

Martin H. Trauth

MATLAB
®
 Recipes for Earth Sciences

Martin H. Trauth

MATLAB
®
 Recipes

for Earth Sciences

Second Edition

With text contributions by
Robin Gebbers and Norbert Marwan
and illustrations by Elisabeth Sillmann

With 95 Figures and a CD-ROM

Privatdozent Dr. rer. nat. habil.
M.H. Trauth
University of Potsdam
Department of Geosciences
Karl-Liebknecht-Str. 24
14476 Potsdam
Germany

E-Mail:
trauth@geo.uni-potsdam.de

Copyright disclaimer

MATLAB
®
 is a trademark of The MathWorks, Inc. and is used with permission. The Math-

Works does not warrant the accuracy of the text or exercises in this book. This book’s use or
discussion of MATLAB

®
 software or related products does not constitute endorsement or

sponsorship by The MathWorks of a particular pedagogical approach or particular use of the
MATLAB

®
 software.

For MATLAB
®
 product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

Library of Congress Control Number: 2007928443

ISBN 978-3-540-72748-4 Springer Berlin Heidelberg New York
ISBN-10 3-540-27983-0 (first edition) Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the ma-
terial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recita-
tion, broadcasting, reproduction on microfilm or in any other way, and storage in data banks.
Duplication of this publication or parts thereof is permitted only under the provisions of the
German Copyright Law of September 9, 1965, in its current version, and permission for use
must always be obtained from Springer-Verlag. Violations are liable to prosecution under the
German Copyright Law.

Springer is a part of Springer Science+Business Media
Springer.com
© Springer-Verlag Berlin Heidelberg 2006, 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

Cover design: deblik, Berlin
Typesetting: camera-ready by blätterwaldDesign, Elisabeth Sillmann, Landau
Production: Christine Adolph
Printing: Krips bv, Meppel
Binding: Stürtz AG, Würzburg

Printed on acid-free paper 32/2132/ca 5 4 3 2 1 0

Preface

The book MATLAB Recipes for Earth Sciences is designed to help under-
graduate and PhD students, postdocs, and professionals to fi nd quick solu-
tions for common problems in data analysis in earth sciences. The book
provides a minimum amount of theoretical background, but then tries to
teach the application of all methods by examples. The software MATLAB
is used since it provides numerous ready-to-use algorithms for most meth-
ods of data analysis, but also gives the opportunity to modify and expand
the existing routines and even develop new software. The book contains
MATLAB scripts to solve typical problems in earth sciences, such as sim-
ple statistics, time-series analysis, geostatistics and image processing. The
book comes with a compact disk, which contains all MATLAB recipes and
example data fi les. The MATLAB codes can be easily modifi ed to be ap-
plied to the reader’s data and projects.

The revised and updated Second Edition includes new subchapters on
evolutionary Blackman-Tukey, Lomb-Scargle and Wavelet powerspectral
analyses (Chapters 5.6 – 5.8), statistical analysis of point distributions and
digital elevation models (Chapters 7.9 and 7.10), and a new chapter on the
statistical analysis of directional data (Chapter 10). Whereas undergradu-
ates participating in a course on data analysis might go through the entire
book, the more experienced reader will use only one particular method to
solve a specifi c problem. To facilitate the use of this book for the various
readers, I outline the concept of the book and the contents of its chapters.

Chapter 1 – This chapter introduces some fundamental concepts of samples
and populations. It also links the various types of data and questions to
be answered from the data to the methods described in the following
chapters.

Chapter 2 – A tutorial-style introduction to MATLAB designed for earth
scientists. Readers already familiar with the software are advised to pro-
ceed directly to the following chapters.

VI Preface

Chapter 3 and 4 – Fundamentals in univariate and bivariate statistics. These
two chapters contain basic concepts in statistics. The text also introduces
advanced topics such as resampling schemes and cross validation. The
reader already familiar with basic statistics might skip these two chap-
ters.

Chapter 5 and 6 – Readers who wish to work with time series are recom-
mended to read both chapters. Time-series analysis and signal processing
are tightly linked. A solid knowledge of statistics is required to success-
fully work with these methods. However, the two chapters are indepen-
dent of the previous chapters. The Second Edition of this book includes
new subchapters on evolutionary Blackman-Tukey, Lomb-Scargle and
Wavelet powerspectral analyses.

Chapter 7 and 8 – The second pair of chapters. I recommend to read both
chapters since the methods of processing spatial data and images have
many similarities. Moreover, spatial data and images are often combined
in earth sciences, for instance while projecting satellite images upon dig-
ital elevation models. The Second Edition contains two new subchapters
on the statistics of point distributions and on the analysis of digital eleva-
tion models.

Chapter 9 – Data sets in earth sciences often have many variables and data
points. Multivariate methods are applied to a great variety of types of
large data sets, including satellite images. The reader particularly inter-
ested in multivariate methods is advised to read Chapters 3 and 4 before
proceeding to this chapter.

Chapter 10 – Methods to analyze circular and spherical data are widely used
in earth sciences. Structural geologists measure and analyze the orienta-
tion of slickenlines (or striae) on a fault plane. The statistical analysis of
circular data is also used in paleomagnetic applications. Microstructural
investigations include the analysis of the grain shapes and quartz c-axis
orientation in thin sections. This new chapter for the Second Edition is on
the application of methods introduced in Chapter 3 to directional data.

The book has benefi t from the comments of many colleagues and students,
namely Robin Gebbers, Matthias Gerber, Mathis Hain, Martin Homann,
Stefanie von Lonski, Norbert Marwan, Ira Ojala, Lydia Olaka, Oliver Rach,
Jim Renwick, Jochen Rössler, Rolf Romer, Annette Witt and Max Zitzmann.

Preface VII

I very much appreciate the expertise and patience of Elisabeth Sillmann at
blaetterwaldDesign.de who created the graphics and the complete page de-
sign of the book. I also acknowledge Courtney Esposito, Dee Savageau and
Meg Vuillez of the Book Program at The MathWorks Inc., Claudia Olrogge
and Annegret Schumann at The MathWorks Deutschland, Christian
Witschel, Chris Bendall and their team at Springer, Martin Strathemann
at Apple Deutschland, Michael Pöschl at HSD Berlin, Andreas Bohlen,
Brunhilde Schulz and their team at UP Transfer GmbH. I thank the NASA/
GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team and
the director Mike Abrams for allowing me to include the ASTER images
in the book.

Potsdam, April 2007

Martin Trauth

Contents

 Preface V

1 Data Analysis in Earth Sciences 1
1.1 Introduction 1
1.2 Collecting Data 1
1.3 Types of Data 3
1.4 Methods of Data Analysis 7
 Recommended Reading 9

2 Introduction to MATLAB 11
2.1 MATLAB in Earth Sciences 11
2.2 Getting Started 12
2.3 The Syntax 15
2.4 Data Storage 19
2.5 Data Handling 19
2.6 Scripts and Functions 21
2.7 Basic Visualization Tools 25
 Recommended Reading 28

3 Univariate Statistics 29
3.1 Introduction 29
3.2 Empirical Distributions 29

Measures of Central Tendency 31
Measures of Dispersion 33

3.3 Example of Empirical Distributions 36
3.4 Theoretical Distributions 41

Uniform Distribution 42
Binomial or Bernoulli Distribution 43
Poisson Distribution 44
Normal or Gaussian Distribution 45
Logarithmic Normal or Log-Normal Distribution 46

X Contents

Student’s t Distribution 47
Fisher’s F Distribution 48
χ2 or Chi-Squared Distribution 49

3.5 Example of Theoretical Distributions 50
3.6 The t-Test 51
3.7 The F-Test 53
3.8 The χ2-Test 56
 Recommended Reading 58

4 Bivariate Statistics 61
4.1 Introduction 61
4.2 Pearson’s Correlation Coeffi cient 61
4.3 Classical Linear Regression Analysis and Prediction 68
4.4 Analyzing the Residuals 72
4.5 Bootstrap Estimates of the Regression Coeffi cients 74
4.6 Jackknife Estimates of the Regression Coeffi cients 75
4.7 Cross Validation 77
4.8 Reduced Major Axis Regression 78
4.9 Curvilinear Regression 79
 Recommended Reading 82

5 Time-Series Analysis 83
5.1 Introduction 83
5.2 Generating Signals 84
5.3 Blackman-Tukey Autospectral Analysis 89
5.4 Blackman-Tukey Crossspectral Analysis 95
5.5 Interpolating and Analyzing Unevenly-Spaced Data 99
5.6 Evolutionary Blackman-Tukey Powerspectrum 104
5.7 Lomb-Scargle Powerspectrum 109
5.8 Wavelet Powerspectrum 114
5.9 Nonlinear Time-Series Analysis (by N. Marwan) 119

Phase Space Portrait 120
Recurrence Plots 125

 Recommended Reading 131

6 Signal Processing 133
6.1 Introduction 133
6.2 Generating Signals 134
6.3 Linear Time-Invariant Systems 135

Contents XI

6.4 Convolution and Filtering 138
6.5 Comparing Functions for Filtering Data Series 141
6.6 Recursive and Nonrecursive Filters 143
6.7 Impulse Response 145
6.8 Frequency Response 148
6.9 Filter Design 153
6.10 Adaptive Filtering 157
 Recommended Reading 162

7 Spatial Data 165
7.1 Types of Spatial Data 165
7.2 The GSHHS Shoreline Data Set 166
7.3 The 2-Minute Gridded Global Elevation Data ETOPO2 168
7.4 The 30-Arc Seconds Elevation Model GTOPO30 171
7.5 The Shuttle Radar Topography Mission SRTM 173
7.6 Gridding and Contouring Background 176
7.7 Gridding Example 178
7.8 Comparison of Methods and Potential Artifacts 183
7.9 Statistics of Point Distributions 188

Test for Uniform Distribution 188
Test for Random Distribution 191
Test for Clustering 193

7.10 Analysis of Digital Elevation Models (by R. Gebbers) 195
7.11 Geostatistics and Kriging (by R. Gebbers) 206

Theorical Background 206
Preceding Analysis 208
Variography with the Classical Variogram 209
Kriging 218
Discussion of Kriging 222

 Recommended Reading 224

8 Image Processing 225
8.1 Introduction 225
8.2 Data Storage 226
8.3 Importing, Processing and Exporting Images 231
8.4 Importing, Processing and Exporting Satellite Images 236
8.5 Georeferencing Satellite Images 239
8.6 Digitizing from the Screen 241
 Recommended Reading 243

XII Contents

9 Multivariate Statistics 245
9.1 Introduction 245
9.2 Principal Component Analysis 246
9.3 Independent Component Analysis (by N. Marwan) 253
9.4 Cluster Analysis 257
 Recommended Reading 261

10 Statistics on Directional Data 263
10.1 Introduction 263
10.2 Graphical Representation 264
10.3 Empirical Distributions 267
10.4 Theoretical Distributions 269
10.5 Test for Randomness of Directional Data 271
10.6 Test for the Signifi cance of a Mean Direction 272
10.7 Test for the Difference of Two Sets of Directions 273
 Recommended Reading 277

 General Index 279

2 Introduction to MATLAB

2.1 MATLAB in Earth Sciences

MATLAB® is a software package developed by The MathWorks Inc.
(http://www.mathworks.com) founded by Cleve Moler and Jack Little
in 1984 and headquartered in Natick, Massachusetts. MATLAB was
designed to perform mathematical calculations, to analyze and visualize
data, and write new software programs. The advantage of this software
is the combination of comprehensive math and graphics functions with a
powerful high-level language. Since MATLAB contains a large library
of ready-to-use routines for a wide range of applications, the user can
solve technical computing problems much faster than with traditional
programming languages, such as C++ and FORTRAN. The standard
library of functions can be signifi cantly expanded by add-on toolboxes,
which are collections of functions for special purposes such as image
processing, building map displays, performing geospatial data analysis
or solving partial differential equations.

During the last few years, MATLAB has become an increasingly popu-
lar tool in earth sciences. It has been used for fi nite element modeling, the
processing of seismic data and satellite images as well as the generation of
digital elevation models from satellite images. The continuing popularity
of the software is also apparent in the scientifi c reference literature. Many
conference presentations and scientifi c publications have made reference
to MATLAB. Universities and research institutions have also recognized
the need for MATLAB training for staff and students. Many earth science
departments across the world now offer MATLAB courses for undergradu-
ates. Similarly, The MathWorks Inc. provides classroom kits for teachers
at a reasonable price. It is also possible for students to purchase a low-cost
edition of the software. This student version provides an inexpensive way
for students to improve their MATLAB skills.

The following Chapters 2.2 to 2.7 contain a tutorial-style introduction
to the software MATLAB, to the setup on the computer (Chapter 2.2),

12 2 Introduction to MATLAB

the syntax (2.3), data input and output (2.4 and 2.5), programming (2.6),
and visualization (2.7). It is recommended to go through the entire chap-
ter in order to obtain a solid knowledge in the software before proceeding
to the following chapter. A more detailed introduction is provided by the
MATLAB User’s Guide (The MathWorks 2006). The book uses MATLAB
Version 7.4 (Release 2007a), the Image Processing Toolbox Version 5.4, the
Mapping Toolbox Version 2.5, the Signal Processing Toolbox Version 6.7,
the Statistics Toolbox Version 6.0 and the Wavelet Toolbox Version 4.0.

2.2 Getting Started

The software package comes with extensive documentation, tutorials and
examples. The fi rst three chapters of the book Getting Started with MATLAB
by The MathWorks, which is available printed, online and as PDF fi le is di-
rected to the beginner. The chapters on programming, creating graphical
user interfaces (GUI) and development environments are for the advanced
users. Since Getting Started with MATLAB mediates all required knowledge
to use the software, the following introduction concentrates on the most rel-
evant software components and tools used in the following chapters.

After the installation of MATLAB on a hard disk or on a server, we launch
the software either by clicking the shortcut icon on the desktop or by typing

matlab

at the operating system prompt. The software comes up with several window
panels (Fig. 2.1). The default desktop layout includes the Current Directory
panel that lists the fi les in the directory currently used. The Workspace
panel lists the variables in the MATLAB workspace, which is empty af-
ter starting a new software session. The Command Window presents the
interface between the software and the user, i.e., it accepts MATLAB com-
mands typed after a prompt, >>. The Command History records all opera-
tions once typed in the Command Window and enables the user to recall
these. The book mainly uses the Command Window and the built-in Text
 Editor that can be called by

edit

Before using MATLAB we have to (1) create a personal working direc-
tory where to store our MATLAB-related fi les, (2) add this directory to the
MATLAB search path and (3) change into it to make this the current work-

2.2 Getting Started 13

ing directory. The current working directory is the directory in which the
software is installed, for instance, c:/MATLAB74 on a personal computer
running Microsoft Windows and /Applications/MATLAB74 on an Apple
computer running Macintosh OS X. On the UNIX-based SUN Solaris op-
erating system and on a LINUX system, the current working directory is
the directory from which MATLAB has been launched. The command

pwd

prints the current working directory. Since you may have read-only permis-
sions in this directory in a multi-user environment, you should change into
your own home directory by typing

cd 'c:\Documents and Settings\username\My Documents'

after the prompt on a Windows system and

Fig. 2.1 Screenshot of the MATLAB default desktop layout including the Current Directory
and Workspace panels (upper left), the Command History (lower left) and Command Window
(right). This book only uses the Command Window and the built-in Text Editor, which can
be called by typing edit after the prompt. All information provided by the other panels can
also be accessed through the Command Window.

14 2 Introduction to MATLAB

cd /users/username

or

cd /home/username

if you are username on a UNIX or LINUX system. You create a personal
working directory by typing

mkdir mywork

The software uses a search path to fi nd MATLAB-related fi les, which are
organized in directories on the hard disk. The default search path includes
only the MATLAB directory that has been created by the installer in the
applications folder. To see which directories are in the search path or to add
new directories, select Set Path from the File menu, and use the Set Path
dialog box. Alternatively, the command

path

prints the complete list of directories in the search path. We add our per-
sonal working directory to this list by typing

path(path,'c:\Documents and Settings\user\My Documents\MyWork')

on a Windows machine assuming that you are user, you are working on
Hard Disk C and your personal working directory is named MyWork. On a
UNIX or LINUX computer the command

path(path,'/users/username/mywork')

is used instead. This command can be used whenever more working di-
rectories or toolboxes have to be added to the search path. Finally, you can
change into the new directory by typing

cd mywork

making it the current working directory. The command

what

lists all MATLAB-related fi les in this directory. The modifi ed search path
is saved in a fi le pathdef.m in your home directory. In a future session, the
software reads the contents of this fi le and makes MATLAB to use your
custom path list.

2.3 The Syntax 15

2.3 The Syntax

The name MATLAB stands for matrix laboratory. The classic object han-
dled by MATLAB is a matrix, i.e., a rectangular two-dimensional array
of numbers. A simple 1-by-1 matrix is a scalar. Matrices with one column
or row are vectors, time series and other one-dimensional data fi elds. An
m-by-n matrix can be used for a digital elevation model or a grayscale im-
age. RGB color images are usually stored as three-dimensional arrays, i.e.,
the colors red, green and blue are represented by an m-by-n-by-3 array.

Entering matrices in MATLAB is easy. To enter an arbitrary matrix, type

A = [2 4 3 7; 9 3 -1 2; 1 9 3 7; 6 6 3 -2]

after the prompt, which fi rst defi nes a variable A, then lists the elements of
the matrix in square brackets. The rows of A are separated by semicolons,
whereas the elements of a row are separated by blanks, or, alternatively, by
 commas. After pressing return, MATLAB displays the matrix

A =
 2 4 3 7
 9 3 -1 2
 1 9 3 7
 6 6 3 -2

Displaying the elements of A could be problematic in case of very large
matrices, such as digital elevation models consisting of thousands or mil-
lions of elements. You should end the line with a semicolon to suppress the
display of a matrix or the result of an operation in general.

A = [2 4 3 7; 9 3 -1 2; 1 9 3 7; 6 6 3 -2];

The matrix A is now stored in the workspace and we can do some basic
operations with it, such as computing the sum of elements,

sum(A)

which results in the display of

ans =
 18 22 8 14

Since we did not specify an output variable, such as A for the matrix entered
above, MATLAB uses a default variable ans, short for answer, to store the
results of the calculation. In general, we should defi ne variables since the next
computation without a new variable name overwrites the contents of ans.

16 2 Introduction to MATLAB

The above example illustrates another important point about MATLAB.
Obviously the result of sum(A)are the four sums of the elements in the four col-
umns of A. The software prefers working with the columns of matrices. If you
wish to sum all elements of A and store the result in a scalar b, you simply type

b = sum(sum(A));

which fi rst sums the columns of the matrix and then the elements of the re-
sulting vector. Now we have two variables A and b stored in the workspace.
We can easily check this by typing

 whos

which is one the most frequently-used MATLAB commands. The software
lists all variables in the workspace with information about their dimension,
 bytes and class.

Name Size Bytes Class Attributes
A 4x4 128 double
ans 1x4 32 double
b 1x1 8 double

Note that by default MATLAB is case sensitive, i.e., two different variables
A and a can be defi ned. In this context, it is recommended to use capital
letters for matrices and lower-case letters for vectors and scalars. You could
now delete the contents of the variable ans by typing

 clear ans

Next, we learn how specifi c matrix elements can be accessed or exchanged.
Typing

A(3,2)

simply returns the matrix element located in the third row and second col-
umn. The matrix indexing therefore follows the rule (row, column). We
can use this to access single or several matrix elements. As an example, we
type

A(3,2) = 30

to replace the element A(3,2) and to display the entire matrix.

A =
 2 4 3 7
 9 3 -1 2
 1 30 3 7
 6 6 3 -2

2.3 The Syntax 17

If you wish to replace several elements at one time, you can use the colon
operator. Typing

A(3,1:4) = [1 3 3 5];

replaces all elements of the third row of the matrix A. The colon operator is
used for several other things in MATLAB, for instance as an abbreviation
for entering matrix elements such as

c = 0 : 10

which creates a row vector containing all integers from 0 to 10. The cor-
responding MATLAB response is

c =
 0 1 2 3 4 5 6 7 8 9 10

Note that this statement creates 11 elements, i.e., the integers from 1 to 10
and the zero. A common error while indexing matrices is the ignorance of
the zero and therefore expecting 10 instead of 11 elements in our example.
We can check this from the output of whos.

Name Size Bytes Class Attributes
A 4x4 128 double
ans 1x1 8 double
b 1x1 8 double
c 1x11 88 double

The above command creates only integers, i.e., the interval between the
vector elements is one. However, an arbitrary interval can be defi ned, for
example 0.5. This is later used to create evenly-spaced time axes for time
series analysis.

c = 1 : 0.5 : 10;

c =
 Columns 1 through 6
 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000
 Columns 7 through 12
 4.0000 4.5000 5.0000 5.5000 6.0000 6.5000
 Columns 13 through 18
 7.0000 7.5000 8.0000 8.5000 9.0000 9.5000
 Column 19
 10.0000

The display of the values of a variable can be interrupted by pressing Ctrl-C
(Control-C) on the keyboard. This interruption affects only the output in
the Command Window, whereas the actual command is processed before

18 2 Introduction to MATLAB

displaying the result.
MATLAB provides standard arithmetic operators for addition, +, and

 subtraction, -. The asterisk, *, denotes matrix multiplication involving in-
ner products between rows and columns. For instance, we multiply the ma-
trix A with a new matrix B.

B = [4 2 6 5; 7 8 5 6; 2 1 -8 -9; 3 1 2 3];

The matrix multiplication then is

C = A * B'

where ' is the complex conjugate transpose, i.e, turning rows into columns
and columns into rows. This generates the output

C =
 69 103 -79 37
 46 94 11 34
 75 136 -76 39
 44 93 12 24

In linear algebra, matrices are used to keep track of the coeffi cients of linear
transformations. The multiplication of two matrices represents the combina-
tion of two linear transformations to one single transformation. Matrix mul-
tiplication is not commutative, i.e., A*B' and B*A' yield different results in
most cases. Accordingly, MATLAB provides matrix divisions, right, /, and
left, \, representing different transformations. Finally, the software allows
 power of matrices, ^.

In earth sciences, however, matrices are often simply used as two-di-
mensional arrays of numerical data instead of an array representing a linear
transformation. Arithmetic operations on such arrays are done element-by-
element. Whereas this does not make any difference in addition and sub-
traction, the multiplicative operations are different. MATLAB uses a dot as
part of the notation for these operations.

For instance, multiplying A and B element-by-element is performed by
typing

C = A .* B

which generates the output

C =
 8 8 18 35
 63 24 -5 12
 2 3 -24 -45
 18 6 6 -6

2.5 Data Handling 19

2.4 Data Storage

This chapter is on how to store, import and export data with MATLAB. In
earth sciences, data are collected in a great variety of formats, which often
have to be converted before being analyzed with MATLAB. On the other
hand, the software provides several import routines to read many binary
data formats in earth sciences, such as the formats used to store digital el-
evation models and satellite data.

A computer generally stores data as binary digits or bits. A bit is analo-
gous to a two-way switch with two states, on = 1 and off = 0. The bits
are joined to larger groups, such as bytes consisting of 8 bits, to store
more complex types of data. Such groups of bits are then used to en-
code data, e.g., numbers or characters. Unfortunately, different computer
systems and software use different schemes for encoding data. For in-
stance, the representation of text using the widely-used text processing
software Microsoft Word is different from characters written in Word
Perfect. Exchanging binary data therefore is diffi cult if the various users
use different computer platforms and software. Binary data can be stored
in relatively small fi les in case that both partners use similar systems of
data exchange. The transfer rate of binary data is generally faster com-
pared to the exchange of other fi le formats.

Various formats for exchanging data have been developed in the last
decades. The classic example for the establishment of a data format that
can be used on different computer platforms and software is the American
Standard Code for Information Interchange (ASCII) that was fi rst pub-
lished in 1963 by the American Standards Association (ASA). ASCII as a
7-bit code consists of 27=128 characters (codes 0 to 127). Whereas ASCII-
1963 was lacking lower-case letters, in the update ASCII-1967, lower-case
letters as well as various control characters such as escape and line feed
and various symbols such as brackets and mathematical operators were also
included. Since then, a number of variants appeared in order to facilitate the
exchange of text written in non-English languages, such as the expanded
ASCII containing 255 codes, e.g., the Latin-1 encoding.

2.5 Data Handling

The simplest way to exchange data between a certain piece of software and
MATLAB is the ASCII format. Although the newer versions of MATLAB

20 2 Introduction to MATLAB

provide various import routines for fi le types such as Microsoft Excel bina-
ries, most data arrive as ASCII fi les. Consider a simple data set stored in a
table such as

SampleID Percent C Percent S
101 0.3657 0.0636
102 0.2208 0.1135
103 0.5353 0.5191
104 0.5009 0.5216
105 0.5415 -999
106 0.501 -999

The fi rst row contains the variable names. The columns provide the data for
each sample. The absurd value -999 marks missing data in the data set. Two
things have to be changed to convert this table into MATLAB format. First,
MATLAB uses NaN as the arithmetic representation for Not-a-Number that
can be used to mark gaps. Second, you should comment the fi rst line by typ-
ing a percent sign, %, at the beginning of the line.

%SampleID Percent C Percent S
101 0.3657 0.0636
102 0.2208 0.1135
103 0.5353 0.5191
104 0.5009 0.5216
105 0.5415 NaN
106 0.501 NaN

MATLAB ignores any text appearing after the percent sign and continues
processing on the next line. After editing this table in a text editor, such as
the MATLAB Editor, it is saved as ASCII text fi le geochem.txt in the current
working directory (Fig. 2.2). MATLAB now imports the data from this fi le
with the load command.

load geochem.txt

MATLAB loads the contents of fi le and assigns the matrix to a variable
named after the fi lename geochem. Typing

whos

yields

Name Size Bytes Class Attributes
geochem 6x3 144 double

The command save now allows to store workspace variables in a binary
format.

save geochem_new.mat

2.6 Scripts and Functions 21

MAT-fi les are double-precision binary fi les using .mat as extension. The
advantage of these binary mat-fi les is that they are independent of the com-
puter platforms running different fl oating-point formats. The command

save geochem_new.mat geochem

saves only the variable geochem instead of the entire workspace. The op-
tion -ascii, for example

save geochem_new.txt geochem -ascii

again saves the variable geochem, but in an ASCII fi le named geochem_new.
txt. In contrast to the binary fi le geochem_new.mat, this ASCII fi le can be
viewed and edited by using the MATLAB Editor or any other text editor.

2.6 Scripts and Functions

MATLAB is a powerful programming language. All fi les containing
MATLAB code use .m as extension and are therefore called M-fi les. These
fi les contain ASCII text and can be edited using a standard text editor.
However, the built-in Editor color highlights various syntax elements such
as comments (in green), keywords such as if, for and end (blue) and charac-
ter strings (pink). This syntax highlighting eases MATLAB coding.

MATLAB uses two kinds of M-fi les, scripts and functions. Whereas

Fig. 2.2 Screenshot of MATLAB Text Editor showing the content of the fi le geochem.txt. The
fi rst line of the text is commented by a percent sign at the beginning of the line, followed by
the actual data matrix.

22 2 Introduction to MATLAB

scripts are a series of commands that operate on data in the workspace,
functions are true algorithms with input and output variables. The advan-
tages and disadvantages of both M-fi les will now be illustrated by an ex-
ample. We start the Text Editor by typing

edit

This opens a new window named untitled. First, we generate a simple
MATLAB script. We type a series of commands calculating the average of
the elements of a data vector x.

[m,n] = size(x);
if m == 1
 m = n;
end
sum(x)/m

The fi rst line returns the dimension of the variable x using the command
size. In our example, x should be either a column vector with dimension
(m,1) or a row vector with dimension (1,n). The if statement evaluates
a logical expression and executes a group of commands when this expres-
sion is true. The end keyword terminates the last group of commands. In
the example, the if loop picks either m or n depending on if m==1 is false
or true. The last line computes the average by dividing the sum of elements
by m or n. We do not use a semicolon here to enable the output of the result.
We save our new M-fi le as average.m and type

x = [3 6 2 -3 8];

in the Command Window to defi ne an example vector x. Then, we type

average

without the extension .m to run our script. We obtain the average of the ele-
ments of the vector x as output.

ans =
 3.2000

After typing

whos

we see that the workspace now contains

Name Size Bytes Class Attributes
ans 1x1 8 double

2.6 Scripts and Functions 23

m 1x1 8 double
n 1x1 8 double
x 1x5 40 double

The listed variables are the example vector x and the output of the size
function, m and n. The result of the operation is stored in the variable ans.
Since the default variable ans might be overwritten during one of the fol-
lowing operations, we wish to defi ne a different variable. Typing

a = average

however, causes the error message

??? Attempt to execute SCRIPT average as a function.

Obviously, we cannot assign a variable to the output of a script. Moreover,
all variables defi ned and used in the script appear in the workspace, in our
example, the variables m and n. Scripts contain sequences of commands
applied to variables in the workspace. MATLAB functions instead allow
to defi ne inputs and outputs. They do not automatically import variables
from the workspace. To convert the above script into a function, we have to
introduce the following modifi cations (Fig. 2.3):

function y = average(x)
%AVERAGE Average value.
% AVERAGE(X) is the average of the elements in the vector X.

% By Martin Trauth, Feb 18, 2005.

[m,n] = size(x);
if m == 1
 m = n;
end
y = sum(x)/m;

The first line now contains the keyword function, the function name
average and the input x and output y. The next two lines contain com-
ments as indicated by the percent sign. After one empty line, we see another
 comment line containing the author and version of the M-fi le. The remain-
ing fi le contains the actual operations. The last line now defi nes the value
of the output variable y. This line is now terminated by a semicolon to sup-
press the display of the result in the Command Window. We fi rst type

help average

which displays the fi rst block of contiguous comment lines. The fi rst execut-
able statement or blank line – as in our example – effectively ends the help

24 2 Introduction to MATLAB

section and therefore the output of help. Now we are independent of the
variable names used in our function. We clear the workspace and defi ne a
new data vector.

clear

data = [3 6 2 -3 8];

We run our function by the statement

result = average(data);

This clearly illustrates the advantages of functions compared to scripts.
Typing

whos

results in

Name Size Bytes Class Attributes
data 1x5 40 double
result 1x1 8 double

indicates that all variables used in the function do not appear in the work-
space. Only the input and output as defi ned by the user are stored in the

Fig. 2.3 Screenshot of the MATLAB Text Editor showing the function average. The
function starts with a line containing the keyword function, the name of the function
average and the input variable x and the output variable y. The following lines contain
the output for help average, the copyright and version information as well as the actual
MATLAB code for computing the average using this function.

2.7 Basic Visualization Tools 25

workspace. The M-fi les can therefore be applied to data like real functions,
whereas scripts contain sequences of commands are applied to the variables
in workspace.

2.7 Basic Visualization Tools

MATLAB provides numerous routines for displaying your data as graphs.
This chapter introduces the most important graphics functions. The graphs
will be modifi ed, printed and exported to be edited with graphics software
other than MATLAB. The simplest function producing a graph of a variable
y versus another variable x is plot. First, we defi ne two vectors x and y,
where y is the sine of x. The vector x contains values between 0 and 2π
with π /10 increments, whereas y is the element-by-element sine of x.

x = 0 : pi/10 : 2*pi;
y = sin(x);

These two commands result in two vectors with 21 elements each, i.e., two
1-by-21 arrays. Since the two vectors x and y have the same length, we can
use plot to produce a linear 2D graph y against x.

plot(x,y)

This command opens a Figure Window named Figure 1 with a gray back-
ground, an x-axis ranging from 0 to 7, a y-axis ranging from –1 to +1 and a
blue line. You may wish to plot two different curves in one single plot, for
example, the sine and the cosine of x in different colors. The command

x = 0 : pi/10 : 2*pi;
y1 = sin(x);
y2 = cos(x);

plot(x,y1,'r--',x,y2,'b-')

creates a dashed red line displaying the sine of x and a solid blue line
representing the cosine of this vector (Fig. 2.4). If you create another plot,
the window Figure 1 is cleared and a new graph is displayed. The com-
mand figure, however, can be used to create a new fi gure object in a
new window.

plot(x,y1,'r--')
figure
plot(x,y2,'b-')

26 2 Introduction to MATLAB

Instead of plotting both lines in one graph simultaneously, you can also plot
the sine wave, hold the graph and then plot the second curve. The command
hold is particularly important while using different plot functions for dis-
playing your data. For instance, if you wish to display the second graph as
a bar plot.

plot(x,y1,'r--')
hold on
bar(x,y2)
hold off

This command plots y1 versus x as dashed line, whereas y2 versus x is
shown as group of blue vertical bars. Alternatively, you can plot both graphs
in the same Figure Window, but in different plots using the subplot. The
syntax subplot(m,n,p) divides the Figure Window into an m-by-n ma-
trix of display regions and makes the p-th display region active.

subplot(2,1,1), plot(x,y1,'r--')
subplot(2,1,2), bar(x,y2)

Fig. 2.4 Screenshot of the MATLAB Figure Window showing two curves in different line
types. The Figure Window allows to edit all elements of the graph after choosing Edit Plot
from the Tools menu. Double clicking on the graphics elements opens an options window
for modifying the appearance of the graphs. The graphics is exported using Save as from the
File menue. The command Generate M-File from the File menu creates MATLAB code from
an edited graph.

2.7 Basic Visualization Tools 27

The Figure Window is divided into two rows and one column in our ex-
ample. The 2D linear plot is displayed in the upper half, whereas the bar
plot appears in the lower half of the Figure Window. In the following, it is
recommended to close the Figure Windows before proceeding to the next
example. Subsequent plots would replace the graph in the lower display re-
gion only, or more general, the last generated graph in a Figure Window.

An important modifi cation to graphs is the scaling of the axis. By de-
fault, MATLAB uses axis limits close to the minima and maxima of the
data. Using the command axis, however, allows to change the settings
for scaling. The syntax for this command is simply axis([xmin xmax
ymin ymax]). The command

plot(x,y1,'r--')
axis([0 pi -1 1])

sets the limits of the x-axis to 0 and π , whereas the limits of the y-axis are
set to the default values –1 and +1. Important options of axis are

plot(x,y1,'r--')
axis square

making the current axes region square and

plot(x,y1,'r--')
axis equal

setting the aspect ratio in a way that the data units are equal in both
directions of the plot. The function grid adds a grid to the current plot,
whereas the functions title, xlabel and ylabel allow to define a
title and labels the x- and y-axis.

plot(x,y1,'r--')
title('My first plot')
xlabel('x-axis')
ylabel('y-axis')
grid

These are a few examples how MATLAB functions can be used in the
Command Window to edit the plot. However, the software also supports
various ways to edit all objects in a graph interactively using a computer
mouse. First, the Edit Mode of the Figure Window has to be activated by
clicking on the arrow icon. The Figure Window also contains some other
options, such as Rotate 3D, Zoom or Insert Legend. The various objects in
a graph, however, are selected by double-clicking on the specifi c compo-
nent, which opens the Property Editor. The Property Editor allows to make

28 2 Introduction to MATLAB

changes to many properties of the graph such as axes, lines, patches and
text objects. After having made all necessary changes to the graph, the cor-
responding commands can even be exported by selecting Generate M-File
from the File menu of the Figure Window.

Although the software now provides enormous editing facilities for
graphs, the more reasonable way to modify a graph for presentations or pub-
lications is to export the fi gure, import it into a software such as CorelDraw
or Adobe Illustrator. MATLAB graphs are exported by selecting the com-
mand Save as from the File menu or by using the command print. This
function exports the graph either as raster image, e.g., JPEG or vector fi le,
e.g., as EPS or PDF format into the working directory (see Chapter 8 for
more details on graphic fi le formats). In practice, the user should check the
various combinations of export fi le format and the graphics software used
for fi nal editing the graphs.

Recommended Reading

Davis TA, Sigmon K (2005) The MATLAB Primer, Seventh Edition. Chapman & Hall/
CRC, London

Etter DM, Kuncicky DC, Moore H (2004) Introduction to MATLAB 7. Prentice Hall, New
Jersey

Gilat A (2007) MATLAB: An Introduction with Applications. John Wiley & Sons, New
York

Hanselman DC, Littlefi eld BL (2004) Mastering MATLAB 7. Prentice Hall, New Jersey
Palm WJ (2004) Introduction to MATLAB 7 for Engineers. McGraw-Hill, New York
The Mathworks (2006) MATLAB – The Language of Technical Computing – Getting

Started with MATLAB Version 7. The MathWorks, Natick, MA

3 Univariate Statistics

3.1 Introduction

The statistical properties of a single parameter are investigated by means
of univariate analysis. Such variable could be the organic carbon content of
a sedimentary unit, the thickness of a sandstone layer, the age of sanidine
crystals in a volcanic ash or the volume of landslides. The number and size
of samples we collect from a larger population are often limited by fi nancial
and logistical constraints. The methods of univariate statistics help con-
clude from the samples for the larger phenomenon, i.e., the population.

Firstly, we describe the sample characteristics by statistical parameters
and compute an empirical distribution (descriptive statistics) (Chapters 3.2
and 3.3). A brief introduction to the most important measures of central ten-
dency and dispersion is followed by MATLAB examples. Next, we select a
theoretical distribution, which shows similar characteristics as the empiri-
cal distribution (Chapters 3.4 and 3.5). A suite of theoretical distributions
is then introduced and their potential applications outlined, before we use
MATLAB tools to explore these distributions. Finally, we try to conclude
from the sample for the larger phenomenon of interest (hypothesis testing)
(Chapters 3.6 to 3.8). The corresponding chapters introduce the three most
important statistical tests for applications in earth sciences, the t-test to
compare the means of two data sets, the F-test comparing variances and the
χ2-test to compare distributions.

3.2 Empirical Distributions

Assume that we have collected a number of measurements of a specifi c ob-
ject. The collection of data can be written as a vector x

30 3 Univariate Statistics

containing N observations xi. The vector x may contain a large number of
data points. It may be diffi cult to understand its properties as such. This is
why descriptive statistics are often used to summarize the characteristics
of the data. Similarly, the statistical properties of the data set may be used
to defi ne an empirical distribution which then can be compared against a
theoretical one.

The most straight-forward way of investigating the sample characteristics
is to display the data in a graphical form. Plotting all the data points along
one single axis does not reveal a great deal of information about the data
set. However, the density of the points along the scale does provide some
information about the characteristics of the data. A widely-used graphical
display of univariate data is the histogram (Fig. 3.1). A histogram is a bar
plot of a frequency distribution that is organized in intervals or classes.
Such histogram plot provides valuable information on the characteristics
of the data, such as the central tendency, the dispersion and the general
 shape of the distribution. However, quantitative measures provide a more
accurate way of describing the data set than the graphical form. In purely
quantitative terms, the mean and the median defi ne the central tendency of
the data set, while data dispersion is expressed in terms of the range and
the standard deviation.

x-Value x-Value

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Histogram Cumulative Histogram

a b

8 10 12 14 16
0

2

4

6

8

10

12

8 10 12 14 16
0

0.2

0.4

0.6

0.8

1.0

Fig. 3.1 Graphical representation of an empirical frequency distribution. a In a histogram,
the frequencies are organized in classes and plotted as a bar plot. b The cumulative
histogram of a frequency distribution displays the counts of all classes lower and equal
than a certain value. The cumulative histogram is normalized to a total number of
observations of one.

3.2 Empirical Distributions 31

Measures of Central Tendency

Parameters of central tendency or location represent the most important
measures for characterizing an empirical distribution (Fig. 3.2). These val-
ues help locate the data on a linear scale. They represent a typical or best
value that describes the data. The most popular indicator of central ten-
dency is the arithmetic mean, which is the sum of all data points divided by
the number of observations:

The arithmetic mean can also be called the mean or the average of an uni-
variate data set. The sample mean is often used as an estimate of the popu-
lation mean μ for the underlying theoretical distribution. The arithmetic
mean is sensitive to outliers, i.e., extreme values that may be very different
from the majority of the data. Therefore, the median is often used as an
alternative measure of central tendency. The median is the x-value which is
in the middle of the data, i.e., 50% of the observations are larger than the
median and 50% are smaller. The median of a data set sorted in ascending
order is defi ned as

Median
Mean Mode

Outlier

Median
Mean Mode

8 10 12 14 16
0

5

10

15

0 2 4 6 8
0

10

20

30

40

50

x-Value x-Value

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Skew DistributionSymmetric Distribution

a b

Fig. 3.2 Measures of central tendency. a In an unimodal symmetric distribution, the mean,
the median and the mode are identical. b In a skew distribution, the median is between the
mean and the mode. The mean is highly sensitive to outliers, whereas the median and the
mode are not much infl uenced by extremely high and low values.

32 3 Univariate Statistics

if N is odd and

if N is even. Although outliers also affect the median, their absolute values
do not infl uence it. Quantiles are a more general way of dividing the data
sample into groups containing equal numbers of observations. For example,
quartiles divide the data into four groups, quintiles divide the observations
in fi ve groups and percentiles defi ne one hundred groups.

The third important measure for central tendency is the mode. The mode
is the most frequent x value or – if the data are grouped in classes – the cen-
ter of the class with the largest number of observations. The data have no
mode if there aren’t any values that appear more frequently than any of the
other values. Frequency distributions with one mode are called unimodal,
but there may also be two modes (bimodal), three modes (trimodal) or four
or more modes (multimodal).

The measures mean, median and mode are used when several quantities
add together to produce a total, whereas the geometric mean is often used
if these quantities are multiplied. Let us assume that the population of an
organism increases by 10% in the fi rst year, 25% in the second year, then
60% in the last year. The average increase rate is not the arithmetic mean,
since the number of individuals is multiplied by (not added to) 1.10 in the
fi rst year, by 1.375 in the second year and 2.20 in the last year. The average
growth of the population is calculated by the geometric mean:

The average growth of these values is 1.4929 suggesting a ~49% growth
of the population. The arithmetic mean would result in an erroneous value
of 1.5583 or ~56% growth. The geometric mean is also an useful measure
of central tendency for skewed or log-normally distributed data. In other
words, the logarithms of the observations follow a gaussian distribution.
The geometric mean, however, is not calculated for data sets containing
negative values. Finally, the harmonic mean

3.2 Empirical Distributions 33

is used to take the mean of asymmetric or log-normally distributed data,
similar to the geometric mean, but they are both not robust to outliers. The
harmonic mean is a better average when the numbers are defi ned in relation
to some unit. The common example is averaging velocity. The harmonic
mean is also used to calculate the mean of samples sizes.

Measures of Dispersion

Another important property of a distribution is the dispersion. Some of
the parameters that can be used to quantify dispersion are illustrated in
Figure 3.3. The simplest way to describe the dispersion of a data set is the
range, which is the difference between the highest and lowest value in the
data set given by

Since the range is defi ned by the two extreme data points, it is very sus-
ceptible to outliers. Hence, it is not a reliable measure of dispersion in most
cases. Using the interquartile range of the data, i.e., the middle 50% of the
data attempts to overcome this. A most useful measure for dispersion is the
standard deviation.

The standard deviation is the average deviation of each data point from the
mean. The standard deviation of an empirical distribution is often used
as an estimate for the population standard deviation σ. The formula of
the population standard deviation uses N instead of N–1 in the denomina-
tor. The sample standard deviation s is computed with N–1 instead of N
since it uses the sample mean instead of the unknown population mean.
The sample mean, however, is computed from the data xi, which reduces
the degrees of freedom by one. The degrees of freedom are the number
of values in a distribution that are free to be varied. Dividing the average
deviation of the data from the mean by N would therefore underestimate
the population standard deviation σ.

The variance is the third important measure of dispersion. The variance
is simply the square of the standard deviation.

34 3 Univariate Statistics

Mode 1 Mode 2

Mode 1

Mode 2 Mode 3

−2 0 2 4 6 8 −2 0 2 4 6 8

6 8 10 12 14 16 18

0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

35

40

0

20

40

60

80

100

0

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

10

20

30

40

50

60

0 0

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

x-Value x-Value

x-Value x-Value

x-Value x-Value

0 10 20 30

0 10 20 30 0 10 20 30

Positive SkewnessNegative Skewness

High Kurtosis Low Kurtosis

Bimodal Distribution Trimodal Distribution

a

c

e f

d

b

Fig. 3.3 Dispersion and shape of a distribution. a-b Unimodal distributions showing a
negative or positive skew. c-d Distributions showing a high or low kurtosis. e-f Bimodal
and trimodal distribution showing two or three modes.

3.2 Empirical Distributions 35

Although the variance has the disadvantage of not sharing the dimension of
the original data, it is extensively used in may applications instead of the
standard deviation.

Furthermore, both skewness and kurtosis can be used to describe the
shape of a frequency distribution. Skewness is a measure of asymmetry of
the tails of a distribution. The most popular way to compute the asymmetry
of a distribution is Pearson’s mode skewness:

skewness = (mean-mode) / standard deviation

A negative skew indicates that the distribution is spread out more to the left
of the mean value, assuming increasing values on the axis to the right. The
sample mean is smaller than the mode. Distributions with positive skew-
ness have large tails that extend to the right. The skewness of the symmetric
normal distribution is zero. Although Pearson’s measure is a useful one,
the following formula by Fisher for calculating the skewness is often used
instead, including the corresponding MATLAB function.

The second important measure for the shape of a distribution is the kurtosis.
Again, numerous formulas to compute the kurtosis are available. MATLAB
uses the following formula:

The kurtosis is a measure of whether the data are peaked or fl at relative to
a normal distribution. A high kurtosis indicates that the distribution has a
distinct peak near the mean, whereas a distribution characterized by a low
kurtosis shows a fl at top near the mean and heavy tails. Higher peakedness of
a distribution is resulting from rare extreme deviations, whereas a low kur-
tosis is caused by frequent moderate deviations. A normal distribution has a
kurtosis of three. Therefore, some defi nitions for kurtosis subtract three from
the above term in order to set the kurtosis of the normal distribution to zero.

After having defi ned the most important parameters to describe an em-
pirical distribution, the measures of central tendency and dispersion are il-

36 3 Univariate Statistics

lustrated by examples. The text and binary fi les used in the following chap-
ters are on the CD that comes with this book. It is recommended to save the
fi les in the personal working directory.

3.3 Example of Empirical Distributions

Let us describe the data contained in the fi le organicmatter_one.txt. This
fi le contains the organic matter content (in weight percentage, wt%) of lake
sediments. In order to load the data type

corg = load('organicmatter_one.txt');

The data fi le contains 60 measurements that can be displayed by

plot(corg,zeros(1,length(corg)),'o')

This graph shows some of the characteristics of the data. The organic car-
bon content of the samples range between 9 and 15 wt%. Most data cluster
between 12 and 13 wt%. Values below 10 and above 14 are rare. While this
kind of representation of the data has its advantages, univariate data are
generally displayed as histograms.

hist(corg)

By default, the function hist divides the range of the data into ten equal in-
tervals or classes, counts the observation within each interval and displays
the frequency distribution as bar plot. The midpoints of the default intervals
v and the number of observations n per interval can be accessed using

[n,v] = hist(corg);

The number of classes should be not lower than six and not higher than
fi fteen for practical purposes. In practice, the square root of the number of
observations, rounded to the nearest integer, is often used as the number
of classes. In our example, we use eight classes instead of the default ten
classes.

hist(corg,8)

We can even defi ne the midpoint values of the histogram classes. Here, it
is recommended to choose interval endpoints that avoid data points falling
between two intervals. The maximum and minimum values contained in

3.3 Example of Empirical Distributions 37

the data vector are

 max(corg)

ans =
 14.5615

 min(corg)

ans =
 9.4168

The range of the data values, i.e., the difference between maximum and
minimum values is

 range(corg)

ans =
 5.1447

The range of the data is the information that we need in order to defi ne the
classes. Since we have decided to use eight classes, we split the range of the
data into eight equally-sized bins. The approximate width of the intervals is

5.1447/8

ans =
 0.6431

We round this number up and defi ne

v = 10 : 0.65 : 14.55;

as midpoints of the histogram intervals. The commands for displaying the
histogram and calculating the frequency distribution are

hist(corg,v);

n = hist(corg,v);

The most important parameters describing the distribution are the averages
and the dispersion about the average. The most popular measure for average
is the arithmetic mean of our data.

 mean(corg)

ans =
 12.3448

Since this measure is very susceptible to outliers, we use the median as an

38 3 Univariate Statistics

alternative measure of central tendency,

 median(corg)

ans =
 12.4712

which is not much different in this example. However, we will later see that
this difference can be signifi cant for distributions that are not symmetric.
A more general parameter to defi ne fractions of the data less or equal to a
certain value is the quantile. Some of the quantiles have special names, such
as the three quartiles dividing the distribution into four equal parts, 0–25%,
25–50%, 50–75% and 75–100% of the total number of observations.

 prctile(corg,[25 50 75])

ans =
 11.4054 12.4712 13.2965

The third parameter in this context is the mode, which is the midpoint of the
interval with the highest frequency. MATLAB does not provide a function
to compute the mode. We use the function find to located the class that has
the largest number of observations.

v(find(n == max(n)))

ans =
 11.9500 12.6000 13.2500

This statement simply identifi es the largest element in n. The index of this
element is then used to display the midpoint of the corresponding class v.
If there are several n’s with similar values, this statement returns several
solutions suggesting that the distribution has several modes. The median,
quartiles, minimum and maximum of a data set can be summarized and
displayed in a box and whisker plot.

 boxplot(corg)

The boxes have lines at the lower quartile, median, and upper quartile val-
ues. The whiskers are lines extending from each end of the boxes to show
the extent of the rest of the data.

The most popular measures for dispersion are range, standard deviation
and variance. We have already used the range to defi ne the midpoints of the
classes. The variance is the average-squared deviation of each number from
the mean of a data set.

