DF CENTER DF RESERVIIR : DCATIUN DF LAMA: 37. 2ON, 123. 18W RAOVINCE OR fiEGIU
WATE DAM COMFETEU 1959
WATE DF START OF FILLING
GATE IJF START OF FILLIING: Jan- 1959
BATE OF INITIAL. FILLING: 5.50 (m/mo
ífE OF INITIAL. FILLING: S. 50 (m/month: m/month
VEARS FROM REGINNING TO MAXIMUM FILL. 0.29 (yea
1977-Jan. 197日
2. 7 m before 1976
m alculated from topo map.
Curnera
DAM NAME : Curnera
CDUNTRY: Switzerland
RIVER : Rein de Curnera
LIGATIUN OF CENTER OF RE
PROVINCE OR REGION: GOI
DATE DAM COMPLETED : 196
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
ORIENTATION OF RESERVOIR: S
SIRUCTURAL HEIGHT OF DAM: 152. (m) Bbove lowest founda
SIRUCTURAL HEIGHT OF DAM: 152. (m) bove lowest foundation
MAXIMUM DEPTH OF RESERVGIR : 126. O (m) (calculated from topographic map)
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 126.00 m
LONGEST DIMENSION OF REGERVOIR: 2.1 (km) (from topo. map)
LONGEST DIMENSION OF REGERVOIR: 2. 1 (km) (from topo. map)
REGIONAL GEOLGGY: Metamorphic
AGE OF REGIONAL GEOLOGY: Paleozoic
TECTUNIC PROVINCE: AIPs
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
SITE GEOLOGY: Metamorphic
AGE OF SITE GEOLOGY: Carboniferous
MAXIMUM LENGTH OF FAULTS : $80.00(\mathrm{~km}) \mathrm{km}$
DISTANCE TO CLOSEET KNOWN FAULT : less than $1.0(\mathrm{~km}) \mathrm{km}$
GEDLOGY REFERENCES : 106,440A, 4408
(Manicnuagan 5)
Daniel Johnson
DAM NAME : Daniel Johnson (Mandcouagan 5) RESERVOIR NAME : Manicouagan
CIUNTRY: Canada
RIWER : Manicouagan
location of center of reservoir LDCATION OF DAM: 50.65 N .68 .74 W
PROVINCE OR REGION: Quebec
DAM TYPE COMCrete multi-arch
DATE DAM COMPLEEED 1968
EXPECTED FLUCTUATIONS BASED ON
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
NOTES ON DAM: Reservoir has long north-extending arm in
STRUCTURAL HEIOHT OF DAM: 214. (m) (ht. above foundation)
STRUCTURAL HEIOHT DF DAM
LENGTH OF DAM: 1314. m
MENGTMUM DEPTH OF RESERVOIR: $152.0(\mathrm{~m}$) (calculated from drawing)
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 152.00 m
MAXIMUM VOLUME OF RESERVOIR : 141851. m3xiOEG
SURFACE AREA OF RESERVOIR: 2070. 00 km 2
LOMGEST DIMENSION
Dam height of 164 m above ground.

DATE DAM COMPLETED: 1974
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Flood control
STRUCTURAL HEIGHT OF DAM: 97 . (m) m
RESERVIIR DEPTH COMPUTED FROM DAM HE
MAXIMUM VOLUME OF RESERVOIR: 20900. m3x10EG 30 m
IONAL STRESS REOIME EVALUATION: low MOTES ON SITE GEOLOGY: Diorite and metamarphic shale GEOLOGY REFERENCES : 10日, 2R9,418
Dartmouth
DAM NAME : Dartmouth
COUNTRY: Australia
LOCATION OF CENTER OF
PRQUINCE OR REGION
DAM TYPE : ROCK ()
DATE OF START OF FILLING: 1977
EXFECTED FLUCTUATIONS BASED ON PRIMARY USE : Irrigation (), hydropower
ETRUCTURAL HEIGHT OF DA
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 162.00 m
MAXIMUM VOLUME OF RESERVOIR: 4000. m3x10E6
LONGEST DIMENSION OF RESERVOIR
NOTES ON REGIONAL GEOLOGY: Lachlan geosynciine in Snowy Mountains. Includes gneiss
REGIONAL GEOLOGY: Metamorphic
AGE OF REGIONAL GEDLOGY: late Paleozoic
REGIONAL STRESS REGIME: Compressional
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : I ow
NOTES ON SITE GEOLOGY: Snowy River Devonian Volcanics.
gneiss at damsite. jointed.
AGE OF SITE GEOLOGY: late Paleozoic
PREDOMINANT FAULT TYPE : Thrust
AZIMUTH OF PREDOMINANT FAULTING: NE (); northeast
DOMINANT SIDE UP : NW (); nOrthwest
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FA
AZIMUTH OF PREDOMINANT FAULTING: NE (); northeast
DOMINANT SIDE UP : NW (); northwest
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAU
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAULT : Quaternary
GEOLOGY REFERENCES : 108، 297,481
$A-63$

DAM NAME : Derbendithan
RIVER: Diyala
LOCATION OF CENTER
LUCAVINCE OR REGION
PROVINCE OR REGION: Sulaymaniya
DAM TYPE : ROCK () fili
DATE DAM COMPLETED: 1961
NOTES ON DAM: Y-shaped
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: IrRigation
ORIENTATION OF RESERVOIR: NW
STRUCTURAL HEIOHT OF DAM: 128. (m) above 1
REEERVOIR DEPTH COMPUTED FROM
MAXIMUM VOLUME OF RESERVOIR :
LONGEST DIMENSION OF RESERVOI
LONGEST DIMENSION OF RESERVOIR
REGIONAL STRESS REGIME: COMPr
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
MOTES ON SITE GEOLOGY : Marl, sandstone, limestone, and conglomerate, thick sedimentary layer
SITE GEOLOGY: Coarse clastic
GEOLOGY REFERENCES : 106,289
DATE DAM COMPLETED : 1953
EXPECTED FLUCTUATIONS BASED DN PRIMARY USE : Multi-purpose; Flood control () is first use listed. NDTES ON DAM : Dam height of 116 m above ground
ORIENTATION DF RESERVOIR : E
STRUCTURAL HEIGHT OF DAM
LENGTH DF DAM : 466 . m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 110.00 m
MAXIMUM VOLUME DF RESERVOIR : 561. m3x10E6
SURFACE AREA OF RESERVOIR : $17.00 \mathrm{km2}$
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONF IDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON SITE GEQLOGY
SITE GEDLOGY: Volcanic
NOTES ON FAULTING : Note: no major faults in immediate reservoir area.
PREDOMINANT FAULT TYPE : Normal
PREDOMINANT FAULT TYPE : NOTmal
AZIMUTH OF PREDOMINANT FAULTING
MAXIMUM LENGTH OF FAULTS : 80. 00
NAME OF CLOSEST KNOWN FAULT : ME
DISTANCE TO CLDSEST KNOWN FAULT : NW end of fault 30 . O (km) km east of reservoir AGE OF MOST RECENT DISPLACEMENT ON CLDSEST KNDWN FAULT : Quaternary
GEOLOGY REFERENCES : $106,224,337$
$A-65$

$$
00 \mathrm{~m}
$$

$$
\begin{aligned}
& \text { STRESS REGIME: focal mechanism } \\
& \text { STRESS REGIME EVALUATION: medi }
\end{aligned}
$$

Flood control.
Dorud fault (in this zones

$$
035 \forall 8
$$

$$
\begin{aligned}
& \text { rch } \\
& 1963 \\
& \text { BAS }
\end{aligned}
$$

$$
\begin{aligned}
& : N E \\
& : \quad 203 .
\end{aligned}
$$

DAM TYPE : Concrete arch
EXPEGTED FLUCTUATIONS BASED
RIENTATION OF RESERVOIR : E
STRUCTURAL HEIGHT OF DAM
LENGTH OF DAM: 360. m
LENGTH OF DAM: 360
RESERVOIR DEPTH COMP
MAXIMUM VOLUME OF
SURFACE AREA OF RES
LONGEST DIMENSION O
LONGEST DIMENSION
TECTONIC PROVINCE: North Cascades
REOIONAL STRESS REGIME: Extensional
EVIDENCE FOR REGIONAL STRESS REGIME
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: low
SITE GEOLOGY: Metamorphic
A-67
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Irrigation ORIENTATION OF RESERVOIR: NW
RESERVOIR DEPTH COMPUTED FROM
RESERVOIR DEPTH COMPUTED FROM
MAXIMUM VOLUME OF RESERVOIR
MAXTES ON REGIONAL GEDLDGY:
NOTES ON REGIONAL GEQLDGY: Highly folder and faulted sediments
TEGTONIC PROVINCE : Makran tectonic zone
CONFIDENCE IN REGIONAL STRESS REOIME EVALUATION: nedium
PREDOMINANT FAULT TYPE : Normal right (), norami, right-slip
AZIMUTH DF PREDOMINANT FAULTINE: NZOW to NSE
MAXIMUM LENGTH DF FAULTS : 210.00 (km) km (Sabzevaran): 310 km (Sarduiyeh/Jiraft)
DOMINANT EIDE UP : W () West NIOW to NIOE
NAME DF CLOSEST KNOWN FAULT: 10 kn ast
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN
GEOLOGY REFERENCES: 46.107,10日
DAM NAME : Dokan
RESERVOIR NAME
COUNTRY : Iraq
RIVER : Lesser Zab
LDCATION OF CENTER OF RESERVOIR: 36.07N, 44.97E
LOCATION OF DAM: 35. 95N. 44.97E
PROVINCE OR REGION: Sulaymaniya
DAM TYPE : Concrete arch
EXPECTED FLUCTUATIONS BASED DN PRIMARY USE : Irrigation
ORIENTATION OF RESERVOIR : N
STRUCTURAL HEIGHT OF DAM: 116. (m) above lowest foundation
MAXIMUM DEPTH OF RESERVOIR : 111.0 m (IGUTR DEPTH COMPUTED FROM DAM HEIGHT: 111.00 m
MAXIMUM VOLUME OF RESERVOIR : 6800. $m 3 x 10 E 6$
REOIONAL STRESS REGIME Compresional km kn
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
founded on approximately horizontal dolomite
AGE OF SITE GEGLGGY: Cretaceous
GEOLOOY REFERENCES : 10G,468A
$A-69$
Dworshak
DAM NAME: Dworshak
RESERVDIR NAME: Dworshak Reservoir
COUNTRY: USA
RIVER : NOTth FOFk Clearwater
LOCATION OF CENTER OF RESERVOIR : 46. G2N. $116.07 W$ LDCATIDN DF DAM : 46.52N, $116.30 W$
PROUINCE OR REGION: Idaho
DAM TYPE : Concrete gravit
DAYE DAM CTMPLETEDII 1974 . 1971
EXPECTED FLUCTUATIONS BASED ON
STRUCTURAL HEIGHT OF DAM : 216. m
LENGTH DF DAM : 1002. m m :
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT 1 IOEG SURFACE AREA OF RESERVOIR : 69.00 km 2
LONGEST DIMENSION OF RESERVOIR : 8S. 0 km
NOTES ON REGIONAL GEOLOGY: Idaho Batholith
REGIONAL GEOLOGY: Metamorphic
REGIONAL GEGLOGY: Metamorphic
REGIONAL STRESS REGIME
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : medium
NOTES ON SITE GEDLOGY : Foliated gneiss. Foliations dipping steeply northeast.
SITE GEDLOGY : Metamorphic
OR IENTATION OF STRUCTURAL GRAIN: NE
GEGLOGY REFERENCES : 92, 107,10日
DAM TYPE : Concrete arch
EXPECTED FLUCTUATIONS BASED QN PRIMARY USE : Public water supply
NOTES ON DAM : Reservoir oriented N and NE from dam
ORIENTATIDN OF RESERVOIR : N
STRUCTURAL HEIGHT OF DAM : $134 . \mathrm{m}$
MAXIMUM DEPTH DF RESERVDIR : 120.0 m
NOTES ON DAM : Reservoir oriented N and NE from dam
ORIENTATIDN OF RESERVOIR : N
STRUCTURAL HEIGHT OF DAM : $134 . \mathrm{m}$
MAXIMUM DEPTH DF RESERVDIR : 120.0 m
34
MAXIMUM DEPTH OF RESERVOIR 120.0 m IOHT. 120.00 m
RESERVOIR DEPTH COMPUTED FROM D
MAXIMUM VOLUME OF RESERVOIR : 4
SURFACE AREA OF RESERVOIR: $12.30 \mathrm{km2}$
REGIONAL STRESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: low
NOTES ON SITE GEOLOGY: SIIURIan slates; two systems o
other system sub- SITE GELGGY: Metamorphic
AGE DF SITE GEOLOGY: Silurian
COUNTRY: Spain
RIVER: Lozoya
DAM TYPE
DATE DAM
EXPECTED
NOTES ON DAM : Reservoir oriented N and NE from dam
ORIENTATION OF RESERVOIR : N
STRUCTURAL HEIGHT OF DAM $: 134 . \mathrm{m}$
MAXIMUM DEPTH DF RESERVDIR : 120.0 m
NOTES ON DAM : Reservoir oriented N and NE from dam
ORIENTATION DF RESERVOIR : N
STRUCTURAL HEIGHT OF DAM : $134 . \mathrm{m}$
MAXIMUM DEPTH OF RESERVOIR : 120.0 m
SURFACE AREA OF RESERVOIR :
LONGEST DIMENSIDN OF RESERV
REGIONAL STRESS REGIME
NOTES ON SITE GEDLOGY
SITE GEOLGGY: Metam
GEOLOGY REFERENCES
GEOLOGY REFERENCES : 104A, 106

RIVER : Limay LOCATION OF DAM 39 22S.69.68W

PROVINCE OR REGION: Neuquen/Rio Negro
DAM TYPE: Earth () fill
DATE DAM COMPLETED
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Irrigation
ORIENTATION OF RESERVOIR: SW
ORIENTATIAN OF RESERVIR \vdots STRUCTURAL HEIGHT OF DAM 74.
RESERVOIR DEPTH COMPUTED FROM DAM HEIOHT: 70.30 m
MAXIMUM VOLUME OF RESERVOIR: 20200. $\mathrm{m3} 3$ 10E6
LONGEST DIMENSION OF RESERVOIR: 72.0 km
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: $10 w$
SITE GEDLOGY: Coarse clastic
AGE OF SITE GEOLOGY: Cretaceous
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
NOTES ON DAM : Dam height of 88 m above ground
ORIENTATIDN DF RESERVOIR : NNW
STRUCTURAL HEIGHT OF DAM
LENGTH DF DAM : 400 . m
MAXIMUM DEPTH OF RESERVIIR: 85. 0
RESERVOIR DEPTH COMPUTED FROM DAM
LENGTH DF DAM : 400. m
MAXIMUM DEPTH OF RESERVOIR : 85. 0
RESERVOIR DEPTH CGMPUTED FROM DAM
RESERVIIR DEPTH COMPUTED FROM DAM HEIGHT : 85.00 m
MAXIMUM VOLUME OF RESERVOIR : 400 . $33 \times 10 E G$
SURFACE AREA OF RESERVOIR : 13.00 km 2
LONGEST DIMENSION OF RESERVOIR : 13.0 km
TECTONIC PROVINCE: Pyrenees
TECIONIC PROVINCE: Pyreness
REGIONAL STRESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : low
MOTES ON SITE GEOLOGY: Oligocene conglomerate overlyin
yellaw marls under stream
SITE GEGLOGY: Carbanate
SITE GEGLOGY SITE GELDGY: T
NOTES ON SEISMICITY AFTER IMPDUNDMENT : No good spatial or temporal relationship of post-impoundment seismicity to reservoir. GENERAL NOTES : Data reliability is low. Few data were obtained.
RIS CATEGORY: Not RIS
GEOLOGY REFERENCES : 72A, 107,118,289,408, 418

COUNTRY: Mexico
RIVER: Balsas
LOCATION OF CEN
LOCATION OF CE
LOCATION OF DA
PROVINCE OR RE
DAM TYPE : ROCK () fill
DATE DAM COMPLETED : 1963
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Public Water supply
NOTES ON DAM: T-shaped reservoir
STRUCTURAL HEIGHT OF DAM: 140. (m) above lowest foundation
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 126. 00
MAXIMUM VOLUME OF RESERVOIR : 9340. $\mathrm{m} 3 \times 1$ OE6
LONGEST DIMENSION OF RESERVOIR : 84.0 km
REGIONAL STRESS REGIME : Compresirional
EVIDENCE FDR REGIONAL STRESS REGIME: tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : 1 ow
MOTES ON
intrusive
GITE GEDL
gITE GEOLOGY: Batholithic
AGE OF SITE GEOLOGY: Tertiary
GEOLOGY REFERENCES : 106, 22BA

Moodward-Clyde Consultants
SITE GEOLOGY: Volcanic
GEDLOGY REFERENCES : 106, 161A

DAM NAME : Emosson Emosen orine

 RESERVOIR NAME : Lake COUNTRY: Suitzerland RIVER: BarbarineLOGATION OF CENTER OF RESERVOIR: $46.09 \mathrm{~N}, 6.91 \mathrm{E}$ LOCATION OF DAM : 46. OBN, 6.92E DAM TYPE : Concrete arch
DATE DAM COMPLETED 1975
DATE OF START OF FILLING
DATE OF START OF FILLING: May-1973
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
ORIENTATION OF RESERVIIR : NISW
ORIENTATION OF RESERVGIR : N1SW
STRUCTURAL HEIGHT OF DAM: 180.
LENGTH OF DAM : 529. m
MAXIMUM DEPTH OF RESERVOIR : 170.0 m
RESERVOIR DEPTH CQMPUTED FROM DAM HEIGHT : 170.00 m
MAXIMUM VOLUME OF RESERVIIR : 225. m3x10E
LONGEST DIMENSION OF RESERVOIR : $4.0(\mathrm{~km}) \mathrm{km}$
NOTES ON REGIONAL GEOLOGV: On the periphery of the Mont blanc granite intrusive within the Swiss Alps. Late paleozoic gneiss and
Jurassic flysch deposits.
REGIONAL GEOLGGY: Metamorphic
AGE OF REGIONAL GEOLOGY : Permian
TECTONIC PROVINCE : Alps
REGIONAL STRESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
NOTES ON SITE GEOLOGY: Dam and reservoir underiain by metamorphic rock, principaliy Permian gneiss.
SITE GEOLOGY : Metamorphic
AGE OF SITE GEOLOGY: Permian
ORIENTATION OF STRUCTURAL GRAIN: SW
NOTES ON FAULTING: FaUItS of uniepor
NOTES ON FAULTING: Faults of unreported age and orientation have been identified in the reservoir area. A major fault of unreported
age crosses the reservoir near the area where the water depth is the greatest. rhe Martigny-Ghur fault zone, considered by some investigators to be active with normal displacement, trends northeast downstream from the dam and reservoir
DISTANCE TO CLOSEST KNOWN FAULT: $15.0(\mathrm{~km}) \mathrm{km}$
DATE OF FIRST SUSPECTED RIS EVEN
NOTES ON SEISMICITY AFTER IMPOUNDMENT
MOTES ON SEISMICITY AFTER IMPOUNDMENT
GEMPRAL NOTES : Data reliability is moderate. Pre-impoundment monitoring conducted; few additional data were obtained to verify that post-impoundment seismicity was reservair induced.
RIS CATEGORY: Accepted
GEDLOGY REFERENCES : 55,56, 108, 405,406
deservair name

DAM NAME : Escales le Escales

COUNTRY: Spain
RIVER : Noguera Ribagorzana
LOCATION DF CENTER OF RESERVOIR : 42. 34N, O. 74 E
PROVINCE OR REGION : Lerida/Huesca
PRAM TYPE : Concrete
EXPE FLUCTUATIONG BASED ON PRIMARY USE : Hydrapower
EXPECTED FLUCTUATIONS BASED
GRIENTATION OF RESERVOIR : N
GTRUCTURAL HEIGHT OF DAM : 125
LENGTH OF DAM : 200. m,
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 107. 00 m
MAXIMUM VOLUME OF RESERVOIR : 158 . m3×10E6
LONGEST DIMENSION DF RESERVOIR : $9.0(\mathrm{~km}) \mathrm{km}$
STRESS RECIME: tectonics
EVIDENCE FOR REGIONAL STRESS REOIME
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: 1 ow
MOTES ON SITE QEDLOGY: Shale and IImestone
GITE GEQLOGY: Carbonate
GEOLOGY REFERENCES : 106,46BA
Eusumbene
DAM NAME : Eucumbene HESERVOIR NAME
COUNTRY: Australia
RIVER : Eucumbene
RIVER : Eucumbene
L.DCATION OF CENTER
IICATION OF CENTER OF RESERVOIR: 36.0日S, 148.72E
LOCATION OF DAM: 36. $135,148.62 E$
DaM TYPE: Earth () fill
DAM TYPE : Earth ()
CATE DAM COMPLETED
DATE DAM COMPLETED
DATE OF START OF FIL
DATE OF START OF FILLING: 22-
EXPECTED FLUCTUATIDNS BASED ON PRIMARY USE: Hydropower
WOTES ON DAM: Dam height of 116 m above ground; Reservoi
WOTES ON DAM : Dam height of 116 m above groundi Reservoir is T-shaped.
DFIENTATIDN DF RESERVOIR : NW
UFIENTATIDN DF RESERVOIR : NW
ETRUCTURAL HEIGHT DF DAM : 116.
ETRUCTURAL HEIGHT DF DAM: $116 .(\mathrm{m})$ above foundation
MAXIMUM DEPTH DF RESERVOIR : $106.0(\mathrm{~m}) \mathrm{m}$
MAKIHUM DEPTH OF RESERVDIR : 106. O (m) m
NEEERVOIR DEPTH COMPUTED FROM DAM HEIGHT
MAXIMUM VOLUME OF RESERVOIR: 4761. m3x1OEG
SURFACE AREA OF RESERVOIR 145. OO kma km
REGIONAL STRESS REGIME: COmpresisional
EVIDENCE FOR REGIONAL STRESS REGIME
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
GIUFIDENCE IN REGIGNAL STRESS REGIME EVALUATION: medium
NuTES ON SITE GEOLDGY: Closely jointed siltstone and quartzite
SITE GEOLOGY: Metamorphie

f.hfust toward the northwest. A northeast-trending southeastward thrust fault parallel to
the reservoir, has had recent seismicity (includ
CATE OF FIRST SUSPECTED RIS EVENT : 1B-May-1759
HASNITUDE OR INTENSITY OF LARGEST SUSPECTED RIS EVENT: MAg S. 0
DATE DF LARGEST SUSPECTED RIS EVENT: 18-May-1959
NOTES ON SEISMICITY BEFORE IMPOUNDMENT
NOTES DN SEISMICITY AFTER IMPOUNDMENT
raservoir. Additional macroseismicity
RIS CATEGORY: Accepted
GEILQGY REFERENCES : 40, 79, 100, 103, 106, 203, 321, 456, 460
DAM NAME GOUNTRY: USA
COUNTRY: PRDVINCE OR
PRDVINCE OR REGION : South Carolina
DAM TYPE : Earth
DATE OF START OF FILLING : Dec-1977
RATE OF INITIAL FILLING: 16.30 m/month
YEARS FROM BEGINNING TO MAXIMUM FILL: 0.25 years
EXPECTED FLUCTUATIONS BASED ON PRIMARY U

t event every 6 days.
NOTES ON SEISMICITY AFTER IMPQUNDMENT
notwork on-inine in December 1977. Level of activity
Gradual decrease in seismic activity into early 1979.
GENERAL NOTES : Data obtained from Bob Wharton, South Carolina Electric and Power Company.
RIS CATEGORY: Accepted
GEGLUGY REFERENCES : Zoback. personal communication
Fengman

DAM NAME : Fengman (Fang-man) RESERVOIR NAME: Sung-hua Hu (Sungari Reservair)

COUNTRY: China (PRC)
RIVER: Songhua Jiang (Sung-hua Chiang, Sungari)
LOCATION OF CENTER OF RESERVOIR : $43.44 N, 126.91 E$ LOCATION OF DAM: 43. 76N, 126. 65E 3. $76 \mathrm{~N}, 126.65 \mathrm{E}$
: Jilin (Kirin)
1955 PAM TYPE: Gravity
岗
ASED ON PRIMARY USE : Flood control \qquad
: 9
VVIR

$$
\begin{aligned}
& \text { D } \\
& \text { DAM HEIGHT : } 81.90 \mathrm{~m} \\
& 10778 . \mathrm{m3x10E6}
\end{aligned}
$$

COMPLETED
T-shape
RESERVO
MPUTED FROM
RESERVOIR:
RE RESERVOI
OF RESE COMP
EVIDENCE FOR REGIONAL
CONFIDENCE IN REGIONAL
IE :

$$
\begin{aligned}
& 0 \mathrm{~km} \\
& \text { nal }
\end{aligned}
$$

$$
\begin{aligned}
& \text { M VOLUME OF RESERVOIR: } 10778 \text {. m3xiOEG } \\
& \text { T DIMENSION OF RESERVOIR: } 95.0 \text { km } \\
& \text { AL STRESS REGIME : COMP resBional } \\
& C E \text { FOR REGIOMAL STRESS REGIME : tectonICS } \\
& \text { ENCE IN REGIONAL STRESS REGIME EVALUATION }
\end{aligned}
$$

low
DAM NAME
RESERVOIR NAME
COUNTRY : USA
RIVER: Green
41.25N, 109. 50W
LOCATION OF CENTER OF RESERVOIR :
LOCATION OF DAM : 40. BON, 109. 77W
PROVINCE OR REGION: Utah/Wyoming
DAM TYPE : Concrete arch
DATE DAM COMPLETED: 1964 . NOv-1962
EXFECTED FLUCTUATIONS BASED ON PRIMARY USE : Irrigation
NOTES ON DAM : Reservoir extends west for 21 km , then north for 51 km
ORIENTATION OF RESERVOIR : N
STRUCTURAL HEIGHT OF DAM : $153 . \mathrm{m}$
MAXIMUM DEPTH OF RESERVOIR 139.0 m
MAXIMUM VOLUME OF RESERVOIR: 4674. m3×1OEG
LONGEST DIMENSION OF RESERVOIR: 51.0 km
REGIONAL STRESS REGIME: Extensional
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON SITE, GEOLOGY: Quartzite and alluvium, 20 degrees
NOTES ON SITE, GEOLOGY: Guartizite and alluvium, 20 degrees upstream dip
SITE GEOLOGY : Metamorphic
AGE OF SITE GEOLOGY: PreC
DEGREE OF DEFORMATION: Shallow dipping
GEOLOQY REFERENCES : 106,289,310
DAM TYPE : Concrete gravity
DATE DAM CDMPLETED : 1944
EXPECTED FLUCTUATIONS BASED
EXPECTED FLUCTUATIONB BASED ON PRIMARY USE : Hydropower
NOTES DN DAM : Dam height of 140 m above ground
ORIENTATIDN OF RESERVOIR : SESE
ETRUCTURAL HEIGHT DF DAM: 146. (m) above foundation
LENGTH OF DAM : 721. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 128.00 m
MAXIMUM VOLUME DF RESERVOIR : $1782 . \mathrm{m} 3 \times 10 E G$
SURFACE AREA OF RESERVGIR : 51.00 km2
NDTES ON REGIONAL GEOLGGY: Regional anticiine in Great Smokey Formation (PreCambrian and Cambrian)
AGE OF REGIONAL GEGLDGY: Cambrian
AECTONIC PROVINCE Appalachian Mount
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
EVIDENCE FOR REGIONAL STRESS REGIME
COMFIDENCE IN REGIDNAL STRESS REGIME
COMFIDENCE IN REGIDNAL STRESS REGIME EVALUATION : medium
NOTES ON SITE GEGLOGY: Quartzite with thin phyliite, int
rhombic blocks. Dip of strata 15 to 75 degrees
GEILLOGY REFERENCES: 106,468A

PROVINCE OR REGION
DAM TYPE : Earth
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Irrigation (\% multi-purpose ORIENTATION OF RESERVOIR: 567W STRUCTURAL HEIGHT OF DAM

MAXIMUM DEPTH OF RESERVOIR: 67.0 (m) (Corps of Engineers) REEERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 67.00 m
MAXIMUM VOLUEE OF RESERVIR $: 23930 . \mathrm{m} 3 \times 10 E 6$
SURFACE AREA OF RESERVOIR: 1161.00 km 2

REGIONAL STRESE REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME : t日C TONIIS
COTES ON SITE GEOLOGY: Shale
SITE GEOLOGY: Fine clastic
GEOLOGY REFERENCES: 106,289

RIVER : TRAVIgNOIO OF RESERVOIR : 46. 3ON, 11.74E
PROM TYPE : Concrete arch
DATE DAM COMPLETED : 1952 ON PRIMARY USE : HUdropower NOTES DN DAM : Dam height of 105 m above ground

ORIENTATION DF RESERVIIR: E
STRUCTURAL HEIGHT OF DAM: $110 . \mathrm{m}$
LENGTH OF DAM: 421. m
REEERVOIR DEPTH COMPUTED FROM
MAXIMUM VOLUME OF RESERVOIR
LONGEST DIMENSION O
TECTONIC PROVINCE : AIPS
REOIQNAL STRESS REGIME : COMPRESझi onal
EVIDENCE FQR REGIONAL STRESS REGIME :
CONFIDENCE IN REQIDNAL STRESS REGIME EVALUATION: medium NOTES ON SITE AEDLDGY: Porphyry
SITE GEDLOOY: Batholithic

GEOLOGY REFERENCES : 106,289
DAM TYPE : Concrete arch
LOCATION OF CENTER OF RESERVOIR : 46. O9N, 10.13E
OR REOION: Sondrio
COMPLETED : 1939
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : HYdropower
ORIENTATION OF RESERVOIR : S
STRUCTURAL HEIGHT OF DAM : 138. m
LEHGTH OF DAM : 315 . m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 120.00 m
MAXIMUM VOLUME OF RESERVOIR : SO. m3×10E6
NOTES ON REGIONAL GEOLOGY: Crystaliine rocks of the Insubrian series. Insubrian fault system located g km north
TECTONIC PROVINCE: AIPs
EVIDENGE FOR REGIONAL STRESS REQIME: tectonics
EVIDENCE FOR REGIONAL STRESS REQIME: tectonics
CONFIDENCE IN REGIONAL STRESS REOIME EVALUATION
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
MOTES ON SITE GEQLOGY: Guartz phylitte
SITE CEOLOGY: Metamorph
PREDOMINANT FAULT TYPE : ThrUst
AZIMUTH OF PREDOMINANT FAULTING
AZIMUTH OF PREDOMINANT FAULTING: E to W
MAXIMUM LENGTH OF FAULTS : $110.00(\mathrm{~km}) \mathrm{km}$
MAXIMUM LENGTH OF FAULTS : $110.00(\mathrm{~km}) \mathrm{km}$ for thrusti 250+. km for Insubrian Line
DOMINANT SIDE UP: N ($)$ north
LOCATION OF RESERVOIR IN RELATION TO FAULTS: Underthrust block of Insubrian Lined DISTANCE TO CLOSEST KNOWN FAULT: 0.0 (km) kmi unnamed fault crosses south end of reservoir GEOLOGY REFERENCES : 106,440A,440B
DAM NAME : Furnas
REGERVOIR NAME: Furnas COUNTRY
RIVER:
LOCATION
LOCATION LOCATION OF DAM : 20. 645,46 . 36W
PROVINCE OR REGION: Minas Gerais
PROVINCE OR REGION
DAM TYPE : EATth ()
DATE DAM COMPLETED :
DATE DAM COMPLETED : 1962
EXPECTED FLUCTUATIDNB BASED ON PRIMARY USE : Hydropower
ORIENTATION OF RESERVOIR: SW
GTRUCTURAL HEIGHT OF DAM: 123
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 110.70 m
MAXIMUM VOLUME OF RESERVOIR : 20200. m3x10E6
GURFACE AREA OF RESERVOIR : 1606.00 kma
Regional fold exes N5O-bOW.
just upstream from dam ite.
Main regional fault crosses river
LICATION OF RESERVOIR IN RELATION TO FAULTS: CTOSSES through arm of reservoir just upstream of dam.
SEDLOGY REFERENCES : 106. 152.443
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 60.80 m
MAXIMUM VOLUME OF RESERVOIR
SURFACE AREA OF RESERVOIR: 1849.00 km2
NaTES ON REGIONAL GEOLOGY: Missouri Plateau. Pleistocene alluvium up to 60 m depth in Missouri River flaod plain. Paleacene Fart
Union Formation, 300 m thick clay, sand, and lignite.
REGIONAL GEOLOGY: Fine clastic
AGE OF REGIONAL GEOLOGY: Paleacene
TECTONIC PROVINCE: Great Plains --
REGIONAL STRESS REGIME: Compressional
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION IIOW
of 30 m to 60 m thickness
SITE GEOLOGY: Caarse clastic
AGE OF SITE GEOLOGY: Paleocene
GEILOGY REFERENCES: 32, 106, 289
RIVERION OF CENTER OF RESERVOIR: 46.37N.7.99E
DAM TYPE Concret arch () dome
DAME DAM COMPLETED. 1967
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
ORIENTATION OF RESERVOIR : N
ORIENTATION OF RESERVOIR : N
STRUCTURAL HEIGHT OF DAM : 120
STRUCTURAL HEIGHT OF DAM : 120. (m) bove lowest foundation
MAXIMUM DEPTH OF RESERVOIR
RESERVOIR DEPTH COMPUTED FROM DAM HEIOHT: 104.00 m
(10 4 (km) km
LONGEST DIMENSION OF RESERVGIR: $1.4(\mathrm{~km}) \mathrm{km}$
TECTONIC PROVINCE: AIPS
REGIONAL STRESS REQIME : COMPREssional
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : medium
NOTES ON SITE GEOLOGY: High strength gneiss, widely-spaced nearly
joint systoms: two vertic
MAXIMUM LENGTH OF FAULTS : 80. $00(\mathrm{~km}) \mathrm{km}$
DISTANCE TO CLOSEST KNOWN FAULT: $0.0(\mathrm{~km}) \mathrm{km}$
GEOLOGY REFERENCES : 106,176.459

DAM TYPE : Rock () fill
EXPECTED FLUCTUATIONS BASED
NOTES ON DAM Dam height
STRUCTURAL HEIGHT OF DAM
LEMGTH OF DAM : 630. m
MAXIMUM DEPTH OF RESERVOIR: 110.0 (m) m (calculated from drawing)
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 110.00 m
MAXIMUM VOLUME OF RESERVOIR: $140 . m 3 \times 1$ OEG
LONGEST DIMENSION OF RESERVOIR : $5.4(\mathrm{~km}) \mathrm{km}$
TECTONIC PROVINCE : Alps
EUIDENCE FQR REGIUNAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON SITE GEOLOGY
SITE GEOLOGY: Metamorphic
GEOLOGY REFERENCES : 106,289
LOCATION OF DAM
DAM TYPE : Earth () fill
DATE DAM COMPLETED : 1966
STRUCTURAL HEIGHT OF DAM : 16. m HEIGHT: 15.20 m
MAXIMUM VOLUME OF RESERVOIR : 3. m3xioEG
NOTES ON REGIONAL GEOLOGV: Margin of the Peninsular Shield of India.
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON SEISMICITY AFTER IMPDUNDMEN
impoundment.
GENERAL NOTES
RIS CATEGORY: GUEstionable
GEOLOGY REFERENCES : $106,192,203$
Gigerwald
DAM NAME : Gigerwald
RIVER: Tamina
PROVINCE OR REGION: St. Gallen
DATE DAM COMPLETED. 1976
EXPECTED FLUCTUATIDNS BASED ON PRIMARY USE : Hydropower
STRUCTURAL HEIGHT OF DAM: 147. (m) Gbove lowest foundation DAM HEIGHT

EGTONIC PROVINCE: Alps
REGIONAL STRESS REGIME: Compressional
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
GEOLOGY REFERENCES : 107.108
Glen Canyon
DAM NAME : Glen Canyon
DESERVGIR NAME : Lake Powell
COUNTRY: USA
RIVEH: Colorado
LOCATION OF CENTER OF RESERVOIR : 37.O7N, 111.22W
LOCATION OF DAM : 36. 95N, 111. 4BW
ch
964
NG
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower (); multi-purpose
ORIENTATION OF RESERVOIR : NSSE
STRUCTURAL HEIGHT OF DAM: 216. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 178.00 m
MAXIMUM VOLUME OF RESERVIIR : 33305. m3x10E6
EVIDENCE FOR REGIONAL STRESS REGIME tectonics
CIMFIDENCE IN REGIONAL STRESS REGIME EVALUATION : medium
NOTES ON SITE GEOLOGY: Dam and portions of reservoir underlain by Navajo sandstone of Jurassic age
SITE GEOLOGY: Coarse clastic
AGE OF SITE GEOLOGY: Jurassic
GEDLOGY REFERENCES : 84,92,106.310
LOCATION OF CENTER DF RESERVQIR: $40.05 N, 31.32 E$
DAM TYPE : CONCTEte arch
DATE DAM COMPLETED. 1973
EXPECTED FLUCTUATIONS BASED QN PRIMARY USE : Irrigation
ORIENTATIUN DF RESERVOIR : E
ETRUCTURAL HEIGHT OF DAM: 160 . (m) above foundation
LEMGTH OF DAM : $495 . \mathrm{m}$
MAXIMUM DEPTH OF RESERVQIR : 115.0 m
RESEKVOIR DEPTH COMPUTED FROM DAM HEIGHT: 115.00 m
MAXIMUM VOLUME OF RESERVGIR : $910 . \mathrm{m3x10E6}$
SURFACE AREA OF RESERVOIR : 22. 30 kMa
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium

SITE GEDLOGY: Metamarphic
GEOLQGY REFERENCES: 76A,107,108,181,348A
DAM NAME : Gordon RESERVOIR NAME
CDUNTRY: Australia
LDCATION OF CENTER
PROVINCE OR REGION
DAM TYPE : Concrete arch
DATE DAM COMPLETED
DATE OF START OF FILLING: Inundation began 1972
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hyoropower
NOTES ON DAM: Reservoir adjoins Lake Pedder
STRUCTURAL HEIGHT DF DAM: $140 . \mathrm{m}$
MAXIMUM DEPTH OF RESERVUIR 12E. 0 m I 120 m
REGERVOIR DEPTH COMPUTED FROM DAM HEICHT : 12
NOTES ON REGIONAL GEOLOGY Low-grade precanbr
sandstane. unmetamarphosed. and
AGE OF REGIONAL GEDLOGY: Precambrian
REGIONAL STRESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CINFIDENCE IN REGIDNAL STRESS REGIME EVALUATION : 1 OW
is broad antiform with minor (1m-10m) folds on flanks.
is broad antiform with minor (1m-10m) folds on flanks
SITE GEOLOGY: Metamorphic
AGE OF SITE GEQLOGY: Precambrian
GEOLOGY REFERENCES: $24,107,108,299$
$A-94$
DAM NAME : Goschener Alp (Goeschener Alp) REEERVBIR NAME: GOSchener ALp
LOMATION OF CENTER CHM TON, SIE
PROVINCE OR REGION: URI
DAM TYPE : Earth () 1960
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
ORIENTATION OF RESERVOIR
GTRUCTURAL HEIGHT OF DAM: 153. (m) doove lowest foundation
LENGTH OF DAM: S4O. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 139.50 m MAXIMUM VOLUME OF RESERVOIR : 75. m3×10E6
TECTONIC PROVINCE: Alps
EUIDENCE FOR REGIONAL STRESS REOIME: tectonics
COMFIDENGE IN REGIONAL STRESS REGIME EVALUATION
SITE GEOLOGY: Batholithic

OEOLOGY REFERENCES : 106. 289
DAM NAME : Grancarevo
feservair name : bileca
COUNTRY: Yugoslavia
RIVER: Trebisnjica
LOCATION OF CENTER OF
PROVINCE OR REGION: Bosna Hercegov
DAM TYPE Concrete arch
DATE DAM COMPLETED: 1967
PROVINCE OR REGION: Bosna Hercegov
DAM TYPE : COncrete arch
DATE DAM COMPLETED: 1967
DATE OF START OF FILLING: NOV-1967
EXPECTED FLUCTUATIUNS BASED ON PRIMARY USE : Hydropower
NOTES ON DAM : Dam height of 107 m above groundi inverted
RESERVIIR DEPTH COMPUTED FROM DAM HEIGHT : 105.00 m
MAXIMUM VOLUME OF RESERVOIR: 1280 . m3x10E6
MTES ON REGIONAL GEOLGGY
jointed, consisting principaliy of Mesozoic limestone.
REGIONAL GEOLOGY : Carbonate
AGE OF REGIONAL GEOLOGY : Mes
AGE OF REGIONAL GEOLOGY: Mesozoic
REGIONAL STRESS REGIME COmpressional
REGIONAL STRESS REGIME
EVIDENCE FOR REGIONAL
MITES ON SITE GEOLOGY: Karstified, faulted, fissured, and jointed Mesozoic limestone.
AGE OF SITE GEOLOGY: Mesozoic
TYFE OF PERMEABILITY: Cavernous
DATE OF FIRST SUSPECTED RIS EVENT: Dec-1967
NETES ON SEISMICITY AFTER IMPOUNDMENT : Microearthquake activity increased in frequency to 30 times that of pre-impoundment activity
within an approximate 20 km radius of
obtained.
activity. No change in macroseismicity.
activity. No change in
RIS CATEGORY : Accepted
GEOLOGY REFERENCES: 64,106,391,418
RIVER ME RESERVOIR : 48 33N. 118.17W LICATION OF DAM : $47.95 \mathrm{~N}, 118.98 \mathrm{~W}$
PROUINCE OR REGION: Washington
DAM TYPE : Concrete gravity
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
ORIENTATION OF RESERVOIR: NE
NOTES ON DAM
ORIENTATION
IRTUUCTURAL HE
LENGTH OF DAM: 1272 m
LENGTH OF DAM : 1272 . m
MAXIMUM DEPTH OF RESERVO
REEEKVIIR DEPTH COMPUTED FROM DAM HEIGHT: 116.00 m
MAXIMUM VOLUME OF RESERVOIR : 11790. m3x10E6
URFACE AREA OF RESERVOIR : 393. 00 kma km
NOTES ON REGIDNAL GEOLOGY: PIIo-Pleistocene basalt folded/faulted along W-NW structural axes
REGIONAL GEOLOGY : Volcanic
AGE OF REGIONAL GEQLOGY
TECTONIC PROVINCE: Calumbia Plateau
REGIONAL STRESS REGIME: Extensianal
EVIDENCE FOR REGIONAL STRESS REGIME
EVIDENCE FOR REGIONAL STRESS REGIME: Tectonics
CONFIDENCE IN FEGIDNAL STRESS REGIME EVALUATION
CONFIDENCE IN FEGIDNAL STRESS REGIME EVALUATION
WOTES ON SITE GEDLOGY: K to Tertiary granite at
WOTES ON SITE GEDLOGY
SITE GEOLOGY: VOICAN
AME OF SITE GEDLOGY: Pliocene
GEILOGY REFERENCES : $106,434 A$
A-97
Grand Dixence
Diam NAIE : Grand Dixance Dix
REGERVOIR
RIGER : Dixence
.JIATION OF CENTER OF RESERVOIR: 46.06N, 7.4OE LUSATION OF DAM : 4E. OBN, 7. 4OE
PRIDVINCE DR REGION: Valais
DAM TYPE : Concrete gravity
DATE DAI COMPLETED: 1962
REGERV
IRIENTATIQN OF RESERVOIR
STRUCTURAL HEIGHT DF DAM
LENGTM OF DAM : 695. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 255.00 m
MAXIMUM VOLUME OF RESERVOIR : 400. m3x10E6
LIMJGEST DIMENSION OF RESERVOIR : 5.4 km

RECIONAL GEOLOGY: Metamorphic
ASE OF REGIONAL GEDLOGY: Mesozotc
TECTONIC PROVINCE: AIPS
REGIDNAL STRESS REQIME : COMPTESSI onal
EVIDENCE FOR REGIONAL STRESS REQIME:
CONFIDENCE IN REOIONAI. STRESS REOIME E
EVIDENCE FOR REGIONAL STRESS REQIME : tactonics
CONFIDENCE IN REOIONAI- STRESS REQIME EVALUATION
NOTES ON SITE GEQLOGY: JUTASsIc-Cretaceous schi
EITE GEDLOBY: Metamorphlc
ARE OF SITE GEOLQGY: Jurassic
ORIENTATION DF ETRUCTURAL GRAIN: NE
CEGREE OF DEFORMATION: strongly deformed
HigTES ON FAULTING: Major intra-nappe thrust fault passes through or adjacent to dam and corner of reservoir.
FREDOMINANT FAULT TYPE : thrust
AZIMUTH OF PREDOMINANT FAULTINO
AZIMUTH OF PREDOMINANT FAULTINQ: NE
CIIIINANT SIDE UP: SE () southeast
LIC.ATION OF RESERVDIR IN RELATION TO FAULTS : upthrown block
DIETANCE TO CLOSEST KNOWN FAULT : $2 G .0(\mathrm{~km}) \mathrm{km}$
VEOLOGY REFERENCES : 106.434
$A-98$
DAM NAME: Grandval CDUNTRY: France
QIVER: Truyere
LOCATION OF CENTER OF RESERVOIR : $44.97 \mathrm{~N}, 3.10 E$ LOCATION OF DAM : 44.90N, 3.07E DAM TYPE: Concrete multiple arch DATE DAM COMPLETED: 1959 NOTES ON HISTORY OF IMPOUNDMENT: refilled by August-September 1963.
DATE OF START OF FILLING: 15-Sep-1959
RATE OF INITIAL FILLING
1 ONINNIOヨa WO甘s $58 \forall \exists A$
NOTES ON DAM : V-shaped
IR IENTATIGN OF RESERVIR
LENGTH OF DAM: 400. m
MAXIMUM DEPTH OF RESERVOIR:78.0 m
RESERVOIR DEPTH COMPUTED FROM DAM
MAXIMUM VOLUME OF RESERVOIR: 292.
NOTES ON REGIONAL GEQLOGY: PaIeazoic gneiss and granite overlain by cenozaic valcanics
REGIONAL GEOLOGY: Metamorphic
AGE OF REGIONAL GEOLDGY: Paledzaic
TEETONIC PROVINCE:
REGIONAL STRESS REGIME
NOIES ON SITE GEOLOGY: Tectonically deformed Paleazaic mica schisti deformation includes folding, fracturing and falting.
SITE GEOLGGY: Metamorphic
AGE OF SITE GEOLOGY: Paleozoic
AZIMUTH OF PREDOMINANT FAULTING: NE
MAXIMUM LENGTH OF FAULTS : 4.00 (km$)$
MAXIMUM LENGTH OF FAULTS : $4.00(\mathrm{~km}) \mathrm{km}$
DISTANCE TO CLOSEST KNOWN FAULT: 3.6 (km)
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAULT : Post emplacement of granite
DATE OF FIRST SUSPECTED RIS EVENT : 31-Dec-1961
MAGNITUDE OR INTENSITY OF LARGEST SUSPECTED RIS
NDTES ON SEISMICITY AFTER IMPOUNDMENT : Micraseismicity associated with initial filling. After reservoir emptied and refilled,
increase in macroseismicity clearly associated with refilling and water level fluctuations.
GENERAL NOTES : Datz rel
TYFE OF RIS : macro and micra
irgen peter
DAM NAME : Green Peter
CIUNTRY: USA
RIVER : MIddie Santiam PROUINCE DR RECION: Oregon
PROM TYPE : Concrete gravity
DATE DAM COMPLETED : 1967
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : MUIti-purpose; Flood control () is first use listed
NOTES ON DAM : Dam height
STRUGTURAL HEIGHT OF DAM: 111. (m) above foundation
LENGTH OF DAM: 421. m
MAXIMUM DEPTH OF RESERV
REEERVOIR DEPTH COMPUTED FROM DAM HEICHT : 97.00 m
MAXIMUM VOLUME OF RESERVOIR : 530 . m3x10E6
LONGEST DIMENSION DF RESERVOIR : $14.5(\mathrm{~km}) \mathrm{km}$
NGIES ON REGIONAL GEOLGGY : rertiary massive lava flows with thin interbedded valcanic or volcanic-derived tuffs, intruded by
REGIOMAL GEOLOGY: Valcanic
AGE OF REOIONAL GEDLOGY: Tertiary
TECTONIC PROVINCE : CAscades
EVIDENGE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIOMAL STRESS REGIME EVALUATION: medium
MOTES ON SITE GEOLOGY: Several shear zones in dam area f
toward left abutment.
ADE OF SITE GEQLOGY: Tertiary
PREDOMINANT FAULT TYPE : Norma
AZIMUTH OF PREDOMINANT FAULTING: N to $\mathrm{NW}(1$ trending
MAXIMU1 LENGTH OF FAULTS : 10.00 (km$) \mathrm{km}$
DISTANCE TO CLOSEST KNOWN FAULT: Fault about g. 0 (km)
DISTANCE TO CLOSEST MNOWN FAULT : Fault about 8 . O (km) km to east; another 20 km to west
Gertiary References: 106, 112,187A, 224, 337
$A-100$
DAM NAME : Guri COUNTR : Venezuela
RIVER : Caroni
RIVER : Caroni
L.OCATION OF CENTER
LOCATION OF DAM:
PROVINCE OR REGION
DAM TYPE : ROCK ()
DATE DAM COMPLETED
$1.39000 E 06$ cubic m.
ORIENTATION OF RE
SIRUCTURAL HEIGHT
REEERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 95.40 m
MAXIMUM VOLUME OF RESERVOIR : 17700. mJ km
REGIONAL STRESS REGIME: Compressional
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
CONFIDENGE IN REGIONAL STRESS REGIME EVALUATION
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: IOW
GEOLOQY REFERENCES : 106, 108
Hatanagi No. 1
DAM NAME : Hatanagi No. 1
RIVER: Oi
LOGATION OF CENTER OF RESERVOIR: 35. $31 \mathrm{~N}, 13 \mathrm{~B}$. 1ge
LOCATION OF DAM: 35. 30N, 138. 20E
PROVINCE OR REGION: Shizuoka
DAM TYPE : Hollow gravity
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower (); pump-storage plant
NOTES ON DAM : Dam height of 105 m above ground
QRIENTATION OF RESERVIIR : NW
LENGTH OF DAM : 269. \sim m
LENGTH OF DAM: 269. m.
RESERVOIR DEPTH COMPUTED FROM DAM HEIOHT: 107.00 m
MAXIMUM VOLUME OF RESERVOIR: 107 . $\mathrm{m} 3 \times 10 E 6$
MAXIMUM VOLUME OF RESERVOIR : 107. m3x10EG
LONGEET DIMENSION OF RESERVOIR: $5.5(\mathrm{~km})$
LONGEST DIMENSIDN OF RESERVOIR: 5. 5 (km) km
REGIONAL STRESS REGIME : COMPRESSIonal
REOIONAL STRESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME :
CONFIDENGE IN REGIONAL STRESS REGIME EVALUATION : IOw
NOTES ON SITE GEOLOGY: Shale
SITE GEDL OGY: Fine clastic
GEOLOQY REFERENCES: 106.299

A-102
DAM NAME : Hendrik Verwoerd
DAM NAME : Hendrik Verwoerd COUNTRY: South Africa
ROCATION OF CENTER OF RESERVOIR : 30. 635. 25. 78E LDGATION OF DAM: 30.635.25. 50E DAM TYPE: Concrete double arch DATE DAM COMPLETED: 1970 DATE OF START OF FILLI EXPECTED FLUCTUATIONS BAS ORIENTATION OF RESERVOIR : N75W
STRUCTURAL HEIGHT OF DAM : 66. m
LENGTH OF DAM : 600 . m
MAXIMUM DEPTH OF RESERVIR : 55.0 STRUCTURAL HEIGHT OF DAM: 66. m
LENGTH OF DAM : 600 . m
MAXIMUM DEPTH OF RESERVOIR : 55.0
MAXIMUM DEPTH OF RESERVOIR: SS. 0 (m) (measured from level data) RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 55.00 m
MAXIMUM VOLUME OF RESERVOIR : 5000. m3x10EG
LOMGEST DIMENSION OF RESERVOIR : $60.0(\mathrm{~km}) \mathrm{k}$
NOTES ON REGIONAL GEDLOGY: Near the center of basin within a relatively stable shield area. Upper Paleozoic to lower Mesozoic Karoo Systam is underlain by Precambrian cavernous dolomite, which is underlain by the precambrian Wituaterstrand quartzite REGIONAL GEOLOGY: Fine clastic
ABE OF REGIONAL GEOLOGY: lower Mesozoic
REGIONAL STRESS REGIME: Compressional
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON SITE GEOLOGY: HOTizontal UPper Paleozoic to low
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON SITE GEOLOGY: Horizontal UPper Paleozoic to low
NOTES ON SITE GEOLOGY
SITE GEOLOGY: Fine clastic
ASE OF SITE GEOLOGY: lower Mesozaic
MOTES ON HYDROLOGY: Probably low sur
Irrigation
bably low surficial permeability in dense, competent, flatlying sedimentary units. Underlying cavernous
Grounduater probably perched except where fractures or minor faults may provide hydraulic continuity with

$$
\begin{aligned}
& \text { impervious () in Hiroo, cavernous in dolomite } \\
& \text { RIS EVENT : Feb-197i () Magnitude less than } 2 \\
& \text { ER IMPOUNDMENT: Microseismicity related to initial impoundment, with increase as maximum water level } \\
& \text { tionship to early stages of fluctuations, but after about } 1 \text {. S years seismicity decreased to near }
\end{aligned}
$$

located beneath the

Hongrin Mord

DAM NAME : Hongrin Nord

RIVER : Hongrin
RIVER : Hongrin
LOCATION OF CENTER OF RESERVGIR: $46.39 N, 7.05 E$ LDCATION OF DAM : 46. 39N, 7.O4E PRUVINCE OR REGION: Vaud
SAM TYPE COncrete arch
GATE DAM COMPLETED: 1968 EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
STRENTATION OF RESERVOIR: E (G) above lowest foundation
LENGTH OF DAM: 325. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 107.00 m
MAXIMUM VOLUME OF RESERVIIR: 53. m3xIOEG
TECTONIC PROVINCE A Alps
REGIONAL STRESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON SITE GEOLOGY : Limestone dipping 40 to So degrees
MDTES ON SITE GEOLOGY: Limestone dipping 40 to so degrees upstream
SITE GEDGGY: Carbonate
SITE GEDLOGY: Carbonate
MAXIMUM LENGTH OF FAULTS
DIETANCE TO CLOSEST KNOWN FAULT: less than $1.0(\mathrm{~km}) \mathrm{km}$

A-105

36. 13N, 114.43W

 OZN, 114.75W arch ()-gravity May-1935Irrigation () is first use itstad. Tertiary basalt and andesite wit

 LOCATION DF DAM :
PRDVINCE OR REGION
DAM TYPE : CINCTET
DATE DAM COMPLETED
DATE OF START OF F
EXPECTED FLUCTUATIO
NGTES ON DAM : 176
ORIENTATION OF RESE
STRUCTURAL HEIGHT
LENGTH OF DAM : 37
REEERVOIR DEPTH CO
MAXIMUM VOLUME OF
SURFACE AREA OF RES DEPTH MAXIMUM VOLUME OF
SURFACE AREA OF RE LONGEST DIMENSION Tertiary extensio REGIONAL GEOLOGY

$$
\begin{aligned}
& \text { and granite. } \\
& \text { IITE GEOLOGY: Fine clastic }() \text { (Muddy Creek Fm.) }
\end{aligned}
$$

GITE GEDLUGY: Fine clastic (SITE GEDLOGY: Tertiary
MOTES DN FAULTING: Faults in
 on some fant FAU
PREDOMINANT FAULT TYPE : Normal (): some right-lateral
AZIMUTH OF PREDOMINANT FAULTING: N to NW i): 60 deg
LICATION OF RESERVOIR IN RELATION TO FAULTS: 4 major faults in reservoir
MAME OF CLOSEST KNDWN FAULT: Mead Slope fault
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAULT : Quaternary, possibly ARE LDCAL FAULTS ACTIVE?: YES
NOTES DN HYDROLOGY : Eastern basin: low (evaporites, fine-grained clastics); western basin higher. PERMEABILITY OF ROCKS: IDW
LEGREE OF TOPOGRAPHIC RELIEF: high (); Varies, such that in some areas relief is low to moderate DATE OF FIRST SUSPECTED RIS EVENT : SEP-1936 MAGNI TUDE OR INTENSIYY OF LARGEST SUSPECTED RIS EVENT: MAg 5 (NDAA) LATE DF LARGEST SUSPECTEL RIS EVENT : 10-Mar-1940
WUTES DN SEISMICITY AFTEF IMPOUNDMENT: GJod corvel

Moit events occurred within 25 km of the reservoir. 1940 to 1944 events concentrated along faults along the southeast shore of
three faults in reservoir
Temporal and

GEOLOGY REFERENCES : 21,22,23,64, 82, 83, 84, 85, 106, 203,273, 282, 331,380,386, 388, 393,473
DAM NAME: Idikki
RESEKVOIR MAME: Puayar Lake
COUNTRY: India
LOCATION OF CENTER OF RESERVOIR : 9. 53N, 77.21E LOCATION OF DAM: 9.53N,77.15E PROVINCE OR REGION: Kerala
DAM TYPE : Multi-arch
DATE DAM COMPLETED : 1975

provide hydropower
NOTES ON DAM: Two
NITES ON DAM : Two principal dams, Idikki and Cheruthoni, impound puayar Lake. Idikki is higher dam.
ORIENTATION QF RESERVOIR : E
ORIENTATION OF RESERVOIR : E
STRUCTURAL HEIGHT OF DAM: 16
LENGTH OF DAM : 355. m
MAXIMUM DEPTH OF RESERVOIR : 166.0 m
RESERVOIR DEPTH COMPUTED FROM DAM HEI
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 166.00 m
MAXIMUM VOLUME OF RESERVOIR : $1996 . \mathrm{m} 3 \times 10 E 6$
LONGEST DIMENSION OF RESERVOIR : 13. 0 km
NOTES ON REGIONAL GEOLOGY: Pre-Cambrian
AGE OF REGIONAL GEOLOGY: Pre-Cambrian
TECTONIC PROVINCE: Indian Shiald
REGIIDNAL STRESS REGIME : Shear
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
NGTES ON SITE GEOLOGY: Dam site consists of charnockite alternating uith gneiss with near-vertical foliation
SITE GEDLQGY: Metamorphic
NOTES ON FAULTING : Fault through auxiliary dam foundationi type and age not obtained
GEILGGY REFERENCES : 106.298,381,408A
$A-109$
Ikehara

Nara arch

Jayamaion
Ikeha
Japan
itayama
 geology references : 106
DAM NAME: IIha Solteira COUNTRY: Brazil
OCATION OF NENTER OF RESERVOIR : 20.205, 51.06W LOCATION OF DAM : 20.35S, 51.27W
PROVINCE OR REGION: Sao Paulo/Mato Grasso
DAM TYPE : Earth () and rockfill
DATE DF START OF FILLING: Impoundment commenced in Mar-1973
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
STRUCTURAL HEIGHT OF DAM : 78.
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 74. 10 m
MAXIMUM VOLUME OF RESERVOIR: 21200. m3x10E6
MAXIMUM VOLUME OF RESERVOIR
SURFACE AREA OF RESERVOIR:
SURFACE AREA OF RESERVOIR
LONGEST DIMENSION OF RESERVOIR: 130.0 km
NOTES ON REGIONAL GEQLOGY: Basalts of upp
sandstone.
REGIONAL GEOLOGY: Volcanic
REGIONAL STRESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: low
NOTES ON SITE GEOLOGY: Dam: Basalt underlain by brec
MOTES ON SITE GEOLOGY : Dam: Basalt Underlain by breccia and another basalt flow.
SITE GEOLOGY: Volcanic
GEOLOGY REFERENCES: 71,107,108,453
$A-111$
Itezhitezhi
DAM NAME: Itezhitezhi
RESERVOIR MAME: Itezhitezhi
COUNTRY: Zambia
RIVER : Kaf CENTER
DAM TYPE : Rock () fill
DATE DAM COMPLETED: 1978
LOCATION OF CENTER OF RESERVOIR : 15.795.26.07E
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
STRUC TURAL HEIGHT OF DAM: $65 .(\mathrm{m}) \mathrm{m}$
MAXIMUM DEPTH OF RESERVOIR : G2. O (m) m
RESERVDIR DEPTH CDMPUTED FROM DAM HEIGHT: 62.00 m
MAXIMUM VOLUME OF RESERVOIR : 5000. $m 3 \times 10 E 6$
LUNGEST DIMENSIUN DF RESERVOIR : 45.0 (km) km
REGIONAL GEOLOGY: Batholithic
REGIDNAL STRESS REGIME : Extensional
EVIDENCE FOR REGIDNAL STRESS REGIME: faulting sense
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON SITE GEOLOGY: Site located in graben with down-d
ungpecified age
SITE GEOLOGY: Batholithic
PREDOMINANT FAULT TYPE : NOTMAI
DISTANCE TO CLOSEST KNOWN FAULT : $0.0(k m) k m i$ through abutments and reservoit
DATE OF FIRST SUSPECTED RIS EVENT : May- 1978 . NCTES DN SEISMICITY BEFORE IMPDUNDMENT, ATea of high level macroseismicity close (ISC) within 16 km of center of reservoir in 19G日, eight years prior to filling.

GENERAL NOTES: No data were obtained
人80031*5 SIA
GEOLQGY REFERENCES : 143; Iernelius, written communication

$$
\begin{aligned}
& \text { MAXIMUM DEPTH DF RESERVQIR : } 105.0(\mathrm{~m}) \mathrm{m} \text { (calculate } \\
& \text { RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : } 105.00 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Irrigation } \\
& \text { ORIENTATION OF RESERVOIR : STOE } \\
& \text { STRUCTURAL HEIGHT OF DAM: } 120 .(\mathrm{m}) \text { above lowest foundation } \\
& \text { MAXIMUM DEPTH DF RESERVOIR : } 105.0(m) \mathrm{m} \text { (calculated from drauing) }
\end{aligned}
$$

$$
\text { MAXIMUM VOLUME DF RESERVOIR: } 980 \text {. m3xIOEG }
$$

$$
\begin{aligned}
& \text { SURFACE AREA OF RESERVOIR : } 26 . \\
& \text { LONGEST DIMENSION DF RESERVOIR }
\end{aligned}
$$

$$
\begin{aligned}
& \text { REGIONAL STRESS REGIME } \\
& \text { EVIDENCE FOR REGIONAL }
\end{aligned}
$$

$$
\begin{aligned}
& \text { EVIDENCE FOR REGIONAL } \\
& \text { CONFIDENCE IN REGIONAL }
\end{aligned}
$$

NDTES GN SITE GEOLQGY clays overlain by Miocene
site geologr: Carbonate
AGE OF SITE GEOLOGY: Jurassic
GEOLOGY REFERENCES : GG, $104 \mathrm{~A}, 107$
A-114
Jocasser
DAM NAME : JOcassee
RESERVDIR NAME: LakE JOCassea
COUNTRY: USA
RIVER : Keowee
LOCATION OF CENTER OF RESERVOIR : 34.98N, 82.94W LOCATION OF CENTER OF RESERVOIR province or region: South Carolina DAM TPPE : Rock K) Pl1973
DATE OF START OF FILLING: Apr-1971
RAIE OF INIAL FILLING MAXIMM (m/month) m/month 3 (years) years
MAXIMUY RATE OF FILLING: 10.00 (m/month) m/month in April-May 1971 Maximum rate of drawdown : 12.00 (m/month) m/month in July 1973. EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
STRUCTURAL HEIGHT OF DAM : 133. (m) above lowest foundation MAXIMUM DEPTH OF RESERVOIR : 107.0 m
RESERVIIR DEPTH COMPUTED FROM DAM HEIGHT: 107.00 m
MAXIMUM VOLUME OF RESERVOIR : 1431. m3x10E6
SURFACE AREA OF RESERVOIR: $30.00(\mathrm{~km} 2) \mathrm{km}$
LONGEST DIMENSION OF RESERVOIR : 18.0 km
NOTES ON REGIONAL GEOLOGY : Pre-Cambian to early Paleozoic metamorphicsincluding gneiss, schist, amphibolite, all highly deformed and intruded by granitics during Paleozoic and possibig
REGIONAL GEOLOGY: Metamorphic
REE OF REGIONAL GEOLOGY: Paleozoic
TECTONIC PROVINCE: Piedmont
REGIONAL STRESS REGIME: Extensional () (NW-SE)
EVIDENCE FOR REGIONAL STRESS REGIME: focal mechanism
CINFIDENCE IN REGIONAL STRESS REGIME EVALUATION: high
wates on site geology: Dam: Paleozoic Henderson Gieis
SITE GEOLOGY : Metamorphic
AGE OF SITE GEOLOGY: Paleozoic
MOTES ON FAULTING: Individual faults vary in strike from N7E to NSOE, N2OW to N4OW. Main Brevard zone is N3SE.
PREDOMINANT FAULT TYPE Thrust
AZIMUTH OF PREDOMINANT FAULTING: N3SE
MOTES ON FAULTING: Individual faults vary in strike from N7E to NSOE, N2OW to N4OW. Main Brevard zone is N3SE.
PREDOMINANT FAULT TYPE Thrust
AZIMUTH OF PREDOMINANT FAULTING: N3SE
AZIMUTH OF PREDOMINANT FAULTING
DOMINANT SIDE UP: SE (): southeast
LOCATION OF RESERVIR IN RELATION TO FAULTS : Brevard Zone through western area of reservoir, 3 faults
NAME OF CLOSEST KNOWN FAULT: Brevard Zone
DISTANCE TO CLOSEST KNOWN FAULT: 0.0 (km) kmi
DATE OF FIRST SUSPECTED RIS EVENT : 13-JU1-1971
MAGNITUDE OR INTENSITY OF LARGEST SUSPECTED RIS EVENT: MAg 3. 2 (NOAA)
notes on seismicity after impqundment
attained. No apparent correlation was observed between variation
period because the water level generally varied less than 10 feet
GEINERAL. NOTES : Data reliability is moderate to low. Little pre-i
eservoir exists. with seismicity
0 Spatial relationship reservair level. eismicity with variations in TYPE OF RIS : macro and micro

A-116
DAM TYPE : Rock () fill buttress with gravity dam spillway section
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: 10 m each year on the average; Hydropower
RESERVOIR DEPTH COMPUTED FROM DAM HEIOHT: 74.39 m
MAXIMUM VOLUME OF RESERVIRI $15062 . \mathrm{m3} \times 10 E 6$
LONGEST DIMENSION OF RESERVOIR: 135.0 km
REGIONAL STRESS REGIME: Compressional
EVIDENCE FOR REGIONAL STRESS REGIME: faulting sense
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : medium
Inactive faults in dam foundation
GEOLOGY REFERENCES : 107,142,144
Kakhovka
DAM NAME : Kakhovka
RESERVOIR NAME: Kakhovskoye Vakhr.
LOCATION OF CENTER OF RESERVOIR : 47.42N, 34.17E
OF DAM : 46. 77N, 33. $34 E$
DROM TYPE : Earth () buttress with concrete gravity spillway section. DATE DAM COMPLETED : 1955
ORIENTATION OF RESERVOIR : NE
EXPECTED FLUGTUATIONS BASED ON PRIMARY USE: Hydropower
STRUCTURAL HEIGHT OF DAM: 37. m
LENGTH OF DAM: 1640 . m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 33.15 m
MAXIMUM VOLUME OF RESERVOIR : $18200 . \mathrm{m3x1OEG}$
SURFACE AREA OF RESERVOIR: 2155.00 km 2
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 33.15 m
MAXIMUM VOLUME OF RESERVOIR : $18200 . \mathrm{m} 3 \mathrm{xIOEG}$
SURFACE AREA OF RESERVOIR : 2155.00 km
LONGEST DIMENSION OF RESERVOIR: 250.0 km
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
NOTES ON SITE GEOLOGY: Flood plain sandy and silty alluvium, limestone bedrock (highly fissured on left bank)
$17 \mathrm{~m} / \mathrm{day}$ to $600 \mathrm{~m} / \mathrm{day} \mathrm{h}$ high
Kakki

DAM NAME : Kakki

LOCATION OF CENTER OF RESERVOIR : 10.28N, 77.17E
Kerala
NCE OR REGION
YPE : Gravity
DAM COMPLETED
TED FLUCTUATIO
ON DAM: DAM
TURAL HEIGHT OF
OF DAM : 336
VOIR DEPTH COMP
ONS BASED ON PRIMARY USE: Hydropower
height of 110 m above ground
ght of 110 m above ground
AM : $114 . \mathrm{m}$
96.00 m D47. m3x10E6 REGIONAL GEOLOGY: Metamorphic
AGE OF REGIONAL GEOLOGY: Pre-cambrian
REGIONAL STRESS REGIME: Shear
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
QEOLOGY REFERENCES : 106

DAM NAME : Kama
 DAM NAME

COUNTRY: USSR
RIVER : Kama
LOCATION OF
LOCATION OF CENTER OF RESERVOIR: SE. E7N, 56. $25 E$
LOCATION OF DAM: 5E. O9N. $56.32 E$
PROVINCE OR REOION: URAl
DAM TYPE : Earth ($)$ buttress and concrete gravity spilluay section
EXPECTED FLUCTUATIONS GASED ON PRIMARY USE: Multi-purposei Hydropower () is principal use
ORIENTATION OF RESERVOIR : N
GTRUCTURAL HEIGHT OF DAM: 37. m
LENOTH OF DAM : 2300. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 35.15 m
MAXIMUM VOLUME OF REBERVGIR : $12200 . \mathrm{m3x10E}$
SURFACE AREA OF RESERVIIR : 1720.00 km 2
LONGEST DIMENSION OF RESERVOIR: 230.0 km
REOIONAL STRESS REGIME : COMP RESBIONAI
EVIDENCE FOR REGIONAL STRESS REGIME :
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CUNFIDENCE IN REGIONAL STRESS REGIME EVALUATION
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: low
HOTES ON SITE GEOLOGY: Wapplerite, IImestone, dolamite
site gealogy : Carbonato
GEOLOGY REFERENCES : 106, 152.330A
Mamafusa
DAM NAME : Kamafusa
COUNTRY: Japan
PROUINCE OR REGION: 20 km west of Sendai DAM TYPE : Concrete gravity
DATE DAM COMPLETED ILIG70. FED-1970
EATE OF START OF FILLING: Feb-1970
EXPECED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
STRUCTURAL HEIGHT OF DAM
LEMGTH OF DAM : 177 . m
RESERVOIR DEPTH COMPUTED FROM DAM
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 42.30 m
MAXIMUM VQLUME OF RESERVOIR : 45. m3×IOEG
MAXIMUM VOLUME OF RESERVOIR : 45. m3x10EG
FEGIONAL STRESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
METES ON SITE GEQLOGY: Volcanic tuff. Hot spring downstream from dami discharge rate and temperature increased after reservoir
impoundment.
SITE GEOLOGY: Volcanic
NDTES ON HYDROLOGY: Groundwater apparently related to fractures in volcanic tuff. Deep circulation suggested by increased
TYFE OF PERMEABILITY: fracture
DATE OF FIRST SUSPECTED RIS EVENT : APr-1970
NOTES ON SEISMICITY BEFDRE IMPOUNDMENT: High frequency of macro-earthquakes near dam prior to filling.
NOTES ON SEISMICITY AFTER IMPQUNDMENT: Microearthquake activity near to of under reservoir increased subsequent to impoundment.
Highest levels of seismicity correspond to highest water levels. Macroseismicity continues unchanged at high level.
GEMERAL NOTES: Data reliability is low to moderate. Ease-iline data were not obtained. Definite inerease in frequence of
mieroeqrihquakes occurred after reservoir impoundment. Variation in activity accompanied changes in water level.
RIS CATEGORY: Accepted
GEOLOGY REFERENCES : 107,203,439
DAM MAME : Kamishiiba
CIUNTRY: Japan
RIVER : Mimi
LOCATION OF CENTER OF RESERVOIR: 32. SON. 131.28E
LOCATION OF DAM: 32. SON, 131. 30E
FROVINCE OR REGION: Miyazaki
DAM TYPE : Concrete arch
DATE DAM COMPLETED: $195 S$ BED ON PRIMARY USE : Hydropower
EXPECTED FLUCTUATIONS BASED
NOTES ON DAM: Dam height of 103 m above ground
OR IENTATION OF RESERVOIR i W
STRUCTURAL HEIGHT DF DAM: 110. (m) abave found
LENGTH OF DAM : 341. m. 110
MAXIMUM DEPTH OF RESERVOIR
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 100.00 m
MAXIMUM VOLUME OF RESERVOIR
SURFACE AREA OF RESERVIIR:
LONGEST DIMENSION DF RESERVOIR
EVIDENCE FOR REGIONAL STRESS REGIME: faulting sense
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : medium
MOTES ON SITE GEOLOGY: Mesozoic graywacke, clay-slate,
SITE GEOLOGY: Metamorphic
AGE OF SITE GEOLOGY: Masozoic
GEOLOGY REFERENCES : 106,316,367,468A

A-122
DAM NAME : Kapchagay
DAM NAME
RESERVDIR
CDUNTRY: USSR
RIVER: III
LOCATION OF CENTER OF RESERVOIR : 43. BON, 77. B3E
LOCATION OF DAM : 43. 2ON, 77. 14E
PROVINCE OR REGION: Kazakhstan
PROVINCE OR REQION: Kaz
DAM TYPE : Earth () fill

 FLUCTUATIONS BASED ON PRIMARY USE: ITrigation
ION OF RESERVOIR: E
AL HEIGHT OF DAM : $50 . \mathrm{m}$
F DAM 470 . m
R DEPTH COMPUTED FROM DAM HEIGHT $: 47.50 \mathrm{~m}$
VOLUME OF RESERVOIR : $28140 . \mathrm{m3} \times 10 E 6$
DIMENSION OF RESERVOIR : 130.0 km SERVOIR
TRESS RE
TRESS REGIME EVALUATION: Iow
nary alluvium and colluv

DAM NAME DAM NAIE
COUNTRY
RIVEF : K
LOCATION OF CENTER DF RESERVOIR: 35. 9GN, 51.11E
PROVINCE
DAM TYPE : Concrete arch
DATE DAM COMPLETED : 1961
DATE OF START DF FILLING
RATE OF INITIAL FILLING: AVErage 7.20 (m/month) m/month rise in reservoir level
VEARS FROM BEGINNING TO MAXIMUM FILL $: 1.90$ (y ars) years
MAXIMUM RATE OF FILLINO : APril-JUne-i961.00 (m/month): 13.3 m/month
RATE OF INITIAL FILLING: AVErage 7.20 (m/month) m/month rise in reservoir level
VEARS FROM BEGINNING TO MAXIMUM FILL : 1.90 (y ars) years
MAXIMUM RATE OF FILLING : APril-JUne-i961.00 (m/month): $13.3 \mathrm{~m} / \mathrm{month}$
MAXIMUM RATE OF FILLING: APril-June-1961.00 (m/month): 13. 3 mfmonth
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Multi-purposer Irrigation
PROVINCE OR REGION : Markazi
-
NDTES DN DAM: 168 m abave ground
NDTES ON DAM.
ETRUCTURAL HEIGHT OF DAM: 180. (m) above lowest foundation
MAXIMUM DEPTH OF RESERVOIR : 165.0 m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 165.00 m
MAXIMUM VOLUME OF REEERVOIR : 205. m3x10E6
SURFACE AREA OF RESERVOIR : 4.00 kma
LONGEST DIMENSION DF RESERVOIR : 14.0 km
REGIONAL STRESS REGIME : COMP Pessional
CONFIDENCE IN REGIONAL STRESS REQIME EVALUATION: medium
PREDOMINANT FAULT TYPE. Thrust
AZIMUTH OF PREDDMINANT FAULTINE: NTOW TO NESE
DIP OF PREDOMINANT FAULTING: GON ta vertical
DOMINANT SIDE UP : N () 1 north
PREDGMINANT FRACTURE ORIENTATIGN: NSOW to NBOE
LOCATION DF RESERVOIR IN RELATION TO FAUL.TS : DOwnthrawn black
MAME OF CLOSEST KNOWN FAULT : Musha
DISTANCE TO CLOSEST KNOWN FAULT: 3. 0 ($k m$) km N of reservoir
AGE OF MOST RECENT DISPLACEIENT ON CLQSEST KNOWN FAULT : PIio-Pleistocene deposits displaced
GEOLOGY REFERENCES: 46,106.318,44日,465
Nariba
DAM NAME : Kariba
DAM NAME : Kariba
RESERVOIR NAME :
RIVER: Zambesi $93 E$ LOCATION OF CENTER GSE, 75 FE LOCATION OF DAM: 17. S3S. 28. 75E LDCATION
LOCATION
FROVINCE

EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Less than $8 \mathrm{~m} / \mathrm{yr}$ (1964-1968); Hydropower
NOTES ON DAM: Dam height of 125 m above ground

LUNGEST DIMENSION OF RESERVOIR : 260.0 km
NOTES ON REGIONAL GEOLOGY: Mid-Zambesi trough; Mesozoic terrestrial deposits overlying Precambrian metamorphics. Active faults present, late Paleozoic to Cenozoic.
AGE OF REGIONAL GEOLOGY: PreCambrian
REGIONAL STRESS REGIME: Extensional
EVIDENCE FOR REGIONAL STRESS REGIME
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: high
NOTES ON SITE GEOLOGY: Coarse-grained gneiss, steeply dipping, NE foliation. Cut by p-C pegmatites and J dolerites. Reservir
cong1. mudst., 20 deg NE-SW)

MAGNITULE OR INTENSITY OF LARGEST SUSPECTED RIS EVENT: Mag o. 25 (ISC)
DATE OF LARGEST SUSPECTED RIS EVENT : 23-Sep-1963

(Reza Shah Kabir)
DAM NAME : Karun COUNTRY: Iran
RIVER: Kurun
LOCATION OF DAM: 32. 16N, 49. 52E
PROVINCE OR REGION
(Reza Shah Kabir)
2900. m3x10EG
Deformed Mesozaic and Cenozaic sedimentary units.
AGE OF REGIONAL GEOLUGY: C Anozoic
TECTONIC PROVINCE: Zagros Mountains
REGIONAL STRESS REGIME: Compressional
EVIDENCE FOR REGIONAL STRESS REGIME: focal machanism
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATIDN : medium
ORIENTATION OF STRUCTURAL GRAIN: NW (); northwest trending
DEGREE OF DEFORMATION: Strongly deformed
DEGREE OF DEFORMATION: strongly deformed

> ION TO FAULTS : Upthrown block () of Quaternary fault
> $\begin{aligned} & \text { PREDOMINANT FAULT TYPE : Thrust } \\ & \text { AZIMUTH OF PREDOMINANT FAULTING }\end{aligned}$
> DIP OF PREDOMINANT FAULTING: NIOE to NJOE () NE
> MAXIMUM LENGTH OF FAULTS: 90.00
> DUMINANT SIDE UP : N (): north
> PREDDMINANT FRACTURE ORIENTATION
> LOCATION OF RESERVOIR IN REL
> DISTANCE TO CLOSEST KNOWN FAULT : 5.0 (km) km or 1 ess to SW
> $\begin{aligned} & \text { AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAULT : Quaternary } \\ & \text { GEOLOGY REFERENCES : } 46,108,341,436,499\end{aligned}$
$A-127$
DATECF USE Hydropower STRUCTURAL HEIGHT OF DAM: 96. m LENGTH OF DAM: 516. m RESERVIIR DEPTH COMPUTED FROM DAM HEIGHT : 91.20 m
MAXIMUM VOLUME OF RESERVGIR: 1. m3xIOEG to the west. Approximately 80 km north of Anatol REGIONAL STRESS REGIME: Shear () and compressional
CUNFIDENCE IN REGIDNAL STRESS REGIME EVALUATION
NLTES DN SITE GEOLOGY: Teritary flysch deposits of calcareous conglomerate and siltstone, locally karstic solution features.
Fizervoir impounded on Cretaceous limestone, cavernous; and a cretaceous assemblage of shale, limestone and giliceous limestone
Bedding is flat-lyig to 25 deg east dipping.
SITE GEDLOGY: Carbonate
AgE OF SITE GEDLDGY: Cretaceous
DEGREE DF DEFORMATION : shallow d
DATE DF FIRST SUSPECTED RIS EVENT : 12 -Mar-1969
CATE OF LARGEST SUSPECTED RIS EVENT : 4. 3
in the immediate reservoir area following impoundment.
RIS CATEGORY: Accepted
GEOLOGY REFEREMCES : 107,131,181,454
Kawamata

DAM NAME : Kawamata

Japan

OF CENTER
IVCATION OF CENTER OF RESERVOIR: 36.88N,139.51E
EXFECTED FLUCTUATIONS BASED ON PRIMARY USE : Flood control
DAM TYPE : Concrete arch
DATE DAM COMPLETED: 1966
EXFECTED FLUCTUATIONS BASED
NOTES ON DAM : Dam height of 112 m above ground
ORIENTATION OF RESERVOIR : NW
STRUCTURAL HEIGHT OF DAM : 120. m
LENGTH OF DAM: 137. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIOHT: 102.00 m
MAXIMUM VOLUME OF RESERVOIR: 88. m3xIOEG
MAXIMUM VOLUME OF RESER
EUIDENCE FOR REGIONAL S
CONFIDENCE IN REGIONAL
SITE GEOLOGY: Valcanic
GEDLOGY REFERENCES : 106,289

A-129
RIVER: Firat (Euphrates) $\quad 38$. $22 \mathrm{~N}, 39$. 33 E LOCATION OF DAM: 38. 7BN. 38 72E LOCATION OF DAM
DAM TYPE: Concrete gravity () with rockfill section
DATE OF START DF FILLING: MAY-1973
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower NOTES ON DAM : Dam height of 163 m above ground ORIENTATION OF RESERVIRR : SBOE
STRUCTURAL HEIGHT OF DAM :
212.
STRUCTURAL HEIGHT OF DAM : 212. (m) above foundation
LENGTH OF DAM : 1097. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIOHT : 182.00 m
MAXIMUM VOLUME OF RESERVOIR: 31000 . $\mathrm{m} 3 \times 10 \mathrm{E} 6$ MAXIMUM VOLUME OF RESERVOIR: 31000. $\mathrm{m3} \times 10 \mathrm{E} 6$
LONGEST DIMENSION DF RESERVOIR : 17.0 km
EVIDENCE FOR REGIONAL STRESS REOIME : tectonics
EVIDENCE FOR REGIONAL STRESS REGIME
CONFIDENGE IN REGIONAL STRESS REGIME
NOTES ON SITE GEOLOGY: Dam: Paleozoic calc-schist, mica schist, chlorite schist, marbie inci. karstified carbonates. Reservoir:
80-90 NE fracture sam unnamed fault to the south
fault to the south.
its high transmissibility.
t up- and down-stream from
ceservoir level and decreased
Woodward-Clyde Consultants
DAM NAME : Kemer
CDUNTRY: Turkey
LOCATION OF CENTER OF RESERVOIR : 37. S7N, 38.6IE
LOCATION OF DAMTE $37.47 \mathrm{~N}, 28.52 E$
PROUINCE OR REGION
DAM TYPE : Concrete gravity
DATE DAM COMPLETED : 1938
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Multi-purposei Irrigation () listed first
NOTES ON DAM : Dam height of 104 m above ground
STRUCTURAL HEIGHT OF DAM: 114 .
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 96.00 m
MAXIMUM VOLUME OF RESERVOIR : 544. m3×10E6
LONGEST DIMENSION OF RESERVOIR
REGIONAL GEOLOGY: Metamorphic
AGE OF REGIONAL GEOLOGY: Mesizoic
EVIDENCE FOR REGIONAL STRESS REGIME: focal mechanism (), tectonics
CONFIDENCE IN REGIDNAL STRESS REGIME EVALUATION: medium
NOTES ON SITE GEOLOGY: OIdest
marls, clays, and siltstones
AGE OF SITE GEQLOGY: Tertiary
A-131

RESERVOIR MAME: Lake Nechako or Tahtsa Lake

CIUNTRY : Canada
RIVER DTION DF CENTER DF RESERVOIR : $53.43 \mathrm{~N}, 125.57 \mathrm{~W}$
LOCATION OF DAM : 53. G2N, 124.97W
PROVINCE OR REGION: British Columbia
DAM TYPE : ROCK () III
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
NOTES ON DAM : Two principal arms, both generaliy E-W
ORIENTATIDN DF RESERVOIR : W
REEERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 96.30 m
MAXIMUM VOLUME OF RESERVOIR : 22000. m3x10E6
LONGEST DIMENSION OF RESERVOIR : 180.0 km
TRESS REGIME: Compressional
Low
 E IN REGIONAL STRESS R
SITE GEOLOGY: Basalt
OGY: VOICAnIc

GITE GEOLOGY REFERENCES : 106, 289 DAM NAME : Kerr
RESERVOIR MAME : FIathead Lake COUNTRY : USA RIVER: Flathead LOCATION OF CENTER OF RESERVOIR : Dam 47. 7ON. 114.17W LOCATION OF DAM : Reservoir 47. PROUINCE OR REGION : Montana DAM TYPE : Concrete arch DAM TYPE : Concrete
DATE DAM COMPLETED
EXPEGTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
NOTES ON DAM: Dam height of 57 m above ground. ORIENTATION OF RESERVOIR: N
STRUCTURAL HEIGHT OF DAM: 60 .
LENGTH OF DAM: 244. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 54.00 m
MAXIMUM VOLUME OF RESERVIIR: $1505 . \mathrm{m} 3 \mathrm{x} 10 \mathrm{E}$.
SURFACE AREA OF RESERVIIR: $60.00(\mathrm{~km} 2)$ Iq km
LONGEST DIMENSION OF RESERVOIR : $40.0(\mathrm{~km}) \mathrm{km}$
NOTES ON REGIONAL GEOLOGY: Near the center of the Idaho Batholith of Precambrian age. REGIONAL GEOLOGY: Metamorphic
AGE OF REGIONAL GEOLOGY: Precambrian
AGE OFIC PROVINEE: Intermountain seismic belt
TEGINIC
REGIONAL STRESS REGIME: Extensional
EVIDENCE FOR REGIONAL STRESS REGIME
EVIFENENCE IN REGIONAL STRESESE REGIME EVALUATION: high
NOTES ON SITE GEOLOGY: Dam and reservoir foundation: dam underlain by pleistocene clastic sediments. Reservoir underlain by
 SITE GEOLDGY: Metamorphic SITE GEQLOGY: Metamorphic
notes on faulting
late Cenozaic.
reservoir.
PREDOMINAN
AZIMUTH OF PREDOMINANT FAULTING: N
MAXIMUM LENGTH OF FAULTS: $85.00(\mathrm{~km}) \mathrm{km}$
DOMINANT SIDE UP : E (): east
DATE DF FIRST SUSPECTED RIS EVENT : 9-0ct-1964
MAGNITUDE OR INTENSITY OF LARGEST BUSPECTED RIS
DATE OF LARGEST SUSPECTED RIS EVENT : 28-Jul-197
NaTES ON SEISMICITY AFTER IMPOUNDMENT : Clear increase in frequency of macroseismicity begining six years after impoundment.
Relation with water levels unclear. Magitude 4.6 m beneath reservoir in October 1964 , and 4 . 9 in July 1971 . GENERAL NOTES : Weak case of reservoir induced seismicty.
 TYPE OF RIS: macro
GEOLDGY REFERENCES:
GEGLOGY REFERENCES : 106, 135, 203, 418

[^10]CIUNTRY: India
LICATION OF CENTER OF RESERVOIR : 17.6日N, 80.67E
LOCATION OF DAM : 17. GEN, 80.67E
RESEKVOIR DEPTH COMPUTED FROM DAM HEIGHT: 61.75 m
volcanics
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
EUIDENCE FOR REGIDNAL STRESS REGIME
CONFIDENCE IN REGIONAL STRESG REGIME
CONFIDENCE IN REGIONAL STRESE REGIME EVALUATION : medium
GENERAL NOTES : Insufficient data aavailable to evaluate,
center in April 1769
RIS CATEGORY: Questionable
TYPE OF RIS: micro
GEOLOGY REFERENCES:
GEILIGGY REFERENCES : 192, 195, 198, 203
DAM NAME : KOps RIVER: III

PROVIMCE OR REGION : Voralberg

DATE DAM CDMPLETED: 1965
DATE OF START OF FILLiNG: Filling began in August 1967
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydrapower
NOTES ON DAM: Dam height of 105 m aove ground
STFUCTURAL HEIGHT DF DAM : 122. m
MAXIMUM DEPTH OF RESERVOIR : 103. O (m) (determined from diagrams)
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT
SURFACE AREA OF RESERVOIR : 1.00 km 2
REGIONAL STRESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
COMFIDENCE IN REGIONAL STRESS REGIME EVALUATION : medium
attitude variable
near surface.
DAM NAME
Kossou

RESERVOIR : 7.36N, 5.66E
REGION: Bouake
Earth () and roc
OMPLETED: 1972
NITIAL FILLING: 1. OB (m/month) m/month
NITUCTUATIONS BASED ON PRIMARY USE: Hydro
52. 0
m
DAM HEIGHT : 52.00 m
ORIENTATION GF RESERVOIR: N
STRUGTURAL HEIGHT OF DAM: $57 . \mathrm{m}$
AL HEIGHT OF DAM
F DAM : 1500 . m
RESERVOIR
COMPUTED FR
DCATION OF CENTER
LIDCATION
PRGVINCE
DAM TAE
号
LENGTH OF DAM
MAXIMUM VOLUME OF RESERVOIR: 28750. m3x10E6
LONGEST DIMENSION OF RESERVOIR: 135.0 km
NOTES ON REGIONAL GEOLOGY: Ancient river basin, possibly in existence since beginning of paleozoic
REGIONAL GEOLOGY: Coarse clastic
REGIONAL STRESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME :
EVIDENCE FOR REGIONAL STRESS REGIME: tectionics
GONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
NDTES ON SITE GEOLOGY: Arkose, sandstone, and mudstone of the Voltaian series
SITE GEOLOGY: Coarse clastic

DATE DAM CUMPLETED IL 1902
DATE OF START OF FILLING: JUN- 1961
EAPECTED FLUCTUATIUNS BAEED ON PRIM
EAPECTED FLUCTUATIONS BAEED ON PRIMARY USE: Irrigation UnIENTATIGN OF REGERVOIR
ETRUGTURAL HEIGHT OF DAM
ETRUGTURAL HEIGHT OF LAM : 103. m
LEMGTH OF DAM : 日S.3. m
MAX IMUM DEPTH OF RESERVOIR: 100.0 m
NEEENVOIR DEPTH COMFUTED FROM DAM HEIGHT: 100.00 m
MAXIMUM VOLUME OF REEERVOIR: $2780 \mathrm{~m} 3 \times 10 E 6$
BRACE AREA OF RESERVOIR 115.00 kma
UIES ON REGIUNAL GEILLOGY: Volcanic platform of Deccan Trap, up to 2000 m thick volcanic sequence overlying peninsular shield of Frihean Gonduana rocks. Age of Decean volcanics ranges from Cretaceous to Eocenembigocene PEGIONAL GEOLOGY: Volcanic AGE OF REGIONAL GEOLOGY
Tectonic province: Deccan Trap, Indian peninsula
REGIDNAL STRESS REGIME: Shear
EVIDENCE FOR REGIONAL STRESS REGIME : focal mechanism CURFIDENCE IN REGIONAL STRESS REGIME EVALUATION: high caccan Trap deposit;. Extensive fissures and fractures.
A:SE OF EITE GEOLOGY: Late Cretaceous to Eocene
A:SE OF EITE GEOLOGY
DEGREE OF DEFURMATIO
DEGREE OF DEFURMATION: Flatlying
SIFES OM FAULTING: Faultidisplacement has occur
asjuejt left slip on a near-vertacal plane N-trending fault
adgest left slip on
fritululwant faul TYpE

L.JCATION OF RESERVOIR IN RELATION TO FAULTS: Upthrown block
L.JCATION OF RESERVOIR
HAME DF CLOSEST MNUWN
MAME DF CLOSEST MNUWN
CIETANCE TO CLOSEST

AGE OF MOST RECENT DISPLACEMENT ON GLOSEST KNOWN FAULT: Historic (?)
RATE OF SLIP ON LOCAL FAULTS : O. SCm/yr
ARE LOCAL FAULTE ACTIVE? : YES
IGTES ON HVERCLOGY. The e, tensive fractures and fissures possibly act
WTES ON HVCRELOG
ipring; in the wes
arcind buO m D ROCKE: LOW
argund soo m
PGRMEABILITY
TYPE OF PERMEAEILITY: Fracture
cegree of topggraphic aelief. High

A-139

events increased subsequent to impoundment.

EILQGY REFERENCES: $11,15,16,17,20,27,33,35,35 A, 36,37,47,50,93,95,101,107,19,19,19,19,19,19,19,19,19,197,198,201,202,204,225$
W.rasnoyarak

DAM NAME : Krasnoyarsk

CDUNTRY: USSR
LOCATION OF CENTER OF RESERVOIR : 55. OON, 96. OOE
LOCATION OF DAM: 55. B9N, 97.31E
fROVINCE OR REGION: Krasnoyarsk
DAM TYPE : Concrete gravity
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
QRIENTATION OF RESERVOIR : \mathbf{S}
STRUCTURAL HEIGHT DF DAM: 124. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 106.00 m
MAXIMUM VOLUME OF RESERVOIR : 73300. m3x10E6
LUNGEST DIMENSION OF RESERVOIR: 250.0 km
fegional stress regime : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
NOTES ON SITE GEOLOGY: Granite with veined porphyrites;
granite
GITE GEOLOGY: Batholithic
GEDLOGY REFERENCES: 106.152,289,330A
$A-141$

LAM NAME: Hisamasta (Roi Paul)
DAM NAME
REEERUDIR
cijuldter: RIVER: LOCATION LOCATION
FROUINCE FROUINCE DAM TYFE LAAIE DAM $\because{ }^{n} E$ DF
EXFECTED
EAFECIEE FLUCTUATIONS BASEC ON PRIMARY USE: Hydropower () and Irrigation
MEE ON DAM \vdots Dam height of 150 m above ground. Reservoir is U-shaped.
ETFUCTURAL HEIGHT OF DAM: $160 . \mathrm{m}$
 LENGTH OF DAM : 460 m

HAXIMUM DEPTH OF RESERVDIR: 120.0 m
RESERVDIR DEPTH COMPUTED FROM DAM HEIGHT : 120.00 m
MAXIMUI VOLUME OF RESERVOIR : 4750. m3x1OE6
LOPGEST DIMENSION OF RESERVOIR : 29.0 km
ROTES IN REGIONAL GEOLOGY: In the center tihrust to the west. Approx REGIONAL STRESS REGIME: Shear
EVIDENCE FDR REGIDNAL STRESS REGIME
EVIDENCE FOR REGIONAL STRESS REGIME : faulting sense (), tectonics
COUAFIDEMCE IN REGIONAL STRESS REGIME EVALUATION medium
COIAFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
Feservair impounded on theflysch deposits and a durassic and Cretaceous assemblage of shale, limestone, and siliceous limestone Beding is flat-lying to 25 degrees east-dipping SITE GEOLOGY: Carbonate

AGE OF GITE GEOLDGY: Eocene
CESREE DF DEFDRMATION : shall
NDTES ON FAULTING Two thrus
The thrust faults have thick
CEGREE DF DEFDRMATION: shallow dipping
NOTES ON FAULTING. Two thrust faults of
present approximately 10 km north of
PREDOMINANT FAULT TYPE: Strike-slip
NamE OF CLOSEET KNONN FAULT : Alevrada-Smardacha
IISTANCE TO CLOSEST KNOWN FAULT: $0.0(\mathrm{~km}) \mathrm{km}$
distance to closest known fault
:ares on hydrology: Irregular
Flysch mostly arts as groundwater b DEGREF OF TOPDGRAPHIC RELIEF: high DEGREF OF TOFIGRAPHIC REL IEF : high
DATE DF FIRST SUSPECTED RIS EVENT : AUG-19GS
MAGNITUDE DR INTENSITY OF LARGEST SUSPECTED R MASNITUDE DR INTENSITY OF LARGEST SUSPECTED DATE OF LARGEST SUSPECTED RIS EVENT : 24-Jan-
w C TES ON SEISMICITY AFTER IMPQUNDMENT
particularly during rapid rise. Activ SENERAL NOTES . Data reliability is good loralized in reservair area. RIS CATEGORY: Accepted
TYFE OF RIS: macro and

TVFE OF RIE : macro and micro
GEJLOGY REFERENCES : 64, 104110.
DAM NAME
RESERVDIR NAME: Kremenchugskoye Vdkhr
CDIMTRY: USSR
RIVER : Dnieper
LICATION DF CENTER GF RESERVOIR: 49.33N, 32. SOE
LDCATION OF DAM: 49.11N, 33.17E
PROUINCE OR REGION: Ukraine
PROVINCE OR REGION
DAM TYPE : Earth (' buttress and concrete gravity spilluay section
DATE DAM COMPLETED: 1961
DATE DAM COMPLETED: 1961
EAFECTED FLUCTUATIONS BASE
EXFECTED FLUCTUATIONS BASED ON PRIMARY USE : Multi-purpose; Hydropower () is principal use
IRIENTATION OF RESERVOIR : NGOW
ETRUCTURAL HEIGHT OF DAM: 33.
ETRUCTURAL HEIGHT OF DAM : 33. m
LENGTH OF DAM : $12144 . \mathrm{m}$
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 31.35 m
MAXIMUM VOLUME OF RESERVOIR: 13500. m3×10E6
SURFACE AREA OF RESERVOIR : 2500.00 kme
LONGEST DIMENSION OF RESERVOIR: 130. O km
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
COMFIDENCE IN REGIONAL STRESS REGIME EVALUATION: 1 ow
NITES ON SITE GEOLOGY: Alluvium up to $92 f t$ thick overlying porphyritic granite
GEOLQGY REFERENCES : 106, 152,306 , 330A
DAM TYPE COMPLETED. 1963
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
STRUCTURAL HEIGHT UF DAM
LENGTH OF DAM : ZJOO.
FESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 19.00 m
MAXIMUM VOLUME DF RESERVOIR: 10800 . $3 \times 10 E 6$.
REGIONAL STRESS REGIME
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIUNAL STREGG REGIME EVALUATION
SITE GEOLOGY: Metamorphic
GEDLOGY REFERENCES: 106,330A

Kurobe
NAME: Lake Kurobe Japan Murobe
DF CEN RIVER: KURO
RIVEATION DF CENTER dF reservair: 36. 53n, 137. 65E LDCATION OF DAM: 36. SGN, 137.67E DAM TYPE : Concrete Arch
DATE DAM COMPLETED: 1960
DATE OF START OF FILLING:
EXPECTED FLUCTUATIGNG BAG:
ORIENTATION OF RESERVOIR
LENGTH OF DAM : 489. m
LENGTH OF DAM : 489. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 180.00 m
MAXIMUM VOLUME OF RESERVOIR : 149. m3×10E6
REGIONAL STRESS REGIME: Shear
EUIDENCE FOR REGIONAL STRESS REGIME : faulting sense
CINFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON SITE GEOLOGY: Granite
SITE GEOLOGY: Batholithic
DATE OF FIRST SUSPECTED RIS EVENT : 19-AUg-1961
MAGNITUDE OR INTENSITY OF LARGEST SUSPECTED RIS
MAGNITUDE QR INTENSITY OF LARGEST SUSPECTED RIS EVENT: Mag 4. 9 (ISC)
DATE OF LARGEST SUSPECTED RIS EVENT : 19-AUg-1961
DATE OF LARGEST SUSPECTED RIS EVENT: 19-Aug-1961
is followed almost immediately by increase and decrease in earthauake frequency.
GENERAL NOTES: Data reliability is goodi based on correlation of activity uith
RIS CATEGORY: Accepted
TYPE OF RIS : macro and micro
GEOLOGY REFERENCES : $106,210.246$
Kuzuryu
Kuzuryu
Japan
aruryu
RESERVOIR : 35. 89N, 136. 71E 11
1968
Fukui
ION
()
TED
ATION
am of
DATE DAB FLUCTUATIONS BASED ON PRIMARY USE : Hydropower () and flood control
NOTES ON DAM : Dam height of 118 m above ground
DAM : 12B. (m) above foundation
LENGTH OF DAM : 355. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 115.20 m
$320 \mathrm{m3} \times 10 E 6$
90 km 2
shear ME
E: Shear
STRESS REGIME : faulting sense
STRESS REGIME EVALUATION: med
: Phylitic slate, conglomerate.
ESS REGIME EVALUATION : medium
ande SITE GEOLOGY: Coarse clastic
GEOLOGY REFERENCES : 106,233
DAM NAME : La Angostura
COUNTRY: Mexico
73N, 92. 78W
LUCATIUN OF DAM : 16. $43 \mathrm{~N}, 92$.
PRIUINCE OR REGION: Chiapas
DAM TYPE : ROCK ()
DATE DAM COMPLETED : 197
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
NOTES ON DAM OF Maximum volume
ORIENTATION OF RESERVOIR : S
STRUCTURAL HEIGHT OF DAM
MAXIMUM DEPTH OF RESERVOIR : 128. O (m) (estimated from drawings)
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 128.00
MAXIMUM VOLUME OF RESERVOIR: 9200. m3xioeg
NDTES ON DAM: Maximum volume of 18000 EG cubic meters is planned after second stage completed.
REGIONAL STRESS REGIME : Extensional
EVIDENCE FOR REGIONAL STRESS REGIME: tecton
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
MOTES ON SITE GEOLOGY
regionally Carbonate
AGE OF SITE GEOLOGY: Jurassic
PREDOMINANT FAULT TYPE: Normal
CEOLOCY REFERENCES: 107,294

A-147
DAM NAME :
COUNTRY:
RIVEH:
LOCATION OF CENTER
DAM TYPE : ATCh
DATE DAM COMPLETED
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
NOTES ON DAM: Dam height of 93 m above ground.
STRUCTURAL HEIGHT OF DAM: 116 . $(\mathrm{m}) \mathrm{m}$
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 98.00
MAXIMUM VILUME OF RESERVOIR: 12. m3×10E6
LONGEST DIMENSION OF RESERVOIR : $4.0(\mathrm{~km}) \mathrm{km}$
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : low
GENERAL NOTES : Insufficient data available to evaluate.
0
0
0
0
0
0
0
0
RIS CATEGORY: Questionable
DAM NAME : La Fuensanta
DAM NAME : La Fuensanta
CIUNTRY: Spain
RIVER: Segura
LOCATION OF CENTER
DAM TYPE : Gravity
DATE DAM COMPLETED
NOTES ON HISTORY OF IMPQUNDMENT : Reservair may have been refilled in 1973 .
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Irrigation (\%, hydropower, and flood control

EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: IOW
DATE OF FIRST SUSPECTED RIS EVENT: May-1973
MOTES ON SEISMICITY AFTER IMPOUNDMENT : EVent reporte
No other data
m.
O
?
?
E
0
4
Macroearthquakes offset to east
REGIONAL STRESS REGI
EVIDENCE FOR REGIONA
obtained.
obtained.
RIS CATEGGRY: Questionable
GEOLOGY REFERENCES : 72A, 106

[^11]EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Irrigation
GTRUCTURAL HEIGHT OF DAM: 146. (m) above lowest foundation
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: low
Las Portas

DAM NAME
COUNTRY U
Libby (Lake Koocanusa)
ibby
enai
42N. 115.5
OR REGION : Montana
: Gravity () concrete
COMPLETED : 1973
BASED ON PRIMARY USE : Hydropower
28. (m) above lowest foundation EIGHT: 110.00 m
$\mathrm{~m} 3 \times 1$ OEG
$\mathrm{m} 3 \times 10 \mathrm{EG}$
0 km
tectonics
REGIME: Extensional
REGIME EVALUATION : medium
ORIENTATION OF RESERVOIR : N DAM
6124品新
48. 52N 115.30 W
FRO OMPUTED
 GEOLOGY REFERENCES : 108
Limberg
Austria
RIVER Kapruner Ache LOCATION OF DAM : 47.20N, 12.72E
PROVINCE OR REGION: Saliburg
DAM TYPE : Concrete arch
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
NOTES ON DAM: Dam haight of 102 m above ground level
ORIENTATION OF RESERVOIR : S
LENGTH OF DAM: 350 . m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 102.00 m
MAXIMUM VOLUME OF RESERVOIR: 86. $m 3 \times 10 E$
TECTONIC PROVINCE : Alps
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON SITE GEOLOGY: Carboniferous to Triassic calc-mica schist in an ice-furrowed gorge.
SITE GEOLOGY: Metamorphic
AGE OF SITE GEOLOGY: Triassic
GEDLOGY REFERENCES : 106,46BA

A-153
Limmern

COUNTRY: Suitzerland
RIVER : Limmernbach
LOCATION OF CENTER
LOCATION OF DAM :
PROUINCE OR REGION
DAM TYPE : Concrete arch
DATE DAM COMPLETED : 1963 (H) H
ORIENTATION OF RESERVOIR : S
ORIENTATION OF RESERVGIR
STRUCTURAL HEIGHT OF DAM
LENGTH OF DAM: 375 . m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 127.00 m
MAXIMUM VOLUME OF RESERVOIR: 90. M3x10EG
LONGEST DIMENSION DF RESERVOIR: 2.3 km
TECTONIC PROVINCE: Alps
REGIONAL. STRESS REGIME
EVIDENCE FOR REGIONAL
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON SITE GEQLOGY: Fissured calc-mica schist
SITE GEOLOGY: Metamorphic
DISTANCE TO CLOSEST KNOWN FAULT : $8.0(\mathrm{~km}) \mathrm{km}$ GEOLOGY REFERENCES : 106. 289

(LiuChiang)

of CENTER OF RESERVOIR
of
DAM
OL
Gansu (Kansu)
DATE DAM COMPLETED: 1968
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : 40 m maximum from 1969 to 1972i Hydropower
ORIENTATION OF RESERVOIR : SW
STRUCTURAL HEIGHT OF DAM : 147. (m) above lowest foundation
MAXIMUM VOLUME OF RESERVOIR: 5700. m3x10E6
LONGEST DIMENSION OF RESERVOIR : 38.0 km
REGIOMAL STRESS REGIME : Shear
EVIDENCE FOR REGIONAL STRESS REGIME : faulting sense
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
granite and lamprophyre dikes. Several faults and fractures in foundation.
SITE GEOLQGY: Metamorphic
AGE OF SITE GEQLOGY: Precambrian
GEOLOGY REFERENCES: 108,484
A-155
Lower Hell Hole
DAM NAME: Lower Hell Hole
RESERVDIR NAME: Hell Hole
COUNTRY: USA
RIVER : Rubicon
LICATION OF CENT
PROVINCE OR REGION
DAM TYPE : ROCK () fill
DATE DAM COMPLETED : 19GG ON PRIMARY USE. Irrigation
NOTES DN DAM : Dam height of 125 m above ground
STRUCTURAL HEIGHT OF DAM: 125. (m) m (from diagram)
MAXIMUM DEPTH OF RESERVOIR : 118.0 m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 118.00 m
MAXIMUM VOLUME OF RESERVDIR : 2S7. m3xIOEG
SURFACE AREA OF RESERVIIR 5.00 kme km

pyroclastics
REGIONAL GEOLOGY
AGE OF REGIONAL GE
AGE OF REQIONAL GEOLDGY: Cretaceous
TECTONIC PROVINCE: Bierra Nevada
REGIDNAL STRESS REGIME : Extensianal
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : medium
NOTES ON SITE GEOLOGY: Sierran granitics
SITE GEDLGGY: Bathalithic
NDTES ON FAULTING: Sierran frontal faults located 13 km to east, Foothills fault system 22 km west
PREDOMINANT FAULT TYPE: Normal
AZIMUTH OF PREDOMINANT FAULTING: N25W
DOMINANT SIDE UP : W (); west
LOCATION OF RESERVOIR IN RELATION TO FAULTS: Upthroun block
NAME OF CLOSEST KNOWN FAULT: Sierran frontal fault system
DISTANCE TO CLOSEST KNOWN FAULT : 13. O (km) km east
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAULT : late Tertiary
Luzzone
DAM NAME: Luzzone DAM NAME
COUNTRY: RIVER: Brenno di LUzzone
LOCATION OF CENTER OF RESERVOIR: 46. 89N, 8.97E
LOCATION OF DAM: 46. BEN, B. 95E PROUINGE OR REGION: Ticino
DAM TYPE : Concrete arch
DATE DAM COMPLETED : 1963
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
ORIENTATION OF RESERVOIR : NE
STRUCTURAL HEIGHT DF DAM : 208. m
LENGTH OF DAM: 530 . m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 179. 00 m
MAXIMUM VOLUME OF RESERVOIR : 87. m3x10EG
LONGEST DIMENSION OF RESERVOIR : 3.6 km
NOTES ON REGIONAL GEOLOGY: Pennine Alps Nappe. Mesozoic shist in contact with Soja Fm.
REGIONAL GEDLOGY: Metamorphic
AGE OF REGIONAL GEOLOGY:
TECTONIC PROVINCE: AIPS
REGIONAL STRESS REGIME: Compressional
EVIDENCE FOR REGIONAL STRESS REGIME: EECTONICS
CONFIDENCE IN REGIINAL STRESS REGIME EVALUATION
NOTES ON SITE GEOLOGY:
NOTES ON SITE GEOLDGY
either side of reservoir.
AGE OF SITE GEOLOGY: Jurassic
ORIENTATION OF STRUCTURAL GRAIN: NE
DEGREE OF DEFORMATION: trongly defarmed
NOTES ON FAULTING: Inter-nappe thrust fault generally strikes NEi
Left-lateral strike-slip fault mapped near reservoiri age unknown.
PREDOMINANT FAULT TYPE : Left-slip
AZIMUTH OF PREDOMINANT FAULTING: NE
MAXIMUM LENGTH OF FAULTS : 5.00 (km) km
DOMINANT SIDE UP: SE ($;$ Southeast
LOCATION OF RESERVOIR IN RELATION TO FAULTS : Upthrown block
DISTANCE TO CLOSEST KNDWN FAULT: $2.0(\mathrm{~km}) \mathrm{km}$ GEOLOGY REFERENCES : 106,434
Mangalam

DAM NAME : Mangalam

 COUNTRY: Inda RIVER : CherukunnaLOCATION OF CENTER
LOCATION OF DAM
DAM TYPE: Earth
DATE DAM COMPLETED : 1962
EXPECTED FLUCTUATIONS BASE
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Irrigation
NOTES ON DAM: Dam height of 19 m above ground
LENGTH OF DAM : 1063. m FROM DAM HEIGHT : 2850 m
MAXIMUM VOLUME OF RESERVOIR: 25. m3xIOE
NOTES ON REGIONAL GEOLOGY: Margin of the Peninsular Shield of India
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : medium
NOIES ON SEISMICITY BEFORE IMPOUNDMENT: Pre-impoundment
GENERAL NOTES : Insufficient data available to evaluate. No macroearthquakes reported by ISC near dam.
RIS CATEGORY: Guestionable
GEOLOGY REFERENCES : 106,192, 195, 203

LOCATION OF CENTER OF RESERVOIR: 46.40N, 12.85E
PROUINCE OR REGION : Udine
DAM TYPE : Concrete arch
DATE DAM COMPLETED: 1947
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
NOTES ON DAM : Dam height of 134 m bove ground
38. ${ }^{\mathrm{m}}$

DAM NAME : Maina di Sauris
di Sauris
Lago di
TECTONIC PROVINCE AIP
REGIDENCE FOR REGIONAL
COMFIDENCE IN REGIDNAL
NOTES ON SITE GEILOGY :
SITE GEOLOGY: Carbonate

[^12]DAM NAME: Mangla
RESERVOIR NAME: Mangla
COUNTRY: Pakistan
LOCATION OF CENTER OF RESERVOIR: 33.22N, 73.68E LOCATION OF DAM: 33. 13N, 73.67E PROVINCE OR REGION: Punjab
DAM TYPE : Earth () fill

DATE DAM COMPLETED: 1967
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Irrigation () and hydropower
NOTES ON DAM: Dam height of 104 m above groundi cross-shaped reservoir
ORIENTATION OF RESERVOIR : NE
STRUCTURAL HEIGHT OF DAM: 116 . (m) Gbove lowest foundation
LENGTH OF DAM : 3353 . m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 104.40 m
MAXIMUM VDLUME OF RESERVOIR: 7250. m3x10EG
DATE DAM COMPLETED: 1967
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Irrigation () and hydropower
NOTES ON DAM: Dam height of 104 m above groundi cross-shaped reservoir
ORIENTATION OF RESERVOIR: NE
STRUCTURAL HEIGHT OF DAM: 116 . (m) Gbove lowest foundation
LENGTH OF DAM : 3353 . m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 104.40 m
MAXIMUM VOLUME OF RESERVOIR 7250 . m3x10EG
DATE DAM COMPLETED: 1967
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Irrigation () and hydropower
NOTES ON DAM: Dam height of 104 m above groundi cross-shaped reservoir
ORIENTATION OF RESERVOIR : NE
STRUCTURAL HEIGHT OF DAM: 116 . (m) Gbove lowest foundation
LENGTH OF DAM : 3353 . m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 104.40 m
MAXIMUM VDLUME OF RESERVOIR: 7250. m3x10EG
DATE DAM COMPLETED: 1967
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Irrigation () and hydropower
NOTES ON DAM: Dam height of 104 m above groundi cross-shaped reservoir
ORIENTATION OF RESERVOIR : NE
STRUCTURAL HEIGHT OF DAM: 116 . (m) Gbove lowest foundation
LENGTH OF DAM : 3353 . m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 104.40 m
MAXIMUM VDLUME OF RESERVOIR: 7250. m3x10EG
DATE DAM COMPLETED: 1967
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Irrigation () and hydropower
NOTES ON DAM: Dam haight of 104 m above groundi cross-shaped reservoir
ORIENTATION OF RESERVOIR : NE
STRUCTURAL HEIGHT OF DAM : 116 . (m) Gbove lowest foundation
LENGTH OF DAM : 3353 . m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 104.40 m
MAXIMUM VOLUME OF RESERVOIR: 7250. m3xIOEG
MAXIMUM VOLUME OF RESERVOIR: 7250. $\mathrm{m} 3 \times 10 E G$
SURFACE AREA OF RESERVIIR: $253.00 \mathrm{km2}$
LONGEST DIMENSIDN OF RESERVDIR: 33.0 km deposits of Indo- Ganges piain, Siwalks in fault contact with older Himalayan units.
REGIONAL GEDLOGY: Fine clastic
AGE OF REGIONAL GEOLOGY : Plio-Pleistocene
TECTONIC PROVINCE: Himalayan foothills

Manicouagan 3
DAM NAME : Manicouagan 3 RESERVDIR NAME
RIVER: Manicouagan
LOCATION OF CENTER OF RESERVOIR: 50.11N, 68.65W
LOCATION OF DAM: 49.77N,68. 62W PROVINCE OR REGION: GUEDEC
PROVINCE OR REGION
DAM TVPE : Earth ()
DATE DAM COMPLETED: 1975
DATE OF START OF FILLING: Aug-1975
EXPECTED FLUCTUATIONS BASED ON PRIMARY
IIENTATIUN OF RESERVOIR: N (m)
STRUCTURAL HEIGHT OF DAM: 10B. (m) above lowest foundation
MAXIMUM DEPTH OF RESERVDIR
RESERVOIR DEPTH COMPUTED FROM
MAXIMUM VOLUME OF RESERVOIR