3.3 Example of Empirical Distributions 39

 var(corg)

ans =
 1.3595

The standard deviation is the square root of the variance.

 std(corg)

ans =
 1.1660

Note that by default the functions var and std calculate the sample variance
and standard deviation representing an unbiased estimate of the dispersion
of the population. While using skewness to describe the shape of the distri-
bution, we observe a slightly negative skew.

 skewness(corg)

ans =
 -0.2529

Finally, the peakedness of the distribution is described by the kurtosis. The
result from the function kurtosis,

 kurtosis(corg)

ans =
 2.4670

suggests that our distribution is slightly fl atter than a gaussian distribution
since its kurtosis is lower than three. Most of these functions have cor-
responding versions for data sets containing gaps, such as nanmean and
nanstd, which treat NaN’s as missing values. To illustrate the use of these
functions we introduce a gap to our data set and compute the mean using
mean and nanmean for comparison.

corg(25,1) = NaN;

mean(corg)

ans =
 NaN

 nanmean(corg)

ans =
 12.3371

In this example the function mean follows the rule that all operations with

40 3 Univariate Statistics

NaN’s result in NaN’s, whereas the function nanmean simply skips the
missing value and computes the mean of the remaining data. As a second
example, we now explore a data set characterized by a signifi cant skew.
The data represent 120 microprobe analyses on glass shards hand-picked
from a volcanic ash. The volcanic glass has been affected by chemical
weathering in an initial stage. Therefore, the glass shards show glass hy-
dration and sodium depletion in some sectors. We study the distribution of
sodium contents (in wt%) in the 120 measurements using the same prin-
ciple as above.

sodium = load('sodiumcontent.txt');

As a fi rst step, it is always recommended to visualize the data as a histo-
gram. The square root of 120 suggests 11 classes, therefore we display the
data by typing

hist(sodium,11)

[n,v] = hist(sodium,11);

Since the distribution has a negative skew, the mean, the median and the
mode are signifi cantly different.

mean(sodium)

ans =
 5.6628

median(sodium)

ans =
 5.9741

v(find(n == max(n)))

ans =
 6.5407

The mean of the data is lower than the median, which is in turn lower than
the mode. We observe a strong negative skew as expected from our data.

skewness(sodium)

ans =
 -1.1086

Now we introduce a signifi cant outlier to the data and explore its effect on
the statistics of the sodium contents. We use a different data set, which is
better suited for this example than the previous data set. The new data set

3.4 Theoretical Distributions 41

contains higher sodium values of around 17 wt% and is stored in the fi le
sodiumcontent_two.txt.

sodium = load('sodiumcontent_two.txt');

This data set contains only 50 measurements to better illustrate the effect of
an outlier. We can use the script used in the previous example to display the
data in a histogram and compute the number of observations n with respect
to the classes v. The mean of the data is 16.6379, the media is 16.9739 and
the mode is 17.2109. Now we introduce one single value of 1.5 wt% in addi-
tion to the 50 measurements contained in the original data set.

sodium(51,1) = 1.5;

The histogram of this data set illustrates the distortion of the frequency
distribution by this single outlier. The corresponding histogram shows sev-
eral empty classes. The infl uence of this outlier on the sample statistics
is substantial. Whereas the median of 16.9722 is relatively unaffected, the
mode of 17.0558 is slightly different since the classes have changed. The
most signifi cant changes are observed in the mean (16.3411), which is very
sensitive to outliers.

3.4 Theoretical Distributions

Now we have described the empirical frequency distribution of our sample.
A histogram is a convenient way to picture the frequency distribution of the
variable x. If we sample the variable suffi ciently often and the output ranges
are narrow, we obtain a very smooth version of the histogram. An infi nite
number of measurements N→ ∞ and an infi nite small class width produce
the random variable’s probability density function (PDF). The probability
distribution density f (x) defi nes the probability that the variate has the value
equal to x. The integral of f (x) is normalized to unity, i.e., the total number
of observations is one. The cumulative distribution function (CDF) is the
sum of a discrete PDF or the integral of a continuous PDF. The cumulative
distribution function F (x) is the probability that the variable takes a value
less than or equal x.

As a next step, we have to fi nd a suitable theoretical distribution that fi ts
the empirical distributions described in the previous chapters. In this sec-
tion, the most important theoretical distributions are introduced and their
application is described.

42 3 Univariate Statistics

Uniform Distribution

A uniform or rectangular distribution is a distribution that has a constant
probability (Fig. 3.4). The corresponding probability density function is

where the random variable x has any of N possible values. The cumulative
distribution function is

The probability density function is normalized to unity

i.e., the sum of probabilities is one. Therefore, the maximum value of the
cumulative distribution function is one.

1 2 3 4 5 6
0

0.05

0.1

0.15
f(x)=1/6

0

1

1.2

0 1 2 3 4 5 6

0.2

0.2

0.4

0.8

0.6

x x

f(
x

)

F
(x

)

Cumulative Distribution
Function

Probability Density
Function

a b

Fig. 3.4 a Probability density function f (x) and b cumulative distribution function F (x)
of a uniform distribution with N = 6. The 6 discrete values of the variable x have the same
probability of 1/6.

3.4 Theoretical Distributions 43

An example is a rolling die with N = 6 faces. A discrete variable such as the
faces of a die can only take a countable number of values x. The probability
of each face is 1/6. The probability density function of this distribution is

The corresponding cumulative distribution function is

where x takes only discrete values, x =1, 2, …, 6.

Binomial or Bernoulli Distribution

A binomial or Bernoulli distribution, named after the Swiss scientist Jakob
Bernoulli (1654–1705), gives the discrete probability of x successes out of
N trials, with probability p of success in any given trial (Fig. 3.5). The prob-
ability density function of a binomial distribution is

0 1 2 3 4 5
0

0 1 2 3 4 56 6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

x x

f(x
)

f(x
)

Probability Density
Function

Probability Density
Function

p=0.1 p=0.3

a b

Fig. 3.5 Probability density function f (x) of a binomial distribution, which gives the
probability p of x successes out of N=6 trials, with probability a p=0.1 and b p=0.3 of
success in any given trial.

44 3 Univariate Statistics

The cumulative distribution function is

where

The binomial distribution has two parameters N and p. An example for the
application of this distribution is the outcome of oil drilling. Let us assume
that the probability of a drilling success is 0.1 or 10%. The probability of
x =3 successful wells out of a total number of N =10 wells is

Therefore, the probability of exact 3 successful wells out of 10 trials is 6%.

Poisson Distribution

When the number of trials is N→ ∞ and the success probability is p→0, the
binomial distribution approaches the Poisson distribution with one single
parameter λ = Np (Fig. 3.6) (Poisson 1837). This works well for N >100 and
p < 0.05 or 5%. Therefore, we use the Poisson distribution for processes
characterized by extremely low occurrence, e.g., earthquakes, volcano
eruptions, storms and fl oods. The probability density function is

and the cumulative distribution function is

The single parameter λ describes both the mean and the variance of this
distribution.

3.4 Theoretical Distributions 45

Normal or Gaussian Distribution

When p = 0.5 (symmetric, no skew) and N→ ∞ , the binomial distribution
approaches the normal or gaussian distribution with the parameters mean
μ and standard deviation σ (Fig. 3.7). The probability density function of a
normal distribution in the continuous case is

and the cumulative distribution function is

The normal distribution is used when the mean is the most frequent and
most likely value. The probability of deviations is equal towards both direc-
tions and decrease with increasing distance from the mean.

The standard normal distribution is a special member of the normal fam-
ily that has a mean of zero and a standard deviation of one. We transform
the equation of the normal distribution by substitute z=(x–μ)/σ. The prob-
ability density function of this distribution is

0 1 2 3 4 5 6 0 1 2 3 4 5 6
0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

x x

f(
x)

f(
x)

Probability Density
Function

Probability Density
Function

λ = 0.5 λ =2

a b

Fig. 3.6 Probability density function f (x) of a Poisson distribution with different values
for λ. a λ = 0.5 and b λ =2.

46 3 Univariate Statistics

This defi nition of the normal distribution is often called z distribution.

Logarithmic Normal or Log-Normal Distribution

The logarithmic normal distribution is used when the data have a lower lim-
it, e.g., mean-annual precipitation or the frequency of earthquakes (Fig. 3.8).
In such cases, distributions are usually characterized by signifi cant skew-
ness, which is best described by a logarithmic normal distribution. The
probability density function of this distribution is

and the cumulative distribution function is

σ=0.5
σ=1.0

σ=2.0

σ=0.5

σ=1.0

σ=2.0
0.2

0.4

0.6

0.8

0 2 4 6

0.2

0.4

0.6

0.8

1 1

0 0
0 2 4 6

x x

f(x
)

F(
x)

Probability Density
Function

Cumulative Distribution
Function

a b

Fig. 3.7 a Probability density function f (x) and b cumulative distribution function F (x)
of a gaussian or normal distribution with mean μ =3 and different values for standard
deviation σ.

3.4 Theoretical Distributions 47

where x > 0. The distribution can be described by the two parameters mean
μ and variance σ 2. The formulas for the mean and the variance, however,
are different from the ones used for normal distributions. In practice, the
values of x are logarithmized, the mean and the variance are computed us-
ing the formulas for the normal distribution and the empirical distribution
is compared with a normal distribution.

Student’s t Distribution

The Student’s t distribution was fi rst introduced by William Gosset (1876–
1937) who needed a distribution for small samples (Fig. 3.9). W. Gosset
was an Irish Guinness Brewery employee and was not allowed to publish
research results. For that reason he published his t distribution under the
pseudonym Student (Student, 1908). The probability density function is

where Γ is the Gamma function

σ=0.5

σ=0.65

σ=1.0
σ=0.5

σ=0.65
σ=1.0

0.2

0.4

0.6

0.8

0 2 4 6

0.2

0.4

0.6

0.8

1 1

0 0
0 2 4 6

x x

f(
x)

F(
x)

Probability Density
Function

Cumulative Distribution
Function

a b

Fig. 3.8 a Probability density function f (x) and b cumulative distribution function F (x) of a
logarithmic normal distribution with mean μ = 0 and with different values for σ.

48 3 Univariate Statistics

which can be written as

if x > 0. The single parameter Φ of the t distribution is the degrees of free-
dom. In the analysis of univariate data, this parameter is Φ = n–1, where n
is the sample size. As Φ→ ∞ , the t distribution converges to the standard
normal distribution. Since the t distribution approaches the normal distri-
bution for Φ >30, it is not often used for distribution fi tting. However, the
t distribution is used for hypothesis testing, namely the t-test (Chapter 3.6).

Fisher’s F Distribution

The F distribution was named after the statistician Sir Ronald Fisher
(1890–1962). It is used for hypothesis testing, namely for the F-test
(Chapter 3.7). The F distribution has a relatively complex probability
density function (Fig. 3.10):

Φ=5 Φ=5

Φ=1

Φ=1
0.1

0.2

0.3

0.4

−6 −4 −2 0 2 4 6−6 −4 −2 0 2 4 6

0.5

0

0.2

0.4

0.6

0.8

1

0

x x

f(x
)

F(
x)

Probability Density
Function

Cumulative Distribution
Function

a b

Fig. 3.9 a Probability density function f (x) and b cumulative distribution function F (x) of
a Student’s t distribution with different values for Φ.

3.4 Theoretical Distributions 49

where x > 0 and Γ is again the Gamma function. The two parameters Φ1 and
Φ2 are the degrees of freedom.

χ2 or Chi-Squared Distribution

The χ2 distribution was introduced by Friedrich Helmert (1876) and Karl
Pearson (1900). It is not used for fi tting a distribution, but has important ap-
plications in statistical hypothesis testing, namely the χ2-test (Chapter 3.8).
The probability density function of the χ2 distribution is

where x > 0, otherwise f (x) = 0, and Γ is again the Gamma function. Again,
Φ is the degrees of freedom (Fig. 3.11).

Φ1=1, Φ2=5

Φ1=10, Φ2=10
Φ1=1, Φ2=5

Φ1=10, Φ2=10

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1 1

0 0
0 1 2 3 4 0 1 2 3 4

x x

f(x
)

F(
x)

Probability Density
Function

Cumulative Distribution
Function

a b

Fig. 3.10 a Probability density function f (x) and b cumulative distribution function F (x)
of a Fisher’s F distribution with different values for Φ1 and Φ2.

50 3 Univariate Statistics

3.5 Example of Theoretical Distributions

The function randtool is a tool to simulate discrete data with a statistics
similar to our data. This function creates a histogram of random numbers
from the distributions in the Statistics Toolbox. The random numbers that
have been generated by using this tool can be exported into the workspace.
We start the graphical user interface (GUI) of the function by typing

randtool

after the prompt. We can now create a data set similar to the one in the fi le
organicmatter_one.txt. The 60 measurements have a mean of 12.3448 wt%
and a standard deviation of 1.1660 wt%. The GUI uses Mu for μ (the mean
of a population) and Sigma for σ (the standard deviation). After choosing
Normal for a gaussian distribution and 60 for the number of samples, we get
a histogram similar to the one of the fi rst example. This synthetic distribu-
tion based on 60 samples represents a rough estimate of the true normal
distribution. If we increase the sample size, the histogram looks much more
like a true gaussian distribution.

Instead of simulating discrete distributions, we can use the probabil-
ity density function (PDF) or cumulative distribution function (CDF) to
compute a theoretical distribution. The MATLAB Help gives an overview
of the available theoretical distributions. As an example, we use the func-

Φ=3

Φ=2

Φ=4

Φ=1Φ=1

Φ=2

Φ=4
Φ=3

0.1

0.2

0.3

0.4

0.2

0.4

0.6

0.8

1

0 0
0 2 4 6 8 0 2 4 6 8

0.5

x x

f(x
)

F(
x)

Probability Density
Function

Cumulative Distribution
Function

a b

Fig. 3.11 a Probability density function f (x) and b cumulative distribution function F (x)
of a χ2 distribution with different values for Φ.

3.6 The t-Test 51

tions normpdf(x,mu,sigma)and normcdf(x,mu,sigma) to compute
the PDF and CDF of a gaussian distribution with Mu=12.3448 and Sig-
ma=1.1660, evaluated at the values in x to compare the result with our
sample data set.

x = 9 : 0.1 : 15;
pdf = normpdf(x,12.3448,1.1660);
cdf = normcdf(x,12.3448,1.1660);
plot(x,pdf,x,cdf)

MATLAB also provides a GUI-based function for generating PDF’s and
CDF’s with specifi c statistics, which is called disttool.

disttool

We choose pdf as function type and Mu=12.3448 and Sigma=1.1660.
The function disttool uses the non-GUI functions for calculating prob-
ability density functions and cumulative distribution functions, such as
normpdf and normcdf.

3.6 The t-Test

The Student’s t-test by William Gossett (1876–1937) compares the means
of two distributions. Let us assume that two independent sets of na and nb

measurements that have been carried out on the same object. For instance,
several samples were taken from two different outcrops. The t-test can be
used to test the hypothesis that both samples come from the same population,
e.g., the same lithologic unit (null hypothesis) or from two different popula-
tions (alternative hypothesis). Both, the sample and population distribution
have to be gaussian. The variances of the two sets of measurements should
be similar. Then, the proper test statistic for the difference of two means is

where na and nb are the sample sizes, sa
2 and sb

2 are the variances of the two
samples a and b. The alternative hypothesis can be rejected if the measured
t-value is lower than the critical t-value, which depends on the degrees of
freedom Φ = na+ nb–2 and the signifi cance level α . If this is the case, we
cannot reject the null hypothesis without another cause. The signifi cance

52 3 Univariate Statistics

level α of a test is the maximum probability of accidentally rejecting a true
null hypothesis. Note that we cannot prove the null hypothesis, in other
words not guilty is not the same as innocent (Fig. 3.12).

The t-test can be performed by the function ttest2. We load an exam-
ple data set of two independent series of measurements. The fi rst example
shows the performance of the t-test on two distributions with the means 25.5
and 25.3, whereas the standard deviations are 1.3 and 1.5.

clear

load('organicmatter_two.mat');

The binary fi le organicmatter_two.mat contains two data sets corg1 and
corg2. First, we plot both histograms in one single graph

[n1,x1] = hist(corg1);
[n2,x2] = hist(corg2);

h1 = bar(x1,n1);
hold on
h2 = bar(x2,n2);

set(h1,'FaceColor','none','EdgeColor','r')
set(h2,'FaceColor','none','EdgeColor','b')

Here we use the command set to change graphic objects of the bar plots
h1 and h2, such as the face and edge colors of the bars. Now we apply the
function ttest2(x,y,alpha) to the two independent samples corg1 and
corg2 at an alpha=0.05 or 5% signifi cance level. The command

[h,significance,ci] = ttest2(corg1,corg2,0.05)

yields

h =
 0

significance =
 0.0745

ci =
 -0.0433 0.9053

The result h=0 means that you cannot reject the null hypothesis without
another cause at a 5% signifi cance level. The signifi cance of 0.0745 means
that by chance you would have observed more extreme values of t than the
one in the example in 745 of 10,000 similar experiments. A 95% confi dence
interval on the mean is [–0.0433 0.9053], which includes the theoretical

3.7 The F-Test 53

(and hypothesized) difference of 0.2.
The second synthetic example shows the performance of the t-test on very

different distributions in the means. The means are 24.3 and 25.5, whereas
the standard deviations are again 1.3 and 1.5.

clear

load('organicmatter_three.mat');

This fi le again contains two data sets corg1 and corg2. The t-test at a 5%
signifi cance level

[h,significance,ci] = ttest2(corg1,corg2,0.05)

yields

h =
 1

significance =
 6.1138e-06

ci =
 0.7011 1.7086

The result h=1 suggests that you can reject the null hypothesis. The signifi -
cance is extremely low and very close to zero. The 95% confi dence interval
on the mean is [0.7011 1.7086], which again includes the theoretical (and
hypothesized) difference of 1.2.

3.7 The F-Test

The F-test by Snedecor and Cochran (1989) compares the variances sa
2 and

sb
2 of two distributions, where sa

2 > sb
2. An example is the comparison of

the natural heterogeneity of two samples based on replicated measurements.
The sample sizes na and nb should be above 30. Then, the proper test statis-
tic to compare variances is

The two variances are not signifi cantly different, i.e., we reject the alterna-
tive hypothesis, if the measured F-value is lower than the critical F-value,
which depends on the degrees of freedom Φa= na –1 and Φb= nb–1, respec-
tively, and the signifi cance level α .

54 3 Univariate Statistics

Although MATLAB does not provide a ready-to-use F-test, this hypoth-
esis test can easily be implemented. We fi rst apply this test to two distribu-
tions with very similar standard deviations of 1.3 and 1.2.

load('organicmatter_four.mat');

The quantity F is the quotient between the larger and the smaller variance.
First, we compute the standard deviations, where

s1 = std(corg1)

s2 = std(corg2)

yields

s1 =
 1.2550

s2 =
 1.2097

The F-distribution has two parameters, df1 and df2, which are the num-
bers of observations of both distributions reduced by one, where

df1 = length(corg1) - 1

df2 = length(corg2) - 1

yields

df1 =
 59

df2 =
 59

Next we sort the standard deviations by their absolute value,

if s1 > s2
 slarger = s1
 ssmaller = s2
else
 slarger = s2
 ssmaller = s1
end

and get

slarger =
 1.2550

3.7 The F-Test 55

ssmaller =
 1.2097

Now we compare the calculated F with the critical F. This can be accom-
plished using the function finv on a 95% signifi cance level. The function
finv returns the inverse of the F distribution function with df1 and df2
degrees of freedom, at the value of 0.95. Typing

Freal = slarger^2 / ssmaller^2

Ftable = finv(0.95,df1,df2)

yields

Freal =
 1.0762

Ftable =
 1.5400

The F calculated from the data is smaller than the critical F. Therefore, we
cannot reject the null hypothesis without another cause. We conclude that
the variances are identical on a 95% signifi cance level.

We now apply this test to two distributions with very different standard
deviations, 2.0 and 1.2.

load('organicmatter_five.mat');

We compare the calculated F with the critical F at a 95% signifi cance level.
The critical F can be computed using the function finv. We again type

s1 = std(corg1);

s2 = std(corg2);

df1 = length(corg1) - 1;

df2 = length(corg2) - 1;

if s1 > s2
 slarger = s1;
 ssmaller = s2;
else
 slarger = s2;
 ssmaller = s1;
end

Freal = slarger^2 / ssmaller^2

Ftable = finv(0.95,df1,df2)

56 3 Univariate Statistics

and get

Freal =
 3.4967

Ftable =
 1.5400

The F calculated from the data is now larger than the critical F. Therefore,
we can reject the null hypothesis. The variances are different on a 95%
signifi cance level.

3.8 The χ2-Test

The χ2-test introduced by Karl Pearson (1900) involves the comparison of
distributions, permitting a test that two distributions were derived from the
same population. This test is independent of the distribution that is being
used. Therefore, it can be applied to test the hypothesis that the observations
were drawn from a specifi c theoretical distribution. Let us assume that we
have a data set that consists of 100 chemical measurements from a sand-
stone unit. We could use the χ2-test to test the hypothesis that these mea-
surements can be described by a gaussian distribution with a typical central
value and a random dispersion around. The n data are grouped in K classes,
where n should be above 30. The frequencies within the classes Ok should
not be lower than four and never be zero. Then, the proper statistic is

where Ek are the frequencies expected from the theoretical distribution. The
alternative hypothesis is that the two distributions are different. This can be
rejected if the measured χ2 is lower than the critical χ2 , which depends on
the degrees of freedom Φ =K–Z, where K is the number of classes and Z
is the number of parameters describing the theoretical distribution plus the
number of variables (for instance, Z=2+1 for the mean and the variance
for a gaussian distribution of a data set of one variable, Z=1+1 for a Poisson
distribution of one variable) (Fig. 3.12).

As an example, we test the hypothesis that our organic carbon measure-
ments contained in organicmatter_one.txt follow a gaussian distribution.
We fi rst load the data into the workspace and compute the frequency distri-
bution n_exp of the data.

3.8 The χ2-Test 57

corg = load('organicmatter_one.txt');

v = 10 : 0.65 : 14.55;
n_exp = hist(corg,v);

We use the function normpdf to create the synthetic frequency distribution
n_syn with a mean of 12.3448 and a standard deviation of 1.1660.

n_syn = normpdf(v,12.3448,1.1660);

The data need to be scaled so that they are similar to the original data set.

n_syn = n_syn ./ sum(n_syn);
n_syn = sum(n_exp) * n_syn;

The fi rst line normalizes n_syn to a total of one. The second command scales
n_syn to the sum of n_exp. We can display both histograms for comparison.

subplot(1,2,1), bar(v,n_syn,'r')
subplot(1,2,2), bar(v,n_exp,'b')

Visual inspection of these plots reveals that they are similar. However, it
is advisable to use a more quantitative approach. The χ2-test explores the

Reject the null hypothesis!
This decision has a 5%
probability of being wrong.

Don’t reject the
null hypothesis
without another cause!

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

f(

)

χ2

χ2

Φ=5 χ2 (Φ=5, α=0.05)

Probability Density Function

Fig. 3.12 Principles of a χ2-test. The alternative hypothesis that the two distributions are
different can be rejected if the measured χ2 is lower than the critical χ2. χ2 depends on
Φ =K–Z , where K is the number of classes and Z is the number of parameters describing the
theoretical distribution plus the number of variables. In the example, the critical χ2 (Φ =5,
α =0.05) is 11.0705. If the measured χ2 =2.1685 is below the critical χ2, we cannot reject
the null hypothesis. In our example, we can conclude that the sample distribution is not
signifi cantly different from a gaussian distribution.

58 3 Univariate Statistics

squared differences between the observed and expected frequencies. The
quantity χ2 is the sum of the squared differences divided by the expected
frequencies.

chi2 = sum((n_exp - n_syn).^2 ./ n_syn)

chi2 =
 2.1685

The critical χ2 can be calculated using chi2inv. The χ2-test requires the
degrees of freedom Φ. In our example, we test the hypothesis that the data
are gaussian distributed, i.e., we estimate two parameters μ and σ. The
number of degrees of freedom is Φ = 8– (2+1)= 5. We test our hypothesis
on a p = 95% signifi cance level. The function chi2inv computes the in-
verse of the χ2 CDF with parameters specifi ed by Φ for the corresponding
probabilities in p.

chi2inv(0.95,5)

ans =
 11.0705

The critical χ2 of 11.0705 is well above the measured χ2 of 2.1685. Therefore,
we cannot reject the null hypothesis. Hence, we conclude that our data fol-
low a gaussian distribution.

Recommended Reading

Bernoulli J (1713) Ars Conjectandi. Reprinted by Ostwalds Klassiker Nr. 107–108.
Leipzig 1899

Fisher RA (1935) Design of Experiments. Oliver and Boyd, Edinburgh
Helmert FR (1876) Über die Wahrscheinlichkeit der Potenzsummen der Beobachtungsfehler

und über einige damit im Zusammenhang stehende Fragen. Zeitschrift für Mathematik
und Physik 21:192–218

Pearson ES (1990) Student – A Statistical Biography of William Sealy Gosset. In: Plackett
RL, with the assistance of Barnard GA, Oxford University Press, Oxford

Pearson K (1900) On the criterion that a given system of deviations from the probable in
the case of a correlated system of variables is such that it can be reasonably supposed to
have arisen from random sampling. Philos. Mag. 5, 50:157–175

Poisson SD (1837) Recherches sur la Probabilité des Jugements en Matière Criminelle et en
Matière Civile, Précédées des Regles Générales du Calcul des Probabilités, Bachelier,
Imprimeur-Libraire pour les Mathematiques, Paris

Sachs L, Hedderich J (2006) Angewandte Statistik – Anwendung statistischer Methoden,
Elfte, überarbeitete und aktualisierte Aufl age. Springer, Berlin Heidelberg New York

Snedecor GW, Cochran WG (1989) Statistical Methods, Eighth Edition. Blackwell

Recommended Reading 59

Publishers, Oxford
Spiegel MR, Schiller JJ, Srinivasan RA (2000) Probability and Statistics, 2nd Edition.

Schaum’s Outline Series, McGraw-Hill, New York
Student (1908) On the Probable Error of the Mean. Biometrika 6:1–25
Taylor JR (1997) An Introduction to Error Analysis – The Study of Uncertainties in Physical

Measurements, Second Edition. University Science Books, Sausalito, California
The Mathworks (2006) Statistics Toolbox User’s Guide – For the Use with MATLAB®. The

MathWorks, Natick, MA

4 Bivariate Statistics

4.1 Introduction

Bivariate analysis aims to understand the relationship between two variables
x and y. Examples are the length and the width of a fossil, the sodium and
potassium content of volcanic glass or the organic matter content along a
sediment core. When the two variables are measured on the same object, x is
usually identifi ed as the independent variable, whereas y is the dependent
variable. If both variables were generated in an experiment, the variable
manipulated by the experimenter is described as the independent variable.
In some cases, both variables are not manipulated and therefore indepen-
dent. The methods of bivariate statistics help describe the strength of the
relationship between the two variables, either by a single parameter such
as Pearson’s correlation coeffi cient for linear relationships or by an equa-
tion obtained by regression analysis (Fig. 4.1). The equation describing the
relationship between x and y can be used to predict the y-response from ar-
bitrary x’s within the range of original data values used for regression. This
is of particular importance if one of the two parameters is diffi cult to mea-
sure. Here, the relationship between the two variables is fi rst determined
by regression analysis on a small training set of data. Then, the regression
equation is used to calculate this parameter from the fi rst variable.

This chapter fi rst introduces Pearson’s correlation coeffi cient (Chapter 4.2),
then explains the widely-used methods of linear and curvilinear regression
analysis (Chapter 4.3, 4.9 and 4.10). Moreover, a selection of methods is
explained that are used to assess the uncertainties in regression analysis
(Chapters 4.4 to 4.8). All methods are illustrated by means of synthetic ex-
amples since they provide excellent means for assessing the fi nal outcome.

4.2 Pearson’s Correlation Coeffi cient

Correlation coeffi cients are often used at the exploration stage of bivariate

62 4 Bivariate Statistics

statistics. They are only a very rough estimate of a rectilinear trend in the
bivariate data set. Unfortunately, the literature is full of examples where the
importance of correlation coeffi cients is overestimated and outliers in the
data set lead to an extremely biased estimator of the population correlation
coeffi cient.

The most popular correlation coeffi cient is Pearson’s linear product-mo-
ment correlation coeffi cient ρ (Fig. 4.2). We estimate the population’s cor-
relation coeffi cient ρ from the sample data, i.e., we compute the sample
correlation coeffi cient r, which is defi ned as

Regression line

i-th data point (xi,yi)

Regression line:
age = 6.6 + 5.1 depth

Correlation coefficient:
r = 0.96

Depth in sediment (meters)

A
ge

 o
f s

ed
im

en
t (

ky
rs

)

y-intercept = 6.6
Slope = 5.1

1

5 10 15 20
0

20

40

60

80

100

120

0

Bivariate Scatter

Fig. 4.1 Display of a bivariate data set. The thirty data points represent the age of a
sediment (in kiloyears before present) in a certain depth (in meters) below the sediment-
water interface. The joint distribution of the two variables suggests a linear relationship
between age and depth, i.e., the increase of the sediment age with depth is constant.
Pearson’s correlation coeffi cient (explained in the text) of r = 0.96 supports the strong linear
dependency of the two variables. Linear regression yields the equation age = 6.6+5.1 depth.
This equation indicates an increase of the sediment age of 5.1 kyrs per meter sediment
depth (the slope of the regression line). The inverse of the slope is the sedimentation rate of
ca. 0.2 meters /kyrs. Furthermore, the equation defi nes the age of the sediment surface of
6.6 kyrs (the intercept of the regression line with the y-axis). The deviation of the surface
age from zero can be attributed either to the statistical uncertainty of regression or any
natural process such as erosion or bioturbation. Whereas the assessment of the statistical
uncertainty will be discussed in this chapter, the second needs a careful evaluation of the
various processes at the sediment-water interface.

4.2 Pearson’s Correlation Coeffi cient 63

Outlier

Random bivariate
data cluster

r = 0.96 r = -0.97

r = 0.36

r = 0.96 r = 0.38

r = 0.95

0 5 10 15 20
0

20

40

60

80

100

120

0 5 10 15 20
−120

−100

−80

−60

−40

−20

0

20

0 5 10 15 20
0

5

10

15

20

0 5 10 15 20
0

5

10

15

0 5 10 15 20
−5

0

5

10

15

20

25

−10 −5 0 5 10
0

10

20

30

40

50

60

20

x x

x x

x x

y y

y y

y y

Bivariate Scatter Bivariate Scatter

Bivariate Scatter Bivariate Scatter

Bivariate Scatter Bivariate Scatter

a

c

e f

d

b

Fig. 4.2 Pearson’s correlation coeffi cent r for various sample data. a–b Positive and negative
linear correlation, c random scatter without a linear correlation, d an outlier causing a
misleading value of r, e curvilinear relationship causing a high r since the curve is close to
a straight line, f curvilinear relationship clearly not described by r.

64 4 Bivariate Statistics

where n is the number of xy pairs of data points, sx and sy are the univariate
standard deviations. The numerator of Pearson’s correlation coeffi cient is
known as the corrected sum of products of the bivariate data set. Dividing
the numerator by (n–1) yields the covariance

which is the summed products of deviations of the data from the sample
means, divided by (n–1). The covariance is a widely-used measure in bivar-
iate statistics, although it has the disadvantage of depending on the dimen-
sion of the data. We will use the covariance in time-series analysis, which
is a special case of bivariate statistics with time as one of the two variables
(Chapter 5). Dividing the covariance by the univariate standard deviations
removes this effect and leads to Pearson’s correlation coeffi cient.

Pearson’s correlation coeffi cient is very sensitive to various disturbances
in the bivariate data set. The following example illustrates the use of the
correlation coeffi cients and highlights the potential pitfalls when using this
measure of linear trends. It also describes the resampling methods that can
be used to explore the confi dence of the estimate for ρ. The synthetic data
consist of two variables, the age of a sediment in kiloyears before present
and the depth below the sediment-water interface in meters. The use of syn-
thetic data sets has the advantage that we fully understand the linear model
behind the data.

The data are represented as two columns contained in fi le agedepth.txt.
These data have been generated using a series of thirty random levels (in
meters) below the sediment surface. The linear relationship age = 5.6 me-
ters +1.2 was used to compute noisefree values for the variable age. This is
the equation of a straight line with a slope of 5.6 and an intercept with the
y-axis of 1.2. Finally, some gaussian noise of amplitude 10 was added to the
age data. We load the data from the fi le agedepth.txt.

agedepth = load('agedepth_1.txt');

We defi ne two new variables, meters and age, and generate a scatter plot
of the data.

meters = agedepth(:,1);
age = agedepth(:,2);

plot(meters,age,'o')

We observe a strong linear trend suggesting some dependency between the

4.2 Pearson’s Correlation Coeffi cient 65

variables, meters and age. This trend can be described by Pearson’s cor-
relation coeffi cient r, where r =1 represents a perfect positive correlation,
i.e., age increases with meters, r = 0 suggests no correlation, and r = –1
indicates a perfect negative correlation. We use the function corrcoef to
compute Pearson’s correlation coeffi cient.

corrcoef(meters,age)

which causes the output

ans =
 1.0000 0.9342
 0.9342 1.0000

The function corrcoef calculates a matrix of correlation coeffi -
cients for all possible combinations of the two variables. The combina-
tions (meters, age) and (age, meters) result in r = 0.9342, whereas
(age, age) and (meters, meters) yield r =1.000.

The value of r = 0.9342 suggests that the two variables age and meters
depend on each other. However, Pearson’s correlation coeffi cient is highly
sensitive to outliers. This can be illustrated by the following example. Let
us generate a normally-distributed cluster of thirty (x,y) data with zero
mean and standard deviation one. To obtain identical data values, we reset
the random number generator by using the integer 5 as seed.

 randn('seed',5);
x = randn(30,1); y = randn(30,1);

plot(x,y,'o'), axis([-1 20 -1 20]);

As expected, the correlation coeffi cient of these random data is very low.

corrcoef(x,y)

ans =
 1.0000 0.1021
 0.1021 1.0000

Now we introduce one single outlier to the data set, an exceptionally high
(x,y)value, which is located precisely on the one-by-one line. The correla-
tion coeffi cient for the bivariate data set including the outlier (x,y)=(5,5)
is much higher than before.

x(31,1) = 5; y(31,1) = 5;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)

66 4 Bivariate Statistics

ans =
 1.0000 0.4641
 0.4641 1.0000

After increasing the absolute (x,y) values of this outlier, the correlation
coeffi cient increases dramatically.

x(31,1) = 10; y(31,1) = 10;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)

ans =
 1.0000 0.7636
 0.7636 1.0000

and reaches a value close to r =1 if the outlier has a value of
(x,y)=(20,20).

x(31,1) = 20; y(31,1) = 20;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)

ans =
 1.0000 0.9275
 0.9275 1.0000

Still, the bivariate data set does not provide much evidence for a strong
dependence. However, the combination of the random bivariate (x,y) data
with one single outlier results in a dramatic increase of the correlation coef-
fi cient. Whereas outliers are easy to identify in a bivariate scatter, erroneous
values might be overlooked in large multivariate data sets.

Various methods exist to calculate the signifi cance of Pearson’s correla-
tion coeffi cient. The function corrcoef provides the possibility for evaluat-
ing the quality of the result. Furthermore, resampling schemes or surrogates
such as the bootstrap or jackknife method provide an alternative way of as-
sessing the statistical signifi cance of the results. These methods repeatedly
resample the original data set with N data points either by choosing N–1
subsamples N times (the jackknife) or picking an arbitrary set of subsamples
with N data points with replacements (the bootstrap). The statistics of these
subsamples provide a better information on the characteristics of the popula-
tion than statistical parameters (mean, standard deviation, correlation coef-
fi cients) computed from the full data set. The function bootstrp allows
resampling of our bivariate data set including the outlier (x,y)=(20,20).

4.2 Pearson’s Correlation Coeffi cient 67

rhos1000 = bootstrp(1000,'corrcoef',x,y);

This command fi rst resamples the data a thousand times, calculates the
correlation coeffi cient for each new subsample and stores the result in the
variable rhos1000. Since corrcoef delivers a 2 × 2 matrix as mentioned
above, rhos1000 has the dimension 1000 × 4, i.e., 1000 values for each
element of the 2 × 2 matrix. Plotting the histogram of the 1000 values of
the second element, i.e., the correlation coeffi cient of (x,y) illustrates the
dispersion of this parameter with respect to the presence or absence of the
outlier. Since the distribution of rhos1000 contains many empty classes,
we use a large number of bins.

hist(rhos1000(:,2),30)

The histogram shows a cluster of correlation coeffi cients at around r = 0.2
that follow the normal distribution and a strong peak close to r =1 (Fig. 4.3).
The interpretation of this histogram is relatively straightforward. When
the subsample contains the outlier, the correlation coeffi cient is close to
one. Samples without the outlier yield a very low (close to zero) correla-
tion coeffi cient suggesting no strong dependence between the two vari-
ables x and y.

Low corrrelation coefficients
of samples not containing

the outlier

High corrrelation coefficients
of samples including

the outlier

Correlation Coefficient r

B
o

ot
st

ra
p

 S
am

p
le

s

−0.4 0 0.6 1
0

50

100

150

200

250

300

350

−0.2 0.40.2 0.8

Histogram of Bootstrap Results

Fig. 4.3 Bootstrap result for Pearson’s correlation coeffi cient r from 1000 subsamples.
The histogram shows a roughly normally-distributed cluster of correlation coeffi cients at
around r = 0.2 suggesting that these subsamples do not contain the outlier. The strong peak
close to r =1, however, suggests that such an outlier with high values of the two variables x
and y is present in the corresponding subsamples.

68 4 Bivariate Statistics

Bootstrapping therefore represents a powerful and simple tool for accept-
ing or rejecting our fi rst estimate of the correlation coeffi cient. The applica-
tion of the above procedure applied to the synthetic sediment data yields a
clear unimodal gaussian distribution of the correlation coeffi cients.

corrcoef(meters,age)

ans =
 1.0000 0.9342
 0.9342 1.0000

rhos1000 = bootstrp(1000,'corrcoef',meters,age);

hist(rhos1000(:,2),30)

Most rhos1000 fall within the interval between 0.88 and 0.98. Since the
resampled correlation coeffi cients obviously are gaussian distributed, we
can use the mean as a good estimate for the true correlation coeffi cient.

mean(rhos1000(:,2))

ans =
 0.9315

This value is not much different to our fi rst result of r = 0.9342. However,
now we can be certain about the validity of this result. However, in our
example, the bootstrap estimate of the correlations from the age-depth data
is quite skewed, as there is a hard upper limit of one. Nevertheless, the boot-
strap method is a valuable tool for obtaining valuable information on the
reliability of Pearson’s correlation coeffi cient of bivariate data sets.

4.3 Classical Linear Regression Analysis and Prediction

 Linear regression provides another way of describing the dependence be-
tween the two variables x and y. Whereas Pearson’s correlation coeffi cient
provides only a rough measure of a linear trend, linear models obtained by
regression analysis allow to predict arbitrary y values for any given value
of x within the data range. Statistical testing of the signifi cance of the linear
model provides some insights into the quality of prediction.

Classical regression assumes that y responds to x, and the entire disper-
sion in the data set is in the y-value (Fig. 4.4). Then, x is the independent,
 regressor or predictor variable. The values of x are defi ned by the experi-
menter and are often regarded as to be free of errors. An example is the
location x of a sample in a sediment core. The dependent variable y contains

4.3 Classical Linear Regression Analysis and Prediction 69

errors as its magnitude cannot be determined accurately. Linear regression
minimizes the Δy deviations between the xy data points and the value pre-
dicted by the best-fi t line using a least-squares criterion. The basis equation
for a general linear model is

where b0 and b1 are the regression coeffi cients. The value of b0 is the inter-
cept with the y-axis and b1 is the slope of the line. The squared sum of the
Δy deviations to be minimized is

Partial differentiation of the right-hand term and equation to zero yields a
simple equation for the fi rst regression coeffi cient b1:

y-
in

te
rc

ep
t b

0

y

Regression line
Regression line:
y = b0 + b1x

i-th data point (x i,y i)

Δy

Δx

Δx=1

Δy=b1

0 2 4 6 8
0

1

2

3

4

5

6

1 3 5 7

x

Linear Regression

Fig. 4.4 Linear regression. Whereas classical regression minimizes the Δy deviations,
 reduced major axis regression minimizes the triangular area 0.5(Δ xΔy) between the points
and the regression line, where Δ x and Δy are the distances between the predicted and the
true x and y values. The intercept of the line with the y-axis is b0, whereas the slope is b1.
These two parameters defi ne the equation of the regression line.

70 4 Bivariate Statistics

The regression line passes through the data centroid defi ned by the sample-
means. We can therefore compute the other regression coeffi cient b0,

using the univariate sample means and the slope b1 computed earlier.
Let us again load the synthetic age-depth data from the fi le agedepth.txt.

We defi ne two new variables, meters and age, and generate a scatter plot
of the data.

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

A signifi cant linear trend in the bivariate scatter plot and a correlation co-
effi cient of more than r = 0.9 suggests a strong linear dependence between
meters and age. In geologic terms, this suggests that the sedimentation
rate is constant through time. We now try to fi t a linear model to the data
that helps us predict the age of the sediment at levels without age data. The
function polyfit computes the coeffi cients of a polynomial p (x) of a cer-
tain degree that fi ts the data y in a least-squared sense. In our example, we
fi t a polynomial of degree 1 (linear) to the data.

p = polyfit(meters,age,1)

p =
 5.6393 0.9986

Since we are working with synthetic data, we know the values for slope
and intercept with the y-axis. While the estimated slope agrees well with
the true value (5.6 vs. 5.6393), the intercept with the y-axis is signifi cantly
different (1.2 vs. 0.9986). Both the data and the fi tted line can be plotted on
the same graph.

plot(meters,age,'o'), hold

plot(meters,p(1)*meters+p(2),'r')

Instead of using the equation for the regression line, we can also use the
function polyval to calculate the y-values.

plot(meters,age,'o'), hold

plot(meters,polyval(p,meters),'r')

Both, the functions polyfit and polyval are incorporated in the GUI

4.3 Classical Linear Regression Analysis and Prediction 71

function polytool.

polytool(meters,age)

The coeffi cients p(x) and the equation obtained by linear regression can
now be used to predict y-values for any given x-value. However, we can only
do this for the depth interval for which the linear model was fi tted, i.e., be-
tween 0 and 20 meters. As an example, the age of the sediment at the depth
of 17 meters depth is given by

polyval(p,17)

ans =
 96.8667

This result suggests that the sediment at 17 meters depth has an age of ca. 97
kyrs. The goodness-of-fi t of the linear model can be determined by calculat-
ing error bounds. These are obtained by using an additional output param-
eter for polyfit and as an input parameter for polyval.

[p,s] = polyfit(meters,age,1);
[p_age,delta] = polyval(p,meters,s);

This code uses an interval of ± 2s, which corresponds to a 95% confi dence
interval. polyfit returns the polynomial coeffi cients p, and a structure s
that polyval uses to calculate the error bounds. Structures are MATLAB
arrays with named data containers called fi elds. The fi elds of a structure can
contain any type of data, such as text strings representing names. Another
might contain a scalar or a matrix. In our example, the structure s contains
fi elds for the statistics of the residuals that we use to compute the error
bounds. delta is an estimate of the standard deviation of the error in pre-
dicting a future observation at x by p(x). We plot the results.

plot(meters,age,'+',meters,p_age,'g-',...
 meters,p_age+2*delta,'r--',meters,p_age-2*delta,'r--')
xlabel('meters'), ylabel('age')

Since the plot statement does not fi t on one line, we use an ellipsis (three
periods), ..., followed by return or enter to indicate that the statement
continues on the next line. The plot now shows the data points, the regres-
sion line as well as the error bounds of the regression (Fig. 4.5). This graph
already provides some valuable information on the quality of the result.
However, in many cases a better knowledge on the validity of the model is
required and therefore more sophisticated methods for confi dence testing of
the results are introduced in the following chapters.

72 4 Bivariate Statistics

4.4 Analyzing the Residuals

When you compare how far the predicted values are from the actual or ob-
served values, you are performing an analysis of the residuals. The statistics
of the residuals provides valuable information on the quality of a model
fi tted to the data. For instance, a signifi cant trend in the residuals suggests
that the model not fully describes the data. In such a case, a more complex
model, such as a polynomial of a higher degree should be fi tted to the data.
Residuals ideally are purely random, i.e., gaussian distributed with zero
mean. Therefore, we test the hypothesis that our residuals are gaussian dis-
tributed by visual inspection of the histogram and by employing a χ2-test
introduced in Chapter 3.

res = age - polyval(p,meters);

Plotting the residuals does not show obvious patterned behavior. Thus, no
more complex model than a straight line should be fi tted to the data.

plot(meters,res,'o')

An alternative way to plot the residuals is a stem plot using stem.

Depth in sediment (meters)

A
g

e
of

 s
ed

im
en

ts
 (k

yr
s)

Regression line

95% Confidence Bounds

95% Confidence Bounds

i-th data point

0 2 4 6 8 10 12 14 16 18
−40

0

40

100

140

120

80

60

20

−20

20

Linear Regression

Fig. 4.5 The result of linear regression. The plot shows the original data points (plus signs),
the regression line (solid line) as well as the error bounds (dashed lines) of the regression.
Note that the error bounds are actually curved though they seem to be almost straight lines
in the example.

4.4 Analyzing the Residuals 73

subplot(2,1,1)
plot(meters,age,'o'), hold
plot(meters,p(1)*meters+p(2),'r')

subplot(2,1,2)
stem(meters,res);

Let us explore the distribution of the residuals. We choose six classes and
calculate the corresponding frequencies.

[n_exp,x] = hist(res,6)

n_exp =
 5 4 8 7 4 2

x =
 -16.0907 -8.7634 -1.4360 5.8913 13.2186 20.5460

By basing the bin centers in the locations defi ned by the function hist, a
more practical set of classes can be defi ned.

v = -13 : 7 : 23;

n_exp = hist(res,v);

Subsequently, the mean and standard deviation of the residuals are com-
puted. These are then used for generating a theoretical frequency distribu-
tion that can be compared with the distribution of the residuals. The mean
is close to zero, whereas the standard deviation is 11.5612. The function
normpdf is used for creating the frequency distribution n_syn similar to
our example. The theoretical distribution is scaled according to our original
sample data and displayed.

n_syn = normpdf(v,0,11.5612);

n_syn = n_syn ./ sum(n_syn);
n_syn = sum(n_exp) * n_syn;

The fi rst line normalizes n_syn to a total of one. The second command scales
n_syn to the sum of n_exp. We plot both distributions for comparison.

subplot(1,2,1), bar(v,n_syn,'r')
subplot(1,2,2), bar(v,n_exp,'b')

Visual inspection of the bar plots reveals similarities between the data sets.
Hence, the χ2-test can be used to test the hypothesis that the residuals follow
a gaussian distribution.

chi2 = sum((n_exp - n_syn) .^2 ./ n_syn)

74 4 Bivariate Statistics

chi2 =
 2.3465

The critical χ2 can be calculated by using chi2inv. The χ2 test requires the
degrees of freedom Φ , which is the number of classes reduced by one and
the number of parameters estimated. In our example, we test for a gauss-
ian distribution with two parameters, the mean and the standard deviation.
Therefore, the degrees of freedom is Φ = 6– (1+2) =3. We test at a 95% sig-
nifi cance level.

chi2inv(0.95,3)

ans =
 7.8147

The critical χ2 of 7.8147 is well above the measured χ2 of 2.3465. It is not
possible to reject the null hypothesis. Hence, we conclude that our residuals
follow a gaussian distribution and the bivariate data set is well described by
the linear model.

4.5 Bootstrap Estimates of the Regression Coeffi cients

We use the bootstrap method to obtain a better estimate of the regression
coeffi cients. Again, we use the function bootstrp with 1000 samples
(Fig. 4.6).

p_bootstrp = bootstrp(1000,'polyfit',meters,age,1);

The statistics of the fi rst coeffi cient, i.e., the slope of the regression line is

hist(p_bootstrp(:,1),15)

mean(p_bootstrp(:,1))

ans =
 5.6023

std(p_bootstrp(:,1))

ans =
 0.4421

Your results might be slightly different because of the different state of the
built-in random number generator used by bootstrp. The small standard
deviation indicates that we have an accurate estimate. In contrast, the statis-
tics of the second parameter shows a signifi cant dispersion.

4.6 Jackknife Estimates of the Regression Coeffi cients 75

hist(p_bootstrp(:,2),15)
mean(p_bootstrp(:,2))

ans =
 1.3366

std(p_bootstrp(:,2))

ans =
 4.4079

The true values as used to simulate our data set are 5.6 for the slope and 1.2
for the intercept with the y-axis, whereas the coeffi cients calculated using
the function polyfit were 5.6393 and 0.9986, respectively. We see that
indeed the intercept with the y-axis has a large uncertainty, whereas the
slope is well defi ned.

4.6 Jackknife Estimates of the Regression Coeffi cients

The jackknife method is a resampling technique that is similar to the boot-
strap. From a sample with n data points, n subsets with n–1 data points
are taken. The parameters of interest are calculated from each subset, e.g.,
the regression coeffi cients. The mean and dispersion of the coeffi cients are
computed. The disadvantage of this method is the limited number of n sam-

Slope

B
o

ot
st

ra
p

 S
am

p
le

s

Y−Axis Intercept

B
o

ot
st

ra
p

 S
am

p
le

s

Slope = 5.6±0.4 Y Intercept = 1.3±4.4

4 5 6 7
0

50

100

150

200

−10 0 10 20
0

50

100

150

200
1st Regression Coefficient 2st Regression Coefficient

a b

Fig. 4.6 Histogram of the a fi rst (slope of the line) and b second (y-axis intercept of the
regression line) regression coeffi cient as estimated from bootstrap resampling. Whereas
the fi rst coeffi cient is very-well constrained, the second coeffi cient shows a large scatter.

76 4 Bivariate Statistics

ples. The jackknife estimate of the regression coeffi cients is therefore less
precise in comparison to the bootstrap results.

MATLAB does not provide a jackknife routine. However, the corre-
sponding code is easy to generate:

for i = 1 : 30
 % Define two temporary variables j_meters and j_age
 j_meters = meters;
 j_age = age;
 % Eliminate the i-th data point
 j_meters(i) = [];
 j_age(i) = [];
 % Compute regression line from the n-1 data points
 p(i,:) = polyfit(j_meters,j_age,1);
end

The jackknife for n–1=29 data points can be obtained by a simple for loop.
Within each iteration, the i-th element is deleted and the regression coeffi -
cients are calculated for the remaining samples. The mean of the i samples
gives an improved estimate of the coeffi cients. Similar to the bootstrap re-
sult, the slope of the regression line (fi rst coeffi cient) is well defi ned, where-
as the intercept with the y-axis (second coeffi cient) has a large uncertainty,

mean(p(:,1))

ans =
 5.6382

compared to 5.6023+/–0.4421 and

mean(p(:,2))

ans =
 1.0100

compared to 1.3366+/–4.4079 as calculated by the bootstrap method. The
true values are 5.6 and 1.2. The histogram of the jackknife results from 30
subsamples

hist(p(:,1));
figure
hist(p(:,2));

does not display the distribution of the coeffi cients as clearly as the boot-
strap estimates (Fig. 4.7). We have seen that resampling using the jackknife
or bootstrap methods provides a simple and valuable tool to test the quality
of regression models. The next chapter introduces an alternative approach
for quality estimation, which is by far more often used than resampling.

4.7 Cross Validation 77

4.7 Cross Validation

A third method to test the goodness-of-fi t of the regression is cross valida-
tion. The regression line is computed by using n–1 data points. The n-th
data point is predicted and the discrepancy between the prediction and the
actual value is computed. Subsequently, the mean of the discrepancies be-
tween the actual and predicted values is determined.