REGIONAL GEOLDGY
AOE OF REGIONAL

EVIDENCE FOR REGIONAL STRESS REGIME: focal merhanism

precambrian anorthosite.
SITE GEOLOGY: Batholithic
AGE OF SITE OEOLOGV: preCambrian

GEOLOGY REFERENCES : 45, 108, 127A, 132,275, 364, 365, 424, 425
Marathon dam name : Marathon
RESERVOIR NAME : Lake Marathon COUNTRY: Greece
LOCATION OF CENTER OF RESERVOIR : 38. 18N, 23.90E LOCATION OF DAM : 3日. $17 \mathrm{~N}, 23.90 \mathrm{E}$ DAM TYPE : Cancrete gravity DATE DAM COMPLETED : 1929
DATE OF START OF FILLING

MAXIMUM RATE OF DRAWDOWM : 1.00 (m/month) m/month in 1956-1957
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: PUBIIC water supply
ORIENTATIGN OF RESERVGIR : NW
STRUCTURAL HEIOHT OF DAM : G7. m
RESERVOIR DEPTH CGMPUTED FROM DAM HEIGHT: 60.30 m
MAXIMUM VGLUME OF RESERVOIR: 41. m3xIOEG

LONGE ON REOIOMAL GEOLOGY :
GURFACE AREA OF RESERVOIR : 2.
LONGEST DIMENSION OF REGERVOIR
REGIONAL GEOLDOV: Metamorphic AGE OF REGIONAL GEGLOGY
AGE OF REGIONAL GEQLOGY: preCambrian
REGIONAL STRESS REGIME: Extensional
EVIDENCE FOR REGIONAL STRESS REOIME:
EVIDENCE FOR REGIONAL STRESS REOIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : medium
NOTES ON SITE GEDLOGY: Dam and reservoir foundation: Ter
NOTES ON SITE GEGLOGY: Dam and reservoir foundation: Tertiary sediments, schist and granite (age and structure not obtained).
BITE GEOLOGY: Metamorphic
AGE OF SITE GEGLGGY: preCambrian
NOTES ON FAULTING: Two faults lie within 2 km and 7 km of the dam.
DATE OF FIRST SUSPECTED RIS EVENT : 15-JU1-1931
MAGNITUDE OR INTENSITY OF LARGEST SUSPECTED RIS EVENT: MAg 5. 75 (ISC)
DATE OF LARGEST SUSPECTED RIS EVENT: 2O-JUI-193B
NOTES ON SEISMICITY AFTER IMPQUNDMENT : SEISmicity Degan as water leve
NOTES ON SEISMICITY AFTER IMPQUNDMENT : Selsmicity began as water level reached maximum. Most earthquakes during subsequent
reservoir history not clearly correlative with water level fluctuations. Exceptions: in iqsi, an earthquake suarm occurred as level rose rapidiys microearthquale activity reported to have varied with variation in water level betwen lase and 1966 . GEMERAL NOTES : Data reliability is mod RIG CATEGORY
GEOLOQY REFERENCES : 64, 84, 106, 160,201,203.331
Mattanark
DAM NAME : Mattmark
COUNTRY: Switzerland
RIVER: Saaser Visp
PAM TYPE : Earth (
DATE DAM COMPLETED: 1967
NOTES ON HISTORY OF IMPOUN
NOTES ON HISTORY OF IMPOUNDMENT : Range in filiing: as great as 90 m in 4 months during spring fioods in igog
DATE GF START OF FILLING: Impoundment began March ig6s DATE OF START OF FILLINQ: Impoundment began March 1965
RATE OF INITIAL FILLING: $1.70(m / m a n t h)$ m/month
RATE OF INITIAL FILLINO
VEARS FROM BEOINNINO TO
VEARS FROM BEGINNINO TO MAXIMUM FILL: 4.00 (years) years filiing
MAXIMUM RATE OF FILLINO : 23.00 (m/month) m/month
MAXIMUM RATE OF FILLINQ : 23.00 (m/month) m/month
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : At 1
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : At least 70 m fluctation annually gince 1969, Hydropower
ORIENTATION OF RESERVOIR : g
ORIENTATION OF RESERVOIR : 9
GTRUCTURAL HEIOHT GF DAM : 120
STRUCTURAL HEIGHT OF DAM: 120. (m) above lowest foundation
LENGTH OF DAM : 770 . m
MAXIMUM DEPTH OF RESERVOIR: 97.0 m
RESERVOIR DEPTH COMPUTED FROM DAM HEIOHT : 97.00 m
STRUCTURAL HEIGHT OF DAM: 120. (m) above lowest foundation
LENGTH OF DAM : 770 . m
MAXIMUM DEPTH OF RESERVOIR: 97.0 m
RESERVOIR DEPTH COMPUTED FROM DAM HEIOHT : 97.00 m
RESERVOIR DEPTH COMPUTED FROM DAM HEIOHT: 97.00 m
MAXIMUM VOLUME OF RESERVGIR : 100 . m3x10E6
MAXIMUM VOLUME OF
LONGEST DIMENSION
NOTES ON REGIONA
REOIONAL GEOLOGY
7VNOIOBY 70 30W
TECTONIC PROVINCE
REGIONAL STRESS RE
REGIONAL STRESS REQIME: COMPTESSIONAI
EVIDENCE FOR REOIONAL STRESS REGIME:
EVIDENCE FOR REQIONAL STRESS REQIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
MOTES ON SITE GEDLOGY: Lateral morraines of AIl
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON SITE GEDLOGY: Lateral morraines of AIlalin Glaci
sediments, Monte Rosa nappe. Faliation or layering NGOE, 4ONW
GITE GEOLOGY : Metamorphic.
SITE GEOLOGY: Metamorphic
ORIENTATION OF STRUCTURAL GRAIN: NGOE
DEGREE OF DEFORMATION: Steeply dipping
NOTES ON FAULTING: Nearest fault Joins 150 km lang right-lateral faulti age of faulting unknown
DISTANCE TO CLOSEST KNOWN FAULT : $17.0(\mathrm{~km}) \mathrm{km}$ GEOLOGY REFERENCES : 63.106,178
$x-163$
Mauvoisin
dam Name : Mauvoisin
DESERVOIR NAME: Lac de Mauvoisin COUNTRY: Suitierland
RIVER : Drance de Bagnes ROGATION OF CENTER OF RESERVOIR PROUINCE OR REGION: Valais
DAM TYPE : Concrete arch
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
ORIENTATION OF RESERVOIR : E
STRUCTURAL HEIOHT OF DAM
RESERVOIR DEPTH COMPUTED FROM DAM HEIOHT: 207.00 m
MAXIMUM VOLUME OF RESERVOIR: 180 . m $3 \times 10 E 6$
MAXIMUM VOLUME OF RESERVOIR : $180 . \mathrm{m} 3 \times 10 E 6$
LONGEST DIMENSION OF RESERVOIR : $4 . \mathrm{g} \mathrm{km}$
NOTES ON REGIONAL GEGLOGY: Schist of Pennine nappe with thrust under crystaliine metamorphitcs of the dt. Blanche nappe.
REGIONAL GEOLOGY: Metamorphic
AGE OF REOIOINAL GEDLOGY: Mesozoic
REGIONAL STRESS REGIME : Compresiional
EVIDENCE FGR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIDNAL STRESS REGIME EVALUATION: medium
NOTES ON SITE GEOLOQY: Mesozaic (Jurasiic-Cretaceous) sch
Barnard nappe.
SITE GEOLOGY: Metamorphic
AGE OF SITE QEOLOGY
DEGREE OF DEFORMATION : Itrongly deformed
NOTES ON FAULTING: Thrust faults located
NOTES ON FAULTING: Thrust faul
PREDOMINANT FAULT TYPE: Thrust
DISTANCE TO CLOSEST KNOWN FAULT
GEOLOGY REFERENCES : 106.434
Mibaro
RIVER : Sho
LDCATIDN OF CENTER OF RESERVDIR: 36.11N, 136.92E
ifu
960
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
NOTES DN DAM : Dam height of 126 m above ground
GTRUCTURAL HEIGHT DF DAM: 131. (m) above foundation
LENGTH DF DAM: 405. m.
LENGTH DF DAM: 40S. m
RESERVOIR DEPTH COMPUTED
MAXIMUM VOLUME DF RESER
MAXIMUM VOLUME DF RESERVOIR: $370 . m 3 \times 1$ OEG
REOIDNAL STRESS REGIME : Shear
STRESS REGIME
STRESS REGIME
RESESS REGIME EVALUATION: medium
AItered quartz porphyry and granit
porphyry.
NOTES ON FAULTING : Fault located in right dam foundation
GEOLOG REFERENCES : $106,347,468 A$
TECTONIC PROVINCE : Rocky Mountain Trench
EVIDENCE FQR REGIONAL STRESS REGIME : focal mechanism
 minor faults and jaints, most faults filled with orittle, hard gauge less than 1.5 cm thick SITE GEOLOGY: Metamorphic
AGE OF SITE GEDLOGY: Precambrian
PREDOMINANT FAULT TYPE : Reverse
PREDOMINANT FAULT TYPE: Reverse
DIP OF PREDQMINANT FAULING: NE
NOTES ON HYDROLOGY: COefficient of perme
approximately 75 m .
MOTES ON SEISMICITY AFTER IMPOUNDMENT : No change in level of macroseismicity or microseismicity subsequent to reservoir
general notes : Data reliablility is low. Few pre-impoundment data obtained. Seismicity not significantly changed after impoundment.
RIS CATEGORY: Not RIS
GEOLOGY REFERENCES : 108, 127A, 139, 140, 141,183,252,256,257,312
LENGTH OF DAM : 1530 . m R FROM DAM HEIGHT : 76.00 m
MAXIMUM VOLUME OF RESERVOIR : 16000. m3x10E6
LONGEST DIMENSION OF RESERVIIR: 56.0 km
NOTES ON REGIONAL GEOLOGY: Kura depression, southern edge of during Neogene, near Quaternary intermontane downwarp
(
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON FAULTING: Overthrust through axis of reservoir
PREDOMINANT FAULT TYPE : ThrUSt
NAME OF CLOSEST KNOWH FAULT: Khodzhasken-Geokchai overthrust
GEDLOGY REFERENCES : 106,302A
LENGTH OF DAM : 610 . m
REEERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 130.00 m
MAXIMUM VOLUME OF RESERVOIR: 78. m3x10EG
LONGEST DIMENSION OF RESERVOIR: 4. 0 km
NOTES ON REGIONAL GEOLOGY: PETmo-Carbon
 Mesoroic schist nappes with ophiolites
REGIONAL GEOLNGY GEOLOGY. Mesozoic
TECTONIC PROVINCE : Alps
REGIUNAL STRESS REGIME : Campression
EUIDENCE FOR REGIONAL STRESS REGIME
EVIDENCE FOR REGIONAL STRESS REGIMME
CDNFIDENCE IN REGIDNAL STRESS REGIME
COMFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON SITE GEOLOGY: Reservoir: Jurassic schist and g
SITE GEDLOGY: Metamorphic
DISTANCE TO CLOSEST KNOWN FAULT : $20.0(\mathrm{~km}) \mathrm{km}$
GEILGGY REFERENCES: 106.440A,440B
Monteynard
DAM NAME : Monteynard
DAM NAM
RIVER : Drac
LOCATION OF CENTER OF RESERVOIR : 44.90N, S.70E LOCATION OF DAM : $44.96 \mathrm{~N}, 5.68 \mathrm{E}$ PROVINCE OR REGION: Isere
DAM TYPE : Concrete arch
DATE DAM COMPLETED
DATE OF START OF FILLING
EXPECTED FLUCTUATIONS BA
NOTES ON DAM: Dam heig
DRIENTATION OF RESERVOIR
LENGTH OF DAM : 215 . m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 125.00 m
MAXIMUM VOLUME OF RESERVOIR : 275. m3×10E6
NOTES ON REGIONAL GEOLOGY: Tectonically
overlying metamorphics east of dam area.
TECTONIC PROVINCE: AIP:
REGIONAL GTRESS REGIME
EVIDENCE FOR REGIONAL
CONFIDENCE IN REGIONAL

NOTES ON FAULTING:
displacement unknown.
PREDOMINANT FRACTURE ORIENTATION: N to S (), vertical fractures
DATE OF FIRET SUSPECTED RIS EVENT : 25-Apr-1963
MAGNITUDE OR INTENSITY OF LARGEST SUSPECTED RIS EVENT: Int VII (ISC)
OATE OF LARGEST SUSPECTED RIS EVENT: 25-Apr-1963
NOTES ON SEISMICITY AFTER IMPQUNDMENT: C1ear temp
NOTES ON SEISMICITY AFTER IMPQUNDMENT: Clear temporal and spatial correlation of seismicity toreservoir. First period of seismic
activity, in 1963 , occurred when reservoir water level was at maximum. Other seismicity not clearly associated with water level activity, in 1963, occurred when reservoir water level was at maximum.
GENERAL NOTES: Data reliability is low to moderate.
RIS CATEGORY: Accepted
TYPE OF RIS macro
GEDLOGY REFERENCES : 64, 106.201,203. 331,393
Marnos
DAM NAME : MOTTIOE
RIVER : Mornos
PROVINCE OR REGION
DATE DAM COMPLETED :
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Public water supply NOTES ON DAM : Crass-shaped reservoir
ORIENTATION OF RESERVOIR: NSOE
STRUCTURAL HEIGHT OF DAM : $130 . \mathrm{m}$
LENGTH OF DAM : 815 . m
MAXIMUM DEPTH OF RESERVOIR : approximately 123.0 m
RESERVOIR DEPTH CDMPUTED FRDM DAM HEIGHT : 123.00 m
MAXIMUM VOLUME OF RESERVOIR : 780. m3×10E
LONGEST DIMENSIDN OF RESERVOIR : 17.0 km

Morraw Point
DAM NAME : Morrow Point Point
RESERTRY: USA
RIVER: Qunnison
RIVER : GUNIISON
LOCATION OF CENTER OF RESERVOIR : $38.45 N, 107.45 \mathrm{~W}$
province or region :
DAM TYPE : Concrete
DATE DAM COMPLETED :
EXPECTED FLUCTUATIONS BASED QN PRIMARY USE : No fluctuationsi downstream from blue Mesa. Hydropower ().

LENGTH OF DAM : 226. m.
MAXIMUM DEPTH OF RESERVOIR : 122.0 m . 122.00 m
MAXIMUM VOLUME OF RESERVOIR : 144. m3x10EG
LONGEST DIMENSION OF RESERVOIR : 15.0 km
REGIONAL STRESS REGIME: Extensional
EVIDENCE FOR REGIONAL STRESS REGIME
NOTES ON SITE GEOLOGY: Schist, gneiss, granite -- preCambrian
SITE GEOLOGY: Metamorphic
AGE OF SITE GEQLOGY: Precambrian
AZIMUTH OF PREDOMINANT FAULTING: NGSW
DIP OF PREDOMINANT FAULTING: NE
MAXIMUM LENGTH OF FAULTS: $13.00(\mathrm{~km}) k$
AZIMUTH OF PREDOMINANT FAULTING: NGSW
DIP OF PREDOMINANT FAULTING: NE
MAXIMUM LENGTH OF FAULTS: $13.00(\mathrm{~km}) k$
DOMINANT SIDE UP: $S()_{i}$ squth
LICATION OF RESERVOIR IN RELATION TO FAULTS : DOwnthrown block
Name of Closest KNOWN FAULT: Cimarron fault
DISTANCE TO CLOSEST KNOWN FAULT : 10 . 0 (km) km south of reservair
GEOLOOY REFERENCES : 106,259
DAM NAME : Mossyrock
DAM NAME
RESERVOIR country : USA
RIVER: COWl
LOCATION OF CENTER OF RESERVIIR : 46. SON, 122. 33W LOCATION OF DAM : 46.53N, 122.43W
DAM TYPE : Concrete arch
DATE DAM COMPLETED : 1968
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower NOTES ON DAM : Dam height of 128 m above ground
STRUCTURAL HEIGHT OF DAM : 184. m
LENGTH OF DAM : \$33. m
MAXIMUM DEPTH OF RESERVOIR : 124.0 m
MAXIMUM VOL UME OF RESERVOIR $1957 \mathrm{~m} 3 \times 1$ EEG
SURFACE AREA OF RESERVOIR : 46.00 km 2
LONGEST DIMENSION OF RESERVOIR : 38.0 km
NITES ON REGIONAL GEDLOGY: Mt.
REGIONAL GEOLOGY: Volcanic
AGE OF REGIDNAL GEOLOGY: Cascades
REGIONAL STRESS REGIME: Shear
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
CONFIDENCE IN REGIONAL STRESS REGIME Massive andesite and bas
regional tectonic system
jaints at dam, part of
SITE GEOLOGY: Volcanic
DEGREE OF DEFORMATION: Shallow dipping
GEDLOGY REFERENCES : 106, 147,259A
Mratinje
DAM NAME : Mratinje
RIVER : Piva
PROUINCE OR REGION: Montenegro
DAM TYPE : Concrete arch
DATE DAM COMPLETED : 1976
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hyoropower
OHT OF DAM: 220
LENGTH OF DAM : 268. m.
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 190.00 m
MAXIMUM VOLUME OF RESERVOIR : 88O. m3xIOEG
UOTES ON REGIONAL GEOLOGY : Dinaride Mts.
REGIONAL GEDLOGY: Carbonate
AGE OF REGIONAL GEOLOGY : Mesozoic
REGIDNAL STRESS REGIME: Compressional
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
NOTES ON SITE GEOLOGY: Mesozoic limestone, karst topography
SITE GEOLOGY: Carbonate
AGE OF SITE GEDLGGY: Mesozoic
NOTES ON HYDROLOGY: Karst topography
GEOLOGY REFERENCES: 306,385

A-173
Mud Mountain
DAM NAME : Mud Mountain RESERVOIR NAME
COUNTRY: USA RIVER : White
LOCATION OF
LOCATION OF DAM : 47.15N, 121.93W
PROVINCE OR REGION: Washington
DAM TYPE : ROCK () fill
DATE DAM COMPLETED : 1948
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Flood control
NOTES ON DAM: Dam height of 130 m above ground
ORIENTATION OF RESERVIIR : E
STRUCTURAL HEIGHT OF DAM : 130. m
MAXIMUM DEPTH OF RESERVGIR : 107.0 m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 107.00 m
MAXIMUM VOLUME OF RESERVOIR: 131. m3x10EG
SURFACE AREA OF RESERVGIR : 4.60 km 2
ONGEST DIMENSION OF RESERVIIR : 8.8
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
NOTES ON SITE GEOLOGY: Tuff and andesite conglomerates, fissured quartite
SITE GEOLOGY: Volcanic
AGE OF SITE GEOLOGY: Tertiary
GEOLOGY REFERENCES: 106, 289

DAM NAME : Mula RESERVOIR NAME : COUNTRY: India RIVER: Mula LOCATION OF CENTE
 LOCATIUN OF DAM : 19.37 N,
DAM TYPE E EAT th $)$ fill
DATE DAM COMPLETED: 1972
DATE OF START OF FILLING
EXFECTED FLUCTUATIONS BASE STRUGTURAL HEIGHT OF DAM LENGTH OF DAM : 2819. m

MAXIMUM DEPTH OF RESERVO
REEERVOIR DEPTH COMPUTED
ny3sヨy to 3 Wn7on WnWixyw MOTES ON REGIONAL GEOLOGY :

REGIONAL GEOLOGY : Volcanic
REGIONAL GEOLOGY AGE OF REGIONAL GEOLOGY: Tertiary
REGIONAL STRESE REGIME Shear
EVIDENCE FOR REGIGNAL STRESS REGIME :
CONFIDENCE IN REGIOMAL STRESS REGIME
NOTES ON SITE GEOLOGY: Dam and Reser
horizantal. River bed and banks up t
part cemented with calcium carbonate.
SITE GEDLOGY: VOICanic
AGE OF SITE GEOLOGY: Tertiary (Eocen
NGTES ON FAULTING: Deccan Trap typic
dam, is approximately 4OOm long and
 AGE OF REGIONAL GEOLOGY: Tertiary
REGIONAL STRESE REGIME Shear
EVIDENCE FOR REGIGNAL STRESS REGIME :
CONFIDENCE IN REGIOMAL STRESS REGIME
NOTES ON SITE GEOLOGY: Dam and Reser
horizantal. River bed and banks up t
part cemented with calcium carbonate.
SITE GEDLOGY: VOICanic
AGE OF SITE GEOLOGY: Tertiary (Eocen
NGTES ON FAULTING: Deccan Trap typic
dam, is approximately 4OOm long and AGE OF REGIONAL GEOLOGY: Tertiary
REGIONAL STRESE REGIME Shear
EVIDENCE FOR REGIGNAL STRESS REGIME :
CONFIDENCE IN REGIOMAL STRESS REGIME
NOTES ON SITE GEOLOGY: Dam and Reser
horizantal. River bed and banks up t
part cemented with calcium carbonate.
SITE GEDLOGY: VOICanic
AGE OF SITE GEOLOGY: Tertiary (Eocen
NGTES ON FAULTING: Deccan Trap typic
dam, is approximately 4OOm long and AGE OF REGIONAL GEOLOGY: Tertiary
REGIONAL STRESE REGIME Shear
EVIDENCE FOR REGIGNAL STRESS REGIME :
CONFIDENCE IN REGIOMAL STRESS REGIME
NOTES ON SITE GEOLOGY: Dam and Reser
horizantal. River bed and banks up t
part cemented with calcium carbonate.
SITE GEDLOGY: VOICanic
AGE OF SITE GEOLOGY: Tertiary (Eocen
NGTES ON FAULTING: Deccan Trap typic
dam, is approximately 4OOm long and AGE OF REGIONAL GEOLOGY: Tertiary
REGIONAL STRESE REGIME Shear
EVIDENCE FOR REGIGNAL STRESS REGIME :
CONFIDENCE IN REGIOMAL STRESS REGIME
NOTES ON SITE GEOLOGY: Dam and Reser
horizantal. River bed and banks up t
part cemented with calcium carbonate.
SITE GEDLOGY: VOICanic
AGE OF SITE GEOLOGY: Tertiary (Eocen
NGTES ON FAULTING: Deccan Trap typic
dam, is approximately 4OOm long and AGE OF REGIONAL GEOLOGY: Tertiary
REGIONAL STRESE REGIME Shear
EVIDENCE FOR REGIGNAL STRESS REGIME :
CONFIDENCE IN REGIOMAL STRESS REGIME
NOTES ON SITE GEOLOGY: Dam and Reser
horizantal. River bed and banks up t
part cemented with calcium carbonate.
SITE GEDLOGY: VOICanic
AGE OF SITE GEOLOGY: Tertiary (Eocen
NGTES ON FAULTING: Deccan Trap typic
dam, is approximately 4OOm long and AGE OF REGIONAL GEOLOGY: Tertiary
REGIONAL STRESE REGIME Shear
EVIDENCE FOR REGIGNAL STRESS REGIME :
CONFIDENCE IN REGIOMAL STRESS REGIME
NOTES ON SITE GEOLOGY: Dam and Reser
horizantal. River bed and banks up t
part cemented with calcium carbonate.
SITE GEDLOGY: VOICanic
AGE OF SITE GEOLOGY: Tertiary (Eocen
NGTES ON FAULTING: Deccan Trap typic
dam, is approximately 4OOm long and

 microearthquake activity increased significantly. Subsequently reservoir levels declined and microearthquak near pre-impoundment levels. This correlation is reported to have been repeated in the 3 following years.
 Date are sparse. No event of magnitude larger than 1. by ISC.
RIS CATEGORY: Accepted
TYPE OF RIS : micro

GEOLOGY REFEREMCES : 13,107,188,190,195,196,203
Nagarjunasagar
DAM NAME : Nagarjunasagar
REEERVOIR NAME : Nagar Junasagar
COUNTRY: India
RIVER : Krishna
LOCATION OF CENTER
PROVINCE OR REGION: Andhra Pradesh
DAM TVPE : Gravity
DATE DAM COMPLETED: 1967
STRUCTURAL HEIGHT OF DAM: 125. m
STRUCTURAL. HEIGHT OF DAM: 125.
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT :. 114.00 m
MAXIMUM VOLUME OF RESERVOIR : $11558 . \mathrm{m3x10EG}$
EUIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONF IDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NDTES ON REGIONAL GEOLOGY: GT
REGIONAL GEOLOGY: Metamorphic
REGIONAL STRESS REGIME : Shemr
EVIDENCE FOR REGIONAL STRESS RE
CONFIDENCE IN REGIONAL STRESS R
NOTES ON SITE GEOLOGY: Granit
SITE GEOLOGY: Batholithic
GEOLOGY REFERENCES: 107.323

A-176

DAM NAME : Nagawado

af CENTER OF RESERVOIR : 36.14N, 137.71E : Nagano

$$
\begin{aligned}
& \text { arch } \\
& \text { i } 1969 \\
& \text { VS BAS }
\end{aligned}
$$ REGION :Concrete . EXPECTED FLUCTUATIGNS BASED ON PRIMARY USE : Hydropower RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 125.00 m MAXIMUM VOLUME OF RESERVOIR : 123. m3x1OEG

SURFACE AREA OF RESERVOIR : 2.74 km
LONGEST DIMENSION OF RESERVOIR
NOTES ON REGIONAL GEOLOGY: Pr AEGIONAL GEOLOGY: Metamorphic
REGIONAL STRESS REGIME : Compressiona
EVIDENCE FQR REGIONAL STRESS REGIME:
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
NOTES ON SITE GEQLOGY: Granite and hornfels at top of
pattern at dam NB3W, 78N. Lamprophyre dike present in foundation
SITE GEQLOGY: Metamorphic
GEDLOGY REFERENCES : 28,107,157,233,314,316
Nalps
DAM NAME : Naips and
DAM NAME
CDUNTRY:
RIVER: Rein de Nalps
LOCATION OF CENTER OF RE
DAM TYPE : Concrete arch
RESERVOIR : 46.63N. B. BOE
DATE DAM FLYECTED FLUCTUATIONS BASE
ORIENTATION OF RESERVOIR
ETRUCTURAL HEIGHT OF DAM: 128. (m) above lowest foundation
MAXIMUM DEPTH OF RESERVOIR: 110.0 (m) (calculated from topographic map) MAXIMUM VOLUME OF RESERVIIR: 45. m3xIOEG
LONGEST DIMENSION OF RESERVOIR : $2.0(\mathrm{~km})$ (from topa map)
NOTES ON REGIONAL GEDLOGY: Paleozoic St.
REGIONAL GEOLOGY: Metamorphic
AGE OF REGIONAL GEOLOGY: Paleozoic
REGIONAL STRESS REGIME: Compressional
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
EUIDENCE FOR REGIONAL STRESS REGIME
CONFIDENCE IN REGIONAL STRESS REGIME
NOTES ON SITE GEOLOGY: Permo-Carboniferous gneiss and micaschist
SITE GEOLOGY: Metamorphic
AGE OF SITE GEOLDGY: Permian
DISTANCE TO CLOSEST KNOWN FAULY: B. O ($k m$) $k m$ (ILING: no value
GEGLOGY REFERENCES : 106,440A, 440B
Nanakura
DAM NAME
COLNTRY: USA
RIMEH: San Juan
LOCATION OF CENTER OF RESERVOIR : 36. 92N, 107. 5OW ON PRIMARY USE 118 above ground
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Irrigation () and flood contral
NOTES ON DAM : Dam height of
ORIENTATION OF RESERVOIR : NE m
LENGTH OF DAM : $1112 . \mathrm{m}$. 1180 m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 118.00 m
MAXIMUM VOLUME OF RESERVOIR : 210日. m3xiOEG
EVIDENCE FOR REGIONAL STRESG REGIME : tectionics
CONFIDENCE IN REGIGNAL STRESS REGIME EVALUATION: medium
NOTE GEOLOGY Coarse clastic
DEGREF OF DEFGRMATION: Flatiying
geglogy references : 106
New Bullards Bar
DAM NAME : New Bullards Bar
RESERVOIR NAME: Neu Bullards Bar COUNTRY: USA
LDEATIGN OF CENTER OF RESERVOIR: 39.43N, 121.10W
LDCATION DF DAM: 39. 39N, 121.10W PRIVINCE DR REGION: California DAM TYPE: Cancrete arch
DATE DAM COMPLETED: 1970
 month. Seasonal fluctuations as great as 60% of voluma.
DATE OF START OF FILLING: AUG-198B
MGTES ON DAM: Y-shaped reservoifs with arms N and NE from center of reservoir. Dam ig7 mabave graund level.
EiAPECTED FLUCTUATIONS BASED ON PRIMARY USE
MUTES ON DAM: Y-Shaped reservoirs with arm
STRUCTURAL MEIGHT OF DAM: 194. m
LENGTH DF DAM : 671. m
MAXIMUM DEPTH OF RESERVOIR : 174.0 m
REEERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 174. OO m
MAXIMUM VOLUME OF RESERVOIR: 1184 m $3 \times 10 E 6$
SURFACE AREA DF RESERVOIR : 19.40 km 2
LDNGEST DIMENSION OF RESERVOIR: 8. 4 km

 REGIONAL EEOLOGY : Metamorphic
AGE DF REGIONAL GEOLOGY : Mesozoic
REGIONAL GTRESS REGIME : Extensional
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CINFIDENCE IN REGIONAL STRESS REGIME EVALUATION
COMFIDENCE IN REGIGNAL SJRESS REGIME EVALUATION: high
MDIES ON SITE GEOLOGY: Reservair underlain principally
Rear Mauntaing faslt zone thraugh southern arm of reservo
Eear Mauntains faslt zone thraugh southern arm of reservoir
SITE GEDLOGV: Batholithic
AOE OF SITE GEOLOGY: CTEt
ASE OF SITE GEOLOQY : Cretaceous
DRIENTATION OF STRUCTURAL GRAIN
IR IENTATION OF STRUCTURAL GRAIN: NW
plutonic campley. No evidence of late
AZIMUTH OF PREDOMINART FAULTING: NZOW
MAMIMUM LENGTH OF FAULTS: 80.00 (km) km
PEHMEABILITY OF ROCKS: Law
TYFE OF PERMEABILITY: fracture
DE:SREE OF TOPIGGRAPHIC RELIEF
: $:$:CNBY REFEREMCES: Woodward-CIyde; 107. 235
New Don Pedro
DAM NAME: NHW DON Pasro
RESERVOIR NAME : DON Pedra Regervoir COUNTRY: USA
RIVER: Tuolumne
C.GATION OF CENTER OF RESERVOIR: 37.73N, 120.33W FROVINCE OR REGION: Califorila DAM TYPE: Earth () and rack fill DATE DAM COIFPLETED : ITRI
NOTES ON HISTURY OF IMPGUNDMENT : F
CATE DF START OF FILLING : NOV-1970
reservair
ORIENTATION OF RESERVOIR : NE
STRUCTURAL HEIGHT OF DAM: 178.
LEAGTH OF DAM : 579 . m
MAVIMUM DEPTH OF RESERVOIR
HESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 156.00 m
MAYIMUM VOLUME OF RESERVOIR: 2504. m3x10EG
SURFACE AREA OF RESERVOIR : 52. 50 km 2
LONGEST DIMENSION OF RESERVOIR : 13.2 km uith minor intrusives of sierran batholith.
REGIONAL GEOLOGY: Metamorphic
AJE OF REGIONAL GEOLOGY: Mesozoic
TECTONIC PROVINCE: Giorran Foothilis
EVIDENCE FOR REGIONAL STRESS REGIME
EUIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
MGIES ON SITE. GEOLOGY: Jurasisic metavolcanics, granitic rocks, and ultrabasics.
:ITE GEOLOGY : Metamorphic
AGE OF SITE GEOLOGY: Jurasic
AGE OF SITE GEOLOGY : JURIESIC
IRIENTION OF STRUCTURAL GRAIN

 environment.
FREDOMIWANT FAULT TYPE : Narmal
AZIMUTH OF PREDOMINANT FAULTING
CIMINANT SIDE UP: E (): east
NAME OF CLOEEST KNBWN FAILL : DON Pedra Reservoir fault, Fortynine fault, and other faults and shear zanes.
LIGTANCE TO CLOSEST MNOWN FAULT : O O (km) kmi within reservoir
GEQLOGY REFERENCES: WOOdward-CIyde. 107.235
Nas Exchaquer
CoAM NAME . New ExChequer
LoAM NAME New ExChrquer
RESERVOIR MAME : Lake Miciure COUNTRY: USA
RIVER : Merced
LUCATION OF CENTER OF RESERVOIR: $37.62 N, 120.27 \mathrm{~W}$
DAls TYPE : ROCK () filli, cancrete face
DATE DAM COMPLETED: 1966
HDTES DN HISTORY OF IMPQUNDMENT
EXFECTED FLUCTUATIONS BASED ON PR
EXfECTED FLUCTUATIONS BASED ON PRIMARY USE : Multi-purpose, Irrigation ()
NOTES ON DAM : Dam height of 146 m above ground, L-shaped reservoir.
ORIENTATION OF RESERVOIR : NE
ETRUCTURAL HEIGHT OF DAM
ETRUCTURAL HEIGHT OF DAM : $149 . \mathrm{m}$
LENGTH OF DAM : $378 . \mathrm{m}$
MAXIMUM DEPTH OF RESERVIR : 131.0 m
RESERVGIR DEPTH COMPUTED FRGM DAM HEI
RESERVOIR DEPTH COMPUTED
IAXIMUM VOLUIIE OF RESERVOI
EURFACE AREA OF RESERVOIR :
I.DNGEST DIMENSION OF RESER
TECTONIC PROVINCE: Si
REGIUNAL STRESS REGIME
HNOIOT N
NOTES ON SITE GEOLOGY: Mesoioic metavolcanics, slate, and meta conglomerate. Ultrabasic intrusives.
SITE GEOLOGY: Metamorphic

MOTES ON FAULTING : Mesozoic s
PREDOMINANT FAULT TYPE : Normal

MAXIMUH LENGTH OF FAULTS: 150.00 (km) km (Bear
DOMINANT GIDE UP KNOW FAULT
DISTANCE TO CLIDSEST KNOWN FAULT : O. O (km) km (through reservoir)
AGE OF MOST RECENT CISPLACEMENT ON CLOSEST KNOWN FAULT : Pre-late
Eatar Mountain fault zone
FEFMEAEILITY OF RIGCKS: GO to $180 \mathrm{~m} / \mathrm{yr}$ transmissibilityi low
TYPE OF PERIEAEILITY: Fracture ($)$ joints, foliation, shears
GEJLOGY REFEREHCES
LICATION OF CENTER OF RESERVOIR: 17.17N,93.67W LDCATION OF DAM : 17.18N,93.40W PROVINCE OR REGION : Chiapas
DAM TYPE : ROCk () fill
DATE DAM COMPLETED : 1964
NBTES ON DAM: ATms E and
IRIENTATION OF RESERVOIR
LEMGTH OF DAM : 2065. m
LENGTH DF DAM : 2065 . m
RESERVIIR DEPTH COMPUTED FROM DAM HEIGHT : 103.00 m (0)
MAXIMUM VOLUME OF RESERVOIR: 12500. $m 3 \times 1 O E G$
LINGEST DIMENSION OF RESERVOIR: 53.0 km
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATIDN
IOTES ON SITE GEOLOGY: Conglomerate, sandstone,
SITE GEOLOGY: Fine clastic
AGE OF SITE GEOLOGY: EOC
GEDLOGY REFERENCES : 106
DAM NAME : Nuraghe Arrubiu COUNTRY: Italy
RIVER: Flumend
PROVINCE OR REGION: Sardinia
DAM TYPE Concrete arch
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Multi-purposei first use is Irrigation NOTES ON DAM : Dam height of 112 m above ground
LENGTH OF DAM: 295 . m R
RESERVOIR DEPTH COMPUTED FR
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 101.00 m
REGIONAL STRESS REGIME: Compressional
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: low
NOTES ON SITE GEOLOGY: Porphyry
SITE GEOLOGY: Batholithic
GEDLOGY REFERENCES: 106

A-185
DAM NAME: NuTek Nutek
country jahhsh
IVEATION OF DAM : 38 42N, 69.27E
PROVINCE DR REGION: Tadzhikskaya
DPE : EA
DATE OF START OF FILLING: Sep-1972
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower (), Irrigation
NOTES ON DAM: Dam under construction in phasesi first phase completed 1967
ETRUCTURAL HELGHT OF DAM: 317. (m) above lowest foundation
ETRUCTURAL HEIGHT OF DAM
ENGTH OF DAM: 729 m
RESERVIIR DEPTH COMPUTED FROM DAM HEIGHT : 285.30 m
MAXIMUM VOLUME OF RESERVOIR : 11000. m3xioe.
SURFACE AREA OF RESERVOIR : 74.00 kma
NOTES ON REGIONAL GEOLOGY : Tectonically active Tadjikistan depression contains northeast-trending active thrust faults.
REGIONAL STRESS REGIME: Compressional
EVIDENCE FOR REGIONAL STRESS REGIME :
CONFIDENCE IN REGIONAL STRESS REGIME
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: high
MOTES ON SITE GEOLOGY : Megozoic and Cenozoic marine and platform sedimentary rock, with Neogene and Quaternary molasse with
gypsum-salt series.
SITE GEOLOGY : Coar
SITE GEOLOGY : Coarse clastic
MOTES ON FAULTING: Northeast-
Motes on FAULTING
thrust faults are pr friust faults are
PREDOMINANT FAULT PREDOMINANT FAULT TY
4ZIMUTH OF PREDOMI
DISTANCE TO CLOSES
DISTANCE TO CLOSEST KNOWN FAULT : O. O (km) kmi side of reservoir
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAULT: Quaternary
ARE LOCAL FAULTS ACTIVE? : Yes
SEISMICITY ASSOCIATED WITH FAULTS IN LOCAL AREA? : Ves (). dounstrea
DISTANCE TO CLOSEST KNOWN FAULT : O. O (km) kmi side of reservoir
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAULT: Quaternary
ARE LOCAL FAULTS ACTIVE? : Yes
SEISMICITY ASSOCIATED WITH FAULTS IN LOCAL AREA? : Ves (). dounstrea
PERMEABILITY OF ROCKS : medium
PERMEABILITY OF ROCKS
TYFE OF PERMEABILITY
GFOUNDWATER GRADIENT
GAOUNDWATER GRADIENT : LOW
DEGREE OF TOPOGRAPHIC RELIEF
DATE OF FIRST SUSPECTED RIS
MAGNITUDE OR INTENSITY OF LARGEST SUSPECTED RIS EVENT: Mag 4. 5
NOTES ON SEISMICITY AFTER IMPQUNDMENT: Increases
NGTES ON SEISMICITY AFTER IMPQUNDMENT: Increases and decreases in seismic activity correlate (with virtually no delay time) with
fluctuations in water level over the 3 years for which post-impoundment data are available.
GENERAL NOTES : Area of high seismicity with many large local earthquakes prior to, and after filling
GENERAL NOTES
RIE CATEGORY
RIE CATEGORY: Accepted
TYPE OF RIS: macro and
GEDLAGY REFERENCES : 60, 203, 206, 418,418A, 432
DAM NAME: O'Shaughnessy
RESERVGIR NAME: Hetch-Hetchy
COUNTRY : USA
RIVER: TUOIUM
PROVINCE OR REGION: California
DATE DAM COMPLETED: 1938
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Public water supply (), hydropower, irrigation
NOTES ON DAM : Dam height of 95 m above ground
LENGTH OF DAM : 277. m m
LENGTH OF DAM : $277 . \mathrm{m}^{\prime}$
RESERVOIR DEPTH COMPUT
CONFIDENCE IN REGIONAL SIRESS REGIME EVALUATION: medium
GEOLOGY REFERENCES: 107

$$
\begin{array}{ll}
N \\
75 . & m
\end{array}
$$ ED :

dim height
a ION
TIONS BASED
am height of RESERVOIR Earth luctuat OF RE
HEIGHT gTructural height

LENGTH OF DAM : 2835. m
RESEHVOIR DEPTH COMPUTED FROM DAM HEIGHT: 71. 25 m MAXIMUM VOLUME OF RESERVOIR : 29110. m3x10E6 LONGEST DIMENSION OF RESERVOIR: 245.0 km

REGIONAL STRESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
MOIES ON SITE GEOLGGY: Shale and glacial deposits
AGE GEOLOGY : FIne clastic
A-188
Ogoch:
DAM NAME: Ogochi
RESERVOIR NAME : Okutama-Ko
COUNTRY: JIPAn
RIVER : Tama
LOCATION OF
35. 78N, 139. O3E
LOCATION DF DAM: 35. 78N, 139. 07E
PROVINCE OR REGION : Tokyo
DAM TYPE Concrete gravity
EXFECTED FLUCTUATIONS
NOTES ON DAM : Dam height of 146 m above ground
ORIENTATION OF RESERVOIR : W
GTRUCTURAL HEIGHT OF DAM: 149. m
STRUCTURAL HEIGHT OF DAM :
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 131.00 m
MAXIMUM VOLUME OF RESERVOIR: 189. m3xIOEG
MAXIMUM VOLUME OF RESERVOIR : 189. m3x10E6
LONGEST DIMENSION OF RESERVOIR : 5.0 km
REGIONAL STRESS REGIME: COMP Ressige:
EVIDENCE FOR REGIONAL STRESS REGIME:
COMFIDENCE IN REGIONAL STRESS REGIME EVA
NOTES ON SITE GEOLOGY: Greywacke, shale
GEOLOGY REFERENGES : 106,289,468A
Qkutadami

DAM NAME : Okutadami

 COUNTRY: JapanIOCATION OF CENTER OF RESERVOIR : 37.13N, 139.24E LICATION OF DAM: 37. $15 \mathrm{~N}, 139$. 25E PROVINCE OR REGION: Niigata
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
NOTES ON DAM: Dam height of 153 m above ground NOTES ON DAM: Dam height of 153 m above ground
URIENTATION DF RESERVOIR : S25W
LENGR OF DAM 48O. ${ }^{m}$ (ED FROM DAM HEIGHT: 127.00 m
RESERVOIR DEPTH COMPUTED FROM DAM
MAXIMUM VOLUME OF RESERVOIR: 601
LIONGEST DIMENSION OF RESERVOIR
REGIONAL STRESS REGIME : Compressional
TRESS REGIME : tectonics
TRESS
Shale
tic COUNTRY：USA RIVER：Feather LOCATION OF CENTER OF RESERVOIR：39．53N，121．43W
LUCATION OF DAM ：39．S3N，121．SOW
PROVINCE OR REGION：California
GAM TYPE ：ZONEd earth（）fill
DATE DAM COMPLETED：196日 LOCATION OF CENTER OF RESERVOIR：39．53N，121．43W
LUCATION OF DAM：39．SJN，121．SOW
PROVINGE OR REGION：California
GAM TYPE ：ZONEd earth（）fill
DATE DAM COMPLETED：196日 LOCATION OF CENTER OF RESERVOIR：39．53N，121．43W
LUCATION OF DAM ：39．S3N，121．SOW
PROVINCE OR REGION：California
GAM TYPE ：ZONEd earth（）fill
DATE DAM COMPLETED：196日 DATE DAM COMPLETED
NOTES ON HISTORY OF Gapacity in 2 1／
1775．Maximum of DATE OF START OF FILLING： 1 －NOV－1967 RATE OF INITIAL FILLING VEARRS FROM BEGINNING TO MAXIMUM RATE OF FILLING
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE ：Irrigation（）．Maximum preadrought fluctuation of bo\％of capacity，ig74． ORIENTATION OF RESERVOIR ：$N() ;$ arms NE and E
STRUCTURAL HEIGHT OF DAM：236．m
MAXIMUM DEPTH OF RESERVOIR ： 2040 m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT：204． 00 m
MAXIMUM VOLUME OF RESERVOIR ：4400．m3x10EG
SURFACE AREA OF RESERVOIR ： 63.00 kma
NOTES ON REGIONAL GEQLOGY：Western metamorphic belt of the Sierra Nevada．Extensional tectonic stress regime．
REGIONAL GEQLOGY：Metamorphic
AGE OF REGIONAL GEOLOGY：Jurassic
TECTONLC PROVINCE ：Sierra Nevada black
REGIONAL STRESS REGIME ：EXtensIonal
EUIDENCE FOR REGIONAL STRESS REGIME
（ ots result in the metavolcanic units being somewhat blocky． SITE GEOLOGY：Metamorphic
ade of site gealogy ：Jurassic
DEGREE OF DEFORMATI
NOTES ON FAULTING
the Foothills taul preciuminant fault
PRECOMINANT FAULT TYPE ：NOTMAI
AZIMUTH OF PREDUMINANT FAULTING：NZSW to NIOE
DIP OF PREGOIINANT FAULTING：E（）：ASSt
Miximum renininan fauliting ：E（）；ast
PREDOMINAINT FRACTURE ORIENTATION：N to NJOW
LOGATION DF RESERVOIR IN RELATION TO FAULTS：DOwnthrown block
WAME OF CLOSEST KNOWN FAULT：Cleveland Hills fault
OIETANCE TO CLOEEST KNOWN FAULT ： $10.0(\mathrm{~km}) \mathrm{km}$
ABE UF MUST RECENT DISPLACEMENT ON CLOSEST KNOWN FAULT：Historic（I Aug 1975）
ARE LOCAL FAULTS ACTIVE？：YES
SEISMLCITY ASSOCIATED WITH FAULTS IN LOCAL AREA？：Yes
A－191
Permeability of rocks generally lowi locally
Incised drainages
Steep v-shaped valleys, local relief of 50 m .
Fracture ()s, joints, shears, schistose zones
O 25-0. 5G gPd/sq.
FTPE OF PERMEAEILITY
GRUUNDWATER GFADIENT
DEGREE OF TOPGGRAPHIC RELIEF: Moderate () to high
DATE OF FIRST SUSPECTED RIS EVENT: 28-Jun- 1975
IAGNITUDE OR INTENEITY OF LARGEST SUSPECTED RIS
DATE DF LARGEST SUSPECTED RIS EVENT: 1-Aug-1975

ceurred shortly after witer level had been drawn down to lowest elevation in g years. Maximum event occurred as the reservoir
evel was raised to maximum level previously attained. It occurred 11 km southwest of the dam at a focal depth of 5 . 5 to g . km . The
level was raised to maximum level previously attained.
iurface to a depth of 10 km .
SENERAL NOTES : Data reliabi
GENERAL NOTES : Data reliability is moderate.
AIS CATEGORY: Accepted
AIS CATEGORY: Accepted
IVPE OF RIS : macro
GEOLOGY REFERENCES : $42,72,106,121,216,222,235,2684,272,320,399,400,418$, Woodward-Clyde Consultants work
DAM NAME
DAM NAME：Qued Fodda
RESERVOIR NAME：Oued Fodda
COUNTKY：Algeria
RIVER：Qued Fodda
LOCATION OF CENTER OF RESERVOIR：36．O2N，1．60E
LOCATIDN OF DAM：36．OSN，1．61E
DAM TYPE ：Concrete gravity
DATE DAM COMPLETED： 1933
MOTES ON HISTORY OF IMPOUNDMENT ：Reservoir capacity reduced so percent between 1942 and 1962 due to sediment accumulation．
DATE OF START OF FILLING：Nov－ 1932
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE ：Irrigation
NOTES ON DAM ：Dam height of 89
STRUCTURAL HEIGHT OF DAM：101．m
LENOHVIR DEPTH COMPUTED FROM DAM HEIEHT： 83.00 m
MAXIMUM VOLUME OF RESERVOIR ：225．m3×10E6
LONGEST DIMENSION OF RESERVOIR ： $6.0(\mathrm{~km}) \mathrm{km}$
Moseson regional gealogy ：In the Tell Atlas Mountains of northern Africa．Mesozoic carbonate units deformed during
REGIONAL GEOLOGY：Carbonate
AGE OF REGIONAL GEOLOGY：Jurassic
REGIONAL STRESS REGIME：Compressional
EVIDENCE FOR REGIONAL STRESS REGIME：focal mechanism
CONFIDENCE IN REGICNAL STRESS REGIME EVALUATION：medium
NOTES ON FAULTING：Faults：Limestones are fissured in then
NaIES ON FAULTING：FaUlts：Limestones are fissured in the dam and reservoir area．No additional data abtained．
DATE OF FIRST SUSPECTED RIS EVENT ：Jan－1933
NOTES ON SEISMICITY AFTER IMPOUNDMENT ：No change in level of macroseismicity．Microseismicity began within a few months of the
start of impoundment，continued for 5 months，then stopped
GENERAL NOTES ：Data reliability is low．Few data were obtained．Region of seismic activity．
describe the location of events．
RIS CATEGORY：Accepted
TYPE OF RIS：micro
GEDLOGY REFERENCES ：64，106，203，289，331，468A
DAM NAME : Dutardes \#4
RESERVOIR NAME: Outardes
COUNTRY: Canada
RIVER OUtardes
LOCATION OF CENTER OF RESERVOIR : 50. $13 \mathrm{~N}, 69.11 \mathrm{~W}$ LOCATION OF DAM : 49. 75N, 68. B9W
PROVINCE OR REGION: QUebec PROVINCE OR REGION : Quebec
DATE DAM COMPLETED : 1968
NOTES ON HISTORY OF IMPQUNDMENT : Begun in April 1968 , lst peak December 1969, fiuctuations no more than 8 m to 1975
DATE OF START OF FILLING : APr-196B
VEARS FROM BEGINNING TO MAXIMUM FILL : 1.70 (years) years
NOTES ON HISTORY OF IMPQUNDMENT : Begun in April 1968 , lst peak December 1969, fiuctuations no more than 8 m to 1975
DATE OF START OF FILLING : APr-196B
VEARS FROM BEGINNING TO MAXIMUM FILL : 1.70 (years) years
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower (), maximum fluctuation 8 m ORIENTATION OF RESERVOIR : N1SW
STRUCTURAL HEIGHT OF DAM: 134 . (m) above lowest foundation for highest dam
MAXIMUM DEPTH DF RESERVOIR : 116.0 m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 116.00 m
MAXIMUM VOLUME OF RESERVOIR: 2430 . m3xIOEG
SURFACE AREA OF RESERVOIR : 666.00 kmg
LONGEST DIMENSION OF RESERVIIR
EVIDENCE FOR REGIONAL STRESS REGIME
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
NOTES ON SITE GEOLOGY: Gabbro and anorthosite,
NOTES ON SITE GEOLOGY : Gabbro and anorthosite, talus 10 m deep on left bank
GEGLOGY REFERENCES: 81,106,33日
DAM NAME: Owyhee RESERVOIR NAME
COUNTRY: USA
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Irrigation () and flood control NOTES ON DAM : Dam height of 99 m above ground
ORIENTATION OF RESERVGIR : S70W
STRUCTURAL HEIGHT OF DAM: 127.
LENGTH OF DAM : 254. m 109.00 m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 109.00 m
1384. $\mathrm{m} 3 \times 10 \mathrm{E} 6$ IMENESS REGIME: Extensional (km) km
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION

[^13]A-195
Pallsades
DAM NAME : Palisades RESERVOIR NASA COUNTRY: USA
RIVER: Snak
RIVER: Snake
LOCATION OF CENTER OF RESERVQIR: 43.23N. 111.12 W
LOCATION OF DAM: 43. 33N, 111.21W
DAM TYPE : earth () fill
DATE DAM COMPLETED: 1957 .
DATE OF START OF FILLING: Date of 1 mpoundment 1956
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Multi-purposei Irrigation () is first use listed
ORIENTATION OF RESERVOIR : SJ3E
STRUCTURAL HEIGHT OF DAM: 日2. m
MAXIMUM DEPTH OF RESERVIIR : 67.0 m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT:
MAXIMUM VOLUME OF RESERVDIR : 1729. m3
SURFACE AREA OF RESERVOIR 108. 00 kma
NOTES ON REGIGNAL GEOLGGY. Reg
underiain by paleozoic and Cretional
EVIDENCE FGR REGIONAL STRESS REGIME
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON FAULIING: The Grand Valley fault and series of graben downdrop. Time of most recent displacement was not obtained
DEGREE OF TOPQGRAPHIC RELIEF : high
DATE OF FIRST SUSPECTED RIS EVENT
MAGNITUDE GR INTENSITY OF LARGEST SUSPECTED RIS EVENT : Mag 3. 7 Mb (NOAA)
DATE OF LARGEST SUSPECTED RIS EVENT : $10-J U n-1966$
DATE OF LARGEST SUSPECTED RIS EVENT: 10-Jun-1966

[^14]
Parambikulam
\[

$$
\begin{aligned}
& \text { ISC. } \\
& \text { reservoir by } \\
& \text { EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Irrigation () and hydropower } \\
& \text { EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Irrigation () and hydropower } \\
& \text { NOTES ON DAM : Dam height of } 57 \mathrm{~m} \text { above ground. } \\
& \text { ORIENTATION OF RESERVOIR : E } \\
& \text { STRUCTURAL HEIGHT OF DAM : } 73 \\
& \text { RESERVOIR DEPTH COMPUTED FROM } \\
& \text { RESERVOIR DEPTH COMPUTED FROM VIMUE OF RESERVOIR } \\
& \text { LONGEST DIMENSIION OF RESERV } \\
& \text { NOTES ON REGIGNAL GEGLOGY: Margin of the Peninsular shield of India. } \\
& \text { REGIONAL GEDLOGY: Metamorphic } \\
& \text { AGE OF REGIONAL GEOLOGY: Archaean } \\
& \begin{array}{l}
\text { EVIDENCE FOR REGIONAL STRESS REGIME : tectonics } \\
\text { CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION }
\end{array} \\
& \begin{array}{l}
\text { CONFIDENCE IN REGIGNAL STRESS REGIME EVALUATION : medium } \\
\text { NOIES ON SITE GEOLOGY: Biotite gneiss and charnockite }
\end{array} \\
& \text { SITE GEQLOGY: Metamorphic } \\
& \text { AGE OF SITE GEOLOGY: Archaean } \\
& \text { name of closest known fault : Palaghat Gap } \\
& \text { DISTANCE TO CLOSEST KNOWN FAULT : } 4.0 \text { (km) } \\
& \text { AGE OF MOST RECENT DISPLACEMENT ON CLOSEST } \\
& \text { NOTES ON SEISMICITY AFTER IMPQUNDMENT : No } \\
& \text { RIS CATEGORY: Guestionable } \\
& \text { GEOLOGY REFERENCES: 93.106, 192, 195, 203. } 379
\end{aligned}
$$
\]

DAM NAME : Pardee
RESERVOIR NAME : Pardee COUNTRY: USA
RIVER : Mokelumne
LIGCATION OF CENTER
DAM TYPE : Concrete arch (') gravity
DATE DAM COMPLETED: 1929
MOTES ON HISTORY OF IMPOUNDMENT : In
DAM TYPE : Concrete arch () gravity
DATE DAM COMPLETED: 1929
NOTES ON HISTORY OF IMPOUNDMENT : In
months.
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
ORIENTATION OF RESERVOIR : NE
STRUCTURAL HEIGHT OF DAM : NONE
MAXIMUM DEPTH OF RESERVOIR: 95.0 m
RESERVOIR DEPTH COMPUTED FROM DAM HE
RESERVOIR DEPTH COMPUTED FROM
MAXIMUM VOLUME OF RESERVOIR :
SURFACE AREA OF RESERVOIR:
LUNGEST DIMENSION OF RESERVII
TECTONIC PROVINCE : Eierran
REGIONAL STRESS REGIME: Extensional

Piastra
DAM NAME: Piastra
RESERVOIR NAME: Lago della Piastra
COUNTRY: Italy
RIVER: Gesso
DAM NAME: Piastra
RESERVOIR NAME: Lago della Piastra
CQUNTRY: Italy
RIVER: Gesso
DAM NAME: Piastra
RESERVOIR NAME: Lago della Piastra
CQUNTRY: Italy
RIVER: Gesso
LOCATION OF CENTER OF RESERVOIR: 44.21N,7.21E
LOGATION OF DAM: 44. 22N, 7.21E
LOCATION OF CENTER OF RESERVOIR: 44.21N,7.21E
LOGATION OF DAM: 44. 22N, 7.21E DAM TYPE : Concrete gravity
DATE DAM COMPLETED: 1965
DATE OF START OF FILLING: JUn-1965
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower ORIENTATION OF RESERVOIR : SW
STRUCTURAL HEIGHT OF DAM : 93. (m) m
LENGTH OF DAM : 430. m FROM DAM HEIGHT : 83. 70 m MAXIMUM VOLUME OF RESERVOIR : 13. m3xiOEG
LINGEST DIMENSION OF RESERVOIR: $2.0(\mathrm{~km}) \mathrm{km}$
MaTES ON REOIGNAL GEQLOGY: In the Maritime Alps near the margins of the Pannine Nappes and the Pa Valley. Units are Mesoioic and Cenozoic flysch deposits and crystaline masifa. Major Nw-trending thrust faults with southwest displacament are present.
REGIONAL GEOLOQY: Metamorphic
TECTONIC PRONINCE: AIP:
REGIONAL GTRESS REGIME: Compressional
EVIDENCE FOR REGIGNAL STRESS REGIME : tectonics
CONFIDENCE IN REGIDNAL STRESS REGIME EVALUATION: medium
NOIES ON FAULTIAG: Regianal thrust faults trending NW trend through or very near the dam and reservoir area. The Stura fault trends
E south of the dam and reservoir.
DEGREE OF TOPGGRAPHIC RELIEF : high
MAGNITUDE OR INTENSITY OF LARGEST SUSPECTED RIS EVENT : Mag 4. 4 (ISC)
DATE OF FIRST SUSPECTED RIS EVENT : OCE-19GS
MAGNITUDE OR INTENSITY OF LARGEST SUSPECTED R
NOTES ON SEISMICITY AFTER IMPOUNDMENT : GOad spatial and temporal association of seismicity with initial impoundment. Apparent increase in seismic frequency fram mid 1965 with a number of earthquakes close to the dam in September 1966 . GENERAL NOTES : Data reliability is low. Few data were obtained. Base-ifine data not presented.
RIS CATEGORY: Accepted
TYPE OF RIS : macro and micro
GEQLOGY REFERENCES : $64,102,106$
Moodward-Clyde Consultants
Pieve di Cadare
DAM NAME : Pieve di Cadore DAM NAME
COUNTRY: Italy
RIVER: Piave
L.OCATION OF CENTER OF RESERVOIR: 46.45N, 12.41E
LOCATION OF DAM : 46. $42 \mathrm{~N}, 12.3 \mathrm{EE}$
PROVINCE OR REGION: Belluno
DAM TYPE : Concrete arch () gravity
DATE DAM COMPLETED : 1949
DATE DAM COMPLETED :
EXPEGTED FLUGTUATION
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydrupower
NOTES ON DAM: Dam height of 108 above ground.
ORIENTATION OF RESERVOIR : N3JE
STRUCTURAL HEIGHT OF DAM: 116 . (m) bove found.
LENGTH OF DAM : 410 . m
RESERVOIR DEPTH COMPUTED FROM DAM HEIOHT : 99.00 m
MAXIMUM VOLUME OF RESERVOIR : 69. m3x10ES
LONGEST DIMENSION OF REGERVGIR : $8.6(\mathrm{~km}) \mathrm{km}$
MAXIMUM DIMENSION
NOTES ON REGIONAL
flysch deposits
REGIONAL GEOLOGY
ACE OF REGIONAL
TECTONIC PROVINCE
TECIONIC PROVINCE: AIPS
REGIONAL STRESS REOIME: COMPRESEIONal
EVIDENCE FOR REGIONAL STRESS REGIME : te
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
COMFIDENCE IN REGIGNAL STRESS REGIME EVALUATION
obtained. Fractures present in reservair area.
SITE GEDLOGY: Carbonate
AGE OF SITE GEQLOGY: upper Triasilc
HITES ON HYDROLOGY:
for harstification.
DATE DF FIRST SUSPECTED RIS EVENT : 1950 (Int U
DATE OF LARGEST SUSPECTED RIS EVENT : 13-Jan-1950
NGTES ON SEISMICITY AFTER IMPGUNDMENT : Although no ciear spatial association is observed, the level of macroseismicity has
inereased subsequent to reservoir impoundment. Microseismicity also associated with filling in igso and refilling in igb4
increase in microeqritiquake activity occurred during impoundment.
RIS CATEGORY: Accepted
GEOLOGY REFERENCES : 64, 80, 102,106,203,289,394,418
Pine Flat
DAM NAME: Pine Flat
PESERVOIR NAME: Pine Flat Lake
COUNTRY: USA
RIVER: KIng
PROUINCE OR REGION OF RESERVOIR
DAM TYPE : Concrete gravity
PROVINCE
DAM TYPE
DATE DAM
Q.3153dx
WVa $31 \forall 0$ wmopmedp
a3153dx 3
January 1969
NOTES ON DAM
ORIENTATION OF RESERVOIR: NE
STRUCTURAL HEIGHT OF DAM :
LENOTH OF DAIY: $361 . \mathrm{m}$
MAXIMUM DEPTH OF RESERVOIR : 116.0 m (m : 116.00 m
MAXIMUM VOLUME OF RESERVIIR : 1233. m3x10E6
LONGEST DIMENSION OF RESERVOIR: 15.3 km
NOTES ON REGIONAL GEOLOGY: Pre-CEnO2oic
metavolcanics.
REOIONAL GEOLOGY: Metamorphic
AGE OF REOIONAL GEOLOGY: Mesozoic
TECTONIC PROVINCE : Gierion foothill:
REGIONAL STRESS REGIME: Extensional
EVIDENCE FOR REOIONAL STRESS REOIME: tectonics
CONFIDENCE IN REGIONAL STRESS REGIME
NOTES ON SITE GEOLOGY: Amphibolite
SITE GECLDOY: Metamorphic
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAULT : 30 km NW of dam
PERMEABILITY OF ROCKS : LOW
DEGREE OF TOPGGRAPHIC RELIEF: moderate () to high
GEULOGY REFERENCES : 106, 121.289
Place Moulin
DAM MAME : PLace Moulin place Moulin
RESERVOLR MAME
RIVNTRY: Buthior
LOCATION OF CENTER DF RESERVOIR: 45.91M, 7.52E
PROVIMCE OR REGIOM: Valle d'Aosta
DAM TYPE : Cancrete arch
DATE DAM COMPLETED : 1965
ORIENTATION OF RESERVDIR : NE
LEMGTH OF DAM : 6G3. n.
MAXIMUM DEPTH DF RESERVGIR: 136.0 (m) (determined from diagram)
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 136.00 m
MAXIMUM VOLUME OF RESERVOIR : 100. $m 3 \times 10 E G$
LONGEST DIMENSION OF RESERVOIR : 4.0 km
TECTONIC PROVINCE: ALPS
EVIDENCE FOR REGIDNAL STRESS REGIME : tectonics
CONF IDENCE IN REGIONAL STRESS REGIME EVALUATION : medium
NGTES ON SITE GEDLOGY: Crystalline schist, nearly vertical folication. Oneiss and mylonitic rock also present
GEOLOOY REFERENCES: 106,382.3日4
Porto Colombia DAM NAME : Porto Colombia
RESERVIIR NAME : Porto Columbia CIUNTRY: Brazil RIVER : Orande
LOCATION OF CENTER OF RESERVOIR : 20.129,48. 35W LOCATION OF DAM : 20. 128,48. 52W
LOCATION OF DAM
DAM TYPE : Earth DATE DAM COMPLETED: 1972
DATE OF START OF FILLING
EXPECTED FLUCTUATIONS BAS DATE DAM COMPLETED: 1972
DATE OF START OF FILLING
EXPECTED FLUCTUATIONS BAS
EXPECTED FLUCTUATIONS EASED ON PRIMARY USE : Hydropower
ORIENTATION OF RESERVOIR: NZOE
ORIENTATION OF RESERVOIR : NZOE
GTRUCTURAL HEIGHT OF DAM: $33 . \mathrm{m}$
LENGTH OF DAM : 2000. m FROM DAM HEICHT: 50.35 m
MAXIMUM VILUME OF REBERVOIR : 1460. m3xioeg
NOTES ON REGIONAL GEOLOGY : Flood baseltsi local sandstone deposits.
REOIONAL GEDLOGY: Volcanic
REGIONAL STRESS REOIME: Compressional
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : low
NOTES ON SITE GEOLOGY: Dam and Reservoir Faundation:
NOTES ON SITE GEOLOGY: DAM And Reservair Faundation: Flood basaltis.
SITE GEOLOGY: VOICAnIC
OATE OF FIRST SUSPECTED RIS EVENT: 24-Feb-1974
NOTES ON SEISMICITY AFTER IMPOUNDMENT: Earthquake occurred under Por
NOTES ON SITE GEOLOGY: Dam and Reservoir Faundation: Flood basalts.
SITE GEOLOGY: VOICAnIC
OATE OF FIRST GUSPECTED RIS EVENT : 24-Feb-1974
NOTES ON SEISMICITY AFTER IMPOUNDMENT: Earthquake occurred under Por
GENERAL NOTES : Macroearthquakes not recorded by ISC or NOAA.
RIS CATEGORY: Accepted () (weak case)
GEOLOGY REFERENCES : 67,107,108,119,393
Punt dal Gall
daM NAME : Punt dal Gall
RAM NAME REIR NAME : Lago di Gallo (Livigno) COUNTRY: Italy/Switierland
RIVER: Spol (Spoel)
PROVINCE OR REGION: Grischun
DAM TYPE : Concreta arch
DATE DAM COMPLETED: 1969
PROUINCE OR REGION: Grischun
DAM TYPE CONCreta arch
DATE DAM COMPLETED: 1969
DATE DAM COMPLETED: 1969
NOTES ON HISTORY OF IMPOUNDMENT: 80 m fili in 1968 , 107 m in 1969 summer EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
NOTES ON DAM: Has SE arms main reservoir SW
ORIENTATION OF RESERVOIR: SW
STRUCTURAL HEIGHT OF DAM : 130.
MAXIMUM DEPTH OF RESERVOIR: 128.7 m
RESERVOIR DEPTH COMPUTED FROM DAM
RESERVOIR DEPTH COMPUTED FROM DAM HEIOHT
MAXIMUM VOLUME OF RESERVOIR: 164. m $3 \times 10 E G$
LOIGEST DIMENSION OF RESERVOIR : 9.0 km
LONGEST DIMENSION OF RESERVOIR : 9. O km
NOTES OM REGIONAL GEOLOGY : Lower Engadi
Formation dolomites and limestones often alternating
REGIONAL GEOLOGY: Carbonate
ABE OF REGIONAL GEOLOGY: Triassic
TECTONIC PROVINCE: AIPS
EUIDENCE FOR REGIGNAL STRESS REGIME: tectonics
CONFIDENCE IN REGIONAL. STRESS REQIME EVALUATION
CONFIDENCE IN REGIONAL STRESS RECIME EVALUATION : medium
NIJTES ON SITE GEOLOGY: limestone with interbedded and inter
NITES ON SITE GEGLOGY : limestone with interbedded and interfingered dolamite. Niow 20w average attitude.
fractures in dam foundation
Practures in dam foundation
SITE GEOLOGY : Carbonate
AGE OF SITE GEOLOGY: Triassic
GEDLOGY REFERENCES: 107.177
 COUNTRY: USA
RIVER: Piru Creek LOGATION OF CENTER OF RESERVOIR
LOCATION OF DAM: $34.63 \mathrm{~N}, 11 \mathrm{G} .76 \mathrm{~W}$ PROVINCE OR REGION: California DAM TYPE : Rack () fill
DATE DAM COMPLETED: 1973 QRIENTATION OF RESERVOIR : NW
STRUCTURAL HEIGHT OF DAM: 118. MAXIMUM DEPTH OF RESERVIIR : 109.
REXIMUM VOLUME OF RESERVOIR: 22
gURFACE AREA OF RESERVOIR : 5.50
LONGEST DIMENSIDN OF RESERVOIR
LONGEST DIMENSIDN OF RESERVOIR : 4.0 km
REGIONAL STRESE REGIME: COmpressional (), N-S compression E-W shearing (RL)
EVIDENCE FQR REGIONAL STRESS REGIME : focal mechanism thick unit) strike parallel to dam axif, dip upatream 40 to so degrees. Rocks are pilocene SITE QEDLOGY: Fine clastic
AGE OF SITE OEOLOGY : PIIACe AGE OF SITE GEOLOGY : Piliocene
NOTES ON FAULTING: EAn Andreas (possible minor Quaternary activity)

[^15]
DAM NAME : Rihand

 DAM NAMECOUNTRY:

RIVER: Rihand
LOCATION OF CENTER OF RESERVOIR : 24. $11 \mathrm{~N}, 82.80 E$
LOCATION OF DAM : $24.26 N$, B3. OOE
PROVINCE OR REGION: Uttar Pradesh
DAM TYPE: Cancrete gravity
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
NOTES ON DAM : Dam height of 81 m above ground
GRIENTATION OF RESERVOIR : SW
STRUCTURAL HEIGHT OF DAM: 93
LENGTH OF DAM : 934. m m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 83. 70 m
MAXIMUM VOLUME OF RESERVOIR : 10630. m3x10E6
SURFACE AREA OF RESERVOIR $466.00 \mathrm{km2} \mathrm{~km}$
LONGEST DIMENSION OF RESERVOIR
NOTES ON SITE GEOLOOY: Granite
GEOLOOY REFERENCES : 51,106,299

DAM NAME - Rocky Reach

 DAM NAME : ROcky ReachRESERVOIR NAME : Lake Entiat COUNTRY : USA
RIVER : Columbio RIVER : Columbia LOCATION OF DAM : 47. 53N, 120. 27W PROVINCE OR REGION: Washington DAM TYPE : concrete gravity DATE DAM COMPLETED : 1962
EXPECTED FLUCTUATIGNS BASED ON PRIMARY USE : HYdropower
NOTES ON DAM : Dam height of 43 m above ground.
STRUCTURAL HEIGHT OF DAM: 59. m
LENETH OF DAM : 884. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT; 53.10 m
MAXIMUM VOLUME OF RESERVQIR : 8O2. m3xIOEG
 plateau. REGIONAL
TECTONIC PROVINCE: Columbia plateau
REGIONAL STRESS REGIME : Extonsional
EUIDENCE FOR REGIONAL STRESS REGIME
EVIDENCE FOR REGIONAL STRESG REGIME: tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
 Dasalt on ast.

PREDOMINANT FAULT TYPE : Normal
AZIMUTH OF PREDOMINANT FAULTINO : NESW () (Entiat fault); E-W (Orando fault)
MAXIMUM LENGTH OF FAULTS : 85. 00 (km) km
DOMINANT SIDE UP : E (); east (Entiant fault)
LICATION DF RESERVOIR IN RELATION TO
NAME OF CLOSEST KNOWN FAULT : ORONDO
DISTANCE TO CLOSEST KNOWN FAULT : O. O (km) kmi in reservoir
AGE DF MOST RECENT DISPLACEMENT ON CLOSEST KNDWN FAULT : PIIo-PIeistocene
SEIBMICITY ASSOCIATED WITH FAULTS IN LOCAL AREA? : yes
DEGREF OF TOPQGRAPHIC RELIEF : moderate
NGTES ON SEISMICITY AFTER IMPDUNDMENT:
change in levels of either microse
RIS CATEGORY: not RIS
TYPE OF RIS: Enone
PEOLQGY REFERENCES : Woodward-Clyde Consultants, R. Withersi 106, 203, 418
A-208

DATE DAM COMPLETED : 1961 EXPECTED FLUCTUATIONS BASED NE
150. m QRIENTATION OF RESERVOIR
STRUCTURAL HEIGHT OF DAM

LENGTH OF DAM : 806 . In
RESERVOIR DEPTH COMPUTE
RESERVGIR DEPTH COMPUTED FROM DAM HEIGHT: 132.00 m
MAXIMUM VOLUME OF RESERVOIR: 187. m3×10E6
MAXIMUM VOLUME OF RESERVOIR
LONGEST DIMENSION OF RESERVOI
TECTONIC PROVINCE: Alps
REGIONAL STRESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME :
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
COMFIDENCE IN REGIONAL STRESS REGIME EVALUATION : medium
NOTES ON SITE GEOLOGY: Gneiss and hard crystalline schist
NaTES ON SITE GEOLOGY: Gneiss and hard crystalline schist, few fractures GEDLOGY REFERENCES : 106, 289
DAM NAME : ROSS
RESERVOIR NAME : Ross Lake
COUNTRY : USA
RIVER: Skagit
LOCATION OF CENTER OF RESERVDIR : 48. B8N, 121.07W
PROUINCE OR REGION: Washington
DAM TYPE: Concrete arch
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower () and flood control
m above ground

NOTES ON SITE GEOLOGY: Gneiss and granite
GEOLOGY REFERENCES : 106, 289
RESERVOIR NAME: Lake Billy Chinook COUNTRY: USA
RIVER: Deschutes
PROUINCE OR REGION
DAM TYPE : ROCk () fill
DATE DAM COMPLETED : 1964
EXPECTED FLUCTUATIGNS BASED ON PRIMARY USE: Hydropower
NDTES ON DAM : Dam height 128 m above groundi butterfiy-shaped reservoir
DRIENTATION OF RESERVOIR: NW
ETRUCTURAL HEIGHT OF DAM
LENGTH OF DAM : 402. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 120.60 m
ME Extensional pathe
COIFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON SITE GEOLOGY: Basalts and basaltic sediments, flat-lying interbeddedi joints, perifter pliocene
SITE GEOLOOY: Volcanic
AGE DF SITE GEOLOGY:
PREDOMINANT FAULT TYPE : Normal
AZIMUTH OF PREDOMINANT FAULTING
AZIMUTH OF PREDOMINANT FAULTING: NW ()-trending
MAXIMUM LENGTH OF FAULTS : BO. OO (km) km (Bend fault)
NAME OF CLOSEST KNOWN FAULT: FaUlt along Whitewater R
DISTANCE TO CLOSEST KNOWN FAULT: Whitewater fault begin
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAULT
GEOLOGY REFERENCES : 106.224.337
Rybinsk
DAM NAME : Rybinsk RESERVIIR NAME
CQUNTKY: Volga
LOCATION OF CENTER OF RESERVOIR : 58. 5ON, 38. 42E LOCATION OF DAM : 58. OSN, 38. 88E
PROVINCE OR REGION: Yaroslavi
DAM TYPE : Earth () buttress and
DATE DAM COMPLETED: 1941
EXFECTED FLUGTUATIONS BASED ON PRIMARY USE : 3 to 5 m annually. Hydropower () is principal use NOTES ON DAM: Two dams on two riversi taller one is 34 m high, other is 30 m high.
QRIENTATIGN OF RESERVOIR : NW
STRUCTURAL HEIGHT OF DAM : 34.
RESEKVOIR DEPTH COMPUTED FROM DAM HEIOHT : 32.30 m
MAXIMUM VOLUME OF RESERVOIR : $25400 \mathrm{~m} 3 \times 10 E 6$
SURFACE AREA OF RESERVOIR
REGIONAL STRESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME
CONFIDENCE IN REGIONAL STRESS REGIME
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: low
NOTES ON SITE GEOLOGY: 4 to 4.8 m thick gravelly sand
SITE GEOLDGY : Fine clastic
AGE OF SITE GEDLGGY: Triassic
GEOLOGY REFERENCES: 76,106,152, 306, 330A
(Aswan High)
Gad-El-Aali
DAM NAME : Saad-El-Aali (Aswan High)
RESERVOIR NAME: Lake Nasser COUNTRY: Egypt
LOGATION OF CENTER OF RESERVIIR: 22. 6SN, 32. 13 E LOCATION OF DAM: 24. OON, 32.6OE PROVINCE OR REGION: Aswan
DAM TYPE : Rock ()fill
DATE DAM COMPLETED : 1970
COUNTRY EgYpt
NOTES ON HISTORY OF IMPOUNDMENT : Slow filling of reservoir up through 1971
DATE OF START OF FILLING
RATE OF INITIAL FILLING:
RATE OF INITIAL FILLING

EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Flood control
ORIENTATION OF RESERVOIR : SE
STRUCTURAL HEIGHT OF DAM : 111
LENGTH OF DAM : ЗB3O. m
MAXSERVGIR DEPTH COMPUTED FROM DAM HETGHT : 84. 00 m
RESERVOIR DEPTH COMPUTED FROM DAM HEI
MAXIMUM VOLUME OF RESERVOIR: 164000 .
SURFACE AREA OF RESERVGIR : $6220.00 \mathrm{km2}$
LONGEST DIMENSION OF RESERVOIR : 500.0 km
NOTES ON REGIONAL GEQLOGY: Nubian sandstones and underlying granitics. To the wast, an extensive desert plain. To the east, desert plain truncated on the east by metamorphic and igneous racks of the Eastern Desert
REGIONAL GEDLOQY: Coarse clastic
REGIONAL GEDESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
COMFIDENCE IN REGIONAL STRESS REGIME EVALUATION
NOTES ON SITE GEOLOGY: Granite, locally outcropping,

in center of canyon
DEGREF OF DEFORMATION : Flatlying
NOTES ON FAULTING: E-W faults in
PREDOMINANT FRACTURE ORIENTATION
PREDGMINANT FRACTURE ORIENTATION: E to W
PERMEABILITY OF ROCKS : Low ($)$, maximum perm
GRIUNDWATER GRADIENT: High (); porosity 25%, maximum gradient 0.0023 in 1969
DEGREF OF TOPQGRAPHIC RELIEF: LOW
GEOLOGY REFERENCES : $1,106,254,371$
Sakuma
DAM NAME : Sakuma
COUNTRY: Japan
NAME: Sakuma-Ko Japan
enryu
35. 13N, 137. 78E
LUMPLETED 1956 ON PRIONS BASED ON PRIMARY USE: Hydropower
FLUCTUATIGNS BAGED ON PRIMARY USE : Hydropower
CONFIDENCE IN REGIONAL STRESS REGIIME EVALUATION: medium
: Shear
STRESS REGIME HEIGHT OF DAM
DAM: 294 . m
DEPTH COMPUTED
VOLUME OF RESER
DIMENSION OF RES
STRESS REGIME :
FOR REGIONAL SI SITE GEDLOGY: Batholithic
GEILOGY REFERENCES : 106,444,468A
DAM NAME: Rountar: Spai
COUNTRY: Spain
LIDCATION OF CENTER OF RESERVOIR: 43.17N,6.75W
FRQUINCE OR REGION
DAM TYPE : Concrete
DATE DAM COMPLETED
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
DAM: Dam height 116 m above ground
ION OF RESERVOIR: SW
AL HEIGHT OF DAM: 134.
EIOHT: 116.00 m 266. $m 3 \times 10 \varepsilon 6$ 17.0 km
1 ow : tectonics chist
RIVER : Maggia
LOCATION OF CENTER OF RESERVOIR : 46. 46N. 8. $65 E$
PROVINCE OR REGION: Ticino
DAM TYPE : Hollow gravity
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : HYdrapower
ORIENTATIDN OF RESERVOIR : NW
STRUCTURAL HEIGHT OF DAM
LEMGTH OF DAM : 363. I
RESERVOIR DEPTH COMPUTED FROM DAM HEIOHT: 112.00 m
MAXIMUM VOLUME OF RESERVOIR: 63. $m 3 \times 10 E G$
LONGEST DIMENSION OF RESERVOIR :
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : medium
SITE GEOLOGY: Metamorphic
SITE GEOLOGY: Metamorphic
MAXIMUM LENGTH DF FAULTS:
DISTANCE TO CLDSEST KNOWN FAULT: $12.0(\mathrm{~km}) \mathrm{km}$

A-216

DAM NAME: San Esteban
RESERVOIR NAME : Embalse de San Esteban
COUNTRY: Spain
COUNTRY: Spain
RIVER : SIL
CDCATION
PROVINCE OR REGION
DAM TYPE : Concrete
DATE DAM COMPLETED
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
NOTES ON DAM: Dam height 111 m above ground
STRUCTURAL HEIGHT OF DAM: 115 .
LENGTH OF DAM: 295. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 97.00 m
MAXIMUM VOLUME OF RESERVOIR : $213 . \mathrm{m3xIOEE}$
LOMGEST DIMENSION OF RESERVOIR : 28.0 km
REGIONAL STRESS REGIME: Compressional
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics low
COHFIDENCE IN REGIONAL.
SITE GEDLOGY: Metamorphic
GEOLOGY REFERENCES: 106, 289, 46EA
San Luts
EiAK RAME San Luis
REEERVOIR NAME : San Luis CUUNTRY: UEA
37. $07 \mathrm{~N}, 121.13 \mathrm{~W}$ LULSTER OF CENM: 37. O7N. 121.0 OHW
LAM
REGION: California OR ()fill CUMPLETED : 176 G
START OF FILLING 1765
DATE DF FIUTUATIONS BASED ON PRIMARY USE. Irrigation () and hydropower
The
manford
dam Name : Sanford dith
DAM NAME
PESERVOIR
countrar: usa
RINER: CAMAGIAN
LITCATION OF DAM: 35. 72N. 1G1.56W province or region: texas
DAM TYPE : Earth (1) fill
DATE DAM COMPLETED: 1965
DATE OF START OF FILLING: 1965
E:XPECTED FLUCTUATIONS BASED ON
E:XPECTED FLUCTUATIONS BASED ON PRIMARY USE: FIood control
NOTES ON DAM : Dam height of 64 m above ground
ORIENTATION OF RESERVOIR: SW
STRUCTURAL HEIGHT OF DAM
LENGTH OF DAM.
LENGTH OF DAM : 1964. Im
RESERVOIR DEPTH COMPUTED
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 66.50 m
MAXIMUM VOLUME OF RESERVOIR $: 1736$. $\mathrm{m} 3 \times 10 E 6$
LUNGEST DIMENSION OF RESERVOIR : 29.0 km
MOTES ON REGIONAL GEGLOGY: Within the Amarilio Uplift and bardered to the east by the Anadarko gasin. The Canadian River is incised
This series consists

(Sanmen Garge)
L.J:ATION OF CENTER OF RESERVIIR: 34.65N, 110.33E

COCATION OF LIAM : 34 GON.111. OOE
BiduInce or region. Henan (Honan)
DAIM TYPE OR REGION
: gravity
DATE DAM COMPLETED : 1960
E:AFECTED FLUCTUATIONS BASED ON PRIMARY USE : Irrigation
MOTES JIN DAM: Y-shaped reservairi rapid silting of reservair
ORIENTATION OF RESERVOIR
GTRUCTURAL HEIGHT OF DAH
LEMGTH OF DAM : 702. M
REEEYVOIR DEPTH COMPUTED FROM DAM HEIGHT: 86. 40 m
GUPFACE AREA OF RESERVOIR 2350.00 kma
LUNGEST DIMENSION OF RESERVOIR : 135.0 km
PEGIONAL STRESS REGIME: Extensional () with shear component EVIDENCE FOR REGIONAL STRESS REGIME : tectonics

COINFIDENGE IN REGIONAL STREGS REGIME EVALUATION: medium
GEOLOGY REFERENCES : $10 \theta, 152$

REAERVOIR NAME: Lago di Santa Giustina cimintar: Italy

ITGATION OF CENTER OF RESERVOIR: $46.37 N, 11.06 E$
FRDVINCE OR REGION : BOIzZMO
LYGATION OF CENTER OF RESERVOIR : $46.37 N, 11.06 E$
FRDVINCE OR REGION : BOIzano
DAM TVFE : Concrete arch
DATE DAM COMPLETED: 1
EXFECTED FLUCTUATIONS
GHIENTATION OF RESERVO
LENGTH OF DAM : 124. In
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 122.50 m
MAXIMUM VOLUME OF RESERVOIR: 183. m3×10EG
MHGEST DIMENSION OF HEG
REGIONAL STRESS REGIME
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
COMFIDENCE IN REGIONAL STRESS REGIME EVALUATION
MOTES ON SITE GEOLDGY:
SITE GEDLOGY : Carbonate
AGE OF SITE GEOLGGY: Triassic
CEGREE OF DEFORMATION: Flatlying
GEGLOGY REFERENCES: 106. 176 (7a
A-221
Enta Maria
DAM NAME : Santa Maria
REEERVOIR NA位: Santa
:cuntry : Suitzerland
GCATION DF CENTER DF RESERVOIR: 46. 5EN, B.79E
PROVINCE OR REGION
call TYPE C Concrete arch
EXDECTED FLUCTUATIONS BASEO ON PRIMARY USE: Hydropower
ORIENTATION DF RESERVOIR : S
STRUCTURAL HEIGHT OF DAM: 117. (m) m above lowest foundation
LEMGTH OF DAM : 560 . Im
MAXIMUM DEPTH OF RESERV
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 93.00 m
MAXIMUM VOLUME OF RESERVOIR: $70 . m 3 \times 10 E G$
LONGEST DIMENSION OF RESERVOIR: $2.5(\mathrm{~km})$
MAXIMUM DEPTH OF RESERVGIR: 93.0 (m) (calculated from topographic map)
MAXERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 93.00 m
LONGEST DIMENSION OF RESERVOIR : 2. 5 (km) (from topo. map)
NGTES ON REGIONAL GEOLOGY: Paleozoic St. Gotthard massif, with Mesozoic cove
RECIONAL GEOLOGY: Metamorphic
AGE OF REGIONAL GEDLOGY: Paleozoic
AEGIONAL STRESS REGIME: COMpressional
EUIDENCE FOR REGIONAL STRESS REGIME : tectonics
GIDMFIDENCE IN REGIDNAL STRESS REGIME EVALUATION: medium
HOTES ON SITE GEOLOGY: Paleozoic granite, granitoid gneis
EITE GEOLOGY: Metamorphic
AGE OF SITE GEOLOGY: Mesozoic
OISTANCE TO CLOSEST KNDWN FAULT: $11.0(\mathrm{~km}) \mathrm{km}$
GEDLOGY REFERENCES : 106,440A,440B

[^16] S3. O6N, 47.
fi11
1967
S BASE AME
$53.87 N, 48.37 E$
:
ION
h ()
TED
ATI
RESE
HT OF
JEER
Sarrans

dam name : Sarrans

 COUNTRY: FrancerOCATION OF CENTER D
FF RESERVOIR : 44. BEN, 2. 90E
PROUINCE OR REGION: Aveyran
DAM TYPE : Concrete gravity
DATE DAM COMPLETED: 1932
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
NDTES ON DAM: Dam height 105 m above ground
N73E
DAM : 1 UTED FROM
STRUCTURAL HEM. 220.
RESERVIIR DEPTH COMPUTED FROM DAM HEIGHT :
MAXIMUM VOLUME OF RESERVOIR : 296. m3x1OE6
LONGEST DIMENSIDN OF RESERVOIR : 20.0 km
TECTONIC PROVINCE : Massif Central
REGIONAL STRESS REQIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: low
NOTES ON SITE GEOLOGY
SITE GEOLOGY: Batholithic
GEOLOGY REFERENCES: 106, 176 a

DAM NAME : Sautet

COUNTRY :
LOCATION OF CENTER OF RESERVOIR : 44.81N. 5.94E
FRIDVINCE OR REGION: Isere
CAM TYPE : Concrete arch () gravity
CATE DAM COMPLETED: 1934
EXPECTED FLUCTUATIONS BASED ON PRIMAR
MOTES ON DAM : Y-shaped reservoir
QRIENTATION OF RESERVOIR : SE.
STRUCTURAL HEIGHT OF DAM : 130 . (m) above lowest foundation
LENGTH OF DAM: 80. m
MAXIMUM DEPTH OF RESERVOIR : 126.0 m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 126.00 m
MAXIMUM VOLUME OF RESERVOIR: 130. m3×10ES
SURFACE AREA OF RESERVOIR: 3. 50 km 2
LIJNGEST DIMENSION OF RESERVOIR: 5.5 km
TECTONIC PROVINCE: Alps
REGIONAL STRESS REGIME: Compressional
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NETES ON SITE GEOLOGY: Jurassic limestone alternating wither
includes preglactal
(Permethility of rocks: high in abandoned channel in quaternary sedimentsi unknown in bedrock
MOTES ON HYDROLOGY: Permeability
GEOLOGY REFERENCES: $106,176 A, 468 A$

A-225
Schlegeis
NAME : Schlegeis-Talsperre
DAM NAME
Austria
IVER :GATIN OF CENTER OF RESERVIIR : 47.07N, 11.77E LOCATION DF DAM: 47.13N, 11. 日2E
PROVINCE OR REGION: YYOI
DATE DAM COMPLETED. 1971
DATE OF START OF FILLING
RATE OF INITIAL FILLING
TEARS FROM EEGINNING TO
YEARS FROM EEGINNING TO MAXIMUM FILL : 1.17 (years) yearsi 14 months
MAXIMUM RATE DF FILLING : 35.00 (m/month) m/month, July-August- 1970
MAXIMUM RATE GF DRAWDOWM: 25.00 (m/month) m/month, March-April-1973 MAXIMUM RATE OF DRAWDOWM : 25. OO (m/month) m/month, March-April-1973
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
NDTES ON DAM: Dam height of 117 m above ground
DRIEMTATION OF RESERVOIR: SW
STRUCTURAL HEIGHT OF DAM: 130. (m) above foundation
LENGTH OF DAM : 722 . m
MAXIMUM DEPTH OF RESERVOIR
RESERVIIR DEPTH COMPUTED FROM DAM HEIGHT: 113.00 m
MAXIMUM VOLUME OF RESERVDIR: 12日. m3x1OEG
LINGEST DIMENSION OF RESERVDIR : B. O km

REGIONAL GEOLOGY: Batholithic
TEGTONIC PROVINCE: Alps
REGIONAL STRESS REGIME: Compressional
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
AnTES ON SITE GEOLOGY: Site geolagy: Granite
SITE GEDLOGY: Batholithic
DATE OF FIRST SUSPECTED RIS EVENT: Sep-1971
diIES ON SEISMICITY AFTER IMPOUNDMENT
GENERAL. NOTES : Data reliability
orresponds with low wat
RIS CATEGURY: ACCEPt
TVPE OF RIS : micro
GEITLQGY REFERENCES : 52,53.54,55,107,41E
(Empress Farah)
Serid RH RESERVOIR: 36.75N, 49.37E OF CENTER
OR REGION
: COncret : Concrete buttress gravity
COMPLETED : 1962 START OF FILLING: Jan-1962
INITIAL FILLING: $12.40(\mathrm{~m} / \mathrm{m}$ IN MEGINWING TO MAXIMUM FIIL 1 go (years) year FLUCTUATIUNS BASED ON PRIMARY USE : Irrigation DAM: Dam height 85 m above ground
(m) above foum RIVER PROUINCE DAM TYPE DATE DAM AATE OF EXPECTED
NOTES ONAL HEIOHT GF DAM 106 (m) above foundation LEHGTH OF DAM : 425. (m) m

$$
\begin{aligned}
& \text { 80. } 0 \mathrm{~m} \\
& \text { I DAM HEIGHT: } 80.00 \mathrm{~m}
\end{aligned}
$$

REEERVOIR DEPTH COMPUTED FROM
haximul voluire of reservoir : SURFACE AREA OF RESERVOIR:
LIUGEST DIMENSION OF RESERVDIR REGIONAL GEOLOGY: Coarse clastic
AGE OF REGIONAL GEOLOGY : Mesozoic
REGIONAL STRESS REGIME: COmpressional ($)$ i direction of maximum shortening is SW-NE EVIDENCE FOR REGIONAL STRESS REGIME : tectonics

$$
\begin{aligned}
& \text { STRESS REGIME : COMpressional (hi direc } \\
& \text { FOR REGIONAL STRESS REGIME : tectonics } \\
& \text { E IN REGIONAL STRESS REGIME EVALUATION }
\end{aligned}
$$ CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium NOTES ON SITE GEOLOGY:

SITE GEOLOGY: VOlcanic
AGE OF SITE GEQLOGY: Ea
NOTES ON FAULTING: Reservoir is approximately equi-distant from two faults located $40-50 \mathrm{~km}$ NW and SE of reservoir PREDOMINANT FAULT TYPE: High-angle reverse () and normal AZIMUTH OF PREDOMINANT FAULTING: NBOW
LIP OF PREDOMINANT FAULTING: GONE to vertical

LIDCATION OF RESERVOIR IN RELATION TO FAULTS : Upthrown block
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAULT : Late Tertiary
ARE LOCAL FAULTS ACTIVE? : Yes
DEGREE OF TOPOGRAPHIC RELIEF: high
(Empress Farah)
NAME OF CLOSEST KNOWN FAULT : RUdbar

DAM NAME : Serre-poncon

COUNTRY: France
LOCATION OF CENTER OF RESERVOIR : 44.55N.6.35E
LOCATION OF DAM: $44.47 \mathrm{~N}, 6.28 E$
PROVINCE OR REGION: Hautes-Alpes
DAM TYPE : Earth
DATE DAM COMPLETED: 1960
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower () and irrigation
NDTES ON DAM: Dam height 124.5 .m above ground
DR IENTATION OF RESERVIIR : NE
STRUCTURAL HEIGHT OF DAM: 130
LENGTH OF DAM : 600. m
RESERVOIR DEPTH COMPUTED
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 116.55 m
MAXIMUM VOLUME OF RESERVOIR : $1270 . m 3 \times 1$ OEG
LONGEST DIMENSION QF RESERVOIR $: 16.5 \mathrm{~km}$
EGIDNAL GTESS REGNE STRESS REGIME tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON HYDROLOGY: Thermal waters circulate in alluviumfrom gypsiferous schist.

DAM NAME : Sharavathi

 LOCATION OF CENTER OF RESERVOIR : 14. 10N, 76. 日2E LOCATION OF DAM : 14.1ON, 76. B2EDATE DAM COMPLETE
DATE DAM COMPLETED: 1964
EXPECTED FL.UCTUATIONS BASED ON PRIMARY USE : Hydropower
STRUCTURAL HEIGHT OF DAM: 40 (m) m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 38. 00 m
NOTES ON REGIONAL GELLOGY: Regional Geologic Setting: Margin of the Peninsular shield of India.
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : medium
SITE GEOLOGY: Metamorphic
GENERAL NOTES: Insufficien
ISC.
d by
.
LOCATION OF CENTER OF RESERVOIR : $40.77 \mathrm{~N}, 122$. 30W LOCATION OF DAIH: 40.72N, 122. 42W PROVINCE OR REGION DATE DAM COMPLETED : DATE OF START OF FILLING
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Multi-purposei Irrigation () is first listing NOTES ON DAM : Dam height of 148 m above groundi multi-arm reservoir.
ORIENTATION OF RESERVOIR: NTOE STRUCTURAL HEIGHT GF DAM: 193.
LENGTH DF DAM : 10S7. min FROM DAM HEIOHT 153.00 m
REEEERVOIR DEPTH COMPUTED
MAXIMUM VOLUME OF RESERVO
SURFACE AREA OF RESERVOIR
ow-angle thrust faulting.
REGIONAL GEOLOGY: Metamorphic
AGE OF REGIUNAL GEOLOGY: Mesozoic
TECTONIC PROVINCE: Klamath Mountains
REGIONAL STRESS REGIME : Shear
EVIDENCE FOR REGIONAL STRESS REGIME
CONFIDENCE IN REGIONAL STRESS REGIME
MOTES ON SITE GEQLOGY: Dam and reservoir foundation: Dam is underlain by Paleozoic meta-andesites. Reservoir is underlain by a
Paleozoic and Mesozoic pyraclastic units, shale, sandstone, conglomerate, breccia, mudstone and tuff with local units of limestone oragenies.
NW-trending belts and
E-W compression with
 pauteq90 70u sy7dap IP50工
hisood hyropmspesonsen
GEOLOGY REFERENCES : 84, 92, 106, 221,235,289,309, 386, 418 DAM NAME: Shihmen
RESERVOIR NAME: Shihmen
COUNTRY: Taiwan COUNTRY: Taiwan

RIVER: Takekan Creek
LOCATION OF CENTER OF RESERVOIR: 24. $84 N, 121.25 E$
EXPEGTED FLUCTUATIONS BASED ON PRIMARY USE : Irrigation
STRUCTURAL HEIGHT OF DAM : 133. (m) m above lowest foundation RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT :

SURFACE AREA OF RESERVOIR : 8.00 km 2
REGIONAL STRESS REGIME COmpressional
EVIDENCE FOR REGIONAL STRESS REGIME: faulting ense
CONFIDENGE IN REGIONAL STRESS REGIME
AGE OF SITE GEDLOGY: Miocene, Pliocene
PREDOMINANT FAULT TYPE: Reverse
NAME OF CLOSEST KNOWN FAULT: HSintien fault
GEOLOGY REFERENCES : 106.266

DAM NAME : Shimokatori COUNTRY: Japan

RIVER : Kotora

[^17] URAL HEIGHT OF DAM
IR DETH COMPUTED
VOLUME OF RESERVO
STRES REGIME:
ENCE REGIONAL STR
INEGIONAL ST
SITE GEOLOGY:
EOLOOY: METAMOTPH
REFERENCES : 106 , () $f 1$
TED
UATIONS
HT OF
COMPU
OF RESE
REGME
OIONAL
EGINAL
EOLOGY

DATE DAM COMPLETED: 1968 OM PRIMARY USE: Multi-purposei Irrigation () listed first
ORIENTATION OF RESERVOIR : E
STRUCTURAL HEIGHT OF DAM : 129.
LENGTH OF DAM : 626. m
RESERVOIR DEPTH COMPUTE
RESERVOIR DEPTH COMPUTED FROM DAM HEIOHT : 111.00 m
SURFACE AREA OF RESERVIIR : 3.27 km 2
EVIDENGE FIR REGIONAL STRESS REGIME
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: 1 ow
NOTES ON SITE GEOLDGY
SITE GEOLOGY: Metamor
SITE GEOLDGY: Metamorphic
GEOLOGY REFERENCES : $106,233.470,471$

EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower (), irrigation
NOTES ON DAM: Dam height of 58 m abave graund
NOTES ON DAM : Dam height
ORIENTATION OF RESERVOIR
STRUCTURAL HEIOHT OF DAM
LENETH OF DAM : 426. ${ }^{m}$
RESERVGIR DEPTH COMPUTED FROM DAM HEIGHT: 59.40 m
MAXIMUM VOLUME OF RESERVOIR : 154. m3xioEs
NOTES ON REGIONAL GEGLOGY: Margin of the Peninsular shield of India.
REGIONAL GEOLOGY : Metamarphic
AGE OF REGIONAL GEOLOGY: Archaean
REGIONAL STRESS REGIME : Shear
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
SITE GEOLOGY : Metamorphic
AGE OF SITE GEOLOGY: Archaean
PREDOMINANT FAULT TYPE: Normal
NAME OF CLOSEST KNOWN FAULT: Palaghat Gap
OISTANCE TO CLOSEST KNOWN FAULT : 4.0 (km)
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAULT : Miacene
GENERAL NOTES : Insufficient data available to evaluate. No macr
GENERAL NOTES : Insufficient data available to evaluate. No macroearthquakes reported by ISC near dam.
GEOLOGY REFERENCES: 93.192.195.203. 379
PROVINCE OR REGION: Gangweondo
DAM TYPE : ROCk () fill
AXPE DAM COMPLETED: FLUCTUATIONS BASED ON PRIMARY USE: Irrigation
STRUCTURAL HEIGHT OF DAM : 123. (m) m above lowest foundation
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 110.70
MAXIMUM VOLUME OF RESERVOIR : 2900. m3x10E6
REGIONAL STRESS REQIME : COMP Ressional
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
GEOLOGY REFERENCES : 107.10日

DAM NAME : Soria DAM NAME

COUNTRY: Canary Islands, Spain
RIVER: Barranco Soria
LOCATION OF CENTER OF
DAM TVPE : Concrete arch

EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Irrigation

EXPECTENTATION DF RESERVOIR
STRUCTURAL HEIGHT OF DAM : 130. (m) mbove lowest foundation
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT
SURFACE AREA OF RESERVOIR: 0. GB km2
LONGEST DIMENSION OF RESERVOIR : 3 .
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
CONFIDENCE IN REGIDNAL STRESS REGIME EVALUATION
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : low
NOTES ON SITE GEOLOGY: Trachiriolitic volianic complex
SITE GEDLOGY: Volcanic
GEOLOGY REFERENCES : 104A, 107
(Kouilou)
DAM NAME : Sounda
RIVER : Kouila (Kouilou)
DATE DAM COMPLETED : 1977
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
STRUCTURAL HEIGHT OF DAM : RESERVOIR DEPTH COMPUTED FROM DAM H MAXIMUM VRLUME RESERVIIR: 35000. m3
SURFACE AREA OF RESERVOIR : 1600 . OO kma
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: low
GEOLDGY REFERENCES : 418
Speccheri
DAM NAME : Speccheri
RIVER : Leno di Vallarsa
LOCATION OF CENTER OF RESERVOIR: 46.42N, 11.3BE
PROVINCE OR REGION: Trento
DAM TYPE : Concrete arch
EXPECTED FLUCTUATIONG BASED ON PRIMARV USE : Hydropower
EXPECTED FLUCTUATIONS BASED
NOTES ON DAM: Dam height 108
gTRUC TURAL HEICHT OF DAM : 157.
STRUCTURAL HEIGHT OF DAM
RESEKVOIR DEPTH COMPUT
TECTONIC PROVINCE: AIP
EVIDENCE FDR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL
NOTES ON SITE GEOLOGY
GEDLOGY REFERENCES : 106, 299
Susqueda
RESERVOIR NAME: Embalse de Susqueda
DAM NAME
COUNTRY: Spain
LOCATION OF CENTER OF RESERVOIR: $41.95 N, 2.49 E$ PRQVINCE OR REGION: Gerona
DAM TYPE : Concrete arch
DAM TYPE : Concrete arch
DATE DAM COMPLETED: 1968
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Multi-purposer Irrigation () listed first
MOTES ON DAM : Dam height 120 m above ground
ORIENTATIDM DF RESERVOIR : W
STRUCTURAL HEIGHT DF DAM:
LENETH OF DAM: $510 . \mathrm{m}$
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT:
MAXIMUM VOLUME OF RESERVOIR: 235 . $\mathrm{mS} \times 1$ OEG
SURFACE AREA OF RESERVOIR : 1日. 00 kme
LONGEST DIMENSION OF RESERVOIR: 18.0 km
NOTES ON REGIONAL GEILOGY: Gneiss and meta-diorite with Hercinian granitic porphyry veins
REGIONAL GEOLOGY: Metamorphic
REGIONAL. STRESS REGIME : Compres
REGIONAL. STRESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME :
EVIDENCE FOR REGIONAL STRESS REGIME : tectionics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: LOW
SITE GEOLDGY: Metamotphic
GEALOGY REFERENCES : 104A. 106

A-242

DAM NAME : Swift Creek

RESERVOIR NAME: Swift Creek Reservoir
COUNTRY: USA
RIVER: Lewis
RESERVOIR NAME: Swift Creek Reservoir
COUNTRY: USA
RIVER: Lewis
LOCATION OF CENTER OF RESERVOIR: 46.07N. 122. O8W
LOCATION OF DAM: 46. OON, 122. 23W
PROVINCE OR REGION: Washington
DAM TYPE : Earth
DATE DAM COMPLETED: 1958
EXPECTED FLUCTUATIONS BASE
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
NOTES ON DAM: Dam height 126 m above ground
ORIENTATION OF RESERVOIR : E
MAXIMUM DEPTH OF RESERVOIR
RESERVOIR DEPTH COMPUTED FROM
MAXIMUM VOLUME OF RESERVOIR : $932 . \mathrm{m3} 3 \mathrm{lOE}$
LONGEST DIMENSION OF RESERVOIR : 15.0 km
REGIONAL STRESS REGIME : Shear
EVIDENCE FOR REGIONAL STRESS REGIME : tec
LONGEST DIMENSION OF RESERVGIR: 15.0 km
REGIONAL STRESS REGIME : Shear
EVIDENCE FOR REGIONAL STRESS REGIME: tec
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
NOTES ON SITE GEOLOGY: Alluvium including bouldery gravel. GEOLOGY REFERENCES: 41, 106, 289

A-243
(Tabga, Thawra)
DAM NAME: Tabka, (Tabga, Thawra)
RESERVOIR NAME
GOUNTRY S Syria
RIVER: Euphrat
DAM TYPE : EATET
LOCATION OF CENTER OF RESERVOIR : 33.92N. 38. 25E
LOCATION OF DAM: 35. 87N, 38. 58E
PROVINCE OR REGION: Aleppo
DATE DAM COMPLETED : 1976
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Irrigation (), hydropower
ORIENTATION OF RESERVGIR : NW
GRIENTATION OF RESERVIIR : NW
LENGTH OF DAM: 4500. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIOHT : 37.00 m
MAXIMUM VOLUME OF RESERVOIR : 14000. $\mathrm{m} 3 \times 10 E 6$
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
GEOLOGY REFERENCES : 108,306
Tachien
DAM NAME: Tachien REERVOIR NAME
CDUNTRY: Taiwan
RESERVOIR
LOCATION OF DAM: 24.25N, 121. 16E
LAM TYPE : Concrete arch
DAM TYPE : CON

GRIENTATIDN OF RESERVOIR : NGSE
STRUCTURAL HEIGHT OF DAM : 181.
LEMGTH OF DAM : $232 . \mathrm{m}$
MAXIMUM DEPTH OF RESERV
MAXIMUM DEPTH OF RESERVOIR : 172.
RESERVOIR DEPTH CDMPUTED FROM DAM
SURFACE AREA OF RESERVOIR: 4. 50 kmz
LONGEST DIMENSION OF RESERVOIR :
REGIONAL STRESS REGIME : Shear
EVIDENCE FUR REGIONAL STRESS REGIME: focal mechanism
CONF IDENCE IN REGIONAL STRESS REGIME EVALUATION
MOTES ON SITE GEOLOG
$2000 \mathrm{~m}+\mathrm{O}$ Oigocene
SITE GEDLDGY: Metamorphic
AGE OF SITE GEOLOGY: Eocen
AGE DF SITE GEOLOGY: EOCEIE
DF IENTATION OF STRUCTURAL GRAIN : NSOW
DEGREE OF DEFORMATION: Steeply dipping
LEGREE OF DEFORMATION: Steeply dipping
NOTES ON FAULTING : Fault mapped just up
GEDLOGY REFERENCES: 10日, 236.469
Tabane Mo.

Talbingo
DAM NAME : Talbingo
REEERVOIR NAME RIVER: Tumut LGCATION OF LOCATION OF DAM . 35. 635, 148. 30E PROVINCE OR REGION: New South Wa
35. 725, 148. 33E DATE DAM COMPLETED
DATE OF START OF FI
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower NOTES ON DAM: Dam height of 153 m above ground OR IENTATION OF RESERVOIR : SIOE STRUCTURAL HEIGHT OF DAM: MAXIMUH DEPTH OF RESERVOIR: 142.0 (m) m (fram drawing)
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 142.00 m RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 142.00 m
MAXIMUM VOLUME OF RESERVOIR: 935. m3xIOE6 SURFACE AREA OF RESERVOIR : 19.40 km 2 kl LONGEST DIMENSION OF RESERVOIR : 18.0 km NOTES ON REGIONAL GEOLOGY: Snowy Mountains are primarily paleozoic granitic units intruded into and overlain by steply dipping Faleozaic metasedimentary strata, all of which are intruded by porphyry dikes. These units are overlain by Paleozoic rhyolite and thrust faults and northwest-trending strike-silip faults REGIONAL STRESS REGIME: COMpressional EVIDENGE FOR REGIONAL STRESS REGIME : tectonics CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NOTES ON SITE GEOLOGY: Dam and reservoir foundation: Dam NOTES ON SITE GEOLOGY : Dam and reservoir foundation: Dam
rhyolite, Paleozoic granite and Paleozoic metasedimentary
rhyolite, Paleozoic granite and Paleozoic metasedimentary strata. SITE GELLOGY: Motamorphic AGE OF SITE GEOLOGY : Paleozoic
MCTES ON FAULTING: Post-Devonia
 48 km southwest, has pleistocene or younger displacements toward the northwest. A northwestetrending ainstral wrench fault, the
Berridale fault, is km southeast, may be active, based on a transcurrent fault plane solution for seismicity on the crackenback Berridale fault, 15 km southeast, may be active, based on a transcurrent fault plane solution for seismicity on the Crackentack PREDOMINANT FAULT TYPE
AZIMUTH OF PREDOMINANT FAULTING: NW
NAME OF CLOSEST KNOWN FAULT : Berridale fault
DIETANCE TO CLOSEST KNOWN FAULT : $15.0(\mathrm{~km}) \mathrm{km}$
WCTES ON HYDROLOGY: Hydrology: Probably shallow water table reflecting topography, with seasanal fiuctuations. Water in rock fractures and in crushed permeable zones along faults in region. DEGREE OF TOPOGRAPHIC RELIEF: high DATE OF FIRST SUSPECTED RIS EVENT DATE OF LARGEST SUSPECTED RIS EVENT NGTES DN SEISMICITY AFTER IMPQUNDMEN beginning about 2 months after impoundment commenced. After initial increase in activity, seismic frequency decifod as reservair cuntinued to fill at a less rapid rate. Activity reported to be located along faults. GENERAL NOTES impoundment. Most activi

 34. OON, 72. 62E OR REGION: Northwest frontier RIVER: I
LOCATION LOCATION PROVINCE DAM TYPE DATE DAM COMPLETED: 1976 Maximum height finally reached in 1977 after four-month period. DATE OF START OF FILLING: 1974 () (1977) DATE OF START OF FILLING
RATE OF INITIAL FILLING
YEARS FROM BEGINNING TQ MAXIMUM FILL : O. 29 (years) year during final filling
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Irrigation
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Irrigation
NOTES ON DAM: Dam height of 143 m above ground
ORIENTATION OF RESERVOIR : NE
STRUCTURAL HEIGHT OF DAM: 143. m
LENGTH OF DAM : 2743. m
MAXIMUM DEPTH OF RESERVOIR : 137.0 m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 137.00 m
MAXIMUM VOLUME OF RESERVOIR: 13690. m3×1OEG
SURFACE AREA OF RESERVOIR: 243. $00 \mathrm{km2}$
CONGEST DIMENSION OF RESERVOIR : 81.0 km
NOTES ON REGIONAL GEDLOGY. Approximets.
REGIONAL GEOLOGY: Coarse clastic
AGE OF REGIONAL GEOLDGY: Paledioic
REGIONAL STRESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : medium
NOTES ON SITE GEOLOGY: Alluvium 60 to 120 m , up to 180 m at dam site. Irregular bedrock contact.
NOTES ON HYDROLOGY: Permeability through alluvium of o. Oi cmper sec to o. Of cmper seci see page through alluvium at dam
GEILOGY REFERENCES : 108.228B,250.283,284,306

DAM NAME: Tignes
DAM NAME: Tignes lac du Chevril
COUNTRY: France
LOCATION OF CENTER OF RESERVOIR
LOCATION OF DAM : 45. 49N.6.92E
PROVINCE OR REGION: Savoie
DATE DAM COMPLETED: 1952
EXPECTED FLUCTUATIONB BASED ON PRIMARY USE : Hydropower
NOTES ON DAM : Dam is 160 m
ORIENTATION OF RESERVOIR : SGOE
LENGTH OF DAM: 375 . m m
MAXIMUM DEPTH OF RESERVOIR : 155.0 m
155. 00 m

REGIONAL STRESS REGIME : Compressional
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
CONFIDENCE IN REGIONAL STRESS REGIME
NOTES ON SITE GEOLOGY: Massive Tria
NOTES ON SITE GEOLOGY: Massive Triassic quartzite
SITE GEDLOGY: Metamorphic
AGE OF SITE GEOLOGY: Triassic
GEOLOGY REFERENCES: 106, 367,45s
Tikves
DAM NAME : Tikves

$$
11
$$

Makedonika
Crina rekan
OR REGION
Irrigation () and hydropawer
101.70 m
medium
IS BASED ON PR
IONS above ground
USE
EETGHT
onal
STRESS REGIME : Compresisional
FOR REGIONAL STRESS REGIME: tectonics
NCE IN REGIONAL STRESS REGIME EVALUATION
R DEPTH COMPUTED FROM
VOLUME OF RESERVOIR: 475 .
STRESS REGIME: COMP YESSI
FOR REGIONAL STRESS REGIM
IEE IN REGIONAL STRESS REGI GEOLOGY REFERENCES : 106

NAME
DAM NAME : Toxaway
RESERVOIR NAME : Lake Toxaway
COUNTRY: USA
RIVEATION OF CENTER OF RESERVIIR : $35.13 \mathrm{~N}, 82$. O6W
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower ion
22. (m) mabove DAM HEIGHT
52 . m3x10E6 nsional
REGIME REGIONAL STRESS REGIME: tectonics
REGIONAL STRESS REGIME EVALUATION R DEPTH COMPUTED FROM DAM HEIGHT: 109.80 LUME OF RESERVOIR
TRESS REGIME : EXt REGIONAL STRESS REGIME EVALUATION: low 107 MAXIMUM MAXIMUM EVIDENCE FOR GEOLOGY REFERENCES

Tres Marias
CQUNTRY: Brazil
LDCATIUN GF CENTER OF RESERVOIR
PROVINCE DR REGION: Minas Gerais
DAM TYPE : Earth () with gravity spiliway section
DATE DAM COMPLETED : 1960
EXFEGTED FLUCTUATIUNS EASED ON PR
LENGTH DF DAM : 2700. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 71.25 m
MAXIMUM VOLUME DF RESERVOIR : $19300 . \mathrm{m} 3 \times 10 E 6$
MAXIMUM VOLUME DF RESERVGIR : $19300 . \mathrm{m3x} 10 E 6$
SURFACE AREA OF RESERVOIR: 1130.00 kma
LORAGEST DIMENSION OF RESERVQIR: 95.0 km
REGIINAL STRESS REGIME: Compressional
EVIDENCE FOR REOIONAL STRESS REGIME
CONFIDENCE IN REGIGNAL STRESS REGIME EVALUATION: IOW
MOTES ON SITE GEOLQGY: Silurian Bambui Series, metamorphic greenish-gray siltstones or
overlain by Tertiary sedim
AGE GF SITE GEOLOGY: Silurian
GEOLDGY REFERENCES : 106. 152
Trinity
DAM NAME: Trinity
RESENVOIR NAME: Clair Engle Lake country : USA
RIVER: Trinity
LOCATION OF CENTER OF RESERVOIR
PROVINCE OR REGION: California
DAM TYPE : Earth
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Irrigation () and hydropower
NOTES ON DAM : Dam height 142 m above groundi v-shaped reservoir with dominant NNE arm.
STRUCTURAL HEIGHT OF DAM: 164. (m) m above foundation
STRUCTURAL HEIGHT OF DAM
LENGTH OF DAM: 792 . m
MAXIMUM DEPTH OF RESERVOIR : 134.0 m
RESERVGIR DEPTH COMPUTED FROM DAM HEIGHT: 134. 00 m
MAXIMUM VOLUME OF RESERVOIR : 3084. m3x10E6
LONGEST DIMENSION OF RESERVOIR: 18.0 km
TECTONIC PROVINCE : Klamath Mts
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
NOTES ON SITE GEOLOGY: Meta-andesite, low-grade metamorphics, Paleozoic or Mes., deep weathering along faults and joints
SITE GEDLDGY: Metamorphic
AGE OF SITE GEOLOGY: Mesozoic