In this example, the cross validation for n data points is computed. The
corresponding 30 regression lines display some dispersion in slope and y-
axis intercept.

for i = 1 : 30
 % Define temporary variables j_meters and j_age
 j_meters = meters;
 j_age = age;
 % Eliminate the i-th data point
 j_meters(i) = [];
 j_age(i) = [];
 % Compute regression line from the n-1 data points
 p(i,:) = polyfit(j_meters,j_age,1);
 % Plot the i-th regression line and hold plot for next loop
 plot(meters,polyval(p(i,:),meters),'r'), hold on
 % Store the regression result and errors in p_age and p_error
 p_age(i) = polyval(p(i,:),meters(i));
 p_error(i) = p_age(i) - age(i);
end

Slope Y−Axis Intercept

Slope
= 5.6±0.4

Y Intercept
 = 1.3±4.4

Ja
ck

kn
ife

 S
am

p
le

s

Ja
ck

kn
ife

 S
am

p
le

s

5.4 5.5 5.6 5.7 5.8 5.9 −2 −1 0 1 2 3
0

2

4

6

8

10

0

2

4

6

8

10

12
1st Regression Coefficient 2st Regression Coefficient

a b

Fig. 4.7 Histogram of the a fi rst (slope of the line) and b second (y-axis intercept of the
regression line) regression coeffi cient as estimated from jackknife resampling. Note that
the parameters are not as clearly defi ned as from bootstrapping.

78 4 Bivariate Statistics

The prediction error is – in the best case – gaussian distributed with zero
mean.

mean(p_error)

ans =
 0.0122

The standard deviation is an unbiased mean deviation of the true data points
from the predicted straight line.

std(p_error)

ans =
 12.4289

Cross validation gives valuable information of the goodness-of-fi t of the
regression result. This method can be used also for quality control in other
fi elds, such as spatial and temporal prediction.

4.8 Reduced Major Axis Regression

In some cases, both variables are not manipulated and can therefore be con-
sidered to be independent. Here, several methods are available to compute
a best-fi t line that minimizes the distance from both x and y. As an example,
the method of reduced major axis (RMA) minimizes the triangular area
0.5 (ΔxΔy) between the points and the regression line, where Δx and Δy
are the distances between predicted and true x and y values (Fig. 4.4). This
optimization appears to be complex. However, it can be shown that the fi rst
regression coeffi cient b1 (the slope) is simply the ratio of the standard devia-
tions of x and y.

Similar to classic regression, the regression line passes through the data
centroid defi ned by the sample mean. We can therefore compute the second
regression coeffi cient b0 (the y-intercept),

using the univariate sample means and the slope b1 computed earlier. Let us
load the age-depth data from the fi le agedepth.txt and defi ne two variables,

4.9 Curvilinear Regression 79

meters and age. It is ssumed that both of the variables contain errors and
the scatter of the data can be explained by dispersion of meters and age.

clear
agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

The above formula is used for computing the slope of the regression line b1.

p(1,1) = std(age)/ std(meters)

p =
 6.0367

The second coeffi cient b0, i.e., the y-axis intercept can therefore be com-
puted by

p(1,2) = mean(age) - p(1,1) * mean(meters)

p =
 6.0367 -2.9570

The regression line can be plotted by

plot(meters,age,'o'), hold
plot(meters,polyval(p,meters),'r')

This linear fi t slightly differs from the line obtained from classic regres-
sion. Note that the regression line from RMA is not the bisector of the
angle between the x-y and y-x classical linear regression analysis, i.e., us-
ing either x or y as independent variable while computing the regression
lines.

4.9 Curvilinear Regression

It has become apparent from our previous analysis that a linear regression
model provides a good way of describing the scaling properties of the data.
However, we may wish to check whether the data could be equally-well
described by a polynomial fi t of a higher degree.

To clear the workspace and reload the original data, type

80 4 Bivariate Statistics

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

Subsequently, a polynomial of degree 2 can be fi tted by using the function
polyfit.

p = polyfit(meters,age,2)

p =
 -0.0132 5.8955 0.1265

The fi rst coeffi cient is close to zero, i.e., has not much infl uence on predic-
tion. The second and third coeffi cients are similar to the coeffi cients ob-
tained by linear regression. Plotting the data yields a curve that resembles
a straight line.

plot(meters,age,'o'), hold
plot(meters,polyval(p,meters),'r')

Let us compute and plot the error bounds obtained by passing an optional
second output parameter from polyfit as an input parameter to poly-
val.

[p,s] = polyfit(meters,age,2);
[p_age,delta] = polyval(p,meters,s);

This code uses an interval of ± 2s, corresponding to a 95% confi dence in-
terval. polyfit returns the polynomial coeffi cients p, but also a structure
s for use with polyval to obtain error bounds for the predictions. The
structure s contains fi elds for the norm of the residuals that we use to com-
pute the error bounds. delta is an estimate of the standard deviation of the
prediction error of a future observation at x by p(x). We plot the results.

plot(meters,age,'+',meters,p_age,'g-',...
 meters,p_age+2*delta,'r', meters,p_age-2*delta,'r')
grid on

We now use another synthetic data set that we generate using a quadratic
relationship between meters and age.

meters = 20 * rand(30,1);
age = 1.6 * meters.^2 - 1.1 * meters + 1.2;
age = age + 40.* randn(length(meters),1);

plot(meters,age,'o')

agedepth = [meters age];

4.9 Curvilinear Regression 81

agedepth = sortrows(agedepth,1);

save agedepth_2.txt agedepth -ascii

The synthetic bivariate data set can be loaded from the fi le agedepth_2.txt.

agedepth = load(agedepth_2.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

plot(meters,age,'o')

Fitting a polynomial of degree 2 yields a convincing regression result com-
pared to the linear model.

p = polyfit(meters,age,2)

p =
 1.7199 -5.6948 33.3508

As shown above, the true values for the three coeffi cients are +1.6, –1.1 and
+1.2. There are some discrepancies between the true values and the coeffi -
cients estimated using polyfit. The regression curve and the error bounds
can be plotted by typing (Fig. 4.8)

plot(meters,age,'o'), hold
plot(meters,polyval(p,meters),'r')

[p,s] = polyfit(meters,age,2);
[p_age,delta] = polyval(p,meters,s);

plot(meters,age,'+',meters,p_age,'g',meters,...
 p_age+2*delta,'r--',meters,p_age-2*delta,'r--')
grid on
xlabel('meters'), ylabel('age')

The plot shows that the quadratic model for this data is a good one. The
quality of the result could again be tested by exploring the residuals, em-
ploying resampling schemes or cross validation. The combination of regres-
sion analysis with one of these methods represent a powerful tool in bivari-
ate data analysis, whereas Pearson’s correlation coeffi cient should be used
only as a fi rst test for linear relationships.

82 4 Bivariate Statistics

Recommended Reading

Alberède F (2002) Introduction to Geochemical Modeling. Cambridge University Press,
Cambridge

Davis JC (2002) Statistics and Data Analysis in Geology, Third Edition. John Wiley and
Sons, New York

Draper NR, Smith, H (1998) Applied Regression Analysis. Wiley Series in Probability and
Statistics, John Wiley and Sons, New York

Efron B (1982) The Jackknife, the Bootstrap, and Other Resampling Plans. Society of
Industrial and Applied Mathematics CBMS-NSF Monographs 38

Fisher RA (1922) The Goodness of Fit of Regression Formulae, and the Distribution of
Regression Coeffi cients. Journal of the Royal Statistical Society 85:597–612

MacTavish JN, Malone PG, Wells TL (1968) RMAR; a Reduced Major Axis Regression
Program Designed for Paleontologic Data. Journal of Paleontology 42/4:1076–1078

Pearson K (1894–98) Mathematical Contributions to the Theory of Evolution, Part I to IV.
Philosophical Transactions of the Royal Society 185–191

The Mathworks (2006) Statistics Toolbox User’s Guide – For the Use with MATLAB®. The
MathWorks, Natick, MA

Depth in sediment (meters)

Regression line

95% Confidence Bounds

95% Confidence Bounds

i-th data point

0 2 4 6 8 10 12 14 16 18 20
−100

0

100

200

300

400

500

600

700
A

g
e

o
f s

ed
im

en
t

(k
yr

s)
Curvilinear Regression

Fig. 4.8 Curvilinear regression. The plot shows the original data points (plus signs), the
regression line for a polynomial of degree 2 (solid line) as well as the error bounds (dashed
lines) of the regression.

5 Time-Series Analysis

5.1 Introduction

 Time-series analysis aims to understand the temporal behavior of one of
several variables y (t). Examples are the investigation of long-term records
of mountain uplift, sea-level fl uctuations, orbitally-induced insolation varia-
tions and their infl uence on the ice-age cycles, millenium-scale variations of
the atmosphere-ocean system, the effect of the El Niño/Southern Oscillation
on tropical rainfall and sedimentation (Fig. 5.1) and tidal infl uences on nobel
gas emissions of bore holes. The temporal structure of a sequence of events
can be random, clustered, cyclic or chaotic. Time-series analysis provides
various tools to detect these temporal structures. The understanding of the
underlying process that produced the observed data allows us to predict
future values of the variable. We use the Signal Processing and Wavelet
Toolbox, which contain all necessary routines for time-series analysis.

The fi rst section is on signals in general and contains a technical de-
scription of how to generate synthetic signals for time-series analysis
(Chapter 5.2). Then, spectral analysis to detect cyclicities in a single time
series (autospectral analysis) and to determine the relationship between two
time series as a function of frequency (crossspectral analysis) is demon-
strated in Chapters 5.3 and 5.4. Since most time series in earth sciences are
not evenly-spaced in time, various interpolation techniques and subsequent
spectral analysis are introduced in Chapter 5.5. Evolutionary powerspectra
to map changes in the cyclicities through time are shown in Chapter 5.6. An
alternative technique to analyze unevenly-spaced data is in Chapter 5.7. In
the subsequent Chapter 5.8, the very popular wavelets are introduced having
the capability to map temporal variations in the spectra, similar to the meth-
od shown in Chapter 5.6.. The chapter closes with an overview of nonlinear
techniques, in particular the method of recurrence plots (Chapter 5.9).

84 5 Time-Series Analysis

5.2 Generating Signals

A time series is an ordered sequence of values of a variable y (t) at certain
times tk.

If the time-indexed distance between any two successive observation tk and
tk+1 is constant, the time series is equally spaced and the sampling interval is

The sampling frequency fs is the inverse of the sampling interval Δ t. In
most cases, we try to sample at constant time intervals or sampling fre-
quencies. However, in some cases equally-spaced data are not available. As

Frequency (yrs-1)

P
ow

er
 S

p
ec

tr
al

 D
en

si
ty 13.1

Atlantic SST Variability

3.2

ENSO

1.0
2.2

1.8

Annual
Cycle

1.2

0

10

20

30

40

0 0.5 1 1.5 2

a b

Fig. 5.1 a Photograph of ca. 30 kyr-old varved sediments from a landslide-dammed lake
in the Northwest Argentine Andes. The mixed clastic-biogenic varves consist of reddish-
brown and green to buff-colored clays sourced from Cretaceous redbeds (red-brown) and
Precambrian to early Paleozoic greenshists (green-buff colored). The clastic varves are
topped by thin white diatomite layers documenting the bloom of silica algae after the
austral-summer rainy season. The distribution of the two source rocks and the interannual
precipitation pattern in the area suggests that the reddish-brown layers refl ect cyclic
recurrence of enhanced precipitation, erosion and sediment input in the landslide-dammed
lake. b The powerspectrum of a red-color intensity transect across 70 varves is dominated
by signifi cant peaks at frequencies of ca. 0.076, 0.313, 0.455 and 1.0 yrs-1 corresponding to
periods of 13.1, 3.2, 2.2, and around 1.0 years. This cyclicities suggest a strong infl uence
of the tropical Atlantic sea-surface temperature (SST) variability (characterized by 10 to
15 year cycles), the El Niño/Southern Oscillation (ENSO) (cycles between two and seven
years) and the annual cycle at 30 kyrs ago, similar to today (Trauth et al. 2003).

5.2 Generating Signals 85

an example, assume deep-sea sediments sampled at fi ve-centimeter inter-
vals along a sediment core. Radiometric age determination of certain levels
of the sediment core revealed signifi cant fl uctuations in the sedimentation
rates. The samples evenly spaced along the sediment core are therefore not
equally spaced on the time axis. Here, the quantity

where T is the full length of the time series and N is the number of data points,
represents only an average sampling interval. In general, a time series y (tk)
can be represented as a linear sum of a long-term component or trend ytr (tk),
a periodic component yp (tk) and a random noise yn(tk).

The long-term component is a linear or higher-degree trend that can be
extracted by fi tting a polynomial of a certain degree and subtracting the
values of this polynomial from the data (see Chapter 4). Noise removal will
be described in Chapter 6. The periodic – or cyclic in a mathematically less
rigorous sense – component can be approximated by a linear combination
of cosine (or sine) waves that have different amplitudes Ai, frequencies fi

and phase angles ψ i.

The phase angle ψ helps to detect temporal shifts between signals of the
same frequency. Two signals y1 and y2 of the same period are out of phase
if the difference between ψ 1 and ψ 2 is not zero (Fig. 5.2).

The frequency f of a periodic signal is the inverse of the period τ . The
Nyquist frequency fNyq is half the sampling frequency fs and provides a max-
imum frequency the data can produce. As an example, audio compact disks
(CDs) are sampled at frequencies of 44,100 Hz (Hertz, which is 1/second).
The corresponding Nyquist frequency is 22,050 Hz, which is the highest
frequency a CD player can theoretically produce. The limited performance
of anti-alias fi lters used by CD players again reduces the frequency band
and causes a cutoff frequency at around 20,050 Hz, which is the true upper
frequency limit of a CD player.

We now generate synthetic signals to illustrate the use of time-series
analysis tools. While using synthetic data we know in advance which fea-

86 5 Time-Series Analysis

tures the time series contains, such as periodic or stochastic components,
and we can introduce artifacts such as a linear trend or gaps. This knowl-
edge is particularly important if you are new to time series analysis. The
user encounters plenty of possible effects of parameter settings, potential
artifacts and errors in the application of spectral analysis tools. Therefore,
we start with simple data before we apply the methods to more complex
time series.

The next example illustrates how to generate a basic synthetic data series
that is characteristic to earth sciences data. First, we create a time axis t
running from 0.01 to 100 in 0.01 intervals. Next, we generate a strictly peri-
odic signal y(t), a sine wave with a period 5 and an amplitude 2 by typing

Period τ

Amplitude A

Phase Shift Δt

y1(t)

y2(t)

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

y(
t)

y(
t)

t

t

Periodic Signal

Periodic Signals

Fig. 5.2 Two periodic signals y1 and y2 as a function of time t defi ned by the amplitudes A1
and A2, the period τ1=τ2, which is the inverse of the frequency f1= f2. Two signals y1 and
y2 of the same period are out of phase if the difference between ψ1 and ψ2 is not zero.

5.2 Generating Signals 87

t = 0.01 : 0.01 : 100;
y = 2*sin(2*pi*t/5);

plot(t,y)

The period of τ =5 corresponds to a frequency of f =1/5= 0.2. Natural
data series, however, are more complex than a simple periodic signal. The
next-complicated signal is generated by superposition of several periodic
components with different periods. As an example, we compute such a sig-
nal by adding three sine waves with the periods τ1=50 (f1= 0.02), τ2 =15
(f2≈0.07) and τ 3=5 (f3= 0.2). The corresponding amplitudes are A1=2,
A2 =1 and A3= 0.5. The new time axis t runs from 1 to 1000 with 1.0 inter-
vals.

t = 1 : 1000;
y = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

plot(t,y), axis([0 200 -4 4])

Only one fi fth of the original data series is displayed by restricting the x-
axis limits to the interval [0 200]. It is, however, recommended to generate
long data series as in the example in order to avoid edge effects while apply-
ing spectral-analysis tools for the fi rst time.

In contrast to our synthetic time series, real data also contain various
disturbances, such as random noise and fi rst or higher-order trends. Firstly,
a random-number generator can be used to compute gaussian noise with
zero mean and standard deviation one. The seed of the algorithm needs to
be set to zero. Subsequently, one thousand random numbers are generated
using the function randn.

randn('seed',0)
n = randn(1,1000);

We add this noise to the original data, i.e., we generate a signal containing
additive noise (Fig. 5.3). Displaying the data illustrates the effect of noise
on a periodic signal. In reality, no record that is free of noise. Hence, it is
important to familiarize oneself with the infl uence of noise on powerspec-
tra.

yn = y + n;

plot(t,y,'b-',t,yn,'r-'), axis([0 200 -4 4])

The methods of signal processing methods are often applied to remove most
of the noise although many fi ltering methods make arbitrary assumptions

88 5 Time-Series Analysis

Original
signal

Signal with
noise

Original
signal

Signal with
trend

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0

−4

−3

−2

−1

0

1

2

3

4

−4

−3

−2

−1

0

1

2

3

4

−4

−3

−2

−1

0

1

2

3

4

20 40 60 80 100 120 140 160 180 200

t

t

y(
t)

y(
t)

y(
t)

t

Composite Periodic Signal

Signal with Linear Trend

Signal with Additive Random Noise
a

b

c

Fig. 5.3 a Synthetic signal with the periodicities τ1=50, τ2=15 and τ3=5, different
amplitudes, b overlain by gaussian noise and c a linear trend.

5.3 Blackman-Tuckey Autospectral Analysis 89

on the signal-to-noise ratio. Moreover, fi ltering introduces artifacts and sta-
tistical dependencies to the data. These may have a profound infl uence on
the resulting powerspectra.

Finally, we introduce a linear long-term trend to the data by adding
a straight line with a slope 0.005 and an intercept of zero with the y-axis
(Fig. 5.3). Such trends are common features in earth sciences. As an example,
consider the glacial-interglacial cycles observed in marine oxygen-isotope
records overlain by a long-term cooling trend during the last six million
years.

yt = y + 0.005 * t;

plot(t,y,'b-',t,yt,'r-'), axis([0 200 -4 4])

In reality, more complex trends exist, such as higher-order trends or trends
characterized by changing slopes. In practice, it is recommended to elimi-
nate such a trend by fi tting polynomials to the data and to subtract the cor-
responding values. This synthetic time series now contains many character-
istics of a typical data set in the earth sciences. It can be used to illustrate the
use of spectral-analysis tools that are introduced in the next chapter.

5.3 Blackman-Tukey Autospectral Analysis

Autospectral analysis aims to describe the distribution of variance con-
tained in one single signal x (t) over frequency or wavelength. A simple way
to describe the variance in a signal over a time lag k is the autocovariance.
An unbiased estimator of the autocovariance covxx of the signal x (t) with N
data points sampled at constant time intervals Δ t is

The autocovariance series clearly depends on the amplitude of x (t).
Normalizing the covariance by the variance σ 2 of x (t) yields the autocor-
relation sequence. Autocorrelation involves correlating a series of data with
itself, depending on a time lag k.

The most popular method to compute powerspectra in earth sciences is the

90 5 Time-Series Analysis

method introduced by Blackman and Tukey (1958). The Blackman-Tukey
method uses the complex Fourier transform X (f) of the autocorrelation
sequence corrxx (k),

where M is the maximum lag and fs the sampling frequency. The Blackman-
Tukey powerspectral density PSD is estimated by

The actual computation of PSD can be performed only at a fi nite number of
frequency points by employing a Fast Fourier Transformation (FFT). The
FFT is a method to compute a discrete Fourier Transform with reduced ex-
ecution time. Most FFT algorithms divide the transform into two pieces of
size N/2 at each step. It is therefore limited to blocks of a power of two. In
practice, the PSD is computed by using a number of frequencies close to the
number of data points in the original signal x (t).

The discrete Fourier transform is an approximation of the continuous
Fourier transform. The Fourier transform expects an infi nite signal. However,
real data are limited at both ends, i.e., the signal amplitude is zero beyond the
limits of the time series. In the time domain, a fi nite signal corresponds to an
infi nite signal multiplied by a rectangular window that is one within the limits
of the signal and zero elsewhere. In the frequency domain, the multiplication
of the time series with this window equals to a convolution of the powerspec-
trum of the signal with the spectrum of the rectangular window. The spectrum
of the window, however, equals a sin(x)/x function, which has a main lobe
and several side lobes at both sides of the main peak. Therefore, all maxima in
a powerspectrum leak, i.e., they lose power about the minor peaks (Fig. 5.4).

A popular way to overcome the problem of spectral leakage is windowing.
The sequence of data is simply multiplied by a window with smooth ends.
Several window shapes are available, e.g., Bartlett (triangular), Hamming
(cosinusoidal) and Hanning (slightly different cosinusoidal). The use of
these windows slightly modifi es the equation of the Fourier transform of
the autocorrelation sequence:

5.3 Blackman-Tuckey Autospectral Analysis 91

where M is the maximum lag considered and window length, and w(k) is
the windowing function. The Blackman-Tukey method therefore performs
autospectral analysis in three steps, calculation of the autocorrelation se-
quence corrxx (k), windowing and fi nally computation of the discrete fourier
transform. MATLAB allows to perform this powerspectral analysis with a
number of modifi cations of the above method. A useful modifi cation is the
method by Welch (1967) (Fig. 5.5). The Welch method includes dividing the
time series into overlapping segments, computing the powerspectrum for
each segment and averaging the powerspectra. The advantage of averaging
spectra is obvious, it simply improves the signal-to-noise ratio of a spec-
trum. The disadvantage is a loss of resolution of the spectrum.

The Welch spectral analysis that is included in the Signal Processing
Toolbox can be applied to the synthetic data sets. The function periodog
ram(y,window,nfft,fs) computes the powerspectral density of y(t).
We use the default rectangular window by choosing an empty vector [] for
window. The powerspectrum is computed using a FFT of length nfft of
1024. We then compute the magnitude of the complex output Pxx of peri-
odogram by using the function abs. Finally, the sampling frequency fs of
one is supplied to the function in order to obtain a correct frequency scaling
of the f-axis.

Rectangular

Hanning

Bartlett

Main Lobe
Side Lobes Hanning

Rectangular

Bartlett

P
ow

er
 (

dB
)

A
m

pl
itu

de

TimeFrequency

0

0.2

0.4

0.6

0.8

10 20 30 40 50 6000 1.00.2 0.4 0.6 0.8
−140

−120

−100

−80

−60

−40

−20

0

20

40
1

Time DomainFrequency Domain

a b

Fig. 5.4 Spectral leakage. a The relative amplitude of the side lobes compared to the main
lobe is reduced by multiplying the corresponding time series with b a window with smooth
ends. A number of different windows with advantages and disadvantages are available
instead of using the default rectangular window, including Bartlett (triangular) and Hanning
(cosinusoidal) windows. Graph generated using the function wvtool.

92 5 Time-Series Analysis

[Pxx,f] = periodogram(y,[],1024,1);
magnitude = abs(Pxx);

plot(f,magnitude), grid
xlabel('Frequency')
ylabel('Power')
title('Autospectrum')

Original signal

1st segment
(t = 1 : 100)

2nd segment
(t = 51 : 150)

3rd segment
(t = 101 : 200)

Overlap of 100 samples

Overlap of 100 samples

0 20 40 60 80 100 120 140 160 180 200

t

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

y(
t)

y(
t)

y(
t)

y(t)

Principle of Welch’s Method

Fig. 5.5 Principle of Welch powerspectral analysis. The time series is divided into
overlapping segments, then the powerspectrum for each segment is computed and all
spectra are averaged to improve the signal-to-noise ratio of the powerspectrum.

5.3 Blackman-Tuckey Autospectral Analysis 93

The graphical output shows that there are three signifi cant peaks at the posi-
tion of the original frequencies of the three sine waves. The same procedure
can be applied to the noisy data:

[Pxx,f] = periodogram(yn,[],1024,1);
magnitude = abs(Pxx);

plot(f,magnitude), grid
xlabel('Frequency')
ylabel('Power')
title('Autospectrum')

Let us increase the noise level. The gaussian noise has now a standard de-
viation of fi ve and zero mean.

randn('seed',0);
n = 5 * randn(size(y));
yn = y + n;

[Pxx,f] = periodogram(yn,[],1024,1);
magnitude = abs(Pxx);

plot(f,magnitude), grid
xlabel('Frequency')
ylabel('Power')
title('Autospectrum')

This spectrum resembles a real data spectrum in the earth sciences. The
spectral peaks now sit on a signifi cant noise fl oor. The peak of the highest
frequency even disappears in the noise. It cannot be distinguished from
maxima which are attributed to noise. Both spectra can be compared on the
same plot (Fig. 5.6):

[Pxx,f] = periodogram(y,[],1024,1);
magnitude = abs(Pxx);

plot(f,magnitude,'b')
hold

[Pxx,f] = periodogram(yn,[],1024,1);
magnitude = abs(Pxx);

plot(f,magnitude,'r'), grid
xlabel('Frequency')
ylabel('Power')
title('Autospectrum')

Next, we explore the infl uence of a linear trend on a spectrum. Long-term
trends are common features in earth science data. We will see that this trend
is misinterpreted as a very long period by the FFT. The spectrum therefore
contains a large peak with a frequency close to zero (Fig. 5.7).

94 5 Time-Series Analysis

yt = y + 0.005 * t;

[Pxx,f] = periodogram(y,[],1024,1);
magnitude = abs(Pxx);

[Pxxt,f] = periodogram(yt,[],1024,1);
magnitudet = abs(Pxxt);

subplot(1,2,1), plot(f,abs(Pxx))
xlabel('Frequency')
ylabel('Power')

subplot(1,2,2), plot(f,abs(Pxxt))
xlabel('Frequency')
ylabel('Power')

To eliminate the long-term trend, we use the function detrend.

ydt = detrend(yt);

subplot(2,1,1)
plot(t,y,'b-',t,yt,'r-'), axis([0 200 -4 4])

subplot(2,1,2)
plot(t,y,'b-',t,ydt,'r-'), axis([0 200 -4 4])

The corresponding spectrum does not show the low-frequency peak anymore.
Some data contain a high-order trend that can be removed by fi tting a higher-
order polynomial to the data and by subtracting the corresponding Y (t) values.

P
ow

er

P
ow

er

f1=0.02

f2≈0.07

f3=0.2

f1=0.02

f2≈0.07

f3=0.2 ? Noise
floor

0.2 0.3 0.4 0.50.10 0
0

200

400

600

800

1000

200

400

600

800

1000

0.2 0.3 0.4 0.50.1
0

Frequency Frequency

Autospectrum Autospectrum

a b

Fig. 5.6 Comparison of the Welch powerspectra of the a noise-free and b noisy synthetic
signal with the periods τ1=50 (f1=0.02), τ2=15 (f2≈0.07) and τ3=5 (f3=0.2). In
particular, the peak with the highest frequency disappears in the noise fl oor and cannot be
distinguished from peaks attributed to the gaussian noise.

5.4 Blackman-Tuckey Crossspectral Analysis 95

5.4 Blackman-Tukey Crossspectral Analysis

 Crossspectral analysis correlates two time series in the frequency domain.
The crosscovariance is a measure for the variance in two signals over a time
lag k. An unbiased estimator of the crosscovariance covxy of two signals
x (t) and y (t) with N data points sampled at constant time intervals Δ t is

The crosscovariance series again depends on the amplitudes of x (t) and
y (t). Normalizing the covariance by the standard deviations of x (t) and
y (t) yields the crosscorrelation sequence.

In practice, the same methods and modifi cations outlined in the previous
chapter are used to compute the crossspectral density. In addition to the two
autospectra of x (t) and y (t) and the crossspectrum,

Frequency Frequency

P
ow

er

P
ow

er

f1=0.02

f2≈0.07

f3=0.2
f1=0.02

f2≈0.07
f3=0.2

Linear trend

0.2 0.3 0.4 0.50.1
0

200

400

600

800

1000

0

1000

2000

3000

4000

5000

6000

7000

0.2 0.3 0.4 0.50.10 0

Autospectrum

Autospectrum

a b

Fig. 5.7 Comparison of the Welch powerspectra a of the original noisefree signal with
the periods τ1=50 (f1=0.02), τ2=15 (f2≈ 0.07) and τ3=5 (f 3=0.2) and b the same signal
overlain by a linear trend. The linear trend is misinterpreted as a very long period with a
high amplitude by the FFT.

96 5 Time-Series Analysis

the complex Fourier transform X (f) also contains information on the phase
relationship W (f) of the two signals:

The phase difference is important in calculating leads and lags between two
signals, a parameter often used to propose causalities between the two pro-
cesses documented by the signals. The correlation between the two spectra
can be calculated by means of the coherence:

The coherence is a real number between 0 and 1, where 0 indicates no cor-
relation and 1 indicates maximum correlation between x (t) and y (t) at the
frequency f. A signifi cant degree of coherence is an important precondition
for computing phase shifts between the two signals.

We use two sine waves with identical periodicities τ =5 (equivalent to
f = 0.2) and amplitudes equal to two. The sine waves show a relative phase
shift of t =1. In the argument of the second sine wave this corresponds to
2π /5, which is one fi fth of the full wavelength of τ =5.

t = 0.01 : 0.1 : 100;
y1 = 2*sin(2*pi*t/5);
y2 = 2*sin(2*pi*t/5 + 2*pi/5);

plot(t,y1,'b-',t,y2,'r-')
axis([0 20 -2 2]), grid

The crossspectrum is computed by using the function cpsd (Fig. 5.8).

[Pxy,f] = cpsd(y1,y2,[],0,512,10);
magnitude = abs(Pxy);

plot(f,magnitude), grid
xlabel('Frequency')
ylabel('Power')
title('Crossspectrum')

The function cpsd(y1,y2,window,noverlap,nfft,fs) specifi es the
number of FFT points nfft used to calculate the cross powerspectral den-
sity estimate, which is 512 in our example. The parameter window is empty

5.4 Blackman-Tuckey Crossspectral Analysis 97

in our example, therefore the default rectangular window is used to obtain
eight sections of y1 and y2. The parameter noverlap defi nes the number
of samples of overlap from section to section, zero in our example. The sam-
pling frequency fs is 10 in the example. Coherence does not make much
sense if we have noise-free data with only one frequency. This results in a
correlation coeffi cient that equals one everywhere. Since the coherence is
plotted on a log scale (in decibel, dB), the corresponding graph shows a log
coherence of zero for all frequencies.

[Cxy,f] = mscohere(y1,y2,[],0,512,10);

plot(f,Cxy)
xlabel('Frequency')
ylabel('Magnitude Squared Coherence')
title('Coherence')

The function mscohere(y1,y2,window,noverlap,nfft,fs) speci-
fi es the number of FFT points nfft=512, the default rectangular window,
which overlaps by ten data points. The complex part of Pxy is required
for computing the phase shift using the function angle between the two
signals.

Frequency Frequency

P
ow

er

P
ha

se
 a

ng
le

Corresponding phase
angle of 1.2568, equals
(1.2568*5)/(2*π)=1.001

f1=0.02 f1=0.02

0 1 2 3 4 5
0

5

10

15

20

0 1 2 3 4 5
−2

−1

0

1

2

3

4
Crossspectrum Phase Spectrum

a b

Fig. 5.8 Crossspectrum of two sine waves with identical periodicities τ =5 (equivalent
to f = 0.2) and amplitudes two. The sine waves show a relative phase shift of t =1. In
the argument of the second sine wave this corresponds to 2π /5, which is one fi fth of
the full wavelength of τ =5. a The magnitude shows the expected peak at f = 0.2. b The
corresponding phase difference in radians at this frequency is 1.2568, which equals
(1.2568*5) /(2*π) = 1.0001, which is the phase shift of one we introduced at the
beginning.

98 5 Time-Series Analysis

phase = angle(Pxy);

plot(f,phase), grid
xlabel('Frequency')
ylabel('Phase Angle')
title('Phase spectrum')

The phase shift at a frequency of f =0.2 (period τ =5) can be interpolated
from the phase spectrum

interp1(f,phase,0.2)

which produces the output

ans =
 -1.2567

The phase spectrum is normalized to one full period τ =2π , therefore a
phase shift of –1.2567 equals (–1.2567*5)/(2*π) = –1.0001, which is the
phase shift of one that we introduced at the beginning.

We now use two sine waves with different periodicities to illustrate the
crossspectral analysis. Both signals have a periodicity of 5, but with a phase
shift of 1, then they both have one other, but different period.

clear

t = 0.1 : 0.1 : 1000;
y1 = sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);
y2 = 2*sin(2*pi*t/50) + 0.5*sin(2*pi*t/5+2*pi/5);

plot(t,y1,'b-',t,y2,'r-')

Now we compute the crossspectrum, which clearly shows the common pe-
riod of τ =5 or frequency of f = 0.2.

[Pxy,f] = cpsd(y1,y2,[],0,512,10);
magnitude = abs(Pxy);

plot(f,magnitude);
xlabel('Frequency')
ylabel('Power')
title('Crossspectrum')

The coherence shows a large value of approximately one at f = 0.2.

[Cxy,f] = mscohere(y1,y2,[],0,512,10);

plot(f,Cxy)
xlabel('Frequency')
ylabel('Magnitude Squared Coherence')
title('Coherence')

5.5 Interpolating and Analyzing Unevenly-Spaced Data 99

The complex part is required for calculating the phase shift between the two
sine waves.

[Pxy,f] = cpsd(y1,y2,[],0,512,10);
phase=angle(Pxy);

plot(f,phase)

The phase shift at a frequency of f =0.2 (period τ =5) is

interp1(f,phase,0.2)

which produces the output of

ans =
 -1.2604

The phase spectrum is normalized to one full period τ =2π , therefore a
phase shift of –1.2604 equals (–1.2604*5)/(2*π) = –1.0001, which is again
the phase shift of one that we introduced at the beginning.

5.5 Interpolating and Analyzing Unevenly-Spaced Data

Now we use our experience in analyzing evenly-spaced data to run a spec-
tral analysis on unevenly-spaced data. Such data are very common in earth
sciences. For example, in the fi eld of paleoceanography, deep-sea cores are
typically sampled at constant depth intervals. The transformation of evenly-
spaced length-parameter data to time-parameter data in an environment
with changing length-time ratios results in unevenly-spaced time series.
Numerous methods exist for interpolating unevenly-spaced sequences of
data or time series. The aim of these interpolation techniques for x(t) data
is to estimate the x-values for an equally-spaced t vector from the actual
irregular-spaced x(t) measurements. Linear interpolation predicts the x-val-
ues by effectively drawing out a straight line between two neighboring mea-
surements and by calculating the appropriate point along that line. However,
the method also has its limitations. It assumes linear transitions in the data,
which introduces a number of artifacts, including the loss of high-frequency
components of the signal and limiting the data range to that of the original
measurements.

Cubic-spline interpolation is another method for interpolating data that
are unevenly spaced. Cubic splines are piecewise continuous curves, passing
through at least four data points for each step. The method has the advan-

100 5 Time-Series Analysis

tage that it preserves the high-frequency information contained in the data.
However, steep gradients in the data sequence could cause spurious ampli-
tudes in the interpolated time series, which typically occur at neighboring
extreme minima and maxima. Since all these and other interpolation tech-
niques might introduce some artifacts into the data, it is always advisable to
(1) preserve the number of data points before and after interpolation, (2) re-
port the method employed for estimating the evenly-spaced data sequence
and (3) explore the effect of interpolation on the variance of the data.

After this brief introduction to interpolation techniques, we apply the
most popular linear and cubic-spline interpolation techniques to unevenly-
spaced data. Having interpolated the data, we use the spectral tools that
have already been applied to evenly-spaced data (Chapters 5.3 and 5.4).
First, we load the two time series:

series1 = load('series1.txt');
series2 = load('series2.txt');

Both synthetic data sets contain a two-column matrix with 339 rows. The
fi rst column contains ages in kiloyears that are not evenly spaced. The sec-
ond column contains oxygen-isotope values measured on foraminifera. The
data sets contain 100, 40 and 20 kyr cyclicities and they are overlain by
gaussian noise. In the 100 kyr frequency band, the second data series is
shifted by 5 kyrs with respect to the fi rst data series. To plot the data we
type

plot(series1(:,1),series1(:,2))
figure
plot(series2(:,1),series2(:,2))

The statistics of the spacing of the fi rst data series can be computed by

intv1 = diff(series1(:,1));

plot(intv1)

The plot shows that the spacing varies around a mean interval of 3 kyrs with
a standard deviation of ca. 1 kyrs. The minimum and maximum value of
the time axis

min(series1(:,1))

max(series1(:,1))

of tmin = 0 and tma x = 997 kyrs gives some information about the temporal
range of the data. The second data series

5.5 Interpolating and Analyzing Unevenly-Spaced Data 101

intv2 = diff(series2(:,1));

plot(intv2)

min(series2(:,1))

max(series2(:,1))

has a similar range from 0 to 997 kyrs. We see that both series have a mean
spacing of 3 kyrs and range from 0 to ca. 1000 kyrs. We now interpolate
the data to an evenly-spaced time axis. While doing this, we follow the rule
that number of data points should not be increased. The new time axis runs
from 0 to 996 kyrs with 3 kyr intervals.

t = 0 : 3 : 996;

We now interpolate the two time series to this axis with linear and spline-
interpolation methods using the function interp1.

series1L = interp1(series1(:,1),series1(:,2),t,'linear');
series1S = interp1(series1(:,1),series1(:,2),t,'spline');

series2L = interp1(series2(:,1),series2(:,2),t,'linear');
series2S = interp1(series2(:,1),series2(:,2),t,'spline');

The results are compared by plotting the fi rst series before and after inter-
polation.

plot(series1(:,1),series1(:,2),'ko')
hold
plot(t,series1L,'b-',t,series1S,'r-')

We already observe some signifi cant artifacts at ca. 370 kyrs. Whereas the lin-
early-interpolated points are always within the range of the original data, the
spline interpolation method produces values that are unrealistically high or low
(Fig. 5.9). The results can be compared by plotting the second data series.

plot(series2(:,1),series2(:,2),'ko')
hold
plot(t,series2L,'b-',t,series2S,'r-')

In this series, only a few artifacts can be observed. We can apply the func-
tion used above to calculate the powerspectral density. We compute the FFT
for 256 data points, the sampling frequency is 1/3 kyrs–1.

[Pxx,f] = periodogram(series1L,[],256,1/3);
magnitude = abs(Pxx);

102 5 Time-Series Analysis

plot(f,magnitude)
xlabel('Frequency')
ylabel('Power')
title('Autospectrum')

Signifi cant peaks occur at frequencies of 0.01, 0.025 and 0.05 approximate-
ly, corresponding to the 100, 40 and 20 kyr cycles. Analysis of the second
time series

[Pxx,f] = periodogram(series2L,[],256,1/3);
magnitude = abs(Pxx);

plot(f,magnitude)
xlabel('Frequency')
ylabel('Power')
title('Autospectrum')

also yields signifi cant peaks at frequencies of 0.01, 0.025 and 0.05 (Fig. 5.10).
Now we compute the crossspectrum of both data series.

[Pxy,f] = cpsd(series1L,series2L,[],128,256,1/3);
magnitude = abs(Pxy);

plot(f,magnitude)
xlabel('Frequency')
ylabel('Power')
title('Crossspectrum')

The coherence is quite convincing.

Original data point

Linearly-interpolated
data series

Spline-interpolated
data series

350 360 370 380 390 400 410 420 430 440 450
−25

−20

−15

−10

−5

0

5

10

15
y (

t)

t

Interpolated Signals

Fig. 5.9 Interpolation artifacts. Whereas the linearly interpolated points are always within
the range of the original data, the spline interpolation method causes unrealistic high and
low values.

5.5 Interpolating and Analyzing Unevenly-Spaced Data 103

[Cxy,f] = mscohere(series1L,series2L,[],128,256,1/3);

plot(f,Cxy)
xlabel('Frequency')
ylabel('Magnitude Squared Coherence')
title('Coherence')

We observe a fairly high coherence in the frequency bands of the 0.01, 0.025
and 0.05. The complex part of Pxy is required for calculating the phase dif-
ference per frequency.

t Frequency

1st data series

2nd data
series

f1=0.01

f2=0.025

f3=0.05

High coherence in
the 0.01 frequency
band

Phase angle in the 0.01
frequency band

0.4

0.6

0.8

0 0.05 0.15 0 0.05 0.150.1 0.1 0.20.2

0.2

1

−4

−3

−2

−1

0

1

2

3

4

0

100

200

300

400

500

600

700

−5

0

5

0 200 400 600 800 1000 0 0.05 0.1 0.15 0.2

0

y(
t)

P
ow

er

M
ag

ni
tu

de
 S

qu
ar

ed
 C

oh
er

en
ce

P
ha

se
 a

ng
le

Frequency Frequency

Phase Spectrum

Time Domain Crossspectrum

Coherence

a

c d

b

Fig. 5.10 Result from crossspectral analysis of the two linearly-interpolated signals.
a Signals in the time domain, b crossspectrum of both signals, c coherence of the signals in
the frequency domain and d phase spectrum in radians.

104 5 Time-Series Analysis

phase = angle(Pxy);

plot(f,phase)
xlabel('Frequency')
ylabel('Phase Angle')
title('Phase spectrum')

The phase shift at a frequency of f = 0.01 is calculated by

interp1(f,phase,0.01)

which produces the output of

ans =
 -0.2796

The phase spectrum is normalized to a full period τ =2π . Hence, a phase
shift of –0.2796 equals (–0.2796*100 kyr) /(2*π) = –4.45 kyr. This cor-
responds roughly to the phase shift of 5 kyr introduced to the second data
series with respect to the fi rst series.

As a more comfortable tool for spectral analysis, the Signal Processing
Toolbox also contains a GUI function named sptool, which stands for
 Signal Processing Tool.

5.6 Evolutionary Blackman-Tukey Powerspectrum

The amplitude of spectral peaks usually changes through time. This is par-
ticularly true for paleoclimate time series. Paleoclimate records usually
show trends in the mean and variance, but also in the relative contribu-
tions of rhythmic components such as the Milankovitch cycles in marine
oxygen-isotope records. Evolutionary powerspectra have the capability to
map such changes in the frequency domain. The evolutionary or windowed
Blackman-Tukey powerspectrum is a modifi cation of the method introduced
in Chapter 5.3, which computes the spectrum of overlapping segments of
the time series. These overlapping segments are relatively short compared
to the windowed segments used by the Welch method (Chapter 5.3), which
is used to increase the signal-to-noise ratio of powerspectra. Therefore, the
windowed Blackman-Tukey method uses the short-time Fourier transform
(STFT) instead of the Fast Fourier Transformation (FFT). The output of
windowed Blackman-Tukey powerspectrum is the short-term, time-local-
ized frequency content of the signal. There are various methods to display
the results. For instance, time and frequency are plotted on the x- and y-axis,

5.6 Evolutionary Blackman-Tukey Powerspectrum 105

or vice versa, where the color of the plot is proportional to the height of the
spectral peaks.

As an example, we generate a synthetic data set that is similar to the
ones used in Chapter 5.5. The data series contains three main periodicities
of 100, 40 and 20 kyrs and additive gaussian noise. The amplitudes, how-
ever, change through time. Therefore, this example can be used to illustrate
the advantage of the windowed Blackman-Tukey method. First, we create
a time vector t.

clear
t = 0 : 3 : 1000;

In a fi rst step, we introduce some gaussian noise to the time vector t to
make the data unevenly spaced.

randn('seed',0);
t = t + randn(size(t));

In a second step, we compute the signal with the three periodicities and
varying amplitudes. The 40 kyr cycle appears after ca. 450 kyrs, whereas
the 100 and 20 kyr cycles are present through the time series.

x1 = 0.5*sin(2*pi*t/100) + ...
 1.0*sin(2*pi*t/40) + ...
 0.5*sin(2*pi*t/20);
x2 = 0.5*sin(2*pi*t/100) + ...
 0.5*sin(2*pi*t/20);

x = x1; x(1,150:end) = x2(1,150:end);

We add gaussian noise to the signal.

x = x + 0.5*randn(size(x));

Finally, we save the synthetic data series to the fi le series3.txt on the hard
disk and clear the workspace.

series3(:,1) = t;
series3(:,2) = x;
series3(1,1) = 0;
series3(end,1) = 1000;
series3 = sortrows(series3,1);
save series3.txt series3 -ascii
clear

The above series of commands illustrates how to generate synthetic time
series that show the same characteristics as oxygen-isotope data from cal-
careous algae (foraminifera) in deep-sea sediments. This synthetic data set

106 5 Time-Series Analysis

0 100 200 300 400 500 600 700 800 900 1000
−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

d1
8O

 (
pe

rm
ill

e)

Time (kyr)

Signal with Varying Cyclicities

Fig. 5.11 Synthetic data set containing three main periodicities of 100, 40, and 20 kyrs and
additive gaussian noise. Whereas the 100 and 20 kyr cycles are present throughout the time
series, the 40 kyr cycle appears at around 450 kyr before present.

is suitable to demonstrate the application of methods for spectral analysis.
The following sequence of commands assumes that real data are contained
in a fi le named series3.txt. We load and display the data (Fig. 5.11).

series3 = load('series3.txt');
plot(series3(:,1),series3(:,2))
xlabel('Time (kyr)')
ylabel('d18O (permille)')
title('Signal with Varying Cyclicities')

Both, the standard and the windowed Blackman-Tukey method require
evenly-spaced data. Therefore, we interpolate the data to an evenly-spaced
time vector t as demonstrated in Chapter 5.5.

t = 0 : 3 : 1000;
y = interp1(series3(:,1),series3(:,2),t,'linear');

First, we compute a non-evolutionary powerspectrum for the full length

5.6 Evolutionary Blackman-Tukey Powerspectrum 107

0.02 0.04 0.06 0.08 0.1 0.140.12 0.16 0.180

20

40

60

80

100

120

0

P
ow

er

Frequency

Blackman-Tukey Powerspectrum

Fig. 5.12 Blackman-Tukey powerspectrum of the full time series showing signifi cant peaks
at 100, 40 and 20 kyrs. The plot, however, does not provide any information on the temporal
behaviour of the cyclicities.

of the time series (Fig. 5.12). This exercise helps us to compare the differ-
ences between the results of the standard and windowed Blackman-Tukey
powerspectral analysis.

[Pxx,f] = periodogram(y,[],1024,1/3);
plot(f,abs(Pxx))
xlabel('Frequency')
ylabel('Power')
title('Blackman-Tukey Powerspectrum')

The Blackman-Tukey autospectrum shows signifi cant peaks at 100, 40 and
20 kyr cyclicities and some noise. The powerspectrum, however, does not
provide any information about fl uctuations of the amplitudes of these peaks.
The non-evolutionary Blackman-Tukey powerspectrum simply represents
an average of the spectral information contained in the data.

We use the function spectrogram to map the changes of the powerspec-
trum through time. By default, the time series is divided into eight segments

108 5 Time-Series Analysis

Fig. 5.13 Evolutionary Blackman-Tukey powerspectrum using spectrogram that
computes the short-time Fourier transform STFT of overlapping segments of the time
series. We use a Hamming window of 64 data points and 50 data points overlap. The STFT
is computed for a nfft=256. Since the spacing of the interpolated time vector is 3 kyrs
the sampling frequency is 1/3 kyr–1. The plot shows the onset of the 40 kyr cycle at around
450 kyrs before present.

with a 50% overlap. Each segment is windowed with a Hamming window
to suppress spectral leakage (Chapter 5.3). The function spectrogram
uses similar input parameters as periodogram used in Chapter 5.3. We
compute the evolutionary Blackman-Tukey powerspectrum for a window
of 64 data points and 50 data points overlap. The STFT is computed for
nfft=256. Since the spacing of the interpolated time vector is 3 kyrs, the
sampling frequency is 1/3 kyr –1.

spectrogram(y,64,50,256,1/3)
title('Blackman-Tukey Evolutionary Powerspectrum')
xlabel('Frequency (1/kyr)')
ylabel('Time (kyr)')

The output of spectrogram is a color plot (Fig. 5.13) that displays vertical
stripes in red representing signifi cant maxima at frequencies of 0.01 and

5.7 Lomb-Scargle Powerspectrum 109

0.05 kyr–1, or 100 and 20 kyr cyclicities. The 40 kyr cycle (corresponding
to a frequency of 0.025 kyr–1), however, only occurs after ca. 450 kyr, as
documented by the vertical red stripe in the lower half of the graph.

For better visibility of the signifi cant cycles, the coloration of the graph
can be modifi ed using the colormap editor.

colormapeditor

The colormap editor displays the colormap of the fi gure as a strip of rectan-
gular cells. Nodes separate regions of uniform slope in the RGB colormap.
The nodes can be shifted by using the mouse that introduces distortions to
the colormap and therefore a modifi ed coloration of the spectrogram. For
example, shifting the yellow node towards the right increases the contrast
between vertical peak areas at 100, 40 and 20 kyrs compared to the back-
ground.

5.7 Lomb-Scargle Powerspectrum

The Blackman-Tukey method requires evenly-spaced data. In earth sciences,
however, time series are often unevenly spaced. Interpolating the unevenly-
spaced data to a grid of evenly-spaced times is one way to overcome this
problem (Chapter 5.5). However, interpolation introduces numerous arti-
facts to the data, both in the time and the frequency domain. For this rea-
son, an alternative method of time-series analysis has become increasingly
popular in earth sciences, the Lomb-Scargle algorithm (e.g., Scargle 1981,
1982, 1989, 1990, Press et al. 1992, Schulz et al. 1998).

In contrast to the Blackman-Tukey method, the Lomb-Scargle algorithm
evaluates the data of the time series only at times t i that are actually mea-
sured. Suppose a series y (t) of N data points. Then, the Lomb-Scargle nor-
malized periodogram Px as a function of angular frequency ω = 2π f > 0
is given by

where

110 5 Time-Series Analysis

are the arithmetic mean and the variance of the data (Chapter 3.2). The
constant τ is a kind of offset that makes Px (ω) independent of shifting the
t i’s by any constant. Scargle (1982) showed that this particular choice of
the offset τ has the consequence that the solution for Px (ω) is identical to a
least-squares fi t of sine and cosine functions to the data series y (t) :

The least-squares fi t of harmonic functions to data series in conjunction
with spectral analysis was already investigated by Lomb (1976) and there-
fore, the method is called normalized Lomb-Scargle Fourier transform. The
term normalized refers to the factor σ in the dominator of the equation for
the periodogram.

Scargle (1982) has shown that the Lomb-Scargle periodogram has an
exponential probability distribution with unit mean. The probability that
Px (ω) will be between some positive quantity z and z+dz is exp (–z) dz. If
we scan M independent frequencies, the probability of none of them give
larger values than z is (1– exp(–z)) M. Therefore, we can compute the false-
alarm probability of the null hypothesis, e.g., the probability that a given
peak in the periodogram is not signifi cant, by

Press et al. (1992) suggest to use the Nyquist criterion (Chapter 5.2) to de-
termine the number of independent frequencies M assuming that the data
were evenly spaced. In this case, the best value for the number of indepen-
dent frequencies is M = 2N, where N is the length of the time series.

More detailed discussions of the Lomb-Scargle method are given in Scargle
(1989) and Press et al. (1992). An excellent summary of the method and a
TURBO PASCAL program to compute the normalized Lomb-Scargle pow-
erspectrum of paleoclimatic data has been published by Schulz and Stattegger
(1998). A comfortable MATLAB algorithm lombscargle to compute the

5.7 Lomb-Scargle Powerspectrum 111

Lomb-Scargle periodogram has been published by Brett Shoelson (The
MathWorks Inc.) and can be downloaded from File Exchange at

http://www.mathworks.com/matlabcentral/fileexchange/

The following MATLAB code bases on the original FORTRAN code pub-
lished by Scargle (1989). Signifi cance testing uses the methods proposed by
Press et al. (1992) explained above.

At fi rst, we load the synthetic data that were generated to illustrate the
use of the windowed Blackman-Tukey method in Chapter 5.6. The data con-
tain periodicities of 100, 40 and 20 kyrs and additive gaussian noise. The
data are unevenly spaced about the time axis. We defi ne two new vectors t
and y that contain the original time vector and the synthetic oxygen-isotope
data sampled at times t.

clear
series3 = load('series3.txt');
t = series3(:,1);
y = series3(:,2);

We generate a frequency axis f. The Lomb-Scargle method is not able to
deal with the zero-frequency piece, i.e., infi nite periods. Therefore, we start
at a frequency value that is equivalent to the spacing of the frequency vector.
opac is the oversampling parameter that infl uences the resolution of the fre-
quency axis about the N(frequencies)=N(datapoints) case. We also
need the highest frequency fhi that can be analyzed by the Lomb-Scargle
algorithm. A common way to choose fhi is to take the Nyquist frequency
fnyq that would be obtained if the N data points were evenly spaced over
the same time interval. The following code uses the input parameter hifac,
which is defi ned as hifac=fhi/fnyq according to Press et al. (1992),

int = mean(diff(t));
ofac = 4; hifac = 1;
f = ((2*int)^(-1))/(length(y)*ofac): ...
 ((2*int)^(-1))/(length(y)*ofac): ...
 hifac*(2*int)^(-1);

where int is the mean sampling interval. We normalize the data by sub-
tracting the mean.

y = y - mean(y);

We now compute the normalized Lomb-Scargle periodogram px as a func-
tion of the angular frequency wrun using the translation of the fi rst equation
in Chapter 5.7 into MATLAB code.

112 5 Time-Series Analysis

for k = 1:length(f)
 wrun = 2*pi*f(k);
 px(k) = 1/(2*var(y)) * ...
 ((sum(y.*cos(wrun*t - ...
 atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2))).^2) ...
 /(sum((cos(wrun*t - ...
 atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2)).^2)) + ...
 ((sum(y.*sin(wrun*t - ...
 atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2))).^2) ...
 /(sum((sin(wrun*t - ...
 atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2)).^2));
end

Now, the signifi cance level of any peak in the powerspectrum px can be
computed. The variable prob indicates the false-alarm probability of the
null hypothesis. Therefore, a low prob indicates a highly signifi cant peak
in the powerspectrum.

prob = 1-(1-exp(-px)).^length(y);

We plot the powerspectrum and the probabilities (Fig. 5.14).

plot(f,px)
xlabel('Frequency')
ylabel('Power')
title('Lomb-Scargle Powerspectrum')

figure
plot(f,prob)
xlabel('Frequency')
ylabel('Probability')
title('Probabilities')

The two plots suggest that all three peaks are highly signifi cant since the
errors are extremely low at the cyclicities of 100, 40 and 20 kyrs.

An alternative way to display the signifi cance levels was suggested by
Press et al. (1992). Here, the equation for the false-alarm probability of
the null hypothesis is inverted to compute the corresponding power of the
signifi cance levels. As an example, we choose a signifi cance level of 95%.
However, this number can also be replaced by a vector of several signifi -
cance levels such as signif=[0.90 0.95 0.99]. We type

m = floor(0.5*ofac*hifac*length(y));
effm = 2*m/ofac;
signif = 0.95;
levels = log((1-signif.^(1/effm)).^(-1));

where m is the true number of independent frequencies and effm is the
effective number of frequencies using the oversampling factor ofac. The

5.7 Lomb-Scargle Powerspectrum 113

Frequency

P
ro

ba
bi

lit
y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

Frequency

P
ow

er

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

5

10

15

25

30

35

40

0

Probabilities

Lomb-Scargle Powerspectrum

b

a

20

Fig. 5.14 a Lomb-Scargle powerspectrum and b the false-alarm probability of the null
hypothesis. The plot suggests that the 100, 40 and 20 kyr cycles are highly signifi cant.

114 5 Time-Series Analysis

second plot displays the spectral peaks and the corresponding probabilities.

plot(f,px)
hold on
for k = 1:length(signif)
 line(f,levels(:,k)*ones(size(f)),'LineStyle','--')
end
xlabel('Frequency')
ylabel('Power')
title('Lomb-Scargle Powerspectrum')
hold off

All three spectral peaks at frequencies of 0.01, 0.025 and 0.05 kyr–1 exceed
the 95% signifi cant level suggesting that they represent signifi cant cyclici-
ties. Therefore, we obtain similar results as for the Blackman-Tukey method.
However, the Lomb-Scargle method does not require any interpolation of un-
evenly-spaced data. Furthermore, it allows for quantitative signifi cance testing.

5.8 Wavelet Powerspectrum

Chapter 5.6 has illustrated a modifi cation of the Blackman-Tukey meth-
od to map nonstationarities in the powerspectrum. In principle, a similar
modifi cation could be applied to the Lomb-Scargle method, which has the
advantage that it can be applied to unevenly-spaced data. Both methods,
however, assume that the data are a composite of sine and cosine waves
that are globally uniform in time and have infi nite spans. The evolutionary
Blackman-Tukey method divides the time series into overlapping segments
and computes the Fourier transform of these segments. To avoid spectral
leakage, the data are multiplied by windows with fi nite lengths and smooth
ends (Chapter 5.3). The higher the temporal resolution of the evolutionary
powerspectrum the lower is the accuracy of the result. Moreover, short time
windows contain a large number of high-frequency cycles whereas the low-
frequency cycles are underrepresented.

In contrast to the Fourier transform, the wavelet transform uses base
functions (wavelets) that have smooth ends per se (Lau and Weng 1995,
Mackenzie et al. 2001). Wavelets are small packets of waves with a specifi c
frequency that approach zero at both ends. Since wavelets can be stretched
and translated with a fl exible resolution in both frequency and time, they can
easily map changes in the time-frequency domain. Mathematically, a wave-
let transformation decomposes a signal y (t) into some elementary functions
ψ a,b(t) derived from a mother wavelet ψ (t) by dilation and translation,

5.8 Wavelet Powerspectrum 115

where b denotes the position (translation) and a (>0) the scale (dilation) of
the wavelet (Lau and Weng 1995). The wavelet transform of the signal y(t)
about the mother wavelet ψ (t) is defi ned as the convolution integral

where ψ * is the complex conjugate of ψ defi ned on the open time and scale
real (b,a) half plane.

There are many mother wavelets available in the literature, such as the
the classic Haar wavelet, the Morlet wavelet and the Daubechies wavelet.
The most popular wavelet in geosciences is the Morlet wavelet, which is
given by

where η is the non-dimensional time and ω 0 is the wavenumber (Torrence
and Compo 1998). The wavenumber is the number of oscillations within the
wavelet itself. We can easily compute a discrete version of the Morlet wave-
let wave by translating the above equation into MATLAB code where eta
is the non-dimensional time and w0 is the wavenumber. Change w0 to get
wavelets with different wave numbers. Note it is important that i is not used
as index in for loops since it is used here as imaginary unit (Fig. 5.15).

clear
eta = -10 : 0.1 : 10;
w0 = 6;
wave = pi.^(-1/4) .* exp(i*w0*eta) .* exp(-eta.^2/2);
plot(eta,wave)
xlabel('Position')
ylabel('Scale')
title('Morlet Mother Wavelet')

We use a pure sine wave with a period 5 and additive gaussian noise to get
familiar with wavelet powerspectra.

clear
t = 0 : 0.5 : 50;
y = sin(2*pi*t/5) + randn(size(t));

116 5 Time-Series Analysis

−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0.8

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

Position

S
ca

le

Morlet Mother Wavelet

Fig. 5.15 Morlet mother wavelet with wavenumber 6.

In a fi rst step, we defi ne the number of scales for that the wavelet trans-
form will be computed. The scales defi ne how much a wavelet is stretched
or compressed to map the variability of the time series on different wave-
lengths. Lower scales correspond to higher frequencies and therefore map
rapidly-changing details, whereas higher scales map the long-term varia-
tions. As an example, we run the wavelet analysis for 120 different scales
between 1 and 120.

scales = 1 : 120;

In a second step, we compute the real or complex continuous Morlet wavelet
coeffi cients using the function cwt contained in the Wavelet Toolbox.

coefs = cwt(y,scales,'morl');

The function scal2frq converts scales to pseudo-frequencies, using the
Morley mother wavelet and the sampling period 0.5.

f = scal2frq(scales,'morl',0.5);

5.8 Wavelet Powerspectrum 117

Fig. 5.16 Wavelet powerspectrum showing a signifi cant period at 5 cycles that persists
through the full length the time vector.

We use a fi lled contour plot to visualize the powerspectrum, i.e., the abso-
lute of the wavelet coeffi cients (Fig. 5.16).

contour(t,f,abs(coefs),'LineStyle','none','LineColor', ...
 [0 0 0],'Fill','on')
xlabel('Time')
ylabel('Frequency')
title('Wavelet Powerspectrum')

We apply this concept to the synthetic data from the example to demon-
strate the windowed Blackman-Tukey method and load the synthetic data
contained in fi le series3.txt. We recall that the data contain periodici-
ties of 100, 40, 20 kyr and additive gaussian noise. The data are unevenly
spaced about the time axis.

clear
series3 = load('series3.txt');

Similar to the Fourier transform and in contrast to the Lomb-Scargle algo-
rithm, the wavelet transform requires evenly-spaced data. Therefore, we

118 5 Time-Series Analysis

Fig. 5.17 Wavelet powerspectrum of the synthetic data series contained in series_3.txt.
The plot clearly shows signifi cant periodicities at frequencies of 0.1, 0.025 and 0.05 kyr-1

corresponding to the 100, 40 and 20 kyr cycles. The 100 kyr cycle is present through the
entire time series, whereas the 40 kyr cycle appears at around 450 kyr before present. The
20 kyr cycle is relatively weak but probably present throughout the full time series.

interpolate the data using interp1.

t = 0 : 3 : 1000;
y = interp1(series3(:,1),series3(:,2),t,'linear');

Similar to above example, we compute the wavelet transform of 120 scales
using the function cwt and a Morley mother wavelet.

scales = 1 : 120;
coefs = cwt(y,scales,'morl');

We use scal2freq to convert scales to pseudo-frequencies, using the
Morley mother wavelet and the sampling period of three.

f = scal2frq(scales,'morl',3);

We use a fi lled contour plot to visualize the powerspectrum, i.e., the abso-
lute of the wavelet coeffi cients (Fig. 5.17).

5.9 Nonlinear Time-Series Analysis (by N. Marwan) 119

5.9 Nonlinear Time-Series Analysis (by N. Marwan)

The methods described in the previous sections detect linear relationships
in the data. However, natural processes on the Earth often show a more
complex and chaotic behavior. Methods based on linear techniques may
therefore yield unsatisfying results. In the last decades, new techniques of
nonlinear data analysis derived from chaos theory have become increas-
ingly popular. As an example, methods have been employed to describe
nonlinear behavior by defi ning, e.g., scaling laws and fractal dimensions
of natural processes (Turcotte 1997, Kantz and Schreiber 1997). However,
most methods of nonlinear data analysis need either long or stationary
data series. These requirements are often not satisfi ed in the earth sciences.
While most nonlinear techniques work well on synthetic data, these meth-
ods fail to describe nonlinear behavior in real data.

In the last decade, recurrence plots as a new method of nonlinear data
analysis have become very popular in science and engineering (Eckmann
1987). Recurrence is a fundamental property of dissipative dynamical sys-
tems. Although small disturbancies of such a system cause exponentially
divergence of its state, after some time the system will come back to a state
that is arbitrary close to a former state and pass through a similar evolution.

contour(t,f,abs(coefs),'LineStyle', 'none', ...
 'LineColor',[0 0 0],'Fill','on')
xlabel('Time'),ylabel('Frequency')
title('Wavelet Powerspectrum')

The graph shows horizontal clusters of peaks at 0.01 and 0.05 kyr–1 cor-
responding to 100 and 20 kyr cycles, although the 20 kyr cycle is not very
clear. The powerspectrum also reveals a signifi cant 40 kyr cycle or a fre-
quency of 0.025 kyr–1 that appears at ca. 450 kyr before present. Compared
to the windowed Blackman-Tukey method, the wavelet powerspectrum
clearly shows a much higher resolution on both the time and frequency
axis. Instead of dividing the time series into overlapping segments and
computing the powerspectrum for each segment, the wavelet transform
uses short packets of waves that better map temporal changes in the cy-
clicities. The disadvantage of both the Blackman-Tukey and the wavelet
powerspectral analysis, however, is the requirement of evenly-spaced data.
The Lomb-Scargle method overcomes this problem, but has – similar to
the Blackman-Tukey method – limited capabilities in mapping temporal
changes in the frequency domain.

120 5 Time-Series Analysis

Recurrence plots allow to visualize such a recurrent behavior of dynamical
systems. The method is now a widely accepted tool for the nonlinear analy-
sis of short and nonstationary data sets.

Phase Space Portrait

The starting point of most nonlinear data analysis is the construction of the
phase space portrait of a system. The state of a system can be described by
its state variables x1(t), x2 (t), …, xd (t). As an example, suppose the two
variables temperature and pressure to describe the thermodynamic state of
the Earth’s mantle as a complex system. The d state variables at time t form
a vector in a d-dimensional space, the so-called phase space. The state of
a system typically changes in time. The vector in the phase space therefore
describes a trajectory representing the temporal evolution, i.e., the dynam-
ics of the system. The course of the trajectory provides all important infor-
mation of the dynamics of the system, such as periodic or chaotic systems
having characteristic phase space portraits.

In many applications, the observation of a natural process does not yield
all possible state variables, either because they are not known or they cannot
be measured. However, due to coupling between the system’s components,
we can reconstruct a phase space trajectory from a single observation ui:

where m is the embedding dimension and τ is the time delay (index based;
the real time delay is τ =Δt) . This reconstruction of the phase space is
called time delay embedding. The phase space reconstruction is not exactly
the same to the original phase space, but its topological properties are pre-
served, if the embedding dimension is large enough. In practice, the embed-
ding dimension has to be larger then twice the the dimension of the attractor,
or exactly m>2d+1. The reconstructed trajectory is suffi cient enough for
the subsequent data analysis.

As an example, we now explore the phase space portrait of a harmonic
oscillator, like an undamped pendulum. First, we create the position vector
y1 and the velocity vector y2

x = 0 : pi/10 : 3*pi;
y1 = sin(x);
y2 = cos(x);

The phase space portrait

5.9 Nonlinear Time-Series Analysis (by N. Marwan) 121

plot(y1,y2)
xlabel('y_1')
ylabel('y_2')

is a circle, suggesting an exact recurrence of each state after one cycle
(Fig. 5.18). Using the time delay embedding, we can reconstruct this phase
space portrait using only one observation, e.g., the velocity vector, and a
delay of 5, which corresponds to a quarter of the period of our pendulum.

t = 5;
plot(y2(1:end-t),y2(1+t:end))
xlabel('y_1')
ylabel('y_2')

As we see, the reconstructed phase space is almost the same as the original
phase space. Next, we compare this phase space portrait with the one of a
typical nonlinear system, the Lorenz system (Lorenz 1963). While study-
ing weather patterns, one realizes that weather often does not change as
predicted. In 1963, Edward Lorenz introduced a simple three-dimensional
model to describe turbulence in the atmosphere which exhibits such a cha-
otic behaviour. Small initial changes cause dramatic divergent weather pat-
terns. This behavior is often referred to as butterfl y effect. The Lorenz sys-
tem consists of three coupled nonlinear differential equations for the three
variables, the two temperature distributions and the velocity.

−1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1
−1

0

1

−1

0

1

0.5

−0.5

0.5

−0.5

y1

y 2

y1

y 2

Periodic Signal Phase Space Portrait

a b

Fig. 5.18 a Original and b reconstructed phase space portrait of a periodic system. The
reconstructed phase space is almost the same as the original phase space.

122 5 Time-Series Analysis

Integrating the differential equation yields a simple MATLAB code for
computing the xyz triplets of the Lorenz system. As system parameters
controlling the chaotic behavior we use s=10, r=28 and b=8/3, the time
delay is dt=0.01. The initial values are x1=8, x2=9 and x3=25, that can
certainly be changed at other values.

clear
dt = .01;
s = 10;
r = 28;
b = 8/3;
x1 = 8; x2 = 9; x3 = 25;
for i = 1 : 5000
 x1 = x1 + (-s*x1*dt) + (s*x2*dt);
 x2 = x2 + (r*x1*dt) - (x2*dt) - (x3*x1*dt);
 x3 = x3 + (-b*x3*dt) + (x1*x2*dt);
 x(i,:) = [x1 x2 x3];
end

Typical traces of a variable, such as the fi rst variable can be viewed by
plotting x(:,1) over time in seconds (Fig. 5.19).

t = 0.01 : 0.01 : 50;
plot(t,x(:,1))
xlabel('Time')
ylabel('Temperature')

We next plot the phase space portrait of the Lorenz system (Fig. 5.20).

plot3(x(:,1),x(:,2),x(:,3))
grid, view(70,30)
xlabel('x_1')
ylabel('x_2')
zlabel('x_3')

In contrast to the simple periodic system described above, the trajectories of
the Lorenz system obviously do not follow the same course again, but it re-
curs very closely to a previous state. Moreover, if we follow two very close
segments of the trajectory, we will see that they run into different regions

5.9 Nonlinear Time-Series Analysis (by N. Marwan) 123

of the phase space with time. The trajectory is obviously circling one fi xed
point in the phase space – and after some random time period – circling
around another. The curious orbit of the phase states around fi xed points is
known as the Lorenz attractor.

These observed properties are typical of chaotic systems. While small
disturbances of such a system cause exponential divergence of its state, the
system returns approximately to a previous state through a similar course.
The reconstruction of the phase space portrait using only the fi rst state and
a delay of six

tau = 6;
plot3(x(1:end-2*tau,1),x(1+tau:end-tau,1),x(1+2*tau:end,1))
grid, view([100 60])
xlabel('x_1'), ylabel('x_2'), zlabel('x_3')

reveals a similar phase portrait with the two typical ears (Fig. 5.20). The
characteristic properties of chaotic systems are also seen in this recon-
struction.

The time delay and embedding dimension have to be chosen with a pre-
ceding analysis of the data. The delay can be estimated with the help of the
autocovariance or autocorrelation function. For our example of a periodic
oscillation,

x = 0 : pi/10 : 3*pi;
y1 = sin(x);

we compute and plot the autocorrelation function

Time

Te
m

p
er

at
ur

e

−20

−15

−10

−5

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

Lorenz System

Fig. 5.19 The Lorenz system. As system parameters we use s=10, r=28 and b=8/3, the
time delay is dt=0.01.

124 5 Time-Series Analysis

for i = 1 : length(y1) - 2
 r = corrcoef(y1(1:end-i),y1(1+i:end));
 C(i) = r(1,2);
end

plot(C)
xlabel('Delay'), ylabel('Autocorrelation')
grid on

Now we choose such a delay at which the autocorrelation function equals
zero for the fi rst time. In our case this is 5, which is the value that we have
already used in our example of phase space reconstruction. The appropriate
embedding dimension can be estimated by using the false nearest neigh-
bours method or, simpler, recurrence plots, which are introduced in the next
chapter. The embedding dimension is gradually increased until the majority
of the diagonal lines are parallel to the line of identity.

The phase space trajectory or its reconstruction is the base of several mea-
sures defined in nonlinear data analysis, like Lyapunov exponents, Rényi
entropies or dimensions. The book on nonlinear data analysis by Kantz and
Schreiber (1997) is recommended for more detailed information on these
methods. Phase space trajectories or their reconstructions are also neces-
sary for constructing recurrence plots.

0

10

20

30

40

50

−20

0

20
−50

0
50

−20
0

20

−20

0

20

−20

−10

0

10

20

3

1

x x 3
x

2

x

x
2

x
1

Phase Space Portrait Phase Space Portrait

a b

Fig. 5.20 a The phase space portrait of the Lorenz system. In contrast to the simple
periodic system, the trajectories of the Lorenz system obviously do not follow the same
course again, but it recurs very closely to a previous state. b The reconstruction of the
phase space portrait using only the fi rst state and a delay of six reveals a topologically
similar phase portrait with the two typical ears.

5.9 Nonlinear Time-Series Analysis (by N. Marwan) 125

Recurrence Plots

The phase space trajectories of dynamic systems that have more than three
dimensions are diffi cult to visualize. Recurrence plots provide a way for an-
alyzing higher dimensional systems. They can be used, e.g., to detect tran-
sitions between different regimes or to fi nd interrelations between several
systems. The method was fi rst introduced by Eckmann and others (1987).
The recurrence plot is a tool that visualizes the recurrences of states in the
phase space by a two-dimensional plot.

If the distance between two states i and j on the trajectory are smaller than
a given threshold ε , the value of the recurrence matrix R is one, otherwise
zero. This analysis is therefore a pairwise test of all states. For N states we
compute N2 tests. The recurrence plot is then the two-dimensional display
of the N×N matrix, where black pixels represent Ri,j =1 and white pixels
indicate Ri,j = 0 and a coordinate system representing two time axes. Such
recurrence plots can help to fi nd a fi rst characterization of the dynamics of
data or to fi nd transitions and interrelations of the system (cf. Fig. 5.21).

As a fi rst example, we load the synthetic time series containing 100 kyr,
40 kyr and 20 kyr cycles already used in the previous chapter. Since the data
are unevenly spaced, we have to linearly transform it to an evenly-spaced
time axis.

series1 = load('series1.txt');
t = 0 : 3 : 996;
series1L = interp1(series1(:,1),series1(:,2),t,'linear');

We start with the assumption that the phase space is only one-dimensional.
The calculation of the distances between all points of the phase space trajec-
tory reveals the distance matrix S.

N = length(series1L);
S = zeros(N, N);

for i = 1 : N,
 S(:,i) = abs(repmat(series1L(i), N, 1) - series1L(:));
end

Now we plot the distance matrix

126 5 Time-Series Analysis

imagesc(t,t,S)
colorbar
xlabel('Time'), ylabel('Time')

for the data set, where a colorbar provides a quantitative measure for the
distances between states (Fig. 5.22). We apply a threshold ε to the distance
matrix to generate the black/white recurrence plot (Fig. 5.23).

imagesc(t,t,S<1)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')

Both plots reveal periodically occurring patterns. The distances between

a

c d

b

Fig. 5.21 Recurrence plots representing typical dynamical behaviours: a stationary
uncorrelated data (white noise), b periodic oscillation, c chaotic data (Roessler system) and
d non-stationary data with abrupt changes.

5.9 Nonlinear Time-Series Analysis (by N. Marwan) 127

these periodic patterns represent the cycles contained in the time series.
The most signifi cant periodic structures have periods of 200 and 100 kyr.
The 200 kyr period is most signifi cant because of the superposition of the
100 and 40 kyr cycles, which are common divisors of 200 kyr. Moreover,
there are small substructures in the recurrence plot, which have sizes of 40
and 20 kyr.

As a second example, we apply the method of recurrence plots to the
Lorenz system. We again generate xyz triplets from the coupled differential
equations.

clear
dt = .01;
s = 10;
r = 28;
b = 8/3;
x1 = 8; x2 = 9; x3 = 25;

Fig. 5.22 Visualization of the distance matrix from the synthetic data providing a
quantitative measure for the distances between states at certain times; blue colors indicate
small distances, red colors represent large distances.

128 5 Time-Series Analysis

for i = 1 : 5000
 x1 = x1 + (-s*x1*dt) + (s*x2*dt);
 x2 = x2 + (r*x1*dt) - (x2*dt) - (x3*x1*dt);
 x3 = x3 + (-b*x3*dt) + (x1*x2*dt);
 x(i,:) = [x1 x2 x3];
end

We choose the resampled fi rst component of this system and reconstruct a
phase space trajectory by using an embedding of m =3 and τ =2, which cor-
responds to a delay of 0.17 sec.

t = 0.01 : 0.05 : 50;
y = x(1:5:5000,1);
m = 3; tau = 2;

N = length(y);
N2 = N - tau*(m - 1);

The original data series has a length of 5000, after resampling 1000 data
points or 50 sec, but because of the time delay method, the reconstructed

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

0.0

0.5

1.0

1000
1000

Time

Ti
m

e

Fig. 5.23 The recurrence plot of the synthetic data derived from the distance matrix as
shown in Fig. 5.22 after applying a threshold of ε =1.

5.9 Nonlinear Time-Series Analysis (by N. Marwan) 129

phase space trajectory has the length 996. Now we create the phase space
trajectory with

for mi = 1:m
 xe(:,mi) = y([1:N2] + tau*(mi-1));
end

We can accelerate the pair-wise test between each points on the trajectory
with a fully vectorized algorithm supported by MATLAB. For that we need
to transfer the trajectory vector into two test vectors, whose component-
wise test will provide the pair-wise test of the trajectory vector:

x1 = repmat(xe,N2,1);
x2 = reshape(repmat(xe(:),1,N2)',N2*N2,m);

Using these vectors we calculate the recurrence plot using the Euclidean
norm without any FOR loop.

S = sqrt(sum((x1 - x2).^ 2,2));
S = reshape(S,N2,N2);

imagesc(t(1:N2),t(1:N2),S<10)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')

This recurrence plot reveals many short diagonal lines (Fig. 5.24). These
lines represent epochs, where the phase space trajectory runs parallel to
former or later sequences of this trajectory, i.e., the states and the dynamics
are similar at these times. The distances between these diagonal lines, rep-
resenting the periods of the cycles, differ and are not constant – just as they
are in a harmonic oscillation (cp. Fig. 5.21).

The structure of recurrence plots can also be described by a suite of quan-
titative measures. Several measures are based on the distribution of the
lengths of diagonal or vertical lines. These parameters can be used to trace
hidden transitions in a process. Bivariate and multivariate extensions of re-
currence plots furthermore offer nonlinear correlation tests and synchroni-
zation analysis. A detailed introduction to recurrence plot based methods
can be found at the web site

http://www.recurrence-plot.tk

The analysis of recurrence plots has already been applied to many problems
in earth sciences. The comparison of the dynamics of modern precipitation
data with paleo-rainfall data inferred from annual-layered lake sediments
in the northwestern Argentine Andes provides a good example of such anal-

130 5 Time-Series Analysis

ysis (Marwan et al. 2003). In this example, the method of recurrence plots
was applied to red-color intensity transects across ca. 30 kyr-old varved
lake sediments shown in Figure 5.1. Comparing the recurrence plots from
the sediments with the ones from modern precipitation data revealed that
the reddish layers document more intense rainy seasons during the La Niña
years. The application of linear techniques was not able to link the increased
fl ux of reddish clays and enhanced precipitation to either the El Niño or La
Niña phase of the ENSO. Moreover, recurrence plots helped to prove the
hypothesis that a longer rainy seasons, enhanced precipitation and stronger
infl uence of the El Niño /Southern Oscillation has caused enhanced land-
sliding at 30 kyrs ago (Marwan et al. 2003, Trauth et al. 2003).

0

0

0.0

0.5

1.0

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

50
50

Time

Ti
m

e

Fig. 5.24 The recurrence plot of the Lorenz system using a threshold of ε =10. The regions
with organized diagonal lines reveal unstable periodic orbits, typical for chaotic systems.

Recommended Reading 131

Recommended Reading

Eckmann JP, Kamphorst SO, Ruelle D (1987) Recurrence Plots of Dynamical Systems.
Europhysics Letters 5:973-977

Kantz H, Schreiber T (1997) Nonlinear Time Series Analysis. Cambridge University Press,
Cambridge

Lau KM, Weng H (1995) Climate Signal Detection Using Wavelet Transform: How to make
a Time Series Sing. Bulletin of the American Meteorological Society 76:2391–2402

Lomb NR (1972) Least-Squared Frequency Analysis of Unequally Spaced Data. Astro-
physics and Space Sciences 39:447–462

Lorenz EN (1963) Deterministic Nonperiodic Flow. Journal of Atmospheric Sciences
20:130-141

Mackenzie D, Daubechies I, Kleppner D, Mallat S, Meyer Y, Ruskai MB, Weiss G (2001)
Wavelets: Seeing the Forest and the Trees. Beyond Discovery, National Academy of
Sciences, December 2001, available online at http://www.beyonddiscovery.org

Marwan N, Thiel M, Nowaczyk NR (2002) Cross Recurrence Plot Based Synchronization
of Time Series. Nonlinear Processes in Geophysics 9(3/4):325-331

Marwan N, Trauth MH, Vuille M, Kurths J (2003) Nonlinear Time-Series Analysis on
Present-Day and Pleistocene Precipitation Data from the NW Argentine Andes. Climate
Dynamics 21:317-332

Press WH, Teukolsky SA, Vetterling WT (1992) Numerical Recipes in Fortran 77.
Cambridge University Press, Cambridge

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numerical Recipes in C++.
Cambridge University Press. Cambridge

Romano M, Thiel M, Kurths J, von Bloh W (2004) Multivariate Recurrence Plots. Physics
Letters A 330(3-4):214-223

Scargle JD (1981) Studies in Astronomical Time Series Analysis. I. Modeling Random
Processes in the Time Domain. The Astrophysical Journal Supplement Series 45:1–71

Scargle JD (1982) Studies in Astronomical Time Series Analysis. II. Statistical Aspects of
Spectral Analysis of Unevenly Spaced Data. The Astrophysical Journal 263:835–853

Scargle JD (1989) Studies in Astronomical Time Series Analysis. III. Fourier Transforms,
Autocorrelation Functions, and Cross-Correlation Functions of Unevenly Spaced Data.

Schulz M, Stattegger K (1998) SPECTRUM: Spectral Analysis of Unevenly Spaced
Paleoclimatic Time Series. Computers & Geosciences 23:929-945

Takens F (1981) Detecting Strange Attractors in Turbulence. Lecture Notes in Mathematics,
898:366-381

The Mathworks (2006) Signal Processing Toolbox User's Guide – For the Use with
MATLAB®. The MathWorks, Natick, MA

Torrence C, Compo GP (1998) A Practical Guide to Wavelet Analysis. Bulletin of the
American Meteorological Society 79:61-78

Trulla LL, Giuliani A, Zbilut JP, Webber Jr CL (1996) Recurrence Quantifi cation Analysis
of the Logistic Equation with Transients. Physics Letters A 223(4):255-260

Turcotte DL (1992) Fractals and Chaos in Geology and Geophysics. Cambridge University
Press, Cambridge

Trauth MH, Bookhagen B, Marwan N, Strecker MR (2003) Multiple Landslide Clusters
Record Quaternary Climate Changes in the NW Argentine Andes. Palaeogeography
Palaeoclimatology Palaeoecology 194:109-121

Weedon G (2003) Time-Series Analysis and Cyclostratigraphy - Examining Stratigraphic
Records of Environmental Change. Cambridge University Press, Cambridge

132 5 Time-Series Analysis

Welch PD (1967) The Use of Fast Fourier Transform for the Estimation of Powerspectra:
A Method Based on Time Averaging over Short, Modifi ed Periodograms. IEEE Trans.
Audio Electroacoustics AU-15:70-73

6 Signal Processing

6.1 Introduction

Signal processing refers to techniques for manipulating a signal to mini-
mize the effects of noise, to correct all kinds of unwanted distortions or to
separate various components of interest. Most signal processing algorithms
include the design and realization of filters. A fi lter can be described as a
system that transforms signals. System theory provides the mathematical
background for filter design and realization. A filter as a system has an input
and an output, where the output signal y (t) is modifi ed with respect to the
 input signal x(t) (Fig. 6.1). The signal transformation is often called convo-
lution or, if fi lters are applied, fi ltering.

This chapter is on the design and realization of digital fi lters with the
help of a computer. However, many natural processes resemble analog
fi lters that act over a range of spatial dimensions. A single rainfall event
is not recorded in lake sediments because short and low-amplitude events
are smeared over a longer time span. Bioturbation also introduces serious
distortions for instance to deep-sea sediment records. Aside from such
 natural fi lters, the fi eld collection and sampling of geological data alters
and smoothes the data with respect to its original form. For example, a
fi nite size sediment sample integrates over a certain period of time and
therefore smoothes the natural signal. Similarly, the measurement of mag-

Input signal Output signalSignal transformation

LTI System

Fig. 6.1 Schematic of a linear time-invariant (LTI) system. The input signal is transformed
into an output signal.

134 6 Signal Processing

netic susceptibility with the help of a loop sensor introduces signifi cant
smoothing since the loop integrates over a certain section of the sediment
core.

The characteristics of these natural fi lters are often diffi cult to determine.
Numerical fi lters, however, are designed with well-defi ned characteristics.
In addition, artifi cial fi lters are time invariant in most cases, while natural
fi lters, such as lake mixing or bioturbation, may change with time. An easy
way to describe or predict the effect of a fi lter is to explore the fi lter output
of a simple input signal, such as a sine wave, a square wave, a sawtooth,
ramp or step function. Although there is an endless variety of such signals,
most systems or fi lters are described by their impulse response, i.e., the
output of a unit impulse.

The chapter starts with a more technical section on generating periodic
signals, trends and noise, similar to Chapter 5.2. Chapter 6.3 is on linear
time-invariant systems, which provide the mathematical background for
fi lters. The following Chapters 6.4 to 6.9 are on the design, the realization
and the application of linear time-invariant fi lters. Chapter 6.10 then sug-
gests the application of adaptive fi lters originally developed in telecom-
munication. Adaptive fi lters automatically extract noisefree signals from
duplicate measurements on the same object. Such fi lters can be used in a
large number of applications, such as noise removal from duplicate pale-
oceanographic time series or to improve the signal-to-noise ratio of paral-
lel color-intensity transects across varved lake sediments (see Chapter 5,
Fig. 5.1). Moreover, such fi lters are also widley-used in geophysics for
noise canceling.

6.2 Generating Signals

MATLAB provides numerous tools to generate basic signals that can be
used to illustrate the effects of fi lters. In Chapter 5, we have generated a
signal by adding together three sine waves with different amplitudes and
periods. In the following example, the time vector is transposed for the
purpose of generating column vectors.

t = (1:100)';
x = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

plot(t,x), axis([0 100 -4 4])

 Frequency-selective fi lters are very common in earth sciences. They are
used for removing certain frequency bands from the data. As an example,

6.3 Linear Time-Invariant Systems 135

we could design a fi lter that has the capability to suppress the portion of
the signal with a periodicity of τ =15, whereas the other two cycles are un-
affected. Such simple periodic signals can also be used to predict signal
distortions of natural fi lters.

A step function is another basic input signal that can be used for exploring
fi lter characteristics. It describes the transition from a value of one towards
zero at a certain time.

t = (1:100)';
x = [ones(50,1);zeros(50,1)];

plot(t,x), axis([0 100 -2 2])

This signal can be used to study the effects of a fi lter on a sudden transi-
tion. An abrupt climate change could be regarded as an example. Most
natural fi lters tend to smooth such a transition and smear it over a longer
time period.

The unit impulse is the third important signal that we will use in the fol-
lowing examples. This signal equals zero for all times except for a single
data point which equals one.

t = (1:100)';
x = [zeros(49,1);1;zeros(50,1)];

plot(t,x), axis([0 100 -4 4])

The unit impulse is the most popular synthetic signal for studying the per-
formance of a fi lter. The output of the fi lter, the impulse response, describes
the characteristics of a fi lter very well. Moreover, the output of a linear time-
invariant fi lter can be described by the superposition of impulse responses
that have been scaled by the amplitude of the input signal.

6.3 Linear Time-Invariant Systems

Filters can be described as systems with an input and output. Therefore, we
fi rst describe the characteristics of a more general system before we apply
this theory to fi lters. Important characteristics of a system are

• Continuity – A system with continuous inputs and outputs is continuous.
Most of the natural systems are continuous. However, after sampling na-
tural signals we obtain discrete data series and model these natural sy-
stems as discrete systems, which have discrete inputs and outputs.

136 6 Signal Processing

• Linearity – For linear systems, the output of the linear combination of
several input signals

is the same linear combination of the outputs:

The important consequence of linearity is scaling and additivity (super-
position). Input and output can be multiplied by a constant before or af-
ter transformation. Superposition allows to extract additive components
of the input and transform these separately. Fortunately, many natural
systems show a linear behavior. Complex linear signals such as additive
harmonic components can be separated and transformed independently.
Milankovitch cycles provide an example of linear superposition in pa-
leoclimate records, although there is an ongoing debate about the valid-
ity of this assumption. Numerous nonlinear systems exist in nature that
do not obey the properties of scaling and additivity. An example of such
a linear system is

x = (1:100)';
y = 2*x;

plot(x,y)

An example of a nonlinear system is

x = (-100:100)';
y = x.^2;

plot(x,y)

• Time invariance – The system output y (t) does not change with a delay
of the input x (t+ i). The system characteristics are constant with time.
Unfortunately, natural systems often change their characteristics with
time. For instance, benthic mixing or bioturbation depends on various
environmental parameters such as nutrient supply. Therefore, the sys-
tem’s performance varies with time signifi cantly. In such case, the actual
input of the system is hard to determine from the output, e.g., to extract
the actual climate signal from a bioturbated sedimentary record.

6.3 Linear Time-Invariant Systems 137

• Invertibility – An invertible system is a system where the original input
signal can be reproduced from the system’s output. This is an important
property if unwanted signal distortions have to be corrected. Here, the
known system is inverted and applied to the output to reconstruct the
undisturbed input. As an example, a core logger measuring the magnetic
susceptibility with a loop sensor integrates over a certain core interval
with highest sensitivity at the location of the loop and decreasing sensi-
tivity down- and up-core. The above system is also invertible, i.e., we can
compute the input signal from the output signal by inverting the system.
The inverse system of the above linear system is

x = (1:100)';
y = 0.5*x;

plot(t,y)

The nonlinear system

x = (-100:100)';
y = x.^2;

plot(x,y)

is not invertible. Since this system yields equal responses for different
inputs, such as y = +4 for inputs x= –2 and x= +2, the input cannot be re-
constructed from the output. A similar situation can also occur in linear
systems, such as

x = (1:100)';
y = 0;

plot(x,y)

The output is zero for all inputs. Therefore, the output does not contain
any information about the input.

• Causality – The system response only depends on present and past in-
puts x (0), x (–1), …, whereas future inputs x (+1), x (+2), … have no
effect on the output y (0). All realtime systems, such telecommunication
systems, must be causal since they cannot have future inputs available
to them. All systems and fi lters in MATLAB are indexed as causal. In
earth sciences, however, numerous non-causal fi lters are used. Filtering
images and signals extracted from sediment cores are examples where
the future inputs are available at the time of fi ltering. Output signals have
to be delayed after fi ltering to compensate the differences between causal
and non-causal indexing.

138 6 Signal Processing

• Stability – A system is stable if the output of a fi nite input is also fi nite.
Stability is critical in fi lter design, where fi lters often have the disadvan-
tage of provoking diverging outputs. In such cases, the fi lter design has
to be revised and improved.

Linear time-invariant (LTI) systems as a special type of fi lters are very
popular. Such systems have all the advantages that have been described
above. They are easy to design and to use in many applications. The follow-
ing chapters 6.4 to 6.9 describe the design, realization and application of
LTI-type fi lters to extract certain frequency components of signals. These
fi lters are mainly used to reduce the noise level in signals. Unfortunately,
many natural systems do not behave as LTI systems. The signal-to-noise
ratio often varies with time. Chapter 6.10 describes the application of adap-
tive fi lters that automatically adjust their characteristics in a time-variable
environment.

6.4 Convolution and Filtering

The mathematical description of a system transformation is the convolution.
Filtering is one application of the convolution process. A running mean of
length fi ve provides an example of such a simple fi lter. The output of an
arbitrary input signal is

The output y (t) is simply the average of the fi ve input values x (t–2), x (t–1),
x (t), x (t+1) and x (t+2). In other words, all the fi ve consecutive input val-
ues are multiplied by a factor of 1/5 and summed to form y (t). In this exam-
ple, all input values are multiplied by the same factor, i.e., they are equally
weighted. The fi ve factors used in the above operation are also called fi lter
weights bk. The fi lter can be represented by the vector

b = [0.2 0.2 0.2 0.2 0.2]

consisting of the identical fi lter weights. Since this fi lter is symmetric, it
does not shift the signal on the time axis. The only function of this fi lter is
to smooth the signal. Therefore, running means of a given length are often
used to smooth signals, mainly for cosmetic reasons. A modern spreadsheet
software usually contains running means as a function for smoothing data

6.4 Convolution and Filtering 139

series. The impact of the smoothing fi lter increases with increasing fi lter
length.

The weights that a fi lter of arbitrary length may take can vary. As an ex-
ample, let us assume an asymmetric fi lter of fi ve weights.

b = [0.05 0.08 0.14 0.26 0.47]

The sum of all of the fi lter weights is one. Therefore, it does not introduce
energy to the signal. However, since it is highly asymmetric, it shifts the
signal along the time axis, i.e., it introduces a phase shift.

The general mathematical representation of the fi ltering process is the
convolution:

where bk is the vector of fi lter weights, N1+N2 is the order of the fi lter, which
is the length of the fi lter reduced by one. Filters with fi ve weights have an
order of four, as in our example. In contrast to this format, MATLAB uses
the engineering standard of indexing fi lters, i.e., fi lters are always defi ned
as causal. Therefore, the convolution used by MATLAB is

where N is the order of the fi lter. A number of frequency-domain tools
provided by MATLAB cannot simply be applied to non-causal fi lters that
have been designed for applications in earth sciences. Hence, it is common
to carry out phase corrections to simulate non-causality. For example, fre-
quency-selective fi lters as introduced in Chapter 6.9 can be applied using
the function filtfilt, which provides zero-phase forward and reverse
fi ltering.

The functions conv and filter that provide digital fi ltering with
MATLAB are best illustrated in terms of a simple running mean. The n el-
ements of the vector x (t1), x (t2), x (t3), …, x (tn) are replaced by the arith-
metic means of subsets of the input vector. For instance, a running mean
over three elements computes the mean of inputs x (tn–1), x (tn), x (tn+1) to
obtain the output y (tn). We can easily illustrate this by generating a ran-
dom signal

140 6 Signal Processing

clear

t = (1:100)';
randn('seed',0);
x1 = randn(100,1);

designing a fi lter that averages three data points of the input signal

b1 = [1 1 1]/3;

and convolving the input vector with the fi lter

y1 = conv(b1,x1);

The elements of b1 are the weights of the fi lter. In our example, all fi lter
weights are the same and they equal 1/3. Note that the conv function yields
a vector that has the length n+m–1, where m is the length of the fi lter.

m1 = length(b1);

We should explore the contents of our workspace to check for the length of
the input and output of conv. Typing

whos

yields

Name Size Bytes Class Attributes
b1 1x3 24 double
m1 1x1 8 double
t 100x1 800 double
x1 100x1 800 double
y1 102x1 816 double

Here, we see that the actual input series x1 has a length of 100 data points,
whereas the output y1 has two more elements. Generally, convolution intro-
duces (m–1) /2 data points at both ends of the data series. To compare input
and output signal, we cut the output signal at both ends.

y1 = y1(2:101,1);

A more general way to correct the phase shifts of conv is

y1 = y1(1+(m1-1)/2:end-(m1-1)/2,1);

which of course works only for an odd number of fi lter weights. Then, we
can plot both input and output signals for comparison. We also use legend
to display a legend for the plot.

6.5 Comparing Functions for Filtering Data Series 141

plot(t,x1,'b-',t,y1,'r-')
legend('x1(t)','y1(t)')

This plot illustrates the effect of the running mean on the original input se-
ries. The output y1 is signifi cantly smoother than the input signal x1. If we
increase the length of the fi lter, we obtain an even smoother signal.

b2 = [1 1 1 1 1]/5;
m2 = length(b2);

y2 = conv(b2,x1);
y2 = y2(1+(m2-1)/2:end-(m2-1)/2,1);

plot(t,x1,'b-',t,y1,'r-',t,y2,'g-')
legend('x1(t)','y1(t)','y2(t)')

The next chapter introduces a more general description of fi lters.

6.5 Comparing Functions for Filtering Data Series

A very simple example of a nonrecursive fi lter was described in the previ-
ous section. The fi lter output y (t) depends only on the fi lter input x (t) and
the fi lter weights bk . Prior to introducing a more general description for
linear time-invariant fi lters, we replace the function conv by filter that
can be used also for recursive fi lters. In this case, the output y (tn) depends
on the fi lter input x (t), but also on previous elements of the output y (tn–1),
y (tn–2), y (tn–3) and so on (Chapter 6.6). First, we use filter for nonre-
cursive fi lters.

clear

t = (1:100)';
randn('seed',0);
x3 = randn(100,1);

We design a fi lter that averages fi ve data points of the input signal.

b3 = [1 1 1 1 1]/5;
m3 = length(b3);

The input vector can be convolved with the function conv. The output is
again corrected for the length of the data vector.

y3 = conv(b3,x3);
y3 = y3(1+(m3-1)/2:end-(m3-1)/2,1);

Although the function filter yields an output vector with the same length

142 6 Signal Processing

as the input vector, we have to correct the output as well. Here, the function
filter assumes that the fi lter is causal. The fi lter weights are indexed n,
n–1, n–2 and so on. Therefore, no future elements of the input vector, such
as x (n+1), x (n+2) etc. are needed to compute the output y (n). This is of
great importance in electrical engineering, the classic fi eld of application
of MATLAB, where fi lters are often applied in real time. In earth sciences,
however, in most applications the entire signal is available at the time of
processing the data. Filtering the data series is done by

y4 = filter(b3,1,x3);

and afterwards the phase correction is carried out using

y4 = y4(1+(m3-1)/2:end-(m3-1)/2,1);
y4(end+1:end+m3-1,1) = zeros(m3-1,1);

which works only for an odd number of fi lter weights. This command sim-
ply shifts the output by(m–1)/3 towards the lower end of the t-axis, then
fi lls the end of the data series by zeros. Comparing the ends of both outputs
illustrates the effect of this correction, where

y3(1:5,1)
y4(1:5,1)

yields

ans =
 0.3734
 0.4437
 0.3044
 0.4106
 0.2971

ans =
 0.3734
 0.4437
 0.3044
 0.4106
 0.2971

This was the lower end of the output. We see that both vectors y3 and y4
contain the same elements. Now we explorer the upper end of the data vec-
tor, where

y3(end-5:end,1)
y4(end-5:end,1)

causes the output

6.6 Recursive and Nonrecursive Filters 143

ans =
 0.2268
 0.1592
 0.3292
 0.2110
 0.3683
 0.2414

ans =
 0.2268
 0.1592
 0
 0
 0
 0

The vectors are identical up to element y(end–m3+1), then the second vec-
tor y4 contains zeros instead of true data values. Plotting the results with

subplot(2,1,1), plot(t,x3,'b-',t,y3,'g-')
subplot(2,1,2), plot(t,x3,'b-',t,y4,'g-')

or in one single plot,

plot(t,x3,'b-',t,y3,'g-',t,y4,'r-')

shows that the results of conv and filter are identical except for the up-
per end of the data vector. These observations are important for our next
steps in signal processing, particularly if we are interested in leads and lags
between various components of signals.

6.6 Recursive and Nonrecursive Filters

Now we expand the nonrecursive fi lters by a recursive component, i.e., the
output y (tn) depends on the fi lter input x (t), but also on previous output val-
ues y (tn–1), y (tn–2), y (tn–3) and so on. This fi lter requires the nonrecursive
fi lter weights bi, but also the recursive fi lters weights ai (Fig. 6.2). This fi lter
can be described by the difference equation:

Whereas this is a non-causal version of the difference equation, MATLAB
uses the causal indexing again,

144 6 Signal Processing

with the known problems in the design of zero-phase fi lters. The larger of
the two quantities M and N1+N2 or N is the order of the fi lter.

We use the same synthetic input signal as in the previous example to il-
lustrate the performance of a recursive fi lter.

clear
t = (1:100)';
randn('seed',0);
x5 = randn(100,1);

We fi lter this input using a recursive fi lter with a set of weights a5 and b5,

b5 = [0.0048 0.0193 0.0289 0.0193 0.0048];
a5 = [1.0000 -2.3695 2.3140 -1.0547 0.1874];

m5 = length(b5);

y5 = filter(b5,a5,x5);

and correct the output for the phase

y5 = y5(1+(m5-1)/2:end-(m5-1)/2,1);
y5(end+1:end+m5-1,1) = zeros(m5-1,1);

Now we plot the results.

plot(t,x5,'b-',t,y5,'r-')

bi T

+

T ai

+

Input signal x(t)

Output signal y(t)

Fig. 6.2 Schematic of a linear time-invariant fi lter with an input x (t) and an output y (t).
The fi lter is characterized by its weights ai and bi , and the delay elements T. Nonrecursive
fi lters only have nonrecursive weights bi , whereas the recursive fi lter also requires the
recursive fi lters weights ai .

6.7 Impulse Response 145

Obviously, this fi lter changes the signal dramatically. The output contains
only low-frequency components, whereas all higher frequencies are elimi-
nated. The comparison of the periodograms of the input and the output re-
veals that all frequencies above f = 0.1 corresponding to a period of τ =10 are
suppressed.

[Pxx,F] = periodogram(x5,[],128,1);
[Pyy,F] = periodogram(y5,[],128,1);

plot(F,abs(Pxx),F,abs(Pyy))

Hence, we have now designed a frequency-selective fi lter, i.e., a fi lter that
eliminates certain frequencies whereas other periodicities are relatively
unaffected. The next chapter introduces tools to characterize a fi lter in the
time and frequency domain that help to predict the effect of a frequency-
selective fi lter on arbitrary signals.

6.7 Impulse Response

The impulse response is a very convenient way of describing the fi lter char-
acteristics (Fig. 6.3). A useful property of the impulse response h in LTI
systems involves the convolution of the input signal x (t) with h to obtain
the output signal y (t) .

It can be shown that the impulse response h is identical to the fi lter weights
in the case of nonrecursive fi lters, but is different for recursive fi lters.
Alternatively, the convolution is often written in a short form:

In many examples, the convolution in the time domain is replaced by a
simple multiplication of the Fourier transforms H (f) and X (f) in the fre-
quency domain.

The output signal y (t) in the time domain is then obtained by a reverse

146 6 Signal Processing

Fourier transformation of Y (f). The signals are often convolved in the fre-
quency domain for simplicity of the multiplication as compared to a convo-
lution in the time domain. However, the Fourier transformation itself intro-
duces a number of artifacts and distortions and therefore, convolution in the
frequency domain is not without problems. In the following examples we
apply the convolution only in the time domain.

First, we generate an unit impulse:

clear
t = (0:20)';
x6 = [zeros(10,1);1;zeros(10,1)];

stem(t,x6), axis([0 20 -4 4])

The function stem plots the data sequence x6 as stems from the x-axis
terminated with circles for the data value. This might be a better way to plot
digital data than using the continuous lines generated by plot. We now
feed this to the fi lter and explore the output. The impulse response is identi-
cal to the weights of nonrecursive fi lters.

b6 = [1 1 1 1 1]/5;
m6 = length(b6);

y6 = filter(b6,1,x6);

We correct this for the phase shift of the function filter again, although
this might not be important in this example.