DAM NAME : Tsengwen
RESERVOIR NAME: Tsengwen
CIUNTRY: Taiwan
LOCATION OF CENTER OF RESERVOIR: 23.31N, 120.65E
DAM TYPE . Earth () and rock fill
EXPECTED FLUCTUATIOMS BAEED ON PR
IENTATIDN DF RESERVOIR NE
ETRUCTURAL HEIGHT OF DAM
MAXIMUM DEPTH OF RESERVOK
RESERVOIR DEPTH COITPUTED FR
EURFACE AREA OF RESERVOIR :
EURFACE AREA DF RESERVOIR: 17.00 ($k m 2$) at normal lavel
LONGEST DIMENSION DF RESERVDIR : 16.0 (km) at normal level
FIEGIOMAL STRESS REGIME: Compressional
EVIDENCE FOR REGIONAL STRESS REQIME
CONFIDENCE IN REOIONAL STRESS REGIME EVALUATION: high
CONFIDENCE IN REOIDNAL STRESS REGIME EVALUATION: high
NUTES ON SITE GEOLOGY: Reservoir: Miocene and Pilocene
sandstone, siltstone, and male; N32EJ4E
EITE GEOLOGY: Fine clastic
AGE DF SITE GEDLOGV: Miocene
CRIENTATION DF STRUCTURAL GRAIN: N32E
NOTES ON FAULTING: Reservoir
dincussed in following values.
AZIMUTH OF PREDOMINANT FAULTINO:
AZIMUTH OF PREDOMIRANT FAULTING: N2OE
MAXIMUM LENGTH OF FAULTS: 75.00 (km$) \mathrm{km}$ to 150 km
DOMIMANT SIDE UP: E ()' east
LOCATION OF RESERVOIR IN RELATION TO FAULTS : upthr
MAXIMUM LENGTH OF FAULTS: 75.00 ($k m$) $k m$ to 150 km
DOMIMANT SIDE UP: E () ©ast
LOCATION OF RESERVOIR IN RELATION TO FAULTS : Upthr
LOCATION OF RESERVOIR IN RELATION TO FAULTS: Upthrown block () of Chuko fault
NAME OF CLOSEST KNOWN FAULT : 3 kM
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAULT : HOl OCene
AGE OF MOST RECENT DISPLACEMENT ON
GEOLOGY REFERENCES: 108, 266, 276
DAM NAME: Tsimlyansk
RESERVOIR NAME: Tsimlyanskoye Vakhr.
COUNTRY: USSR RIVER: DON
LOCATION OF CENTER OF RESERVIIR : 48. OON, 43. DOE
LOCATION OF DAM : 47. $61 \mathrm{~N}, 42.12 \mathrm{E}$
PROVINCE OR REGION: Rostov
DAM TYPE : Earth () buttress with gravity spillway section
DATE DAM COMPLETED: 1952
EXPECTED FLUCTUATIONS BASE
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Multi-purposei Hydropower () is principal use
ORIENTATION OF RESERVOIR : NE
GTRUCTURAL HEIGHT OF DAM: $39, m$
LENGTH OF DAM : $13232 . \mathrm{m}$
MAXIMUM DEPTH OF RESERVOIR : 30.0 (m) m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 30.00 m
MAXIMUM VOLUME OF RESERVOIR : 218SO. M3×10EG
LONGEST DIMENSION OF RESERVOIR: 230.0 km
REGIONAL STRESS REGIME : Compressional
EVIDENCE FOR REGIOMAL STRESS REGIME: tectonics
CONFIDENCE IN REGIOMAL STRESS REGIME EVAIUATION : Iow
NOTES ON SITE GEOLGGY: AIIUVIAI Sands and IOess overl
SITE GEOLOGY: Fine clastic
AGE OF SITE GEOLOGY: Tertiary
GEOLOGY REFERENCES: 106. 152 330A
DAM NAME ：Ukai OF DAM苗．． ASE 9．m
21．25N，73． $72 E$（ $)$ ．E center concrete gravity
LOCATYPE
DATE DAM COMPLETED：
5N011甘ก1507t $03103 \leftrightarrow \times 3$
CMOTH OF DAM ：4926
LENGTH OF DAM ： 4926.
REEERVOIR DEPTH COMPU
MAXIMUM VOLUME DF RE
SURFACE AREA OF RESE
NOTES ON REGIONAL
人งロา039 7 7 NOI 538
AGE DF REGIONAL GEQLOGY：Cretaceous to Oligocene
REGIONAL STRESS REGIME：Shear
REGIONAL STRESS REGIME ：Shear
EVIDENCE FOR REGIONAL STRESS RE
EUIDENCE FOR REGIONAL STRESS REGIME ：tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
SITE GEDLOGY：Volcanic
NOTES ON FAULTING：Fault through abutment，speculated Tertiary age
NOTES ON FAULTING
PREDOMIMANT FAULT
PREDOMINANT FAULT TYPE ：Normal
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAULT：Tertiaryi post OIigocene
GENERAL NOTES：Insufficient data available to evaluate．No macroearthquakes located near dam．
GEDLOGY REFERENCES ：108，192，195，196，203，230，2843，285， 323
Union Valley
DAPM NAME : Union Valley
RESERVOIR NAME: Union Valley CDUNTRY: USA COUNTRY
FIVER :
RIVER : Silver Creek
LOCATION OF CENTER DF RESERVOIR: 38. 83N, 120.43W
PROVINCE OR REGION: California
RIVER : Silver Creek
LOCATION OF CENTER DF RESERVOIR: 38. 83N, 120.43W
PROVINCE OR REGION: California
DAIY TYPE : Earth
DATE DAM COMPLETED
EXFECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower () and recreation
NOTES ON DAM: Dam height 132 m above ground
GTRUCTURAL HEIGHT OF DAM: 132.
LENGTH OF DAM : $533 . \mathrm{m}$
REEERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 118.80 m
MAXIMUM VOLUME OF RESERVOIR: 334. m3×1OEG
SURFACE AREA OF RESERVOIR: 11.60 km 2

DAM NAME : Vajont
RECERVOIR NAME: Vajont CDINTHY: Italy
RIVER: Vajont LUCATION OF
LOCATION
LOCATION
DAM TYPE
DATE DAM COMPLETED: 1960
DATE DF START OF FILLING
DATE OF START OF FILLING: Feb-1960
EXPECTED FLUCTUATIONS BASED ON PRIMAR
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
NGTES ON DAM: Dam height of 259 m above ground.
UPIENTATION OF RESERVOIR : N7OE
STRUCTURAL HEIGHT OF DAM: 262. m
REEERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 232.00 m
MAXIMUM VOLUME OF RESERVOIR : 150. m3x1OEG
 flysch deposits with southward thrust faulting along faults oriented primarily east-west
REGIONAL GEOLOGY: Carbonate
AGE OF REGIONAL GEDLOGY: Mesozoic
REGIONAL STRESE REGIME: Compressional
EVIDENCE FIR REGIONAL STRESS REGIME : tectonics
 Crataceous and Eocene age of unknown composition.
SITE GEDLOGY: Carbonate
AOTES DN FAULTING: Minor faults and fractures present. No additional data obtained
CATE DF FIRET SUSPECTED RIS EVENT: 20-May-1960
WATE OF FIRET SUSPECTED RIS EVENT: 2O-May-1960
NCTES ON EEISMICITY AFTER IMPQUNDMENT: Clear

tion
24
Val Noana
DaM NAME Val Noana di Val Noana
DAM NAME
GEEERVOIR
conntre: Italy
FIVER: NOana
LDCATION OF CENTER OF RESERVOIR: 46.07N.11.43E
PRIDUINCE OR REGION: Trento
DAM TYPE : Concrete arch
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
NOTES ON DAM: Dam height 114 m above ground
NUTES ON DAM: Dam height 114 m above ground
ORIENTATION OF RESERVOIR : E
STRUCTURAL HEIGHT OF DAM : 126.
LENGTH OF DAM: 128 . ${ }^{\prime}$
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 108.00 m
MAXIMUM VOLUME OF RESERVOIR: 11. m3x10EG
MAXIMUM VOLUME OF RESERVOIR
LONGEST DIMENSION OF RESERVO
TECTONIC PROVINCE : Alps
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CINFIDENCE IN REGIONAL STRESS REGIME EVALUATION: medium
NETES ON SITE. GEOLOGY: Very hard brown limestone with interlayers of white dolomitic limestone
GEDLOGY REFERENCES : 106, 289

CAM NAME: Valle di Lei

CIIUNTR : Reno di Lei
LIGCATION OF CENTER
PROVINCE OR REGION
DAM TYPE: Concrete
DATE DAM COMPLETED

NOTES ON DAM: Dam h
ONIENTATION OF RESE
ETFUCTURAL HEIGHT
ETRUCTURAL HEIGHT OF DAM: $143 . \mathrm{m}$
EINGTH DF DAM: G90 m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 125.00 m
MAXIMUM VOLUME OF RESERVOIR : 200. m3x10E6
LINGEST DIMENSION OF RESERVOIR: 8. 0 km
TEGTONIC PROVINCE: ALPS \quad COMPRIONAL STRESS REGIME: Conal
EVIDENCE FQR REGIONAL STRESS REGIME : tectonics
GIHFIDENCE IN REGIDNAL STRESS REGIME EVALUATION: medium
NOTES ON SITE GEOLOGY : GNeiss
SITE GEQLOGY: Metamarphic
PREDOMINANT FAULT TYPE : Left-slip
A. \times IMUM LENGTH OF FAULTS: $95.00(\mathrm{~km})$

ISTANCE TO CLOSEST KNOWN FAULT
A-266

EXPECTED FLUCTUATIONS BASED ON PRIMARY USE: Hydropower
MGTES ON DAM: Dam increases existing lake.
TTFUCTURAL HEIGHT DF DAM: 32. (m) m above lowest foundation FEEERVOIR DEPTH COMPUTED FROM DAM HEIGHT10 36

MAXIMUM VILUME OF RESERVOIR : 17500.
I.JYGEST DIMENSION DF RESERVOIR : 235
FEGIONAL STRESS FEGIME Compressional
EVIDENGE FDR REGIDNAL STRESS REGIME: tectonics
GDIFIDENGE IN FEGIDMAL STRESS REGIME EVALUATION
DIAF IDENCE IN REGIDNAL
NDTES ON SITE GEDLOGY

Werkhnetulomskiy (Tuloma;
C.: MrME : Verkhnetulomskiy (Tuloma)
Ge: ERNOIR NA'AE : Dzero Notozero (Nuortti)
RIUER: Tuloma
MATION OF CENTER DF RESERVIIR: 6E. 54N. 31. OOE Gatind of DAM : EE. GAM. 31. 13E
GOUNACE OR REGION: Murmansk
OR REGION
rVFE EARth ($)$ and rork fill, concrete gravity spillway section
EOMPLETED 196 S
-rECTED FLUCTUATIDNS BASED ON PRIMARY USE : Hydropower
QRIENTATIDN QF RESERVOIR : SW
TRUCTURAL HEIGHT OF DAM: $50 .(\mathrm{m})$ above lowest foundation
MAXIMUM DEFTH OF RESERVOIR : 42.0 m
FEEERVOIR DEPTH COMFUTED FROM DAM HEIGHT : 42.00 m
Mq®IMUM YOLUME OF RESERVOIR: 11500 . m3×1GEG
IMGEST DIMENSION OF RESERVOIR : B8. 0 km
$\because=$ EES ON REGIGNAL GEDLOG; : Archaean and
ape
EOR REGTONAL STREGS REGIME tEETONICS
EVIDENCE FOR REGIONAL STRESS REGIME
GOMFIDENCE IN REGIOMAL STRESS REGIM
NDTES ON SITE GEOLDGY : Tectonic depression in river valley, filled by moraine deposits
AgE GF SITE GEOLOGY: Precambrian
GEGLOGY REFERENCES: 31.106.452

Hydropower
W. (m) mabove lowest foundation
118. (m HEIGHT: 106.20 m 1973
5 BACE
USE m3x 1 OEE : 340. mux
ompressional

GIME: tectonics
EGIME EVALUATION IDNS BA
SERVOIR
DF DAM
 STRESS RE PROUINCE OR REGI

DA:1 TYFE : ROEK

\& 10 NOIIV1N31 4
HOI $\exists \mathrm{H} 7 \forall \mathrm{yniJnis} \underset{ }{\circ}$
$3 W \cap 70 n$ hnw
H1d 10043% is
REGIIUNAL STRESS REGIM
EVIDENCE FOR REGIONAL
GMF IDENCE IN REGIO
A-269

Villa Gargnano
DAM NAME: Villa Gargnano
RESERVOIR NAME: Lago di Valvestino
COUNTRY : Italy
RIVER: Toscolano
LDCATION QF CENTER OF RESERVOIR : 45. 72N, 10. G2E
DAM TYPE : Concrete arch
ON PRIMARY USE Hydropower
NQTES ON DAM: Dam height 116 m above ground
OR IENTATIUN OF RESERVOR: 124
STRUCTURAL HE IGHT QF DAM
LENGTH OF DAM : $285 . \mathrm{m}$
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 106.00 m
MAXIMUM VOLUME OF RESERVOIR : $52 . \mathrm{m} 3 \times 10 E G$
MAXIMUM VOLUME OF RESERVOIR : 52. m3x10E
LONGEST DIMENSION OF RESERVOIR : 4.4 km
deposits
REGIONAL GEOLQGY: Carbonate
AGE OF REGIONAL GEQLOGY: TTiassic
TECTONIC PROVINCE
MOTES ON SITE GEOLQGY: Dam and reservoir founded on Triassic dolomite
SITE GEDLGGY: Carbonate
AGE DF SITE GEDLDGY: Triassic
PREDGMINANT FAULT TYPE: Thrust
AZIMUTH OF PREDOMINANT FAULTING: NE
MAXIMUM LENGTH OF FAULTS: $25.00(\mathrm{~km})$
MAXIMUM LENGTH OF FAULTS: $25.00(\mathrm{~km}) \mathrm{km}$
LOMINANT SIDE UP: NW

$A-271$
Vilyui
DAM NAME: Vilyui
COUNTRY Viluui
PROVINCE OR REGION: Yakutsk
DAM TVPE: Earth () and rock fill
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower
STRUCTURAL HEIGHT OF DAM: 75
LENGTH OF DAM:700. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 71.25 m
GURFACE AREA OF RESERVOIR: 2010. 00 km 2
REGIDNAL STRESS REGIME : Compressional
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: 1Ow
NITES GEOLOGY: Batholithic
SITE GEOLOGY: Batholithic
GEOLOGY REFERENCES: 106, 152, 330A
Volga 2end Congress
DAM MAME : Volga 22nd Congress
RESERVDIR NAME: Volgogradskoye Vdkhr. COUNTRY: USSR
RIVER: VOIg
LOCATION OF
LOCATION OF DAM : 48. BEN, 44.66E
PROVINCE OR REGION: Volgograd
DAM TYPE : Earth () buttress and gravity spillway section
DATE DAM COMPLETED : 1958
EXPECTED FLUCTUATIONS BASED ON PRIMARY USE : Multi-purpose; Hydropower () is principal use
STRUCTURAL HEIGHT OF DAM: 44. m
LENGTH OF DAM: 3974. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 41.80 m
MAXIMUM VOLUME OF RESERVOIR : 33500. m3xiOEG
LONGEST DIMENSION OF RESERVOIR: 390.0 km
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: I ow
NOIES ON SITE GEOLOGY: Sandy and clayey alluvium. Be
of interstratified, weakly cemented silitstones, argill
of interstratified, w
up to 20 m thick, overlying
SITE GEOLOGY: Fine clastic
GEOLOGY REFERENCES: 106, 152
GEOLOGY REFERENCES : 106,152,306,330A
A-273
Squinsuon opisplempooni
RESERVOLR NAME: Kuybyshevskoye Vakhr.
RIWER: Volga
LIJCATION OF CE
LUCATIUN OF CENTER GF RESERVOIR : $53.67 \mathrm{~N}, 47.0 O E$
LDCATION OF DAM : $53.46 N, 49.48 E$
PRQUINCE OR REGION: Volga
DAM TYPE : Earth () buttrass and concrete gravity spilluay section.
DATE DAM COMPLETED: 1955
EXPECTED FLUCTUATIDNS BASED
EXPECTED FLUCTUATIDNS BASED ON PRIMARY USE: Hydropower
ORIENTATION OF RESERVGIR : N
STRUCTURAL HEIGHT OF DAM : $45 . \mathrm{m}$
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 42.75 m
MAXIMUM VOLUME OF RESERVQIR : 58000. m3x1OE6
SURFACE AREA OF RESERVOIR : 65000. OO kme
LONGEST DIMENSION OF RESERVOIR : 335. 0 km
REGIUNAL STRESS REGIME COMPTESSIONal tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION
NDTES ON SITE GEOLOGY: Alluvial sands up to 70 m thick in gorge, fissured limestone and dolomite in abutments
SITE GEOLOGY: Carbonate
GEDLOGY REFERENCES: 106,
GEOLOGY REFERENCES : 106, 152.330A
LIVEATIGN GF CENTER OF REGERVDIR : 20.14S, 4B. OSW
LOCATION OF DAM : 20.035، 4B. 22W
DAM TYPE : Earth () fill with center concrete gravity
DATE DAM COMPLETED : 1973
DATE OF START OF FILLING: 1973
IRIENTATION OF RESERVOIR : E
STRUCTURAL HEIGHT OF DAM : 33
LENGTH OF DAM : 1854. m
RESERVOIR DEPTH COMPUTED FROM
MAXIMUM VOLUME DF RESERVOIR
LONGEST DIMENSION OF RESER
REGIONAL GEOLGGY: Volcanic
REGIONAL STRESS REGIME
EVIDENCE FOR REGIONAL STRESS REGIME tectonics low
NDTES ON SITE GEOLOGY. Flood basalts.
BITE GEDLOGY: Valcanic
DATE DF FIRST SUSPECTED RIS EVENT: 24-Feb-1974 RIS CATEGORY. Accepted () (weak casei see Porto Colombia)
TYPE OF RIS : macro 07,107 10日, 200, 393
REGION
COMPLETED

1968

LLING : 196E PRIMARY USE: Hydropower DAM NAME
CIUNTRY:
RIVER
LJCATION
STRUCTURAL HEIGHT OF DAM: 130.
ENGTH OF DAM. 425 .
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 112.00 m
MAXIMUM VOLUME OF RESERVOIR : 605. m3×10EG
LONGEST DIMENSION OF RESERVOIR : 6.5 km
TECTONIC PROVINCE : Jura Mountains
REGIONAL STRESS REGIME: Shear
EUIDENCE FOR REOIONAL STRESS REOIME : focal mechanism (), tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION : medium
NOTES ON SITE GEOLOGY: Limestone, with vertical fissures, overlain by 25 to 40 m alluvium. Karstitic limestone in reservair
SITE GEGLOGY: Carbonate
NOTES ON FAULTING : Faults bound the depression in which dam and reservoir are located
MAQNITUDE OR INTENSITY OF LARGEST SUSPECTED RIS EVENT: Mag 4.4 (ISC)
DATE OF LARGEST SUSPECTED RIS EVENT : 21-Jun-1971
Mar 1971 ndifill
GENERAL NOTES : Data reliability is lou. Few data were obtained.
RES CATEGORY: Accepted
GEOLOGY REFERENCES : 64,106, 146,393,394

SITE GEOLOGY: Fine clastic
AGE OF SITE GEQLOGY: Cretaceous
PREDOMINANT FAULT TYPE: Thrust
AZIMUTH OF PREDOMINANT FAULTING
DIP OF PREDOMINANT FAULTING:
GEGLOGY REFERENCES: $106.127 A$
LLZ-H
Warragamba
DAM NAME: Warragamba
RESERVOIR NAME: Lake Burragorang COUNTRY: Australia RIVER : Warragamba
LDCATION OF CENTER OF
33. $975,150.42 \mathrm{E}$
LOCATION OF DAM: 33 9OS, 150 GOE
PROVINCE OR REGIDN: New South Wales DAM TVPE : Gravity
DATE DAM COMPLETED
DATE DAM COMPLETED: 1960
DATE UF START OF FILLING:
EXPECTED FLUCTUATIDNS BASE
EXPECTED FLUCTUATIONS EASED ON PRIMARY USE : Public water supply () and hydropower
ORIENTATION OF RESERVOIR: SW
GTRUCTURAL HEIGHT OF DAM: 137.
LENGTH DF DAM: 35 .
MAXIMUM DEPTH OF RESERVOIR : 104.0 m
RESERVDIR DEPTH CDMPUTED FROM DAM HEIGHT: 104.00 m
MAXIMUM VOLUME OF RESERVOIR: 2053. m3x10E6
SURFACE AREA OF RESERVOIR . 75. 00 kma
LONGEST DIMENSION OF RESERVOIR : 52. 0 km
NOTES ON REGIONAL GEOLDGY : Paleozoic strata from Drdovician to carboniferous outcrop in reservoir region
REGIONAL GEOLOGY : Coarse clastic
REGIONAL STRESS REGIME: Compressianal (), E-W horizontal
EVIDENCE FOR REGIONAL STRESS REGIME: focal mechanism

thick gouge zone
SITE GEOLQGY: Coarse
AGE OF SITE GEDLDGY: Carboniferous to Triassic
DATE OF FIRST SUSPECTED RIS EVENT. G-Mar-1973
DATE OF FIRST SUSPECTED RIS EVENT : G-Mar-1973
MAGNITUDE DR INTENSITY OF LARGEST SUSPECTED RIS EVENT: Mag 5. 4 (ISC)
DATE OF LARGEST SUSPECTED RIS EVENT : 9-Mar-1973

 Maximum earthquake occurred 13 years after impoundment.
RIS CATEGORY: Questionable
TYPE OF RIS: macro
GEDLOGY REFERENCES :
GEOLOGY REFERENCES: $106,307,311,339,419,468 B$

(Hsinfengkiang)
CAM NAME: Xinfengjiang (Hsinfengkiang) COUNTRY: China (PRC)
RIVER : Xinfeng Jiang (Hsin Chiang) SEE
LOCATION OF CENTER OF RESCNVIR
LOCATION OF DAM: 23. $73 \mathrm{~N}, 114.65 E$
PROVINCE OR REGION: Guangdong (Kuangtung)
LAM TYPE: Buttress gravity
LATE DAM COMPLETED: 1961
LATE OF START OF FILLING
EKPECTED FLUCTUATIONS BA
EKPECTED FLUCTUATIONS BASED ON PRIMARY USE : FLood contral
ఏAIENTATION OF RESERVOIR : NW
ETRUCTURAL HEIGHT OF DAM: 105 . (m) m above lowest foundation
MAXIMUM DEPTH OF RESERVOIR : BO. 0 m
REEERVOIR DEPTH COITPUTED FROM DAM HEIGHT : 80. 00 m
IAXIMUM VOLUME OF RESERVOIR: 13896. m3×1GEG
L.JNGEST DIMENSIDN OF RESERVOIR
NHES ON RE
REGIUNAL GEOLOGY: Batholithic
AGE OF REGIDNAL GEQLDGY. MESOZOIC NW-SE AGE OF REGIGNAL GEOLIGNAL STRESS REGIME CONFIDENCE IN REGIGNAL STRESS REGIME EVALUATION: high
 Batholthic
AGE OF SITE GEOLDGY: Mesozoic
PREDOMINANT FAULT TYPE: Left-s
AZIMUTH OF PREDOMINANT FAULTING: NE
DIP OF PREDOMINANT FAULTING: N7OE (
MAXIMUM LENGTH DF FAULTS: 600.00 (km) km long
MAXIMUM LENGTH DF FAULTS : 600 . OO (km) km long (Hoyuan fault)
MAME OF CLOSEST KMOINN FAULT : Hoyuan fault
GISTANCE TO CLDSEST KNOWN FAULT: 1.0 (km) km downstream from dam
AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAULT : Holocene
ARE LOCAL FAULTS ACTIVE?: YES
SEISMICITY ASSOCIATED WITH FAULTS IN LOCAL AREA? : Yes
NOTES DN HYDROLDGY: Groundwater is concentrated in frac
 TYPE DF PERMEABILITY: fracture
DE゙GREE OF TOPQGRAPHIC RELIEF: High
LIATE OF FIRET SUSPECTED RIS EVENT
MAGNITUDE OR INTENSITY OF LARGEST SUSPECTED RIS EVENT: Mag G (Peking)
HOTES ON SEISMICITY AFTEF IMPQUNDMENT: Increase in macraseismicity three years after impoundment
reservoir occured as filling began, and shows ing
GENERAL MOTES: Data reliability is moderate to high
fIS CATEGURY: Accepted
fIS CATEGURY: Acceptied
TYPE OF RIS : macro and
GEDGGY REFERENCES: $10 B$
GEULOGY REFERENCES: 10E, 203, 226, 412.418, 467A
$A-280$
DATE DAM COMPLETED : 1967 ON PRIMARY USE: Public water supply () and flood contral ETRUCTURAL HEIGHT OF DAM: 131. (m) above lowest foundation
LENGTH OF DAM : 402. ${ }^{m}$ RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 113.00 m
MESERVOIR DEPTH COMPUTED FROM DAM HEIGHT
SURFACE AREA OF RESERVOIR: 5.67 kma
EVIDENCE FOR REGIONAL STRESS REGIME
CONFIDENCE IN REGIONAL STRESS REGIME
NOTES ON SITE GEOLOGY: granite
GEOLOGY REFERENCES : 106, 233,470,471
DAM NAME : Yamase
COUNTRY: Japan
RIVER : Nahari
LOCATION OF CENTER OF RESERVOIR : 33. B9N, 134.12E
FLUCTUATIONS BASED ON PRIMARY USE: Hydropower i m above ground
115. m
DAM HEIGHT: 103. 50 m
105. $\mathrm{m} 3 \times 10 E G$
STRESS REGIME : Shear
EVALUATION: medium
ION OF RESERVOIR : HT OF DAM
2O2. m
COMPUTED DEPTH CO RESERVOIR VOLUME OF RESE
DIMENSION OF R
REGIONAL STRESS REGIME
LENGTH OF
\sum_{2}^{5}
LONGEST
REGIONAL
CONFIDENCE IN REGIONAL GEOLOGY REFERENCES : 106

A-282
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT : 151.00 m
MAXIMUN VOLUME OF RES
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONFIDENCE IN REGIONAL STRESS REGIME EVALUATION: Iow
NOTES $O N$ SITE GEGLOGY: Carboniferous Madison limestone, gentiy dipping, pred
Upper part includes two zone of well cemented calcareous shale and siltstone.
SITE GEOLOGY: Carbonate
AGE OF SITE GEOLOGY: Carboniferous
DEGREE OF DEFORMATION: shallow dipping
RIVER : LIEATION OF CENTER OF RESERVOIR : 46. 35N, 7.46E PROUINCE OR REGION: Valais
DAM TYPE : Concreta arch
DATE DAM COMPLETED : 1957
EXPECTED FLUCTUATIONS BASED
ORIENTATION OF RESERVOIR : NW
ETRUCTURAL HEIGHT OF DAM: 156. (m) m above lowest foundation LENGTH DF DAM : 280. m
RESERVOIR DEPTH COMPUTED FROM DAM HEIGHT: 126.00 m
MAXIMUM VOLUME OF RESERVOIR: 50. m3xIOEG
LONGEST DIMENSION OF RESERVOIR: 1.3 km
TECTONIC PROVINCE : Alps
REGIDNAL STRESS REGIME
EVIDENCE FOR REGIONAL STRESS REGIME : tectonics
CONF IDENCE IN REGIONAL.
NOTES ON SITE GEOLOGY:
NOTES ON SITE GEOLOGY: Limestone
SITE OEQLOGY: Carbonate
PREDOMINANT FAULT TYPE: RIght-EIIp
NOTES ON SEISMICITY BEFORE IMPOUNDMENT: Area of historical sedsmic activity
NOTES ON SEISMICITY AFTER IMPOUNDMENT: 1976 epicenter 5 km fram reservoir as GEOLOGY REFERENCES : 106, 289
Zevreila

DAM NAME: Zevreila

RIVER : Valserthein
ROVINCE DR REGION

A-285
RESERVOIR DEPTH CQMPUTED FROM DAM HEIGHT: 100.80 m
LONGEST DIMENSIUN OF RESERVOIR : $300.0(\mathrm{~km}) \mathrm{km}$
REGIONAL STRESS REGIME - COMpressional
EVIDENCE FOR REGIONAL STRESS REGIME: tectonics
CUNFIDENCE IN REGIONAL STRESS REGIME EVALUATION
NOTES DN SITE GEQLGGY: Alluvium in riverbed up to 13
SITE GEQLOGY: Batholithic
GEULQGY REFERENCES: 306, 330A

STUDY OF
RESERVOIR INDUCED SEISMICITY

APPENDIX B
EARTHQUAKE CATALOGS FOR SELECTED CASES OF REPORTED RIS

FINAL TECHNICAL REPORT
August 1979

By

Duane R. Packer, Lloyd S. Cluff, Peter L. Knuepfer and Robert J. Withers

Sponsored By The
U.S. Geological Survey Contract No. 14-08-0001-16809

WOODWARD-CLYDE CONSULTANTS
Consulting Engineers, Geologists, and Environmental Scientists Three Embarcadero Center, Suite 700

San Francisco, California 94111

The views and discussions in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the United States Government.

TITLE PAGE

1. CONTRACT NO.: 14-08-0001-16809
2. NAME OF CONTRACTOR: Woodward-Clyde Consultants
3. CO-PRINCIPAL INVESTIGATORS: Lloyd S. Cluff and

Duane R. Packer
4. GOVERNMENT TECHNICAL OFFICER: Dr. Jack F. Evernden
5. SHORT TITLE OF WORK: Reservoir Induced Seismicity
6. EFFECTIVE DATE OF CONTRACT: 15 February 1978
7. CONTRACT EXPIRATION DATE: 14 February 1979 extended to 14 June 1979
8. AMOUNT OF CONTRACT: $\$ 199,433.00$
9. DATE REPORT SUBMITTED: August 1979

APPENDIX B
EARTHQUAKE CATALOGS FOR SELECTED CASES OF REPORTED RIS

Table of Contents

Page
Title Page B-i
B.l Introduction B-1
B.l.l Explanation of Earthquake Catalog B-2
B.1.2 Reporting of Fractional Earthquake B-3
Magnitudes
B.1.3 Source Code Used in Accompanying B-4
Catalogs
B. 2 Earthquake Catalogs B-5
List of Tables
Table Title
B-1 Search Parameters for Earthquake B-6 Catalogs
B-2 Explanation of Kremasta Catalog: B-7Chronological Listing of Numbersof Earthquakes Within VariousRadii of Kremasta Reservoir

APPENDIX B

EARTHQUAKE CATALOGS FOR SELECTED CASES OF REPORTED RIS

B. 1 INTRODUCTION

The accompanying earthquake catalogs have been produced from the Woodward-Clyde Consultants Earthquake Data Bank. The region from which earthquake locations have been selected and other selection parameters are indicated at the beginning of each catalog.

The earthquake epicenter/hypocenter data presented here have been transcribed from one or more of the sources cited on the Source Codes list. Every attempt has been made to reproduce this source material as accurately as possible. Any questionable data should be checked against the original source or through Woodward-Clyde Consultants. Please bring any errors to our attention.

It is important to note that the quality of epicenter locations is not temporally or spatially consistent from source to source, or even within each source. Also, because the data are computerized, all latitudes and longitudes are printed in the catalog to thousandths of a degree (0.00l), regardless of how the coordinates were tabulated in the original source. This does not imply that the original coordinates reflect that degree of accuracy. In most cases, the implicit accuracy is obvious from the coordinate. For example, if an original source entry latitude were 23 N , it would appear in the catalog as 23.000 N .

B.1.1 Explanation of Earthquake Catalog Column Headings

CAT. Sequential catalog number assigned to each earth-

NO.

DATA
DAY-MO-YR
TIME (GMT)
HR-MIN-SEC
LAT

LONG
SL

MAG
quake in each catalog.

Date in Greenwich mean time unless noted otherwise in time column (usually as 'LT' for local time).

Time in Greenwich mean time unless noted otherwise in time column (usually as 'LT' for local time).

Latitude, north or south as noted. When original sources have given the latitude or longitude in degrees, minutes, and seconds, or as fractions of a degree, these have been converted to decimal degrees. Although the catalog presents the coordinates in thousandths of a degree, this does not imply location accuracy to that precision. In many cases the implicit accuracy is discernible from the coordinate. For example, if a latitude were originally reported as $231 / 4 \mathrm{~N}$, the catalog would list it as 23.250 N .

Longitude, east or west as noted (see note above).
Source of the latitude and longitude if different from the main source (column "S"). Frequently, only a place name is given for an earthquake location in the original data. In many such cases, the coordinates of the place have been assigned to the earthquake by Woodward-Clyde Consultants. The characters 'W', 'Wl', or 'W2' are placed in this column to indicate the degree of precision of the place name location, as follows:

W	nearest hundredth or thousandth degree
W1	nearest tenth degree
W2	nearest half degree.

Maximum intensity, reported on the Modified Mercalli Scale of l93l, unless noted otherwise; for example, 'RF' indicates Rossi-Forel intensity scale.

Earthquake magnitude, usually reported as local Richter, body wave, or surface wave (see "SM" column).

Source of magnitude, if different from the main source (column "S"), or magnitude scale, if known. $M B=$ body wave scale. $M S=$ surface wave scale. ML = local Richter magnitude. $\boldsymbol{N}^{\prime \prime}=$ magnitude reported by NOAA.

DIS Epicentral distance from the site in miles or
Hypocenter depth, in kilometers. kilometers, as noted.

Epicenter quality indicated as reported in main source. These are not quality judgments assigned by Woodward-Clyde Consultants unless the main source for the event is Woodward-Clyde Consultants.

S
Main source for earthquake. For these listings, the source generally is either IS (International Seismological Centre) or NOAA (National Oceanographic and Atmospheric Administration).

COMMENT
Source(s) of information from which data entry was compiled, as well as notes on damage and number of stations used in epicentral solution.

B.l. 2 Reporting of Fractional Earthquake Magnitudes

Many early magnitudes in the NOAA and ISC data files were originally reported as fractions and have been converted to decimal notations. As is the case with coordinate locations, these decimal notations do not imply accuracy to the nearest hundredth of a unit. For example,

Magnitude originally reported as

Appears as
$6-61 / 4 \quad 6.13$
6 1/4 6.25
$61 / 4-61 / 2$
6.38

6 1/2
6.50
$61 / 2-63 / 4$
6.63
$63 / 5$
6.75

63/4-7
6.88

For any other range, the median value is listed.
B.1.3 Source Codes Used in Accompanying Catalogs

ATH Athens Observatory, Athens, Greece
BCIS Bureau Central International de Seismologie, Strasbourg, France

BRK Seismograph Stations, University of California, Berkeley, California, USA

United States Coast and Geodetic Survey
CLL Collm Berg Observatory, Leipzig, German Democratic Republic

COL College Outpost station, Alaska
EBM Esen Bulak station, Mongolia
GUTE Gutenberg, B., and Richter, C.F., 1954, Seismicity of the earth and associated phenomena: Princeton University Press, Second Edition, 310 p.

HRB
Hurbanovo, Czechoslovakia
ISC International Seismological Centre
ISS International Seismological Summary, Kew, England, UR
KEW Kew, England, UK
LAO LASA Array, Montana, USA
LIS Lisbon, Portugal
LJU Ljubljana, Yugoslavia
LVV L'vov, Ukraine, USSR
LWI Lwiro, Zaire
MDD Madrid, Spain
MOS MOScow, USSR
NUR Nurmijarvi, Finland
PAL Lamont-Doherty Geological Observatory, Palisades, New York, USA

PDE	Preliminary Determination of Epicenters, published by the U.S. Coast and Geodetic Survey
PER Peking, China	
PRA	Praha (Prague), Czechoslovakia
QUE	Quetta, Pakistan
ROM	Rome, Italy
SHL	Shillong, India
SPCL	Skalnate-Pleso, Czechoslovakia
STR	Strasbourg, France
TIR	Tirana, Albania
TUL	Tulsa, Oklahoma, USA
UPP	Uppsala, Sweden
USCGS	United States Coast and Geodetic Survey
UZH	Uzhgorod, Ukraine, USSR

B. 2 EARTH@UAKE CATALOCS

Earthquake catalogs are presented for Kremasta, Porto Colombia, Almendra, and Sefid Rud reservoirs. The Kremasta catalog lists all earthquakes within three radii (maximum lake dimension) of the center of the reservoir. Table $\mathrm{B}-2$ correlates the month of occurrence of earthquakes with the distance (in radii) from the reservoir center. Earthquakes at Kremasta within three to five radii of the reservoir center are omitted from the catalog because of the large number of events. The Porto Colombia catalog lists the single event within five radii of the reservoir center. The Almendra and Sefid Rud catalogs list all events within five radii of the reservoir centers. These catalogs include both a chronological listing and a listing according to distance from the reservoir center.

TABLE B-1
SEARCI PARAMETERS FOR EARTHQUAFE CATALOGS

	Radius of Search	Maximum Lake Dimension	Locatio of P Latitude	Center voir Longitude	Inumber of Earthquakes in Catalog
Fremasta	140 km	28 km	38.90N	21.53E	1307
Porto Colambia	150 km	30 km	20.12 S	48.35W	1
Volta Grande	175 km	35 km	20.14 S	48.05W	1
Almendra	162 km	32.5 km	41.12N	5.16E	11
Sefid Rud	175 km	35 km	36.73n	49.35E	64

Notes:
1 Search was conducted within a $140-\mathrm{km}-\mathrm{radius}$ around the center of Kremasta Reservoir; only those events within 84 km (three times maximum lake dimension) are listed in catalog because of the large number of events.

2 Volta Grande catalog is not provided because it lists same event as Porto Colombia catalog.

MABLE B-2
 EXPLANATION OF KREMASMA CATALOC:
 CHRONOLOGICAL LISFIIIG OF IIUMBERS OF EARMHQUAYES
 WITHIN VARIOUS RADII OF KREMASTA RESERVOIR

Year	Month	$\underline{0}^{-1} 1 R^{\text {a }}$	$\underline{1 R-2 R^{b}}$	$\underline{2 R-3 R^{C}}$	$\underline{0-3 R^{\text {d }}}$
1925	Jul	0	0	1	1
1932	Aug	0	0	1	1
1938	Mar	0	0	2	2
1941	Mar	0	0	1	1
1943	Jul	0	0	1	1
1945	Jan	0	0	1	1
1946	Nov	0	0	1	1
1947	Apr	0	0	1	1
1948	Jan	0	0	1	1
1948	Apr	0	0	2	2
1948	Jun	0	0	1	1
1949	Jun	0	0	1	1
1949	Oct	0	2	0	2
1951	Jan	0	0	2	2
1951	Feb	0	1	0	1
1951	May	0	1	1	2
1952	Apr	0	2	0	2
1952	Aug	0	0	1	1
1952	Oct	0	1	0	1
1953	Mar	0	2	1	3
1953	Aug	0	0	18	18
1963	Sep	0	0	5	5
1953	Oct	0	0	7	7
1953	llov	2	2	1	5
1953	Dec	0	0	2	2
1954	Jan	0	0	1	1
1954	Apr	0	0	3	3
1954	May	0	0	6	6
1954	Jun	0	0	2	2
1954	Aug	0	0	1	1
1954	Oct	0	1	0	1
1954	Dec	0	0	1	1
1955	Jan	1	4	1	6
1955	Mar	0	0	2	2
1955	May	0	0	1	1
1955	Oct	0	0	1	1
1955	Dec	0	1	0	1
1956	Mar	0	2	1	3
1956	Apr	0	0	1	1
1956	Dec	0	0	2	2
1957	Jan	0	0	1	1
1957	Mar	0	0	2	2
1957	May	0	0	2	2

mABLE E-2 (continued)

Year	Month	$0-1 R$	$\underline{1 R-2 R}$	$\underline{2 R-3 R}$	$0-3 R$
1957	Jun	0	0	1	1
1957	Sep	1	0	0	1
1957	Oct	0	3	4	7
1957	llov	1	0	2	3
1958	Feb	0	1	0	1
1958	May	0	0	3	3
1958	Aug	0	1	0	1
1959	Jan	1	0	0	1
1959	Apr	0	1	0	1
1959	May	0	0	1	1
1959	Jun	0	1	0	1
1960	Jan	0	1	0	1
1960	Feb	0	2	9	11
1960	Apr	0	0	1	1
1960	May	0	1	1	2
1960	Jun	0	0	1	1
1960	Jul	0	0	1	1
1960	Aug	0	1	0	1
1960	Sep	0	1	0	1
1960	Nov	0	0	5	5
1961	Apr	0	1	0	1
1961	Sep	1	1	0	2
1961	llov	0	1	1	2
9162	Jan	0	1	4	5
1962	Feb	0	0	1	1
1962	Mar	1	0	0	1
1962	Apr	0	2	2	4
1962	May	3	0	4	7
1962	Jul	0	1	3	4
1962	Aug	1	0	0	1
1962	Sep	0	0	1	1
1963	Jan	1	0	0	1
1963	Feb	1	0	0	1
1963	Mar	0	2	2	4
1963	Apr	2	1	1	4
1963	May	0	0	2	2
1963	Jun	0	0	1	1
1963	Sep	1	0	0	1
1963	nov	1	4	0	5
1964	Jan	0	1	0	1
1964	Mar	0	2	0	2
1964	May	0	1	0	1
1964	Jun	1	1	1	3
1964	Jul	0	0	2	2
1964	Sep	0	0	7	7
1964	Oct	1	0	1	2
1964	IJov	0	0	2	2
1965	Jan	0	1	2	3
1965	Feb	0	0	2	2

```
TABLE B-2 (continued)
```

Year	Month	$0-1 R$	1R-2R	2R-3R	$0-3 R$
1965	Mar	0	0	1	1
1965	Apr	0	0	1	1
1965	May	0	0	1	1
1965	Jun	0	0	2	2
1965	Jul	0	1	2	3
1965	Aug	0	1	1	2
1965	Sep	0	2	1	3
1965	Oct	0	0	1	1
1965	IJov	0	0	1	1
1965	Dec	0	0	2	2
1966	Jan	55	21	2	78
1966	Feb	18	50	8	76
1966	Mar	12	10	3	25
1966	Apr	13	13	2	28
1966	May	11	17	8	36
1966	Jun	5	9		19
1966	Jul	4	11	4	19
1966	Aug	8	11	14	33
1966	Sep	3	5	1	9
1966	Oct	2	7	5	14
1966	Nov	0	4	4	8
1966	Dec	0	2	5	7
1967	Jan	4	11	4	19
1967	Feb	0	3	0	3
1967	Mar	2	2	1	5
1967	Apr	0	6	2	8
1967	May	0	4	13	17
1967	Jun	0	3	3	6
1967	Jul	1	0	4	5
1967	Aug	0	1	4	5
1967	Sep	1	2	4	7
1967	Oct	1	3	5	9
1967	Nov	2	0	3	5
1967	Dec	0	2	2	4
1968	Jan	0	0	1	1
1968	Feb	1	2	4	7
1968	Mar	1	5	0	6
1968	Apr	1	1	2	4
1968	May	1	0	0	1
1968	Jul	0	0	3	3
1968	Aug	1	3	3	7
1968	Sep	0	0	2	2
1968	Oct	1	4	1	6
1968	llov	0	2	0	2
1968	Dec	4	4	3	11
1969	Jan	1	1	2	4
1969	Feb	0	3	2	5
1969	Mar	1	1	4	6
1969	Apr	2	3	3	8

TABLE B-2 (continued)

Year	Month	$0-1 \mathrm{R}$	$\underline{1 R-2 R}$	2R-3R	$0-3 R$
1969	May	1	5	1	7
1969	Jun	1	1	1	3
1969	Jul	2	3	2	7
1969	Aug	2	1	2	5
1969	Sep	2	2	2	6
1969	Oct	0	0	4	4
1969	llov	4	2	2	8
1969	Dec	0	2	2	4
1970	Jan	1	3	2	6
1970	Feb	2	1	3	6
1970	Mar	0	0	2	2
1970	Apr	1	2	3	6
1970	May	0	2	5	7
1970	Jun	1	3	7	11
1970	Jul	1	0	9	10
1970	Aug	2	5	4	11
1970	Sep	1	1	2	4
1970	Oct	1	4	0	5
1970	Nov	1	3	1	5
1970	Dec	0	1	2	3
1971	Jan	1	1	0	2
1971	Feb	0	3	1	4
1971	Mar	1	2	1	4
1971	Apr	1	2	0	3
1971	May	0	4	3	7
1971	Jun	0	3	2	5
1971	Jul	0	0	1	1
1971	Aug	1	2	0	3
1971	Sep	0	0	2	2
1971	Oct	1	1	1	3
1971	Dec	0	2	2	4
1972	Jan	1	1	1	3
1972	Feb	1	1	1	3
1972	Mar	0	2	6	8
1972	Apr	0	8	4	12
1972	May	0	3	4	7
1972	Jun	1	3	4	8
1972	Jul	1	6	3	10
1972	Aug	1	2	2	5
1972	Sep	1	6	1	8
1972	Oct	1	2	1	4
1972	Nov	1	6	5	12
1972	Dec	3	1	2	6
1973	Jan	0	4	3	7
1973	Feb	0	1	3	4
1973	Mar	0	2	3	5
1973	Apr	0	0	3	3
1973	May	1	10	3	14
1973	Jun	0	1	4	5

```
TABLE B-2 (continued)
```

Year	Month	$0-1 R$	$\underline{1 R-2 R}$	2R-3R	$0-3 R$
1973	Jul	0	5	5	10
1973	Aug	1	3	1	5
1973	Sep	1	4	4	9
1973	Oct	2	0	2	4
1973	Nov	2	1	3	6
1973	Dec	2	1	1	4
1974	Jan	0	2	5	7
1974	Feb	1	3	1	5
1974	Mar	1	2	1	4
1974	Apr	1	2	3	6
1974	May	4	3	0	7
1974	Jun	2	2	10	14
1974	Jul	1	1	10	12
1974	Aug	1	0	4	5
1974	Sep	0	1	5	6
1974	Oct	0.	4	4	8
1974	llov	1	3	5	9
1974	Dec	0	3	7	10
1975	Jan	2	4	4	10
1975	Feb	0	1	1	2
1975	Mar	0	2	4	6
1975	Apr	0	2	3	5
1975	May	0	1	6	7
1975	Jun	1	19	10	30
1975	Jul	2	28	22	52
1975	Aug	1	0	7	8
1975	Sep	0	4	9	13
1975	Oct	0	1	4	5
Cumul	ive	242	505	560	1307

Notes:
a Number of earthquakes during month within one radius (lake dimension) from center of reservoir.
b Number of earthquakes during month between one and two radii from center of reservoir.

C Number of earthquakes during month between two and three radii from center of reservoir.
d motal number of earthquakes during month within three radii of center of reservoir.

This catalog lists the one earthquake reported by ISC within 150 km of Porto Colombia reservoir, the center of which is located at $20.12 \mathrm{~S}, 48.35 \mathrm{~W}$. This is also the only event within 175 km of Volta Grande reservoir, the center of which is located at 20.14S, 48.05W.

The radius (longest reservoir dimension) for Porto Colombia is 30 km , and that for Volta Grande is 35 km (Figure 2-3).
B.2.3 Almendara Catalog

This catalog lists all earthquakes reported by ISC within 162 km of the center of Almendra (Tormes) reservoir, which is located at $41.12 \mathrm{I}, 5.16 \mathrm{E}$. The radius (longest reservoir dimension) is 32.5 km for this reservoir (Figure 2-5).
B.2.4 Sefid Rud Catalog

This catalog lists all earthquakes reported by ISC within 175 km of the center of Sefid Rud reservoir, which is located at 36.73 N , 49.35E. The radius (longest reservoir dimension) is 35 km (Figure 2-8).

$$
\begin{aligned}
& 15 \text { JUL } 1966 \\
& 22 \text { OCT } 1972
\end{aligned}
$$

$$
\begin{aligned}
& 30 \text { NOV } 1953 \\
& 30 \text { NOV } 1953 \\
& 17 \text { SEP } 1957 \\
& 27 \text { NOV } 1957 \\
& 24 \\
& 24 \\
& \hline
\end{aligned}
$$

$$
02: 20: 50 \cdot 6
$$

$$
23: 50: 12 \cdot 1
$$

$$
\begin{aligned}
& 09: 32: 24.0 \\
& 03: 08: 00.0
\end{aligned}
$$

$$
38.940 N \quad 21.470 E
$$

$$
38.849 N
$$

$$
38.820 \mathrm{~N}
$$

$$
38.900 \mathrm{~N}
$$

$$
38.823 N
$$

$$
21.510 E
$$

$$
21.429 E
$$

$$
8.940 N \quad 21.470 E
$$ 16

$$
11: 59: 16.8
$$

$$
\begin{aligned}
& 15: 02: 18.0 \\
& 04: 52: 03.0
\end{aligned}
$$

$$
38.850 N
$$

$$
\begin{aligned}
& 39.000 \mathrm{~N} \\
& 39.000 \mathrm{t} \\
& 39.0010 \mathrm{~N}
\end{aligned}
$$ 24 JAN 1966

$$
0 \mathrm{OE}
$$

$$
21.585 E
$$

$$
21 \cdot 610 E
$$

$$
21 \cdot 497 E
$$

$$
38.870 N \quad 21 \cdot 420 E
$$

$$
38.900 N \quad 21.650 E
$$

$$
38.877 N \quad 21.645 \mathrm{C}
$$

$$
39.000 \mathrm{~N} \quad 21.500 E
$$

$$
39.000 \mathrm{~N} \quad 21.500 \mathrm{E}
$$

$$
21.500 \mathrm{E}
$$

$$
21.5000
$$

$$
21.5005
$$

$$
\begin{aligned}
& 21.500 \varepsilon \\
& 21.5008
\end{aligned}
$$

$$
\begin{aligned}
& m \\
& \bullet \\
& 0 \\
& 0 \\
& \infty \\
& \infty \\
& \infty
\end{aligned}
$$

$$
\begin{array}{ll}
\infty & \infty \\
\infty & 0 \\
\infty & 0 \\
\infty & 0 \\
\infty & \cdots \\
\infty & \cdots \\
\cdots & \cdots
\end{array}
$$

$$
\begin{gathered}
e \\
\bullet \\
0 \\
\cdots \\
\cdots \\
\cdots \\
\cdots
\end{gathered}
$$

33	24	J AN	1966	17:02:08.5	39.000N	21.500E
34	26	JAN	1966	13:49:24.0	39.000 N	21.500E
35	26	JAN	1966	21:38:18.0	39.000 N	21.5005
36	26	JAN	1966	22:21:30.0	39.000 N	21.500E
37	28	$J A N$	1966	16:13:07.0	39.000 N	$21.500 E$
38	88	$J A N$	1966	18:35:26.0	$39.000 N$	21.500E
39	30	JAN	1966	05:50:09.0	39.000N	21.500E
40	30	JAN	1966	06:47:03.0	$38.870 \wedge$	21.650E
41	31	$J A N$	1966	15:14:28.0	$39.000 N$	$21.500 F$
42	12	FEB	1966	13:36:22.2	$38.840 N$	21.430E
43	26	FEB	1966	02:39:18.3	39.000 N	$21.500 E$
44	27	FEE	1966	19:39:1月.0	$38.900 N$	21.5006
45	13	$A P R$	1966	10:46:52.0	39.000N	$21.500 E$
46	18	APR	1966	09:54:50.0	39.000 N	21.500E

B-14

11	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = ? STATION RECORDINGS	UTH	IN	SOLUTION
11	15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 1 STATION RECORDINGS	USTH	IN	SOLUTION
11	1 S	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
11	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = $?$ STATION RECORDINGS	$\begin{array}{r} \text { ATH } \\ \text { USED } \end{array}$	IN	SOLUTION
11	I S	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	UTH	IN	SOLUTION
11	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = ? STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
11	IS	DATA OBTATNED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
11	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECOROINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
12	IS	ORIGINAL DATA SOURCE = 6? STATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
11	I S	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
11	IS	DATA OBTAINEO VIA ISC ORIGINAL DATA SOURCE = S STATION RECORDINGS	$\begin{gathered} \text { ATH } \\ \text { USED } \end{gathered}$	IN	SOLUTION
11	15	OATA OHTAINED VIA ISC ORICINAL DATA SOURCE =	$\begin{gathered} \text { ATH } \\ \text { USED } \end{gathered}$	IN	SOLUTION
11	15	OATA OGTAINED VIA ISC ORIGINAL DATA SOURCE =	ATH		

$\begin{aligned} & \text { CAT。 } \\ & \text { NOO. } \end{aligned}$		$\begin{gathered} \text { DAT } \\ \mathbf{Y}-\mathrm{CO} \end{gathered}$	EvEAR	TIME(GMT) HR-MIN-SLC	LAT	LONG	SL INTFNN	mafi su	$S^{M}(K M)$	$\begin{aligned} & \text { Cis } \\ & \text { KM } \end{aligned}$	15	LOCA110N	A	N	D COMMENTS
74	12	JUL	1969	00:19:37.9	38.800N	21.460E			33	13	1 S	ORIGINAL DATA SOURCE = 28 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
75	20	Jun	1970	12:21:46.0	38.800N	21.6005				13	IS	ORIGINAL DATA SOURCE = 5 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
76	23	Nov	1973	17:09:44.0	39.000:	21.60 nt				13		data ofitaineo via isc. ORIGINAL DATA SOURCE = 0 STATION RECORDINGS	USTH	IN	SOLUTION
77	4	fic	1974	00:48:45.0	39.00un	21.6008				13		oata ortained via isc ORIGINAL DATA SOURCE = I STATION REGORDINGS	USII	IN	SOLUTION
78	-	Jun	1966	07:06:20.3	38.080\%	21.410 E			7	14		ORIGINAL DATA SOURCE = 6. STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USE } \end{aligned}$	IN	SOLUTION
79	20	JUL	1966	10:16:06.0	38.830 N	21.300E		4.50	22	14	15	ORIGINAL DATA SOURCE = 64 STATION RECOPDINGS	$\begin{aligned} & \text { ISC } \\ & U S E D \end{aligned}$	IN	SOLUTION
80	17	SEP	1972	17:01:51.9	3H.R14N	21.652 F				14	15	ORIGINAL DATA SOURCE = 3 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USE } \end{aligned}$	IN	SOLUTION
A1	10	nov	1973	11:59:07.8	34.864A	21.376L				14	15	ORIGINAL DATA SOURCE = h. STATION RECOKDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	1 N	SOLUTION
A2	24	JAN	1966	04:48:37.0	38.9008	21.7005				15	18	DATA OGTAIMED VIA ISC ORIGINAL DATA SOURCL = 3 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	1 N	SOLUTION
83	25	JAN	1966	03:55:54.0	38.903^	21.700 E				15	19	data ortaineo via isc ORIGINAL DATA SOURCE $=$ SIATION RECOROINGS	$\begin{aligned} & \text { ATH } \\ & \text { USEED } \end{aligned}$	IN	SOLUTION
AA	30	JAN	1966	23:40:15.0	38.900n	21.700 L				15		Data ortained via isc ORIGINAL DATA SOURCF = ? SIAIION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USES } \end{aligned}$	IN	SOLUTION
85	27	may	1966	23:14:24.4	38.900N	21.790 E				15		DATA OUTAINED VIA ISC ORIGINAL DATA SOURCE = \& STATION RFCORDINGS	USEH	IN	SOLUTION
86	16	SEP	1966	20:02:29.3	38.900 N	21.700E				15		oata ortainco via isc. OKICINAL DATA SOURCE = STATION RF.CORDINGS	USTH	IN	SOLUTION
R 7	17	FEB	1970	04:51:10.0	38.830 N	21.680 E		4.t:0	23	15	15	orifinal data source = GA STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USE } \end{aligned}$	IN	SOLUTION
月 8	3	MAR	1971	22:41:36:1	38.776 N	$21.464 E$			8	15		ORIGINAL DATA SOURCE = - inilóv recordings	$\begin{aligned} & \text { ISC } \\ & \text { usir } \end{aligned}$	IN	SOLIITION

$\begin{aligned} & \text { CAT. } \\ & \text { NO. } \end{aligned}$		$\begin{array}{r} \text { OATE } \\ Y-M O \end{array}$	YEAR	$\begin{aligned} & \operatorname{TIMF}(G M T) \\ & H R-M I N-S E C \end{aligned}$	LAT	Lond	$\begin{gathered} \text { SL INTFN } \\ \text { (MMM) } \end{gathered}$	MAF:	$S_{M}(K M)$	$\begin{gathered} \text { UIS } \\ \text { KM) } \end{gathered}$	s	LOCA110	A	N	C 0
89	4	aug	1971	01:48:21.8	38.856N	21.3655	-			15	15	ORIGINAL DATA SOURCE = 5 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	1 N	SOLUTION
90	16	May	1974	05:16:23.8	38.979N	21.391E				15	IS	ORIGINAL DATA SOURCE = G STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
91	19	Jan	1966	07:26:52.3	38.860N	21.350E				16	IS	ORIGINAL DATA SOURCE = 7 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
92	10	FEB	1966	13:21:45.9	38.950N	21.700 E		4.40	39	16	15	ORIGINAL DATA SOURCE = 31 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
93	17	FEB	1966	07:37:45.0	39.030 N	210600E		4.30	25	16	IS	ORIGINAL DATA SOURCE = IR STATION RECOROINGS U	$\begin{aligned} & \text { ISC } \\ & \hline \end{aligned}$	IN	SOLUTION
94	15	mar	1966	10:46:11.0	38.800 N	21.400E				16	15	ORIGINAL DATA SOURCE = 11 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
95	18	APR	1966	08:37:08.0	39.000 N	21.400 E		4.30	1	16	15	ORIGINAL DATA SOURCE = 14 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
98	21	'UUL'	'1986	03:56:50:5"	38.810 N	21.380E				16	IS	ORIGINAL DATA SOURCE = 7 STATION RECORDINGS US	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
97	14	SEP	1966	14:42:45.0	$38.800 N$	21.400E				16	15	ORIGINAL DATA SOURCE = 6 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
98	15	AUG	1969	13:50:47.0	38.800 N	21.400 E				16		DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 3 STATION RECORDINGS U	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
99	18	DEC	1973	06:56:54.0	39.000 N	21.400E				16		data driained via isc ORIGINAL DATA SOURCE = O STATION RECORDINGS U	USTH	IN	SOLUTION
100	12	JUN	1964	04:09:43.0	38.750N	21.500E				17		DATA OBTAINED VIA ISC ORIGINAL DAIA SOURCE = 5 STATION RECORDINGS U	$\begin{aligned} & \text { ATH } \\ & \text { USEO } \end{aligned}$	IN	SOLUTION
101	16	OCT	1964	09:11:16.0	38.750N	21.500E				17		daIA obTAINED VIA ISC ORIGINAL DATA SOURCE = 2 SIATION RECORDINGS U	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
102	11	MAR	1966	20:19:19.8	38.830 N	21.700 L			48	17.	1.5	ORIGINAL DATA SOURCE = 22 STATION RECORDINGS U	$\begin{aligned} & \text { ISS } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
103	28	APR	1966	01:54:29.9	38.820N	21.700 F			5	17	15	ORIGINAL OATA SOURCE = in station recordings u	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
184	18	mar	1966	12:10:58.2	-38.750N	21.500E				17	Is	Data obtained via ISC OMIIMAL NATA SOURCE =	ATH		

17	15	data ontained via isc ORIGINAL OATA SOURCE = 3 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
17	IS	data obitained via isc ORIGINAL DATA SOURCE = STATIDN RECORDINGS	USTH	IN	SOLUTION
17	IS	ORIGINAL DATA SOURCE = 7? SIATION RECORDINGS	USED	IN	SOLUTION
17	IS	data ortained via isc ORIGINAL DATA SOURCE = SIATION RECORDINGS	$\begin{aligned} & \text { USH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
17	15	data nbtained via isc ORIGINAL DATA SOURCE $=$	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUT 10N
17	IS	ORIGINAL DATA SOURCE = 6 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
17	IS	data obtaineo via isc ORIGINAL DATA SOURCE = 3 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
17	IS	ORIGINAL DATA SOURCE = 10 STATION RECORDINGS	USED	IN	SOLUTION
17	15	ORIGINAL DATA SOURCE = G STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
18	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 1 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USECD } \end{aligned}$	IN	SOLUTION
18	Is	DATA OBTAINED YIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
18	IS	data obtained via isc ORIGINAL UATA SOURCE = ?TATION RECOPDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
18	15	DATA ORTAINEC VIA ISC DRIGINAL DATA SOURCE STATIOV RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
18	IS	ORIGINAL DATA SOURCE = Tillont fecornings	USE	IN	SOLIUTION

$$
4.70
$$

105	28	MAY	1966	10:15:27.0	38.750 N	21.500E
106	15	JUN	1966	05:20:54.0	38.730 N	21.5005
107	30	0 Ct	1966	02:10:14.0	$38.750 N$	21.5R0E
108	24	JAN	1967	10:12:16.0	38.750 N	$21.500 E$
109	16	OCT	1967	16:12:44.0	38.750N	21.500 E
110	9	JUL.	1969	22:26:31.6	39.050 N	$21.500 E$
111	25	JUL	1970	16:19:22.0	38.750 N	21.500 F
112	1	JUN	1974	08:27:55.1	38.912N	21.332E
113	17	JAN	1975	17:38:20.4	39.052N	21.574E
114	27	JAN	1966	15:24:11.0	$39.000 N$	21.700 E
115	27	JAN	1966	17:00:55.0	39.000 N	21.700 E
116	27	JAN	1966	20:37:46.0	39.000 N	21.7COE
117	30	JAN	1966	12:13:57:0	39.000 N	21.700E
118	2	FEB	1966	23:51:36.6	38.840N	21.340 F

$\begin{aligned} & \text { CAT. } \\ & \text { NO. } \end{aligned}$		$\begin{array}{r} \text { DATE } \\ \text { Y-MO } \end{array}$	EyEAR	$\begin{aligned} & \text { TIMEIGMT) } \\ & \text { HR-MIN-SEC } \end{aligned}$	LAt	LONG	SL INTEN (MM)	MAG	$\begin{gathered} H \\ K \end{gathered}$		$1)$	S	LOCATION	A N 0	C 0
135	25	JUL	1972	01:56:08.5	38.728N	21.475E	-	4.70	50	20			ORIGINAL DATA SOURCE = 108 STATION RECORDINGS US	$\begin{aligned} & \text { ISC } \\ & \text { USED IN S } \end{aligned}$	SOLUTION
136	20	SEP	1973	21:53:24.5	38.718N	21.533 E				20			ORIGINAL DATA SOURCE = 4 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED IN S } \end{aligned}$	SOLUTION
137	1	JUL	1975	01:44:36.4	38.746N	21.653 r				20			ORIGINAL OATA SOURCE = 7 SIATION RECOROINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USEO IN S } \end{aligned}$	SOLUTION
138	19	JUL	1975	01:11:08:9	$38.753 N$	21.392E				20			ORIGINAL DATA SOURCE = 7 SIATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USEO IN } \end{aligned}$	SOLUTION
139	22	Jan	1966	05:01:38.1	39.080 N	21.600E				21		IS	ORIGINAL DATA SOURCE = 14 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED IN S } \end{aligned}$	SOLUTION
140	31	Jan	1970	01:26:51.0	39.000 N	21.320E			18	21		IS	ORIGINAL DATA SOURCE = 25 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USEO IN S } \end{aligned}$	SOLUTION
141	22	OCt	1970	09:34:14.0	38.960N	21.3005				21		Is	ORIGINAL DATA SOURCE = 13 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED IN S } \end{aligned}$	SOLUTION
142*	13	mat	1973	08:01:55.0	380110N	214558E				21		IS	ORIGINAL DATA SOURCE = a STATION RECORGINGS U	USEC IN S	SOLUTION
143	10	DEC	1973	02:00:41.4.	38.888N	21.291E		3.80	58	21		15	ORIGINAL DATA SOURCE = 27 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED IN S } \end{aligned}$	SOLUTION
144	20	SEP	1961	11:43:06.0	39.000 N	21.750E	v			22		15	ORIGINAL DATA SOURCE =	BCIS	
145	25	AU6.	1962.	07:18:47.0	39.000 N	21:750E	VI			22		IS	ORIGINAL DATA SOURCE =	BCIS	
146	30	Jan	1966	20:37:55.0	39.100 N	21.500E				22			DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STAIION RECORDINGS U	USEO IN S	SOLUTION
147	9	FEB	1966	06:04:39.4	39.100N	21.500E				22			DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 5 STATION RECORDINGS U	USED IN S	SOLUTION
148	11	FEB	1966	05:40:23.1	39.100N	21.5305				22		15	ORIGINAL DATA SOURCE = 10 STATION RECORDINGS U	USEC IN S	SOLUTION
149	17	FEB	1966	22:04:09.0	39.100 N	21.5005				$? 2$			orisinal oata source = ', STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED IN S } \end{aligned}$	SOLUTION
150	15	mar	1966	21:44:30.0"	39.000 N	21.750E				22			data obtained via isc CRIPIHAL DAYA SOURCE = * SIATION RECOROINGS U	$\begin{aligned} & \text { ATH IN } \\ & \text { USEO IN } \end{aligned}$	SOLUTION
151	23	APR	1966	11:08:09.9	39.010N	21.3205		4.40	38	27		is	ORIGINAL DATA SOURCE = 41 I:IINV RFCOROINGS U		smlution

$\begin{aligned} & \text { CAT. } \\ & \text { NO. } \end{aligned}$		$\begin{aligned} & \text { OATE } \\ & \text {-MO } \end{aligned}$	yEAR	$\begin{aligned} & \text { TIMESGMTB } \\ & \text { HR-MIN-SEC } \end{aligned}$	LAt	LONG	SL INTEN (MM)	MAC	$\begin{array}{r} H \\ K H 2 \end{array}$			L OCATION	N	C 0	
152	26	APR	1966	05:12:00.1	38.710N	21.4H0E				22	15	ORIGINAL DATA SOURCE = a STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED IN } \end{aligned}$	SOLUTION	
153	28	APR	1966	11:47:33.9	38.890N	21.280E		4.30	53	22	15	ORIGINAL DATA SOURCE = 4R STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED IN } \end{aligned}$	SOLUTION	
154	27	may	1966	12:02:47.0	39.000N	21.750 E				22	15	data obtainfo via isc ORIGINAL OATA SOURCE = 1 STATION RECORDINGS	USTH IN	SOLUTION	
155	19	DEC	1968	04:43:42.0	39.000N	21.750E				22	IS	data obtained via isc ORIGINAL DATA SOURCE = 3 STATION RECORDINGS	USED IN	SOLUTION	
156	26	SEP	1970	06:14:10.5	39.050N	21.700E		4.40	36	22	15	ORIGINAL DATA SOURCE = 4D STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED IN } \end{aligned}$	SOLUTION	
157	26	OCT	1973	20:22:05.6	38.873N	21.282E		3.70	53	22	IS	ORIGINAL OATA SOURCE = 24 STATION RECOROINGS	$\begin{array}{ll} \text { ISC } \\ \text { USED } \end{array}$	SOLUTION	
158	18	May	1974	20:04:39.6	38.898N	21.780E				22	15	ORIGINAL DATA SOURCE = 6 STATION RECORDINGS	$\begin{array}{ll} \text { ISC } \\ \text { USED } \end{array}$	SOLUTION	
159	1	May	1962	11:54:04.0	38.700 N	21.600E		4.50		23	15	data obtained via bcis ORIGINAL DATA SOURCE = MAGNITUDE AUTHORITY=	$\begin{aligned} & \text { MOS } \\ & \text { MOS } \end{aligned}$		
160	14	APR	1963	23:15:20.0	38.900N	21.8005				23	IS	ORIGINAL DATA SOURCE =	BCIS		
161	22	JAN	1966	06:02:47.0	39.100 N	21.600E				23	is	data obtained via isc ORIGINAL DATA SOURCE = a STATION RECORDINGS	$\begin{aligned} & \text { AIH } \\ & \text { USED IN } \end{aligned}$	SOLUTION	
162	24	JAN	1966	05:00:18.0	39.100 N	21.600 E				23	15	data obtained via isc ORIGINALDDATA SOURCE 3 STATION RECORDINGS	USED IN	SOLUTION	
163	26	JAN	1966	10:30:13.0	39.100 N	21.6005				23		data obtained via isc ORIGINAL DATA SOURCE $=$	$\begin{aligned} & \text { AIH } \\ & \text { USFD IN } \end{aligned}$	SOLUTION	
164	27	JAN	1966	11:51:19.0	39.100 N	21.600 E				33	15	data obiainco via isc ORICINALDATA SOUPGE = , ©IATION RECOODINGS	USEO IN	SOLUTION	
165	28	JAN	1966	02:30:43.0	39.100 N	21.600 F				23		data obtained via isc ORIGIMAL DAIA SOURCE = ? STATION RECORDINGS	$\begin{aligned} & \text { AIH } \\ & \text { USED IN } \end{aligned}$	SOLUTION	
166	28	JAN	1966	12:50:22.0	39.100 N	21.600E				23	15	DATA ORTAINED VIA ISC OHITHAL SATA SOURCE =	A ${ }^{\text {IN }}$		

C OMMENTS

21.600 E
21.600
21.800 E
21.800 E
21.600 E
21.300 E
21.800 F
$21.800 E$
21.400 E
21.600 E
21.790 E
$21.317 E$
21.600 E
21.80 Cr
21.320 E
$\underset{\text { N }}{\stackrel{y}{*}}$
21.360E

080 N
39.100 N
38.900 n
38.777N
38.700 N

14 APR 1969 05:11:45.5
21:19:51.7
0
$\stackrel{0}{\circ}$
$\ddot{\sim}$
$\ddot{0}$
$\ddot{\square}$
$\ddot{\square}$
8 SEP 1967
11 AUG 1968 07:46:04.0
6961 ydr bI
 S261 330 £ 23 DEC 1975 30 JAN 1966 25 FEB 1966 6 MAR 1966 14 MAR 1966

CAT. NO.		$\begin{aligned} & \text { DATE } \\ & \text { Y-MO } \end{aligned}$	-YEAR	TIME(GMT) HR-MIN-SEC	LAT	LONG	SL INTEN (MM)	MAG SM	$\left(K_{M}^{H}\right) 1$	IIS KM)	0	S	$1.0 C A T I O N$	A N	C 0	HENTS
182	11	JAN	1967	21:49:12.0	39.110 N	21.490 F .			11	24			ORIGINAL DATA SOURCE = 9 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED IN } \end{aligned}$	SOLUTION	
183	16	NOV	1970	18:27:40.8	38.920 N	21.800 E				24		IS	ORIGINAL DATA SOURCE = 19 STATION RECORDINGS	USEC	SOLUTION	
184	24	MAR	1974	10:46:29.2	$39.095 N$	21.400 E				24		1 S	ORIGINAL OATA SOURCE = 6 STATION RECORDINGS	USED IN	SOLUTION	
185	1	MAR	1962	09:49:28.0	38.750 N	21.750 E	v			25		IS	ORIGINAL DATA SOURCE =	BCIS		
186	15	JAN	1963	21:25:00.0	38.700 N	21.400 E	$V I$			25		IS	ORIGINAL DATA SOURCE =	BCIS		
187	12	APR	1963	23:58:55.0	39.100 N	21.400E				25		15	DATA OBTAINED VIA BCIS ORIGINAL DATA SOURCE =	MOS		
188	12	SEP	1963	18:29:45.0	39.100N	21.4005	v			25		IS	ORIGINAL DATA SOURCE =	BCIS		
189	26	JAN	1966	17:34:00.0	$39.100 N$	$21.400 E$				25			DATA DBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	USED IN	SOLUTION	
190	30	JAN	1966	04:29:49.0	39.100 N	21.400E				25		15	DATA OBTAINED VIA ISC ORIGINAL OATA SOURCE = 2 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED IN } \end{aligned}$	SOLUTION	
191	17	MAR	1966	19:25:22.0	38.750 N	21.750 E		-		25		15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED IN } \end{aligned}$	SOLUTION	
192	9	APR	1966	11:01:11.1	35.100 N	21.4005				25		15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 3 STATION RECORDINGS	UTH	SOLUTION	
193	26	MAY	1966	06:32:22.0	$3 \mathrm{H.700N}$	21.400E			38	25		15	ORIGINAL DATA SOURCE = 11 STATION RECORDINGS	$\begin{array}{ll} \text { ISC } \\ \text { USED IN } \end{array}$	SOLUTION	
194	18	AUG	1966	14:00:36.0	38.750N	21.750E				25		15	data obtaineo via isc ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	UTH	SOLUTION	
195	4	OCT	1966	13:12:37.3	38.750N	21.750 E				25		IS	OATA OBTAINED VIA ISC ORIGINAL OATA SOURCE = 4 STATION RECORDINGS	ATH	SOLUTION	
196	16	NOV	1967	02:22:41.0"	38.750N	21.750E		3.20		25			DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 3 STAIION RECORDINGS	USEO IN	SOLUTION	
197	16	NOV	1967	05:33:42.0	38.750 N	21.750E				25		IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCF =	ATH		

198	8	FEB	1968	13:00:38.0	39.100 N	21.400E	3.40		25	15	DATA OBTAINED YIA ISC ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	$\begin{gathered} \text { ATH } \\ \text { USED } \end{gathered}$	IN	SOLUTION
199	3	may	1968	03:28:12.0	39.060 N	$21.330 E$			25	15	ORIGINAL DATA SOURCE = 19 STATION RECORDINGS	USEC	IN	SOLUTION
200	26	OCT	1968	03:11:13.0	38.750N	21.750 E			25	IS	DATA OBTAINED VIA ISC ORIGINAL DAIA SOURCE = 5 STATION RECORDINGS	USEH	IN	SOLUTION
201	19	MAR	1969	17:05:50.0	38.750 N	21.750 E			25	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 3 STATION RECOROINGS	$\begin{gathered} \text { ATH } \\ \text { USED } \end{gathered}$	IN	SOLUTION
202	24	CEC	1972	22:28:01.8	38.768 N	21.770E			25	IS	ORIGINAL DATA SOURCE = 9 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
203	18	OCT	1973	04:44:10.8	38.742N	21.317E			25	IS	ORIGINAL DATA SOURCE = 5 STATION RECORDINGS	USSC	IN	SOLUTION
204	24	APR	1974	01:55:36.0	36.700 N	21.400 E			25	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = O STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
205	20	JUL	1974	18:10:44.3	38.797A	21.277E		8	25	IS	ORIGINAL DATA SOURCE = 13 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
206	31	DEC	1975	17:28:21.0	38.750 N	$21.750 E$	2.70		25	15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = O STATION RECORDINGS	$\begin{gathered} \text { ATH } \\ \text { USED } \end{gathered}$	IN	SOLUTION
207	23	JAN	1966	11:25:07.0	39.000 N	21.800E			26	15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 3 STATION RECORDINGS	$\begin{gathered} \text { ATH } \\ \text { USED } \end{gathered}$	IN	SOLUTION
208	23	JAN	1966	19:13:11.0	39.000 N	$21.800 E$			26	IS	DATA OBIAINED VIA ISC ORIGINAL DATA SOURCE 3 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
209	24	JAN	1966	17:54:08.0	39.000 N	21.800 E			26	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE $=$ 2 STATION RECORUINGS	ATH	IN	SOLUTION
210	28	JAN	1966	07:06:15.5	$39.000 N$	21.800 E			26	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = ? STATION RECOROINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
211	30	JAN	1966	14:07:02.0	39.000 N	21.800E			26	IS	DATA O!JTAINED VIA ISC BAISIVAL NATA SOURCE =	ATH		

15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = ? STATION RECORDINGS	$\begin{gathered} \text { ATH } \\ \text { USED } \end{gathered}$	IN	SOLUTION
IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 1 SIATION RECORDINGS	$\begin{array}{r} \text { ATH } \\ \text { USED } \end{array}$	IN	SOLUTION
15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 7 STATION RECORDINGS	$\begin{array}{r} \text { ATH } \\ \text { USED } \end{array}$	IN	SOLUTION
I S	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 7 STATION RECORDINGS	$\begin{gathered} \text { ATH } \\ \text { USED } \end{gathered}$	IN	SOLUTION
IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE $=$ 3 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = $?$ STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
15	Data obtained via isc ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
IS	DATA OBTAINED VIA ISC ORIGINAL OATA SOURCE = 4 STATION RECORDINGS	$\begin{gathered} \text { ATH } \\ \text { USED } \end{gathered}$	IN	SOLUTION
15	ORIGINAL DATA SOURCE = 5 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
IS	ORIGINAL DATA SOURCE = 84 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = a STATIDN RECORDINGS	ATH USED	IN	SOLUTION
15	$\begin{gathered} \text { DATA OBTAINED VIA ISC } \\ \text { ORIGINAL DATA SOURCE = } \\ \text { S STATION RECORDINGS } \end{gathered}$	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
15	DATA OITAINED VIA ISC ORIEINAL DATA SOURCE = STATION RECORDINGS	$\begin{aligned} & \text { ATM } \\ & \text { USED } \end{aligned}$	IN	SOLUTION

N N N N N N N N N N N N N

19	2.7	is		USEC IN	SOLUTION
	27	is	orisival data source = 4 Station recopidings	USEO IN	solution
	27	IS	data ohtaineo via isc ORIOINAL DATA SOURCE $=$ o station recordings	USTH IN	SOLUTION
20	28	is	original data source = 17 station recoroings	Lisc	solution
5.3	2 A	is	original data source = 32 STATION KECORDINGS	ISC USEO IN	solution
	28	is	ORIGINAL DATA SOURCE = 10 STATION RECOPDINGS	15 SC USED IN	SOLUTION
7	28	ts	driginal data source = 17 SIATION RECORDINGS	$\begin{array}{ll} \mathrm{ISC} \\ \text { ISED } \end{array}$	solution
	28	is		USED IN	SOLUTION
10	2 A	is		ISC USED IN	solution
	28	is	ORIGINAL DATA SOURCE = 6 STATION RECDRDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED IN } \end{aligned}$	solution
	29	15	$\begin{aligned} & \text { QUALIVY = } \\ & \text { ORIGINAL APRX } \\ & \text { DATA SOURCE } \end{aligned}$	bcis	
	29	1 s	data obtained viaisc 	USTH. ${ }_{\text {U }}$	solution
14	27	is	original data source = $2 G 1$ SiAtion recordings	ISC USTO U	solution
34	29	is	origijal data source ${ }_{\text {a }}^{\text {dit }}$	$\begin{aligned} & \text { ISE } \\ & \text { USEUI IN } \end{aligned}$	solution
: 7	29		notifinal data source = station recofdings	USECO IN	SOLIITION
	29		jata ofitalver via isc oricinat data source = 4 statiov recopdings	USTH IN	solution

ORIGINAL OATA SOURCE MS ISC IN SOLUTION
IS ORIGINAL DATA SOURCE SIATISC IN SOLUTION
IS ORIGINAL DATA SOURCE ITATISC IN SOLUTION
IS ORIGINAL DATA SOURCE = ISC IS ORIGINAL DATA SOURCE = ISC IN SOLUTION IS ORIGINAL DATA SOURCE OE ISC IN SOLUTION is original data source = ISC
is original data source = isc in solution
a station recoroings used in solution
IS ORIGINAL OATAESOURCE
Is DAIA OBTAINED VIARISC ATH
IS DATA OBIAINED VIA ISC USED IN SOLUTION
in solution
ATH

~
i i
아

$\underset{m}{x}$

32		data obtained via isc ORIGINAL DATA SOURCE 4 STATION RECOROINGS	USTH	in	SOLUTiON
32		oata obtaineo viatisc ORIGINAL DATA SOURCE	USED	IN	SOLUTION
32		original data source $=$ 6 STATION AECORDINGS	USED	in	SOLUTION
32		dala obtained viaisc RIGINAL DATAESOURCE $\overline{\text { St }}$	USTH	IN	SOLUTION
32		DATA OBTAINED VIAISC ORIGINAL DATA SOURCE	ATH	IN	solution
32		DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE	USED	IN	solution
32	is	ORIGINAL DATA SOURCE $21 S T A T I O N$ RECORDINGS	$15 C$ $U S E D$	IN	solution
32	15	ORIGINAL DATA SOURCE STATION RECORDINGS	1 l S USED	N	SOLUTION
32		DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE	USEO ATH		solution
32		DATA OBTAINED VIATSC ORIGINAL DATA SOURCE $3 \bar{Z}$	UATH	IN	solution
32			USEC		solution
32	Is	ORICINAL DATA SOURCE $=$	USED	IN	SOLUTION
32	15	ORIGINAL DATA SOURCE $=$	USED	IN	SOLUTION
32		ORIGINAL DATA SOURCE	USED	IN	SOLUTION
$3 ?$		original ditatasource $=$	ISfis	IN	solution

33		SIGINAL DATATA SOURCE	ISC	Solution
34	Is	OATA OBTAINED VIA ISC 2 STATION RECOROINGS	ATH	SOLUTION
34		DATA OHIAINED VIA ISC 2 STATION RECORDINGS	USTH	so
34		OATA OBTAINED VIA ISC ORIGINAL DATA SOURCE ? STATION RECORDINGS	UATH	solution
34		DATA OBTAINED VIA ISC 2 STATION RECORDINGS	ATH	SOLUTION
34		OATA ORTAINED VIA ISC ORIGINAL DATA SOURCE 2 STATION RECORDINGS	USED IN	SOLUTIO
34		OATA OBTAINED VIA ISC 2 Station recordings	USED IN	Sol
34		DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE	USED IN	SOLUTIO
34		oATA OBTAINED viA isc ORIGINAL DATA SOURCE 2 STATION RECORDINGS	USED IN	SOLUTION
34	is	ORIGINAL DATA SOURCE	USED IN	olutio
34		of TA OHTAINED VIA ISC ORIGINAL DATA SOURCE STIATION RECORDINGS	USTH IN	olutio
34	Is	DAIA OHTAINED VIAISC ORIGINAL DATA SOURCE	USED IN	solution
34	15	DATA OBTAINED VIAISC ORIGIVAL DATA SOURCE	USTH IN	solution

316	8	APR	1975	05:59:14.3	39.147N	21.742E
317	22	JAN	1966	05:20:42.0	39.2000	21.600E
318	22	JAN	1966	05:45:17.0	39.200 N	21.6005
319	22	JAN	1966	06:51:50.0	39.200 N	21.6008
320	22	JAN	1966	10:44:50.0	39.200 N	21.600E
321	23	JAN	1966	10:29:13.0	39.2.00N	21.600E
322	24	JAN	1966	01:19:28.0	39.200 A	21.600E
323	25	JAN	1966	21:53:42.0	39.200 N	21.600 E
324	30	JAN	1966	22:05:07.0	39.200 N	21.600 E
325	5	FEB	1966	04:53:33.2	39.070 N	21.850r
326	6	FEB	1966	01:52:51.6	39.200N	21.6005
327	6	FEB	1966	12:10:54.0	39.000 N	21.900E
328	28	FEB	1966	06:46:2 ${ }^{\text {b }}$. 1	39.000 N	21.900 E

IS ORIGINAL DATA SOURCE \# IISC ITATION RECORDINGS USED IN SOLUTION

 IS DATA OBTAINED VIA ISC

 IS DATA OBTAINED VIA ISC} IS DATA OBTAINED VIA ISC 5 STATION RECORDINGS USED IN SOLUTION IS ORIGINAL OATA SOURCE = ISC ISTE SOLUTION IS ORIGINAL DATA SOURCE = ISC USE SOLUTION IS ORIGINAL OATA SOURCE E ISC IN SOLUTION IS ORIGINAL DATA SOURCE = ISC
 IS ORIGINAL DATA SOURCE = ISC ISTION SOLUTION IS ORIGINAL DATA SOURCE = ISC 7 STATION RECORDINGS USED IN SOLUTION IS ORIGINAL OATA SOURCE E ISC IN SOLUTION IS DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = ATH IN SOLUTION IS ORIGINAL DATA SOURCE = ISC IN SOLUTION 34 IS ORIGINAL DATA SOURCE = ISC 5 STATION RECORDINGS USED IN SOLUTION
IS DATA OBTAINED VIA ISC USED IN SOLUTION BCIS USED IN SOLUTION IS ORIGINAL DATA SOURCE = IS OATA OATAINED VIA ISC
ORIGINAL DATA SOURCE
2 STATION RECORDINGS 34 m m ω m π m m m ∞ m
a
0
0

CAT. NO.		OATE	YEAR	TIME(GMT) HR-MIN-SFC	LAY	LONS.	SL INTEN (MM)	MAG SM	$\begin{gathered} H \\ K M)(\end{gathered}$	$\begin{array}{ll} \\| 1 S \\ K M S \end{array}$	0	S	LOCATION	A N	C 0
329	7	MAR	1968	17:05:00-0	39.200 N	21.600E	-		59	34		$1 \mathrm{~S}$	ORIGINAL DATA SOURCE = 7 STATION RECORDINGS	USEC IN	SOLUTION
330	16	OCT	1968	16:18:20.0	$38.600 N$	21.600 E				34			DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 3 STATION RECORDINGS	UTH	SOLUTION
331	24	DEC	1968	00:17:50.0	38.800 N	21.9005		3.20		34			DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE 5 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED IN } \end{aligned}$	SOLUTION
332	17	JUL	1969	22:19:59.9	38.810N	21.900 E				34		IS	ORIGINAL DATA SOURCE = 12 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED IN } \end{aligned}$	SOLUTION
333	28	APR	1970	04:47:36.0	38.800N	21.900E				34		15	ORIGINAL DATA SOURCE = 5 STATIDN RECORDINGS	$\begin{array}{ll} \text { ISC } \\ \text { USED IN } \end{array}$	SOLUTION
330	13	SEP	1970	20:26:51.6	39.110 N	$21.820 E$				34		I S	ORIGINAL OATA SOURCE = 4 STATION RECORDINGS	USCC IN	SOLUTION
335	17	JAN	1971	05:59:23.6	39.063N	$21.860 E$		4.30	8	34		IS	ORIGINAL DATA SOURCE = 20 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED IN } \end{aligned}$	SOLUTION
336	10	may	1971	22:44:04.4	$39.158 \wedge$	21.315				34		IS	ORIGINAL DATA SOURCE = G STATIDN RECORDINGS	$\begin{array}{ll} \text { ISC } \\ \text { USED IN } \end{array}$	SOLUTION
337	10	JUL	1972	17:12:09.4	$38.712 N$	21.222E			.	34		15	ORIGINAL DATA SOURCE = 7 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED IN } \end{aligned}$	SOLUTION
338	24	JUL	1972	01:11:55.7	38.592N	21.4915				34		IS	ORIGINAL DATA SOURCE = C STATION PECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED IN } \end{aligned}$	SOLUTION
339	9	MAY	1973	17:24:38.0	39.0000 N	21.900 E				34		IS	data detained via isc ORIGINAL DATA SOURCE = G STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED IN } \end{aligned}$	SOLUTION
340	13	JAN	1974	02:54:03.8	39.029N	$21.176 E$				34		15	ORIGINAL DATA SOURCE = 19 STATION RECORDINGS	USC	SOLUTION
341	17	SEP	1975	22:34:38.0	38.602N	21.418 E				34		15	ORIGINAL DATA SOURCE = 5 STATION RECORDINGS	USC	SOLUTION
342	26	DEC	1975	19:59:14.0	38.600 N	21.600 E				34		IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE =	$\begin{aligned} & \text { ATH } \\ & \text { USED IN } \end{aligned}$	SOLUTION
343	21	DEC	1955	21:40:24.0	38.600 N	21.400 E	V			35		IS	ORIGINAL DATA SOURCE =	BCIS	
344	22	JAN	1966	03:33:32.0	39.200 N	21.400 E				35		IS	DATA OGTAINED VIA ISC 2 STATION RECORDINGS ORIGINAL DATA SOURCE =	$\begin{gathered} \text { ATH } \\ \text { USED IN } \end{gathered}$	SOLUTION

 4.30
 IS DATA OBTAINED VIA ISC
 ORIGINAL DATA SOURCE
S9NIO甘OJJY NOIL甘IS O
IS ORIGINAL DATA SOURCE =

CAT. NO.		$\begin{aligned} & \text { DATE } \\ & \text {-MO } \end{aligned}$	YEAR	$\begin{aligned} & \text { TIMEIGMTJ } \\ & \text { HR MIN-SEC } \end{aligned}$	LAT	LONG	SL INTEN (MM)	MAG SM	$\stackrel{H}{(K M)}$	$\begin{array}{ll} \text { H1S } \\ K M S \end{array}$	0	S	LOCAT10	A N	$0 \quad \mathrm{C} 0$
345	7	FEB	1966	14:04:45.8	39.200 N	21.400 E	-			35		IS	DAIA OHTAINED VIA ISC ORIGINAL DATA SOURCE = . 3 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED IN } \end{aligned}$	SOLUTION
346	1	MAR	1966	04:48:12.3.	39.200 N	21.400 E				35		15	DATA OHTAINED VIA ISC ORIGINAL DATA SOURCE Z ${ }_{3}$ STATION PECORDINGS	USED IN	SOLUTION
347	2	APR	1966	06:38:44.8	39.200 N	$21.400 E^{\circ}$				35		15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = . SIATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USTE IN } \end{aligned}$	SOLUTION
348	8	aUG	1966	11:07:42.0	38.600 N	21.400 E				35		15	ORIGINAL DATA SOURCE = 6 STATION RECORDINGS U	$\begin{array}{ll} \text { ISC } \\ \text { USED IN } \end{array}$	SOLUTION
349	20	A UG	1966	11:54:07.4	38.970 N	21.920E		3.80		35		15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 6 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED IN } \end{aligned}$	SOLUTION
350	20	AUG	1966	19:49:38.8	39.200 N	21.400 E			,	35		IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 3 STATION RECORDINGS	USEH IN	SOLUTION
351	18	May	1969	02:12:04-0	38.600 N	21.400E				35		15	DATA OBTAINED VIAISC ORIGINAL DATA SOURCE = 5 STATION RECORDINGS	UTH	SOLUTION
352	25	MAR	1971	19:22:58.0	39.038 N	21.899E.				35		15	ORIGINAL DATA SOURCE = 13 STATION RECORDINGS	$\begin{array}{ll} \text { ISC } \\ \text { USED } \end{array}$	SOLUTION
353	12	OCt	1972	13:00:02.7	39.110 N	21.826E				35		15	ORIGINAL DATA SOURCE = 6 STATION RECORDINGS	$\begin{array}{ll} \text { ISC } & \\ \text { USED IN } \end{array}$	SOLUTION
354	3	MAY	1973	05:58:16.8	38.901N	21.930E			1	35		15	ORIGINAL DATA SOURCE = 10 STATION RECORDINGS	USSC	SOLUTION
355	18	JUN	1974	06:24:29.7	38.766N	21.898 E				35		I S	ORIGINAL DATA SOURCE = 7 STATION RECORDINGS	$\begin{array}{ll} \text { ISC } \\ \text { USED IN } \end{array}$	SOLUTION
356	10	SEP	1975	23:45:14.2	38.609 N	21.699E				35		15	ORIGINAL DATA SOURCE = 6. STATION RECORDINGS	USC	SOLUTION
357	3	JAN	1960	14:53:46.0	$38.700 N$	21.200 E				36		IS	ISC EFFECTS CODE = FELT ORIGINAL DATA SOURCE =	BCIS	
358	31	JAN	1966	04:30:576	39.050N	21.900E		4.50	51	36		IS	ORIGINAL DATA SOURCE = 24 STATION RECORDINGS U	USC	SOLUTION
359	4	FEB	1966	09:12:25.4	39.200N	21.700E				36		IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = " \because INTION RECORDINGS		SOLUTION

360	5	FEB	1966	02:29:53.2	$39.200 N$	21.700t
361	5	FEB	1966	09:28:27-5	$39.200 N$	21.7005
362	5	FEB	1966	09:47:58.0	$39.100 N$	21.200E
363	6	FEB	1966	16:52:36.6	$39.200 N$	21.7005.
364	21	JUN	1966	20:59:06.5	$39.200 N$	21.700E
365	12	$J A N$	1967	$23: 54: 24 \cdot 4$	$38.700 N$	21.200E
366	8	JUN	1967	20:17:45.9	38.580N	21.5705
367	5	OCt	1967	05:46:34.0	$39.100 N$	21.2005
368	27	$A P R$	1968	03:43:34•0	$39.100 N$	21.200E
368	16	MAT	1569	07:27:01.1	$39.130 N$	21.820E
370	4	AUG	1970	18:32:19.0	$39.200 N$	$21.680 E$
371	18	AUG	1970	17:40:17.9	$39.160 N$	21.780E.
372	2	OCT	1970	20:33:54•0	$38.600 N$	$21.700 E$
373	26	NOV	1970	17:56:30.9	39.140N	21-810E
374	4	DEC	1970	18:02:42.0	37.000N	21-130E

CAT. NO.	DA	DATE - MO	YEAR	TIME(GMT) HR-MIN-SEC	LAT	LONÖ	SL IVTEP (MM)	$M A G \quad S M$	$(K M)$	$\begin{aligned} & \text { CIS } \\ & K M\rangle \end{aligned}$	6	S	L. OCATION	A	N	C 0
408	15	FER	1966	22:48:20.3	39.250 N	21.500E	-			39			DATA OBTAINEO VIA ISC ORIGINAL DATA SOURCE = S STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
409	16	FEB	1966	09:02:20.9.	$39.250 n$	21.500 E				39			DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	ATH USED	IN	SOLUTION
410	16	FEB	1966	14:59:45.4	39.100 N	21.900 E				39			DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	ATH USED	IN	SOLUTION
411	22	MAR	1966	22:52:18.0	39.250N	21.500 E				39			DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 3 STATION RECORDINGS	ATH	IN	SOLUTION
412	5	APR	1966	13:57:24.8	39.200 N	21.300E		3.RO		39		IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 5 STATION RECDRDINGS	UTH	IN	SOLUTION
413	7	APR	1966	12:58:42.5	$39.200 N$	21.300 E				39			DATA OBTAINED VIA ISC ORIGINAL OATA SOURCE E 5 STATION RECORDINGS	$\begin{gathered} \text { ATH } \\ \text { USED } \end{gathered}$	IN	SOLUTION
414	13	APR.	1966	12:18:39.0...	$39.250 N$	21.500E				39		I S	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
415	18	APR	. 1966	14:26:53.5	39.250 N	21.500E				39		15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	UATH	IN	SOLUTION
416	25	APR	1966	01:12:21.9	39.200 N	21.300 E				39		IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE =	ATH		
417	4	MAY	1966	23:18:08.4	39.250 N	21.500E				39		15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	$\begin{gathered} A T H \\ \text { USED } \end{gathered}$	IN	SOLUTION
418	9	MAY	1966	08:32:57.5	39.250 N	21.500 E				39		15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
419	12	MAY	1966	09:12:07.0	39.250N	21.500 E				39		15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2. STATION RECORDINGS	$\begin{array}{r} \text { ATH } \\ \text { USED } \end{array}$	IN	SOLUTION
420	21	MAY	1966	22:44:56.2	39.200N	21.3005				39		IS	LIATA OBTAINED VIA ISC ORIGINAL OATA SOURCE = ν STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION

COMENTS

450 A1 AUG $197308: 22: 35.4 \quad 38.941 N \quad 21.990 E$
51 11SEP 1973 08:26:50.3 38.650N 21.8625
4521 JUL 1975 03:12:25.3 38.544N 21.6n1E
38.558N $21.691 E$
22.000E
21.8005
$21.060 E$
w
$\mathbf{0}$
$\mathbf{0}$
\mathbf{N}
$21.800 E$
$22.000 E$
1
0
0
0
0
\sim
$216172 E$
w
n
n
n
n
w
0
0
0
0
0
in
0
n
n
n
n

38.9001
$39.200 N$
$38.910 N$
2
0
0
0
0
0
0
$39.200 N$
\cdots
$38.920 N$
2
0
0
0
m
0
0
0
0
0
0
0
0
0
0
0
0
$06: 33: 24 \cdot 8,39 \cdot 242 N$
$02: 56: 29.3 \quad 38.537 \mathrm{~N}$
39.056 N
z
0
n
0
0
0
0
0
0
0
0
0
0
0
1 FEB 1971
11 JUL. 1972
27 AUG 1972
24 NOV 1972
15 JAN 1970
3
462
\cdots
464
-65

466	2	JUL.	1975	01:30:30.8	38.529N	21.544E
467	26	OCT	1975	01:09:09.2	38.961 N	$21.064 E$
		,			c.amern.*	
468	23	DEC	1975	$04: 24: 39.0$	$38.600 N$	21.800E
469	13	OCT	1952	16:42:37.0	39.000 N	22.000E
- *****	\cdots	"."*	$\cdots \cdots$	*-	- ${ }^{\circ}$	-
470	3	$J A N$	1955	01:07:02.0	39.000 N	22.000E
971**	19	M ${ }^{\text {m }}$	1986	10:37:42.4	39.000 N	22.0002
472*	16	$A P R$	1966	18:01:05.0	39.000 N	22.0005
473	18	SEP	1966	13:43:30.0	$39.000 N$	22.0002
474	19	DEC	1966	22:54:30.4	38.910 N	21.050E
475	14	MAY	1970	10:22:06.0	38.800 N	22.000 E
476	3	FEB	1971	18:28:12.8	38.534N	21.668E
477	26	MAY	1971	$01: 16: 35.0$	39.0001	22.000E
478	8	MAR	1972	10:25:00.5	38.538N	21.387E
479	21	MAY	1972	12:25:52.8	$39.138 N$	21.159E
48	25	JUL.	1972	06:57:39.9	38.762N	21.078E

$\begin{aligned} & \text { CAT. } \\ & \text { NO. } \end{aligned}$			YEAR	$\begin{aligned} & \text { TIMFIGMT } \\ & \text { HR-MIN-SEC } \end{aligned}$	LAt	LONG	SL INTEN (MM)	MAG S^{μ}	H KM) ([IS KM	\bigcirc	S	LOCATION	A N D) C 0
481	22	JAN	1975	13:09:12.5	38.983 N	22.006E	-	3.50	28	42		IS	ORIGINAL DATA SOURCE = 19 STATION RECORDINGS	USC	SOLUTION
482	31	DEC	1975	13:57:28.1	38.545N	21.702E			45	42		15	ORIGINAL DATA SOURCE = 2H STATION RECORDINGS	USED IN	SOLUTION
483	5	May	1960	08:17:32.0	39.250 N	21.750E	V I			43		IS	ORIGINAL DATA SOURCE =	BCIS	
484	5	FEB	1966	02:11:08.0	39.170 N	21.890E		4.90	21	43		IS	ORIGINAL DATA SOURCE = 39 STATION RECORDINGS	USSC IN	SOLUTION
485	5	FEB	1966	06:37:49.6	39.250 N	21.750E				43		IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = STATION RECORDINGS	USEH IN	SOLUTION
486	9	FEB	1966	18:37:56.9	39.250 N	21.750 E				43		IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 3 STATION RECORDINGS	$\begin{array}{ll} \text { ATH } \\ \text { USED IN } \end{array}$	SOLUTION
487	16	FEB	1966	13:08:31.0	39.250 N	21.750E				43		IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	ATH USED IN	SOLUTION.
488	13	MAR	1966	06:49:27.0	39.250 N	21.750E				43		IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2. STATION RECORDINGS	ATH USED IN	SOLUTION
409	17	APR	1966	06:59:48.8	39.250 N	21.750 E				43		IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	USED IN	SOLUTION
490	4	MAY	1966	15:18:25.9	39.250N	21.750E				43		15	OATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	ATH	SOLUTION
491	4	MAY	1966	17:12:39.3	39.250N	21.750E				43		IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	ATH	SOLUTION
492	14	JUL	1966	05:18:42.0	39.250N	21.750E				43		15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	USED IN	SOLUTION
493	18	JAN	1969	13:24:16.0	39:250N	21.750E				43		IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	ATH	SOLUTION
494	17	FEB	1970	15:08:08.7	39.120 N	21.120 E				43		15	ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	USEC IN	SOLUTION

44	15	DATA OGIAINED VIA ISC ORIGINAL DATA SOURCE = 3 STATION RECORDINGS	USTH	IN	SOLUTION
44	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2. STATION RECORDINGS	ATH USED	$1 N$	SOLUTION
44	IS	DATA OBTAINED YIA ISC ORIGINAL OATA SOURCE = 4 STATION RECORDINGS	ATH USED	IN	SOLUTION
44	15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 5 STATION RECORDINGS	ATH USED	IN	SOLUTION
44	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SDURCE = 2 STATION RECORDINGS	UATH	IN	SOLUTION
44	15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	USTH	IN	SOLUTION
44	15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE	UTH	1N	SOLUTION
44	IS	DATA OBTAINEO VIA ISC ORIGINAL DATA SOURCE = 2 STAIION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
44	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
44	15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 3 STATION HECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
44	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	$\begin{array}{r} \text { ATH } \\ \text { USED } \end{array}$	IN	SOLUTION
44	15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 3 STATION RECORDINGS	ATH USED	IN	SOLUTION
44	IS	ORIGINAL DATA SOURCE = 7 STATIDN RECORDINGS	USSC	IN	SOLUTION

524	1	JAN	1973	13:43:55.4	38.503 N	21.543E
525	10	MAR	1973	09:35:43.7	38.791N	21.044F
526	30	JUL	1973	18:46:53.0	$38.865 \mathrm{~N}$	22•00E
527	20	JUL	1974	18:21:05.4	$38.851 N$	21.022E
528	11	MAY	1975	21:32:19.1	$38.977 N$	21.035E.
529	17	JUN	1975	22:05:49.0	$39.300 N$	21.500E
530	30	JUN	1975	15:51:36.3	38.519 N	21.6825
531	2	JUL	1975	01:49:44.0	$38.508 N$	21.518E
532	31	DEC	1975	$09: 45: 97.4$	$38.524 N$	$21.673 E$
533	31	DEC	1975	10:26:04.A	$38.512 N$	21.442E
534	31	MAR	1964	00:48:45.8	$39.300 N$	21.600E
535	5	FEB	1966	$02: 17: 14.7$	$39.300 N$	21.600%
536	5	FEB	1966	02:56:15*6	39.1901	21.9005
537	6	FEB	1966	03:08:04.9	$39.300 N$	21.6005
338	2	JAN	1967	02:28:21-T*	$39.300 N$	$21.600 E$
539	24	FEB	1969	09:08:45.0	$39.300 N$	21.600E

CAT.		CATE	Yrar	TIML(GMT) HR-MIN-SEC	lat	LONG	SL inicni	mag.	(茄)	(115		LOCA110N	AND Co
540	1	APR	1969	19:39:40.4	39.030N	22.020 E	-			45		ORIGINAL DATA SOURCE = s station recordings	USEC IN SOLUTION
541	26	Jun	1970	14:13:36.8	39.280 N	21.710E				45	15	ORIGINAL DATA SOURCE STATION RECORDINGS	USEC IN SOLUTION
542	16	mar	1971	22:06:11.5	39.206N	21.190 E				45		ORIGINAL DATA SOURCE $=$	USEC IN SOLUTION
543	26	APR	1972	10:20:23.6	38.589N	$21.864 E$				45		ORIGINAL DATA SOURCE = S Station recordings	USED IN SOLUTION
549	10	Jun	1972	06:41:09.5	39.164^	21.135 E				45	Is	4 STATION RECORDINGS ORIGINAL DATA SOURCE =	USED IN SOLUTION
545	8	Jan	1973	20:09:43.2	38.779N	$22.029 E$				45	1 s	ORIGINAL DATA SOURCE =	USED IN SOLUTION
546	2	mar	1973	14:03:39.2	38.951 N	22.042 F				45	IS	ORIGINAL DATA SOURCE = 10 STRTION RECORDINGS	USED In Solution
597	12	mar	1973	01:23:39.6	34.a30n	22.044E				45	15		USED in solution
548	12	FEB	1975	09:55:17.5	38.503 N	21.640 E				45			USED IN SOLUTION
549	30	nov	1953	13:20:58.0	38.500 N	21.400E	1x			46	15	DATA OBTAINEO VIA ISS	STR
550	30	nov	1953	13:20:58.0	38.500N	21.400E	$1 \times$			46	is	original data source =	1ss
551	26	mar	1956	22:51:00.0	39.200 N	21.900E	v			46	15	original data source =	BCIS
552	28	mar	1956	11:39:15.0	39.200 N	21.900 E	vi			46	Is	quality = REPT original data source =	日CIS
533	10	JAN	1965	08:02:51.7	38.t00N	22.000E		4.40	46	46	Is	original data source = ib Station recordings	USED IN SOLUTION
554	4	FEB	1966	17:55:45.7	39.250 N	21.250ε				46		DAIA OOTAINED VIA ISC ORIGINAL DATA SOURCE G STATION RECORDINGS	USED IN SOLUTION
555	6	FEb	1966	18:07:10.3	39.300 N	21.400 E				46		data obtained viaisc ORIGINAL DATA SOURCE	USEO IN SOLUTION
556	10	FEB	1966	16:33:00.6	39.250 N	21.250 E				46		DAIA OBTAINED VIA ISC GSTATIGURECORDINGS	ustitin in solution

46	IS	DATA OBIAINED VIA ISC ORIGINAL DATA SOURCE シ 2 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
16	15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
46	15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 3 STATION RECORDINGS	ATH USED	1N	SOLUTION
46	IS	DATA OBTAINED VIA ISC ORIGINAL OATA SOURCE = 4 STATION RECORDINGS	$\begin{array}{r} \text { ATH } \\ \text { USED } \end{array}$	IN	SOLUTION
46	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 SIATION RECORDINGS	$\begin{gathered} \text { ATH } \\ \text { USED } \end{gathered}$	IN	SOLUTION
46	15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 3 STATION RECORDINGS	ATH USED	IN	SOLUTION
46	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	ATH USED	IN	SOLUTION
46	15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STAIION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
46	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = $\%$ SIATION RECORDINGS	$\begin{gathered} \text { ATH } \\ \text { USED } \end{gathered}$	IN	SOLUTION
46	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2. STATION RECORDINGS	ATH USED	IN	SOLUTION
46	IS	DATA OESTAINED VIA ISC ORIGINAL DATA SOURCE = 2. STATION RECORDINGS	$\begin{array}{r} \text { ATH } \\ \text { USEO } \end{array}$	IN	SOLUTION
46	15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = ; SIATION RECORDINGS	ATH USED	IN	SOLUTION
46	IS	DATA OBTAINED VIA ISC ORIGTNAL DATA SOURCE = $\because \because I A I I I N$ RFCORDINGS	USt'	IN	SOLUTION

$\begin{aligned} & \text { CAT• } \\ & \text { NO. } \end{aligned}$		$\begin{aligned} & \text { DATE } \\ & \text { Y-MO } \end{aligned}$	rear	$\begin{aligned} & \text { TIME(GMT) } \\ & \text { HR-MIN-SEC } \end{aligned}$	LAT	LONG	SL INTEN (MM)	MAC, SM	$(K H)(1$	$\text { LKS } 0$	s	LOCATION	A		C 0
570	18	AUG	1966	18:18:59.6	39.250 N	21.250 E	-			46		DATA OBTAINED VIA ISC ORIGINAL OATA SOURCE = ? STATION RECORDINGS U	ATH	IN	SOLUTION
571	25	AUG	1966	04:13:24.0	39.250N	21.250E				46		DATA ORTAINED VIA ISC ORIGINAL DATA SOURCE = ? STATION RECORDINGS	ATH USE.O	IN	SOLUTION
572	29	OCT	1966	03:05:20.3	38.900N	21.000E				46		DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 7 STATION RECORDINGS U		IN	SOLUTION
573	3	Jan	1967	15:31:47.1	39.200N	21.900E.				46		data oftalned via isc ORIGINAL DATA SOURCE = 2 STATION RECOROINGS U	ATH	IN	SOLUTION
574	9	JAN	1967	20:33:34.5	38.600 N	21.900E				46		DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 4 SIATION RECORDINGS U		IN	SOLUTION
575	18	FEB	1967	15:52:43.2	38.700N	22.000E				46		DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 4 STATION RECORDINGS U	USTH	IN	SOLUTION
576	16	MAR	1967	18:51:55.0	38.900%	21.000 E				46	15	ORIGINAL DATA SOURCE = 5 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
577	1	Mar	1967	22:46:51.8	39.270 N	21.300 E			70	46	15	ORIGINAL DATA SOURCE = 13 STATION RECORDINGS U	$\begin{aligned} & \text { USC } \\ & \text { ISE } \end{aligned}$	IN	SOLUTION
578	23	DEC	1967	11:35:58.0	38.500 N	21.400E		3.40		46	15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 4 STATION RECORDINGS US	USTH	IN	SOLUTION
579	11	FEB	1968	19:33:10.0	38.700N	22.000 C				46	15	OATA OBIAINED VIA ISC ORIGINAL DATA SOURCE = 3 STATION RECORDINGS U	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
580	17	DEC	1968	15:37:47.0	39.300 N	21.400E				46		OATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 3 STATION RECORDINGS U	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
581	6	MAR	1969	17:02:08.0	38.600 N	21.900E				46	IS	DATA OHTAINED VIA ISC ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	USED	IN	SOLUTION
582	16	JUL	1969	03:56:45.7	38.950 N	21.0005				46	15	ORIGINAL DATA SOURCE = 8 STAIION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$		SOLUTION
583	1	APR	1971	22:11:11.0	39.300 N	21.400E		3.40		46	15	oATA OBTAINED VIA ISC ORITINAL DATA SOURCE =	ATH		

46	Is	OAIA OBTAINED VIAISC ORIGINAL DATAASOURCE STATH	IN SOLUTION
46	1		in Sol
96	1	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = ATH STATION RECORDINGS USED	IN SOLUTION
46		OATA O日TAINED VIA ISC STATION RECORDINGS USED ORIGINAL DATA SOURCE $\overline{\bar{O}}$ ATH	IN So
46	Is	ORIGINAL DATA SOURCE O ISC	IN s
46	15	ORIGINAL DATA SOURCE $\overline{\bar{\prime}}$ ISC	IN SOL
46			IN SOLUTIO
46		ORIGINAL OATA SOURCE SES ISC	IN SOLU
46	1	ORIGINAL DATA SOURCE IA STATION RECORDINGS USE ISE	IN
46		ORIGINAL DATACSSOURCE	1N SOL
46		ORIGINAL DATA SOURCE SE ISC	in soluti
46	Is	ORIGINAL DATA SOURCE S OTAT ISC	in solution
46	is	ORIGINAL DATA SOURCE ${ }^{\text {STATION RECORDINGS }}$ USEC	in solutio
46	is	ORIGINAL DATA SOURCE I ISC 13 STAIION RECOROINGS USED	in solutio
47		DAIA O日TAINED VIA USE	

47	IS	DATA OATAINED ORIGINAL DATA MAGNITUDE AUTH	$\begin{aligned} & \text { VIA BCIS } \\ & \text { SOURCE } \\ & \text { HORITY }= \end{aligned}$	$\begin{aligned} & \text { MOS } \\ & \text { ATH } \end{aligned}$	
47	IS	ORIGINAL DATA	SOURCE $=$	BCIS	
47	15	QUALITY = ORIGINAL OATA	$\begin{aligned} & \text { RX } \\ & \text { SOURCE }= \end{aligned}$	BCIS	
47	IS	$\begin{aligned} & \text { OUALITY }=\text { AI } \\ & \text { ORIGINAL DATA } \end{aligned}$	$\begin{aligned} & \text { PRX } \\ & \text { SOURCE }= \end{aligned}$	BCIS	
47	15	REPORTED FELT QUALITY = ORIGINAL DATA	INFORMAT RX SOURCE =	ON BCIS	
47	15	ORIGINAL DATA	SOURCE =	BC1S	
47	IS	DATA OBTAINED ORIGINAL DATA 2 STATION R	$\begin{aligned} & \text { VIA ISC } \\ & \text { SOURCE } \\ & \text { ECORDINGS } \end{aligned}$	ATH	SOLUTION
47	15	$\begin{aligned} & \text { OATA OBTAINED } \\ & \text { ORIGINAL DATA } \\ & \text { J STATION R } \end{aligned}$	$\begin{aligned} & \text { VIA ISC } \\ & \text { SOURCE } \\ & \text { ECORDINGS } \end{aligned}$	$\begin{aligned} & \text { ATH } \\ & \text { USED IN } \end{aligned}$	SOLUTION
47	15	DATA OBTAINED ORIGINAL DATA 2 STATION R	$\begin{aligned} & \text { VIA ISC } \\ & \text { SOURCE = } \\ & \text { ECORDINGS } \end{aligned}$	UTH	SOLUT10N
47	IS	DATA OBTAINED ORIGINAL DATA 2 STATION RE	$\begin{aligned} & \text { VIA ISC } \\ & \text { SOURCE } \\ & \text { ECORDINGS } \end{aligned}$	UTH	SOLUTION
47	IS	DATA OBTAINED ORIGINAL DATA 3 STATION R	$\begin{aligned} & \text { VIA ISC } \\ & \text { SOURCE = } \\ & \text { ECORDINGS } \end{aligned}$	ATH	SOLUTION
47	1S	$\begin{aligned} & \text { ORIGINAL DATA } \\ & 5 \text { STATION RI } \end{aligned}$	$\begin{aligned} & \text { SOURCE }= \\ & \text { EORDINGS } \end{aligned}$	USCC	SOLUTION
47	IS	DATA OBTAINED ORIGINAL DATA 3 STATION R	$\begin{aligned} & \text { VIA ISC } \\ & \text { SOURCE } \\ & \text { ECORDINGS } \end{aligned}$	USTH IN	SOLUTION
47	15	DATA OBTAINED ORIGINAL DATA 3 STAIION R	$\begin{array}{r} \text { VIA ISC } \\ \text { SOURCE } \\ \text { ECOROINGS } \end{array}$	USED IN	SOLUTION
47	IS	DATA OBTAINED ORIGINAL OATA	$\begin{aligned} & \text { VIA ISC } \\ & \text { SOURCE }= \end{aligned}$		

4）is ar statitan recoroings useo in solution

Onf station recordinos usto in solution
is ORIGGAA OAT 1

at is original iotrancourc

 is ounlity $={ }^{\text {Repp }}$ is 1s original data soutce $=$
is dafa obiainep yia isc
oricinalion arsourie
USETH
10 CATION
S 1
$(K M)(K M$
$3000 \cdot 12$
$21.000 E$
$21 \cdot 000 E$
$21.000 E$
$21 \cdot 169 E$
ω
$\boldsymbol{\omega}$
$\boldsymbol{\omega}$
$\boldsymbol{\omega}$
\boldsymbol{N}
$20.990 E$
3690° で
$21.504 E$
$3089^{\circ} 12$
14
6
0
0
0
$21 \cdot 750 E$
$21.750 E$
n
0
n
\cdots
\cdots
\cdots
$21.750 E$
$21.750 F$
38.800 N
$18: 00: 25.0 .39 .000 N$
$02: 22: 43.0 \quad 38.800 N$
$38.830 n$
$39.221 N$
$39.300 N$
$38.942 N$
38.877 N
$38.476 N$
$38.497 N$
$38.492 N$
2
0
0
0
0
0
$38.500 N$
z
0
0
10
0
0
$\begin{array}{llll}28 & \text { JUN } & 1959 & 06: 02: 16.0 \\ 24 \text { MAR } & 1964 & 13: 500 N \\ \end{array}$ 11：58：07．7
$10: 24: 14 \cdot 2$
$15: 30: 32 \cdot 0$
$01: 50: 50.0$
$02: 51: 37 \cdot 0$
${ }^{v 1}$
－
N
IS ORIGITNAL DANTA SOURCETS $=$ STR
BCIS萬
in solution

$11: 50: 21.7$
$\begin{array}{ll}n & n \\ 0 & 0 \\ m & m \\ \cdots & 3 \\ 3 & \cdots\end{array}$
4 MAR 1953
18 OCT 1957
$180 C T 1957$
－
614

0
\cdots
∞
620
621
622
623
625
627
$\underset{\sim}{\infty}$

$\begin{aligned} & \text { CAT. } \\ & \text { NO. } \end{aligned}$		$\begin{aligned} & \text { OATE } \\ & \mathrm{O}-\mathrm{MO}- \end{aligned}$	YEAR	TIMF(GMT) HR-MIN-SEC	LAT	LONS	SL INTAN (MM)	MAG SM	$\binom{H}{M}(1$	(IS	$\text { G } S$	LOCATION		N D	COMMENTS
630	18	Mar	1964	18:43:25.0	38.500N	21.7501				48		DATA OHTAINEU VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS		IN	SOLUTION
631	26	JUN	1964	10:23:12.0	38.500n	21.750 E				48		DAIA OBTAINEO VIA ISC ORIGINAL DATA SOURCE = 2 SIATION RECORDINGS	USTH	IN	SOLUTION
632	29	AUG	1966	20:45:17.6	38.500N	21.750 E				48		data obtained via isc ORIGINAL DATA SOURCE = 4 STATION RECOROINGS	USTH	1N	SOLUTION
633	5	JAN	1967	17:00:11.4	38.870N	22.0800			107	48	15	ORIGINAL DATA SOURCE = 25 STATION RECORDINGS	USED	IN	SOLUTION
634	5	JAN	1967	22:49:10.3	38.500 N	21.740E				48	15	ORIGINAL DATA SOURCE = 5 STATION RECORDINGS US	USED	IN	SOLUTION
635	11	APR	1972	11:12:13.5	39.294N	21.291 E		4.30	39	48	1 S	ORIGINAL OATA SOURCE = 62 STATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	1 N	SOLUTION
636	22	WAY	1972	09:29:20.8	38.488 N	$21.364 E$				48		ORIGINAL DATA SOURCE = 5 STATION RECORDINGS	USEC	IN	SOLUTION
637	1	JUL	1972	14:38:28.4	$39.231 N$	21.167E				48		ORIGINAL DATA SOURCE = 7 STATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USEO } \end{array}$	IN	SOLUTION
638	23	Nov	1972	04:42:14.7	$39.294 N$	21.751 E				48	15	ORIGINAL DATA SOURCE = B STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
639	6	SEP	1974	08:55:53.4	3R.46EN	21.525.5.			10	48	15	ORIGINAL DATA SOURCE = IB STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USE } \end{aligned}$	IN	SOLUTION
640	30	JUN	1975	18:98:55.8	38.479N	21.663 E				48	15	ORIGINAL DATA SOURCE = 7 STATION RECORDINGS	USED	IN	SOLUTION
641	30	Jun	1975	23:02:20.2	38.47nN	21.492E		4.20	39	48	IS	ORIGINAL DAYA SOURCE = 35 STATION RECORDINGS	USED	IN	SOLUTION
642	30	JUN	1975	23:53:07.1	3H.488N	21.700 L		4.10	44	48	I S	ORIGINAL DATA SOURCE = 46 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
643	1	JUL	1975	04:38:50.8	38.4721	21.636E.				48	15	ORIGINAL DATA SOURCE = G STAIIION RECORDINGS	USED	IN	SOLUTION
644	5	JUL	1975	10:57:41.6.	38.555N	21.8725				48		ORIGINAL OATA SOURCE = 7 STATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
645	16	DEC	1975	14:57:58.9	38.612N	21.93aE				48		ORIGINAL DATA SOURCE = 5 STATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$		SOLUTION

$\begin{aligned} & \text { CAT } \\ & \text { NO. } \end{aligned}$	DAY	DATE $-\mathrm{MO}=$	YEAR	$\begin{aligned} & \text { TIME(GMT) } \\ & \text { HR-MIN-SEC } \end{aligned}$	LAT	LO: 6	SL INTEN (YM)	MAf. SM	$\begin{gathered} H \\ (K M) \mathbf{1} \end{gathered}$	$\begin{gathered} \text { rIS } \\ K M) \end{gathered}$	S	LOCATION	A N	N D	C OM	M ENTS
646	26	DEC	1975	04:30:50.8	38.484 N	21.711E				48	1.5	ORIGINAL DATA SOURCE = 7 STATION RECORDINGS	$\begin{aligned} \text { ISC } \\ \text { USED } \end{aligned}$	IN	SOLUTION	
647	31	OEC	1975	13:51:20.5	38.475A	21.652 E		4.6.j)	23	48	1.5	ORIGINAL DATA SOURCE = 117 STATION RECORDINGS	USED	IN	SOLUTION	
648	31	DEC	1975	15: $25: 26.5$	38.478 n	21.560E			41	49	IS	ORIGINAL DATA SOURCE = 13 STATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION	
649	31	DEC	1975	17:27:27.7	38.488 N	21.382 E			44	48	15	DRIGINAL DATA SOURCE = 1.5 STATIDN RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION	
650	31	DEC	1975	17:32:58.9	$3 \mathrm{H.506N}$	21.7465				43	IS	ORICINAL DATA SOURCE = 13 STATION RECORDINGS	$\begin{aligned} & \text { ISCC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
651	12	FEB	1951	08:24:48.0	38.750N	21.000 E	v			49	IS	$\begin{aligned} & \text { QUALITY }=\text { APRX } \\ & \text { ORIGINAL DATA SOURCE }= \end{aligned}$	BCIS			
652	11	SEP	1960	01:45:18.0	38.750 N	21.000 E				49	15	$\begin{aligned} & \text { QUALITY }=\text { APRX } \\ & \text { ORIGINAL DATA SOURCE }= \end{aligned}$	BCIS			
653	6	JAN	1966	02:01:51.6	39.300 N	21.300 E				49	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 4 STATION RECDRDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
654	6	FEB	1966	15:09:13.4	39.300 N	21.300 E		3.80		49	IS	DATA DBTAINED VIA ISC ORIGINAL DATA SOURCE = 5 STATION RECORDINGS	ATH USEO	IN	SOLUTION	
655	10	FEB	1966	16:10:41.6	39.300 N	21.3005		3.80		49	15	DATA OBTAINED VIA ISC ORIGINAI. DATA SOURCE = 4 STATION RECORDINGS	ATH USEO	IN	SOLUTION	
656	15	MAR	1966	21:02:52.3	39.300 N	21.300E				49	15	DATA OBTAINED VIA ISC ORICINAL DATA SOURCE 2 STATION RECOROINGS	USTH	IN	SOLUTION	
657	29	APR	1966	02:51:52.8	39.300 l	21.300E				49		DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE B STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	1N	SOLUTION	
658	3	MAY	1966	12:56:14.5	39.300 N	21.3005				49	15	DATA OBTAINED VIA ISC ORIGINAL DAIA SOURCE = 2 STATION RECORDINGS	$\begin{array}{r} \text { ATH } \\ \text { USED } \end{array}$	IN	SOLUTION	
659	23	mar	1966	01:15:56.4	$39.310 N$	21.750F				49	15	ORICINAL OATA SOURCE =	USED	IN	SOLUTION	
660	18	JAN	1967	07:34:03.0	38.750 N	2100001				49	15	DATA OITAINED VIA ISC ORIGINAL DATA SOURCE = - 16.1Jlif fecoritings	ATH USF:	IN:	SOL ITIOM	

49		$\begin{aligned} & \text { ORIGINAL DATA } \\ & 7 \text { STATION RI } \end{aligned}$	$\begin{aligned} & \text { SOURCE }= \\ & \text { ECORDINGS } \end{aligned}$	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
49	1 S	$\begin{aligned} & \text { DATA OETAINED } \\ & \text { ORIGINAL DATA } \\ & \text { GSTATION R } \end{aligned}$	$\begin{aligned} & \text { VIA ISC } \\ & \text { SOURCE = } \\ & \text { ECORDINGS } \end{aligned}$	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
49	15	$\begin{array}{r} \text { ORIGINAL DATA } \\ \text { STATION R } \end{array}$	$\begin{aligned} & \text { SOURCE } \\ & \text { ECORDINGS } \end{aligned}$	USC	IN	SOLUT ${ }^{\text {SON }}$
49	1 S	ORIGINAL DATA 4 STATION R	$\begin{aligned} & \text { SOURCE }= \\ & \text { SECORDINGS } \end{aligned}$	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	$1 N$	SOLUTION
49	IS	$\begin{array}{r} \text { ORIGINAL OATA } \\ 4 \text { STATION RE } \end{array}$	$\begin{aligned} & \text { SOURCE } \\ & \text { ECORDINGS } \end{aligned}$	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
49	IS	ORIGINAL DATA	$\begin{aligned} & \text { SOURCE = } \\ & \text { ECORDINGS } \end{aligned}$	USED	IN	SOLUTION
49	S	$\begin{aligned} & \text { ORIGINAL OATA } \\ & \text { GTAIION RI } \end{aligned}$	$\begin{aligned} & \text { SOURCE = } \\ & \text { ECORDINGS } \end{aligned}$	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
49	15	ORIGINAL DATA 15 STATION	$\begin{aligned} & \text { SOURCE }= \\ & \text { ECORDINGS } \end{aligned}$	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
49	\$	$\begin{aligned} & \text { ORIGINAL DATA } \\ & \text { 2I STATION RI } \end{aligned}$	$\begin{aligned} & \text { SOURCE }= \\ & \text { ECORDINGS } \end{aligned}$	USEC	IN	SOLUTION
49	1 S	ORIGINAL DATA 9 STATION	$\begin{aligned} & \text { SOURCE = } \\ & \text { ECORDINGS } \end{aligned}$	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
49	IS	$\begin{aligned} & \text { ORIGINAL DATA } \\ & 7 \text { STATION R } \end{aligned}$	$\begin{aligned} & \text { SOURCE }= \\ & \text { SEORDINGS } \end{aligned}$	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
49	IS	ORIGINAL DATA	$\begin{aligned} & \text { SOURCE } \\ & \text { ECORDINGS } \end{aligned}$	USEC	IN	SOLUTION
49	IS	ORIGINAL DATA O STATION R	$\begin{aligned} & \text { SOURCE } \\ & \text { SECORDINGS } \end{aligned}$	USEC	IN	SOLUTION
49	- IS	ORIGINAL DATA 242 STATION R	$\begin{aligned} & \text { SOURCE }= \\ & \text { ECORDINGS } \end{aligned}$	USED	IN	SOLUTION
50	15	ORIGINAL DATA	SOURCE =	1SS		
50	1 S	ORIGINAL DATA	SOURCE =	185		
50	IS	ORIGINAL DATA	SOURCE =	ISS		
50	IS	ORIGINAL DATA	SOURCE =	ISS		

661	1	AUG	1968	21:29:21•3	$38.460 N$	21-600t.	
662	19	FED	1969	11:17:12:0	$39.300 N$	$21.300 E$,
663	18	AUG	1970	17:43:02.9	$39.310 N$	21.750E	
664	20	APR	1972	20:03:19.4	$39.293 N$	21.2615	
665	15	JUN	1972	07809:51.2	38.584N	$21.920 E$	
666	16	JUN	1972	$03: 50: 14.4$	38.463N	21.6005	
667	2	MAY	1973	09:03:23.0	38.981 N	22.0H2E	
668	2	MAY	1973	10:12:54.2	$38.956 N$	22.086E	
669	31	AU6	1973	$23: 31: 47.1$	$38.923 N$	$22.095 E$	
670	15	SEP	1973	21:17:21:9	$38.892 N$	22.0896	
671	14	$A P R$	1974	22:17:54.3	39.051 N	22.0605	
672	30	JUN	1975	$14: 21: 53.1$	38.489 N	21.721E	
673	2	JUL	1975	18:16:59.9	38.469N	$21.637 E$	
674	21	DEC	1975	16:07:51.1	38.4700	$21.667 E$	5.20
675	4	OCT	1949	17:33:23.0	$38.500 N$	$21.800 E$	
676	5	OCT	1949	16:20:38.0	38.500 N	21.800E	
677	18	MAY	1951	12:17:29.0	$38.500 N$	21.800E	
678	4	MAR	1953	15:30:32.0	$38.500 N$	21.8005	

 111
 VI

IS ORIGINAL DATA SOURCE = IS ORIGINAL DATA SOURCE $=\overline{\bar{L}}$ ISC IS ORIGINAL DATA SOURCE $=$ ISC IN SOLUTION 51 IS ORIGINAL DATA SOURCE F IS ISC IN SOLUTION IS ORIGINAL DATA SOURCE $=$ ISC IS ORIGINAL DATA SOURCE = ISC is originat paia squrce isc IS ORIGINAL DATA SOURCE IS ORIGINAL DATA SOURCE I ISC is original pata source ISC in solutan g STAIIION RECOROINGS USED IN SOLUTION
 IS ORIGINAL DATA SOURCE IS ISC IN SOLUTION 50 50 is 50

$$
51
$$

$$
\vec{n}
$$

$$
\pi
$$

$$
\vec{n}
$$

$$
\vec{n}
$$

$$
\begin{aligned}
& \pi \\
& n
\end{aligned}
$$

$$
\vec{n}
$$

$$
\vec{n}
$$

$$
\vec{n}
$$

n

$$
00: 46: 41 \cdot 2
$$

$$
02: 27: 57.9
$$

$$
22: 38: 40 \cdot 8
$$

$$
04: 11: 39.9
$$

$$
15: 54: 39.9
$$

$$
14: 53: 41 \cdot 5
$$

$$
17: 07: 20 \cdot 6
$$

$$
07: 53: 01 \cdot 0
$$

$$
09: 31: 00 \cdot 0
$$

$$
16: 07: 06 \cdot 4
$$

$$
03: 58: 10 \cdot 7
$$

$$
23: 21: 21 \cdot 9
$$

$$
39.070 \mathrm{H}
$$

$$
59.200 \mathrm{H}
$$

$$
39.046 N
$$

$$
39.369 N
$$

$$
38 \cdot 43 \mathrm{~N}
$$

$$
38.464 N
$$

$$
\begin{aligned}
& 38.432 N \\
& 38.453 N
\end{aligned}
$$

$$
38.450 N
$$

$$
39.200 \mathrm{~N}
$$

$$
39.200 \mathrm{~N}
$$

$$
38.600 \mathrm{~N}
$$

$$
38.600 \mathrm{~N}
$$

$$
39.380 \mathrm{~N}
$$

$$
21.068 E
$$

$$
22 \cdot 114 E
$$

$$
20.955 E
$$

$$
21.555 \mathrm{E}
$$

$$
21.602 E
$$

$$
21 \cdot 738 E
$$

$$
21.526 E
$$

$$
21.703 E
$$

$$
21.691[
$$

$$
22.000 E
$$

$$
22.000 \mathrm{E}
$$

$$
22.000 E
$$

$$
22.000 E
$$

$$
21.570 E
$$

$$
21.686 E
$$

4.40	42	52	15	ORIGINAL DAJA SOURCE = 31 STAIION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
4.30		52	15	ORIGINAL DAIA SOURCE = 11 STATION RECORDINGS	USSC	IN	SOLUTION
		52	15	ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
		52	15	ORIGINAL DATA SOURCE E 7 STATION RECORDINGS	USEC	IN	SOLUTION
		52	1 S	ORIGINAL DATA SOURCE = G STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
		52	IS	ORIGINAL DATA SOURCE = 5 STATION RECORDINGS	USC	IN	SOLUTION
		52	15	ORIGINAL DATA SOURCE = STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
		52	IS	$\begin{aligned} & \text { ORIGINAL DATA SOURCE } \\ & 23 \text { STATION RECORDINGS } \end{aligned}$	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUYION
	21.	52	15	ORIGINAL DATA SOURCE = 12 STATION RECORDINGS	USC	IN	SOLUTION
4.50	26	52	IS	ORIGINAL DATA SOURCE = BO STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
	45	52	IS	ORIGINAL DATA SOURCE = 45 STAIION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	$1 N$	SOLUTION
5.20		53	15	ORIGINAL DATA SOURCE =	ISS		
5.13		53	15	ORIGINAL DATA SOURCE = MAGNITUDE AUTHORITY=	BCIS ATH		
		53	13	DAIA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 5 STATION RECORDINGS	USED	IN	SOLUTION
		53	I S	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 3 STATION RECORDINGS	$\begin{gathered} \text { ATH } \\ \text { USED } \end{gathered}$	IN	SOLUTION
	85	53	15	ORIGINAL DATA SOURCE = 19 STATION RECORDINGS	USED	IN	SOLUTION
$4 \cdot 40$	36	53	IS	ORIGINAL DATA SOURCE = 50 STATION RECORDINGS		IN	SOLUTION

$$
\begin{aligned}
& \text { z } \\
& \text { N } \\
& \dot{\infty} \\
& \infty
\end{aligned}
$$

$$
8 \cdot 2 I: 64: 60
$$

$$
\begin{aligned}
& n \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$\begin{aligned} & \text { CAT. } \\ & \text { NOE } \end{aligned}$		$\begin{aligned} \text { OATE } \end{aligned}$	YEAR	$\begin{aligned} & \text { TIME(GMIJ } \\ & \text { HR-MIN-SEC } \end{aligned}$	LAT	LONG	SL INTEN	MAG	$K H^{H}$			LOCAT10	A	N	C 0
728	7	JAN	1972	23:11:08.9	39.336 N	21.7A3E				53	15	ORIGINAL DATA SOURCE = 8 STATION RECORDINGS	USEC	1 N	SOLUTION
729	27	APR	1972	22:11:56.1	38.877N	20.921E				53	IS	ORIGINAL DATA SOURCE = 7 STAIION RECORDINGS	USED	IN	SOLUTION
730	18	SEP	1972	17:33:59.2	38.5484	21.126E				53		ORIGINAL DATA SOURCE = 6 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
131	22	FEE	1974	15:26:49.8	39.113N	$20.980 E$				53	$1 \$$	ORIGINAL DATA SOURCE = 19 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
732	21	NOV.	1974	12:04:25.1	39.011N	20.934E				53	15	ORIGINAL DATA SOURCE = 5 STATION RECORDINGS	USEC	IN	SOLUTION
733	30	JUN	1975	15:27:28.1	38.438 N	21.6715		4.30	47	53	15	ORIGINAL DATA SOURCE = 45 STATION RECORDINGS	USEC	IN	SOLUTION
734	1	JUL	1975	03:03:42.0	38.460 N	21.768E				53	IS	ORIGINAL DATA SOURCE = 10 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
739	1	UUS'	1975*	08:24:22.9	38.513N	21.879E				53		ORIGINAL DATA SOURCE = STATION RECOROINGS	$\begin{aligned} & \text { ISC } \\ & \text { USEE } \end{aligned}$	IN	SOLUTION
736	2	JUL	1975	01:03:43.1	38.455n	21.747E		4.10	17	53	IS	ORIGINAL DATA SOURCE = 41 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
737	2	JUL	1975	04:48:31.3	38.471N	21.793E		4.10		53	15	ORIGINAL DATA SOURCE = 39 STATION RECORDINGS	$\begin{aligned} & 1 \mathrm{SC} \\ & \text { USED } \end{aligned}$	IN	SOLUTION
738	27	DEC	1975	12:08:49.3	38.462N	21.786E				53	15	ORIGINAL DATA SOURCE = 6 STATION RECOROINGS	$\begin{aligned} & \text { ISC } \\ & \text { USE } \end{aligned}$	IN	SOLUTION
739	31	DEC	1975	15:19:52.5	38.428N	21.650E			16	53	IS	ORIGINAL DATA SOURCE = 15 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
740	31	DEC	1975	17:36:53.1	38.422N	21.516E			39	53	IS	ORIGINAL DATA SOURCE = 37 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
741	24	JUL	1966	13:37:31.2	38.570N	21.9905				54		ORIGINAL DATA SOURCE = S STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
742	1	may	1967	08:28:23.0	39.390n	21.500E		4.40	34	. 54	15	ORIGINAL DATA SOURCE = 31 STATION RECORDINGS	USED	IN	SOLUTION
743	1	Mar	1967	14:38:0280	39.360N	21.310E		4.50	21	54	15	ORIGINAL DATA SOURCE = 4g STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USE } \end{aligned}$	IN	SOLUTION
744	24	aug	1970	21:11:34.8	39.170 N	22.050E				54	IS	ORIGINAL DATA SOURCE = 9 STAYION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USE } \end{aligned}$	IN	SOLUTION

[^18]| 1 | 54 | 15 | ORIGINAL DATA SOURCE = 10 STATION RECORDINGS | $\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$ | IN | SOLUTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 54 | IS | ORIGINAL DATA SOURCE = 4 STATION RECORDINGS | $\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$ | IN | SOLUTION |
| 4 | 54 | 15 | ORIGINAL DAIA SOURCE = 5 STATION RECORDINGS | $\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$ | IN | SOLUTION |
| 8 | 54 | 15 | ORIGINAL DATA SOURCE = E STATION RECORDINGS | USC | IN | SOLUTION |
| | 54 | 1.5 | ORIGINAL DATA SOURCE = 11 STATION RECORDINGS | $\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$ | IN | SOLUTION |
| | 54 | IS | ORIGINAL DATA SOURCE = 10 STATION RECORDINGS | USEC | IN | SOLUTION |
| | 54 | 15 | ORIGINAL DATA SOURCE = 9 STATION RECORDINGS | $\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$ | IN | SOLUTION |
| | 54 | IS | ORIGINAL OATA SOURCE = G STATION RECORDINGS | $\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$ | IN | SOLUTION |
| | 54 | IS | DATA DRTAINED VIA ISC ORIGINAL DATA SOURCE = © STATION RECORDINGS | ATH | IN | SOLUTION |
| | 54 | S | ORIGINAL DATA SOURCE = 5 STATION RECORDINGS | $\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$ | IN | SOLUTION |
| 37 | 54 | IS | ORIGINAL DATA SOURCE = 37 STATION RECORDINGS | $\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$ | 1 N | SOLUTION |
| | 55 | IS | ORIGINAL DATA SOURCE = | BCIS | | |
| | 55 | IS | ORIGINAL DATA SOURCE = |]SS | | |
| | 55 | IS | DATA OBTAINED VIA JSC ORIGINAL DATA SOURCE = 4 STATION RECORDINGS | UTH | 1 N | SOLUTION |
| 49 | 55 | IS | ORIGINAL DATA SOURCE = 20 STATIDN RECORDINGS | USEC | 1 N | SOLUTION |
| | 55 | IS | ORIGINAL DATA SOURCE = () STATION RECORDINGS | $\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$ | IN | SOLUTIDN |
| 6 | 55 | IS | ORIGINAL DATA SOURCE = 'i STATION RECORDINGS | $\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$ | IN | SOLUTION |

	OR 1 GINAL DATA SOURCE 4 STATION RECOROINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
15	ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	USED	IN	SOLUTION
I	ORIGINAL DATA SOURCE = 10 STATION RECORDINGS	USEC	IN	SOLUTION
	ORIGINAL DATA SOURCE \quad	USEC	IN	SOLUTIDN
I	ORIGINAL DATA SOURCE = 15 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
1	ORIGINAL DATA SOURCE = 12 STATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
IS	ORIGINAL DATA SOURCE = 8 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
15	ORIGINAL DATA SOURCE = G STATION PECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
15	ORIGINAL DATA SOURCE = 7 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
I	ORIGINAL DATA SOURCE = 14 STATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
IS	ORIGINAL OATA SOURCE = 6 SIATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = O SIATION RECORUINGS	$\begin{array}{r} \text { ATH } \\ \text { USED } \end{array}$	IN	SOLUTION
IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE =	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
I	ORIGINALIDATA SOURCE =	$\begin{aligned} & \text { ISC } \\ & \text { USF } \end{aligned}$	IN	SOLUTION
1%	OPICINAL PIATA SOURCE = c, 3 STATIN: PFRORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
1	OPIGINAL DATA SOUACE = 11 जTATIOGFECORIINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTJON

762	5	JUL	1973	13:06:49.8	$39.325 N$	21.853
		.				
763	22	0 CT	1974	10:26:09.7	38.639 N	20.998E
764	24	OCt	1974	$18: 23: 17 \cdot 3$	38.857 A	20.9005
765	25	NOV	1974	02:53:47.6	$38.472 N$	21.844E
766	21	DEC	1974	21:28:35.7	38.809N	22.150E
767	29	JUN	1975	20:50:23.2	38.432 N	21.748E
768	30	JUN	1975	03:37:14.8	$38.451 N$	21.7R8E
769	30	JUN	1975	13:39:47.0	$38.428 N$	21.705E
770	2	JUL	1975	18:49:49.3	38-425n	21.714t
771	5	JUL	1975	04:32:44.0	$38.434 \wedge$	21.730L
772	23	DEC	1975	$15: 20: 41 \cdot 1$	$38.464 N$	21.837E
773	24	DEC	1975	11:12:03.0	$38.500 N$	21.900 C
774	24	DEC	1975	22:34:12.0	$38.500 N$	21.900E
775	26	DEC	1975	18:56:59.0	3R.415N	21.677E
776	31	DEC	1975	06:34:04.4	$38.423 N$	21.7005
777	31	FIFC	1975	17:03:57.4	$38 \cdot 412 N$	21.6575

$\begin{aligned} & \text { CAT. } \\ & \text { NO. } \end{aligned}$		$\begin{aligned} & \text { DATE } \\ & \mathbf{Y - M O} \end{aligned}$	YEAR	time (GMT) HR-MIN-SEC	LAT	LONG	SL INTEN (MM)	MAG SM	$\begin{gathered} H \\ (K M) \end{gathered}$	$\text { cIS } 0$ (KM)	S	LOCATION	A N	N	C 0
178	15	aUg	1932	04:34:40.0	39.250 N	22.0005	-	5.50	100	56	15	$\begin{aligned} & \text { QUALITY }=\text { - B8B } \\ & \text { ORIGINNLDATASOURCE }= \\ & \text { MAGNITUDF AUTHORITY = } \end{aligned}$	$\begin{aligned} & \text { GUTE } \\ & \text { PAS } \end{aligned}$		
779	6	FEB	1966	02:52:11.0	39.400N	21.500 E				56		data oriaineo via isc ORIGINAL DATA SOURCE = S STATION RECORDINGS	$\begin{gathered} \text { ATH } \\ \text { USEO } \end{gathered}$	IN	SOLUTION
780	21	FEB	1966	09:29:59.4	39.250N	22.000 E		3.50		56	15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 4 STATION RECORDINGS US		IN	SOLUTION
781	23	JUN	1966	21:02:54.3	39.160 N	22.090 E				56	15	ORIGINAL DATA SOURCE = 7 STATION RECORDINGS US	$\begin{aligned} & \text { USC } \\ & \text { ISES } \end{aligned}$	IN	SOLUTION
782	21	JUL	1966	11:30:50.2	39.400N	21.600 E				56	IS	data cbialneo via isc ORIGINAL DATA SOURCE= 4 STATION RECORDINGS U		IN	SOLUTION
783	7	AUG	1966	08:06:57.0	39.250 N	22.000 E				56		DATA OBTAINEO VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USEE } \end{aligned}$	IN	SOLUTION
784	17	AUG	1966	10:31:28.3	39.250N	22.000E				56		data obiained via isc ORIGINAL DATA SOURCE = ? STATION RECORDINGS U		IN	SOLUTION
785	27	AUG	1966	08:09:22.2	39.250 N	22.000 E				56	15	DATA ORTAINED VIA ISC ORIGINAL OATA SOURCE = 2 STATION RECORDINGS U		IN	SOLUTION
786	12	OCt	1968	22:40:24.0	38.400 N	21.600 F				56	15	ORIGINAL DATA SOURCE = G STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USÉ } \end{aligned}$	IN	SOLUTION
787	24	SEP	1969	03:34:33.0	38.400N	21.600F.				56	15	oata obtained via isc CRIGINAL DATA SOURCE = 3 STATION. RECORDINGS U	ATH USF.D	IN	SOLUTION
78 A	10	NOV	1969	19:14:05.0	38.4000	21.6000			143	56	15	ORIGINAL DATA SOURCE = G STATION RTCORDINGS	$\begin{aligned} & \text { USE } \\ & \text { ISC } \end{aligned}$	IN	SOLUTION
789	18	JUL.	1970	22:48:32.4	38.780 N	20.900E				56	IS	ORIGINAL DATA SOURCE = G SIATION RFCORDINGS US	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
790	28	AUG	1970	19:41:15.1	38.410!1	21.700 E				56	Is	ORIGIIAAL OLTA SOURCE = o Station recordings us	$\begin{aligned} & \text { ISC } \\ & \text { USF } \end{aligned}$		SOLUTION
791	10	OCT	1972	16:20:51.2	38.520 N	21.954\%				56	15	ORIGINAL DATA SOURCE = :a Etation recopdings u	USF	IN	SOLUTION

3.19		56	1 3	ORIGINAL DATA 11 STATION RE	$\begin{aligned} & \text { SOURCE }= \\ & \text { ECORDINGS } \end{aligned}$	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
	13	56	IS	ORIGINAL DATA 13 STATION RE	$\begin{aligned} & \text { SOURCE } \\ & \text { ECORDINGS } \end{aligned}$	USED	IN	SOLUTION
		56	1 S	DATA OBTAJNED ORIGINAL OATA () STATION RE	$\begin{aligned} & \text { VIA ISC } \\ & \text { SOURCE }= \\ & \text { CORDINGS } \end{aligned}$	$\begin{gathered} \text { ATH } \\ \text { USED } \end{gathered}$	$1 N$	SOLUTION
	11	56	15	ORIGINAL DATA 9 STATION RE	SOURCE = CORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
	6	56	15	$\begin{gathered} \text { ORIGINAL DATA } \\ \text { Q STATION RE } \end{gathered}$	$\begin{aligned} & \text { SOURCE = } \\ & \text { EORDINGS } \end{aligned}$	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
		56	IS	ORIGINAL DATA 15 STATION RE	$\begin{aligned} & \text { SOURCE } \\ & \text { SCORDINGS } \end{aligned}$	$\begin{aligned} & \text { ISC } \\ & \text { USFD } \end{aligned}$	1 N	SOLUTION
3.40		57	IS	DATA OBTAINED ORIGINAL DATA STATION	$\begin{aligned} & \text { VIA ISC } \\ & \text { SOURCE }= \\ & \text { ECORDINGS } \end{aligned}$	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
		57	IS	DATA OBTAINED ORIGINAL DATA 3 STATION RE	$\begin{aligned} & \text { VIA ISC } \\ & \text { SOURCE }= \\ & \text { ECORDINGS } \end{aligned}$	$\begin{aligned} & \text { ATH } \\ & \text { USEO } \end{aligned}$	IN	SOLUTION
		57	IS	DATA OBTAINED ORIGINAL OATA 3 STATION R	$\begin{aligned} & \text { VIA ISC } \\ & \text { SOURCE }= \\ & \text { ECORDINGS } \end{aligned}$	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUT10N
		57	15	ORIGINAL DATA	$\begin{array}{r} \text { SOURCE } \\ \text { ECORDINGS } \end{array}$	USC	IN	SOLUTION
		57	15	DATA OGTAINED ORIGINAL DATA 4 STATION RE	$\begin{aligned} & \text { VIA ISC } \\ & \text { SOURCE }= \\ & \text { ECOROINGS } \end{aligned}$	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
3.10		57	15	DATA OBTAINED ORIGINAL DATA 4 STATION RE	$\begin{aligned} & \text { VIA ISC } \\ & \text { SOURCE } \\ & \text { ECORDINGS } \end{aligned}$	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
3.? 0		57	15	DATA OBTAINED ORIGINAL DAIA 4 STATION RE	$\begin{aligned} & \text { VIA ISC } \\ & \text { SOURCE }= \\ & \text { ECOROINGS } \end{aligned}$	UTH	IN	SOLUTION
		57	15	ORIGINAL DATA 14 STATION RE	$\begin{aligned} & \text { SOURCE } \\ & \text { ECORDINGS } \end{aligned}$	$\begin{aligned} & \text { ISC } \\ & \text { USEO } \end{aligned}$	$1 N$	SOLUTION
3.80		57	IS	DATA OBTAINED ORIGINAL IOATA	$\begin{aligned} & \text { VIA ISC } \\ & \text { SOURCE }= \end{aligned}$	ATH		

792	13	DEC	1972	22:16:59.7	$39.095 N$	22.126E
793	29	JUN	1975	16:56:29.2	$38.414 n$	21.715E
794	30	JUN	1975	15:39:28.0	$38.400 N$	21.6005
795	1	JUL	1975	$03: 50: 43.2$	$38.424 N$	21.728E
796	2	JUL	1973	18:34:16.3	$38.410 N$	21.680E
797	3	JUL	1975	08:59:47.4	$38.431 N$	21.761E
798	24	SEP	1965	14:56:35.0	38.000	21.7005
799	26	OCT	1965	00:51:04.0	$38.600 N$	$21.000 E$
800	5	FEB	1966	19:00:22.2	39.400 N	21.700E
801	11	FEB	1966	00:57:54.0	$39.200 n$	21.0005
802	13	FEB	1966	17:20:12.6	39.400 N	21.700E
803	18	$A P R$	1967	19:24:59.6	$38.400 N$	21.700E
804	18	$A P R$	1967	19:45:20.2	$38.400 N$	21.700E
805	29	AUG	1967	21:59:03.0	$38.450 N$	$21 \cdot 850 E$
806	7	SEP	1967	17:23:22.0	39.400 N	21-408E

57	15	ORIGINAL DATA SOURCE = 7 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
57	IS	ORIGINAL DATA SOURCE = 5 STATION RECORDINGS	USEC	IN	SOLUTION
57	15	ORIGINAL DATA SOURCE = 39 STATION RECORDINGS	USE	IN	SOLUTIO
57	15	DRIGINAL DATA SOURCE = 16 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTIO
57	IS	ORIGINAL DATA SOURCE = 4 STATION RECOROINGS	USED	1 N	SOLUTION
57	15	ORIGINAL DATA SOURCE = 17 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
57	15	ORIGINAL DATA SOURCE = 10 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
57	15	ORIGINAL DATA SOURCE = 11 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTIO
57	IS	ORIGINAL DATA SOURCE = 47 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & U S E D \end{aligned}$	IN	solutio
57	IS	data ogtained via isc ORIGINAL DATA SOURCE = O STATION RFCORDINGS	USED	IN	SOLUTIO
57	IS	ORIGINAL DATA SOURCE = 18 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTIO
57	15	ORIGINAL DATA SOURCE = 11 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTIO
57	15	ORIGIMAL DATA SOURCE = 37 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
58	15	ORIGINAL DATA SOURCE	BCI		
58	IS	data obtaineo via isc ORIGINAL GATA SOURCE= 4 STATION RECORDINGS	$\begin{aligned} & \text { USH } \mathrm{ATH} \end{aligned}$	IN	SOLUTION
58	IS	ORIGINAL DATA SO	ISC		

$\begin{aligned} & \text { CAT. } \\ & \text { WO. } \end{aligned}$		DATE	YEAR	TIME(GMT) HR-MIN-SEC	LAt	LONG	SL INTEN	MAG S	$\left(\begin{array}{l} H \\ (M) \end{array}\right.$	$\begin{aligned} & \text { DIS } \\ & (K M) \end{aligned}$	0 s	LOCATION	A	N D	C 0
823	9	DEC	1972	04:28:19.9.,	38.452N	21.874E	-	,		58	IS	ORIGINAL DATA SOURCE = 10 STATION RECORDINGS US	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN S	SOLUTION
824	20	JAN	1973	13:44:47.1	38.385N	21.646 E				58	15	ORIGINAL DATA SOURCE = B SIATION RECOROINGS US	$\begin{aligned} & \text { ISC } \\ & \text { JSED } \end{aligned}$	IN	SOLUTION
825	24	JUN	1973	22:03:30.6	38.983N	22.187E				58	IS	ORIGINAL DATA SOURCE = 9 STATION RECORDINGS USE	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
826	29	APR	1975	22:52:42.5	38.430N	21.832 E			16	58	15	ORIGINAL DATA SOURCE = 11 STATION RECORDINGS US	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN S	SOLUTION
827	24	JUN	1975	03:44:59.1	38.439N	21.833 E		3.80	60	58	15	ORIGINAL DATA SOURCE = 31 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN S	SOLUTION
828	30	JUN	1975	15:38:26.8	38.396N	21.69BE				58	IS	ORIGINAL DATA SOURCE = 10 STATION RECORDINGS US	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
829	3	JUL	1975	08:41:55.5	38.415N	21.7895				58	IS	ORIGINAL DATA SOURCE = 11 STATION RECOROINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
830	14	JUL	1975	08:10:50.8	38.421N	21.787E				58	15	ORIGINAL DATA SOURCE = S STATION RECORDINGS USE	$\begin{aligned} & \text { ISC } \\ & \text { USEO } \end{aligned}$	IN	SOLUTION
831	29	SEP	1975	20:06:21.1	39.064 N	22.160E				58	15	ORIGINAL DATA SOURCE = 13 SIATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
832	31	DEC	1975	17:18:23.7	38.409n	21.772E				58	IS	ORIGINAL DATA SOURCE = 12 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
833	31	DEC	1975	20:03:50.1	38.406N	21.730E				58	IS	ORIGINAL DATA SOURCE = 14 STATION RECORUINGS US	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN S	SOLUTION
834	12	AUG	1953	09:23:50.6	38.700N	20.9005		7.20		59	IS	DATA OBTAINED VIA BCIS REPORTED FELT INFORMATIO ORIGINAL DATA SOURCE =	$\begin{aligned} & \text { ON } \\ & \text { ROM } \\ & \text { ROM } \end{aligned}$		
835	12	AUG	1953	09:23:52.0	38.700 N	20.900E				59	15	DATA OYTAINFD VIA ISS ORIGINAL DATA SOURCE =	ROM		
836	20	Jun	1965	00:40:47.4	38.ROON	$22.200 E$			10	59	15	ORIGINAL DATA SOURCE = 11 STATION RECORDINGS US	USEC	IN	SOLUTION
837	31	DEC	1965	22:43:19.8	39.100 N	20.9005		4.10		59	15	data obialned via isc ORIGINAL DATA SOURCE = G SiATton Recoruings u	$\begin{gathered} \text { ATH } \\ \text { USED } \end{gathered}$	IN	SOLUTION
838	5	Mar	1966	00:03:02.1	39.400 N	21.300t.				59	15	daja ortalaed via isc ORIGINAL DATA SOURCE = : Sit atror fecoiding U	USTH		SOLUTION

 $\underset{i}{6}$
3.130
3.60
3.60
3.20
4.80

15	ORIGINAL DATA SOURCE = 5 STATION RECORDINGS	USEC	IN	SOLUTION
IS	ORIGINAL DATA SOURCE = 12 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
IS	DATA OBTAINED VIA USE REPORIED FELT INFORMAT ORIGINAL DATA SOURCE =	${ }_{\text {ONS }}$		
IS	$\begin{aligned} & \text { QUALITY = APRX } \\ & \text { ORIGINAL DATA SOURCE }= \end{aligned}$	BCIS		
IS	dATA OBTAINED VIA BCIS ORIGINAL DATA SOURCE = MAGNITUDE AUTHORITY =	$\begin{aligned} & \text { MOS } \\ & \text { MOS } \end{aligned}$		
IS	ORIGINAL DATA SOURCE = MAGNITUDE AUTHORITY=	$\begin{aligned} & \text { BCIS } \\ & \text { ATH } \end{aligned}$		
IS	ORIGINAL DATA SOURCE =	BCIS		
IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE $=$	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
15	data obtained via isc ORIGINAL DATA SOURCE =	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
15	DATA OBIAINED VIA ISC ORIGINAL DATA SOURCE $=$	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE =	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
15	DATA OHTAINED VIA ISC ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	ATH USED	IN	SOLUTION

$\begin{aligned} & \text { CAT. } \\ & \text { NO. } \end{aligned}$	DA	$\begin{gathered} \text { Darte } \\ \hline- \text { mo } \end{gathered}$	YEAR	$\begin{aligned} & \text { TIMF(GHT) } \\ & \text { HR-MIN-SEC } \end{aligned}$	Lat	LONG	SL INTEN (MM)	MAG SM	$\binom{\prime \prime}{M}$	$\begin{aligned} & \text { Cis } \\ & \text { KM) } \end{aligned}$		S	LOCATION	A	N	D C 0
868	14	mar	1966	13:36:07.5	39.250 N	21.000 E				60			data obiaineo via isc ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	1 N	SOLUTION
869	22	mar	1966	07:42:17.0	39.250N	21.0005				60			data obiained via isc ORIGINAL DATA SOURCE = 12 STATION RECORDINGS	USTH	IN	SOLUTION
870	25	DEC	1966	08:17:42.5	39.250 N	21.000E				60			data obtaineo via isc ORIGINAL DATA SOURCE $\overline{3}$	USTH	IN	SOLUTION
871	21	APR	1968	14:00:08.0	39.250N	21.0005				60		15	data obtained via isc ORIGINAL DATA SOURCE = ? STATION RECORDINGS	USTH	IN	SOLUTION
872	26	AUG	1968	21:43:38.0	38.400N	21.800E				60		15	data obiained via isc ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	USTH	IN	SOLUTION
873	24	Jan	1969	09:28:30.0	38.500 N	22.000E		3.10		60		IS	data obtajned via isc ORIGINAL DATA SOURCE $\overline{\bar{S}}$	USTH	IN	SOLUTION
874	13	APR	1969	09:23:58.0	38.500 N	22.0005				60			data obtained via isc ORIGINAL DATA SOURCE $\overline{=}$	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
875	9	JUL	1970	08:29:51.5	38.890 N	20.840E				60		IS	ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
876	17	AUG	1970	11:04:22.0	38.400N	21.800E		3.10		60		15	data obtained via isc ORIGINAL DATA SOURCE $\overline{\bar{Z}}$	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
877	7	Jun	1972	05:40:33.1	38.370 N	21.533E				60		15	ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USE } \end{aligned}$	IN	SOLUTION
878	8	AUG	1972	07:45:49.1	38.882N	20.835E				60		IS	ORIGINAL DATA SOURCE = 5 STAIION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USEO } \end{aligned}$	IN	SOLUTION
879	22	FEB	1973	18:26:06.9	38.59RN	22.100E				60		IS	ORIGINAL DATA SOURCE = 10 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
880	25	OCT	1973	01:35:22.3	39.080 N	22.185E				60		15	ORIGINAL DATA SOURCE = 7 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
881	22	OCT	1974	21:36:27.4	38.889 N	$22.223 E$			3	60		IS	ORIGINAL OATA SOURCE = G STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION

	ORIGINAL DATA SOURCE = S STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
I	ORIGINAL DATA SOURCE = 16 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
I	ORIGINAL DATA SOURCE = 6 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
1	ORIGINAL DATA SOURCE = \& STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLU
I	ORIGINAL DATA SOURCE = B STATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
IS	ORIGINAL DATA SOURCE = 176 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USE } \end{aligned}$	IN	SOLUTION
IS	ORIGINAL DATA SOURCE = 7 STAIION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	So
I	ORIGINAL DATA SOURCE = 9 STATION RECORDINGS		IN	SOLUTION
15	ORIGINAL DATA SOURCE = 15 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
1	ORIGINAL DATA SOURCE = 14 STATION RECORDINGS	USED	IN	SOLUTION
IS	ORIGINAL DATA SOURCE = 12 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
15	ORIGINAL DATA SOURCE	BCI		
IS	data obtained via isc ORIGINAL DATA SOURCE = 3 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE 3 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
15	ORIGINAL DATA SOURCE = 6 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
I	ORIGINAL DATA SOURCE = r, STATION RECORDINGS	USED	1 N	Solution
IS	ORIGINAL DATA SOURCE = " :.IAIINN RECORDINGS	USi	1	SOLUTION

63$\stackrel{+}{4}$

899	12	may	1972	08:53:06.8	$39.222 N$	20.946E
900	2	may	1973	07:49:02.6	39.063N	22.2115
901	23	AUG	1974	07:42:37.5	38.408N	21.856
902	2	JUL	1975	03:30:01.0	38.350 N	21.658 E
903	9	JUL	1975	03:47:56.4	38.348N	21.670E
904	25	JUL.	1975	19:17:12.3	$38.406 N$	21.867E
905	24	DEC	1975	04:31:48.0	38.434N	21.9261
906	27	DEC	1975	09:51:15.8	38.356N	21.700E
907	31	DEC	1975	11:26:21.2	38.362N	21.7015
908	31	dec	1975	15:03:07.4	38.350 N	21.660 E
909	31	DEC	1975	15:56:20.9	3A.38BN	21.801E
910	13	mar	1957	11:20:55.0	39.000N	22.250E
911	3	OCt	1966	13:15:29.4	38.900 N	20.800E
912	18	JAN	1968	06:41:17.0	38.900N	20.800E
913	31	JAN	1969	13:41:42.0	38.900N	20.8005
914	25	JUL	1974	07:50:36.7	38.337n	21.6545
915	11	JAN	1975	16:41:56.7	$38.335 N$	21.523 E

916	10	Mar	1975	08:20:41.3	38.919N	20.104L				63		ORIGINAL DATA SOURCE = 7 STATION RECOROINGS	$\begin{aligned} & \text { ISC } \\ & \text { USEO } \end{aligned}$	IN	SOLUTION
917	8	may	1975	20:28:14.2	38.672 N	20.86:6.				63	IS	ORIGINAL DATA SOURCE = , STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
918	14	Mar	1975	03:05:26.1	39.113N	20.8588				6.5	is	ORIGINAL OATA SOURCE = G STATION RFCORDINGS	$\begin{aligned} & 1 S C \\ & \text { USED } \end{aligned}$	IN	SOLUTION
919	6	JUN	1975	18:53:29.7	38.943 N	22.2315		4.00	41	63	15	ORIGINAL DATA SOURCE = 40 STATION RECORDINGS	USED	1 N	SOLUTION
920	2	JUL	1975	04:25:31.8	38.35\% N	21.700 L				63	15	DRIGINAL DATA SOURCE = 10 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
921	2	JUL	1975	05:09:33.7	38.333n	21.575E			44	¢ 3	15	ORITINAL DATA SOURCE = 14 STATION RECORDINGS	USE	IN	SOLUTION
922	13	SEP	1975	21:16:56.3	39.2A1N	21.004 .				63	13	ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
923	3	OCT	1975	10:33:14.0	$39.000 N$	22.2595				63		data obtained via isc ORIGINAL DATA SOURCT = O STATION RECORDINGS	USTH	IN	SOLUTION
924	31	DEC	1975	12:07:53.5	$38.364 N$	21.767 E				63	15	ORIGINAL DATA SOURCE = 11 STATION RECORDIMGS	USED	IN	SOLUTION
925	31	DEC	1975	20:30:30.8	38.355N	21.719E				63	15	ORIGINAL DATA SOURCE = 12 STATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
926	31	DEC	1975	20:36:25.6	38.342N	21.65.5				63	15	ORIGINAL DATA SOURCE = 13 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	1N	SOLUTION
927	9	AUG	1953	07:41:05.0	38.500N	21.000 E	11	6.75		64		data obtaineo via beis QUALITY = FRSH ORIGINAL DATA SOURCE = MAGNITUDE AUTHORITY=	$\begin{aligned} & \text { POE } \\ & \text { PAS } \end{aligned}$		
928	11	AUG	1953	03:32:24.0	38.500 N	21.000 E		6.75		64		DATA OBTAINED VIA BCIS QUALITY = FRSH ORIGINAL DATA SOURCE = MAGNITUDE AUTHORITY =	$\begin{aligned} & \text { POE } \\ & \text { PAS } \end{aligned}$		
929	11	AUG	1953	12:43:24.0	. 38.500 N	21.000 E		5.63		64		data obtaineo via bcis OUALITY = FRSH ORIGINAL DATA SOURCE = MAGNITUDE AUTHORITY =	$\begin{aligned} & \text { PDE } \\ & \text { PRA } \end{aligned}$		
930	11	AUG	1953	13:11:06.0.	38.500N	21.000E				64	1 S	DATA OBTAINED vIA BCIS QUALITY = FRSH			

64 IS OATA OBTAINEO VIA BCIS
OUALIYYANEREPI
ORIGINAL DATA SOURCE

$\begin{aligned} & \text { CAT. } \\ & \text { NOO } \end{aligned}$		$\begin{aligned} & \text { DATE } \\ & \hline-M O- \end{aligned}$	Eyear	$\begin{aligned} & \text { TIME(GMT) } \\ & \text { HR-MIN-SEC } \end{aligned}$	LAT	LONE	SL INTEN (MM)	MAG SM	$\left(K_{M}^{H}\right)(i$	$\begin{aligned} & \text { IIS } \\ & \text { IKM } \end{aligned}$	s	LOCATION	$A \mathrm{~N}$	N	D C 0
974	14	OCT	1971	11:22:37.9	38.856N	20.796E	-			64	15	GRIGINAL DATA SOURCE = 7 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED I } \end{aligned}$	IN	SOLUTTON
975	15	MAR	1972	19:17:38.1	39.225N	20.926E				64	Is	ORIGINAL DATA SOURCE = 6 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
976	1	may	1972	04:12:20.0	39.300 N	21.000 E		3.60		64	IS	data obiained via isc ORIGINAL DATA SOURCE = O STATION RECORDINGS U	$\begin{aligned} & \text { USED } \\ & \text { ASED } \end{aligned}$	IN	SOLUTION
977	4	SEP	1973	07:37:51.1	38.757N	2?.24 ${ }^{\text {at }}$				64	15	ORIGINAL DATA SOURCE = 4 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED I } \end{aligned}$	IN	SOLUTION
978	2	FEB	1975	12:26:42.7	38.369N	21.817 E				64	IS	ORIGINAL DATA SOURCE = r STAT, iN RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
979	4	APR	1975	02:54:21.6	38.369N	21.815E			43	64	IS	ORIGINAL DATA SOURCE = 15 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
980	30	Jun	1975	15:15:30.6	38.368 N	21.803 E				64	15	ORIGINAL DATA SOURCF: = c STATION RECORDINGS US	$\begin{array}{r} \text { ISC } \\ \text { USED I } \end{array}$	IN	SOLUTION
981	3	JUL	1975	21:12:25.5	38.371 N	21.8215.		3.80		64	IS	ORIGINAL DATA SOURCE = 26 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED I } \end{aligned}$	IN	SOLUTION
9 A 2	10	JUL.	1975	05:19:05.9	38.326N	21.509E			19	64	IS	ORIGINAL DATA SOURCE = 13 STATION RECORDINGS US	$\begin{aligned} & \text { ISC } \\ & \text { USE } \end{aligned}$	IN	SOLUTION
983	13	SEP	1975	14:30:37.6	38.465N	22.016E		4.80	40	64	IS	ORIGINAL DATA SOURCE = 150 STATION RECORDINGS US	$\begin{aligned} & \text { ISC } \\ & \text { USED I } \end{aligned}$	IN	SOLUTION
984	21	DEC	1975	21:05:15.0	38.381N	21.854E		4.30		64	15	ORIGINAL DATA SOURCE = 41 STATION RECOROINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USEO I } \end{aligned}$		SOLUTION
985	24	DEC	1975	15:55:24.5	38.335 N	21.691 E			7	64	Is	ORIGINAL DATA SOURCE = ') SIAIION RECOROINGS U	$\begin{array}{ll} \text { ISC } \\ \text { USED } \end{array}$	1 N	SOLUTION
986	31	DEC	1975	10:58:20.2	38.331N	21.630 F		.	29	64	15	ORIGINAL DATA SOURCF. = 1) FTATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
987	15	MAY	1958	14:46:11.0	38.750N	22.2505	v	4.38	-	65	IS	ORIGINAL DATA SOURCE = MAGNITUDE AUTHDRITY=	$\begin{aligned} & \text { BCIS } \\ & \text { ATH } \end{aligned}$		
988	17	MAY	1958	20:58:02.0	38.750 N	22.2501	v			65	IS	ORIGINAL DATA SOURCE =	BCIS		
989	2	JUN	1960	04:25:10.0	38.750 N	22.250 E	V			65	IS	ORIGINAL DATA SOURCE =	BCIS		
990	11	NOV	1960	05:31:26.0	38.770N	20.800E				65	IS	ORIGINAL DATA SOURCE =	ISS		
991	3	SEP	1967	14:39:23.8	38.410 N	$21.930 E$		4.30		65	IS	ORIGINAL DATA SOURCE = 4 STATION RECORDINGS U	usf	IN	SOLUTION

CAT。 NO.	DAY	DATE - MO -	YEAR	TIME(GMT) HR-MIN-SEC	LAT	LON:	SL INTEN (MM)	MAG	$\begin{aligned} & \text { SM } \underset{H}{H}(1) \end{aligned}$	$\begin{aligned} & \text { OIS } \\ & \text { KM } \end{aligned}$		S	$L O C A T I O N$	A	N	D C 0	MENTS
992	24	JUL.	1968	20:56:21.1	38.400 N	21.910 E	-	4.40	36	65		IS	ORIGINAL DATA SOURCE = 41 SIATION RECORDINGS	$\begin{align*} & \text { ISC } \\ & \text { USEC } \end{align*}$	IN	SOLUTION	
993	1	OCt	1969	23:45:20.1	38.620 N	22.190 E				65		15	ORIGINAL DATA SOURCE = 5 STATION RECORDINGS	USSC	IN	SOLUTION	
994	20	DEC	1969	14:02:10.0	38.750 N	$22.250 E$		3.10		65		IS	DATA ORTAINED VIA ISC ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
995	30	MAR	1971	19:40:13.3	38.983 N	20.786E		4.70	46	65		15	ORIGINAL DATA SOURCE = 72 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
996	12	JUL	1971	11:51:21.0	39.196 N	20.880E				65		IS	ORIGINAL DATA SOURCE = G STATION RECOPDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
997	12	NOV	1972	03:51:01.7	38.401N	$21.916 E$				65		15	ORICINAL DATA SOURCE = 6 STATION RECORDINGS	USEC	IN	SOLUTION	
998	17	JUL	1973	05:02:44.8	39.249N	20.928E				65		IS	ORIGINAL DATA SOURCE = 5 STATION RECORDINGS	ISC	IN	SOLUTION	
999	20	SEP	1974	00:01:05.6	38.349 N	21.281E				65		IS	ORIGINAL DATA SOURCF = 7 STATION RECORDINGS	USE	IN	SOLUTION	
1000	17	OCT	1974	23:44:37.0	39.385N	21.119f				65		15	ORIGINAL DATA SOURCE = 7 STATION RECORDINGS	USCC	IN	SOLUTION	
1001	23	JUN	1975	10:41:07.0	38.324 N	21.669E		4.20	3	65		15	ORIGINAL DATA SOURCE = 39 STATION RECORDINGS U	USC	IN	SOLUTION	
1002	30	JUN	1975	15:33:32.2	38.328 N	21.680E				65		IS	ORIGINAL DATA SOURCE = 16 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USFD } \end{aligned}$	IN	SOLUTION	
1003	9	SEP	1975	23:56:18.9	38.342 N	21.764E				65		15	ORIGINAL DATA SOURCE = I? STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
1004	14	DFC	1975	03:28:22.8	38.328N	21.701E				65		15	ORIGINAL DATA SOURCE = B STAIION RFCORDINGS	$\begin{gathered} \text { ISC } \\ \text { USEU } \end{gathered}$	IN	SOLUTION	
1005	8	JUN	1966	08:39:00.0	39.300 N	22.10UE		3.60		66		15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = \because STATION RECORDINGS	$\begin{array}{r} \text { ATH } \\ \text { USED } \end{array}$	IN	SOLUTION	
1006	5	MAY	1967	14:50:03.3	39.420 N	21.150 E		4.30	43	66		IS	ORIGINAL DATA SOURCE = 31 STATION RECOROINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
1007	22	JUN	1967	10:58:34.2	39.280 N	20.950 E				66		IS	ORIGINAL DATA SOURCE = 19 STATION RFCORDINGS	USEC	1 N	SOLUTION	

$\begin{aligned} & \text { CAT. } \\ & \text { NO. } \end{aligned}$		Y-MOTE	-YEAR	$\begin{aligned} & \text { TIMESGHT) } \\ & \text { HR-MIN-SEC } \end{aligned}$	LAt	LONG	SL INTEN (MM)	MAG SM	$\binom{\mathrm{H}}{\hline}$	OIS	0	S	LOCAT1ONA	N 0	0 C 0
1040	1	MAY	1967	09:47:40.0	39.460N	21.230E	-		10	67		IS	ORIGINAL DATA SOURCE = ISC 35 STATION RECORDINGS USED	IN	SOLUTION
1041	8	SEP	1967	01:58:35.0	39.500N	21.500 E				67			data obtained via isc ORIGINAL DATA SOURCE = ATH 2 STATION RECOROINGS USED	IN	SOLUTION
1042	29	DEC	1968	05:15:05.0	38.500 N	22.100E		2.80		67			DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = ATH G STATION RECORDINGS USED	IN S	SOLUTION
1043	15	NoV	1969	11:38:01.0	38.600 N	22.2005				67			DATA OBTAINED VIA ISC ORIGINAL OATA SOURCE = ATH 3 STATION RECORDINGS USED	IN	SOLUTION
1044	26	FEB	1970	11:27:58.0	39.500N	21.500 E		3.40		67		15	data obtained via isc ORIGINAL DATA SOURCE = ATH 3 STATION RECORDINGS USED	IN	SOLUTION
1045	11	APR	1970	22:06:22.0	38.900 N	22.300E			48	67		15	ORIGINAL DATA SOURCE $=$ ISC 7 STITION RECORDINGS USED	IN	SOLUTION
1046	18	APR	1970	11:94:04.0	38.300 N	21.600 E		3.40		67		15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = ATH 4 STAIIION RECORDINGS USED	IN	SOLUTION
1047	30	JUN	1970	23:06:19.0	38.700N	20.AOOE				67		15	ORIGINAL DATA SOURCE = ISC S STATION RECORDINGS USED	IN	SOLUTION
1098	2	JUL	1970	01:38:20.6	38.310 N	21.700E				67		15	ORIGINAL DATA SOURCE = ISC G STATION RECORDINGS USED	IN	SOLUTION
1049	25	JUL	1970	14:50:29.9	$38.300 N$	21.440E				67		15	ORIGINAL DATA SOURCE = ISC 4 STATION RECCRDINGS USED	IN	SOLUTION
1050	11	JUN	1971	00:17:14.0	38.400 N	21.100E		3.20		67		IS	OATA OBTABNED VIA ISC ORIGINAL DATA SOURCE $=A T H$ O STATION RECORDINGS USED	IN	SOLUTION
1051	24	Nov	1972	02:42:54.0	38.900N	22.300E		2.50		67		IS	data detainfo via isc ORIGINAL DATA SOURCE = ATH O STATION RECORDINGS USED	IN	SOLUTION
1052	14	SEP	1973	04:57:01.9	$38.967 n$	22.3025				57		Is	ORIGINAL DATA SOURCE $=$ ISC G STATION RECORDINGS USED	IN	SOLUTION
1053	18	nov	1974	19:23:51.6	38.664	20.R1PE				67		15	ORICINAL DATA SOURCE = ISC 1 STATION RECOROINGS USEO	IN	SOLUTION
1054	7	orc	1974	12:14:20.1	38.29.3N	21.559E			3.1	67		15	ORIEINAL DATA SOURCE $=$ ISC ig ©itaticn afcercings usi?	IN	SOLITION

1055	26	MAY	1975	$22: 55: 54 \cdot 2$	38-362N	21.181E
1056	30	JUN	1975	13:42:16*4	38.319N	21.743E
				"	-	
1057	8	AUG	1975	08:20:11.0	$38.379 n$	21.926E
1058	23	SEP	1975	12:35:41.3	$39.071 N$	$22.266 E$
1059	1	JAN	1966	20:12:02.4	39.500 N	21.400
1060	9	AUG.	1966	$20: 20: 48.7$	39.500 N	21.4005
1061	25	DEC	1966	05:54:03.3	38.300N	21.7005
1062	1	MAY	1967	16:40:06.0	39.510 N	21.4605
1063	22	JUN	1967	07:54:20.0	39.500 N	21.4005
	25	JUL	1968	04:16:14.5	$39.500 N$	21.380E
1065	11	SEP	1971	02:03:11.5	38.B69N	22.313E
1066	2	MAR	1972	10:51:50.9	$38.336 N$	21.823E
1067	15	JUN	1972	17:32:57.8	38.407 N	$21.985 E$
1068	8	NOV	1972	19:44:00.5	$38 \cdot 360 N$	21.897E
1069	28	$J A N$	1973	00:09:04.5	$38.623 N$	23.225E
070	15	JUN	1973	03:36:59.0	$38.357 N$	$21.901 E$

1071	30	JUL	1973	18:40:23.5	38.689N	$27.267 E$
1072	5	JAN	1974	08:45:19.7	38.705N	22.274E
1073	31	JAN	1974	08:30:33.4	39.30HN	22-118E
1074	7	AUG	1974	19:33:28.3	38.904N	22-313E
1075	22	NOV	1974	21:44:03.7	38.343	21.852 .5
1076	31	AUG	1975	00:11:13.0	38.324N	21.8095
1077	8	0 CT	1957	07:00:45.0	$39.000 N$	20.7ち0F.
1078	18	OCT	1957	01:50:49.0	38.370N	$21.940 E$
1079	23	FEB	1960	07:18:06.0	39.000N	20.750E
1080	29	NOV	1965	14:34:07.9	39.400N	22.0005
1081	22	AUG	1966	05:20:30.0	$34.500 N$	$21.750 E$
1082	21	OCT	1966	23:48:12.7	$34.400 N$	22.000L
1083	19	FEB	1969	14:33:15.7	38.3104	21.790E
1084	12	APR	1969	08:28:48.0	$38.400 N$	22.000E
1085	8	OCT	1969	02:04:21.8	$38.300 N$	21.7305
1086	19	JUN	1970	06:51:28.0	$38.400 N$	22.000E

CAT. NO.	DAY	OATE $-\mathrm{HO}=$	YEAR	TIME GMT) HR-M1N-SEC	Lat	LONG	SL INTEN (MM)	MAG SM	$\stackrel{H}{(K M)}$	OIS	0	S	LOCATION	A N	$N \mathrm{O}$	D C 0
1087	24	NoV	1972	01:35:27.5	38.833 N	22.319E		4. 20	37	64		15	ORIGINAL DATA SOURCE = 75 STAIION RECORDINGS	USC	IN	SOLUTION
1088	5	NOV	1973	15:59:17.3	38.772N	20.751E				69		IS	ORIGINAL DATA SOURCE = R STATION RECORDINGS	USED	IN	SOLUTION
1089	1	JUL	1974	06:12:49.5	38.913 N	22.327E			36	69		IS	ORIGINAL DATA SOURCE = 13 STATION RECORDINGS	ISC	IN	SOLUTION
1090	14	JUL	1974	20:17:25.5	38.817 N	22.321E		3.70	90	69		IS	ORIGINAL DATA SOURCE = 21 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
1091	24	NOV	1975	00:03:24.2	38.330N	21.844E				69		IS	ORIGINAL OATA SOURCE 7 STATION RECORDINGS	USC	IN	SOLUTION
1092	31	DEC	1975	19:20:14.1	38.327N	21.838 E				69		IS	ORIGINAL DATA SOURCE = 11 STATION RECORDINGS	USC	IN	SOLUTION
1093	23^{\prime}	JAN	1954	20:14:46.0	38.750 N	20.750E	IV			70		15	ORIGINAL DATA SOURCE =	BCIS		
1094	19	mar	1958	18:17:52.0	38.750 N	20.750E	IV			70		15	ORIGINAL DATA SOURCE =	BCIS		
1095	5	May	1962	22:28:24.0	38.750 N	20.750E				70		I S	QUALITY = DATA SOURCE = \qquad	BCIS		
1096	15	JUN	1966	01:30:27.6	38.750 N	20.750E				70			DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
1097	4	JUL	1966	19:23:54.8	38.750N	20.750E				70			DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECOROINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED I } \end{aligned}$	IN	SOLUTION
1098	4	May	1967	04:46:19.1	39.530 N	$21.520 E$		4.40	55	70		IS	ORIGINAL DATA SOURCE = 39 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
1099	3	DEC	1968	02:30:29.0	$39.100 N$	22.300E				70		I S	DATA ORTAINED VIA ISC ORIGINAL DATA SOURCE =	ATH		
1100	19	DEC	1969	08:33:57.1	38.450N	22.090 E			4	70		IS	ORIGINAL DATA SOURCE = 6 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
1101	18	MAR	1970	13:23:13.0	38.300 N	21.300 E				70		IS	ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	ISC	IN	SOLUTION
1102	24	AUG	1972	02:30:45.1	39.413N	22.005E				70		IS	ORIGINAL DATA SOURCE = 4 STATION RECOROINGS	USED I	IN	SOLUTION
1103	12	MAR	1973	15:14:22.3	38.275 n	21.6465				70		15	ORIGINAL DATA SOURCE = 6 STATION RECORDINGS	USEC	IN	SOLUTION

$\begin{aligned} & \text { CAT• } \\ & \text { NO. } \end{aligned}$		$\begin{aligned} & \text { DAT } \\ & \mathbf{Y M O} \end{aligned}$	year	$\begin{aligned} & \text { TIMFIGMT) } \\ & \text { HR-MIN-SEC } \end{aligned}$	LAT	LONS	EL IHTEN	MAG SM	$\left(K{ }_{N}^{H}\right)($	$\left(\begin{array}{ll} 11 \\ (K M) \end{array}\right.$	0		LOCATION	A N D	C 0 M
1104	11	AFR	1973	22:26:41.0	39.237N	20.844E				70			ORIGINAL DATA SOURCE = 7 STAIION RECORDINGS U	USEC IN	SOLUTION
1105	12	SEP	1974	13:50:58.8	39.219 N	22.227E				70		15	ORIGINAL DATA SOURCE = 4 STATION RECORDINGS U	USC IN	SOLUTION
1106	24	MAR	1975	15:19:44.2	39.474N	21.20AE		3.80	53	70		Is	ORIGINAL DATA SOURCE = 2? STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED IN S } \end{aligned}$	SOLUTION
1107	26	JUL	1975	04:13:57.6	38.333 N	21.882E				70		15	ORIGINAL DATA SOURCE = 9 STATION RECORDINGS U	ISC	SOLUTION
1100	7	APR	1960	19:44:41.0	38.500 N	20.900E	v			71		IS	ORIGINAL WATA SOURCE =	BCIS	
1109	3	may	1966	05:01:45.4	39.500 N	21.250 E				71			data obtained via isc ORIGINAL DATA SOURCE = 2 STATION RECORDINGS U	$\begin{aligned} & \text { ATH } \\ & \text { USED IN } \end{aligned}$	SOLUTION
1110	4	JAN	1967	07:24:54.8	38.300 N	21.800E				71			DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	USTH IN	SOLUTION
1111	1	Mar	1967	09:50:08.2	39.510 N	21.3005		4.80	33	71		15	ORIGINAL DATA SOURCE = 110 STATION RECORDINGS U	ISC	SOLUTION
1112	7	Jum	1967	09:30:48.64	39.390N	218000E				71			ORIGINAL DATA SOURCE = ORIGINAL OA AKECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED IN S } \end{aligned}$	SULUTION
1113	1	Aug	1968	15:45:33.0	39.200 N	20.800E		3.60		71			data obtalned via isc ORIGINAL DATA SOURCE = 4 SIATION RECORDINGS U	USED IN	SOLUTION
1114	3	JUL	1969	09:42:02.0	38.410N	22.050E		4.50	28	71		IS	ORIGINAL DATA SOURCE = 71 SIATION RECORDINGS U	USED IN	SOLUTION
1115	8	May	1970	22:10:55.1	38.610 N	22.2605			12	71		15	ORIGINAL DATA SOURCE = 6 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED IN } \end{aligned}$	SOLUTION
1116	12	May	1970	08:53:56.0	38.300 N	21.800E		3.40		11			dATA OETAINED VIA ISC ORIGINAL DATA SOURCE = O STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED IN } \end{aligned}$	SOLUTION
1117	16	SEP	1971	17:56:25.5	38.320 N	21.874E				71		IS	ORIGINAL DATA SOURCE = B STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED IN } \end{aligned}$	SOLUTION
1118	30	Mar	1972	02:39:16:7	39.298N	20.891E				71		15	ORIGINAL DATA SOURCE = 4 SIATION RECORDINGS US	$\begin{aligned} & \text { ISC } \\ & \text { USED IN } \end{aligned}$	SOLUTION
1119	6	JUL	1972	10:48:48.6	39.158 N	20.780E				71			ORIGINAL DATA SOURCE = 4 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED IN } \end{aligned}$	SOLUTION

	71		ORIGINAL DATA SOURCE ${ }^{\text {S }}$ STATI ON RECOROINGS	USCO IN	Solution
	71	Is	ORIGINAL DATA SOURCE	USEC IN	solution
64	71	15	ORIGINAL DATA SOURCE ${ }^{\text {S }}$ STATION RECORDINGS	USEC IN	SOLUTION
	71	15		USED IN	SOLUTION
	71	Is	ORIGINAL OATA SOURCE	USED IN	SOLUTION
	72	15	MAGNITUDE AUTHORITY = ORIGINAL DATA SOURCE =	${ }_{\text {ath }}{ }^{815}$	
	72	Is	original data source =	bCis	
	72	Is	ORIGINAL data source =	beis	
	72	IS	ORIGINAL data source =	bcis	
	72	15	magnitude authority= ORIGINAL OATA SOURCE =	${ }_{\text {ATH }}^{\text {BCIS }}$	
	72		DATA OBTAINED VIA ISC 2.STATION RECORDINGS	USTED IN	SOLUTION
	72	Is	OATA OBTAINED VIAISC ORIGINAL SIATION RECORDINGS	USTH IN	SOLUTİON
	72	Is	ORIGINAL OATA SOURCE ${ }_{\text {S }}$	USED IN	SOLUTION
	72		data obtained viaisc ORIGINAL DATA SOURCE STATION RECORDINGS	USTH IN	SOLUTION
37	72	Is	ORIGINAL DATA SOURCE $=$	USED IN	SOLUTION
A	72	15	ia station recordings ORIGINAL DATA SOURCE =	ISC USED	SOLUTION
7	12		ORIGINAL DATA SOURCE ${ }_{7}$ STATON	USED IN	SOLution

$\stackrel{\$}{s}$

CAT. NO.		$\begin{aligned} & \text { DATE } \\ & \text { Y-MO } \end{aligned}$	YEAR	TIME (GMT) HR-MIN-SEC	LAT	LONG	SL INTEN (MM)	MAG SM	$\stackrel{H}{H}(K$	CIS (KM)	0	S	1 OCATION	A	N	D C 0	MENTS
1137	26	MAR	1970	06:20:18.0	38.900 N	20.700E				72		15	ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
1138	8	may	1970	18:30:42.7	38.670 N	22.300\%		4.40	58	72		15	ORIGINAL DATA SOURCE = 70 STATION RECORDINGS	USC	IN	SOLUTION	
1139	13	APR	1972	06:50:02.8	39.252N	20.837 E				72		15	ORIGINAL DATA SOURCE = 9 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
1140	16	JUN	1973	04:15:11.6	38.393N	22.047E			5	72		IS	ORIGINAL DATA SOURCE = 10 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
1141	24	NOV	1973	01:43:35.6	39.209N	22.264E				72		IS	ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	USC	IN	SOLUTION	
1142	15	JUL	1974	21:14:51.9	$39.116 N$	$22.313 E$				72		15	ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	USC	IN	SOLUTION	
1143	26	JUL	1975	02:45:31.2	$38.304 N$	21.846E		3.80	50	72		15	ORIGINAL DATA SOURCE = 32 STATION RECORDINGS	ISC	IN	SOLUTION	
1144	30	APR	1954	13:02:38.0	$39.300 N$	22:200E	IX	6.87		73		IS	ORIGINAL DATA SOURCE = MAGNITUDE AUTHORITY=	$\begin{aligned} & \text { ISS } \\ & P A S \end{aligned}$			
1145	4	MAY	1954	16:43:20.0	39.300 N	22.200 E	VII			73		15	ORIGINAL DATA SOURCE =	$15 S$			
1146	4	MAY	1954	16:45:27.0	39.300 N	22.200 E	VI			73		1 S	ORIGINAL DATA SOURCE =	1 SS			
1147	25	Mar	1954	22:03:32.0	39.300 N	22.200 E	V I			73		IS	ORIGINAL DATA SOURCE =	1 SS			
1148	24	OCT	1957	22:45:12.0	39.250 N	$22.250 E$	V I			73		15	ORIGINAL DATA SOURCE =	ECIS			
1149	22	JUL	1966	00:55:28.7	38.500 N	22.200E		3.90		73		15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
1150	21	OCT	1966	19:08:01.0	39.250 N	22.250E				73		15	DATA ORTAINED VIA ISC OPIGINAL DATA SOURCE = 2 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
1151	9	JAN	1967	20:34:49.0	39.300 N	$22.200 F$				73		IS	ORIGINAL DATA SOURCE = R SIATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USES } \end{aligned}$	IN	SOLUTION	
1152	22	HOV	1967	07:21:48.0	39.250 N	2.2.250r		3.20		73		15	DATA OETAINED VIA ISC ORIGINAL DATA SOURCE = ? STATION PECORDINGS	$\begin{array}{r} \text { ATH } \\ \text { USED } \end{array}$	IN	SOLUTION	
1153	25	DEC	1967	07:03:56.0	38.500N	22.200E				73		15	DATA OETAIMED VIA ISC ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTIOM	

CAT. NO.			YEAR	TIME(GMT) HR-MIN-SEC	LAT	LONG	SL INTEN (MM)	MAG SM	$\begin{gathered} H \\ (K M) ? \end{gathered}$	D1s KM)	0	S	LOCATION	A N	N	C 0	MENTS
1170	1	NoV	1967	07:04:32.1.	38.370 N	22.040E			A 0	74		15	ORIGINAL DATA SOURCE = S STATION RECORDINGS	USEC	IN	SOLUTION	
1171	11	NoV	1969	22:59:37.0	$38.300 N$	21.900E				74		15	ORIGINAL DATA SOURCE = 6 STATION RECORDINGS	USED	IN	SOLUTION	
1172	3	DEC	1970	11:29:36.9	38.410N	22.100 E				74		IS	ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
1173	2	MAR	1972	07:10:56.5	38.322N	21.954E				74		IS	ORIGINAL DATA SOURCE = 4 SIATION RECORDINGS	USEC	IN	SOLUTION	
1174	3	MAY	1972	12:30:23.0	39.268N	20.815E				74		15	ORIGINAL DATA SOURCE = 8 STATION RECORDINGS	USED	IN	SOLUTION	
1175	27	APR	1973	08:30:02.8	38.827N	22.3A3E				74		15	ORIGINAL DATA SOURCE = \rightarrow STATION RECORDINGS	USSC	IN	SOLUTION	
1176	29	JAN	1974	15:12:44.8	38.290 N	21.R65E		4.40	34	74		15	ORIGINAL DATA SOURCE = 6G STATION RECORDINGS	$\begin{aligned} \text { ISC } \\ \text { USED } \end{aligned}$	IN	SOLUTION	
1177	3	DEC	1974	05:20:39.6	39.155N	20. $\therefore 4 E$				74		15	ORIGINA: DATA SOURCE = 7 S:ATION RECORDINGS	$\begin{array}{ll} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION	
1178	27	MAR	1975	02:24:48.9	38.251N	21.730E			13	74		IS	ORIGINAL OATA SOURCE = 16 STATION RECORDINGS U	USCC	IN	SOLUTION	
1179	27	MAY	1975	07:21:03.0	39.052 N	20.700E				74		IS	ORIGINAL DATA SOURCE = 7 STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
11A0	12	SEP	1975	00:36:43.9	39.434 N	22.038 EF				74		IS	ORTGINAL DATA SOURCE = \rightarrow STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
1181	20	SEP	1975	23:12:19.4	$38.353 N$	22.0095				74		15	ORIGINAL DATA SOURCE = 11 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
1182	3	DEC	1975	19:00:28.4	39.057 N	22.3575.				74		IS	ORIGINAL DATA SOURCE = 13 STATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION	
1183	31	DEC	1975	06:46:26.9	38.26'N	21.749E				74		IS	ORIGINAL DATA SOURCE = 14 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
1184	6	JUL	1925	12:15:55.0	38.250 N	21.750 E		6.50	120	75		IS	OUALITY $=-A A A$ ORIGINAL DATA SOURCE = MAGNITUOT. AUTHORITY =	$\begin{aligned} & \text { GUTE } \\ & \text { PAS } \end{aligned}$			
1185	19	FEB	1960	21:36:08.0	38.25018	21.750 E	v			75		15	ORIGINAL DATA SOURCE =	BCIS			
1186	6	MAY	1963	19:30:29.0	$39.100 N$	20.700E	v	5.10		75		IS	ORIGINAL DATA SOUPCE = MAFNITINF AUTHORITY =	BCIS NUR			

1187	13	JUN	1964	19:09:39.0	$38.250 N$	21.750E
1188	9	JUL	1964	14:41:00.0	38.250 N	21.750E
1189	23	FEB	1965	19:53:58.0	$38.250 N$	$21.750 E$
1190	21	$A P R$	1965	12:48:03.0	38.250 N	21.750E
1191	31	AUG	1966	14:54:15.3	$38.600 N$	22.300E
1192	17	OCT	1967	13:02:26.0	$38.250 N$	21.750F
1193	4	FEB	1968	00:31:13.0	39.090 N	$20.700 E$
1194	18	MAY	1970	01:36:34.0	$38.700 N$	20.700E
1195	25	JUL	1970	17:21:18.0	38.700 O	20.710E
1196	2	OEC	1971	06:00:28.6	$39.281 N$	22.241E
1197	4	MAR	1972	14:41:28.8	$38 \cdot 260 N$	21.798E
1198	10	MAV	1973	04:10:29.0	$38 \cdot 600 n$	22.300E
1199	23	JUL	1973	05:19:16.2	$38.238 N$	21.336E
1200	4	$J A N$	1974	05:36:04.7	$38 \cdot 30 \cap N$	21.139E
1201	24	JUN	2974	10:57:08.9	$39.547 N$	21.761E

 0
3.40

4.30
 BCIS BCIS
ATH
H 1SS IS ORIGINAL DATA SOURCE＝ IS ORIGINAL DATA SOURCE＝ IS DATA OBTAINED VIA ISC
 IS ORIGINAL DATA SOURCE I ISC IN SOLUIION JSi 甘ia ajnivigo viva si USEO IN SOLUTION IS ORIGINAL DATA SOURCE $\overline{\bar{C}}$ ISC IN SOLUTION IS ORIGINAL DATA SOURCE $\overline{=}$ ISC SOCUTION IS ORIGINAL DATA SOURCE＝ISC IN SOLUTION
 IS ORIGINAL DATA SDURCE＝ISC SOLUIION IS ORIGINAL DATA SOURCE $\overline{=}$ ISC $\stackrel{n}{\sim} N$ 75 75
76

76 | \because |
| :--- |
| |
| | \cdots

 $\stackrel{\sim}{\sim}$
$\stackrel{0}{\sim}$

$\stackrel{8}{i}$
22．015E 06：21：58．8 38．271N 21．858E

$$
39.104 \mathrm{~N} \quad 22.358 \mathrm{E}
$$

LAt
CAT．DATE TIME（GMT）
NO：DAY MO－YEAR HR－MIN－SEC

25 MAY 1955
cgsi A甘W sz 20 LI
120830 DEC 1956
12096 MAY 1963 121020 SEP 1964

20：06：32．0
15：42：50．0
06：26：37．9

9961 AON して
9961 530 st
1211
1212

1213

1214
1215
1216
1217
1218

$$
22.385 E
$$

$$
22.039 E
$$

$$
21.250 E
$$

$$
21.100 E
$$

$$
21.250 \mathrm{E}
$$

$$
38.320 \mathrm{~N} \quad 21.990 \mathrm{E}
$$

38.250 N 21.250 E
39.560 N 21.290 E
$39.500 \mathrm{~N} \quad 21.100 \mathrm{E}$
3R．906N 20．650t：
39．582N 21．493E
38．256N 21．825E

IS ORIGINAL DATA SOURCE =
Is OATA ORTAINED VIA USE
IS ORIGINAL DATA SOURCE $=$ IS MAGNITUDE AUTHORITY = IS DATA OBTAINED VIA ISC osi via ajnivibo vivasi

NAN N
ATH IN SOLUTION S9NIOYOJJy NOIHY1S is data obtained via isc

USED IN SOLUTION
IS ORIGINAL DATA SOURCE = ATH IN SOLUTION IS ORIGINAL DATA SOURCE = ISC

USED in SOLUTION
IS DATA OHTAINED VIA ISC ATH USED IN SOLUTION

IS DATA OGTAINED VIARISC ATH
5 Station recordings used in solution
USED IN SOLUTION USED IN SOLUTION USTH IN SOLUTION

 DATA OATAINED VIA ISC
ORIGINAL DATA SOURCE
GIATM is origimal data source is data obtained via isc OATA OBTAINED VIA
ORIGINAL DATA SOURE
GSIATIONRECROINGS is ongoimat oata sourco is original data source or parin peconoinos

1219	4	DEC	1954	22:56:29.0	38.500 N	20.800E				77	IS	ORIGINAL DATA SOURCE =	BCIS		
1220	11	NOV	1960	05:31:31.9".	39.300N	20.800F.			43	77	IS	DATA ORTAINED VIA USE ORIGINAL DATA SOURCE =	CGS		
1221	10	JAN	1962	02:11:50.0 ${ }^{\text {- }}$	$38.500 N$	$22.250 E$	V I	4.63		77	15	ORIGINAL DATA SOURCE \Rightarrow MAGNITUDE AUTHORITY=	$\begin{aligned} & \text { BCIS } \\ & \text { ATH } \end{aligned}$		
1222	17	SEP	1964	22:51:57.0	38.500N	22.250E				77	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 5 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
1223.	18	SEP	1964	04:00:44.0	38.500 N	$22.250 E$				77	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	$\begin{array}{r} \text { ATH } \\ \text { USED } \end{array}$	IN	SOLUTION
1224	16	OCT	1964	11:22:04.0	38.500 N	22.250E		4.70		77	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE $=$	USEH	IN	SOLUTION
1225	19	JAN	1965	04:35:00.0	$38.500 N$	$22.250 E$				77	15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
1226	31	MAR	1965	12:01:11.7	38.470 N	22.2305		4.60	78	77	1 S	ORIGINAL DATA SOURCE 27 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
1227	13	JUL	1965	04:14:35.4	38.500 N	22.2505				77	IS	DATA OHTAINED VIA ISC ORIGINAL DATA SOURCE = 2 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
1228	26	AUG	1965	08:59:34.0	$38.500 N$	$22.250 E$		3.40		77	15	DATA OGTAINED VIA ISC ORIGINAL DATA SOURCE = 5 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
1229	5	MAR	1966	20:47:29.0	38.500 N	22.250E				77	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
1230	5	MAY	1967	20:18:32.0	$39.560 N$	21.250E			20	77	IS	ORIGINAL DATA SOURCE = 19 STATION RECORDINGS	USEC	IN	SOLUTION
1231	5	AUG	1967	15:17:58.0	$39.300 N$	20.800E				77	1 S	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
1232	16	JUL	1970	22:29:40.0	$39.300 N$	20.800F				77	I S	ORIGINAL OATA SOURCE = S STATION RECDRDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
1233	22	FEB	1972	16:15:38.0	38-421N	220169E			37	77	I S	ORIGINAL DATA SOURCE = 1\% 'IGIITV PECOROINGS	$\begin{aligned} & \text { ISC } \\ & \text { USE: } \end{aligned}$	IN	SOLUTION

78	15	OATA OETAINED VIA ISC ORIGINAL DATA SOURCE = O STATION RECORDINGS	ATH	IN	SOLUTION				
78	IS	ORIGINAL OATA SOURCE = 7 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION				
78	IS	ORIGINAL DATA SOURCE = 10 STATION RECORDINGS	USED	IN	SOLUTION				
78	15	ORIGINAL DATA SOURCE = 17 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION				
78	15	ORIGINAL DATA SOURCE = 6 STATION RECOROINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION				
78	IS	ORIGINAL DATA SOURCE = 37 STATION RECORDINGS	USEC	IN	SOLUTION				
78	I S	ORIGINAL DATA SOURCE = 11 STATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION				
78	IS	ORIGINAL DATA SOURCE = 9 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTIDN				
78	IS	ORIGINAL DATA SOURCE $=$ 40 STATION RECORDINGS	USEC	IN	SOLUTIDN				
18	15	ORIGINAL DATA SOURCE = 5 STATIDN RECOROINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION				
79	15	ORIGINAL DATA SOURCE =	RCIS						
79	15	ORIGINAL DATA SOURCE =	BCIS						
79	IS	ORIGINAL DATA SOURCE = 45 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUYIDN				
79	15	DATA ORTAINED VIA ISC ORIGINAL DATA SOURCE = 4 GTATIDN RECORDINGS	$\begin{aligned} & \text { ATH } \\ & \text { USET } \end{aligned}$	IN	SOLUTION				
79	15	$\begin{gathered} \text { ORIGINAL DATA SOURCE = } \\ 5 \text { STATION RECORDINGS } \end{gathered}$	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION				
79	15	ORIGINAL DATA SOURCE = G STATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USES } \end{array}$	IN	SOLUTION				
79	IS	$\begin{aligned} & \text { ORIGINAL DATA SOURCE } \overline{\bar{Z}} \\ & \text { GTATION RFCORDINGS } \end{aligned}$	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION		∞	5	0
:---	:---	:---							
	0	0	4.20						

4.10
4.40
3.00 E

1267	23	MAR	1973	03:37:59.0	$38.300 N$	22.000E
1268	17	NOV	1973	11:04:57.3	$39.515 N$	21.105%
1269	20	MAR	1974	04:34:41.4	$39.110 N$	$22.390 E$
1270	28	JUL	1974	05:37:41.7	$38.406 N$	22.174E
1271	11	AUG	1974	10:41:06.4	38.689N	22.387E
1272	30	SEP	1974	08:23:00.1	$38 \cdot 312 N$	22.018E
1273	31	JAN	1975	$23: 17: 48 \cdot 7$	38.8504	20.639E
1274	4	AUG	1975	06:56:50.1	38.215N	21.730F
1275	16	OCT	1975	17:45:49.3	$38.277 N$	21.94GE
1276	23	NOV	1975	07:33:39.4	$38.331 N$	22.05 HF.
1277	24	AUG	1952	15:19:32.0	$39.100 N$	22.400E
1278	16	STP	1953	12:03:50.0	$38 \cdot 600 N$	20.700E
1279	2	MAY	1967	01:27:20.4	39.560 N	$21.200 E$
1280	5	FEB	1968	07:22:27.0	$38.700 N$	$22.400 E$
1281	17	AUG	1970	11:05:58.0	$38.200 N$	$21.400 E$
1282	1	$\triangle P R$	1972	01:45:02.4	$39.235 N$	20.729F
1283	16	FEE	1973	15:54:05.7	$39.06: N$	22.413E

$\begin{aligned} & \text { CAT } \\ & \text { NO. } \end{aligned}$		$\begin{aligned} & \text { DAT } \\ & \hline-\operatorname{MO} \end{aligned}$	YEAR	TIME (GMT) HR-MIN-SEC	LAT	LONG	SL INTEN (MM)	$M A G \quad S M$	$\begin{gathered} \stackrel{H}{M}) \\ \left(K^{\prime}\right. \end{gathered}$	UIS KM)	0	S	LOCATION	A N	D C 0	M $\mathrm{N}^{\text {T }}$
1301	12	NOV	1974	00:26:06.8	38.743N	20.6325				80		IS	ORIGINAL DATA SOURCE = 7 STATION RECOROINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	SOLUTION	
1302	31	MAY	1975	06:00:18.6	39.430N	20.910E				80		IS	ORIGINAL DATA SOURCE = 7 STATION RECORDINGS U	USEC	SOLUTION	
1303	15	SEP	1975	06:08:23.9	38.265N	21.964F				80		1 S	ORIGINAL DATA SOURCE = B STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	SOLUTION	
1304	11	MAR	1938	14:50:55.0	$38.800 N$	20.600 E				81		15	ORIGINAL DATA SOURCE =	1 SS		
1305	13	MAR	1938	17:45:32.0	38.800 N	20.600E				81		15	ORIGINAL DATA SOURCE =	ISS		
1306	22	JUL	1943	07:09:28.0	$38.800 N$	20.600 E				81		IS	ORIGINAL DATA SOURCE =	ISS		
1307	8	JAN	1945	22:42:12.0	$38.800 N$	20.600E				81		IS	ORIGINAL DATA SOURCE =	ISS		
1308	21	NOV	1948	01:43:28.0	$38.800 N$	20.600E				81		IS	ORIGINAL DATA SOURCE =	ISS		
1309	21	APR	1948	23:42:42.0	38.800 N	$20.600 E$				81		IS	ORIGINAL DATA SOURCE =	$15 S$		
1310	22	APR	1948	10:42:45.0	38.800 N	20.600E				81		IS	ORIGINAL DATA SOURCE =	ISS		
1311	30	JUN	1948	12:21:13.0	38.800 N	20.600E				81		15	ORIGINAL DATA SOURCE =	ISS		
1312	26	JUN	1949	05:42:20.0	$38.800 N$	20.6005				81		IS	ORIGINAL DATA SOURCE =	ISS		
1313	9	JAN	1951	00:27:58.0	38.800 n	20.6005	IV			81		IS	ORIGINAL DATA SOURCE =	$15 S$		
1314	16	JAN	1951	12:36:09.0	38.800N	20.600E	IV			81		IS	ORIGINAL DATA SOURCE =	ISS		
1315	14	SEP	1953	14:56:10.0	38.300 N	21.000E	VII	5.75		81		IS	ORIGINAL DATA SOURCE = MAGNITUDE AUTHORITY =	BCIS		
1316	14	SEP	1953	16:13:54.0	38.300 N	21.000 E				A 1		IS	QUALITY $=$ REPT ORIGINAL DATA SOURCE =	BCIS		
1317	15	SEP	1953	11:34:26.0	38.500N	20.750 E	IV			81		IS	ISC EFFECTS CODE = FELT DUALITY = REPT ORIGINAL OATA SOURCE =	BCIS		
1318	15	SEP	1953	11:37:57.0	38.500 N	20.750 E	IV	5.3A		81		IS	ISC EFFECTS CODE = FELT QUALITY = REPT ORIGINAL DATA SOURCE = MAGNITUDE. AUTHORITY=	$\begin{aligned} & \text { BCIS } \\ & \text { ATH } \end{aligned}$		
1319	9	OCT	1353	17:31:32.0	38.3010 N	21.000 F				81		IS	$\begin{aligned} & \text { QUALITY F FRSH } \\ & \text { ORIGINAL DATA SOURCE = } \end{aligned}$	BCIS		
1320	10	OCT	1953	21:29:13.0	$38.300 N$	21.000F	V I			R 1		IS	OATA ORTAINED VIA ISS ORIGI.AI. !ATA SOURCE =	STH		

81	1s	ORIGINAL DATA SOURCE $=$ magnitude authoritr =	$\underset{\text { ATH }}{\text { BCIS }}$	
81	Is	original data source =	bCis	
81	IS	original data sounce =	日cts	
A1	Is	ORIGINAL data source =	BCIS	
81	Is	original data source	BCis	
81	Is	QUALITY ORIGINAL DATAPRXOURCE $=$	BCis	
81	Is	DATA OBTAINED VIABBCIS ORIGINAL DATA SOURCE MAGNITUDE AUTHORITY $=$	MOS	
${ }^{81}$	Is	original data source =	bcis	
81	15	magnitude authority = ORIGINAL DATA SOURCE =	${ }_{\text {ATH }}^{8 C I S}$	
81	15	OATA OBTAINED VIA ISC ORIGINAL DATA SOURCE	USTH	SOLUTION
${ }^{81}$		DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE	USTH	SOLUTION
A1		OATA OBTAINED VIAISC ORIGINALDAN STATION RECORDINGS	USTH	SOLUTION
${ }^{81}$	I	DATA OBTAINED VIA ISC 3 Station ricordings	$\begin{aligned} & \text { UTH } \\ & \text { USED } \end{aligned}$	SOLUTION
81		DAIA OBIAINED VIAAISC 2 Station recopoings	$\begin{aligned} & \text { UTH } \\ & \text { USEO I } \end{aligned}$	SOLUTION
81		ORIGINAL DATA SOURCE $=$	USE I	SOLUTION
81	Is	ORIGINAL DATAGOURCE atation arcording	USED	solution
81		DATA OBTAINED VIAAISC	A1. ${ }^{\prime}$	

B1 IS ORIGINAL OATA SOURCE $=$ ISC
in solution
in solution

IS ORIGINAL DATA SOURCE $=$ ISC

IS ORIGINAL DATA SOURCE $=15 C$ SOLUTION
IS ORIGINAL OATA SOURCE = ISC IN SOLUTION

in solution
IS ORIGINAL DATA SOURCE $=$ I ISC IN SOLUTION
in solution
in solution

1 SC
SEE

mas sm H ris
LONG SL INTEA
LAT LONG
CAT. DATE TIMEIGMT
NO. OAY-MO-YEAR HR-MIN-SEC

1338	24	JUL	1969	00:41:24.4	38.210N	21.8405
1339	17	FEB	1970	04:53:32.0	39.500 N	21.000E
1340	24	OEC	1970	04:43:05.0	38.290N	22.0305
1341	2	FEB	1973	06:59:47.8	38.580N	20.6915
1342	5	AUG	1974	04:36:13.0	38.400n	22.200E
1343	11	JUL	1975	11:36:41.0	38.200 N	21.800E
1344	26	JUL	1975	03:23:10.7	38.215N	21.4.5F
1345	30	Nov	1975	07:07:44.1	39.486N	22.083E
1346	2	DEC	1975	13:57:31.0	38.266 ${ }^{\text {i }}$	22.001E
1547	28	FEB	1968	04:36:19.3	38.320 N	22.120E
1348	2	OCT	1969	23:13:40.6	38.470N	22.2905
1349	8	MAR	1972	08:21:36.3	38.176N	21.703E
1350	4	JUL	1972	20:44:47.6	39.290N	20.727E
1351	18	DEC	1972	05:46:10.4	38.569N	22.377E
1352	25	Jun	1974	02:23:15.6	38.629N	20.632E
1353	11	JUL.	1974	00:43:21.8	38.213N	21.880 F

$B-98$

$\begin{aligned} & \text { CAT } \\ & \text { NO. } \end{aligned}$		DATE P－MO	Y EAR	$\begin{aligned} & \text { TIME GMT) } \\ & H R-M I N-S F . C \end{aligned}$	LAT	LONS	SL INIEN （MM）	MAS SM	$\left(K^{\prime \prime}\right)($	$\text { (IIS } 0$	\checkmark	L O C A T O N	A	$N \mathrm{D}$	D C OM	M E NT
1354	11	DEC	1974	17：39：56．0	38.538 N	22．34AE			9	82	15	ORIGINAL DATA SOURCE＝ 9 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
1355	21	APR	1975	10：03：50．9	$38.273 N$	22．023E				82	15	ORIGINAL DATA SOURCE＝ 7 STATION RECORDINGS U	USED	IN	SOLUTION	
1356	20	JUL	1975	15：53：19．4	$38.167 n$	21.6805			3	A2	1%	ORIGINAL DATA SOURCE＝ B STATION RECORDINGS	USC	IN	SOLUTION	
1357	4	MAR	1953	15：30：36．0	38.250 N	22.000 E	VII			B3	15	ISC EFFECTS COOE＝FELT ORIGINAL JATA SOURCE＝	BCIS			
1358	8	JAN	1955	07：52：58．0	39.500 N	22．100E	VII	5．75		83	IS	ORIGINAL DATA SOURCE＝ MAGNITUDE AUTHORITY＝	BCIS			
1359	26	MAY	1959	18：01：11．0	3R．300N	22．100E	V			83	IS	ORIGINAL DATA SOURCE＝	BCIS			
1300	5	NOV	1960	20：20：48．0	39.090 N	20.600 E				A3	15	ORIGINAL DATA SOURCE＝	1SS			
1361	17	MAR	1963	14：17：23．0	39.400 N	20．RenE			56	83	1 S	ORIGINAL DATA SOURCE＝	ISS			
1362	24	May	1966	07：33：54．4	39.280 N	20．700E				83	15	ORIGINAL DATA SOURCE＝ 7 STATYON RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
1363	9	AUG	1966	22：00：27．1	39.600 N	21．200E				B3	15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE＝ 4 SIATION RECORDINGS U	$\begin{aligned} & \text { ATM } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
1364	30	AUG	1967	11：57：58．0	39.600 N	21．200E		3.60		83	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE＝ 5 STATION RECOROINGS U	ATH USED	IN	SOLUTION	
1365	22	Mar	1969	18：42：25．4	38.170 N	21．760E				83	15	ORIGINAL DATA SOURCE＝ 7 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTJON	
1366	30	JUN	1970	22：15：13．8	38．820N	$20.580 F$.		4.20		83	IS	ORIGINAL DATA SOURCE＝ 38 SIATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USEO } \end{array}$	IN	SOLUTION	
1367	11	JUL．	1970	23：29：19．6	$38.860 N$	20．5705		4.50	36	83	IS	ORIGINAL OATA SOURCE＝ 7́̂ STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USEO } \end{aligned}$	IN	SOLUTION	
1368	1	SEP	1972	09：37：01．5	38．868N	20．576E				83	15	ORIGINAL DATA SOURCE＝ f．STATION RECORDINGS	ISC	IN	SOLUTION	
1369	31	OCl	1972	11：30：54．2	38．312N	22．1205		4.00	6,4	83	IS	ORIGINAL DATA SOURCE＝ 22 SIATION RECORDINGS	USED	IN	SOLUTION	
1370	1	STP	1973	15：20：02．1	38．691N	22．4515				93	15	ORIGINAL DATA SOURCE＝ 4 TITAIION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	

$\begin{aligned} & \text { CAT } \\ & \text { NO. } \end{aligned}$		DATE P－MO	Y EAR	$\begin{aligned} & \text { TIME GMT) } \\ & H R-M I N-S F . C \end{aligned}$	LAT	LONS	SL INIEN （MM）	MAS SM	$\left(K^{\prime \prime}\right)($	$\text { (IIS } 0$	\checkmark	L O C A T O N	A	$N \mathrm{D}$	D C OM	M E NT
1354	11	DEC	1974	17：39：56．0	38.538 N	22．34AE			9	82	15	ORIGINAL DATA SOURCE＝ 9 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
1355	21	APR	1975	10：03：50．9	$38.273 N$	22．023E				82	15	ORIGINAL DATA SOURCE＝ 7 STATION RECORDINGS U	USED	IN	SOLUTION	
1356	20	JUL	1975	15：53：19．4	$38.167 n$	21.6805			3	A2	1%	ORIGINAL DATA SOURCE＝ B STATION RECORDINGS	USC	IN	SOLUTION	
1357	4	MAR	1953	15：30：36．0	38.250 N	22.000 E	VII			B3	15	ISC EFFECTS COOE＝FELT ORIGINAL JATA SOURCE＝	BCIS			
1358	8	JAN	1955	07：52：58．0	39.500 N	22．100E	VII	5．75		83	IS	ORIGINAL DATA SOURCE＝ MAGNITUDE AUTHORITY＝	BCIS			
1359	26	MAY	1959	18：01：11．0	3R．300N	22．100E	V			83	IS	ORIGINAL DATA SOURCE＝	BCIS			
1300	5	NOV	1960	20：20：48．0	39.090 N	20.600 E				A3	15	ORIGINAL DATA SOURCE＝	1SS			
1361	17	MAR	1963	14：17：23．0	39.400 N	20．RenE			56	83	1 S	ORIGINAL DATA SOURCE＝	ISS			
1362	24	May	1966	07：33：54．4	39.280 N	20．700E				83	15	ORIGINAL DATA SOURCE＝ 7 STATYON RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
1363	9	AUG	1966	22：00：27．1	39.600 N	21．200E				B3	15	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE＝ 4 SIATION RECORDINGS U	$\begin{aligned} & \text { ATM } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	
1364	30	AUG	1967	11：57：58．0	39.600 N	21．200E		3.60		83	IS	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE＝ 5 STATION RECOROINGS U	ATH USED	IN	SOLUTION	
1365	22	Mar	1969	18：42：25．4	38.170 N	21．760E				83	15	ORIGINAL DATA SOURCE＝ 7 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTJON	
1366	30	JUN	1970	22：15：13．8	38．820N	$20.580 F$.		4.20		83	IS	ORIGINAL DATA SOURCE＝ 38 SIATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USEO } \end{array}$	IN	SOLUTION	
1367	11	JUL．	1970	23：29：19．6	$38.860 N$	20．5705		4.50	36	83	IS	ORIGINAL OATA SOURCE＝ 7́̂ STATION RECORDINGS U	$\begin{aligned} & \text { ISC } \\ & \text { USEO } \end{aligned}$	IN	SOLUTION	
1368	1	SEP	1972	09：37：01．5	38．868N	20．576E				83	15	ORIGINAL DATA SOURCE＝ f．STATION RECORDINGS	ISC	IN	SOLUTION	
1369	31	OCl	1972	11：30：54．2	38．312N	22．1205		4.00	6,4	83	IS	ORIGINAL DATA SOURCE＝ 22 SIATION RECORDINGS	USED	IN	SOLUTION	
1370	1	STP	1973	15：20：02．1	38．691N	22．4515				93	15	ORIGINAL DATA SOURCE＝ 4 TITAIION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION	

"

\qquad is ISC EFFECTS COOE F FELT $\begin{aligned} \text { ORIGINAL OATA SOURCE } & =\text { BCIS } \\ \text { IS ORIGINAL DATA SOURCE } & =\text { BCIS }\end{aligned}$ BCIS is original data source $=$ ISS SSI＝ヨכצnos vivo ivnigito SI
 B3 IS ORIGINAL DATA SOURCE osi via ounivito vivo si DATA ORTAINED VIAGISC
ORIGINAL DATA SOURCE
4 STATION RECORDINGS is data obtained viairsc in solution

ORIGINAL DATA SOURCE $=$ ATH IS ORIGINAL DATA SOURCE＝ISC USED IN SOLUTION IS ORIGINAL DATA SOURCE SAISISC IN SOLUTION IS ORIGINAL OATA SOURCE
 IS ORIGINAL DATA SOURCE $=1$ ISC 22 siation recordings used in solution I．ORIGINAL SATION RECORDINGS USED IN SOLUTION £ $\underset{\infty}{\boldsymbol{\infty}}$ © \approx \because $\stackrel{m}{\infty}$ － ${ }_{\infty}^{\infty}$ $\underset{\infty}{\infty}$ $\underset{\infty}{m} \underset{\sim}{\infty}$ $\stackrel{\leftarrow}{n}$ $\stackrel{*}{s}$

\cdots MAGNITUDE AUTHORITY $=$
IS ORIGINAL DATA SOURCE $=$

人 った

3．6io
$\begin{array}{lll}\underset{\sim}{E} & E \\ \vdots & E \\ \dot{\sigma} & \vdots\end{array}$

84	IS	ORIGINAL DATA SOURCE = 9 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
84	IS	ORIGINAL DATA SOURCE = STATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
84	15	ORIGINAL DATA SOURCE = 12 STATION RFCORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	$1 N$	SOLUTION
84	\$ \$	ORIGINAL DATA SOURCE $=$ 7 STATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
84	1 S	DATA OBTAINED VIA ISC ORIGINAL DATA SOURCE = O STATION RECORDINGS	USED	1 N	SOLUTION
84	IS	ORIGINAL DATA SOURCE = E STATIDN RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	IN	SOLUTION
84	IS	ORIGINAL DATA SOURCE = 8 STATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
84	15	ORIGINAL DATA SOURCE = 4 STATION RECORDINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
84	15	ORIGINAL DATA SOURCE = 7 STATION RECOROINGS	$\begin{array}{r} \text { ISC } \\ \text { USED } \end{array}$	IN	SOLUTION
85	15	DATA OBTAINED VIA USE ORIGINAL DATA SOURCE =	CGS		
85	I S	$\begin{aligned} & \text { QUALITY }=\text { APRX } \\ & \text { ORIGINAL DATA SOURCE }= \end{aligned}$	BCIS		
85	I S	DATA OBTAINEO VIA ISS ORIGINAL DATA SOURCE =	ATH		
85	IS	DATA OEIAINED VIA ISS ORIGINAL UATA SOURCE =	STR		
85	15	DATA OBTAINED VIA USE REPORTED FELT INFORMAT ORIGINAL DATA SOURCE =	ON CGS		
85	IS	ORIGINAL DATA SOURCE =	ISS		
85	1.	DATA OHTGINED VIA ISC ORIGINAL DATA SOURCE = 4 STATION RECORUINGS	USTH	1 N	SOLUTION

EARTHQUAKE CATALOG, PORTO COLOMBIA RESERVOIR

OMMENTS

AD

$$
141 \quad 15
$$

$$
\begin{aligned}
& \text { LAS } \\
& \text { SOS SOLUTIJV }
\end{aligned}
$$

DISTANCE CATALOG, ALMENDRA (TORMES) RESERVOIR

34	15	ORIGINAL DATA SOURCE =	BCIS	
34	IS	$\begin{aligned} & \text { QUALITY }=\text { REPT } \\ & \text { ORIGINAL OATA SOURCE }= \end{aligned}$	BCIS	
34	15	$\begin{aligned} & \text { QUALITY }=\text { REPT } \\ & \text { ORIGINAL DATA SOURCE }= \end{aligned}$	BCIS	
72	IS	ORIGINAL DATA SOURCE = 6 STATION RECORDINGS	$\begin{aligned} & \text { ISC } \\ & \text { USED } \end{aligned}$	SOLUTION
89	IS	QUALITY $=$ APRX ORIGINAL DATA SOURCE =	BCIS	
104	IS	data obtained via isc ORIGINAL DATA SOURCE = O STATION RECORDINGS	USED I	SOLUTION
110	IS	oata oftained via isc ORIGINAL OATA SOURCE = o STAIIION RECORDINGS	USED	SOLUTION
143	IS	data obtained via isc ORIGINALDATA SOURCE $=\overline{\bar{S}}$	USDD II	SOLUTION
143	15	data obtained via isc OR $\frac{1}{3}$ GINAL DATATION RECORDCE	MOD	SOLUTION
159	15	data ortained via isc ORIGINAL DATA SOURCE = O STATION RECORDINGS	USED	SOLUTION

164	IS	JQIGINAL DATA S	SOUPCE＝	$15 S$
40	15	JPIGIVAL DATA S	SJJマCE＝	ISS
40	15	OZIGINAL DATA S	SOURCE＝	ISS
111	15	OマIGIVAL JATA S	SJURCE＝	ISS
109	IS	JRIGINAL DATA S	SOURCE＝	$15 S$
65	1 S	DATA OBTAIVED ORIGIVAL JATA		CSS
99	15	ORIGINAL DATA S	SOURCE＝	1SS
99	15	JRIGINAL DATA MAGNITUDE AUTHO	SJURCE＝ OPITY＝	$\begin{aligned} & \text { BCIS } \\ & M O S \end{aligned}$
152	15	DATA OBTAINED ORIGINAL OATA MAGNITUDE AUTHO	$\begin{aligned} & \text { VIA BCIS } \\ & \text { SOURCE = } \\ & \text { OZITY= } \end{aligned}$	MOS MOS
169	IS	JATA OBTAINED ORIGINAL DATA	$\begin{aligned} & \text { VIA USE } \\ & \text { SOJRCE }= \end{aligned}$	CGS
169	15	ORIGIVAL DAYA S	SJJPCE＝	BCIS
144	15	OQIGIVAL OATA S	SJJ7CE $=$	BCIS
144	15	DATA OBTAINED OPIGIVAL JATA		MOS
87	I S	DATA OBTAINED OPIGINAL DATA	VIA USE SJJPCE＝	CGS
112	IS	OTIGIVAL DATA S	SJJVCE＝	IS S
91	IS	DATA J3TAIVEJ ORIGIVAL DATA		CGS
71	15	JRIGIVAL DATA S	SOURCE＝	9こIS
91	15	DATA OBTAINEJ JRIGINAL DATA		MOS
91		$\begin{aligned} & \text { QJAGITY }=\text { QEP } \\ & \text { ORIGINAL DATA } \end{aligned}$	$\begin{aligned} & \text { PT } \\ & \text { SOJPCE }= \end{aligned}$	BCIS
100	IS	DATA OBTAINED JQIGINA！OATA		MOS

REPJZTEJ FELT INFJRMATION
ORIGINAL DATA SOURCE $=$ SHL
MAGNITUDE AUTHSRITY $=$ TUL

$$
\underset{\boldsymbol{N}}{\mathbf{N}}
$$

NOIIVW甘CJAI ITJy CSIとOdJV SI UEl

 $\stackrel{n}{\square}$

詻

10:23:32.0 36.000N 49.500E
10:23:37.0 35.900N 50.300E
 Ξ
10:23:30.0 36.800N 49.700E

$$
50.070 \mathrm{E}
$$

$$
13 \text { oct } 1952^{\circ} 10: 23: 40.0 \text { 35.000N } 50.000 \text { E }
$$

$$
2 \text { DEC } 1962 \text { 22:12:14.0 35.700N 50.000E }
$$

$$
2 \text { DEG } 1962 \text { 22:21:20.0 35.700N 50.000E }
$$

$$
2 \text { DEC 1962 23:36:35.0 35.700N 50.000E }
$$

$$
27 \text { Jav 1963 19:35:20.0 }
$$

$$
27 \text { JaV 1963 19:35:20.0 37.000N 48.400E }
$$

$$
\begin{array}{rllll}
24 \text { MAQ } 1953 & 12: 43: 58.0 & 37.000 \mathrm{~N} & 48.000 \mathrm{E} \\
29 \text { MAY } 1963 & 10: 32: 50.0 & 35.700 \mathrm{~N} & 49.600 \mathrm{E} \\
\text { 8 FE } 1964 & 06: 28: 27.5 & 37.100 \mathrm{~N} & 51.040 \mathrm{E} \\
15 \text { MAY } 1964 & 01: 55: 08.0 & 35.760 \mathrm{~N} & 49.850 \mathrm{E}
\end{array}
$$

IS DATA JBTAINEG VIA JCIS 35127 IS JRIGINAL DATA SOURCE＝ISS IS JATA JBTAINET VIA BCIS IS ORIGINAL DATA SOJREE＝BCIS IS ORIGINAL DATA SOUFCE $=$ BCIS
MAGNITUDE AUTHOZITY $=$ MSS IS TRIGINAL JATA SJUQEE $=$ BCIS IS OZIGINAL DATA SOUZCE STATISC IS ORIGINAL DATA SOURCE＝
IS DATA JBTANED VIA BCIS
DZIGIVA DATA SOJCE IS DATA OATAIVED VIA BCIS DS DTA OATAIVED VIA BCIS
JQIGINALSATA SJJRE
MAGNITUDE AJTHJRITV＝ IS OZIGINAL DATASOUZCE 5.25
5.50
5.20
5.70
5.50
5.00
5.30
5.70
4.30
4.60 in V 10：23：30．0 36．000N 49．500E
\square
~
~ $\%$
\%
\circ
47
48
49

DISTANCE CATALOG, SEFID RUD RESERVOIR

∞	m
m	m
m	m

42148
59150
402

160

 IS JATA JSTAINEJ VIA GCIS MJSin solution ห"
IS ORIGIVAL DATA SOJZCE =ISC IS JATA OBTAINED VIA BCIS MOS 7.75163 IS ISC EFFECTS CODE $=010100$
 BCIS cas IS JRIGIVAL Jata souza is oarginal data souzce is JATA OBTAIVED VIA JSE

[^0]: a The conditional probability of a state is shown in parentheses.

[^1]: ${ }^{\text {a }}$ The conditional probability of a state is shown in parentheses.

[^2]: ${ }^{\text {a }}$ Numbers in parentheses refer to the data set on deep and very deep reservoirs. Numbers not in parentheses refer to the deep, very deep, and/or very large reservoir data set.

[^3]: ${ }^{\text {a }}$ Eight degrees of freedom are associated with each test. A statistic greater than 13.4 is significant at the 90 percent level and greater than 15.5 is significant at the 95 percent level.
 $\mathrm{b}_{\text {Not }}$ analyzed because of lack of data.

[^4]: ${ }^{\text {a }}$ The numbers not in parentheses are based on the deep, very deep and/or very large data set. Conditional probabilities (in parentheses) are based on deep and very deep data only.

[^5]: a Likelihood ratios (in parentheses) refer to deep and very deep

[^6]: agased on deep and very deep data set.

[^7]: ${ }^{\text {a }}$ Shallow reservoirs disallowed.

[^8]: a Accepted and questionable cases of RIS
 b Faults having displacement in the present tectonic stress regime
 c Field reconnaissance studies

[^9]: *a $=$ primary data, text
 $\mathrm{N}=$ primary data, numerical value case $=$ primary data, specific term

[^10]: DAM NAME : Kinarsani
 RESERVOIR NAME : Kinarsani

[^11]: DAM NAME : Lake de Smet
 RESERVOIR MAME
 LOCATION OF CE
 PROVINCE OR REGI
 DAM TYPE : Earth
 ORIENTATION OF RESERVOIR: SE
 RESERVIIR DEPTH COMPUTED FROM D
 MAXIMUM VOLUME OF RESERVOIR 9.7
 URFACE AREA OF RESERVOIR : 9.
 LONGEST DIMENSION OF RESERVOIR
 REGIONAL STRESS REGIME: Extensional
 GEQLOGY REFERENCES : 107

[^12]: GEQLOGY REFERENCES : 106. 289

[^13]: gealogy references : 107

[^14]: GEMERAL NOTES : Influcence of reservoir on seismicity not strongly established. Post-impoundment seismicity may be recognized only
 because of increased netword coverage.
 GEOLOGY REFERENCES : 79, 106, 203, 289, 404

[^15]: PREDOMINANT FAULT TYPE: Right-silip

 N4OW ta N6SW (); San Andreas N4SN to NESW
 LOCATION OF RESERVDIR IN RELATION TO FAULTS: Between San Gabrial fault and San Andreas fault MAME OF Closest known fault : San Gabriel

 AGE OF MOST RECENT DISPLACEMENT ON CLOSEST KNOWN FAULT : Pliocene QEOLOGY REFERENCES : 10日, 121,235,274

[^16]: EXFECTED FLUCTUATIONS BASED ON PRIMARY USE : Hydropower

[^17]: 289 Try: Metamorph

[^18]: $B-60$