0 5 10 15 200 5 10 15 20
−2

−1

0

1

2

−2

−1

0

1

2

t t

y(
t)

y(
t)

Unit Impulse Impulse Response

a b

Fig. 6.3 Transformation of a a unit impulse to compute b the impulse response of a system.
The impulse response is often used to describe and predict the performance of a fi lter.

6.7 Impulse Response 147

y6 = y6(1+(m6-1)/2:end-(m6-1)/2,1);
y6(end+1:end+m6-1,1) = zeros(m6-1,1);

We obtain an output vector y6 of the same length and phase as the input
vector x6. We plot the results for comparison.

stem(t,x6)
hold on
stem(t,y6,'filled','r')
axis([0 20 -2 2])

In contrast to plot, the function stem accepts only one data series. There-
fore, the second series y6 is overlaid on the same plot using the function hold.
The effect of the fi lter is clearly seen on the plot. It averages the unit impulse
over a length of fi ve elements. Furthermore, the values of the output equal the
fi lter weights of a6, in our example 0.2 for all elements of a6 and y6.

For a recursive fi lter, the output y6 does not agree with the fi lter weights.
Again, an impulse is generated fi rst.

clear
t = (0:20)';
x7 = [zeros(10,1);1;zeros(10,1)];

Subsequently, an arbitrary recursive fi lter with weights of a7 and b7 is de-
signed.

b7 = [0.0048 0.0193 0.0289 0.0193 0.0048];
a7 = [1.0000 -2.3695 2.3140 -1.0547 0.1874];

m7 = length(b7);

y7 = filter(b7,a7,x7);

y7 = y7(1+(m7-1)/2:end-(m7-1)/2,1);
y7(end+1:end+m7-1,1) = zeros(m7-1,1);

The stem plot of the input x2 and the output y2 shows an interesting im-
pulse response:

stem(t,x7)
hold on
stem(t,y7,'filled','r')
axis([0 20 -2 2])

The signal is again smeared over a wider area. It is also shifted towards the
right. Therefore, this fi lter not only affects the amplitude of the signal, but
also shifts the signal towards lower or higher values. Phase shifts are usu-
ally unwanted characteristics of fi lters, although in some applications shifts
along the time axis might be of particular interest.

148 6 Signal Processing

6.8 Frequency Response

Next, we investigate the frequency response of a fi lter, i.e., the effect of
a fi lter on the amplitude and phase of a signal (Fig. 6.4). The frequency
response H (f) of a fi lter is the Fourier transform of the impulse response
h (t) . The absolute of the complex frequency response H (f) is the magni-
tude response of the fi lter A (f).

The argument of the complex frequency response H (f) is the phase re-
sponse of the fi lter.

Since MATLAB fi lters are all causal it is diffi cult to explore the phase of
signals using the corresponding functions included in the Signal Processing
Toolbox. The user’s guide for this toolbox simply recommends to delay the
fi lter output in the time domain by a fi xed number of samples, as we have
done it in the previous examples. As an example, a sine wave with a period
of 20 and an amplitude of 2 is used as an input signal.

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

1

0 −1000

−800

−600

−400

−200

0

0.60.6

Frequency Frequency

M
ag

ni
tu

de

P
ha

se
 in

 d
eg

re
es

Magnitude Unwrapped Phase

a b

Fig. 6.4 a Magnitude and b phase response of a running mean over eleven elements.

6.8 Frequency Response 149

clear
t = (1:100)';
x8 = 2*sin(2*pi*t/20);

A running mean over eleven elements is designed and this fi lter is applied
to the input signal.

b8 = ones(1,11)/11;
m8 = length(b8);

y8 = filter(b8,1,x8);

The phase is corrected for causal indexing.

y8 = y8(1+(m8-1)/2:end-(m8-1)/2,1);
y8(end+1:end+m8-1,1) = zeros(m8-1,1);

Both input and output of the fi lter are plotted.

plot(t,x8,t,y8)

The fi lter obviously reduces the amplitude of the sine wave. Whereas the
input signal has an amplitude of 2, the output has an amplitude of

max(y8)

ans =
 1.1480

The fi lter reduces the amplitude of a sine with a period of 20 by

1-max(y8(40:60))/2

ans =
 0.4260

i.e., approximately 43%. The elements 40 to 60 are used for computing the
maximum value of y8 to avoid edge effects. On the other hand, the fi lter
does not affect the phase of the sine wave, i.e., both input and output are
in phase.

The same fi lter, however, has a different impact on a different signal. Let
us design another sine wave with a similar amplitude, but with a different
period of 15.

clear
t = (1:100)';
x9 = 2*sin(2*pi*t/15);

Applying a similar fi lter and correcting the output for the phase shift of the
function filter yields

150 6 Signal Processing

b9 = ones(1,11)/11;
m9 = length(b9);

y9 = filter(b9,1,x9);

y9 = y9(1+(m9-1)/2:end-(m9-1)/2,1);
y9(end+1:end+m9-1,1) = zeros(m9-1,1);

The output is again in phase with the input, but the amplitude is dramati-
cally reduced as compared to the input.

plot(t,x9,t,y9)

1-max(y9(40:60))/2

ans =
 0.6768

The running mean over eleven elements reduces the amplitude of this signal
by 67%. More generally, the fi lter response obviously depends on the fre-
quency of the input. The frequency components of a more complex signal
containing multiple periodicities are affected in a different way. The fre-
quency response of a fi lter

clear
b10 = ones(1,11)/11;

can be computed using the function freqz.

[h,w] = freqz(b10,1,512);

The function freqz returns the complex frequency response h of the digital
fi lter b10. The frequency axis is normalized to π. We transform the frequen-
cy axis to the true frequency values. The true frequency values are w times
the sampling frequency, which is one in our example, divided by 2*pi.

f = 1*w/(2*pi);

Next, we calculate the magnitude of the frequency response and plot the
magnitude over the frequency.

magnitude = abs(h);

plot(f,magnitude)
xlabel('Frequency'), ylabel('Magnitude')
title('Magnitude')

This plot can be used to predict the magnitude of the fi lter for any frequency
of an input signal. An exact value of the magnitude can also be obtained by

6.8 Frequency Response 151

simple interpolation of the magnitude,

1-interp1(f,magnitude,1/20)

ans =
 0.4260

which is the expected ca. 43% reduction of the amplitude of a sine wave
with period 20. The sine wave with period 15 experiences an amplitude
reduction of

1-interp1(f,magnitude,1/15)

ans =
 0.6751

i.e., around 68% similar to the value observed at the beginning. The fre-
quency response can be calculated for all kinds of fi lters. It is a valuable
tool to predict the effects of a fi lter on signals in general. The phase re-
sponse can also be calculated from the complex frequency response of the
fi lter (Fig. 6.4):

phase = 180*angle(h)/pi;

plot(f,phase)
xlabel('Frequency'), ylabel('Phase in degrees')
title('Phase')

The phase angle is plotted in degrees. We observe frequent 180° jumps in
this plot that are an artifact of the arctangent function inside the function
angle. We can unwrap the phase response to eliminate the 180° jumps us-
ing the function unwrap.

plot(f,unwrap(phase))
xlabel('Frequency'), ylabel('Phase in degrees')
title('Phase')

Since the fi lter has a linear phase response, no shifts of the frequency com-
ponents of the signal occur relative to each other. Therefore, we would not
expect any distortions of the signal in the frequency domain. The phase
shift of the fi lter can be computed using

interp1(f,unwrap(phase),1/20) * 20/360

ans =
 -5.0000

and

152 6 Signal Processing

interp1(f,unwrap(phase),1/15) * 15/360

ans =
 -5.0000

respectively. Since MATLAB uses causal indexing for fi lters, the phase
needs to be corrected, similar to the delayed output of the fi lter. In our
example, we used a fi lter of the length eleven. We have to correct the
phase by (11–1)/2=5. This suggests a zero phase shift of the fi lter for
both frequencies.

This also works for recursive fi lters. Assume a simple sine wave with
period 8 and the previously employed recursive fi lter.

clear
t = (1:100)';
x11 = 2*sin(2*pi*t/8);

b11 = [0.0048 0.0193 0.0289 0.0193 0.0048];
a11 = [1.0000 -2.3695 2.3140 -1.0547 0.1874];

m11 = length(b11);

y11 = filter(b11,a11,x11);

Correct the output for the phase shift introduced by causal indexing and plot
both input and output signals.

y11= y11(1+(m11-1)/2:end-(m11-1)/2,1);
y11(end+1:end+m11-1,1) = zeros(m11-1,1);

plot(t,x11,t,y11)

The magnitude is reduced by

1-max(y11(40:60))/2

ans =
 0.6465

which is also supported by the magnitude response

[h,w] = freqz(b11,a11,512);

f = 1*w/(2*pi);

magnitude = abs(h);

plot(f,magnitude)
xlabel('Frequency'), ylabel('Magnitude')
title('Magnitude Response')

6.9 Filter Design 153

1-interp1(f,magnitude,1/8)

ans =
 0.6462

The phase response

phase = 180*angle(h)/pi;

f = 1*w/(2*pi);

plot(f,unwrap(phase))
xlabel('Frequency'), ylabel('Phase in degrees')
title('Magnitude Response')

interp1(f,unwrap(phase),1/8) * 8/360

ans =
 -5.0144

must again be corrected for causal indexing. The sampling interval was one,
the fi lter length is fi ve. Therefore, we have to add (5–1)/2=2 to the phase
shift of –5.0144. This suggests a corrected phase shift of –3.0144, which is
exactly the delay seen on the plot.

plot(t,x11,t,y11), axis([30 40 -2 2])

The next chapter gives an introduction to the design of fi lters with a desired
frequency response. These fi lters can be used to amplify or suppress differ-
ent components of arbitrary signals.

6.9 Filter Design

Now we aim to design fi lters with a desired frequency response. Firstly,
a synthetic signal with two periods, 50 and 15, is generated. The power-
spectrum of the signal shows the expected peaks at the frequencies 0.02
and ca. 0.07.

t = 0 : 1000;
x12 = 2*sin(2*pi*t/50) + sin(2*pi*t/15);

plot(t,x12), axis([0 200 -4 4])

[Pxx,f] = periodogram(x12,[],1024,1);

plot(f,abs(Pxx))
xlabel('Frequency')
ylabel('Power')

154 6 Signal Processing

We add some gaussian noise with amplitude one and explore the signal and
its periodogram.

xn12 = x12 + randn(1,length(t));

plot(t,xn12), axis([0 200 -4 4])

[Pxx,f] = periodogram(xn12,[],1024,1);

plot(f,abs(Pxx))
xlabel('Frequency')
ylabel('Power')

The Butterworth fi lter design technique is a widely-used method to cre-
ate fi lters of any order with a lowpass, highpass, bandpass and bandstop
confi guration (Fig. 6.5). In our example, we like to design a fi ve-order
lowpass fi lter with a cutoff frequency of 0.08. The inputs of the function
butter are the order of the fi lter and the cutoff frequency normalized
to the Nyquist frequency, which is 0.5 in our example, that is half of the
sampling frequency.

[b12,a12] = butter(5,0.08/0.5);

The frequency characteristics of the fi lter show a relatively smooth transi-
tion from the passband to the stopband, but the advantage of the fi lter is its
low order.

[h,w] = freqz(b12,a12,1024);
f = 1*w/(2*pi);

plot(f,abs(h)), grid
xlabel('Frequency')
ylabel('Magnitude')

We can again apply the fi lter to the signal by using the function filter.
However, frequency selective fi lters such as lowpass, highpass, bandpass
and bandstop are designed to suppress certain frequency bands, whereas
phase shifts should be avoided. The function filtfilt provides zero-
phase forward and reverse digital fi ltering. After fi ltering in the forward
direction, the fi ltered sequence is reversed and it runs back through the fi lter.
The magnitude of the signal is not affected by this operation, since it is either
0 or 100% of the initial amplitude, depending on the frequency. In contrast,
all phase shifts introduced by the fi lter are zeroed by the forward and re-
verse application of the same fi lter. This function also helps to overcome
the problems with causal indexing of fi lters in MATLAB. It eliminates the
phase differences of the causal vs. non-causal versions of the same fi lter.

6.9 Filter Design 155

Filtering and plotting the results clearly illustrates the effects of the fi lter.

xf12 = filtfilt(b12,a12,xn12);

plot(t,xn12,'b-',t,xf12,'r-')
axis([0 200 -4 4])

One might now wish to design a new fi lter with a more rapid transition from

Passband

Stopband
Transition

Passband

Stopband
Transition

Cutoff
Frequency

Passband Passband Passband

Stopband Stopband Stopband

Transition Transition Transition Transition

Cutoff
Frequency

0 0.25 0.5 0.75 1.0
FrequencyFrequency

FrequencyFrequency

0 0.25 0.5 0.75 1.0

0 0.25 0.5 0.75 1.0 0 0.25 0.5 0.75 1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

Highpass FilterLowpass Filter

Bandstop FilterBandpass Filter

a

c d

b

Fig. 6.5 Frequency response of the fundamental types of frequency-selective fi lters.
a Lowpass fi lter to suppress the high-frequency component of a signal. In earth sciences,
such fi lters are often used to suppress high-frequency noise in a low-frequency signal.
b Highpass fi lter are employed to remove all low frequencies and trends in natural data.
c-d Bandpass and bandstop fi lters extract or suppress a certain frequency band. Whereas
the solid line in all graphs depicts the ideal frequency response of a frequency-selective
fi lter, the gray band shows the tolerance for a low-order design of such a fi lter. In practice,
the frequency response lies within the gray band.

156 6 Signal Processing

passband to stopband. Such a fi lter needs a higher order. It needs to have a
larger number of fi lter weights. We now create a 15-order Butterworth fi lter
as an alternative to the above fi lter.

[b13,a13] = butter(15,0.08/0.5);

[h,w] = freqz(b13,a13,1024);

f = 1*w/(2*pi);

plot(f,abs(h)), grid
xlabel('Frequency')
ylabel('Magnitude')

The frequency response is clearly improved. The entire passband is rela-
tively fl at at a value of 1.0, whereas the stopband is approximately zero
everywhere. Next, we modify our input signal by introducing a third period
of 5. This signal is then used to illustrate the operation of a Butterworth
bandstop fi lter.

x14 = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);
plot(t,x14), axis([0 200 -4 4])

[Pxx,f] = periodogram(x14,[],1024,1);

plot(f,abs(Pxx))

The new Butterworth fi lter is a bandstop fi lter. The stopband of the fi lter is
between the frequencies 0.06 and 0.08. It can therefore be used to suppress
the period of 15 corresponding to a frequency of approximately 0.07.

xn14 = x14 + randn(1,length(t));

[b14,a14] = butter(5,[0.06 0.08]/0.5,'stop');
xf14 = filtfilt(b14,a14,x14);

[Pxx,f] = periodogram(xf14,[],1024,1);

plot(f,abs(Pxx))

plot(t,xn14,'b-',t,xf14,'r-'), axis([0 200 -4 4])

The plots show the effect of this fi lter. The frequency band between 0.06
and 0.08, and therefore also the frequency of 0.07 was successfully removed
from the signal.

6.10 Adaptive Filtering 157

6.10 Adaptive Filtering

The fi xed fi lters used in the previous chapters make the basic assumption
that the signal degradation is known and it does not change with time. In
most applications, however, an a priori knowledge of the signal and noise
statistical characteristics is usually not available. In addition, both the noise
level and the variance of the genuine signal can be highly nonstationary
with time, e.g., stable isotope records during the glacial-interglacial transi-
tion. Fixed fi lters thus cannot be used in a nonstationary environment with-
out a knowledge of the signal-to-noise ratio.

In contrast, adaptive fi lters widely used in the telecommunication indus-
try could help to overcome these problems. An adaptive fi lter is an inverse
modeling process, which iteratively adjusts its own coeffi cients automati-
cally without requiring any a priori knowledge of signal and noise. The op-
eration of an adaptive fi lter includes, (1) a fi ltering process, the purpose of
which is to produce an output in response to a sequence of data, and (2) an
 adaptive process providing a mechanism for the adaptive control of the fi lter
weights (Haykin 1991).

In most practical applications, the adaptive process is oriented towards
minimizing an error signal or cost function e. The estimation error e at an in-
stant i is defi ned by the difference between some desired response di and the
actual fi lter output yi, that is the fi ltered version of a signal xi, as shown by

where i=1, 2, …, N and N is the length of the input data vector. In the case
of a nonrecursive fi lter characterized by the vector of fi lter weights W with f
elements, the fi lter output yi is given by the inner product of the transposed
vector W and the input vector Xi.

The selection of the desired response d that is used in the adaptive process
depends the application. Traditionally, d is a combined signal that contains
a signal s and random noise n0. The signal x contains a noise n1 uncorre-
lated with the signal s but correlated in some unknown way to the noise n0.
In noise canceling systems, the practical objective is to produce a system
output y that is a best fi t in the least-squares sense to the signal d.

Different approaches have been developed to solve this multivariate min-
imum error optimization problem (e.g., Widrow and Hoff 1960, Widrow
et al. 1975, Haykin 1991). Selection of one algorithm over another is in-

158 6 Signal Processing

fl uenced by various factors: the rate of convergence (number of adaptive
steps required for the algorithm to converge close enough to an optimum
solution), misadjustment (measure of the amount by which the fi nal value
of the mean-squared error deviates from the minimum squared error of an
optimal fi lter, e.g., Wiener 1945, Kalman and Bucy 1961), and tracking (the
capability of the fi lter to work in a nonstationary environment, i.e., to track
changing statistical characteristics of the input signal) (Haykin 1991).

The simplicity of the least-mean-squares (LMS) algorithm, originally
developed by Widrow and Hoff (1960), has made it the benchmark against
which other adaptive fi ltering algorithms are tested. For applications in
earth sciences, we use this fi lter to extract the noise from two signals S
and X, both containing the same signal s, but uncorrelated noise n

1
 and n

2

(Hattingh 1988). As an example, consider a simple duplicate set of measure-
ments on the same material, e.g., two parallel stable isotope records from
the same foraminifera species. What you will expect are two time-series
with N elements containing the same desired signal overlain by different
uncorrelated noise. The fi rst record is used as the primary input S

and the second record is the reference input X.

As demonstrated by Hattingh (1988), the required noise-free signal can be
extracted by fi ltering the reference input X using the primary input S as the
desired response d. The minimum error optimization problem is solved by
the norm least-mean-square. The mean-squared error ei

2 is a second-order
function of the weights in the nonrecursive fi lter. The dependence of ei

2 on
the unknown weights may be seen as a multidimensional paraboloid with a
uniquely defi ned minimum point. The weights corresponding to the mini-
mum point of this error performance surface defi ne the optimum Wiener
solution (Wiener 1945). The value computed for the weight vector W us-
ing the LMS algorithm represents an estimator whose expected value ap-
proaches the Wiener solution as the number of iterations approaches infi nity
(Haykin 1991). Gradient methods are used to reach the minimum point of
the error performance surface. For simplifi cation of the optimization prob-
lem, Widrow and Hoff (1960) developed an approximation for the required
gradient function that can be computed directly from the data. This leads to
a simple relation for updating the fi lter-weight vector W.

6.10 Adaptive Filtering 159

The new parameter estimate Wi+1 is based on the previous set of fi lter weights
Wi plus a term, which is the product of a bounded step size u, a function of
the input state Xi and a function of the error ei. In other words, error ei cal-
culated from the previous step is fed back to the system to update fi lter coef-
fi cients for the next step (Fig. 6.6). The fi xed convergence factor u regulates
the speed and stability of adaption. A small value ensures a higher accuracy,
but more data are needed to teach the fi lter to reach the optimum solution. In
the modifi ed version of the LMS algorithm by Hattingh (1988), this problem
is overcome by feeding the data back so that the canceler can have another
chance to improve its own coeffi cients and adapt to the changes in the data.

In the following function canc, each of these loops is called an iteration
since many of these loops are required to achieve optimal results. This algo-
rithm extracts the noise-free signal from two vectors x and s containing the
correlated signal and uncorrelated noise. As an example, we generate two
signals containing the same sine wave, but different gaussian noise.

x = 0 : 0.1 : 100;
y = sin(x);
yn1 = y + 0.2*randn(size(y));
yn2 = y + 0.2*randn(size(y));

plot(x,yn1,x,yn2)

Save the following code in a text fi le canc.m and include it into the search
path. The algorithm canc formats both signals, feeds them into the fi lter loop,

+
Σ

Reference
input

System
output

Adaptation
Algorithm

Filter
output

Error

Adaptive Noise Canceller

Primary
input

Fig. 6.6 Schematic of an adaptive fi lter. Each iteration involves a new estimate of the fi lter
weights Wi+1 based on the previous set of fi lter weights Wi plus a term which is the product
of a bounded step size u, a function of the fi lter input Xi , and a function of the error ei . In
other words, error ei calculated from the previous step is fed back to the system to update
fi lter coeffi cients for the next step (modifi ed from Trauth 1998).

160 6 Signal Processing

corrects the signals for phase shifts and formats the signals for the output.

function [zz,yy,ee] = canc(x,s,u,l,iter)
% CANC Correlated Adaptive Noise Canceling
[n1,n2] = size(s); n = n2; index = 0; % Formatting
if n1 > n2
 s = s'; x = x'; n = n1; index = 1;
end
w(1:l) = zeros(1,l); e(1:n) = zeros(1,n); % Initialization
xx(1:l) = zeros(1,l); ss(1:l) = zeros(1,l);
z(1:n) = zeros(1,n); y(1:n) = zeros(1,n);
ors = s; ms(1:n) = mean(s) .* ones(size(1:n));
s = s - ms; x = x - ms; ors = ors - ms;
for it = 1 : iter % Iterations
 for I = (l+1) : (n+1) % Filter loop
 for k = 1 : l
 xx(k) = x(I-k); ss(k) = s(I-k);
 end
 for J = 1 : l
 y(I-1) = y(I-1) + w(J) .* xx(J);
 z(I-1) = z(I-1) + w(J) .* ss(J);
 end
 e(I-1) = ors(I-1-(fix(l/2)))-y(I-1);
 for J = 1 : l
 w(J) = w(J) + 2.*u.*e(I-1).*xx(J);
 end
 end % End filter loop
 for I = 1 : n % Phase correction
 if I <= fix(l/2)
 yy(I) = 0; zz(I) = 0; ee(I) = 0;
 elseif I > n-fix(l/2)
 yy(I) = 0; zz(I) = 0; ee(I) = 0;
 else
 yy(I) = y(I+fix(l/2));
 zz(I) = z(I+fix(l/2));
 ee(I) = abs(e(I+fix(l/2)));
 end
 yy(I) = yy(I) + ms(I);
 zz(I) = zz(I) + ms(I);
 end % End phase correction
 y(1:n) = zeros(size(1:n));
 z(1:n) = zeros(size(1:n));
 mer(it) = mean(ee((fix(l/2)):(n-fix(l/2))).^2);
end % End iterations
if index == 1 % Reformatting
 zz = zz'; yy = yy'; ee = ee';
end

The required inputs are the signals x and s, the step size u, the fi lter length
l and the number of iterations iter. In our example, the two noisy signals
are yn1 and yn2. For instance, we choose a fi lter with l=5 fi lter weights. A
value of u in the range of 0 <u< l /λmax where λmax is the largest eigenvalue
of the autocorrelation matrix of the reference input, leads to reasonable re-

6.10 Adaptive Filtering 161

sults (Haykin 1991) (Fig. 6.7). The value of u is computed by

k = kron(yn1,yn1');
u = 1/max(eig(k))

which yields

u =
 0.0019

We now run the adaptive fi lter canc for 20 iterations and use the above
value of u.

Original noisefree signal
Filtered signal

Noise

Mean-squared error

1st noisy signal
2nd noisy signal

0 5 10 15 20 0 5 10 15 20
0

0.1

0.2

0.3

0.4

−2

−1

0

1

2

−2

−1

0

1

2

0 5 10 15 20 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

x x

E
2

ny
yn

x Iteration

Duplicate Noisy Records Learning Curve

Filter Result Extracted Noise
a

c d

b

Fig. 6.7 Output of the adaptive fi lter. a The duplicate records corrupted by uncorrelated
noise are fed into the adaptive fi lter with 5 weights with a convergence factor of 0.0019.
After 20 iterations, the fi lter yields the b learning curve, c the noisefree record and d the
noise extracted from the duplicate records.

162 6 Signal Processing

[z,e,mer] = canc(yn1,yn2,0.0019,5,20);

The evolution of the mean-squared error

plot(mer)

illustrates the performance of the adaptive fi lter, although the chosen step
size u=0.0019 obviously leads to a relatively fast convergence. In most ex-
amples, a smaller step size decreases the rate of convergence, but increases
the quality of the fi nal result. We therefore reduce u by one order of magni-
tude and run the fi lter again with more iterations.

[z,e,mer] = canc(yn1,yn2,0.0001,5,20);

The plot of the mean-squared error against the iterations

plot(mer)

now convergences after around six iterations. We now compare the fi lter
output with the original noise-free signal.

plot(x,y,'b',x,z,'r')

This plot shows that the noise level of the signal has been reduced dramati-
cally by the fi lter. Finally, the plot

plot(x,e,'r')

shows the noise extracted from the signal. In practice, the user should vary
the parameters u and l to obtain the optimum result.

The application of this algorithm has been demonstrated on duplicate
oxygen-isotope records from ocean sediments (Trauth 1998). The work by
Trauth (1998) illustrates the use of the modifi ed LMS algorithm, but also
another type of adaptive fi lters, the recursive least-squares (RLS) algorithm
(Haykin 1991) in various environments.

Recommended Reading

Alexander ST (1986) Adaptive Signal Processing: Theory and Applications. Springer,
Berlin Heidelberg New York

Buttkus B (2000) Spectral Analysis and Filter Theory in Applied Geophysics. Springer,
Berlin Heidelberg New York

Cowan CFN, Grant PM (1985) Adaptive Filters. Prentice Hall, Englewood Cliffs, New
Jersey

Recommended Reading 163

Grünigen DH (2004) Digitale Signalverarbeitung, mit einer Einführung in die kon ti-
n uierlichen Signale und Systeme, Dritte bearbeitete und erweiterte Aufl age. Fach-
buchverlag Leipzig, Leipzig

Hattingh M (1988) A new Data Adaptive Filtering Program to Remove Noise from
Geophysical Time- or Space Series Data. Computers & Geosciences 14(4):467– 480

Haykin S (2003) Adaptive Filter Theory. Prentice Hall, Englewood Cliffs, New Jersey
Kalman R, Bucy R (1961) New Results in Linear Filtering and Prediction Theory. ASME

Tans. Ser. D Jour. Basic Eng. 83:95–107
Sibul LH (1987) Adaptive Signal Processing. IEEE Press
The Mathworks (2006) Signal Processing Toolbox User’s Guide – For the Use with

MATLAB®. The MathWorks, Natick, MA
Trauth MH (1998) Noise Removal from Duplicate Paleoceanographic Time-Series: The

Use of adaptive Filtering Techniques. Mathematical Geology 30(5):557–574
Widrow B, Hoff Jr. M (1960) Adaptive Switching Circuits. IRE WESCON Conv. Rev.

4:96–104
Widrow B, Glover JR, McCool JM, Kaunitz J, Williams CS, Hearn RH, Zeidler JR, Dong E,

Goodlin RC (1975) Adaptive Noise Cancelling: Principles and Applications. Proc. IEEE
63(12):1692–1716

Wiener N (1949) Extrapolation, Interpolation and Smoothing of Stationary Time Series,
with Engineering Applications. MIT Press, Cambridge, Mass (reprint of an article
originally issued as a classifi ed National Defense Research Report, February, 1942)

7 Spatial Data

7.1 Types of Spatial Data

Most data in earth sciences are spatially distributed, either as vector data,
(points, lines, polygons) or as raster data (gridded topography). Vector data
are generated by digitizing map objects such as drainage networks or out-
lines of lithologic units. Raster data can be obtained directly from a satellite
sensor output, but in most cases grid data can be interpolated from irregu-
larly-distributed samples from the fi eld (gridding).

The following chapter introduces the use of vector data by using coast-
line data as an example (Chapter 7.2). Subsequently, the acquisition and
handling of raster data are illustrated with help of digital topography data
(Chapters 7.3 to 7.5). The availability and use of digital elevation data has
increased considerably since the early 90’s. With 5 arc minutes resolution,
the ETOPO5 was one of the fi rst data sets for topography and bathymetry. In
October 2001, it was replaced by the ETOPO2 that has a resolution of 2 arc
minutes. In addition, there is a data set for topography called GTOPO30
completed in 1996 that has a horizontal grid spacing of 30 arc seconds (ap-
proximately 1 km). Most recently, the 30 and 90 m resolution data from the
Shuttle Radar Topography Mission (SRTM) have replaced the older data
sets in most scientifi c studies.

The second part of the chapter deals with surface estimates from ir-
regular-spaced data and statistics on spatial data (Chapters 7.6 to 7.8). In
earth sciences, most data are collected in an irregular pattern. Access to
rock samples is often restricted to natural outcrops such as shoreline cliffs
and the walls of a gorge, or anthropogenic outcrops such as road cuts and
quarries. Clustered and traversed data are a challenge for all gridding tech-
niques. The corresponding chapters illustrate the use of the most impor-
tant gridding routines and outline the potential pitfalls while using these
methods. Chapters 7.9 to 7.11 introduce various methods to analyse spa-
tial data, including the application of statistical tests to point distributions
(Chapter 7.9), the spatial analysis of digital elevation models (Chapter 7.10)

166 7 Spatial Data

and an overview of geostatistics and kriging (Chapter 7.10).
This chapter requires the Mapping Toolbox although most graphics rou-

tines used in our examples can be easily replaced by standard MATLAB
functions. An alternative and useful mapping toolbox by Rich Pawlowicz
(Earth and Ocean Sciences at the Unversity of British Columbia) is avail-
able from

http://www2.ocgy.ubc.ca/~rich

The handling and processing of large spatial data sets also requires a power-
ful computing system with at least 1 GB physical memory.

7.2 The GSHHS Shoreline Data Set

The global self-consistent, hierarchical, high-resolution shoreline data
base GSHHS is amalgamated from two public domain data bases by Paul
Wessel (SOEST, University of Hawaii, Honolulu, HI) and Walter Smith
(NOAA Laboratory for Satellite Altimetry, Silver Spring, MD). On the web
page of the US National Geophysical Data Center (NGDC)

http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html

the coastline vector data can be downloaded as MATLAB vector data. First,
we defi ne the geographic range of interest as decimal degrees with West and
South denoted by a negative sign. For example, the East African coast would
be displayed on the latitude between 0 and +15 degrees and longitude of +35
to +55 degrees. Subsequently, it is important to choose the coastline data
base from which the data is to be extracted. As an example, the World Data
Bank II provides maps at the scale 1 : 2,000,000. Finally, the compression
method is set to None for the ASCII data that have been extracted. The data
format is set to be MATLAB and GMT Preview is enabled. The resulting
GMT map and a link to the raw text data can be displayed by pressing the
Submit-Extract button at the end of the web page. By opening the 430 KB
large text fi le on a browser, the data can be saved onto a new fi le called
coastline.txt. The two columns in this fi le represent the longitude/latitude
coordinates of NaN-separated polygons or coastline segments.

NaN NaN
42.892067 0.000000
42.893692 0.001760
NaN NaN
42.891052 0.001467
42.898093 0.007921

7.2 The GSHHS Shoreline Data Set 167

42.904546 0.013201
42.907480 0.016721
42.910414 0.020828
42.913054 0.024642
42.915987 0.028749
42.918921 0.032562
42.922441 0.035789
(cont'd)

The NaN’s perform two functions: they provide a means for identifying break
points in the data. They also serve as pen-up commands when the Mapping
Toolbox plots vector maps. The shorelines can be displayed by using

data = load('coastline.txt');

plot(data(:,1),data(:,2),'k'), axis equal
xlabel('Longitude'), ylabel('Latitude')

More advanced plotting functions are contained in the Mapping Toolbox,
which allow to generate an alternative version of this plot (Fig. 7.1):

Longitude

La
tit

ud
e

0

5

10

15

36 38 40 42 44 46 48 50 52 54

GSHHS Data Set

Fig. 7.1 Display of the GSHHS shoreline data set. The map shows an area between 0° and
15° northern latitude, 40° and 50° eastern longitude. Simple map using the function plot
and equal axis aspect ratios.

168 7 Spatial Data

 axesm('MapProjection','mercator', ...
 'MapLatLimit',[0 15], ...
 'MapLonLimit',[35 55], ...
 'Frame','on', ...
 'MeridianLabel','on', ...
 'ParallelLabel','on');
plotm(data(:,2),data(:,1),'k');

Note that the input for plotm is given in the order longitude, followed by
the latitude. The second column of the data matrix is entered fi rst. In con-
trast, the function plot requires an xy input. The fi rst column is entered
fi rst. The function axesm defi nes the map axis and sets various map proper-
ties such as the map projection, the map limits and the axis labels.

7.3 The 2-Minute Gridded Global Elevation Data ETOPO2

ETOPO2 is a global data base of topography and bathymetry on a regular
2-minute grid. It is a compilation of data from a variety of sources. It can
be downloaded from the US National Geophysical Data Center (NGDC)
web page

http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html

From the menu bar Free online we select Make custom grids which is linked
to the GEODAS Grid Translator. First, we choose a Grid ID (e.g., grid01),
the Grid Data Base (e.g., ETOPO2 2-minute Global Relief), our computer
system (e.g., Macintosh) and the Grid Format (e.g., ASCII for both the data
and the header). Next we defi ne the longitude and latitude bounds. For ex-
ample, the latitude (lat) from –20 to +20 degrees and a longitude (lon) be-
tween +30 and +60 degrees corresponds to the East African coast. The
selected area can be transformed into a digital elevation matrix by press-
ing Design–a–grid. this matrix may be downloaded from the web page by
pressing Download your Grid Data, Compress and Retrieve and Retrieve
compressed fi le in the subsequent windows. Decompressing the fi le grid01.
tgz creates a directory grid01_data. This directory contains various data
and help fi les. The subdirectory grid01 contains the ASCII raster grid fi le
grid01.asc that has the following content:

NCOLS 901
NROWS 1201
XLLCORNER 30.00000
YLLCORNER -20.00000
CELLSIZE 0.03333333
NODATA_VALUE -32768
270 294 278 273 262 248 251 236 228 223 ...

7.3 The 2-Minute Gridded Global Elevation Data ETOPO2 169

280 278 278 264 254 253 240 234 225 205 ...
256 266 267 283 257 273 248 228 215 220 ...
272 273 258 258 254 264 232 218 229 210 ...
259 263 268 275 242 246 237 219 211 209 ...
(cont'd)

The header documents the size of the data matrix (e.g., 901 columns and
1201 rows in our example), the coordinates of the lower-left corner (e.g.,
x=30 and y = –20), the cell size (e.g., 0.033333 = 1/30 degree latitude and
longitude) and the –32768 fl ag for data voids. We comment the header by
typing % at the beginning of the fi rst six lines

%NCOLS 901
%NROWS 1201
%XLLCORNER 30.00000
%YLLCORNER -20.00000
%CELLSIZE 0.03333333
%NODATA_VALUE -32768
270 294 278 273 262 248 251 236 228 223 ...
280 278 278 264 254 253 240 234 225 205 ...
256 266 267 283 257 273 248 228 215 220 ...
272 273 258 258 254 264 232 218 229 210 ...
259 263 268 275 242 246 237 219 211 209 ...
(cont'd)

and load the data into the workspace.

ETOPO2 = load('grid01.asc');

We fl ip the matrix up and down. Then, the –32768 fl ag for data voids has to
be replaced by the MATLAB representation for Not-a-Number NaN.

ETOPO2 = flipud(ETOPO2);
ETOPO2(find(ETOPO2 == -32768)) = NaN;

Finally, we check whether the data are now correctly stored in the work-
space by printing the minimum and maximum elevations of the area.

max(ETOPO2(:))
min(ETOPO2(:))

In this example, the maximum elevation of the area is 5199 m and the mini-
mum elevation is –5612 m. The reference level is the sea level at 0 m. We
now defi ne a coordinate system using the information that the lower-left
corner is s20e30, i.e., 20° southern latitude and 30° eastern longitude. The
resolution is 2 arc minutes corresponding to 1/30 degrees.

[LON,LAT] = meshgrid(30:1/30:60,-20:1/30:20);

Now we generate a colored surface from the elevation data using the func-

170 7 Spatial Data

tion surf.

surf(LON,LAT,ETOPO2)
 shading interp
axis equal, view(0,90)
 colorbar

This script opens a new fi gure window and generates a colored surface.
The surface is highlighted by a set of color shades on an overhead view
(Fig. 7.2). More display methods will be described in the chapter on SRTM
elevation data.

Longitude

La
tit

ud
e

4000

3000

0

1000

2000

30 35 40 45 50 55 60
20

15

10

5

0

5

10

15

20

5000

2000

1000

3000

5000

4000

ETOPO2 Data Set

Fig. 7.2 Display of the ETOPO2 elevation data set. The map uses the function surf for
generating a colored surface. The colorbar provides an information on the colormap used
to visualize topography and bathymetry.

7.4 The 30-Arc Seconds Elevation Model GTOPO30 171

7.4 The 30-Arc Seconds Elevation Model GTOPO30

The 30 arc second (approximately 1 km) global digital elevation data set
GTOPO30 only contains elevation data, not bathymetry. The data set has
been developed by the Earth Resources Observation System Data Center
and is available from the web page

http://edcdaac.usgs.gov/gtopo30/gtopo30.html

The model uses a variety of international data sources. However, it is main-
ly based on raster data from the Digital Terrain Elevation Model (DTEM)
and vector data from the Digital Chart of the World (DCW). The GTOPO30
data set has been divided into 33 pieces or tiles. The tile names refer to the
longitude and latitude of the upper-left (northwest) corner of the tile. The
tile name e020n40 refers to the upper-left corner of the tile. In our example,
the coordinates of the upper-left corner are 20 degrees eastern longitude
and 40 degrees northern latitude. As example, we select and download the
tile e020n40 provided as a 24.9 MB compressed tar fi le. After decompress-
ing the tar fi le, we obtain eight fi les containing the raw data and header fi les
in various formats. Moreover, the fi le provides a GIF image of a shaded
relief display of the data.

Importing the GTOPO30 data into the workspace is simple. The Mapping
Toolbox provides an import routine gtopo30 that reads the data and stores
it onto a regular data grid. We import only a subset of the original matrix:

latlim = [-5 5]; lonlim = [30 40];
GTOPO30 = gtopo30('E020N40',1,latlim,lonlim);

This script reads the data from the tile e020n40 (without fi le extension) in
full resolution (scale factor = 1) into the matrix GTOPO30 of the dimension
1200x1200 cells. The coordinate system is defi ned by using the lon/lat lim-
its as listed above. The resolution is 30 arc seconds corresponding to 1/120
degrees.

[LON,LAT] = meshgrid(30:1/120:40-1/120,-5:1/120:5-1/120);

We have to reduce the limits by 1/120 to obtain a matrix of similar dimen-
sion as the matrix GTOPO30. A grayscale image can be generated from the
elevation data by using the function surf. The fourth power of the colormap
gray is used to darken the map at higher levels of elevation. Subsequently,
the colormap is fl ipped vertically in order to obtain dark colors for high
elevations and light colors for low elevations.

172 7 Spatial Data

figure
surf(LON,LAT,GTOPO30)
shading interp
 colormap(flipud(gray.^4))
axis equal, view(0,90)
colorbar

This script opens a new fi gure window, generates the gray surface using
interpolated shading in an overhead view (Fig. 7.3).

La
tit

ud
e

5

4

3

2

1

0

-1

-2

-3

-4

-5

Longitude

30 31 32 33 34 35 36 37 38 39 40
0

1000

1500

2500

3000

3500

4000

4500

5000

5500

2000

500

GTOPO30 Data Set

Fig. 7.3 Display of the GTOPO30 elevation data set. The map uses the function surf for
generating a gray surface. We use the colormap gray to power of four in order to darken
the colormap with respect to the higher elevation. In addition, we fl ip the colormap in
up/down direction using flipud to obtain dark colors for high elevations and light colors
for low elevations.

7.5 The Shuttle Radar Topography Mission SRTM 173

7.5 The Shuttle Radar Topography Mission SRTM

The Shuttle Radar Topography Mission (SRTM) incorporates a radar
system that fl ew onboard the Space Shuttle Endeavour during an 11-day
mission in February 2000. SRTM is an international project spearheaded
by the National Geospatial-Intelligence Agency (NGA) and the National
Aeronautics and Space Administration (NASA). Detailed info on the SRTM
project including a gallery of images and a users forum can be accessed on
the NASA web page:

http://www2.jpl.nasa.gov/srtm/

The data were processed at the Jet Propulsion Laboratory. They are being
distributed through the United States Geological Survey‘s (USGS) EROS
Data Center by using the Seamless Data Distribution System.

http://seamless.usgs.gov/

Alternatively, the raw data fi les can be downloaded via FTP from

ftp://e0srp01u.ecs.nasa.gov/srtm

This directory contains zipped fi les of SRTM-3 DEM’s from various areas
of the world, processed by the SRTM global processor and sampled at 3
arc seconds or 90 meters. As an example, we download the 1.7 MB large
fi le s01e036.hgt.zip containing the SRTM data. All elevations are in meters
referenced to the WGS84 EGM96 geoid as documented at

http://earth-info.nga.mil/GandG/wgs84/index.html

The name of this fi le refers to the longitude and latitude of the lower-left
(southwest) pixel of the tile, i.e., one degree southern latitude and 36 de-
grees eastern longitude. SRTM-3 data contain 1201 lines and 1201 samples
with similar overlapping rows and columns. After having downloaded and
unzipped the fi le, we save s01e036.hgt in our working directory. The digital
elevation model is provided as 16-bit signed integer data in a simple binary
raster. Bit order is Motorola (big-endian) standard with the most signifi cant
bit fi rst. The data are imported into the workspace using

fid = fopen('S01E036.hgt','r');
SRTM = fread(fid,[1201,inf],'int16','b');
fclose(fid);

174 7 Spatial Data

This script opens the fi le s01e036.hgt for read access using fopen, defi nes
the fi le identifi er fid, which is then used for reading the binaries from the
fi le using fread, and writing it into the matrix SRTM. Function fclose
closes the fi le defi ned by fid. First, the matrix needs to be transposed and
fl ipped vertically.

SRTM = SRTM'; SRTM = flipud(SRTM);

The –32768 fl ag for data voids can be replaced by NaN, which is the MATLAB
representation for Not-a-Number.

SRTM(find(SRTM == -32768)) = NaN;

Finally, we check whether the data are now correctly stored in the work-
space by printing the minimum and maximum elevations of the area.

max(SRTM(:))

ans =
 3992

min(SRTM(:))

ans =
 1504

In our example, the maximum elevation of the area is 3992 m, the minimum
altitude is 1504 m above sea level. A coordinate system can be defi ned by
using the information that the lower-left corner is s01e036. The resolution is
3 arc seconds corresponding to 1/1200 degrees.

[LON,LAT] = meshgrid(36:1/1200:37,-1:1/1200:0);

A shaded grayscale map can be generated from the elevation data using the
function surfl. This function displays a shaded surface with simulated
lighting.

figure
surfl(LON,LAT,SRTM)
 shading interp
colormap gray
view(0,90)
colorbar

This script opens a new fi gure window, generates the shaded-relief map us-
ing interpolated shading and a gray colormap in an overhead view. Since
SRTM data contain much noise, we fi rst smooth the data using an arbitrary

7.5 The Shuttle Radar Topography Mission SRTM 175

9×9 pixel moving average fi lter. The new matrix is stored in the matrix
SRTM_FILTERED.

B = 1/81 * ones(9,9);
SRTM_FILTERED = filter2(B,SRTM);

The corresponding shaded-relief map is generated by

figure
surfl(LON,LAT,SRTM_FILTERED)
shading interp
colormap gray
view(0,90)
 colorbar

After having generated the shaded-relief map (Fig. 7.4), the graph has to be
exported onto a graphics fi le. For instance, the fi gure may be written onto
a JPEG format with 70% quality level and a 300 dpi resolution.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

36.1 36.2 36.3 36.4 36.5 36.6 36.7 36.8 36.9 3736

Longitude

La
tit

ud
e

SRTM Data Set

Fig. 7.4 Display of the fi ltered SRTM elevation data set. The map uses the function surfl
for generating a shaded-relief map with simulated lighting using interpolated shading and
a gray colormap in an overhead view. Note that the SRTM data set contains a lot of gaps, in
particular in the lake areas.

176 7 Spatial Data

print -djpeg70 -r300 srtmimage

The new fi le srtmimage.jpg has a size of 300 KB. The decompressed image
has a size of 16.5 MB. This fi le can now be imported to another software
package such as Adobe® Photoshop®.

7.6 Gridding and Contouring Background

The previous data sets were all stored in evenly-spaced two-dimensional
arrays. Most data in earth sciences, however, are obtained on an irregular
sampling pattern. Therefore, irregular-spaced data have to be interpolated,
i.e., we compute a smooth and continuous surface from our measurements
in the fi eld. Surface estimation is typically carried out in two major steps.
Firstly, the number of control points needs to be selected. Secondly, the
grid points have to be estimated. Control points are irregularly-spaced fi eld
measurements, such as the thicknesses of sandstone units at different out-
crops or the concentrations of a chemical tracer in water wells. The data are
generally represented as xyz triplets, where x and y are spatial coordinates,
and z is the variable of interest. In such cases, most gridding methods re-
quire continuous and unique data. However, the spatial variables in earth
sciences are often discontinuous and spatially nonunique. As an example,
the sandstone unit may be faulted or folded. Furthermore, gridding requires
spatial autocorrelation. In other words, the neighboring data points should
be correlated with each other by a certain relationship. It is not sensible to
use random z variable for the surface estimation if the data are not autocor-
related. Having selected the control points, the calculation of the z values at
the evenly-spaced grid points varies from method to method.

Various techniques exist for selecting the control points (Fig. 7.5a). Most
methods make arbitrary assumptions on the autocorrelation of the z vari-
able. The nearest-neighbor criterion includes all control points within a
circular neighborhood of the grid point, where the radius of the circle is
specifi ed by the user. Since the spatial autocorrelation is likely to decrease
with increasing distance from the grid point, considering too many distant
control points is likely to lead to erroneous results while computing the grid
points. On the other hand, small circular areas limit the calculation of the
grid points to a very small number of control points. Such an approach leads
to a noisy estimate of the modeled surface.

It is perhaps due to these diffi culties that triangulation is often used as an
alternative method for selecting the control points (Fig. 7.5b). In this tech-

7.6 Gridding and Contouring Background 177

nique, all control points are connected to a triangular net. Every grid point
is located in a triangular area of three control points. The z value of the grid
point is computed from the z values of the grid points. In a modifi cation of
such gridding, the three points at the apices of the three adjoining triangles
are also used. The Delauney triangulation uses the triangular net where
the acuteness of the triangles is minimized, i.e., the triangles are as close as
possible to equilateral.

Kriging introduced in Chapter 7.9 is an alternative approach of select-
ing control points. It is often regarded as the method of gridding. Some
people even use the term geostatistics synonymous with kriging. Kriging is
a method for determining the spatial autocorrelation and hence the circle di-
mension. More sophisticated versions of kriging use an elliptical area which
includes the control points.

The second step of surface estimation is the actual computation of the z
values of the grid points. The arithmetic mean of the z values at the control
points

provides the easiest way of computing the grid points. This is a particularly
useful method if there are only a limited number of control points. If the
study area is well covered by control points and the distance between these

Control Point

Grid Point

a b

Fig. 7.5 Methods to select the control points for estimating the grid points. a Construction of
a circle around the grid point (plus sign) with a radius defi ned by the spatial autocorrelation
of the z-values at the control points (circles). b Triangulation. The control points are selected
from the apices of the triangles surrounding the grid point and optional also the apices of
the adjoining triangles.

178 7 Spatial Data

points is highly variable, the z values of the grid points should be computed
by a weighted mean. The z values at the control points are weighted by the
inverse distance di from the grid points.

Depending on the spatial scaling relationship of the parameter z, the inverse
square or the root of distance may also be used instead of weighing the z
values by the inverse of distance. The fi tting of 3D splines to the control
points provides another method for computing the grid points that is com-
monly used in the earth sciences. Most routines used in surface estimation
involve cubic polynomial splines, i.e., a third-degree 3D polynomial is fi tted
to at least six adjacent control points. The fi nal surface consists of a com-
posite of pieces of these splines. MATLAB also provides interpolation with
biharmonic splines generating very smooth surfaces (Sandwell, 1987).

7.7 Gridding Example

MATLAB provides a biharmonic spline interpolation since the beginnings.
This interpolation method was developed by Sandwell (1987). This specifi c
gridding method produces smooth surfaces that are particularly suited for
noisy data sets with irregular distribution of control points.

As an example, we use synthetic xyz data representing the vertical dis-
tance of an imaginary surface of a stratigraphic horizon from a reference
surface. This lithologic unit was displaced by a normal fault. The foot wall
of the fault shows roughly horizontal strata, whereas the hanging wall is
characterized by the development of two large sedimentary basins. The xyz
data are irregularly distributed and have to be interpolated onto a regular
grid. Assume that the xyz data are stored as a three-column table in a fi le
named normalfault.txt.

4.32e+02 7.46e+01 0.00e+00
4.46e+02 7.21e+01 0.00e+00
4.51e+02 7.87e+01 0.00e+00
4.66e+02 8.71e+01 0.00e+00
4.65e+02 9.73e+01 0.00e+00
4.55e+02 1.14e+02 0.00e+00
4.29e+02 7.31e+01 5.00e+00
(cont'd)

7.7 Gridding Example 179

The fi rst and second column contains the coordinates x (between 420 and
470 of an arbitrary spatial coordinate system) and y (between 70 and 120),
whereas the third column contains the vertical z values. The data are loaded
using

data = load('normalfault.txt');

Initially, we wish to create an overview plot of the spatial distribution of the
control points. In order to label the points in the plot, numerical z values of
the third column are converted into string representation with maximum
two digits.

labels = num2str(data(:,3),2);

The 2D plot of our data is generated in two steps. Firstly, the data are dis-
played as empty circles by using the plot command. Secondly, the data
are labeled by using the function text(x,y,'string') which adds text
contained in string to the xy location. The value 1 is added to all x coor-
dinates as a small offset between the circles and the text.

plot(data(:,1),data(:,2),'o')
hold on
text(data(:,1)+1,data(:,2),labels);
hold off

This plot helps us to defi ne the axis limits for gridding and contouring,
xlim = [420 470] and ylim = [70 120]. The function meshgrid transforms
the domain specifi ed by vectors x and y into arrays XI and YI. The rows of
the output array XI are copies of the vector x and the columns of the output
array YI are copies of the vector y. We choose 1.0 as grid intervals.

x = 420:1:470; y = 70:1:120;
[XI,YI] = meshgrid(x,y);

The biharmonic spline interpolation is used to interpolate the irregular-
spaced data at the grid points specifi ed by XI and YI.

ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

The option v4 depicts the biharmonic spline interpolation, which was the
sole gridding algorithm until MATLAB4 was replaced by MATLAB5.
MAT LAB provides various tools for the visualization of the results. The
simplest way to display the gridding results is a contour plot using con-
tour. By default, the number of contour levels and the values of the contour
levels are chosen automatically. The choice of the contour levels depends on

180 7 Spatial Data

the minimum and maximum values of z.

 contour(XI,YI,ZI)

Alternatively, the number of contours can be chosen manually, e.g., ten con-
tour levels.

contour(XI,YI,ZI,10)

Contouring can also be performed at values specifi ed in a vector v. Since
the maximum and minimum values of z is

min(data(:,3))

ans =
 -25

max(data(:,3))

ans =
 20

we choose

v = -30 : 10 : 20;

The command

[c,h] = contour(XI,YI,ZI,v);

returns contour matrix c and a handle h that can be used as input to the
function clabel, which labels contours automatically.

 clabel(c,h)

Alternatively, the graph is labeled manually by selecting the manual op-
tion in the function clabel. This function places labels onto locations that
have been selected with the mouse. Labeling is terminated by pressing the
return key.

[c,h] = contour(XI,YI,ZI,v);
clabel(c,h,'manual')

Filled contours are an alternative to the empty contours used above. This
function is used together with colorbar displaying a legend for the graph.
In addition, we plot the locations and z values of the true data points (black
empty circles, text labels) (Fig. 7.6).

7.7 Gridding Example 181

 contourf(XI,YI,ZI,v), colorbar
hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels);
hold off

A pseudocolor plot is generated by using the function pcolor. Black con-
tours are also added at the same levels as in the above example.

 pcolor(XI,YI,ZI), shading flat
hold on
contour(XI,YI,ZI,v,'k')
hold off

The third dimension is added to the plot by using the mesh command. We
use this example also to introduce the function view(az,el) for a view-
point specifi cation. Herein, az is the azimuth or horizontal rotation and el
is the vertical elevation (both in degrees). The values az = –37.5 and el =
30 defi ne the default view of all 3D plots,

 mesh(XI,YI,ZI), view(-37.5,30)

Fig. 7.6 Contour plot of the locations and z-values of the true data points (black empty
circles, text labels).

182 7 Spatial Data

whereas az = 0 and el = 90 is directly overhead and the default 2D view

mesh(XI,YI,ZI), view(0,90)

The function mesh represents only one of the many 3D visualization meth-
ods. Another commonly used command is the function surf. Furthermore,
the fi gure may be rotated by selecting the Rotate 3D option on the Edit Tools
menu. We also introduce the function colormap, which uses predefi ned
pseudo colormaps for 3D graphs. Typing help graph3d lists a number
of builtin colormaps, although colormaps can be arbitrarily modifi ed and
generated by the user. As an example, we use the colormap hot, which is a
black-red-yellow-white colormap.

 surf(XI,YI,ZI), colormap('hot'), colorbar

Here, Rotate 3D only rotates the 3D plot, not the colorbar. The function
surfc combines both a surface and a 2D contour plot in one graph.

 surfc(XI,YI,ZI)

The function surfl can be used to illustrate an advanced application of
3D visualization. It generates a 3D colored surface with interpolated shad-
ing and lighting. The axis labeling, ticks and background can be turned off
by typing axis off. In addition, black 3D contours may be added to the
surface plot. The grid resolution is increased prior to data plotting to obtain
smooth surfaces (Fig. 7.7).

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

surf(XI,YI,ZI), shading interp, light, axis off
hold on
contour3(XI,YI,ZI,v,'k');
hold off

The biharmonic spline interpolation described in this chapter provides a
solution to most gridding problems. Therefore, it was the only gridding
method that came with MATLAB for quite a long time. However, different
applications in earth sciences require different methods for interpolation,
but there is no method without problems. The next chapter compares bihar-
monic splines with other gridding methods and summarizes their strengths
and weaknesses.

7.8 Comparison of Methods and Potential Artifacts 183

7.8 Comparison of Methods and Potential Artifacts

The fi rst example illustrates the use of the bilinear interpolation technique
for gridding irregular-spaced data. Bilinear interpolation is an extension
of the one-dimensional linear interpolation. In the two-dimensional case,
linear interpolation is performed in one direction fi rst, then in the other
direction. Intuitively, the bilinear method is one of the simplest interpola-
tion techniques. One would not expect serious artifacts and distortions of
the data. On the contrary, this method has a number of disadvantages and
therefore other methods are used in many applications.

The sample data used in the previous chapter can be loaded to study the
performance of a bilinear interpolation.

data = load('normalfault.txt');
labels = num2str(data(:,3),2);

We now choose the option linear while using the function griddata to
interpolate the data.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'linear');

Fig. 7.7 Three-dimensional colored surface with interpolated shading and simulated
lighting. The axis labeling, ticks and background are turned off. In addition, the graph
contains black 3D contours.

184 7 Spatial Data

The results are plotted as contours. The plot also includes the location of the
control points.

contourf(XI,YI,ZI), colorbar, hold on
plot(data(:,1),data(:,2),'o'), hold off

The new surface is restricted to the area that contains control points. By
default, bilinear interpolation does not extrapolate beyond this region.
Furthermore, the contours are rather angular compared to the smooth out-
line of the contours of the biharmonic spline interpolation. The most impor-
tant character of the bilinear gridding technique, however, is illustrated by
a projection of the data in a vertical plane.

plot(XI,ZI,'k'), hold on
plot(data(:,1),data(:,3),'ro')
text(data(:,1)+1,data(:,3),labels)
title('Linear Interpolation'), hold off

This plot shows the projection of the estimated surface (vertical lines) and
the labeled control points. The z-values at the grid points never exceed the z-
values of the control points. Similar to the linear interpolation of time series
(Chapter 5), bilinear interpolation causes signifi cant smoothing of the data
and a reduction of the high-frequency variation.

Biharmonic splines are sort of the other extreme in many ways. They are
often used for extremely irregular-spaced and noisy data.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

contourf(XI,YI,ZI), colorbar, hold on
plot(data(:,1),data(:,2),'o'), hold off

The contours suggest an extremely smooth surface. In many applications,
this solution is very useful, but the method also produces a number of ar-
tifacts. As we can see from the next plot, the estimated values at the grid
points are often out of the range of the measured z-values.

plot(XI,ZI,'k'), hold on
plot(data(:,1),data(:,3),'o')
text(data(:,1)+1,data(:,3),labels);
title('Biharmonic Spline Interpolation'), hold off

This sometimes makes much sense and does not smooth the data in the way
bilinear gridding does. However, introducing very close control points with
different z-values can cause serious artifacts.

data(79,:) = [450 105 5];

7.8 Comparison of Methods and Potential Artifacts 185

data(80,:) = [450 104.5 -5];
labels = num2str(data(:,3),2);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

contourf(XI,YI,ZI), colorbar, hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)

The extreme gradient at the location (450,105) results in a paired low and
high (Fig. 7.8). In such cases, it is recommended to delete one of the two
control points and replace the z-value of the remaining control point by the
arithmetic mean of both z-values.

Extrapolation beyond the area supported by control points is a common
feature of splines (see also Chapter 5). Extreme local trends combined with
large areas with no data often cause unrealistic estimates. To illustrate these
 edge effects we eliminate all control points in the upper-left corner.

Fig. 7.8 Contour plot of a data set gridded using a biharmonic spline interpolation. At the
location (450,105), very close control points with different z-values have been introduced.
Interpolation causes a paired low and high, which is a common artefact of spline
interpolation of noisy data.

186 7 Spatial Data

[i,j] = find(data(:,1)<435 & data(:,2)>105);
data(i,:) = [];

labels = num2str(data(:,3),2);

plot(data(:,1),data(:,2),'ko')
hold on
text(data(:,1)+1,data(:,2),labels);
hold off

We again employ the biharmonic spline interpolation technique.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

v = -40 : 10 : 40;
contourf(XI,YI,ZI,v)
caxis([-40 40])
colorbar
hold on
plot(data(:,1),data(:,2),'ko')

Fig. 7.9 Contour plot of a data set gridded using a biharmonic spline interpolation. No control
points are available in the upper left corner. The spline interpolation then extrapolates
beyond the area with control points using gradients at the map edges causing unrealistic z
estimates at the grid points.

7.8 Comparison of Methods and Potential Artifacts 187

text(data(:,1)+1,data(:,2),labels)
hold off

As we can see from the plot, this method extrapolates beyond the area with
control points using gradients at the map edges (Fig. 7.9). Such effect is
particular undesired in the case of gridded closed data, such as percentages,
or data that have only positive values. In such cases, it is recommended to
replace the estimated z values by NaN. For instance, we erase the areas with
z values larger than 20, which is regarded as an unrealistic value. The cor-
responding plot now contains a sector with no data.

ZID = ZI;
ZID(find(ZID > 20)) = NaN;

contourf(XI,YI,ZID,v)
caxis([-40 40])
colorbar
hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)
hold off

Alternatively, we can eliminate a rectangular area with no data.

ZID = ZI;
ZID(131:201,1:71) = NaN;

contourf(XI,YI,ZID,v)
caxis([-40 40])
colorbar
hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)
hold off

In some examples, the area with no control points is simply eliminated by
putting a legend on this part of the map.

Another very useful MATLAB gridding method are splines with tension
by Wessel and Bercovici (1998). The tsplines use biharmonic splines in
tension t, where the parameter t can vary between 0 and 1. A value of t = 0
corresponds to a standard cubic spline interpolation. Increasing t reduces
undesirable oscillations between data points, e.g., the paired lows and highs
observed in one of the above examples. The limiting situation t →1 corre-
sponds to linear interpolation.

188 7 Spatial Data

7.9 Statistics of Point Distributions

This chapter is about the statistical distribution of points in an area, which
may help understand the relationship between these objects and properties
of the area. For instance, the spatial concentration of handaxes in an ar-
chaeological site suggests that a larger population of hominins lived in that
part of the area. The clustered occurrence of fossils may document envi-
ronmental conditions that are favourable to the corresponding organisms.
Volcano alignments often help to map tectonic structures in the deeper and
shallower subsurface.

The following text introduces methods for the statistical analysis of point
distributions. First, the spatial distribution of objects is tested for uniform
and random distribution. Then, a simple test for clustered distributions of
objects is presented.

Test for Uniform Distribution

We compute synthetic data to illustrate the test for uniform distributions.
The function rand computes uniformly-distributed pseudo-random num-
bers drawn from a uniform distribution on the unit interval. We compute xy
data using rand and multiply the data by ten to obtain data on the interval
[0,10].

rand('seed',0)
data = 10 * rand(100,2);

We use the χ 2–test introduced in Chapter 3.8 to test the hypothesis that
the data have a uniform distribution. The xy data are now organized in
25 classes that are square subareas of the size 2-by-2. We display the data
as blue points in a plot y versus x. The square areas are outlined by red lines
(Fig. 7.10).

plot(data(:,1),data(:,2),'o')
hold on
x = 0:10; y = ones(size(x));
for i = 1:4, plot(x,2*i*y,'r-'), end
for i = 1:4, plot(2*i*y,x,'r-'), end
hold off

The three-dimensional version of histogram hist3 is used to display the
spatial data organized in classes (Fig. 7.11).

hist3(data,[5 5]), view(30,70)

7.9 Statistics of Point Distibutions 189

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Fig. 7.10 Two-dimensional plot of a point distribution. The distribution of objects in the
fi eld are tested for uniform distribution using the χ 2-test. The xy data are organized in
25 classes that are square subareas of the size 2-by-2.

Equivalent to the two-dimensional function, the function hist3 can be
used to compute the frequency distribution n_exp of the data.

n_exp = hist3(data,[5 5]);
n_exp = n_exp(:);

For a uniform distribution, the theoretical frequencies for the classes are
identical. The expected number of objects in each square area is the size
of the total area 10 × 10 =100 divided by the 25 subareas or classes, which
comes to be four. To compare the theoretical frequency distribution with
the actual distribution of objects, we generate an 5-by-5 array with identical
elements four.

n_syn = 4 * ones(25,1);

The χ 2-test explores the squared differences between the observed and ex-
pected frequencies (Chapter 3.8). The quantity χ 2 is defi ned as the sum of
the squared differences divided by the expected frequencies.

190 7 Spatial Data

Fig. 7.11 Three-dimensional histogram displaying the numbers of objects for each subarea.
The histogram was created using hist3.

chi2_data = sum((n_exp - n_syn).^2 ./n_syn)

chi2 =
 14

The critical χ 2 can be calculated by using chi2inv. The χ 2-test requires the
degrees of freedom Φ . In our example, we test the hypothesis that the data are
uniformly distributed, i.e., we estimate only one parameter (Chapter 3.4).
Therefore, the number of degrees of freedom is Φ =25– (1+1) =23. We test
the hypothesis on a p = 95% signifi cance level. The function chi2inv com-
putes the inverse of the χ 2 CDF with parameters specifi ed by Φ for the cor-
responding probabilities in p.

chi2_theo = chi2inv(0.95,25-1-1)

ans =
 35.1725

The critical χ 2 of 35.1725 is well above the measured χ 2 of 14. Therefore,
we cannot reject the null hypothesis and conclude that our data follow a
uniform distribution.

0
2

4

6
8

10

0

5

10

0

2

4

6

8

10

7.9 Statistics of Point Distibutions 191

Test for Random Distribution

The following example illustrates the test for randomly-distributed objects
in an area. We use the uniformly-distributed data generated in the previous
example and display the point distribution.

clear
rand('seed',0)
data = 10 * rand(100,2);
plot(data(:,1),data(:,2),'o')
hold on
x = 0:10; y = ones(size(x));
for i = 1:9, plot(x,i*y,'r-'), end
for i = 1:9, plot(i*y,x,'r-'), end
hold off

We generate the three-dimensional histogram and use the function hist3
to count the objects per class. In contrast to the previous test, we now count
the subareas containing a certain number of observations. The number of
subareas is usually larger than it would be used for the previous test. In our
example, we use 49 subareas or classes.

hist3(data,[7 7])
view(30,70)

counts = hist3(data,[7 7]);
counts = counts(:);

The frequency distribution of subareas with a certain number of objects fol-
lows a Poisson distribution (Chapter 3.4) if the objects are randomly distrib-
uted. First, we compute a frequency distribution of subareas with N objects.
In our example, we count the subareas with 0, …, 5 objects. We also display
the histogram of the frequency distribution as a two-dimensional histogram
using hist (Fig. 7.12).

N = 0 : 5;

[n_exp,v] = hist(counts,N);

hist(counts,N)
title('Histogram')
xlabel('Number of observations N')
ylabel('Subareas with N observations')

The expected number of subareas Ej with a certain number of objects j can
be computed using

192 7 Spatial Data

0 1 2 3 4 5
0

5

10

15

Fig. 7.12 Frequency distribution of subareas with N objects. In our example, we count the
subareas with 0, …, 5 objects. We display the histogram of the frequency distribution as a
two-dimensional histogram using hist.

where n is the total number of objects and T is the number of subareas. For
j = 0, j ! is taken to be 1. We compute the theoretical frequency distribution
using the equation shown above,

for i = 1 : 6
 n_syn(i) = 49*exp(-100/49)*(100/49)^N(i)/factorial(N(i));
end
n_syn = sum(n_exp)*n_syn/sum(n_syn);

and display both the empirical and theoretical frequency distributions in
one plot.

h1 = bar(v,n_exp);
hold on
h2 = bar(v,n_syn);
hold off

set(h1,'FaceColor','none','EdgeColor','r')
set(h2,'FaceColor','none','EdgeColor','b')

The χ 2-test is again employed to compare the empirical and theoretical dis-
tributions. The test is performed on a p = 95% signifi cance level. The Poisson
distribution is defi ned by only one parameter (Chapter 3.4). Therefore, the
number of degrees of freedom is Φ = 6– (1+1) = 4. The measured χ 2 of

7.9 Statistics of Point Distibutions 193

chi2 = sum((n_exp - n_syn).^2 ./n_syn)

chi2 =
 1.4357

is well below the critical χ 2, which is

chi2inv(0.95,6-1-1)

ans =
 9.4877

Therefore, we cannot reject the null hypothesis and conclude that our data
follow a Poission distribution. Therfore, the point distribution is random.

Test for Clustering

Point distributions in geosciences are often clustered. We use a nearest-
neighbor criterion to test a spatial distribution for clustering. Davis (2002)
published an excellent summary of the nearest-neighbor analysis, summa-
rizing the work of a number of other authors. Swan and Sandilands (1996)
presented a simplifi ed description of this analysis. The test for clustering
computes the distances di of all possible pairs of nearest points in the fi eld.
The observed mean nearest-neighbor distance is

where n is the total number of points or objects in the fi eld. The arithmetic
mean of all distances is related to the area of the map. This relationship is
expressed by the expected mean nearest-neighbor distance, which is

where A is the map area. Small values of this ratio then suggest signifi cant
clustering, whereas larger values indicate regularity or uniformity. The test
uses a Z statistic (Chapter 3.4), which is

where se is the standard error of the mean nearest-neighbor distance, which

194 7 Spatial Data

is defi ned as

The null hypothesis randomness is tested against two alternative hypothe-
ses, clustering and uniformity or regularity. The Z statistic has critical va-
lues of 1.96 and –1.96 at a signifi cance level of 95%. If –1.96< Z <+1.96,
we accept the null hypothesis that the data are randomly distributed. If
Z < –1.96, we reject the null hypothesis and accept the fi rst alternative hy-
pothesis of clustering. If Z >+1.96, we also reject the null hypothesis, but
accept the alternative hypothesis of uniformity or regularity.

As an example, we use the synthetic data analyzed in the previous ex-
amples again.

clear
rand('seed',0)
data = 10 * rand(100,2);
plot(data(:,1),data(:,2),'o')

We fi rst compute the pairwise Euclidian distance between all pairs of ob-
servations using the function pdist (Chapter 9.4). The resulting distance
matrix is then reformatted between upper triangular and square form using
squareform.

distances = pdist(data,'Euclidean');
distmatrix = squareform(distances);

The following for loop fi nds the nearest neighbors, stores the correspond-
ing distances and computes the mean distance.

for i = 1 : 5
 distmatrix(i,i) = NaN;
 k = find(distmatrix(i,:) == min(distmatrix(i,:)));
 nearest(i) = distmatrix(i,k(1));
end
observednearest = mean(nearest)

observednearest =
 0.5471

In our example, the mean nearest distance observednearest comes
to be 0.5471. Next, we calculate the area of the map. The expected mean
nearest-neighbor distance is half the squareroot of the map area divided by
the number of observations.

7.10 Analysis of Digital Elevation Models (by R. Gebbers) 195

maparea = (max(data(:,1)-min(data(:,1)))) ...
 *(max(data(:,2)-min(data(:,2))));
expectednearest = 0.5 * sqrt(maparea/length(data))

expectednearest =
 0.4940

In our example, the expected mean nearest distance expectednearest is
0.4940. Finally, we compute the standard error of the mean nearest-neigh-
bor distance se

se = 0.26136/sqrt((length(data).^2/maparea))

se =
 0.0258

and the test statistic Z.

Z = (observednearest - expectednearest)/se

Z =
 2.0561

In our example, Z is 2.0561. Since Z>+1.96, we reject the null hypothesis
and conclude that the data are uniformly or regularly distributed, but not
clustered.

7.10 Analysis of Digital Elevation Models (by R. Gebbers)

Digital elevation models (DEM) and their derivatives (e.g., slope and as-
pect) can indicate surface processes like lateral water fl ow, solar irradiation
or erosion. The simplest derivatives of a DEM are the slope and the aspect.
The slope (or gradient) describes the measurement of the steepness, the
incline or the grade of a surface measured in percentages or degrees. The
aspect (or exposure) generally refers to the direction to which a mountain
slope faces.

We use the SRTM data set introduced in Chapter 7.5 to illustrate the
analysis of a digital elevation model for slopes, aspects and other deriva-
tives. The data are loaded by

fid = fopen('S01E036.hgt','r');
SRTM = fread(fid,[1201,inf],'int16','b');
fclose(fid);

SRTM = SRTM';
SRTM = flipud(SRTM);
SRTM(find(SRTM==-32768)) = NaN;

196 7 Spatial Data

These data are elevation values in meters above sea level sampled at a 3-
arc-second or 90 meter grid. The SRTM data contain small-scale spatial
disturbances and noise that could cause problems when computing a con-
sistent drainage pattern. Therefore, we lowpass-fi lter the data using a two-
dimensional moving-average fi lter using the function filter2. The fi lter
used here is a spatial running mean of 3×3 elements. We use only the subset
SRTM(400:600,650:850) of the original data set to reduce computation
time. We also remove the data at the edges of the DEM to eliminate fi lter
artifacts.

F = 1/9 * ones(3,3);
SRTM = filter2(F, SRTM(750:850,700:800));
SRTM = SRTM(2:99,2:99);

The DEM is displayed as a pseudocolor plot using pcolor and the color-
map demcmap included in the Mapping Toolbox. This colormap creates and
assigns a colormap appropriate for elevation data since it provides land and
sea colors in proportion to topography and bathymetry.

h = pcolor(SRTM);
demcmap(SRTM), colorbar
set(h,'LineStyle','none')
axis equal
title('Elevation [m]')
[r c] = size(SRTM);
axis([1 c 1 r])
set(gca,'TickDir','out');

The DEM is characterized by a horseshoe-shaped mountain range sur-
rounding a valley descending towards the Southeast (Fig. 7.15a).

The SRTM subset is now analyzed for slopes and aspects. While we are
working with DEMs on a regular grid, slope and aspect can be estimated as
local derivatives by using centered fi nite differences in a local 3×3 neigh-
borhood. Figure 7.13 shows the local neighborhood using the cell indexing
convention of MATLAB. For calculating slope and aspect, we need two
 fi nite differences of the DEM elements z in x and y direction:

and

7.10 Analysis of Digital Elevation Models (by R. Gebbers) 197

Z(4)

Z(2)

Z(3)

Z(7)

Z(5) Z(8)

Z(6) Z(9)

Z(1)

Fig. 7.13 Local neighborhood showing cell number convention of MATLAB.

where h is the cell size, which has the same unit as the elevation. Using the
fi nite differences, the dimensionless slope is then calculated by

Other primary relief attributes such as the aspect, the plan, the profi le and
the tangential curvature can be derived in a similar way using fi nite differ-
ences (Wilson and Galant 2000). The function gradientm contained in
the Mapping Toolbox calculates slope and aspect of a data grid z in units
of degrees clockwise from North and up from the horizontal. Function
gradientm(z,refvec) requires a three-element referencing vector re-
fvec. The reference vector contains the number of cells per degree as well
as the latitude and longitude of the upper-left (northwest) element of the
data array. Since the SRTM digital elevation model is sampled at a 3-arc-
second grid, 60 × 60/3=1200 elements of the DEM correspond to one de-
gree longitude or latitude. For simplicity, we ignore the actual coordinates
of the SRTM subset in this example and use the indices of the DEM ele-
ments instead.

refvec = [1200 0 0];
[asp, slp] = gradientm(SRTM, refvec);

We display a pseudocolor map of the slope (in degrees) of the DEM
(Fig 7.15b).

h = pcolor(slp);
colormap(jet), colorbar
set(h,'LineStyle','none')

198 7 Spatial Data

axis equal
title('Slope [°]')
[r c] = size(slp);
axis([1 c 1 r])
set(gca,'TickDir','out');

Flat areas can be found everywhere on the summits and the valley bottoms.
The southeastern and south-southwestern sectors are relatively fl at. Steeper
slopes are concentrated in the center and the southwestern sector. Next, a
pseudocolor map of the aspect is generated (Fig. 7.15c).

h = pcolor(asp);
colormap(hsv), colorbar
set(h,'LineStyle','none')
axis equal
title('Aspect')
[r c] = size(asp);
axis([1 c 1 r])
set(gca,'TickDir','out');

This plot displays the aspect in units of degrees clockwise from North. For
instance, mountain slopes facing North are displayed in red colors, whereas
green areas depict East-facing slopes.

The aspect changes abruptly along the ridges of the mountain ranges
where neighboring drainage basins are divided by watersheds. The Image
Processing Toolbox includes the function watershed to detect the drainage
divides and to label individual watershed regions or catchments by integer
values, where the fi rst watershed region is labeled 1, the elements labeled 2
belong to the second catchment, and so on.

watersh = watershed(SRTM);

The watershed regions are displayed by a pseudocolor plot where the labels of
the regions are assigned by colors given in the color table hsv (Fig 7.15d).

h = pcolor(watersh);
colormap(hsv), colorbar
set(h,'LineStyle','none')
axis equal
title('Watershed')
[r c] = size(watersh);
axis([1 c 1 r])
set(gca,'TickDir','out');

The watersheds are displayed as series of red pixels. The largest catchment
corresponds to the medium blue region in the center of the map. To the
Northwest, this large catchment seems to be neighbored by three catch-
ments (represented by green colors) without an outlet. As in this example,

7.10 Analysis of Digital Elevation Models (by R. Gebbers) 199

watershed often generates unrealistic results as watershed algorithms are
sensitive to local minima that act as spurious sinks. We can detect such
sinks in the SRTM data using the function imregionalmin. The output
of this function is a binary image that has the value 1 corresponding to the
elements of the DEM that belong to regional minima and the value of 0
otherwise.

sinks = 1*imregionalmin(SRTM);

h = pcolor(sinks);
colormap(gray)
set(h,'LineStyle','none')
axis equal
title('Sinks')
[r c] = size(sinks);
axis([1 c 1 r])
set(gca,'TickDir','out');

The pseudocolor plot of the binary image exhibits twelve local sinks repre-
sented by white pixels that are potentially the locations of non-outlet catch-
ments and should be kept in mind while computing the following hydrologi-
cal DEM attributes.

Flow accumulation (specifi c catchment area, upslope contributing area)
is defi ned as the number of cells, or area, which contribute to runoff of a
given cell (Fig. 7.14). In contrast to the local parameters slope and aspect,
fl ow accumulation can only be determined from the global neighborhood.
The principal operation is to add cell outfl ows iteratively to lower neigh-
bors. Before cascading the cell outfl ows, we have to determine the individ-
ual gradients to each neighbor indexed by N. The array N contains indices
for the eight neighboring cells according to the MATLAB convention as
shown in Figure 17.3. We make use of the circshift function to access
the neighboring cells. In the case of a two-dimensional matrix Z, the func-
tion circshift(Z,[r c]) circularly shifts the values in the matrix Z by
an amount of rows and columns given by r and c, respectively. For example,
circshift(Z,[1 1]) will circularly shift Z one row down and one col-
umn to the right. The individual gradients are calculated by

for the eastern, southern, western, and northern neighbors (the so-called
rook’s case) and by

200 7 Spatial Data

1

2

3

1

1

1

1

4

1

22

36

1 1 1

3

8

1 1

3

16

1

10

2

2 3

3

3

6

1

1

1 2

2

1

1

3

1

2

3

1

1

1

1

4

1

22

36

1 1 1

3

8

1 1

3

16

1

10

2

2 3

3

3

6

1

1

1 2

2

1

1

3

b c

a

Elevation Mode

Flow Direction Flow Accumulation

Fig. 7.14 Schematic of calculation of fl ow accumulation by the D8 method

7.10 Analysis of Digital Elevation Models (by R. Gebbers) 201

for the diagonal neighbors (bishop’s case). Herein, h is the cell size, zr,c

is the elevation of the center cell and zr+y,c+x is the elevation of a neigh-
bor. The cell indices x and y are obtained from the matrix N. The gradients
are stored in a three-dimensional matrix grads, where grads(:,:,1)
contains the gradients towards the neighbors in the East, grads(:,:,2)
contains the gradients towards the neighbors in the Southeast, and so on.
Negative gradients indicate outfl ow from the center to the respective neigh-
bor. To obtain relative surface fl ow gradients are transformed by inverse
tangent divided by 0.5π .

N = [0 -1;-1 -1;-1 0;+1 -1;0 +1;+1 +1;+1 0;-1 +1];
[a b] = size(SRTM);
grads = zeros(a,b,8);
for c = 2 : 2 : 8
 grads(:,:,c) = (circshift(SRTM,[N(c,1) N(c,2)]) ...
 -SRTM)/sqrt(2*90);
end
for c = 1 : 2 : 7
 grads(:,:,c) = (circshift(SRTM,[N(c,1) N(c,2)]) ...
 -SRTM)/90;
end
grads = atan(grads)/pi*2;

Since a center cell can have several downslope neighbors, water can fl ow in
several directions. This phenomenon is called divergent fl ow. Early fl ow ac-
cumulation algorithms were based on the single-fl ow-direction method (D8
method, Fig. 7.14), which allows fl ow to only one of the cell's eight neighbors.
This method cannot model divergence in ridge areas and tends to produce
parallel fl ow lines in some examples. Here, we are illustrating the use of a
multiple-fl ow-direction method, which allows fl ow from a cell to multiple
neighbors. The fl ow to another neighbor corresponds to the individual gradi-
ent and is a fraction of the total outfl ow. Even though multiple-fl ow methods
reveal more realistic results in most examples, they tend to cause dispersion
in valleys where the fl ow should be more concentrated. Thus, a weighting
factor w is introduced, which controls the relation of the outfl ows.

202 7 Spatial Data

A recommended value for w is 1.1. Higher values will concentrate the fl ow
in the direction of the steepest slope, while w = 0 would cause an extreme
dispersion. In the following sequence of commands, we fi rst select the gra-
dients less than zero and multiply the result with the weight.

w = 1.1;
flow = (grads.*(-1*grads<0)).^w;

Then we are summing up the upslope gradients, i.e., the third dimension of
flow. We replace values of 0 by the value of 1 that avoids the problems with
division by zero.

upssum = sum(flow,3);
upssum(upssum==0) = 1;

We divide the fl ows by upssum to obtain fractional weights summing up to
one. In our code, this is done separately for each layer of the 3D flow array
by a for loop:

for i=1:8
 flow(:,:,i) = flow(:,:,i).*(flow(:,:,i)>0)./upssum;
end

The 2D matrix inflowsum will store the intermediate sums of infl ows for
each step of the iteration. The infl ows are summed up to the total fl ow accu-
mulation flowac at the end of each iteration. Initial values of inflowsum
and flowac are provided by upssum.

inflowsum = upssum;
flowac = upssum;

Another 3D matrix inflow is now needed to store the intermediate infl ow
achieved by all neighbors:

inflow = grads*0;

Flow accumulation is terminated when there is no infl ow, or translated
into MATLAB code, we use a conditional while loop that terminates if
sum(inflowsum(:)) == 0. The number of non-zero entries in inflow-
sum will decrease during each loop iteration. This is achieved by alternately
updating inflow and inflowsum. Here, inflowsum is updated with the
intermediate inflow of the neighbor(s) weighted by flow under the condi-
tion that the neighbors are contributing cells, i.e., where grads are positive.
Since not all neighbors are contributing cells, the intermediate inflow-
sum, and also inflow is reduced. Flow accumulation flowac is increasing

7.10 Analysis of Digital Elevation Models (by R. Gebbers) 203

through the consecutive summation of the intermediate inflowsum.

while sum(inflowsum(:))>0
 for i = 1:8
 inflow(:,:,i) = circshift(inflowsum,[N(i,1) N(i,2)]);
 end
 inflowsum = sum(inflow.*flow.*grads>0,3);
 flowac = flowac + inflowsum;
end

We display the result as a pseudocolor map with log-scaled values
(Fig 7.15e).

h = pcolor(log(1+flowac));
colormap(flipud(jet)), colorbar
set(h,'LineStyle','none')
axis equal
title('Flow accumulation')
[r c] = size(flowac);
axis([1 c 1 r])
set(gca,'TickDir','out');

The plot displays areas with high fl ow accumulation in blue colors, whereas
areas with low fl ow accumulation are displayed in red colors usually cor-
responding to ridges. We used a logarithmic scaling for mapping the fl ow
accumulation to obtain a better representation of the results. The simplifi ed
algorithm to calculate fl ow accumulation introduced here can be used to an-
alyze DEMs representing a sloping terrain. In fl at terrains, where the slope
becomes zero, no fl ow direction can be generated by our algorithm and
thus fl ow accumulation stops. Such examples require more sophisticated
algorithms to perform the analysis of DEMs. Furthermore, more advanced
algorithms also include sink-fi lling routines to avoid spurious sinks that in-
terrupt fl ow accumulation. Small depressions can be fi lled by smoothing as
we have done it at the beginning of this chapter.

The fi rst part of this chapter was about primary relief attributes.
Secondary attributes of a DEM are functions of two or more primary at-
tributes. Examples for secondary attributes are the wetness index and the
stream power index. The wetness index is the log of the ratio of the specifi c
catchment area and tangent of slope:

The term 1+fl owac avoids the problems with calculating the logarithm of
zero when flowac=0. The wetness index is used to predict the soil water

204 7 Spatial Data

content (saturation) due to the lateral water movement. The potential for
water logging is usually high at lower elevations of a catchment with small
slopes. Flat areas having a large upslope area have a high wetness index as
compared with steep areas with small catchments. The wetness index weti
is computed and displayed by

weti = log((1+flowac)./tand(slp));

h = pcolor(weti);
colormap(flipud(jet)), colorbar
set(h,'LineStyle','none')
axis equal
title('Wetness index')
[r c] = size(weti);
axis([1 c 1 r])
set(gca,'TickDir','out');

In this graph, blue colors indicate high values of the wetness index, where-
as red colors display low values (Fig. 7.15f). In our example, soils in the
Southeast most likely have high water content due to the runoff from the
large central valley and the terrain fl atness.

The stream power index is another important secondary relief attribute
which is frequently used in hillslope hydrology, geomorphology, soil science
and related disciplines. As a measure of stream power it indicates sediment
transport and erosion by water. It is defi ned as the product of the specifi c
catchment area and tangent of the slope:

The potential for erosion is high when large quantities of water (calculated
by the fl ow accumulation) are fast fl owing due to an extreme slope. The fol-
lowing series of commands compute and display the stream power index:

spi = flowac.*tand(slp);

h = pcolor(log(1+spi));
colormap(jet), colorbar
set(h,'LineStyle','none')
axis equal
title('Stream power index')
[r c] = size(spi);
axis([1 c 1 r])
set(gca,'TickDir','out');

The wetness and stream power indices are particularly useful in large-scale
terrain analysis, i.e., digital elevation models sampled on intervals of less

7.10 Analysis of Digital Elevation Models (by R. Gebbers) 205

a

c

e f

d

b

5

10

15

20

25

5

10

15

20

2

4

8

6

10

3200

3400

3600

3800

50

100

150

200

250

300

350

1

3

5

7

2

4

6

12

4000

0

00

Slope (°)Elevation (m)

Watershed

Flow Accumulation Wetness Index

Aspect (°)

Fig. 7.15 Display of a subset of the SRTM data set used in Chapter 7.5 and primary
and secondary attributes of the digital elevation model; a elevation, b slope, c aspect,
d watershed, e fl ow accumulation and f wetness index.

206 7 Spatial Data

7.11 Geostatistics and Kriging (by R. Gebbers)

Geostatistics describes the autocorrelation of one or more variables in the
1D, 2D, and 3D space or even in 4D space-time, to make predictions at
unobserved locations, to give information about the accuracy of predic-
tion and to reproduce spatial variability and uncertainty. The shape, the
range, and the direction of the spatial autocorrelation are described by the
variogram, which is the main tool in linear geostatistics. The origins of
geostatistics can be dated back to the early 50’s when the South African
mining engineer Daniel G. Krige fi rst published an interpolation method
based on spatial dependency of samples. In the 60’s and 70’s, the French
mathematician George Matheron developed the theory of regionalized vari-
ables which provides the theoretical foundations of Kriges’s more practical
methods. This theory forms the basis of several procedures for the analy-
sis and estimation of spatially dependent variables, which Matheron called
geostatistics. Matheron as well coined the term kriging for spatial interpola-
tion by geostatistical methods.

Theorical Background

A basic assumption in geostatistics is that a spatiotemporal process is com-
posed of deterministic and stochastic components (Fig. 7.16). The determin-
istic components can be global and local trends (sometimes called drifts).
The stochastic component is formed by a purely random and an autocorre-
lated part. An autocorrelated component implies that on average, closer ob-
servations are more similar than more distant observations. This behavior
is described by the variogram where squared differences between observa-
tions are plotted against their separation distances. The fundamental idea of
D. Krige was to use the variogram for interpolation as means to determine
the magnitude of infl uence of neighboring observations when predicting

than 30 meters. Though we have calculated weti and spi from a medium-
scale DEM, we have to expect scale dependency of these attributes in our
terrain analysis example.

This chapter has illustrated the use of basic tools to analyze digital eleva-
tion models. More detailed introductions to digital terrain modelling are
given by the book by Wilson & Galant (2002). Furthermore, the article
by Freeman (1991) provides a comprehensive summary and introduction to
advanced algorithms for fl ow accumulation.

7.11 Geostatistics and Kriging (by R. Gebbers) 207

0 100 200 300 400 500 600 0 100 200 300 400 500 600

0 100 200 300 400 500 600

0 100 200 300 400 500 600

0 100 200 300 400 500 600

0 10 20 30 40 50 60

3.0

1.5

0.0

-1.5

-3.0

3.0

1.5

0.0

-1.5

-3.0

3.0

1.5

0.0

-1.5

-3.0

3.0

1.5

0.0

-1.5

-3.0

3.0

1.5

0.0

-1.5

-3.0

0.8

0.6

0.4

0.2

0

1.0

x x

x

x

x

Lag Distance

Spatiotemporal Process Global Trend Component

Local Trend Component Random Component

Autocorrelation Component Variogram

a

c

e f

d

b

Fig. 7.16 Components of a spatiotemporal process and the variogram. The variogram (f)
should only be derived from the autocorrelated component.

208 7 Spatial Data

values at unobserved locations. Basic linear geostatistics includes two main
procedures: variography for modeling the variogram and kriging for inter-
polation.

Preceding Analysis

Because linear geostatistics as presented here is a parametric method, the
underlying assumptions have to be checked by a preceding analysis. As
other parametric methods, linear geostatistics is sensitive to outliers and
deviations from normal distribution. First, after opening the data fi le geost_
dat.mat containing xyz data triplets we plot the sampling locations. Doing
this, we can check point distribution and detect gross errors on the data
coordinates x and y.

load geost_dat.mat

plot(x,y,'.')

Checking of the limits of the observations z can be done by

min(z)

ans =
 3.7199

max(z)

ans =
 7.8460

For linear geostatistics, the observations z should be gaussian distributed.
In most cases, this is only tested by visual inspection of the histogram be-
cause statistical tests are often too sensitive if the number of samples exceed
ca. 100. In addition, one can calculate skewness and kurtosis of the data.

hist(z)

skewness(z)

ans =
 0.2568

kurtosis(z)

ans =
 2.5220

A fl at-topped or multiple peaks distribution suggests that there is more than
one population in your data set. If these populations can be related to con-

7.11 Geostatistics and Kriging (by R. Gebbers) 209

tinuous areas they should be treated separately. Another reason for multiple
peaks can be preferential sampling of areas with high and/or low values.
This happens usually due to some a priori knowledge and is called cluster
effect. Handling of the cluster effect is described in Deutsch and Journel
(1998) and Isaaks and Srivastava (1998).

Most problems arise from positive skewness (long upper tail). According
to Webster and Oliver (2001), one should consider root transformation if
skewness is between 0.5 and 1, and logarithmic transformation if skewness
exceeds 1. A general formula of transformation is:

for min(z)+m> 0. This is the so called Box-Cox transform with the spe-
cial case k = 0 when a logarithm transformation is used. In the logarithm
transformation, m should be added when z values are zero or negative.
Interpolation results of power-transformed values can be backtransformed
directly after kriging. The backtransformation of log-transformed values
is slightly more complicated and will be explained later. The procedure is
known as lognormal kriging. It can be important because lognormal distri-
butions are not unusual in geology.

Variography with the Classical Variogram

The variogram describes the spatial dependency of referenced observations
in a one or multidimensional space. While usually we do not know the true
variogram of the spatial process we have to estimate it from observations.
This procedure is called variography. Variography starts with calculating
the experimental variogram from the raw data. In the next step, the experi-
mental variogram is summarized by the variogram estimator. Variography
fi nishes with fi tting a variogram model to the variogram estimator. The
experimental variogram is calculated as the difference between pairs of the
observed values depending on the separation vector h (Fig. 7.17). The clas-
sical experimental variogram is given by the semivariance,

where zx is he observed value at location x and zx+h is he observed value at
another point within a distance h. The length of the separation vector h is

210 7 Spatial Data

called lag distance or simply lag. The correct term for γ (h) is semivario-
gram (or semivariance), where semi refers to the fact that it is half of the
variance of the difference between zx and zx+h. It is, nevertheless, the vari-
ance per point when points are considered as in pairs (Webster and Oliver,
2001). Conventionally, γ (h) is termed variogram instead of semivariogram
and so we do at the end of this chapter. To calculate the experimental vario-
gram we fi rst have to build pairs of observations. This is done by typing

[X1,X2] = meshgrid(x);
[Y1,Y2] = meshgrid(y);
[Z1,Z2] = meshgrid(z);

The matrix of separation distances D between the observation points is

D = sqrt((X1 - X2).^2 + (Y1 - Y2).^2);

where srqt is the square root of the data. Then we get the experimental
variogram G as half the squared differences between the observed values:

G = 0.5*(Z1 - Z2).^2;

We used the MATLAB capability to vectorize commands instead of using
for loops to run faster. However, we have computed n2 pairs of observa-
tions although only n (n–1)/2 pairs are required. For large data sets, e.g.,
more than 3000 data points, the software and physical memory of the com-
puter may become a limiting factor. For such cases, a more effi cient way
of programming is described in the user manual of the software SURFER
(2002). The plot of the experimental variogram is called the variogram
cloud (Fig. 7.18). We get this after extracting the lower triangular portions
of the D and G arrays.

y
-C
o
o
rd
in
a
te
s

x-Coordinates

|h|

x = x + hj i

x i

Fig. 7.17 Separation vector h between two points.

7.11 Geostatistics and Kriging (by R. Gebbers) 211

indx = 1:length(z);
[C,R] = meshgrid(indx);
I = R > C;

plot(D(I),G(I),'.')
xlabel('lag distance')
ylabel('variogram')

The variogram cloud gives you an impression of the dispersion of values at
the different lags. It might be useful to detect outliers or anomalies, but it
is hard to judge from it whether there is any spatial correlation, what form
it might have, and how we could model it (Webster and Oliver, 2001). To
obtain a clearer view and to prepare variogram modeling the experimental
variogram is replaced by the variogram estimator in the next section.

The variogram estimator is derived from the experimental variograms
to summarize their central tendency (similar to the descriptive statistics
derived from univariate observations, Chapter 3.2). The classical vario-
gram estimator is the averaged empirical variogram within certain distance
classes or bins defi ned by multiples of the lag interval. The classifi cation of
separation distances is visualized in Figure 7.19.

Distance between observations

S
em

iv
ar

ia
nc

e

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300

Fig. 7.18 Variogram cloud: Plot of the experimental variogram (half squared difference
between pairs of observations) versus the lag distance (separation distance of the pairs).

212 7 Spatial Data

The variogram estimator is calculated by:

where N(h) is the number of pairs within the lag interval h.
First, we need an idea about a suitable lag interval h. If you have sampled

on a regular grid, you can use the length of a grid cell. If the samples have
irregular spacings, as in our case, the mean minimum distance of pairs is a
good starting point for the lag interval (Webster and Oliver 2001). To calcu-
late the mean minimum distance of pairs we have to replace the diagonal of
the lag matrix D zeros with NaN’s, otherwise the minimum distance will be
zero:

D2 = D.*(diag(x*NaN)+1);
lag = mean(min(D2))

lag =
 8.0107

While the estimated variogram values tend to become more erratic with
increasing distances, it is important to defi ne a maximum distance which
limits the calculation. As a rule of thumb, the half maximum distance is
suitable range for variogram analysis. We obtain the half maximum dis-
tance and the maximum number of lags by:

hmd = max(D(:))/2

hmd =
 130.1901

h3 h3 h3 h3

h1 h1 h1 h1 h1 h1

h2 h2 h2 h2 h2y-
C

oo
rd

in
at

es

x-Coordinates

Fig. 7.19 Classifi cation of separation distances in the case of equally spaced observations
along a line. The lag interval is h

1
 and h

2
, h

3
 etc. are multiples of the lag interval.

7.11 Geostatistics and Kriging (by R. Gebbers) 213

max_lags = floor(hmd/lag)

max_lags =
 16

Then the separation distances are classifi ed and the classical variogram es-
timator is calculated:

LAGS = ceil(D/lag);

for i = 1 : max_lags
 SEL = (LAGS == i);
 DE(i) = mean(mean(D(SEL)));
 PN(i) = sum(sum(SEL == 1))/2;
 GE(i) = mean(mean(G(SEL)));
end

where SEL is the selection matrix defi ned by the lag classes in LAG, DE is
the mean lag, PN is the number of pairs and GE is the variogram estimator.
Now we can plot the classical variogram estimator (variogram versus mean
separation distance) together with the population variance:

plot(DE,GE,'.')
var_z = var(z);
b = [0 max(DE)];
c = [var_z var_z];

hold on

plot(b,c, '--r')
yl = 1.1 * max(GE);
ylim([0 yl])
xlabel('Averaged distance between observations')
ylabel('Averaged semivariance')

hold off

The variogram in Figure 7.20 shows a typical behavior. Values are low at
small separation distances (near the origin), they are increasing with in-
creasing distances, than reaching a plateau (sill) which is close to the popu-
lation variance. This indicates that the spatial process is correlated over
short distances while there is no spatial dependency over longer distances.
The length of the spatial dependency is called the range and is defi ned by
the separation distance where the variogram reaches the sill.

The variogram model is a parametric curve fi tted to the variogram es-
timator. This is similar to frequency distribution fi tting (see Chapter 3.5),
where the frequency distribution is modeled by a distribution type and its
parameters (e.g., a normal distribution with its mean and variance). Due to

214 7 Spatial Data

theoretical reasons, only functions with certain properties should be used as
variogram models. Common authorized models are the spherical, the expo-
nential and the linear model (more models can be found in the literature).

Spherical model:

Exponential model:

Population
variance

Distance between observations

S
em

iv
ar

ia
nc

e

0 20 40 60 80 100 120 140

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

Fig. 7.20 The classical variogram estimator (gray circles) and the population variance
(solid line).

7.11 Geostatistics and Kriging (by R. Gebbers) 215

Linear model:

where c is the sill, a is the range, and b is the slope (in the case of the linear
model). The parameters c and a or b have to be modifi ed when a vario-
gram model is fi tted to the variogram estimator. The so called nugget effect
is a special type of variogram model. In practice, when extrapolating the
variogram towards separation distance zero, we often observe a positive
intercept on the ordinate. This is called the nugget effect and it is explained
by measurement errors and by small scale fl uctuations (nuggets), which
are not captured due to too large sampling intervals. Thus, we sometimes
have expectations about the minimum nugget effect from the variance of re-
peated measurements in the laboratory or other previous knowledge. More
details about the nugget effect can be found in Cressie (1993) and Kitanidis
(1997). If there is a nugget effect, it can be added to the variogram model.
An exponential model with a nugget effect looks like this:

where c0 is the nugget effect.
We can even combine more variogram models, e.g., two spherical mod-

els with different ranges and sills. These combinations are called nested
models. During variogram modeling the components of a nested model are
regarded as spatial structures which should be interpreted as the results
of geological processes. Before we discuss further aspects of variogram
modeling let us just fi t some models to our data. We are beginning with a
spherical model without nugget, than adding an exponential and a linear
model, both with nugget variance:

plot(DE,GE,'o','MarkerFaceColor',[.6 .6 .6])
var_z = var(z);
b = [0 max(DE)];
c = [var_z var_z];
hold on
plot(b,c,'--r')
xlim(b)
yl = 1.1*max(GE);
ylim([0 yl])

% Spherical model with nugget
nugget = 0;
sill = 0.803;

216 7 Spatial Data

range = 45.9;
lags = 0:max(DE);
Gsph = nugget + (sill*(1.5*lags/range - 0.5*(lags/...
 range).^3).*(lags<=range) + sill*(lags>range));
plot(lags,Gsph,':g')

% Exponential model with nugget
nugget = 0.0239;
sill = 0.78;
range = 45;
Gexp = nugget + sill*(1 - exp(-3*lags/range));
plot(lags,Gexp,'-.b')

% Linear model with nugget
nugget = 0.153;
slope = 0.0203;
Glin = nugget + slope*lags;
plot(lags,Glin,'-m')
xlabel('Distance between observations')
ylabel('Semivariance')
legend('Variogram estimator','Population variance',...
'Sperical model','Exponential model','Linear model')
hold off

Variogram modeling is very much a point of discussion. Some advocate
objective variogram modeling by automated curve fi tting, using a weighted
least squares, maximum likelihood or maximum entropy method. Contrary
to this it is often argued that the geological knowledge should be included
in the modeling process and thus, fi tting by eye is recommended. In many
cases the problem in variogram modeling is much less the question of the
appropriate procedure but a question of the quality of the experimental var-
iogram. If the experimental variogram is good, both procedures will yield
similar results.

Another question important for variogram modeling is the intended use
of the model. In our case, the linear model seems not to be appropriate
(Fig. 7.21). At a closer look we can see that the linear model fi ts reason-
ably well over the fi rst three lags. This can be suffi cient when we use the
variogram model only for kriging, because in kriging the nearby points are
the most important for the estimate (see discussion of kriging below). Thus,
different variogram models with similar fi ts near the origin will yield simi-
lar kriging results when sampling points are regularly distributed. If you
are interested in describing the spatial structures it is another case. Then it
is important to fi nd a suitable model over all lags and to determine the sill
and the range accurately. A collection of geologic case studies in Rendu
and Readdy (1982) show how process knowledge and variography can be
linked. Good guidelines to variogram modeling are given by Gringarten

7.11 Geostatistics and Kriging (by R. Gebbers) 217

and Deutsch (2001) and Webster and Oliver (2001). We will now briefl y
discuss some more aspects of variography.

 Sample size – As in any statistical procedure you need as large a sample
as possible to get a reliable estimate. For variography it is recommended
to have more than 100 to 150 samples (Webster and Oliver 2001). If you
have less, you should consider computing a maximum likelihood vario-
gram (Pardo-Igúzquiza and Dowd 1997).

 Sampling design – To get a good estimation at the origin of the variogram
sampling design should include observations over small distances. This
can be done by a nested design (Webster and Oliver 2001). Other designs
were evaluated by Olea (1984).

 Anisotropy – Thus far now we have assumed that the structure of spatial
correlation is independent of direction. We have calculated omnidirec-
tional variograms ignoring the direction of the separation vector h. In a

•

•

•

Distance between observations

S
em

iv
ar

ia
nc

e

Population
variance

Spherical model

Exponential model

Linear model

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0 20 40 60 80 100 120 140

Fig. 7.21 Variogram estimator (gray circles), population variance (solid line), spherical,
exponential, and linear models (dashed lines).

218 7 Spatial Data

more thorough analysis, the variogram should not only be discretized in
distance but also in direction (directional bins). Plotting directional var-
iograms, usually in four directions, we sometimes can observe different
ranges (geometric anisotropy), different scales (zonal anisotropy), and
different shapes (indicating a trend). The treatment of anisotropy needs
a highly interactive graphical user interface, e.g., VarioWin by Panatier
(1996) which is beyond the scope of this book.

Number of pairs and the lag interval – In the calculation of the classical
variogram estimator it is recommended to use more than 30 to 50 pairs
of points per lag interval (Webster and Oliver 2001). This is due to the
sensitivity to outliers. If there are fewer pairs, the lag interval should be
enlarged. The lag spacing has not necessarily to be uniform, it can be
chosen individually for each distance class. It is also an option to work
with overlapping classes, in this case the lag width (lag tolerance) has to
be defi ned. On the other hand, increasing the lag width can cause unnec-
essary smoothing and detail is lost. Thus, the separation distance and the
lag width have to be chosen with care. Another option is to use a more
robust variogram estimator (Cressie 1993, Deutsch and Journel 1998).

Calculation of separation distance – If your observations are covering a
large area, let us say more than 1000 km 2, spherical distances should be
calculated instead of the Pythagorean distances from a plane cartesian
coordinate system.

Kriging

Now we will interpolate the observations on a regular grid by ordinary
point kriging which is the most popular kriging method. Ordinary point
kriging uses a weighted average of the neighboring points to estimate the
value of an unobserved point:

where λ i are the weights which have to be estimated. The sum of the weights
should be one to guarantee that the estimates are unbiased:

•

•

7.11 Geostatistics and Kriging (by R. Gebbers) 219

The expected (average) error of the estimation has to be zero. That is:

where zx0 is the true, but unknown value. After some algebra, using the
preceding equations, we can compute the mean-squared error in terms of
the variogram:

where E is the estimation or kriging variance, which has to be minimized,
γ (xi, x0) is the variogram (semivariance) between the data point and the
unobserved, γ (xi, xj) is the variogram between the data points xi and xj,
and λ i and λ j are the weights of the i th and j th data point.

For kriging we have to minimize this equation (quadratic objective func-
tion) satisfying the condition that the sum of weights should be one (linear
constraint). This optimization problem can be solved using a Lagrange mul-
tiplier ν resulting in the linear kriging system of N+1 equations and N+1
unknowns:

After obtaining the weights λ i , the kriging variance is given by

The kriging system can be presented in a matrix notation:

where

220 7 Spatial Data

is the matrix of the coeffi cients, these are the modeled variogram values for
the pairs of observations. Note that on the diagonal of the matrix, where
separation distance is zero, the value of γ vanishes.

is the vector of the unknown weights and the Lagrange multiplier.

is the right-hand-side vector. To obtain the weights and the Lagrange multi-
plier the matrix G_mod is inverted:

The kriging variance is given by

2 1G R E_

For our calculations with MATLAB we need the matrix of coeffi cients de-
rived from the distance matrix D and a variogram model. D was calculated
in the variography section above and we use the exponential variogram
model with a nugget, sill and range from the previous section:

G_mod = (nugget + sill*(1 - exp(-3*D/range))).*(D>0);

Then we get the number of observations and add a column and row vector of
all ones to the G_mod matrix and a zero at the lower left corner:

n = length(x);
G_mod(:,n+1) = 1;
G_mod(n+1,:) = 1;
G_mod(n+1,n+1) = 0;

7.11 Geostatistics and Kriging (by R. Gebbers) 221

Now the G_mod matrix has to be inverted:

G_inv = inv(G_mod);

A grid with the locations of the unknown values is needed. Here we use a
grid cell size of fi ve within a quadratic area ranging from 0 to 200 in x and
y direction. The coordinates are created in matrix form by:

R = 0 : 5 : 200;
[Xg1,Xg2] = meshgrid(R,R);

and converted to vectors by:

Xg = reshape(Xg1,[],1);
Yg = reshape(Xg2,[],1);

Then we allocate memory for the kriging estimates Zg and the kriging vari-
ance s2_k by:

Zg = Xg * NaN;
s2_k = Xg * NaN;

Now we are kriging the unknown at each grid point:

for k = 1 : length(Xg)
 DOR = ((x - Xg(k)).^2 + (y - Yg(k)).^2).^0.5;
 G_R = (nugget + sill*(1 - exp(-3*DOR/range))).*(DOR>0);
 G_R(n+1) = 1;
 E = G_inv * G_R;
 Zg(k) = sum(E(1:n,1).*z);
 s2_k(k) = sum(E(1:n,1).*G_R(1:n,1))+E(n+1,1);
end

Here, the fi rst command computes the distance between the grid points
(Xg,Yg) and the observation points (x,y). Then we build the right-hand-
side vector of the kriging system by using the variogram model G_R and
add one to the last row. We next obtain the matrix E with the weights and
the lagrange multiplier. The estimate Zg at each point k is the weighted sum
of the observations z. Finally, the kriging variance s2_k of the grid point is
computed. We plot the results. First, we create a grid of the kriging estimate
and the kriging variance:

r = length(R);
Z = reshape(Zg,r,r);
SK = reshape(s2_k,r,r);

A subplot on the left presents the kriged values:

subplot(1,2,1)
h = pcolor(Xg1,Xg2,Z);
set(h,'LineStyle','none')

222 7 Spatial Data

axis equal
ylim([0 200])
title('Kriging Estimate')
xlabel('x-Coordinates')
ylabel('y-Coordinates')
colorbar

The left subplot presents the kriging variance:

subplot(1,2,2)
h = pcolor(Xg1,Xg2,SK);
set(h,'LineStyle','none')
axis equal
ylim([0 200])
title('Kriging Variance')
xlabel('x-Coordinates')
ylabel('y-Coordinates')
colorbar
hold on

and we are overlaying the sampling positions:

plot(x,y,'ok')
hold off

The kriged values are shown in Figure 7.22a. The kriging variance depends
only on the distance from the observations and not on the observed values
(Fig. 7.22b). Kriging reproduces the population mean when observations
are beyond the range of the variogram, at the same time kriging variance
increases (lower right corner of the maps in Figure 7.22). The kriging vari-
ance can be used as a criterion to improve sampling design and it is needed
for backtransformation in lognormal kriging. Back-transformation for log-
normal kriging is done by:

y x z x x() exp(() . ())0 0
2

00 5

Discussion of Kriging

Point kriging as presented here is an exact interpolator. It reproduces exactly
the values at an observation point, even though a variogram with a nugget ef-
fect is used. Smoothing can be caused by including the variance of the mea-
surement errors (see Kitanidis 1997) and by block kriging which averages
the observations within a certain neighborhood (block). While kriging vari-
ance depends only on the distance between the observed and the unobserved
locations it is primary a measure of density of information (Wackernagel
2003). The accuracy of kriging is better evaluated by cross-validation using

7.11 Geostatistics and Kriging (by R. Gebbers) 223

a resampling method or surrogate test (Chapter 4.6 and 4.7). The infl uence of
the neighboring observations on the estimation depends on their confi gura-
tion. Webster and Oliver (2001) summarize: Near points carry more weight
than more distant ones; the relative weight of a point decreases when the
number of points in the neighborhood increases; clustered points carry less
weight individually than isolated ones at the same distance; data points can
be screened by ones lying between them and the target. Sampling design for
kriging is different from the design which might be optimal for variography.
A regular grid, triangular or quadratic, can be regarded as optimum.

The MATLAB code presented here is a straightforward implementation
of the kriging system presented in the formulas above. In professional pro-
grams the number of data points entering the G_mod matrix are restricted
as well as the inversion of G_mod is avoided by working with the covari-
ances instead of the variograms (Webster and Oliver 2001, Kitanidis 1997).
For those who are interested in programming and in a deeper understanding
of algorithms, Deutsch and Journel (1992) is a must. The best internet sour-
ce is the homepage of AI-GEOSTATISTICS:

http://www.ai-geostats.org

4.555.566.57

0 50 100 150 200
0

50

100

150

200

0 50 100 150 200
0

50

100

150

200

0.3 0.4 0.5 0.6 0.7 0.8 0.9

x Coordinates x Coordinates

y
C

oo
rd

in
at

es

y
C

oo
rd

in
at

es

Kriging Estimate Kriging Variance

a b

Fig. 7.22 Interpolated values on a regular grid by ordinary point kriging using a an
exponential variogram model; b kriging variance as a function of the distance from the
observations (empty circles).

224 7 Spatial Data

Recommended Reading

Cressie N (1993) Statistics for Spatial Data, Revised Edition. John Wiley & Sons, New
York

Davis JC (2002) Statistics and Data Analysis in Geology, third edition. John Wiley and
Sons, New York

Deutsch CV, Journel AG (1998) GSLIB – Geostatistical Software Library and User’s Guide,
Second edition. Oxford University Press, Oxford

Freeman TG (1991) Calculating Catchment Area with Divergent Flow Based on a Regular
Grid. Computers and Geosciences 17:413–422

Gringarten E, Deutsch CV (2001) Teacher’s Aide Variogram Interpretation and Modeling.
Mathematical Geology 33:507–534

Isaaks E, Srivastava M (1989) An Introduction to Applied Geostatistics. Oxford University
Press, Oxford

Gringarten E, Deutsch CV (2001) Teacher’s Aide Variogram Interpretation and Modeling.
Mathematical Geology 33:507–534

Kitanidis P (1997) Introduction to Geostatistics – Applications in Hydrogeology. Cambridge
University Press, Cambridge

Olea RA (1984) Systematic Sampling of Spatial Functions. Kansas Series on Spatial
Analysis 7, Kansas Geological Survey, Lawrence, KS

Pannatier Y (1996) VarioWin – Software for Spatial Data Analysis in 2D, Springer, Berlin
Heidelberg New York

Pardo-Igúzquiza E, Dowd PA (1997) AMLE3D: A Computer Program for the Interference
of Spatial Covariance Parameters by Approximate Maximum Likelihood Estimation.
Computers and Geosciences 23:793–805

Rendu JM, Readdy L (1982) Geology and Semivariogram – A Critical Relationship. In:
Johnson TB, Barns RJ (eds) Application of Computer & Operation Research in the
Mineral Industry. 17th Intern. Symp. American Institute of Mining. Metallurgical and
Petroleum Engineers, New York, pp. 771–783

Sandwell DT (1987) Biharmonic Spline Interpolation of GEOS-3 and SEASAT Altimeter
data. Geophysical Research Letters 2:139–142

Swan ARH, Sandilands M (1995) Introduction to Geological Data Analysis. Blackwell
Sciences, Oxford

The Mathworks (2006) Mapping Toolbox User’s Guide – For the Use with MATLAB®. The
MathWorks, Natick, MA

Golden Software, Inc. (2002) Surfer 8 (Surface Mapping System). Golden, Colorado
Wackernagel H. (2003) Multivariate Geostatistics: An Introduction with Applications.

Third, completely revised edition. Springer, Berlin Heidelberg New York
Webster R, Oliver MA (2001) Geostatistics for Environmental Scientists. John Wiley &

Sons, New York
Wessel P, Bercovici D (1998) Gridding with Splines in Tension: A Green Function Approach.

Mathematical Geology 30:77–93
Wilson JP, Gallant JC (2000) Terrain Analysis, Principles and Applications. John Wiley

and Sons, New York

8 Image Processing

8.1 Introduction

Computer graphics are stored and processed either as vector or raster data.
Most data types that were encountered in the previous chapter were vec-
tor data, i.e., points, lines and polygons. Drainage networks, the outline of
geologic units, sampling locations and topographic contours are examples
of vector data. In Chapter 7, coastlines are stored in the vector format while
bathymetric and topographic data are saved in the raster format. Vector and
raster data are often combined in one data set, for instance, the course of
a river is displayed on a satellite image. Raster data are often converted to
vector data by digitizing points, lines or polygons. On the other hand, vector
data are sometimes transformed to raster data.

 Images are generally represented as raster data, i.e., as a 2D array of
color intensities. Images are everywhere in geosciences. Field geologists
use aerial photos and satellite images to identify lithologic units, tectonic
structures, landslides and other features in a study area. Geomorphologists
use such images for the analysis of drainage networks, river catchments,
vegetation and soil types. The analysis of images from thin sections, auto-
mated identifi cation of objects and the measurement of varve thicknesses
employ a great variety of image processing methods.

This chapter is about the analysis and display of image data. Firstly, the
various ways that raster data can be stored on the computer are explained
(Chapter 8.2). Subsequently, the main tools for importing, manipulating
and exporting image data are presented (Chapter 8.3). This knowledge is
then used to process and to georeference satellite images (Chapter 8.4 and
8.5). Finally, on-screen digitization techniques are discussed (Chapter 8.6).
The Image Processing Toolbox is used for the specifi c examples throughout
this chapter. Whereas the MATLAB User’s Guide to the Image Processing
Toolbox is an excellent introduction to the analysis of images in generally,
this chapter provides an overview of typical applications in earth sciences.

226 8 Image Processing

8.2 Data Storage

Vector and raster graphics are the two fundamental methods for storing
pictures. The typical format for storing vector data was already introduced
in the previous chapter. In the following example, the two columns in the
fi le coastline.txt represent the the longitudes and the latitudes of the points
of a polygon.

NaN NaN
42.892067 0.000000
42.893692 0.001760
NaN NaN
42.891052 0.001467
42.898093 0.007921
42.904546 0.013201
42.907480 0.016721
42.910414 0.020828
42.913054 0.024642
(cont'd)

The NaN’s help to identify break points in the data (Chapter 7.2).
The raster data are stored as 2D arrays. The elements of the array repre-

sent the altitude of a grid point above sea level, annual rainfall or, in the case
of an image, color intensity values.

174 177 180 182 182 182
165 169 170 168 168 170
171 174 173 168 167 170
184 186 183 177 174 176
191 192 190 185 181 181
189 190 190 188 186 183

In all cases, raster data can be visualized as 3D plot. The x and y are the
indices of the 2D array or any other reference frame, and z is the numerical
value of the elements of the array (see also Chapter 7). Alternatively, the
numerical values contained in the 2D array can be displayed as pseudo-
color plot, which is a rectangular array of cells with colors determined by
a colormap. A colormap is a m-by-3 array of real number between 0.0 and
1.0. Each row defi nes a red, green, blue (RGB) color. An example is the
above array that could be interpreted as grayscale intensities ranging from
0 (black) to 255 (white). More complex examples include satellite images
that are stored in 3D arrays.

As discussed before, a computer stores data as bits, which have one out of
two states, one and zero (Chapter 2). If the elements of the 2D array repre-
sent the color intensity values of the pixels (short for picture elements) of an

8.2 Data Storage 227

image, 1-bit arrays contains only ones and zeros.

0 0 1 1 1 1
1 1 0 0 1 1
1 1 1 1 0 0
1 1 1 1 0 1
0 0 0 0 0 0
0 0 0 0 0 0

This 2D array of ones and zeros can be simply interpreted as a white-and-
black image, where the value of one represents white and zero corresponds
to black. Alternatively, the 1-bit array could be used to store an image con-
sisting of two different colors only, such as red and blue.

In order to store more complex types of data, the bits are joined to larger
groups, such as bytes consisting of eight bits. The earliest computers could
only send eight bits at a time and early computer code was written in sets
of eight bits, which came to be called a byte. Hence, each element of the 2D
array or pixel contains a vector of eight ones or zeros.

 1 0 1 0 0 0 0 1

These 8 bits or 1 byte allows 28=256 possible combinations of the eight ones
or zeros. Therefore, 8 bits are enough to represent 256 different intensities
such as grayscales. The 8 bits can be read in the following way. The bits
are read from the right to the left. A single bit represents two numbers, two
bits give four numbers, three bits show eight numbers, and so forth up to a
byte, or eight bits, which represents 256 numbers. Each added bit doubles
the count of numbers. Here is a comparison of the binary and the decimal
representation of the number 161.

128 64 32 16 8 4 2 1 (value of the bit)
 1 0 1 0 0 0 0 1 (binary)

128 + 0 + 32 + 0 + 0 + 0 + 0 + 1 = 161 (decimal)

The end members of the binary representation of grayscales are

 0 0 0 0 0 0 0 0

which is black, and

 1 1 1 1 1 1 1 1

which is pure white. In contrast to the above 1-bit array, the one-byte array
allows to store a grayscale image of 256 different levels. Alternatively, the
256 numbers could be interpreted as 256 different discrete colors. In any

228 8 Image Processing

case, the display of such an image requires an additional source of informa-
tion about how the 256 intensity values are converted into colors. Numerous
global colormaps for the interpretation of 8-bit color images exist that allow
the cross-platform exchange of raster images, whereas local colormaps are
often embedded in a graphics fi le.

The disadvantage of 8-bit color images is that the 256 discrete colorsteps
are not enough to simulate smooth transitions for the human eye. Therefore,
in many applications a 24-bit system is used with 8 bits of data for each
 RGB channel giving a total of 2563=16,777,216 colors. Such a 24-bit image
is stored in three 2D arrays or one 3D array of intensity values between 0
and 255.

195 189 203 217 217 221
218 209 187 192 204 206
207 219 212 198 188 190
203 205 202 202 191 201
190 192 193 191 184 190
186 179 178 182 180 169

209 203 217 232 232 236
234 225 203 208 220 220
224 235 229 214 204 205
223 222 222 219 208 216
209 212 213 211 203 206
206 199 199 203 201 187

174 168 182 199 199 203
198 189 167 172 184 185
188 199 193 178 168 172
186 186 185 183 174 185
177 177 178 176 171 177
179 171 168 170 170 163

Compared to the 1-bit and 8-bit representation of raster data, the 24-bit
storage certainly requires a lot more computer memory. In the case of very
large data sets such as satellite images and digital elevation models the user
should therefore carefully think about the suitable way to store the data.
The default data type in MATLAB is the 64-bit array which allows to store
the sign of a number (fi rst bit), the exponent (bits 2 to 12) and roughly 16
signifi cant decimal digits in the range of roughly 10-308 and 10+308 (bits 13
to 64). However, MATLAB also works with other data types such as 1-bit,
8-bit and 24-bit raster data to save memory.

The memory required for storing an image depends on the data type and
the raster dimension. The dimension of an image can be described by the
numbers of pixels, which is the number of rows multiplied by the number of
columns of the 2D array. Assume an image of 729×713 pixels, as the one we

8.2 Data Storage 229

will use in the following chapter. If each pixel needs 8 bits to store an gray-
scale value, the memory required by the data is 729×713×8= 4,158,216 bits
or 4,158,216/8=519,777 bytes. This number is exactly what we obtain by
typing whos in the command window. Common prefi xes for bytes are kilo-
byte, megabyte, gigabyte and so forth.

bit = 1 or 0 (b)
8 bits = 1 byte (B)
1024 bytes = 1 kilobyte (KB)
1024 kilobytes = 1 megabyte (MB)
1024 megabytes = 1 gigabyte (GB)
1024 gigabytes = 1 terabyte (TB)

Note that in data communication 1 kilobit = 1,000 bits, while in data stor-
age 1 kilobyte = 1,024 bytes. A 24-bit or true color image then requires
three times the memory needed to store a 8-bit image, or 1,559,331 bytes

= 1,559,331/1,024 kilobytes (KB) ≈1,523 KB≈1,559,331/1,0242 =1.487 mega-
bytes (MB).

However, the dimension of an image is often not given by the total num-
ber of pixels, but the length and height of the picture and its resolution.
The resolution of an image is the number of pixels per inch (ppi) or dots
per inch (dpi). The standard resolution of a computer monitor is 72 dpi al-
though modern monitors often have a higher resolution such as 96 dpi. For
instance, a 17 inch monitor with 72 dpi resolution displays 1,024×768 pix-
els. If the monitor is used to display images at a different (lower, higher)
resolution, the image is resampled to match the monitor’s resolution. For
scanning and printing, a resolution of 300 or 600 dpi is enough in most ap-
plications. However, scanned images are often scaled for large printouts and
therefore have higher resolutions such as 2,400 dpi. The image used in the
next chapter has a width of 25.2 cm (or 9.92 inch) and a height of 25.7 cm
(10.12 inch). The resolution of the image is 72 dpi. The total number of pixels is
72×9,92≈713 in horizontal direction, the vertical number of pixels is
72×10,12≈729 as expected.

Numerous formats are available to save vector and raster data into a fi le.
All these formats have their advantages and disadvantages. Choosing one
format over another in an application depends on the way the images are
used in a project and if images are to be analyzed quantitatively. The most
popular formats for storing vector and raster data are:

Compuserve Graphics Interchange Format (GIF) – This format was de-
veloped in 1987 for raster images using a fi xed colormap of 256 colors.
The GIF format uses compression without loss of data. It was designed

•

230 8 Image Processing

for fast transfer rates in the internet. The limited number of colors makes
it not the right format for smooth color transitions that occur in aerial
photos or stellite images. In contrast, it is often used for line art, maps,
cartoons and logos (http://www.compuserve.com/).

Microsoft Windows Bitmap Format (BMP) – This is the native bitmap
format for computers running Microsoft Windows as the operating sys-
tem. However, numerous converters exist to read and write BMP fi les
also on other platforms. Various modifi cations of the BMP format are
available, some of them without compressions, others with effective and
fast compression (http://www.microsoft.com/).

Tagged Image File Format (TIFF) – This format was designed by the
Aldus Corporation and Microsoft in 1986 to become an industry stan-
dard for image-fi le exchange. A TIFF fi le includes an image fi le header,
a directory and the data in all available graphics and image fi le formats.
Some TIFF fi les even contain vector and raster versions of the same pic-
ture, and images in different resolution and colormap. The most impor-
tant advantage of TIFF was portability. TIFF should perform on all com-
puter platforms. Unfortunately, numerous modifi cations of TIFF evolved
in the following years, causing incompatibilities. Therefore, TIFF is of-
ten called Thousands of Incompatible File Formats.

PostScript (PS) and Encapsulated PostScript (EPS) – The PS format has
been developed by John Warnock at Parc, the research institute of Xerox.
J. Warnock was co-founder of Adobe Systems, where the EPS format has
been created. The vector format PostScript would have never become
an industry standard without Apple Computers. In 1985, Apple need-
ed a typesetter-quality controller for the new printer apple LaserWriter
and the operating system Macintosh. The third partner in the history
of PostScript was the company Aldus, the developer of the software
PageMaker and now a part of Adobe Systems. The combination of Aldus
PageMaker, the PS format and the Apple LaserWriter were the founders
of Desktop Publishing. The EPS format was then developed by Adobe
Systems as a standard fi le format for importing and exporting PS fi les.
Whereas the PS fi le generally is a single-page format, containing an il-
lustration of a text, the purpose of an EPS fi le is to be included in other
pages, i.e., it can contain any combination of text, graphics and images
(http://www.adobe.com/).

•

•

•

8.3 Importing, Processing and Exporting Images 231

In 1986, the Joint Photographic Experts Group (JPEG) was founded
for the purpose of developing various standards for image compression.
Although JPEG stands for the committee, it is now widely used as the
name for an image compression and format. This compression consists of
grouping pixel values into 8×8 blocks and transforming each block with a
discrete cosine transform. Subsequently, all unnecessary high-frequency
information is eased. Such practice makes the compression method irre-
versible. The advantage of the JPEG format is the availability of a three-
channel 24-bit true color version. This allows to store images with smooth
color transitions. The new JPEG-2000 format uses a Wavelet transform
instead of the cosine transform (Chapter 5.8) (http://www.jpeg.org/).

Portable Document Format (PDF) – The PDF designed by Adobe Systems
is now a true self-contained cross-platform document. The PDF fi les con-
tain the complete formatting of vector illustrations, raster images and
text, or a combination of all these, including all necessary fonts. These
fi les are highly compressed, allowing a fast internet download. Adobe
Systems provides the free-of-charge Acrobat Reader for all computer
platforms to read PDF fi les (http://www.adobe.com/).

The PICT format was developed by Apple Computers in 1984 as the na-
tive format for Macintosh graphics. The PICT format can be used for
raster images and vector illustrations. PICT uses various methods for
compressing data. The PICT 1 format only supports monochrome graph-
ics, but PICT 2 supports a color depth of up to 32-bit. The PICT format
is not supported on other platforms although some PC software tools can
work with PICT fi les (http://www.apple.com).

8.3 Importing, Processing and Exporting Images

Firstly, we learn how to read an image from a graphics fi le into the work-
space. As an example, we use a satellite image showing a 10.5 km by 11 km
subarea in northern Chile:

http://asterweb.jpl.nasa.gov/gallery/images/unconform.jpg

The fi le unconform.jpg is a processed TERRA-ASTER satellite image that
can be downloaded free-of-charge from the NASA web page. We save this
image in the working directory. The command

unconform1 = imread('unconform.jpg');

•

•

•

232 8 Image Processing

reads and decompresses the JPEG fi le, imports the data as 24-bit RGB im-
age array and stores the data in a variable unconform1. The command

whos

shows how the RGB array is stored in the workspace:

Name Size Bytes Class Attributes
unconform1 729x713x3 1559331 uint8

The details indicate that the image is stored as a 729×713×3 array repre-
senting a 729×713 array for each of the colors red, green and blue. The
listing of the current variables in the workspace also gives the information
uint8 array, i.e., each array element representing one pixel contains 8-bit
integers. These integers represent intensity values between 0 (minimum
intensity) and 255 (maximum). As example, here is a sector in the upper-left
corner of the data array for red:

unconform1(50:55,50:55,1)

ans =
 174 177 180 182 182 182
 165 169 170 168 168 170
 171 174 173 168 167 170
 184 186 183 177 174 176
 191 192 190 185 181 181
 189 190 190 188 186 183

Next, we can view the image using the command

 imshow(unconform1)

which opens a new Figure Window showing an RGB composite of the im-
age (Fig. 8.1).

In contrast to the RGB image, a grayscale image only needs one single
array to store all necessary information. We convert the RGB image into a
grayscale image using the command rgb2gray (RGB to gray):

unconform2 = rgb2gray (unconform1);

The new workspace listing now reads

Name Size Bytes Class Attributes
ans 6x6 36 uint8
unconform1 729x713x3 1559331 uint8
unconform2 729x713 519777 uint8

where you can see the difference between the 24-bit RGB and the 8-bit

8.3 Importing, Processing and Exporting Images 233

grayscale arrays. The commands

imshow(unconform1), figure, imshow(unconform2)

display the result. It is easy to see the difference between the two images in
separate Figure Windows (Fig. 8.1 and 8.2). Let us now process the gray-
scale image. First, we compute a histogram of the distribution of intensity
values.

 imhist(unconform2)

A simple technique to enhance the contrast of such an image is to transform
this histogram to obtain an equal distribution of grayscales.

unconform3 = histeq(unconform2);

We can view the difference again using

imshow(unconform2), figure, imshow(unconform3)

and save the results in a new fi le.

 imwrite(unconform3,'unconform3.jpg')

We can read the header of the new fi le by typing

 imfinfo('unconform3.jpg')

which yields

Filename: 'unconform3.jpg'
FileModDate: '18-Jun-2003 16:56:49'
FileSize: 138419
Format: 'jpg'
FormatVersion: ''
Width: 713
Height: 729
BitDepth: 8
ColorType: 'grayscale'
FormatSignature: ''
NumberOfSamples: 1
CodingMethod: 'Huffman'
CodingProcess: 'Sequential'
Comment: {}

Hence, the command iminfo can be used to obtain useful information
(name, size, format and color type) about the newly-created image fi le.

There are many ways for transforming the original satellite image into
a practical fi le format. For instance, the image data could be stored as in-
dexed color image. Such an image consists of two parts, a colormap array
and a data array. The colormap array is an m-by-3 array containing fl oat-

234 8 Image Processing

ing-point values between 0 and 1. Each column specifi es the intensity of
the colors red, green and blue. The data array is an x-by-y array containing
integer elements corresponding to the lines m of the colormap array, i.e.,
the specifi c RGB representation of a certain color. Let us transfer the above
RGB image into an indexed image. The colormap of the image should con-
tain 16 different colors. The result of

Fig. 8.1 RGB true color image contained in the fi le unconform.jpg. After decompressing
and reading the JPEG fi le into a 729×713×3 array, MATLAB interprets and displays the
RGB composite using the function imshow. See detailed description of the image on the
NASA TERRA-ASTER webpage http: //asterweb.jpl.nasa.gov. Original image courtesy of
NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

8.3 Importing, Processing and Exporting Images 235

[x,map] = rgb2ind(unconform1,16);
imshow(unconform1), figure, imshow(x,map)

clearly shows the difference between the original 24-bit RGB image (2563 or
ca. 16.7 million different colors) and a color image of only 16 different col-
ors (Fig. 8.1 and 8.3).

Fig. 8.2 Grayscale image. After converting the RGB image stored in a 729×713×3 array
into a grayscale image stored in a 729×713 array, the result is displayed using imshow.
Original image courtesy of NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER
Science Team.

236 8 Image Processing

8.4 Importing, Processing and Exporting Satellite Images

In the previous chapter, we used a processed ASTER image that we have
downloaded from the ASTER web page. The original ASTER raw data con-
tain a lot more information and resolution than the free-of-charge image
stored in unconform.jpg. The ASTER instrument produces two types of data,
Level-1A and 1B. Whereas the L1A data are reconstructed, unprocessed in-
strument data, L1B data are radiometrically and geometrically corrected.
Each ASTER data set contains 15 data arrays representing the intensity

Fig. 8.3 Indexed color image using a colormap containing 16 different colors. The result
is displayed using imshow. Original image courtesy of NASA/GSFC/METI/ERSDAC/
JAROS and U.S./Japan ASTER Science Team.

8.4 Importing, Processing and Exporting Satellite Images 237

values from 15 spectral bands (see the ASTER-web page for more detailed
information) and various additional information such as location, date and
time. The raw satellite data can be purchased from the USGS online store:

http://edcimswww.cr.usgs.gov/pub/imswelcome/

Enter the data gateway as guest, pick a discipline/top (e.g., Land: ASTER),
then choose from the list of data sets (e.g., DEM, Level 1A or 1B data), de-
fi ne the search area and click Start Search. The system now needs a few
minutes to list all relevant data sets. A list of data sets including various
types of additional information (cloud coverage, exposure date, latitude and
longitude) can be obtained by clicking on List Data Granules. Furthermore,
a low resolution preview can be accessed by selecting Image. Having pur-
chased a certain data set, the raw image can be downloaded using a tem-
porary FTP-access. As an example, we process an image from an area in
Kenya showing Lake Naivasha. The data are stored in two fi les

naivasha.hdf
naivasha.hdf.met

The fi rst fi le (111 MB large) contains the actual raw data, whereas the second
fi le (100 KB) contains the header with al types of information about the data.
We save both fi les in our working directory. The image processing Toolbox
contains various tools for importing and processing fi les stored in the hierar-
chical data format (HDF). The GUI-based import tool for importing certain
parts of the raw data is

hdftool('naivasha.hdf')

This command opens a GUI that allows us to browse the content of the HDF-
fi le naivasha.hdf, obtains all information the contents and imports certain
frequency bands of the satellite image. Alternatively, the command hdf-
read can be used as the quicker way of accessing image data. An image
as the one used in the previous chapter is typically achieved by computing
an RGB composite from the vnir_Band3n, 2 and 1 in the data fi le. First, we
read the data

I1 = hdfread('naivasha.hdf','VNIR_Band3N','Fields','ImageData');
I2 = hdfread('naivasha.hdf','VNIR_Band2','Fields','ImageData');
I3 = hdfread('naivasha.hdf','VNIR_Band1','Fields','ImageData');

These commands generate three 8-bit image arrays each representing the
intensity within a certain infrared (IR) frequency band of a 4200× 4100 pixel
image. The vnir_Band3n, 2 and 1 typically contain much information about
lithology (including soils), vegetation and water on the Earth’s surface.

238 8 Image Processing

Therefore, these bands are usually combined to 24-bit RGB images

naivasha_rgb = cat(3,I1,I2,I3);

Similar to the examples above, the 4200 × 4100 ×3 array can now be dis-
played using

imshow(naivasha_rgb);

MATLAB scales the images to fi t the computer screen. Exporting the pro-
cessed image from the Figure Window, we only save the image at the mon-
itor’s resolution. To obtain an image at a higher resolution (Fig. 8.4), we use

Fig. 8.4 RGB composite of a TERRA-ASTER image using the spectral infrared bands
vnir_Band3n, 2 and 1. The result is displayed using imshow. Original image courtesy of
NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

8.5 Georeferencing Satellite Images 239

the command

imwrite(naivasha_rgb,'naivasha.tif','tif')

This command saves the RGB composite as a TIFF-fi le naivasha.tif (ca.
50 MB large) in the working directory that can be processed with other
software such as Adobe Photoshop.

8.5 Georeferencing Satellite Images

The processed ASTER image does not yet have a coordinate system. Hence,
the image needs to be tied to a geographical reference frame (georeferenc-
ing). The raw data can be loaded and transformed into a RGB composite
by typing

I1 = hdfread('naivasha.hdf','VNIR_Band3N','Fields','ImageData');
I2 = hdfread('naivasha.hdf','VNIR_Band2','Fields','ImageData');
I3 = hdfread('naivasha.hdf','VNIR_Band1','Fields','ImageData');

naivasha_rgb = cat(3,I1,I2,I3);

The HDF browser can be used

hdftool('naivasha.hdf')

to extract the geodetic coordinates of the four corners of the image. This
information is contained in the header of the HDF fi le. Having launched the
HDF tool, we activate File as HDF and select on the uppermost directory
naivasha.hdf. This produces a long list of fi le attributes including product-
metadata.0, which includes the attribute scenefourcorners that contains the
following information:

upperleft = [-0.319922, 36.214332];
upperright = [-0.400443, 36.770406];
lowerleft = [-0.878267, 36.096003];
lowerright = [-0.958743, 36.652213];

These two-element vectors can be collected into one array inputpoints.
Subsequently, the left and right columns can be fl ipped in order to have
x= longitudes and y = latitudes.

inputpoints(1,:) = upperleft;
inputpoints(2,:) = lowerleft;
inputpoints(3,:) = upperright;
inputpoints(4,:) = lowerright;
inputpoints = fliplr(inputpoints);

240 8 Image Processing

The four corners of the image correspond to the pixels in the four corners of
the image that we store in a variable named basepoints.

basepoints(1,:) = [1,4200];
basepoints(2,:) = [1,1];
basepoints(3,:) = [4100,4200];
basepoints(4,:) = [4100,1];

The function cp2tform now takes the pairs of control points input-
points and basepoints and uses them to infer a spatial transformation
matrix tform.

tform = cp2tform(inputpoints,basepoints,'affine');

This transformation can be applied to the original RGB composite naiva-
sha_rgb in order to obtain a georeferenced version of the satellite image
newnaivasha_rgb.

[newnaivasha_rgb,x,y] = imtransform(naivasha_rgb,tform);

Subsequently, an appropriate grid for the image may be computed. The grid
is typically defi ned by the minimum and maximum values for the longi-
tude and the latitude. The vector increments are then obtained by dividing
the longitude and latitude range by the array dimension and by subtracting
one from the result. Note the difference between the numbering conven-
tion of MATLAB and the common coding of maps used in the literature.
The north /south suffi x is generally replaced by a negative sign for south,
whereas MATLAB coding conventions require negative signs for north.

X = 36.096003 : (36.770406-36.096003)/8569 : 36.770406;
Y = 0.319922 : (0.958743- 0.319922)/8400 : 0.958743;

Hence, both images can be displayed for comparison (Fig. 8.4 and 8.5).

iptsetpref('ImshowAxesVisible','On')
imshow(naivasha_rgb), title('Original ASTER Image')
figure
imshow(newnaivasha_rgb,'XData',X,'YData',Y);
xlabel('Longitude'), ylabel('Latitude')
title('Georeferenced ASTER Image')
grid on

The command iptsetpref makes the axis of the image visible. Exporting
the results is possible in many ways, such as

 print -djpeg70 -r600 naivasha_georef.jpg

as JPEG fi le naivasha_georef.jpg compressed at 70% and at a resolution
of 600 dpi.

8.6 Digitizing from the Screen 241

8.6 Digitizing from the Screen

On-screen digitizing is a widely-used image processing technique. While
practical digitizer tablets exist in all formats and sizes, most people prefer
digitizing vector data from the screen. Examples for this application are
digitizing of river networks and drainage areas on topographic maps, the
outlines of lithologic units in maps, the distribution of landslides on satellite
images or mineral grains in a microscope image. The digitizing procedure
consists of the following steps. Firstly, the image is imported into the work-
space. Subsequently, a coordinate system is defi ned. Finally, the objects of

Longitude

La
tit

ud
e

0.9

0.4

0.5

0.6

0.7

0.8

36.2 36.3 36.4 36.5 36.6 36.7

Georeferenced ASTER Image

Fig. 8.5 Geoferenced RGB composite of an TERRA-ASTER image using the infrared bands
vnir_Band3n, 2 and 1. The result is displayed using imshow. Original image courtesy of
NASA/GSFC/METI/ERSDAC/JAROS and U.S. /Japan ASTER Science Team.

242 8 Image Processing

interest are entered by moving a cursor or cross hair and clicking the mouse
button. The result is a two-dimensional array of xy data, such as longitudes
and latitudes of the points of a polygon or the coordinates of the objects of
interest in an area.

The function ginput included in the standard MATLAB toolbox pro-
vides graphical input using a mouse on the screen. It is generally used to se-
lect points such as specifi c data points from a fi gure created by an arbitrary
graphics function such as plot. The function is often used for interactive
plotting, i.e., the digitized points appear on the screen after they were select-
ed. The disadvantage of the function is that it does not provide coordinate
referencing on an image. Therefore, we use a modifi ed version of the func-
tion that allows to reference an image to an arbitrary rectangular coordinate
system. Save the following code in a text fi le minput.m.

function data = minput(imagefile)
% Specify the limits of the image
xmin = input('Specify xmin! ');
xmax = input('Specify xmax! ');
ymin = input('Specify ymin! ');
ymax = input('Specify ymax! ');

% Read image and display
B = imread(imagefile);
a = size(B,2); b = size(B,1);
imshow(B);

% Define lower left and upper right corner of image
disp('Click on lower left and upper right corner, then <return>')
[xcr,ycr] = ginput;
XMIN = xmin-((xmax-xmin)*xcr(1,1)/(xcr(2,1)-xcr(1,1)));
XMAX = xmax+((xmax-xmin)*(a-xcr(2,1))/(xcr(2,1)-xcr(1,1)));
YMIN = ymin-((ymax-ymin)*ycr(1,1)/(ycr(2,1)-ycr(1,1)));
YMAX = ymax+((ymax-ymin)*(b-ycr(2,1))/(ycr(2,1)-ycr(1,1)));

% Digitize data points
disp('Click on data points to digitize, then <return>')
[xdata,ydata] = ginput;
XDATA = XMIN + ((XMAX-XMIN)*xdata/size(B,2));
YDATA = YMIN + ((YMAX-YMIN)*ydata/size(B,1));
data(:,1) = XDATA; data(:,2) = YDATA;

The function minput has four parts. In the fi rst part, the user enters the
limits of the coordinate axis as the reference for the image. Next, the image
is imported into the workspace and displayed on the screen. The third part
uses ginput to defi ne the upper left and lower right corners of the image.
The relationship between the coordinates of the two corners on the fi gure
window and the reference coordinate system is used to compute the trans-
formation for all points digitized in the fourth part.

Recommended Reading 243

For instance, we use the image stored in the fi le naivasha_georef.jpg and
digitize the outline of Lake Naivasha in the center of the image. We call the
new function minput from the Command Window using the commands

data = minput('naivasha_georef.jpg')

The function fi rst calls the coordinates for the limits of the x- and y-axis for
the reference frame. We enter the corresponding numbers and press return
after each input.

Specify xmin! 36.1
Specify xmax! 36.7
Specify ymin! -1
Specify ymax! -0.3

Next the function reads the fi le naivasha_georef.jpg and displays the image.
We ignore the warning

Warning: Image is too big to fit on screen; displaying at 33%

and wait for the next response

Click on lower left and upper right corner, then <return>

The image window can be scaled according to user preference. Clicking
on the lower left and upper right corner defi nes the dimension of the image.
These changes are registered by pressing return. The routine then referenc-
es the image to the coordinate system and waits for the input of the points
we wish to digitize from the image.

Click on data points to digitize, then <return>

We fi nish the input again by pressing return. The xy coordinates of our
digitized points are now stored in the variable data. We can now use these
vector data for other applications.

Recommended Reading

Abrams M, Hook S (2002) ASTER User Handbook - Version 2. Jet Propulsion Laboratory
and EROS Data Center, Sioux Falls

Campbell JB (2002) Introduction to Remote Sensing. Taylor & Francis, London
Francus P (2005) Image Analysis, Sediments and Paleoenvironments – Developments in

Paleoenvironmental Research. Springer, Berlin Heidelberg New York
Gonzales RC, Eddins SL, Woods RE (2003) Digital Image Processing Using MATLAB.

Prentice Hall, New Jersey
The Mathworks (2006) Image Processing Toolbox User’s Guide - For the Use with

MATLAB®. The MathWorks, Natick, MA

9 Multivariate Statistics

9.1 Introduction

Multivariate analysis aims to understand and describe the relationship be-
tween an arbitrary number of variables. Earth scientists often deal with mul-
tivariate data sets, such as microfossil assemblages, geochemical fi ngerprints
of volcanic ashes or clay mineral contents of sedimentary sequences. If there
are complex relationships between the different parameters, univariate sta-
tistics ignores the information content of the data. There is a number of meth-
ods, however, for investigating the scaling properties of multivariate data.

A multivariate data set consists of measurements of p variables on n ob-
jects. Such data sets are usually stored in n-by-p arrays:

The columns of the array represent the p variables, the rows represent the
n objects. The characteristics of the 2nd object in the suite of samples is
described by the vector in the second row of the data array:

As an example, assume the microprobe analysis on glass shards from volca-
nic ashes in a tephrochronology project. Then, the variables represent the p
chemical elements, the objects are the n ash samples. The aim of the study
is to correlate ashes by means of their geochemical fi ngerprints.

Most of the multi-parameter methods simply try to overcome the main
diffi culty associated with multivariate data sets. This problem relates to the
data visualization. Whereas the character of an univariate or bivariate data

246 9 Multivariate Statistics

set can easily be explored by visual inspection of a 2D histogram or an xy
plot (Chapter 3), the graphical display of a three variable data set requires
a projection of the 3D distribution of data points into 2D. It is impossible
to imagine or display a higher number of variables. One solution to the
problem of visualization of high-dimensional data sets is the reduction of
dimensionality. A number of methods group highly-correlated variables
contained in the data set and then explore a smaller number of groups.

The classic methods to reduce dimensionality are the principal compo-
nent analysis (PCA) and the factor analysis (FA). These methods seek the
directions of maximum variance in the data set and use these as new coor-
dinate axes. The advantage of replacing the variables by new groups of vari-
ables is that the groups are uncorrelated. Moreover, these groups often help
to interpret the multivariate data set since they often contain valuable infor-
mation on process itself that generated the distribution of data points. In a
geochemical analysis of magmatic rocks, the groups defi ned by the method
usually contain chemical elements with similar ion size that are observed
in similar locations in the lattice of certain minerals. Examples for such
behavior are Si4+ and Al3+, and Fe2+ and Mg2+ in silicates, respectively.

The second important suite of multivariate methods aims to group objects
by their similarity. As an example, cluster analysis (CA) is often applied to
correlate volcanic ashes as described in the above example. Tephrochronology
tries to correlate tephra by means of their geochemical fi ngerprint. In com-
bination with a few radiometric age determinations of the key ashes, this
method allows to correlate sedimentary sequences that contain these ashes
(e.g., Westgate 1998, Hermanns et al. 2000). More examples for the applica-
tion of cluster analysis come from the fi eld of micropaleontology. In this con-
text, multivariate methods are employed to compare microfossil assemblages
such as pollen, foraminifera or diatoms (e.g., Birks and Gordon 1985).

The following text introduces the most important techniques of multivari-
ate statistics, principal component analysis and cluster analysis (Chapter 9.2
and 9.4). A nonlinear extension of the PCA is the independent component
analysis (ICA) (Chapter 9.3). First, the chapters provide an introduction to
the theory behind the techniques. Subsequently, the use of these methods in
analyzing earth sciences data is illustrated with MATLAB functions.

9.2 Principal Component Analysis

The principal component analysis (PCA) detects linear dependencies be-
tween variables and replaces groups of correlated variables by new uncor-

9.2 Principal Component Analysis 247

related variables, the principal components (PC). The performance of the
PCA is better illustrated with help of a bivariate data set than a multivari-
ate one. Figure 9.1 shows a bivariate data set that exhibits a strong linear
correlation between the two variables x and y in an orthogonal xy coordi-
nate system. The two variables have their univariate means and variances
(Chapter 3). The bivariate data set can be described by the bivariate sample
mean and the covariance (Chapter 4). The xy coordinate system can be re-
placed by a new orthogonal coordinate system, where the fi rst axis passes
through the long axis of the data scatter and the new origin is the bivariate
mean. This new reference frame has the advantage that the fi rst axis can
be used to describe most of the variance, while the second axis contributes
only a little. Originally, two axes were needed to describe the data set prior
to the transformation. Therefore, it is possible to reduce the data dimension
by dropping the second axis without losing much information as shown in
Figure 9.1.

First variable x

S
ec

on
d

 v
ar

ia
b

le
 y

New variable 1

N
ew

 v
ar

ia
b

le
 2

1st axis

2nd axis

1st axis

2nd
axis

−15 −10 −5 0 5 10 15 20 25 30

−50

0

50

100

−150 −100 −50 0 50 100
−10

−5

0

5

10

150

200

150

−100

Fig. 9.1 Principal component analysis (PCA) illustrated on a bivariate scatter. The original
xy coordinate system is replaced by a new orthogonal system, where the fi rst axis passes
through the long axis of the data scatter and the new origin is the bivariate mean. We can
now reduce dimensionality by dropping the second axis without losing much information.

248 9 Multivariate Statistics

This is now expanded to an arbitrary number of variables and samples.
Suppose a data set of measurements of p parameters on n samples stored in
an n-by-p array.

The columns of the array represent the p variables, the rows represent the n
samples. After rotating the axis and moving the origin, the new coordinates
Yj can be computed by

The fi rst principle component PC1 denoted by Y1 contains the greatest vari-
ance, PC2 the second highest variance and so forth. All PCs together con-
tain the full variance of the data set. The variance is concentrated in the fi rst
few PCs, which explain most of the information content of the data set. The
last PCs are generally ignored to reduce the data dimension. The factors
aij in the above equations are the principal component loads. The values of
these factors represent the relative contribution of the original variables to
the new PCs. If the load aij of a variable Xj in PC1 is close to zero, the infl u-
ence of this variable is low. A high positive or negative aij suggests a strong
contribution of the variable Xj. The new values Yj of the variables computed
from the linear combinations of the original variables Xj weighted by the
loads are called the principal component scores.

In the following, a synthetic data set is used to illustrate the use of the
function princomp included in the Statistics Toolbox. Our data set con-
tains the percentage of various minerals contained in sediment samples.
The sediments are sourced from three rock types: a magmatic rock con-
tains amphibole (amp), pyroxene (pyr) and plagioclase (pla), a hydrother-
mal vein characterized by the occurrence of fl uorite (fl u), sphalerite (sph)
and galenite (gal), as well as some feldspars (plagioclase and potassium
feldspar, ksp) and quartz (qtz), and a sandstone unit containing feldspars,
quartz and clay minerals (cla).

Ten samples were taken from various levels of this sedimentary sequence

9.2 Principal Component Analysis 249

containing varying amounts of these minerals. The PCA is used to verify
the infl uence of the three different source rocks and to estimate their rela-
tive contribution. First, the data are loaded by typing

data = load('sediments.txt');

Next, we defi ne labels for the various graphs created by the PCA. We num-
ber the samples 1 to 10, whereas the minerals are characterized by three-
character abbreviations.

for i = 1:10
 sample(i,:) = ['sample',sprintf('%02.0f',i)];
end
clear i

minerals = ['amp';'pyr';'pla';'ksp';'qtz';'cla';'flu';'sph';'gal']

A successful PCA requires linear correlations between variables. The cor-
relation matrix provides a technique for exploring such dependencies in the
data set (Chapter 4). The elements of the correlation matrix are Pearson’s
correlation coeffi cients for each pair of variables as shown in Figure 9.2.
Here, the variables are minerals.

corrmatrix = corrcoef(data);
corrmatrix = flipud(corrmatrix);

imagesc(corrmatrix), colormap(hot)
title('Correlation Matrix')
axis square, colorbar, hold
set(gca,'XTickLabel',minerals,'YTickLabel',flipud(minerals))

This pseudocolor plot of the correlation coeffi cients shows strong positive
correlations between the minerals amp, pyr and pla, the minerals ksp, qtz
and cla, and the minerals fl u, sph and gal, respectively. Moreover, some of
the minerals show negative correlations. We also observe no dependency
between some of the variables, for instance between the potassium feldspar
and the vein minerals. From the observed dependencies, we expect interest-
ing results from the application of the PCA.

Various methods exist for scaling the original data before applying the
PCA, such as mean centering (zero means) or autoscaling (mean zero and
standard deviation equals one). However, we use the original data for com-
puting the PCA. The output of the function princomp includes the principal
component loads pcs, the scores newdata and the variances variances.

[pcs,newdata,variances] = princomp(data);

250 9 Multivariate Statistics

The loads of the fi rst fi ve principal components PC1 to PC5 can be shown
by typing

pcs(:,1:5)

ans =
 -0.3303 0.2963 -0.4100 -0.5971 0.1380
 -0.3557 0.0377 0.6225 0.2131 0.5251
 -0.5311 0.1865 -0.2591 0.4665 -0.3010
 0.1410 0.1033 -0.0175 0.0689 -0.3367
 0.6334 0.4666 -0.0351 0.1629 0.1794
 0.1608 0.2097 0.2386 -0.0513 -0.2503
 0.1673 -0.4879 -0.4978 0.2287 0.4756
 0.0375 -0.2722 0.2392 -0.5403 -0.0068
 0.0771 -0.5399 0.1173 0.0480 -0.4246

We observe that PC1 (fi rst column) has high negative loads in the fi rst three
variables amp, pyr and pla (fi rst to third row), and a high positive load in the
fi fth variable qtz (fi fth row). PC2 (second column) has high negative loads in
the vein minerals fl u, sph and gal, and again a positive load in qtz. We create
a number of plots of the PCs.

0

+ 0.5

+ 1.0

 0.5

 1.0

amp

pyr

pla

ksp

qtz

cla

flu

sph

gal

amp pyr pla ksp qtz cla flu sph gal

Correlation Matrix

Fig. 9.2 Correlation matrix containing Pearson’s correlation coeffi cients for each pair of
variables, such as minerals in a sediment sample. Light colors represent strong positive
linear correlations, whereas dark colors document negative correlations. Orange suggests
no correlation.

9.2 Principal Component Analysis 251

subplot(2,2,1), plot(1:9,pcs(:,1),'o'), axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,1),minerals,'FontSize',8), hold
plot(1:9,zeros(9,1),'r'), title('PC 1')

subplot(2,2,2), plot(1:9,pcs(:,2),'o'), axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,2),minerals,'FontSize',8), hold
plot(1:9,zeros(9,1),'r'), title('PC 2')

subplot(2,2,3), plot(1:9,pcs(:,3),'o'), axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,3),minerals,'FontSize',8), hold
plot(1:9,zeros(9,1),'r'), title('PC 3')

subplot(2,2,4), plot(1:9,pcs(:,4),'o'), axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,4),minerals,'FontSize',8), hold
plot(1:9,zeros(9,1),'r'), title('PC 4')

The loads of the index minerals and their relationship to the PCs can be used
to interpret the relative infl uence of the source rocks. PC1 characterized by
strong contributions of amp, pyr and pla, and a contribution with an oppo-
site sign of qtz probably describes the amount of magmatic rock clasts in the
sediment. The second principal component PC2 is clearly dominated by hy-
drothermal minerals hence suggesting the detrital input from the vein. PC3

and PC4 show a mixed and contradictory pattern of loads and are therefore
not easy to interpret. We will later see that this observation is in line with a
rather weak and mixed signal from the sandstone source on the sediments.

An alternative way to plot of the loads is a bivariate plot of two principal
components. We ignore PC3 and PC4 at this point and concentrate on PC1

and PC2.

plot(pcs(:,1),pcs(:,2),'o')
text(pcs(:,1)+0.02,pcs(:,2),minerals,'FontSize',14), hold
x = get(gca,'XLim'); y = get(gca,'YLim');
plot(x,zeros(size(x)),'r')
plot(zeros(size(y)),y,'r')
xlabel('First Principal Component Loads')
ylabel('Second Principal Component Loads')

Here, we observe the same relationships on a single plot that were previous-
ly shown on several graphs (Fig. 9.3). It is also possible to plot the data set as
functions of the new variables. This needs the second output of princomp
containing the principal component scores.

plot(newdata(:,1),newdata(:,2),'+')
text(newdata(:,1)+0.01,newdata(:,2),sample), hold
x = get(gca,'XLim'); y = get(gca,'YLim');
plot(x,zeros(size(x)),'r')
plot(zeros(size(y)),y,'r')
xlabel('First Principal Component Scores')
ylabel('Second Principal Component Scores')

252 9 Multivariate Statistics

This plot clearly defi nes groups of samples with similar infl uences. The
samples 1, 2, 8 to 10 dominated by magmatic infl uences cluster in the left
half of the diagram, the samples 3 to 5 dominated by the hydrothermal vein
group in the lower part of the right half, whereas the two sandstone domi-
nated samples 6 and 7 fall in the upper right corner.

Next, we use the third output of the function princomp to compute the
variances of the corresponding PCs.

percent_explained = 100*variances/sum(variances)

percent_explained =
 80.9623
 17.1584
 0.8805
 0.4100
 0.2875
 0.1868
 0.1049
 0.0096
 0.0000

We see that more than 80% of the total variance is contained in PC1, around
17% is described by PC2, whereas all other PCs do not play any role. This
means that most of the variability in the data set can be described by two
new variables only.

amp

pyr
pla

ksp

qtz

cla

flu

sph

gal

−0.4 −0.2 0 0.2 0.4 0.6 0.8 −0.6
−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0

First principal component loads

S
ec

on
d

pr
in

ci
pa

l c
om

po
ne

nt
 lo

ad
s

Fig. 9.3 Principal components loads suggesting that the PCs are infl uenced by different
minerals. See text for detailed interpretation of the PCs.

9.3 Independent Component Analysis (by N. Marwan) 253

9.3 Independent Component Analysis (by N. Marwan)

The principal component analysis (PCA) is the standard method for separat-
ing mixed signals. Such analysis provides signals that are linearly uncor-
related. This method is also called whitening since this property is char-
acteristic for white noise. Although the separated signals are uncorrelated,
they could still can be dependent, i.e., nonlinear correlation remains. The
independent component analysis (ICA) was developed to investigate such
data. It separates mixed signals into independent signals, which are then
nonlinearly uncorrelated. Fast ICA algorithms use a criterion which esti-
mates how gaussian distributed the joint distribution of the independent
components is. The less gaussian this distribution is, the more independent
the individual components are.

According to the model, n independent signals x (t) are linearly mixed in
m measurements.

and we are interested in the source signals si and in the mixing matrix A.
For example, we can imagine that we are on a party and a lot of people talk
independently with others. We hear a mixing of these talks and perhaps
cannot distinguish the single talks. Now we could install some microphones
and use these measurements to separate the single conversations. Hence,
this dilemma is also called the cocktail party problem. Its correct term is
blind source separation that is given by

where W T is the separation matrix in order to reverse the mixing and get
the original signals. Let us consider a mixing of three signals s1, s2 and
s3 and their separation using PCA and ICA. First, we create three periodic
signals

clear
i = (1:0.01:10 * pi)';
[dummy index] = sort(sin(i));

s1(index,1) = i/31; s1 = s1 - mean(s1);
s2 = abs(cos(1.89*i)); s2 = s2 - mean(s2);
s3 = sin(3.43*i);

254 9 Multivariate Statistics

subplot(3,2,1), plot(s1), ylabel('s_1'), title('Raw signals')
subplot(3,2,3), plot(s2), ylabel('s_2')
subplot(3,2,5), plot(s3), ylabel('s_3')

Now we mix these signals and add some observational noise. We get a three-
column vector x which corresponds to our measurement (Fig. 9.4).

randn('state',1);

x = [.1*s1 + .8*s2 + .01*randn(length(i),1),...
 .4*s1 + .3*s2 + .01*randn(length(i),1),...
 .1*s1 + s3 + .02*randn(length(i),1)];

subplot(3,2,2), plot(x(:,1)), ylabel('x_1'), title('Mixed signals')
subplot(3,2,4), plot(x(:,2)), ylabel('x_2')
subplot(3,2,6), plot(x(:,3)), ylabel('x_3')

We begin with the separation of the signals using the PCA. We calculate the

0 1000 2000 3000 4000

1000

1000

2000

2000

3000

3000

4000

4000

0 1000 2000 3000 4000

0 1000 2000 3000 4000

0 1000 2000 3000 4000

0

0

−2

−1

0

1

2

−0.4

−0.2

0

0.2

0.4

−1.0

−0.5

0

0.5

−1.0

−0.5

0

0.5

1.0

−1.0

−0.5

0

0.5

−0.5

0

0.5

x 1
x

2
x 3

s
1

s
2

s 3

Raw Signals Mixed Signals

a

c

e f

d

b

Fig. 9.4 Sample input for the independent component analysis. We fi rst generate three
period signals (a, c, e), mix the signals and add some gaussian noise (b, d, f).

9.3 Independent Component Analysis (by N. Marwan) 255

principal components and the whitening matrix W_PCA with

sPCA = sPCA./repmat(std(sPCA),length(sPCA),1);

The PC scores sPCA are the linearly separated components of the mixed
signals x (Fig. 9.5).

subplot(3,2,1), plot(sPCA(:,1))
ylabel('s_{PCA1}'), title('Separated signals - PCA')
subplot(3,2,3), plot(sPCA(:,2)), ylabel('s_{PCA2}')
subplot(3,2,5), plot(sPCA(:,3)), ylabel('s_{PCA3}')

The mixing matrix A can be found with

A_PCA = E * sqrt (D);
W_PCA = inv(sqrt(diag(D))) * E';

Next, we separate the signals into independent components. We will do

0 1000 2000 3000 4000

1000

1000

2000

2000

3000

3000

4000

4000

0 1000 2000 3000 4000

0 1000 2000 3000 4000

0 1000 2000 3000 4000

0

0
−4

−2

0

2

4

−4

−2

0

2

−2

−1

0

1

2

−4

−2

0

2

4

−4

−2

0

2

4

−2

0

2

4

s
s

s
P

C
A

1
P

C
A

2
P

C
A

3

s I
C

A
1

s I
C

A
2

s I
C

A
3

Separated Signals − PCA Separated Signals − ICA

a

c

e f

d

b

Fig. 9.5 Output of the principal component analysis (a, c, e) compared with the output of
the independent component analysis (b, d, f). The PCA has not reliably separated the mixed
signals, whereas the ICA found the source signals almost perfectly.

256 9 Multivariate Statistics

this by using a FastICA algorithm which is based on a fi xed-point itera-
tion scheme to fi nd the maximum of the non-gaussianity of the independent
components WTx. As the nonlinearity function we use a power of three
function for instance.

rand('state',1);

div = 0;
B = orth(rand(3, 3) - .5);
BOld = zeros(size(B));

while (1 - div) > eps
 B = B * real(inv(B' * B)^(1/2));
 div = min(abs(diag(B' * BOld)));
 BOld = B;
 B = (sPCA' * (sPCA * B) .^ 3) / length(sPCA) - 3 * B;
 sICA = sPCA * B;
end

We plot the separated components with (Fig. 9.5)

subplot(3,2,2), plot(sICA(:,1)), ylabel('s_{ICA1}'),
 title('Separated signals - ICA')
subplot(3,2,4), plot(sICA(:,2)), ylabel('s_{ICA2}')
subplot(3,2,6), plot(sICA(:,3)), ylabel('s_{ICA3}')

The PCA algorithm has not reliably separated the mixed signals. Especially
the saw-tooth signal was not correctly found. In contrast, the ICA has found
the source signals almost perfectly. The only remarkable differences are the
noise, which came through the observation, the wrong sign and the wrong
order of the signals. However, the sign and the order of the signals are not
really important, because we have generally not the knowledge about the
real sources nor their order. With

A_ICA = A_PCA * B;
W_ICA = B' * W_PCA;

we compute the mixing matrix A and the separation matrix W. The mix-
ing matrix A can be used in order to estimate the portion of the separated
signals on our measurements The components aij of the mixing matrix A
correspond to the principal components loads as introduced in Chapter 9.2.
A FastICA package is available for MATLAB and can be found at

http://www.cis.hut.fi/projects/ica/fastica/

9.4 Cluster Analysis 257

9.4 Cluster Analysis

 Cluster analysis creates groups of objects that are very similar compared to
other objects or groups. It fi rst computes the similarity between all pairs of
objects, then it ranks the groups by their similarity, and fi nally creates a hi-
erarchical tree visualized as a dendrogram. Examples for grouping objects
in earth sciences are the correlations within volcanic ashes (Hermanns
et al. 2000) and the comparison of microfossil assemblages (Birks and
Gordon 1985).

There are numerous methods for calculating the similarity between two
data vectors. Let us defi ne two data sets consisting of multiple measure-
ments on the same object. These data can be described as the vectors:

The most popular measures of similarity of the two sample vectors are the

Euclidian distance – This is simply the shortest distance between the two
points in the multivariate space:

The Euclidian distance is certainly the most intuitive measure for simi-
larity. However, in heterogenic data sets consisting of a number of differ-
ent types of variables, it should be replaced by the following measure.

Manhattan distance – In the city of Manhattan, one must walk on per-
pendicular avenues instead of diagonal crossing blocks. The Manhattan
distance is therefore the sum of all differences:

Correlation similarity coeffi cient – Here, we use Pearson’s linear product-
moment correlation coeffi cient to compute the similarity of two objects:

•

•

•

258 9 Multivariate Statistics

This measure is used if one is interested in ratios between the variables mea-
sured on the objects. However, Pearson’s correlation coeffi cient is highly
sensitive to outliers and should be used with care (see also Chapter 4).

Inner-product similarity index – Normalizing the data vectors to one and
computing the inner product of these yield another important similarity
index. This is often used in transfer function applications. In this ex-
ample, a set of modern fl ora or fauna assemblages with known environ-
mental preferences is compared with a fossil sample to reconstruct the
environmental conditions in the past.

The inner-product similarity varies between 0 and 1. A zero value sug-
gests no similarity and a value of one represents maximum similarity.

The second step in performing a cluster analysis is to rank the groups by their
similarity and build a hierarchical tree visualized as a dendrogram. Defi ning
groups of objects with signifi cant similarity and separating clusters depends
on the internal similarity and the difference between the groups. Most clus-
tering algorithms simply link the two objects with highest similarity. In the
following steps, the most similar pairs of objects or clusters are linked it-
eratively. The difference between groups of objects forming a cluster is de-
scribed in different ways depending on the type of data and application.

K-means clustering – Here, the Euclidean distance between the multi-
variate means of the K clusters is used as a measure for the difference
between the groups of objects. This distance is used if the data suggest
that there is a true mean value surrounded by random noise.

K-nearest-neighbors clustering – Alternatively, the Euclidean distance of
the nearest neighbors is used as measure for this difference. This is used

•

•

•

9.4 Cluster Analysis 259

if there is a natural heterogeneity in the data set that is not attributed to
random noise.

It is important to evaluate the data properties prior to the application of a
clustering algorithm. First, one should consider the absolute values of the
variables. For example, a geochemical sample of volcanic ash might show
SiO2 contents of around 77% and Na2O contents of 3.5%, although the
Na2O content is believed to be of great importance. Here, the data need to
be transformed to zero means (mean centering). Differences in the vari-
ances and in the means are corrected by autoscaling, i.e., the data are stan-
dardized to zero means and variances that equal one. Artifacts arising from
closed data, such as artifi cial negative correlations, are avoided by using
Aitchison’s log-ratio transformation (Aitchison 1984, 1986). This ensures
data independence and avoids the constant sum normalization constraints.
The log-ratio transformation is

where xtr denotes the transformed score (i =1, 2, 3, …, d–1) of some raw
data xi. The procedure is invariant under the group of permutations of the
variables, and any variable can be used as divisor xd.

As an example for performing a cluster analysis, the sediment data stored
in sediment.txt are loaded and the plotting labels are defi ned.

data = load('sediments.txt');

for i = 1:10
 sample(i,:) = ['sample',sprintf('%02.0f',i)];
end
clear i

minerals= ['amp';'pyr';'pla';'ksp';'qtz';'cla';'flu';'sph';'gal'];

Subsequently, the distances between pairs of samples can be computed. The
function pdist provides many ways for computing this distance, such as
the Euclidian or Manhattan city block distance. We use the default setting
which is the Euclidian distance.

Y = pdist(data);

The function pdist returns a vector Y containing the distances between
each pair of observations in the original data matrix. We can visualize the
distances on another pseudocolor plot.

260 9 Multivariate Statistics

 squareform(Y);
 imagesc(squareform(Y)), colormap(hot)
title('Euclidean distance between pairs of samples')
xlabel('First Sample No.')
ylabel('Second Sample No.')
colorbar

The function squareform converts Y into a symmetric, square format, so
that the elements (i,j)of the matrix denote the distance between the i
and j objects in the original data. Next, we rank and link the samples with
respect to their inverse distance using the function linkage.

Z = linkage(Y);

In this 3-column array Z, each row identifi es a link. The fi rst two columns
identify the objects (or samples) that have been linked, the third column
contains the individual distance between these two objects. The fi rst row
(link) between objects (or samples) 1 and 2 has the smallest distance cor-
responding to the highest similarity. Finally, we visualize the hierarchical
clusters as a dendrogram which is shown in Figure 9.6.

 dendrogram(Z);
xlabel('Sample No.')
ylabel('Distance')
box on

Clustering fi nds the same groups as the principal component analysis. We
observe clear groups consisting of samples 1, 2, 8 to 10 (the magmatic
source rocks), samples 3 to 5 (the hydrothermal vein) and samples 6 and 7
(the sandstone). One way to test the validity of our clustering result is the
cophenet correlation coeffi cient. The value of

cophenet(Z,Y)

ans =
 0.7579

looks convincing, since the closer this coeffi cient is to one, the better is the
cluster solution.

Recommended Reading 261

Recommended Reading

Aitchison J (1984) The Statistical Analysis of Geochemical Composition. Mathematical
Geology 16(6):531–564

Aitchison J (1999) Logratios and Natural Laws in Compositional Data Analysis.
Mathematical Geology 31(5):563–580

Birks HJB, Gordon AD (1985) Numerical Methods in Quaternary Pollen Analysis.
Academic Press, London

Brown CE (1998) Applied Multivariate Statistics in Geohydrology and Related Sciences.
Springer, Berlin Heidelberg New York

Hermanns R, Trauth MH, McWilliams M, Strecker M (2000) Tephrochronologic Con-
straints on Temporal Distribution of Large Landslides in NW-Argentina. Journal of
Geology 108:35–52

Pawlowsky-Glahn V (2004) Geostatistical Analysis of Compositional Data – Studies in
Mathematical Geology. Oxford University Press, Oxford

Reyment RA, Savazzi E (1999) Aspects of Multivariate Statistical Analysis in Geology.
Elsevier Science, Amsterdam

Westgate JA, Shane PAR, Pearce NJG, Perkins WT, Korisettar R, Chesner CA, Williams
MAJ, Acharyya SK (1998) All Toba Tephra Occurrences Across Peninsular India
Belong to the 75,000 yr BP Eruption. Quaternary Research 50:107–112

Sample No.

D
is

ta
nc

e

 2 9 1 8 10 3 4 5 6 7

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Fig. 9.6 Output of the cluster analysis. The dendrogram shows clear groups consisting
of samples 1, 2, 8 to 10 (the magmatic source rocks), samples 3 to 5 (the magmatic dyke
containing ore minerals) and samples 6 and 7 (the sandstone unit).

10 Statistics on Directional Data

10.1 Introduction

Methods to analyze circular and spherical data are widely used in earth sci-
ences. For instance, structural geologists measure and analyze the orienta-
tion of slickenlines (or striae) on fault planes. Circular statistics is also com-
mon in paleomagnetic applications. Microstructural investigations include
the analysis of the grain shape and quartz c-axis orientation in thin sec-
tions. Paleoenvironmentalists reconstruct paleocurrent directions from fos-
sil alignments (Fig. 10.1). In principle, two types of directional data exist in
earth sciences: directional data sensu stricto and oriented data. Directional
data have a true polarity, such as the paleocurrent direction of a river as
documented by fl ute marks or the fl ow direction of a glacier as indicated by
glacial striae. Oriented data describe axial data and lines without sense of
direction, such as the orientation of joints.

MATLAB is not the fi rst choice to analyze directional data since it does
not provide the relevant functions such as an algorithm to compute the
probability distribution function of a von Mises distribution or to run a
Rayleigh’s test for the signifi cance of a mean direction. Therefore, earth
scientists have developed numerous standalone programs to analyze such
data, e.g., the excellent software developed by Rick Allmendinger available
for Mac OS 9 and X as well as for Microsoft Windows:

http://www.geo.cornell.edu/geology/faculty/RWA/programs.html

The following tutorial on the analysis of directional data is independent of
these tools. It provides simple MATLAB codes to display directional data,
to compute the von Mises distribution and to run simple statistical tests. The
fi rst subchapter introduces rose diagrams as the most widely used method
to display directional data (Chapter 10.2). Similar to the concept of Chapter
3 on univariate statistics, the next chapters are on empirical and theoretical
distributions to describe directional data (Chapters 10.3 and 10.4). The last
three chapters describe the three most important tests for directional data:

264 10 Statistics on Directional Data

The test for randomness of directional data (Chapter 10.5), the signifi cance
of a mean direction (Chapter 10.6) and the difference of two sets of direc-
tional data (Chapter 10.7).

10.2 Graphical Representation

The classic way to display directional data is the rose diagram. A rose dia-
gram is a histogram for measurements of angles. In contrast to a bar histo-
gram with the height of the bars proportional to frequency, the rose diagram
comprises segments of a circle with the radius of each sector being propor-
tional to the frequency. We use synthetic data to illustrate two types of rose
diagrams to display directional data. We load a set of directional data from
the fi le directional_1.txt.

Fig. 10.1 Orthoceras fossils from an outcrop Neptuni Acrar near Byxelkrok on Öland,
Sweden. Orthoceras is a cephalopod with a straight shell and lived in the Ordovician
era about 450 million years ago. Such elongated, asymmetric objects tend to orient
themselves in the hydrodynamically most stable position. Therefore, the fossils can indicate
 paleocurrent directions. The statistical analysis of the cephalopod orientation at Neptuni
Acrar reveals a signifi cant southward paleocurrent direction, which is an agreement with
the paleogeographic reconstructions for Ordovician times.

10.2 Graphical Representation 265

5
10

15

90

120

20

60

30

0

330

300

270

240

210

180

150

data_degrees_1 = load('directional_1.txt');

The data set contains forty measurements of angles in degrees. We use the
function rose(az,nb) to display the data. The function plots an angle his-
togram for the angles az in radians, where nb is the number of classes.
Since the original data are in degrees, we have to convert all measurements
to radians before we plot the data.

data_radians_1 = pi*data_degrees_1/180;
rose(data_radians_1,12)

The function rose counts in a counterclockwise direction in which zero de-
grees lies along the x-axis of the coordinate graph. In geosciences, however,
0° points due North, 90° points due East and the angles increase clockwise.
The command view rotates the plot by +90° (the azimuth) and mirrors the
plot by –90° (the elevation) (Fig. 10.2).

rose(data_radians_1,12)

Fig. 10.2 Rose diagram to display directional data using function rose. The radii of the
area segments are proportional to the frequencies for each class.

266 10 Statistics on Directional Data

1 2
4

90

120

5

60

30

0

330

300

270

240

210

180

150

3

view(90,-90)

The area of the arc segments increases with frequency. Therefore, the rose
diagram is scaled to the square root of the class frequency in a fi nal modi-
fi cation. The function rose does not allow to plot the square root of the
frequencies by default. However, the corresponding fi le rose.m can be easily
modifi ed. After the histogram of the angles is computed in line 58 by using
the function histc, add a line with the command nn = sqrt(nn); which
computes the square root of the frequencies nn. Save the modifi ed function
as fi le rose_sqrt.m and apply the new function to the data set.

rose_sqrt(data_radians_1,12)
view(90,-90)

This plot satisfi es all conventions in geosciences (Fig. 10.3).

Fig. 10.3 Modifi ed rose diagram to display directional data using function rose. In this
version of rose, 0° points due North, 90° points due East and the angles increase clockwise.
The plot scales the rose diagram to the square root of the class frequency. Now the area of
the arc segments increases with frequency.

10.3 Empirical Distributions 267

10.3 Empirical Distributions

This chapter introduces the statistical measures to describe empirical dis-
tributions of directional data. The characteristics of directional data are
described by measures of central tendency and dispersion, similar to the
statistical characterization of univariate data sets (Chapter 3). Assume that
we have collected a number of angular measurements such as fossil align-
ments. The collection of data can be written as

containing N observations θ i. Sine and cosine values are computed for each
direction θ i to compute the resultant for the set of angular data.

The resultant or mean direction of the data set is

The length of the resultant is

The resultant length clearly depends on the dispersion of the data.
Normalizing the resulting length to the number of observations yields the
mean resultant length.

The value of the mean resultant length decreases with increasing dispersion.
Therefore, the difference between one and the mean resultant length is often
used as a measure of dispersion for directional data,

268 10 Statistics on Directional Data

which is the circular variance.
The following example illustrates the use of these parameters by means

of synthetic directional data. We fi rst load the data from the fi le direc-
tional_1.txt and convert all measurement to radians.

clear
data_degrees_1 = load('directional_1.txt');
data_radians_1 = pi*data_degrees_1/180;

Now we calculate the resultant vector R. Firstly, we compute the x and y
component of the resultant vector.

x_1 = sum(sin(data_radians_1))
y_1 = sum(cos(data_radians_1))

x_1 =
 -24.3507

y_1 =
 -25.9552

The mean direction is the inverse tangent of the ratio of x and y.

mean_radians_1 = atan(x_1/y_1)
mean_degrees_1 = 180*mean_radians_1/pi

mean_radians_1 =
 0.7535

mean_degrees_1 =
 43.1731

This result suggests that the resultant vector R is around 0.75 radians or 43°.
However, since both x and y are negative, the true value of mean_degrees
is located in the third quadrant and we add 180°.

mean_degrees_1 = mean_degrees_1 + 180

mean_degrees_1 =
 223.1731

Therefore, the mean direction is around 223°. The length of this vector is the
absolute of the vector, which is

R_1 = sqrt(x_1^2 + y_1^2)

R_1 =
 35.5897

The resultant length depends on the dispersion of the directional data.

10.4 Theoretical Distributions 269

Normalizing the resultant length to the sample size yields the mean resul-
tant length of

Rm_1 = R_1 / (length(data_radians_1))

Rm_1 =
 0.8897

Higher Rm suggests less variance. Therefore, we compute the circular vari-
ance sigma which is

sigma_1 = 1 - Rm_1

sigma_1 =
 0.1103

10.4 Theoretical Distributions

As in Chapter 3, the next step in a statistical analysis is to fi nd a suitable
theoretical distribution that fi ts the empirical distribution visualized and de-
scribed in the previous chapter. The classic theoretical distribution to de-
scribe directional data is the von Mises distribution, named after the Austrian
mathematician Richard Edler von Mises (1883–1953). The probability den-
sity function of a von Mises distribution is

where μ is the mean direction and κ is the concentration parameter
(Fig. 10.4). I0(κ) is the modifi ed Bessel function of the fi rst kind and order
zero of κ . The Bessel functions are solutions of a second-order differential
equation, the Bessel’s differential equation, and are important in many prob-
lems of wave propagation in a cylindrical waveguide and heat conduction in
a cylindrical object. The von Mises distribution is also known as circular
normal distribution since it has similar characteristics as the normal dis-
tribution (Chapter 3.4). The von Mises distribution is used when the mean
direction is the most frequent and most likely direction. The probability of
deviations is equal towards both directions and decreases with increasing
distance from the mean direction.

As an example, let us assume a mean direction of mu=0 and fi ve different
values for the concentration parameter kappa.

270 10 Statistics on Directional Data

mu = 0; kappa = [0 1 2 3 4]';

In a fi rst step, an angle scale for a plot that runs from –180 to 180 degrees is
defi ned in intervals of one degree.

theta = -180:1:180;

All angles are converted from degrees to radians.

mu_radians = pi*mu/180;
theta_radians = pi*theta/180;

In a second step, we compute the von Mises distribution for these values.
The formula uses the modifi ed Bessel function of the fi rst kind and order
zero that can be calculated by using the function besseli. We compute the
probability density function for the fi ve values of kappa.

for i = 1:5
 mises(i,:) = (1/(2*pi*besseli(0,kappa(i))))* ...
 exp(kappa(i)*cos(theta_radians-mu_radians));
 theta(i,:) = theta(1,:);
end

Fig. 10.4 Probability density function f (Θ) of a von Mises distribution with μ =0 and fi ve
different values for κ .

10.5 Test for Randomness of Directional Data 271

The results are plotted by

for i = 1:5
 plot(theta(i,:),mises(i,:))
 axis([-180 180 0 max(mises(i,:))])
 hold on
end

The mean direction and concentration parameter of such theoretical distri-
butions are easily modifi ed to compare them with empirical distributions.

10.5 Test for Randomness of Directional Data

The fi rst test for directional data compares the data set with a uniform distri-
bution. Directional data following a uniform distribution are purely random,
i.e., there is no preference for any direction. We use the χ2-test (Chapter 3.8)
to compare the empirical frequency distribution with the theoretical uni-
form distribution. We load our sample data.

clear
data_degrees_1 = load('directional_1.txt');

We use the function hist to count the number of observations within
12 classes. The width of the classes is 30 degrees.

counts = hist(data_degrees_1,15:30:345);

The expected number of observations is 40/12, where 40 is the total number
of observations and 12 is the number of classes.

expect = 40/12 * ones(1,12);

The χ2-test explores the squared differences between the observed and ex-
pected frequencies. The quantity χ2 is defi ned as the sum of these squared
differences divided by the expected frequencies.

chi2 = sum((counts - expect).^2 ./expect)

chi2 =
 94.4000

The critical χ2 can be calculated by using chi2inv. The χ2-test requires the
degrees of freedom Φ. In our example, we test the hypothesis that the data are
uniformly distributed, i.e., we estimate one parameter, which is the number
of possible values N. The number of classes is 12. Therefore, the degrees of

272 10 Statistics on Directional Data

freedom are Φ=12–(1+1)=10. We test our hypothesis on a p=95% signifi -
cance level. The function chi2inv computes the inverse of the χ2 CDF with
parameters specifi ed by Φ for the corresponding probabilities in p.

chi2inv(0.95,12-1-1)

ans =
 18.3070

The critical χ2 of 18.3070 is well below the measured χ2 of 94.4000.
Therefore, we reject the null hypothesis and conclude that our data do not
follow a uniform distribution, i.e., they are not randomly distributed.

10.6 Test for the Signifi cance of a Mean Direction

Having measured a set of directional data in the fi eld, we wish to know
whether there is a prevailing direction documented in the data. We use the
Rayleigh’s test for the signifi cance of a mean direction. This test uses the
mean resultant length introduced in Chapter 10.3, which increases with a
more signifi cant preferred direction.

The data show a preferred direction if the calculated mean resultant length
is below the critical value (Mardia 1972). As an example, we load the data
contained in fi le directional_1.txt again.

clear
data_degrees_1 = load('directional_1.txt');
data_radians_1 = pi*data_degrees_1/180;

We calculate the mean resultant vector Rm.

x_1 = sum(sin(data_radians_1));
y_1 = sum(cos(data_radians_1));

mean_radians_1 = atan(x_1/y_1);
mean_degrees_1 = 180*mean_radians_1/pi;
mean_degrees_1 = mean_degrees_1 + 180;

Rm_1 = 1/length(data_degrees_1) .*(x_1.^2+y_1.^2).^0.5

Rm_1 =
 0.8897

10.7 Test for the Difference of Two Sets of Directions 273

The mean resultant length in our example is 0.8897. The critical Rm (α = 0.05,
n = 40) is 0.27 (Table 10.1 from Mardia 1972). Since this value is lower than
the Rm from the data, we reject the null hypothesis and conclude that there
is a preferred single direction, which is

theta_1 = 180 * atan(x_1/y_1) / pi

theta_1 =
 43.1731

The negative signs of the sine and cosine, however, suggest that the true
result is in the third sector (180–270°) and, therefore, the correct result is
180+43.1731 = 223.1731.

10.7 Test for the Difference of Two Sets of Directions

Let us consider two sets of measurements in two fi les directional_1.txt and
directional_2.txt. We wish to compare the two sets of directions and test the
hypothesis that these are signifi cantly different. The test statistic for testing
equality of two mean directions is the F-statistic (Chapter 3.7)

where κ is the concentration parameter, RA and RB are the resultant of
samples A and B, respectively, and RT is the resultant of the combined
samples. The concentration parameter can be obtained from tables using
RT (Batschelet 1965, Gumbel et al. 1953, Table 10.2). The calculated F is
compared with critical values from the standard F tables. The two mean
directions are not signifi cantly different if the measured F-value is lower
than the critical F-value, which depends on the degrees of freedom Φ a=1
and Φ b=N–1, and the signifi cance level α . Both samples must follow a von
Mises distribution (Chapter 10.4).

We use two synthetic data sets of directional data to illustrate the applica-
tion of this test. We load the data and convert these to radians.

clear
data_degrees_1 = load('directional_1.txt');
data_degrees_2 = load('directional_2.txt');

274 10 Statistics on Directional Data

Level of Signifi cance, α
N 0.100 0.050 0.025 0.010 0.001

5 0.677 0.754 0.816 0.879 0.991
6 0.618 0.690 0.753 0.825 0.940
7 0.572 0.642 0.702 0.771 0.891
8 0.535 0.602 0.660 0.725 0.847
9 0.504 0.569 0.624 0.687 0.808

10 0.478 0.540 0.594 0.655 0.775
11 0.456 0.516 0.567 0.627 0.743
12 0.437 0.494 0.544 0.602 0.716
13 0.420 0.475 0.524 0.580 0.692
14 0.405 0.458 0.505 0.560 0.669

15 0.391 0.443 0.489 0.542 0.649
16 0.379 0.429 0.474 0.525 0.630
17 0.367 0.417 0.460 0.510 0.613
18 0.357 0.405 0.447 0.496 0.597
19 0.348 0.394 0.436 0.484 0.583

20 0.339 0.385 0.425 0.472 0.569
21 0.331 0.375 0.415 0.461 0.556
22 0.323 0.367 0.405 0.451 0.544
23 0.316 0.359 0.397 0.441 0.533
24 0.309 0.351 0.389 0.432 0.522

25 0.303 0.344 0.381 0.423 0.512
30 0.277 0.315 0.348 0.387 0.470
35 0.256 0.292 0.323 0.359 0.436
40 0.240 0.273 0.302 0.336 0.409
45 0.226 0.257 0.285 0.318 0.386

50 0.214 0.244 0.270 0.301 0.367
100 0.150 0.170 0.190 0.210 0.260

data_radians_1 = pi*data_degrees_1/180;
data_radians_2 = pi*data_degrees_2/180;

We compute the length of resultant vectors.

x_1 = sum(sin(data_radians_1));

Table 10.1 Critical values of mean resultant length for Rayleigh’s test for the signifi cance of
a mean direction of N samples (Mardia 1972).

10.7 Test for the Difference of Two Sets of Directions 275

y_1 = sum(cos(data_radians_1));
x_2 = sum(sin(data_radians_2));
y_2 = sum(cos(data_radians_2));

mean_radians_1 = atan(x_1/y_1);
mean_degrees_1 = 180*mean_radians_1/pi;
mean_radians_2 = atan(x_2/y_2);
mean_degrees_2 = 180*mean_radians_2/pi;

mean_degrees_1 = mean_degrees_1 + 180
mean_degrees_2 = mean_degrees_2 + 180

mean_degrees_1 =
 223.1731

mean_degrees_2 =
 200.8098

R_1 = sqrt(x_1^2 + y_1^2);
R_2 = sqrt(x_2^2 + y_2^2);

The orientation of resultant vectors is ca. 223° and 201°. Now, we also need
the resultant length of both samples, so we combine both data sets and com-
pute the resultant length again.

data_radians_T = [data_radians_1;data_radians_2];

x_T = sum(sin(data_radians_T));
y_T = sum(cos(data_radians_T));

mean_radians_T = atan(x_T/y_T);
mean_degrees_T = 180*mean_radians_T/pi;

mean_degrees_T = mean_degrees_T + 180;

R_T = sqrt(x_T^2 + y_T^2)
Rm_T = R_T / (length(data_radians_T))

R_T =
 69.4941

Rm_T =
 0.8687

We apply the test statistic to the data for kappa=3.91072 for Rm_T= 0.8687
(Table 10.2). The computed value for F is

n = length(data_radians_T);

F = (1+3/(8*2.07685)) * (((n-2)*(R_1+R_2-R_T))/(n-R_1-R_2))

F =
 13.5160

276 10 Statistics on Directional Data

R κ R κ R κ R κ
0.000 0.000 0.260 0.539 0.520 1.224 0.780 2.646

0.010 0.020 0.270 0.561 0.530 1.257 0.790 2.754

0.020 0.040 0.280 0.584 0.540 1.291 0.800 2.871

0.030 0.060 0.290 0.606 0.550 1.326 0.810 3.000

0.040 0.080 0.300 0.629 0.560 1.362 0.820 3.143

0.050 0.100 0.310 0.652 0.570 1.398 0.830 3.301

0.060 0.120 0.320 0.676 0.580 1.436 0.840 3.479

0.070 0.140 0.330 0.700 0.590 1.475 0.850 3.680

0.080 0.161 0.340 0.724 0.600 1.516 0.860 3.911

0.090 0.181 0.350 0.748 0.610 1.557 0.870 4.177

0.100 0.201 0.360 0.772 0.620 1.600 0.880 4.489

0.110 0.221 0.370 0.797 0.630 1.645 0.890 4.859

0.120 0.242 0.380 0.823 0.640 1.691 0.900 5.305

0.130 0.262 0.390 0.848 0.650 1.740 0.910 5.852

0.140 0.283 0.400 0.874 0.660 1.790 0.920 6.539

0.150 0.303 0.410 0.900 0.670 1.842 0.930 7.426

0.160 0.324 0.420 0.927 0.680 1.896 0.940 8.610

0.170 0.345 0.430 0.954 0.690 1.954 0.950 10.272

0.180 0.366 0.440 0.982 0.700 2.014 0.960 12.766

0.190 0.387 0.450 1.010 0.710 2.077 0.970 16.927

0.200 0.408 0.460 1.039 0.720 2.144 0.980 25.252

0.210 0.430 0.470 1.068 0.730 2.214 0.990 50.242

0.220 0.451 0.480 1.098 0.740 2.289 0.995 100.000

0.230 0.473 0.490 1.128 0.750 2.369 0.999 500.000

0.240 0.495 0.500 1.159 0.760 2.455 1.000

0.250 0.516 0.510 1.191 0.770 2.547

Table 10.2 Maximum likelihood estimates of concentration parameter κ for calculated
mean resultant length (adapted from Batschelet, 1965 and Gumbel et al., 1953).

Recommended Reading 277

Using the F statistic, we fi nd that for 1, 80 –2 degrees of freedom and
α = 0.05, the critical value is

finv(0.95,1,78)

ans =
 3.9635

which is well below the observed value of F=13.5160. Therefore, we reject
the null hypothesis and conclude that the two samples could have not been
drawn from populations with the same mean direction.

Recommended Reading

Batschelet E (1965) Statistical Methods for the Analysis of Problems in Animal Orientation
and Certain Biological Rhythms. American Institute of Biological Sciences Monograph,
Washington, D.C.

Borradaile G (2003) Statistics of Earth Science Data – Their Distribution in Time, Space
and Orientation. Springer, Berlin Heidelberg New York

Davis JC (2002) Statistics and Data Analysis in Geology, Third Edition. John Wiley and
Sons, New York

Gumbel EJ, Greenwood JA, Durand D (1953) The Circular Normal Distribution: Tables
and Theory. Journal of the American Statistical Association 48:131–152

Mardia KV (1972) Statistics of Directional Data. Academic Press, London
Middleton GV (1999) Data Analysis in the Earth Sciences Using MATLAB. Prentice Hall,

New Jersey
Swan ARH, Sandilands M (1995) Introduction to geological data analysis. Blackwell

Sciences, Oxford

General Index

A

accessible population 2
adaptive fi ltering 157
addition 18
Aitchisons log-ratio transformation

259
alternative hypothesis 51
amplitude 85, 148
analog fi lter 133
analysis of residuals 72
angle 264
angular data 267
angular measurement 267
anisotropy 217
ans 15, 23
answer 15
arithmetic mean 31, 177
array 15, 18
artifi cial fi lter 134
ASCII 19
aspect 195, 197
ASTER 236
asterisk 18
autocorrelation 89
autocovariance 89
autoscaling 249, 259
autospectral analysis 89
available population 2
axesm 168
axis 27, 65
azimuth 265

B

bandpass fi lter 155
bandstop fi lter 155
bar plot 26
bars 26
Bartlett 90
bathymetry 168
Bernoulli distribution 43
Bessel function 269
besseli 270
bilinear interpolation 183
bimodal 32
binary digits 19
binomial distribution 43
bits 19, 227
bivariate analysis 61
Blackman-Tukey method 90
blank 15
blind source separation 253
block kriging 222
BMP 230
bootstrap 66, 74
bootstrp 66
box and whisker plot 38
boxplot 38
butter 154
Butterworth fi lter 154
bytes 16, 227

280 General Index

C

canc 159
capital letters 16
case sensitive 16
causal 139
causal indexing 143
causality 137
central tendency 30
chaotic system 123
Chi-squared distribution 49
Chi-squared-test 56, 189, 192, 271
chi2inv 58, 74
circshift 199
circular and spherical data 263
circular normal distribution 269
circular statistics 263
circular variance 268
clabel 180
class 16
classes 30
classical regression 68
classical variogram 209
clear 16
closed data 6
cluster analysis 246, 257
clustered sampling 4
clustering 194
coastline vector 166
cocktail party problem 253
coherence 96
colon operator 17
colorbar 170, 175
colormap 172, 182, 233
colormap editor 109
column 15
comma 15
Command History 12, 13
Command Window 12, 13

comment 20
comment line 23
comments 23
concentration parameter 269
confi dence interval 71, 80
confi dence testing 71
continuity 135
contour 180
contourf 181
contouring 176
Control-C 17
control points 176
conv 139, 140, 141
convolution 139
cophenet correlation coeffi cient 260
corrcoef 65
corrected sum of products 64
correlation coeffi cient 62, 250
correlation matrix 249
correlation similarity coeffi cient 257
covariance 64
cp2tform 240
cpsd 96
crosscorrelation 95
crosscovariance 95
Crossspectral analysis 95
crossspectrum 95
cross validation 77
Ctrl-C 17
cubic-spline interpolation 99
cubic polynomial splines 178
cumulative distribution function 41, 50
cumulative histogram 30
Current Directory 12, 13
curvilinear regression 79
cutoff frequency 154
cwt 116

General Index 281

D

Daubechies 115
degrees of freedom 33, 48
Delauney triangulation 177
DEM 171
demcmap 196
dendrogram 260
dependent variable 61, 68
descriptive statistics 29
difference equation 143
digital elevation model 171, 195
digital fi lter 133
digitizing 165, 241
dilation 115
dimension 16
directional data 6, 263
directional data sensu stricto 263
directional variograms 218
dispersion 30, 34
display 25
disttool 51
divergent fl ow 201
dots per inch 229
dpi 229
drift 206
DTEM 171

E

edge effect 185
edit 13
Edit Mode 27
Editor 12, 13, 20
Edit Plot 26
element-by-element 18
elevation 265
ellipsis 71

embedding dimension 123
empirical distribution 29, 41
Encapsulated PostScript 230
end 21, 22
EPS 230
error bounds 71
ETOPO2 168
Euclidian distance 257
Evolutionary Blackman-Tukey

powerspectrum 104
expected frequencies 58
experimental variogram 209
export data 19
exposure 195

F

F-statistic 273
F-test 53
factor analysis 246
Fast Fourier Transformation 90
F distribution 48
fi eld 71
Figure 25
Figure Window 25, 26
File 14
File menu 26, 28
fi lter 133, 139, 141, 154
fi lter2 196
fi lter design 153
fi lter weights 139, 157
fi ltfi lt 139, 154
fi nd 38, 174
fi nite differences 196
fi nv 55
fl ow accumulation 199
for 21
Fourier transform 145
frequency 85, 89

282 General Index

frequency-selective fi lter 155, 134
frequency characteristics 154
frequency distribution 30
frequency domain 145
frequency response 148, 155
freqz 150
function 21, 23, 24

G

Gamma function 49
gaps 20
gaussian distribution 45
gaussian noise 154
general shape 30
Generate M-File 26, 28
geometric anisotropy 218
geometric mean 32
georeferencing 239
geostatistics 177, 206
ginput 242
global trends 206
goodness-of-fi t 71, 78
gradient 195
gradientm 197
graph3d 182
graphical user interface 50
graphics functions 25
grayscale image 227
grid 27
griddata 179, 183
gridding 165, 176
grid points 176
GSHHS 166
GTOPO30 171
GUI 50

H

Haar 115
Hamming 90
Hanning 90
harmonic mean 32
HDF 239
help 24
highest frequency 111
highpass fi lter 155
hist 36
hist3 188
histogram 30
History 12
hold 26
hypothesis 51
hypothesis testing 29
hypothetical population 2

I

if 21, 22
image processing 225
image 225
imagesc 260
imfi nfo 233
imhist 233
import data 19
impulse response 145, 146
imshow 232
imwrite 233
independent component analysis

 246, 253
independent frequencies 110
independent variable 61, 68
indexed color image 233
indexing 17
inner-product similarity index 258

General Index 283

inner product 18
input 23
input signal 133
Insert Legend 27
intensity image 228
intensity values 228
interp1 101
Interpolation 99
interpolation artifacts 183
interpolation techniques 99
interval data 6
invertibility 137
iterations 160

J

jackknife 66, 75
Joint Photographic Experts Group 231
JPEG 231

K

K-means clustering 258
K-nearest-neighbors clustering 258
Kriging 177, 206
kriging variance 219
kurtosis 35, 39

L

lag distance 210
lag tolerance 218
lag width 218
least-mean-squares algorithm 158
length 54
linear interpolation 99
linear kriging system 219

linear regression 69
linear regression 68
linear system 136
linear time-invariant fi lter 144
linear time-invariant systems 138
linear transformation 18
linear trend 64, 70
linkage 260
LINUX 13
LMS algorithm 158
load 20
loads 248
local neighborhood 196
local trends 206
log-ratio transformation 259
logarithmic normal distribution 46
lognormal kriging 209
Lomb-Scargle algorithm 109
Lorenz system 121
lower-case letters 16
lowpass fi lter 154
LTI systems 138

M

M-fi les 21
Macintosh OS X 13
magnitude response 148
Manhattan distance 257
MAT-fi les 21
matrix 15
matrix division 18
matrix element 16
matrix indexing 17
matrix multiplication 18
max 37
mean 30, 37, 45
mean-squared error 158
mean centering 249, 259

284 General Index

mean direction 267, 268, 269
mean resultant length 267
median 30, 31, 38
mesh 181
meshgrid 171, 174
Microsoft Windows 13
Microsoft Windows Bitmap Format

230
min 37
minput 242
missing data 20
mixing matrix 255
mode 32
monitor 229
Morlet 115
mother wavelet 114
mscohere 97
multi-parameter methods 245
multimodal 32
multiplication 18
multiplying element-by-element 18
multivariate analysis 245
multivariate data set 245

N

NaN 20, 169
nanmean 39
natural fi lter 133
nearest-neighbor criterion 176, 193
nested model 215
noise 133, 157
nominal data 3
non-causal fi lter 139
nonlinear system 136
Nonlinear Time-Series Analysis 119
nonrecursive fi lter 143
normal distribution 45
normalizing 57

normcdf 51
normpdf 51
Not-a-Number 20, 169
nugget effect 215
nuggets 215
null hypothesis 51
Nyquist frequency 85, 111, 154

O

objective variogram modeling 216
observed frequencies 58
omni directional variograms 217
optimization problem 158
order of the fi lter 139
ordinal data 3
ordinary point kriging 218
oriented data 263
outlier 66
output 23
output signal 133
oversampling parameter 111

P

paired low and high 185
paleocurrent direction 264
passband fi lter 154
path 14
pathdef 14
pcolor 181, 196
pdist 194, 259
Pearsons correlation coeffi cient 62, 250
percentiles 32
percent sign 20
periodic component 85
periodogram 91, 145
phase 148

General Index 285

phase angle 85
phase relationship 96
phase shift 146
phase space portrait 120
phase space trajectory 120
picture element 226
pixels 226
pixels per inch 229
plan 197
plot 25
point distribution 188
point kriging 222
Poisson distribution 44
polyfi t 70
polytool 71
polyval 71
population 1, 29
Portable Document Format 231
position 115
PostScript 230
power of matrices 18
powerspectral density 90
ppi 229
prctile 38
predicted values 72
prediction error 78
predictor variable 68
primary input 158
principal component analysis 246
principal component loads 248
principal components 247
principal component scores 248
princomp 248, 249
print 240
probability density function 41, 50
profi le 197
Property Editor 27
PS 230

Q

quantiles 32
quartiles 32
quintiles 32

R

randn 65
randomness 194
random noise 85
random numbers 50
random sampling 4
randtool 50
range 30, 33, 37, 213
raster data 165, 225, 226
ratio data 6
realization 133
rectangular distribution 42
recurrence plots 119, 125
recursive fi lter 143
reduced major axis regression 69, 78
reduction of dimensionality 246
reference input 158
regionalized variables 206
regression coeffi cient 69
regressor variable 68
regularity 194
regular sampling 4
resampling schemes 66
residuals 72
resolution 229
resulting length 267
return 15
RGB 228, 232
RGB composite 238
RMA regression 78
rolling die 43

286 General Index

rose 265
rose diagram 264
Rotate 3D 27
row 15
running mean 150

S

sample 1, 29
sample size 2, 217
sampling design 217
sampling frequencies 84
sampling interval 84
sampling scheme 2
satellite images 236
saturation 204
save 20
Save as 26, 28
scal2frq 116
scalar 15
scale 115, 116
scaling 57
scatter plot 70
scores 248
scripts 21
search path 14
semicolon 15
semivariance 209, 210
semivariogram 210
separated components 255
separation distance 218
separation vector 209
Set Path 14
shading 170, 174
shape 30, 34
shoreline data 166
short-time Fourier transform 104
Shuttle Radar Topography Mission 173
signal 157

signal processing 133
Signal Processing Tool 104
signifi cance 66
signifi cance level 51
sill 213
similarity coeffi cient 257
similarity index 258
size 22
skewness 35, 39
slope 195
Solaris 13
spatial data 6
spatially-distributed data 165
spatial sampling scheme 2
spectral leakage 90
spectrogram 108
splines 178
splines with tension 187
square brackets 15
squareform 194, 260
SRTM 173, 195
standard deviation 30, 33, 45
standard normal distribution 45
statistical signifi cance 66
std 39
stem 147
step function 135
stopband 154
store data 19
stream power index 204
structures 71
Students t distribution 47
subplot 26
subtraction 18
sum 15
SUN Solaris 13
superposition 136
surf 171, 182
surface estimation 176
surfc 182

General Index 287

surrogates 66
system theory 133

T

t-test 51
Tagged Image File Format 230
tangential curvature 197
t distribution 47
TERRA-ASTER satellite image 231
Text Editor 12, 13, 20, 21
tform 240
theoretical distribution 29, 41
theory of regionalized variables 206
TIFF 230
time-series analysis 83
time delay 123
time delay embedding 120
time domain 145
time invariance 136
time series 15, 84
title 27
Tools menu 26
topography 168
translation 115
transpose 18
trend 85
triangulation 176
trimodal 32
true color image 229
tsplines 187
ttest2 52

U

uint8 232
Unevenly-Spaced Data 99
unevenly-spaced data 99, 109

uniform distribution 42
uniformity 194
uniform sampling 4
unimodal 32
unit impulse 135, 146
univariate analysis 29
UNIX 13
unwrap 151
user 14
username 14

V

var 39
variables 16
variance 33
variogram 206
variogram cloud 210
variogram estimator 209, 211
variogram model 213
variography 209
vector data 165, 225, 226
vectors 15
visualization 25
von Mises distribution 263, 269

W

watershed 198
watersheds 198
wavelength 89
wavelet 114
Wavelet Powerspectrum 114,115
wavelet transform 114
weighted mean 178
Welch spectral analysis 91
wetness index 203
whitening 253

288 General Index

whos 16, 17
windowed Blackman-Tukey

power-spectrum 104
windowing 90
Workspace 12, 13
workspace 15

X

xlabel 27

Y

ylabel 27

Z

z distribution 46
zonal anisotropy 218
Zoom 27

Printing: Krips bv, Meppel
Binding: Stürtz, Würzburg

	cover-image-large.jpg
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf

