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Preface

The book MATLAB Recipes for Earth Sciences is designed to help under-
graduate and PhD students, postdocs, and professionals to fi nd quick solu-
tions for common problems in data analysis in earth sciences. The book 
provides a minimum amount of theoretical background, but then tries to 
teach the application of all methods by examples. The software MATLAB 
is used since it provides numerous ready-to-use algorithms for most meth-
ods of data analysis, but also gives the opportunity to modify and expand 
the existing routines and even develop new software. The book contains 
MATLAB scripts to solve typical problems in earth sciences, such as sim-
ple statistics, time-series analysis, geostatistics and image processing. The 
book comes with a compact disk, which contains all MATLAB recipes and 
example data fi les. The MATLAB codes can be easily modifi ed to be ap-
plied to the reader’s data and projects.

The revised and updated Second Edition includes new subchapters on 
evolutionary Blackman-Tukey, Lomb-Scargle and Wavelet powerspectral 
analyses (Chapters 5.6 – 5.8), statistical analysis of point distributions and 
digital elevation models (Chapters 7.9 and 7.10), and a new chapter on the 
statistical analysis of directional data (Chapter 10). Whereas undergradu-
ates participating in a course on data analysis might go through the entire 
book, the more experienced reader will use only one particular method to 
solve a specifi c problem. To facilitate the use of this book for the various 
readers, I outline the concept of the book and the contents of its chapters.

Chapter 1 – This chapter introduces some fundamental concepts of samples 
and populations. It also links the various types of data and questions to 
be answered from the data to the methods described in the following 
chapters.

Chapter 2 – A tutorial-style introduction to MATLAB designed for earth 
scientists. Readers already familiar with the software are advised to pro-
ceed directly to the following chapters.
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Chapter 3 and 4 – Fundamentals in univariate and bivariate statistics. These 
two chapters contain basic concepts in statistics. The text also introduces 
advanced topics such as resampling schemes and cross validation. The 
reader already familiar with basic statistics might skip these two chap-
ters.

Chapter 5 and 6 – Readers who wish to work with time series are recom-
mended to read both chapters. Time-series analysis and signal processing 
are tightly linked. A solid knowledge of statistics is required to success-
fully work with these methods. However, the two chapters are indepen-
dent of the previous chapters. The Second Edition of this book includes 
new subchapters on evolutionary Blackman-Tukey, Lomb-Scargle and 
Wavelet powerspectral analyses.

Chapter 7 and 8 – The second pair of chapters. I recommend to read both 
chapters since the methods of processing spatial data and images have 
many similarities. Moreover, spatial data and images are often combined 
in earth sciences, for instance while projecting satellite images upon dig-
ital elevation models. The Second Edition contains two new subchapters 
on the statistics of point distributions and on the analysis of digital eleva-
tion models.

Chapter 9 – Data sets in earth sciences often have many variables and data 
points. Multivariate methods are applied to a great variety of types of 
large data sets, including satellite images. The reader particularly inter-
ested in multivariate methods is advised to read Chapters 3 and 4 before 
proceeding to this chapter.

Chapter 10 – Methods to analyze circular and spherical data are widely used 
in earth sciences. Structural geologists measure and analyze the orienta-
tion of slickenlines (or striae) on a fault plane. The statistical analysis of 
circular data is also used in paleomagnetic applications. Microstructural 
investigations include the analysis of the grain shapes and quartz c-axis 
orientation in thin sections. This new chapter for the Second Edition is on 
the application of methods introduced in Chapter 3 to directional data.

The book has benefi t from the comments of many colleagues and students, 
namely Robin Gebbers, Matthias Gerber, Mathis Hain, Martin Homann, 
Stefanie von Lonski, Norbert Marwan, Ira Ojala, Lydia Olaka, Oliver Rach, 
Jim Renwick, Jochen Rössler, Rolf Romer, Annette Witt and Max Zitzmann. 
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2 Introduction to MATLAB

2.1 MATLAB in Earth Sciences

MATLAB® is a software package developed by The MathWorks Inc. 
(http://www.mathworks.com) founded by Cleve Moler and Jack Little 
in 1984 and headquartered in Natick, Massachusetts. MATLAB was 
designed to perform mathematical calculations, to analyze and visualize 
data, and write new software programs. The advantage of this software 
is the combination of comprehensive math and graphics functions with a 
powerful high-level language. Since MATLAB contains a large library 
of ready-to-use routines for a wide range of applications, the user can 
solve technical computing problems much faster than with traditional 
programming languages, such as C++ and FORTRAN. The standard 
library of functions can be signifi cantly expanded by add-on toolboxes, 
which are collections of functions for special purposes such as image 
processing, building map displays, performing geospatial data analysis 
or solving partial differential equations.

During the last few years, MATLAB has become an increasingly popu-
lar tool in earth sciences. It has been used for fi nite element modeling, the 
processing of seismic data and satellite images as well as the generation of 
digital elevation models from satellite images. The continuing popularity 
of the software is also apparent in the scientifi c reference literature. Many 
conference presentations and scientifi c publications have made reference 
to MATLAB. Universities and research institutions have also recognized 
the need for MATLAB training for staff and students. Many earth science 
departments across the world now offer MATLAB courses for undergradu-
ates. Similarly, The MathWorks Inc. provides classroom kits for teachers 
at a reasonable price. It is also possible for students to purchase a low-cost 
edition of the software. This student version provides an inexpensive way 
for students to improve their MATLAB skills.

The following Chapters 2.2 to 2.7 contain a tutorial-style introduction 
to the software MATLAB, to the setup on the computer (Chapter 2.2), 
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the syntax (2.3), data input and output (2.4 and 2.5), programming (2.6), 
and visualization (2.7). It is recommended to go through the entire chap-
ter in order to obtain a solid knowledge in the software before proceeding 
to the following chapter. A more detailed introduction is provided by the 
MATLAB User’s Guide (The MathWorks 2006). The book uses MATLAB 
Version 7.4 (Release 2007a), the Image Processing Toolbox Version 5.4, the 
Mapping Toolbox Version 2.5, the Signal Processing Toolbox Version 6.7, 
the Statistics Toolbox Version 6.0 and the Wavelet Toolbox Version 4.0.

2.2 Getting Started

The software package comes with extensive documentation, tutorials and 
examples. The fi rst three chapters of the book Getting Started with MATLAB 
by The MathWorks, which is available printed, online and as PDF fi le is di-
rected to the beginner. The chapters on programming, creating graphical 
user interfaces (GUI) and development environments are for the advanced 
users. Since Getting Started with MATLAB mediates all required knowledge 
to use the software, the following introduction concentrates on the most rel-
evant software components and tools used in the following chapters.

After the installation of MATLAB on a hard disk or on a server, we launch 
the software either by clicking the shortcut icon on the desktop or by typing

matlab

at the operating system prompt. The software comes up with several window 
panels (Fig. 2.1). The default desktop layout includes the  Current Directory
panel that lists the fi les in the directory currently used. The  Workspace
panel lists the variables in the MATLAB workspace, which is empty af-
ter starting a new software session. The  Command Window presents the 
interface between the software and the user, i.e., it accepts MATLAB com-
mands typed after a prompt, >>. The  Command  History records all opera-
tions once typed in the Command Window and enables the user to recall 
these. The book mainly uses the Command Window and the built-in  Text 
 Editor that can be called by

edit

Before using MATLAB we have to (1) create a personal working direc-
tory where to store our MATLAB-related fi les, (2) add this directory to the 
MATLAB search path and (3) change into it to make this the current work-
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ing directory. The current working directory is the directory in which the 
software is installed, for instance, c:/MATLAB74 on a personal computer 
running  Microsoft Windows and /Applications/MATLAB74 on an Apple 
computer running  Macintosh OS X. On the  UNIX-based   SUN Solaris op-
erating system and on a  LINUX system, the current working directory is 
the directory from which MATLAB has been launched. The command

pwd

prints the current working directory. Since you may have read-only permis-
sions in this directory in a multi-user environment, you should change into 
your own home directory by typing

cd 'c:\Documents and Settings\username\My Documents'

after the prompt on a Windows system and

Fig. 2.1 Screenshot of the MATLAB default desktop layout including the  Current Directory 
and Workspace panels (upper left), the Command History (lower left) and  Command Window
(right). This book only uses the Command Window and the built-in  Text  Editor, which can 
be called by typing  edit after the prompt. All information provided by the other panels can 
also be accessed through the Command Window.
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cd /users/username

or

cd /home/username

if you are  username on a UNIX or LINUX system. You create a personal 
working directory by typing 

mkdir mywork

The software uses a  search  path to fi nd MATLAB-related fi les, which are 
organized in directories on the hard disk. The default search path includes 
only the MATLAB directory that has been created by the installer in the 
applications folder. To see which directories are in the search path or to add 
new directories, select  Set Path from the  File menu, and use the Set Path
dialog box. Alternatively, the command

path

prints the complete list of directories in the search path. We add our per-
sonal working directory to this list by typing

path(path,'c:\Documents and Settings\user\My Documents\MyWork')

on a Windows machine assuming that you are  user, you are working on
Hard Disk C and your personal working directory is named MyWork. On a 
UNIX or LINUX computer the command

path(path,'/users/username/mywork')

is used instead. This command can be used whenever more working di-
rectories or toolboxes have to be added to the search path. Finally, you can 
change into the new directory by typing

cd mywork

making it the current working directory. The command

what

lists all MATLAB-related fi les in this directory. The modifi ed search path 
is saved in a fi le  pathdef.m in your home directory. In a future session, the 
software reads the contents of this fi le and makes MATLAB to use your 
custom path list.
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2.3 The Syntax

The name MATLAB stands for matrix laboratory. The classic object han-
dled by MATLAB is a  matrix, i.e., a rectangular two-dimensional  array 
of numbers. A simple 1-by-1 matrix is a  scalar. Matrices with one  column 
or  row are  vectors,  time series and other one-dimensional data fi elds. An 
m-by-n matrix can be used for a digital elevation model or a grayscale im-
age. RGB color images are usually stored as three-dimensional arrays, i.e., 
the colors red, green and blue are represented by an m-by-n-by-3 array.

Entering matrices in MATLAB is easy. To enter an arbitrary matrix, type

A = [2 4 3 7; 9 3 -1 2; 1 9 3 7; 6 6 3 -2]

after the prompt, which fi rst defi nes a variable A, then lists the elements of 
the matrix in  square brackets. The rows of A are separated by  semicolons, 
whereas the elements of a row are separated by  blanks, or, alternatively, by 
 commas. After pressing  return, MATLAB displays the matrix

A =
    2  4  3  7
    9  3 -1  2
    1  9  3  7
    6  6  3 -2

Displaying the elements of A could be problematic in case of very large 
matrices, such as digital elevation models consisting of thousands or mil-
lions of elements. You should end the line with a semicolon to suppress the 
display of a matrix or the result of an operation in general.

A = [2 4 3 7; 9 3 -1 2; 1 9 3 7; 6 6 3 -2];

The matrix A is now stored in the  workspace and we can do some basic 
operations with it, such as computing the  sum of elements,

sum(A)

which results in the display of

ans =
    18  22  8  14

Since we did not specify an output variable, such as A for the matrix entered 
above, MATLAB uses a default variable ans, short for  answer, to store the 
results of the calculation. In general, we should defi ne variables since the next 
computation without a new variable name overwrites the contents of ans.
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The above example illustrates another important point about MATLAB. 
Obviously the result of sum(A)are the four sums of the elements in the four col-
umns of A. The software prefers working with the columns of matrices. If you 
wish to sum all elements of A and store the result in a scalar b, you simply type

b = sum(sum(A));

which fi rst sums the columns of the matrix and then the elements of the re-
sulting vector. Now we have two variables A and b stored in the workspace. 
We can easily check this by typing

 whos

which is one the most frequently-used MATLAB commands. The software 
lists all variables in the workspace with information about their  dimension, 
 bytes and  class.

Name      Size            Bytes  Class     Attributes
A         4x4               128  double
ans       1x4                32  double
b         1x1                 8  double

Note that by default MATLAB is  case sensitive, i.e., two different  variables 
A and a can be defi ned. In this context, it is recommended to use  capital 
letters for matrices and  lower-case letters for vectors and scalars. You could 
now delete the contents of the variable ans by typing

 clear ans

Next, we learn how specifi c matrix elements can be accessed or exchanged. 
Typing

A(3,2)

simply returns the matrix element located in the third row and second col-
umn. The matrix indexing therefore follows the rule (row, column). We 
can use this to access single or several  matrix elements. As an example, we 
type 

A(3,2) = 30

to replace the element A(3,2) and to display the entire matrix.

A =
     2     4     3     7
     9     3    -1     2
     1    30     3     7
     6     6     3    -2
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If you wish to replace several elements at one time, you can use the colon  
operator. Typing

A(3,1:4) = [1 3 3 5];

replaces all elements of the third row of the matrix A. The  colon operator is 
used for several other things in MATLAB, for instance as an abbreviation 
for entering matrix elements such as

c = 0 : 10

which creates a row vector containing all integers from 0 to 10. The cor-
responding MATLAB response is

c =
    0 1 2 3 4 5 6 7 8 9 10

Note that this statement creates 11 elements, i.e., the integers from 1 to 10 
and the zero. A common error while   indexing matrices is the ignorance of 
the zero and therefore expecting 10 instead of 11 elements in our example. 
We can check this from the output of  whos.

Name      Size            Bytes  Class     Attributes
A         4x4               128  double
ans       1x1                 8  double
b         1x1                 8  double
c         1x11               88  double

The above command creates only integers, i.e., the interval between the 
vector elements is one. However, an arbitrary interval can be defi ned, for 
example 0.5. This is later used to create evenly-spaced time axes for time 
series analysis.

c = 1 : 0.5 : 10;

c =
  Columns 1 through 6 
    1.0000    1.5000    2.0000    2.5000    3.0000    3.5000
  Columns 7 through 12 
    4.0000    4.5000    5.0000    5.5000    6.0000    6.5000
  Columns 13 through 18 
    7.0000    7.5000    8.0000    8.5000    9.0000    9.5000
  Column 19 
   10.0000

The display of the values of a variable can be interrupted by pressing  Ctrl-C
(Control-C) on the keyboard. This interruption affects only the output in 
the Command Window, whereas the actual command is processed before 
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displaying the result.
MATLAB provides standard arithmetic operators for  addition, +, and 

 subtraction, -. The  asterisk, *, denotes  matrix  multiplication involving  in-
ner products between rows and columns. For instance, we multiply the ma-
trix A with a new matrix B.

B = [4 2 6 5; 7 8 5 6; 2 1 -8 -9; 3 1 2 3];

The matrix  multiplication then is

C = A * B'

where ' is the complex conjugate  transpose, i.e, turning rows into columns 
and columns into rows. This generates the output

C =
    69   103   -79    37
    46    94    11    34
    75   136   -76    39
    44    93    12    24

In linear algebra, matrices are used to keep track of the coeffi cients of  linear 
transformations. The multiplication of two matrices represents the combina-
tion of two linear transformations to one single transformation. Matrix mul-
tiplication is not commutative, i.e., A*B' and B*A' yield different results in 
most cases. Accordingly, MATLAB provides  matrix divisions, right, /, and 
left, \, representing different transformations. Finally, the software allows 
 power of matrices, ^.

In earth sciences, however, matrices are often simply used as two-di-
mensional  arrays of numerical data instead of an array representing a linear 
transformation. Arithmetic operations on such arrays are done element-by-
element. Whereas this does not make any difference in addition and sub-
traction, the multiplicative operations are different. MATLAB uses a dot as 
part of the notation for these operations.

For instance,  multiplying A and B  element-by-element is performed by 
typing

C = A .* B

which generates the output

C =
     8     8    18    35
    63    24    -5    12
     2     3   -24   -45
    18     6     6    -6
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2.4 Data Storage

This chapter is on how to  store,  import and  export data with MATLAB. In 
earth sciences, data are collected in a great variety of formats, which often 
have to be converted before being analyzed with MATLAB. On the other 
hand, the software provides several import routines to read many binary 
data formats in earth sciences, such as the formats used to store digital el-
evation models and satellite data.

A computer generally stores data as  binary digits or bits. A bit is analo-
gous to a two-way switch with two states, on = 1 and off = 0. The bits 
are joined to larger groups, such as bytes consisting of 8 bits, to store 
more complex types of data. Such groups of bits are then used to en-
code data, e.g., numbers or characters. Unfortunately, different computer 
systems and software use different schemes for encoding data. For in-
stance, the representation of text using the widely-used text processing 
software Microsoft Word is different from characters written in Word 
Perfect. Exchanging binary data therefore is diffi cult if the various users 
use different computer platforms and software. Binary data can be stored 
in relatively small fi les in case that both partners use similar systems of 
data exchange. The transfer rate of binary data is generally faster com-
pared to the exchange of other fi le formats.

Various formats for exchanging data have been developed in the last 
decades. The classic example for the establishment of a data format that 
can be used on different computer platforms and software is the American 
Standard Code for Information Interchange  (ASCII) that was fi rst pub-
lished in 1963 by the American Standards Association (ASA). ASCII as a 
7-bit code consists of 27=128 characters (codes 0 to 127). Whereas ASCII-
1963 was lacking lower-case letters, in the update ASCII-1967, lower-case 
letters as well as various control characters such as escape and line feed
and various symbols such as brackets and mathematical operators were also 
included. Since then, a number of variants appeared in order to facilitate the 
exchange of text written in non-English languages, such as the expanded 
ASCII containing 255 codes, e.g., the Latin-1 encoding.

2.5 Data Handling

The simplest way to exchange data between a certain piece of software and 
MATLAB is the ASCII format. Although the newer versions of MATLAB 
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provide various import routines for fi le types such as Microsoft Excel bina-
ries, most data arrive as ASCII fi les. Consider a simple data set stored in a 
table such as

SampleID Percent C  Percent S
101   0.3657   0.0636
102   0.2208   0.1135
103   0.5353   0.5191
104   0.5009   0.5216
105   0.5415   -999
106   0.501   -999

The fi rst row contains the variable names. The columns provide the data for 
each sample. The absurd value -999 marks  missing data in the data set. Two 
things have to be changed to convert this table into MATLAB format. First, 
MATLAB uses  NaN as the arithmetic representation for  Not-a-Number that 
can be used to mark  gaps. Second, you should  comment the fi rst line by typ-
ing a  percent sign, %, at the beginning of the line.

%SampleID Percent C  Percent S
101   0.3657   0.0636
102   0.2208   0.1135
103   0.5353   0.5191
104   0.5009   0.5216
105   0.5415   NaN
106   0.501   NaN

MATLAB ignores any text appearing after the percent sign and continues 
processing on the next line. After editing this table in a text editor, such as 
the  MATLAB   Editor, it is saved as ASCII text fi le geochem.txt in the current 
working directory (Fig. 2.2). MATLAB now imports the data from this fi le 
with the  load command.

load geochem.txt

MATLAB loads the contents of fi le and assigns the matrix to a variable 
named after the fi lename geochem. Typing

whos

yields

Name         Size            Bytes  Class     Attributes
geochem      6x3               144  double

The command  save now allows to store workspace variables in a binary 
format.

save geochem_new.mat
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MAT-fi les are double-precision binary fi les using .mat as extension. The 
advantage of these binary mat-fi les is that they are independent of the com-
puter platforms running different fl oating-point formats. The command

save geochem_new.mat geochem

saves only the variable geochem instead of the entire workspace. The op-
tion -ascii, for example

save geochem_new.txt geochem -ascii

again saves the variable geochem, but in an ASCII fi le named geochem_new.
txt. In contrast to the binary fi le geochem_new.mat, this ASCII fi le can be 
viewed and edited by using the MATLAB Editor or any other text editor.

2.6 Scripts and Functions

MATLAB is a powerful programming language. All fi les containing 
MATLAB code use .m  as extension and are therefore called  M-fi les. These 
fi les contain ASCII text and can be edited using a standard text editor. 
However, the built-in Editor color highlights various syntax elements such 
as comments (in green), keywords such as  if, for and  end (blue) and charac-
ter strings (pink). This syntax highlighting eases MATLAB coding.

MATLAB uses two kinds of M-fi les,  scripts and  functions. Whereas 

Fig. 2.2 Screenshot of MATLAB  Text Editor showing the content of the fi le geochem.txt. The 
fi rst line of the text is commented by a percent sign at the beginning of the line, followed by 
the actual data matrix.
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scripts are a series of commands that operate on data in the workspace, 
functions are true algorithms with input and output variables. The advan-
tages and disadvantages of both M-fi les will now be illustrated by an ex-
ample. We start the Text Editor by typing

edit

This opens a new window named untitled. First, we generate a simple 
MATLAB script. We type a series of commands calculating the average of 
the elements of a data vector x.

[m,n] = size(x);
if m == 1
   m = n;
end
sum(x)/m

The fi rst line returns the dimension of the variable x using the command 
size. In our example, x should be either a column vector with dimension 
(m,1) or a row vector with dimension (1,n). The if statement evaluates 
a logical expression and executes a group of commands when this expres-
sion is true. The  end keyword terminates the last group of commands. In 
the example, the  if loop picks either m or n depending on if m==1 is false 
or true. The last line computes the average by dividing the sum of elements 
by m or n. We do not use a semicolon here to enable the output of the result. 
We save our new M-fi le as average.m and type

x = [3 6 2 -3 8];

in the Command Window to defi ne an example vector x. Then, we type

average

without the extension .m to run our script. We obtain the average of the ele-
ments of the vector x as output.

ans =
    3.2000

After typing 

whos

we see that the workspace now contains

Name         Size            Bytes  Class     Attributes
ans          1x1                 8  double
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m            1x1                 8  double
n            1x1                 8  double
x            1x5                40  double

The listed variables are the example vector x and the output of the size
function, m and n. The result of the operation is stored in the variable ans.
Since the default variable  ans might be overwritten during one of the fol-
lowing operations, we wish to defi ne a different variable. Typing

a = average

however, causes the error message

??? Attempt to execute SCRIPT average as a function.

Obviously, we cannot assign a variable to the output of a script. Moreover, 
all variables defi ned and used in the script appear in the workspace, in our 
example, the variables m and n. Scripts contain sequences of commands 
applied to variables in the workspace. MATLAB functions instead allow 
to defi ne inputs and outputs. They do not automatically import variables 
from the workspace. To convert the above script into a function, we have to 
introduce the following modifi cations (Fig. 2.3):

function y = average(x)
%AVERAGE    Average value.
%    AVERAGE(X) is the average of the elements in the vector X. 

% By Martin Trauth, Feb 18, 2005.

[m,n] = size(x);
if m == 1
   m = n;
end
y = sum(x)/m;

The first line now contains the keyword  function, the function name 
average and the  input x and  output y. The next two lines contain  com-
ments as indicated by the percent sign. After one empty line, we see another 
 comment line containing the author and version of the M-fi le. The remain-
ing fi le contains the actual operations. The last line now defi nes the value 
of the output variable y. This line is now terminated by a semicolon to sup-
press the display of the result in the Command Window. We fi rst type

help average

which displays the fi rst block of contiguous comment lines. The fi rst execut-
able statement or blank line – as in our example – effectively ends the help 
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section and therefore the output of help. Now we are independent of the 
variable names used in our function. We clear the workspace and defi ne a 
new data vector.

clear

data = [3 6 2 -3 8];

We run our function by the statement

result = average(data);

This clearly illustrates the advantages of functions compared to scripts. 
Typing

whos

results in

Name        Size            Bytes  Class     Attributes
data        1x5                40  double
result      1x1                 8  double

indicates that all variables used in the function do not appear in the work-
space. Only the input and output as defi ned by the user are stored in the 

Fig. 2.3 Screenshot of the MATLAB Text Editor showing the function average. The 
function starts with a line containing the keyword  function, the name of the function 
average and the input variable x and the output variable y. The following lines contain 
the output for help average, the copyright and version information as well as the actual 
MATLAB code for computing the average using this function.
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workspace. The M-fi les can therefore be applied to data like real functions, 
whereas scripts contain sequences of commands are applied to the variables 
in workspace.

2.7 Basic  Visualization Tools

MATLAB provides numerous routines for  displaying your data as graphs. 
This chapter introduces the most important  graphics functions. The graphs 
will be modifi ed, printed and exported to be edited with graphics software 
other than MATLAB. The simplest function producing a graph of a variable 
y versus another variable x is plot. First, we defi ne two vectors x and y,
where y is the sine of x. The vector x contains values between 0 and 2π 
with π /10 increments, whereas y is the element-by-element sine of x.

x = 0 : pi/10 : 2*pi;
y = sin(x);

These two commands result in two vectors with 21 elements each, i.e., two 
1-by-21 arrays. Since the two vectors x and y have the same length, we can 
use plot to produce a linear 2D graph y against x.

plot(x,y)

This command opens a  Figure Window named  Figure 1 with a gray back-
ground, an x-axis ranging from 0 to 7, a y-axis ranging from –1 to +1 and a 
blue line. You may wish to plot two different curves in one single plot, for 
example, the sine and the cosine of x in different colors. The command

x = 0 : pi/10 : 2*pi;
y1 = sin(x);
y2 = cos(x);

plot(x,y1,'r--',x,y2,'b-')

creates a dashed red line displaying the sine of x and a solid blue line 
representing the cosine of this vector (Fig. 2.4). If you create another plot, 
the window Figure 1 is cleared and a new graph is displayed. The com-
mand figure, however, can be used to create a new fi gure object in a 
new window.

plot(x,y1,'r--')
figure
plot(x,y2,'b-')
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Instead of plotting both lines in one graph simultaneously, you can also plot 
the sine wave, hold the graph and then plot the second curve. The command 
hold is particularly important while using different plot functions for dis-
playing your data. For instance, if you wish to display the second graph as 
a  bar plot.

plot(x,y1,'r--')
hold on
bar(x,y2)
hold off

This command plots y1 versus x as dashed line, whereas y2 versus x is 
shown as group of blue vertical  bars. Alternatively, you can plot both graphs 
in the same Figure Window, but in different plots using the  subplot. The 
syntax subplot(m,n,p) divides the  Figure Window into an m-by-n ma-
trix of display regions and makes the p-th display region active.

subplot(2,1,1), plot(x,y1,'r--')
subplot(2,1,2), bar(x,y2)

Fig. 2.4 Screenshot of the MATLAB Figure Window showing two curves in different line 
types. The Figure Window allows to edit all elements of the graph after choosing  Edit Plot
from the Tools menu. Double clicking on the graphics elements opens an options window 
for modifying the appearance of the graphs. The graphics is exported using  Save as from the 
File menue. The command  Generate M-File from the File menu creates MATLAB code from 
an edited graph.
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The Figure Window is divided into two rows and one column in our ex-
ample. The 2D linear plot is displayed in the upper half, whereas the bar 
plot appears in the lower half of the Figure Window. In the following, it is 
recommended to close the Figure Windows before proceeding to the next 
example. Subsequent plots would replace the graph in the lower display re-
gion only, or more general, the last generated graph in a Figure Window.

An important modifi cation to graphs is the scaling of the axis. By de-
fault, MATLAB uses axis limits close to the minima and maxima of the 
data. Using the command  axis, however, allows to change the settings 
for scaling. The syntax for this command is simply axis([xmin xmax 
ymin ymax]). The command

plot(x,y1,'r--')
axis([0 pi -1 1])

sets the limits of the x-axis to 0 and π , whereas the limits of the y-axis are 
set to the default values –1 and +1. Important options of axis are 

plot(x,y1,'r--')
axis square

making the current axes region square and

plot(x,y1,'r--')
axis equal

setting the aspect ratio in a way that the data units are equal in both 
directions of the plot. The function  grid adds a grid to the current plot, 
whereas the functions  title, xlabel and  ylabel allow to define a 
title and labels the x- and y-axis.

plot(x,y1,'r--')
title('My first plot')
xlabel('x-axis')
ylabel('y-axis')
grid

These are a few examples how MATLAB functions can be used in the 
Command Window to edit the plot. However, the software also supports 
various ways to edit all objects in a graph interactively using a computer 
mouse. First, the  Edit Mode of the Figure Window has to be activated by 
clicking on the arrow icon. The Figure Window also contains some other 
options, such as  Rotate 3D, Zoom or Insert Legend. The various objects in 
a graph, however, are selected by double-clicking on the specifi c compo-
nent, which opens the  Property Editor. The Property Editor allows to make 
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changes to many properties of the graph such as axes, lines, patches and 
text objects. After having made all necessary changes to the graph, the cor-
responding commands can even be exported by selecting  Generate M-File
from the  File menu of the Figure Window.

Although the software now provides enormous editing facilities for 
graphs, the more reasonable way to modify a graph for presentations or pub-
lications is to export the fi gure, import it into a software such as CorelDraw 
or Adobe Illustrator. MATLAB graphs are exported by selecting the com-
mand  Save as from the  File menu or by using the command print. This 
function exports the graph either as raster image, e.g., JPEG or vector fi le, 
e.g., as EPS or PDF format into the working directory (see Chapter 8 for 
more details on graphic fi le formats). In practice, the user should check the 
various combinations of export fi le format and the graphics software used 
for fi nal editing the graphs.
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3 Univariate Statistics

3.1 Introduction

The statistical properties of a single parameter are investigated by means 
of  univariate analysis. Such variable could be the organic carbon content of 
a sedimentary unit, the thickness of a sandstone layer, the age of sanidine 
crystals in a volcanic ash or the volume of landslides. The number and size 
of  samples we collect from a larger  population are often limited by fi nancial 
and logistical constraints. The methods of univariate statistics help con-
clude from the  samples for the larger phenomenon, i.e., the  population.

Firstly, we describe the sample characteristics by statistical parameters 
and compute an  empirical distribution ( descriptive statistics) (Chapters 3.2 
and 3.3). A brief introduction to the most important measures of central ten-
dency and dispersion is followed by MATLAB examples. Next, we select a 
theoretical distribution, which shows similar characteristics as the empiri-
cal distribution (Chapters 3.4 and 3.5). A suite of theoretical distributions 
is then introduced and their potential applications outlined, before we use 
MATLAB tools to explore these distributions. Finally, we try to conclude 
from the sample for the larger phenomenon of interest ( hypothesis testing)
(Chapters 3.6 to 3.8). The corresponding chapters introduce the three most 
important statistical tests for applications in earth sciences, the t-test to 
compare the means of two data sets, the F-test comparing variances and the 
χ2-test to compare distributions.

3.2 Empirical Distributions

Assume that we have collected a number of measurements of a specifi c ob-
ject. The collection of data can be written as a vector x
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containing N observations xi. The vector x may contain a large number of 
data points. It may be diffi cult to understand its properties as such. This is 
why descriptive statistics are often used to summarize the characteristics 
of the data. Similarly, the statistical properties of the data set may be used 
to defi ne an empirical distribution which then can be compared against a 
theoretical one.

The most straight-forward way of investigating the sample characteristics 
is to display the data in a graphical form. Plotting all the data points along 
one single axis does not reveal a great deal of information about the data 
set. However, the density of the points along the scale does provide some 
information about the characteristics of the data. A widely-used graphical 
display of univariate data is the  histogram (Fig. 3.1). A histogram is a bar 
plot of a frequency distribution that is organized in intervals or  classes.
Such histogram plot provides valuable information on the characteristics 
of the data, such as the  central tendency, the  dispersion and the  general 
 shape of the distribution. However, quantitative measures provide a more 
accurate way of describing the data set than the graphical form. In purely 
quantitative terms, the  mean and the  median defi ne the central tendency of 
the data set, while data dispersion is expressed in terms of the  range and 
the  standard deviation.
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Fig. 3.1 Graphical representation of an empirical frequency distribution. a In a histogram,
the frequencies are organized in classes and plotted as a bar plot. b The  cumulative
histogram of a  frequency distribution displays the counts of all classes lower and equal 
than a certain value. The cumulative histogram is normalized to a total number of 
observations of one.
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Measures of Central Tendency

Parameters of central tendency or location represent the most important 
measures for characterizing an empirical distribution (Fig. 3.2). These val-
ues help locate the data on a linear scale. They represent a typical or best 
value that describes the data. The most popular indicator of central ten-
dency is the  arithmetic mean, which is the sum of all data points divided by 
the number of observations:

The arithmetic mean can also be called the mean or the average of an uni-
variate data set. The sample mean is often used as an estimate of the popu-
lation mean μ  for the underlying theoretical distribution. The arithmetic 
mean is sensitive to outliers, i.e., extreme values that may be very different 
from the majority of the data. Therefore, the  median is often used as an 
alternative measure of central tendency. The median is the x-value which is 
in the middle of the data, i.e., 50% of the observations are larger than the 
median and 50% are smaller. The median of a data set sorted in ascending 
order is defi ned as
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Fig. 3.2 Measures of central tendency. a In an unimodal symmetric distribution, the mean, 
the median and the mode are identical. b In a skew distribution, the median is between the 
mean and the mode. The mean is highly sensitive to outliers, whereas the median and the 
mode are not much infl uenced by extremely high and low values.
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if N is odd and

if N is even. Although outliers also affect the median, their absolute values 
do not infl uence it.  Quantiles are a more general way of dividing the data 
sample into groups containing equal numbers of observations. For example, 
quartiles divide the data into four groups,  quintiles divide the observations 
in fi ve groups and  percentiles defi ne one hundred groups.

The third important measure for central tendency is the  mode. The mode 
is the most frequent x value or – if the data are grouped in classes – the cen-
ter of the class with the largest number of observations. The data have no 
mode if there aren’t any values that appear more frequently than any of the 
other values. Frequency distributions with one mode are called  unimodal,
but there may also be two modes ( bimodal), three modes ( trimodal) or four 
or more modes ( multimodal).

The measures mean, median and mode are used when several quantities 
add together to produce a total, whereas the  geometric mean is often used 
if these quantities are multiplied. Let us assume that the population of an 
organism increases by 10% in the fi rst year, 25% in the second year, then 
60% in the last year. The average increase rate is not the arithmetic mean, 
since the number of individuals is multiplied by (not added to) 1.10 in the 
fi rst year, by 1.375 in the second year and 2.20 in the last year. The average 
growth of the population is calculated by the geometric mean:

The average growth of these values is 1.4929 suggesting a ~49% growth 
of the population. The arithmetic mean would result in an erroneous value 
of 1.5583 or ~56% growth. The geometric mean is also an useful measure 
of central tendency for skewed or log-normally distributed data. In other 
words, the logarithms of the observations follow a gaussian distribution. 
The geometric mean, however, is not calculated for data sets containing 
negative values. Finally, the  harmonic mean
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is used to take the mean of asymmetric or log-normally distributed data, 
similar to the geometric mean, but they are both not robust to outliers. The 
harmonic mean is a better average when the numbers are defi ned in relation 
to some unit. The common example is averaging velocity. The harmonic 
mean is also used to calculate the mean of samples sizes.

Measures of Dispersion

Another important property of a distribution is the dispersion. Some of 
the parameters that can be used to quantify dispersion are illustrated in 
Figure 3.3. The simplest way to describe the dispersion of a data set is the 
range, which is the difference between the highest and lowest value in the 
data set given by

Since the range is defi ned by the two extreme data points, it is very sus-
ceptible to outliers. Hence, it is not a reliable measure of dispersion in most 
cases. Using the interquartile range of the data, i.e., the middle 50% of the 
data attempts to overcome this. A most useful measure for dispersion is the 
standard deviation.

The standard deviation is the average deviation of each data point from the 
mean. The standard deviation of an empirical distribution is often used 
as an estimate for the population standard deviation σ. The formula of 
the population standard deviation uses N instead of N–1 in the denomina-
tor. The sample standard deviation s is computed with N–1 instead of N
since it uses the sample mean instead of the unknown population mean. 
The sample mean, however, is computed from the data xi, which reduces 
the degrees of freedom by one. The  degrees of freedom are the number 
of values in a distribution that are free to be varied. Dividing the average 
deviation of the data from the mean by N would therefore underestimate 
the population standard deviation σ.

The  variance is the third important measure of dispersion. The variance 
is simply the square of the standard deviation.
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Although the variance has the disadvantage of not sharing the dimension of 
the original data, it is extensively used in may applications instead of the 
standard deviation.

Furthermore, both  skewness and  kurtosis can be used to describe the 
shape of a frequency distribution. Skewness is a measure of asymmetry of 
the tails of a distribution. The most popular way to compute the asymmetry 
of a distribution is Pearson’s mode skewness:

skewness = (mean-mode) / standard deviation

A negative skew indicates that the distribution is spread out more to the left 
of the mean value, assuming increasing values on the axis to the right. The 
sample mean is smaller than the mode. Distributions with positive skew-
ness have large tails that extend to the right. The skewness of the symmetric 
normal distribution is zero. Although Pearson’s measure is a useful one, 
the following formula by Fisher for calculating the skewness is often used 
instead, including the corresponding MATLAB function.

The second important measure for the shape of a distribution is the  kurtosis.
Again, numerous formulas to compute the kurtosis are available. MATLAB 
uses the following formula:

The kurtosis is a measure of whether the data are peaked or fl at relative to 
a normal distribution. A high kurtosis indicates that the distribution has a 
distinct peak near the mean, whereas a distribution characterized by a low 
kurtosis shows a fl at top near the mean and heavy tails. Higher peakedness of 
a distribution is resulting from rare extreme deviations, whereas a low kur-
tosis is caused by frequent moderate deviations. A normal distribution has a 
kurtosis of three. Therefore, some defi nitions for kurtosis subtract three from 
the above term in order to set the kurtosis of the normal distribution to zero.

After having defi ned the most important parameters to describe an em-
pirical distribution, the measures of central tendency and dispersion are il-
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lustrated by examples. The text and binary fi les used in the following chap-
ters are on the CD that comes with this book. It is recommended to save the 
fi les in the personal working directory.

3.3 Example of Empirical Distributions

Let us describe the data contained in the fi le organicmatter_one.txt. This 
fi le contains the organic matter content (in weight percentage, wt%) of lake 
sediments. In order to load the data type

corg = load('organicmatter_one.txt');

The data fi le contains 60 measurements that can be displayed by

plot(corg,zeros(1,length(corg)),'o')

This graph shows some of the characteristics of the data. The organic car-
bon content of the samples range between 9 and 15 wt%. Most data cluster 
between 12 and 13 wt%. Values below 10 and above 14 are rare. While this 
kind of representation of the data has its advantages, univariate data are 
generally displayed as histograms.

hist(corg)

By default, the function hist divides the range of the data into ten equal in-
tervals or classes, counts the observation within each interval and displays 
the frequency distribution as bar plot. The midpoints of the default intervals 
v and the number of observations n per interval can be accessed using

[n,v] = hist(corg);

The number of classes should be not lower than six and not higher than 
fi fteen for practical purposes. In practice, the square root of the number of 
observations, rounded to the nearest integer, is often used as the number 
of classes. In our example, we use eight classes instead of the default ten 
classes.

hist(corg,8)

We can even defi ne the midpoint values of the histogram classes. Here, it 
is recommended to choose interval endpoints that avoid data points falling 
between two intervals. The maximum and minimum values contained in 
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the data vector are 

 max(corg)

ans =
   14.5615

 min(corg)

ans =
    9.4168

The range of the data values, i.e., the difference between maximum and 
minimum values is

 range(corg)

ans =
    5.1447

The range of the data is the information that we need in order to defi ne the 
classes. Since we have decided to use eight classes, we split the range of the 
data into eight equally-sized bins. The approximate width of the intervals is

5.1447/8

ans =
    0.6431

We round this number up and defi ne

v = 10 : 0.65 : 14.55;

as midpoints of the histogram intervals. The commands for displaying the 
histogram and calculating the frequency distribution are

hist(corg,v);

n = hist(corg,v);

The most important parameters describing the distribution are the averages 
and the dispersion about the average. The most popular measure for average 
is the arithmetic mean of our data.

 mean(corg)

ans =
    12.3448

Since this measure is very susceptible to outliers, we use the median as an 
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alternative measure of central tendency,

 median(corg)

ans =
    12.4712

which is not much different in this example. However, we will later see that 
this difference can be signifi cant for distributions that are not symmetric. 
A more general parameter to defi ne fractions of the data less or equal to a 
certain value is the quantile. Some of the quantiles have special names, such 
as the three quartiles dividing the distribution into four equal parts, 0–25%, 
25–50%, 50–75% and 75–100% of the total number of observations.

 prctile(corg,[25 50 75])

ans =
    11.4054   12.4712   13.2965

The third parameter in this context is the mode, which is the midpoint of the 
interval with the highest frequency. MATLAB does not provide a function 
to compute the mode. We use the function find to located the class that has 
the largest number of observations.

v(find(n == max(n)))

ans =
    11.9500   12.6000   13.2500

This statement simply identifi es the largest element in n. The index of this 
element is then used to display the midpoint of the corresponding class v.
If there are several n’s with similar values, this statement returns several 
solutions suggesting that the distribution has several modes. The median, 
quartiles, minimum and maximum of a data set can be summarized and 
displayed in a  box and whisker plot.

 boxplot(corg)

The boxes have lines at the lower quartile, median, and upper quartile val-
ues. The whiskers are lines extending from each end of the boxes to show 
the extent of the rest of the data.

The most popular measures for dispersion are range, standard deviation 
and variance. We have already used the range to defi ne the midpoints of the 
classes. The variance is the average-squared deviation of each number from 
the mean of a data set.
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 var(corg)

ans =
    1.3595

The standard deviation is the square root of the variance.

 std(corg)

ans =
    1.1660

Note that by default the functions var and std calculate the sample variance 
and standard deviation representing an unbiased estimate of the dispersion 
of the population. While using skewness to describe the shape of the distri-
bution, we observe a slightly negative skew.

 skewness(corg)

ans =
    -0.2529

Finally, the peakedness of the distribution is described by the kurtosis. The 
result from the function kurtosis,

 kurtosis(corg)

ans =
    2.4670

suggests that our distribution is slightly fl atter than a gaussian distribution 
since its kurtosis is lower than three. Most of these functions have cor-
responding versions for data sets containing gaps, such as nanmean and 
nanstd, which treat NaN’s as missing values. To illustrate the use of these 
functions we introduce a gap to our data set and compute the mean using 
mean and nanmean for comparison.

corg(25,1) = NaN;

mean(corg)

ans =
    NaN

 nanmean(corg)

ans =
    12.3371

In this example the function mean follows the rule that all operations with 
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NaN’s result in NaN’s, whereas the function nanmean simply skips the 
missing value and computes the mean of the remaining data. As a second 
example, we now explore a data set characterized by a signifi cant skew. 
The data represent 120 microprobe analyses on glass shards hand-picked 
from a volcanic ash. The volcanic glass has been affected by chemical 
weathering in an initial stage. Therefore, the glass shards show glass hy-
dration and sodium depletion in some sectors. We study the distribution of 
sodium contents (in wt%) in the 120 measurements using the same prin-
ciple as above.

sodium = load('sodiumcontent.txt');

As a fi rst step, it is always recommended to visualize the data as a histo-
gram. The square root of 120 suggests 11 classes, therefore we display the 
data by typing

hist(sodium,11)

[n,v] = hist(sodium,11);

Since the distribution has a negative skew, the mean, the median and the 
mode are signifi cantly different.

mean(sodium)

ans =
    5.6628

median(sodium)

ans =
    5.9741

v(find(n == max(n)))

ans =
    6.5407

The mean of the data is lower than the median, which is in turn lower than 
the mode. We observe a strong negative skew as expected from our data.

skewness(sodium)

ans =
    -1.1086

Now we introduce a signifi cant outlier to the data and explore its effect on 
the statistics of the sodium contents. We use a different data set, which is 
better suited for this example than the previous data set. The new data set 
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contains higher sodium values of around 17 wt% and is stored in the fi le 
sodiumcontent_two.txt.

sodium = load('sodiumcontent_two.txt');

This data set contains only 50 measurements to better illustrate the effect of 
an outlier. We can use the script used in the previous example to display the 
data in a histogram and compute the number of observations n with respect 
to the classes v. The mean of the data is 16.6379, the media is 16.9739 and 
the mode is 17.2109. Now we introduce one single value of 1.5 wt% in addi-
tion to the 50 measurements contained in the original data set.

sodium(51,1) = 1.5;

The histogram of this data set illustrates the distortion of the frequency 
distribution by this single outlier. The corresponding histogram shows sev-
eral empty classes. The infl uence of this outlier on the sample statistics 
is substantial. Whereas the median of 16.9722 is relatively unaffected, the 
mode of 17.0558 is slightly different since the classes have changed. The 
most signifi cant changes are observed in the mean (16.3411), which is very 
sensitive to outliers.

3.4 Theoretical Distributions

Now we have described the  empirical frequency distribution of our sample. 
A histogram is a convenient way to picture the frequency distribution of the 
variable x. If we sample the variable suffi ciently often and the output ranges 
are narrow, we obtain a very smooth version of the histogram. An infi nite 
number of measurements N→ ∞  and an infi nite small class width produce 
the random variable’s  probability density function (PDF). The probability 
distribution density f (x) defi nes the probability that the variate has the value 
equal to x. The integral of f (x) is normalized to unity, i.e., the total number 
of observations is one. The  cumulative distribution function (CDF) is the 
sum of a discrete PDF or the integral of a continuous PDF. The cumulative 
distribution function F (x) is the probability that the variable takes a value 
less than or equal x.

As a next step, we have to fi nd a suitable  theoretical distribution that fi ts 
the empirical distributions described in the previous chapters. In this sec-
tion, the most important theoretical distributions are introduced and their 
application is described.
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Uniform Distribution

A uniform or rectangular distribution is a distribution that has a constant 
probability (Fig. 3.4). The corresponding probability density function is

where the random variable x has any of N possible values. The cumulative 
distribution function is

The probability density function is normalized to unity

i.e., the sum of probabilities is one. Therefore, the maximum value of the 
cumulative distribution function is one.
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Fig. 3.4 a Probability density function f (x) and b cumulative distribution function F (x)
of a uniform distribution with N = 6. The 6 discrete values of the variable x have the same 
probability of 1/6.
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An example is a  rolling die with N = 6 faces. A discrete variable such as the 
faces of a die can only take a countable number of values x. The probability 
of each face is 1/6. The probability density function of this distribution is

The corresponding cumulative distribution function is

where x takes only discrete values, x =1, 2, …, 6.

Binomial or Bernoulli Distribution

A binomial or Bernoulli distribution, named after the Swiss scientist Jakob 
Bernoulli (1654–1705), gives the discrete probability of x successes out of 
N trials, with probability p of success in any given trial (Fig. 3.5). The prob-
ability density function of a binomial distribution is
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Fig. 3.5 Probability density function f (x) of a binomial distribution, which gives the 
probability p of x successes out of N=6 trials, with probability a p=0.1 and b p=0.3 of 
success in any given trial.
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The cumulative distribution function is

where

The binomial distribution has two parameters N and p. An example for the 
application of this distribution is the outcome of oil drilling. Let us assume 
that the probability of a drilling success is 0.1 or 10%. The probability of 
x =3 successful wells out of a total number of N =10 wells is

Therefore, the probability of exact 3 successful wells out of 10 trials is 6%.

Poisson Distribution

When the number of trials is N→ ∞  and the success probability is p→0, the 
binomial distribution approaches the  Poisson distribution with one single 
parameter λ = Np (Fig. 3.6) (Poisson 1837). This works well for N >100 and 
p < 0.05 or 5%. Therefore, we use the Poisson distribution for processes 
characterized by extremely low occurrence, e.g., earthquakes, volcano 
eruptions, storms and fl oods. The probability density function is

and the cumulative distribution function is

The single parameter λ describes both the mean and the variance of this 
distribution.
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Normal or Gaussian Distribution

When p = 0.5 (symmetric, no skew) and N→ ∞ , the binomial distribution 
approaches the  normal or gaussian distribution with the parameters  mean 
μ  and  standard deviation σ (Fig. 3.7). The probability density function of a 
normal distribution in the continuous case is

and the cumulative distribution function is

The normal distribution is used when the mean is the most frequent and 
most likely value. The probability of deviations is equal towards both direc-
tions and decrease with increasing distance from the mean. 

The  standard normal distribution is a special member of the normal fam-
ily that has a mean of zero and a standard deviation of one. We transform 
the equation of the normal distribution by substitute z=(x–μ)/σ. The prob-
ability density function of this distribution is
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Fig. 3.6 Probability density function f (x) of a Poisson distribution with different values 
for  λ. a λ = 0.5 and b λ =2.
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This defi nition of the normal distribution is often called  z distribution.

Logarithmic Normal or Log-Normal Distribution

The  logarithmic normal distribution is used when the data have a lower lim-
it, e.g., mean-annual precipitation or the frequency of earthquakes (Fig. 3.8). 
In such cases, distributions are usually characterized by signifi cant skew-
ness, which is best described by a logarithmic normal distribution. The 
probability density function of this distribution is

and the cumulative distribution function is
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Fig. 3.7 a Probability density function f (x) and b cumulative distribution function F (x)
of a gaussian or normal distribution with mean μ =3 and different values for standard 
deviation σ.
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where x > 0. The distribution can be described by the two parameters mean 
μ  and variance σ 2. The formulas for the mean and the variance, however, 
are different from the ones used for normal distributions. In practice, the 
values of x are logarithmized, the mean and the variance are computed us-
ing the formulas for the normal distribution and the empirical distribution 
is compared with a normal distribution.

Student’s t Distribution

The  Student’s  t distribution was fi rst introduced by William Gosset (1876–
1937) who needed a distribution for small samples (Fig. 3.9). W. Gosset 
was an Irish Guinness Brewery employee and was not allowed to publish 
research results. For that reason he published his t distribution under the 
pseudonym Student (Student, 1908). The probability density function is

where Γ  is the Gamma function
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Fig. 3.8 a Probability density function f (x) and b cumulative distribution function F (x) of a 
logarithmic normal distribution with mean μ = 0 and with different values for σ.
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which can be written as

if x > 0. The single parameter Φ  of the t distribution is the  degrees of free-
dom. In the analysis of univariate data, this parameter is Φ = n–1, where n
is the sample size. As Φ→ ∞ , the t distribution converges to the standard 
normal distribution. Since the t distribution approaches the normal distri-
bution for Φ >30, it is not often used for distribution fi tting. However, the 
t distribution is used for hypothesis testing, namely the t-test (Chapter 3.6).

Fisher’s F Distribution

The  F distribution was named after the statistician Sir Ronald Fisher 
(1890–1962). It is used for hypothesis testing, namely for the F-test 
(Chapter 3.7). The F distribution has a relatively complex probability 
density function (Fig. 3.10):
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Fig. 3.9 a Probability density function f (x) and b cumulative distribution function F (x) of 
a Student’s t distribution with different values for Φ.
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where x > 0 and Γ  is again the  Gamma function. The two parameters Φ1 and 
Φ2 are the degrees of freedom.

χ2 or Chi-Squared Distribution

The    χ2 distribution was introduced by Friedrich Helmert (1876) and Karl 
Pearson (1900). It is not used for fi tting a distribution, but has important ap-
plications in statistical hypothesis testing, namely the χ2-test (Chapter 3.8). 
The probability density function of the χ2 distribution is

where x > 0, otherwise f (x) = 0, and Γ  is again the  Gamma function. Again, 
Φ  is the degrees of freedom (Fig. 3.11).
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3.5 Example of Theoretical Distributions

The function  randtool is a tool to simulate discrete data with a statistics 
similar to our data. This function creates a histogram of  random numbers 
from the distributions in the Statistics Toolbox. The random numbers that 
have been generated by using this tool can be exported into the workspace. 
We start the  graphical user interface ( GUI) of the function by typing

randtool

after the prompt. We can now create a data set similar to the one in the fi le 
organicmatter_one.txt. The 60 measurements have a mean of 12.3448 wt% 
and a standard deviation of 1.1660 wt%. The GUI uses Mu for μ  (the mean 
of a population) and Sigma for σ (the standard deviation). After choosing 
Normal for a gaussian distribution and 60 for the number of samples, we get 
a histogram similar to the one of the fi rst example. This synthetic distribu-
tion based on 60 samples represents a rough estimate of the true normal 
distribution. If we increase the sample size, the histogram looks much more 
like a true gaussian distribution.

Instead of simulating discrete distributions, we can use the  probabil-
ity density function (PDF) or  cumulative distribution function (CDF) to 
compute a theoretical distribution. The MATLAB Help gives an overview 
of the available theoretical distributions. As an example, we use the func-
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tions  normpdf(x,mu,sigma)and  normcdf(x,mu,sigma) to compute
the PDF and CDF of a gaussian distribution with Mu=12.3448 and Sig-
ma=1.1660, evaluated at the values in x to compare the result with our 
sample data set.

x = 9 : 0.1 : 15;
pdf = normpdf(x,12.3448,1.1660);
cdf = normcdf(x,12.3448,1.1660);
plot(x,pdf,x,cdf)

MATLAB also provides a GUI-based function for generating PDF’s and 
CDF’s with specifi c statistics, which is called  disttool.

disttool

We choose pdf as function type and Mu=12.3448 and Sigma=1.1660.
The function disttool uses the non-GUI functions for calculating prob-
ability density functions and cumulative distribution functions, such as 
normpdf and normcdf.

3.6 The t-Test

The Student’s t-test by William Gossett (1876–1937) compares the means 
of two distributions. Let us assume that two independent sets of na and nb

measurements that have been carried out on the same object. For instance, 
several samples were taken from two different outcrops. The  t-test can be 
used to test the  hypothesis that both samples come from the same population, 
e.g., the same lithologic unit ( null hypothesis) or from two different popula-
tions ( alternative hypothesis). Both, the sample and population distribution 
have to be gaussian. The variances of the two sets of measurements should 
be similar. Then, the proper test statistic for the difference of two means is

where na and nb are the sample sizes, sa
2 and sb

2 are the variances of the two 
samples a and b. The alternative hypothesis can be rejected if the measured 
t-value is lower than the critical t-value, which depends on the degrees of 
freedom Φ = na+ nb–2 and the  signifi cance level α . If this is the case, we 
cannot reject the null hypothesis without another cause. The signifi cance 
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level α  of a test is the maximum probability of accidentally rejecting a true 
null hypothesis. Note that we cannot prove the null hypothesis, in other 
words not guilty is not the same as innocent (Fig. 3.12).

The t-test can be performed by the function  ttest2. We load an exam-
ple data set of two independent series of measurements. The fi rst example 
shows the performance of the t-test on two distributions with the means 25.5 
and 25.3, whereas the standard deviations are 1.3 and 1.5.

clear

load('organicmatter_two.mat');

The binary fi le organicmatter_two.mat contains two data sets corg1 and 
corg2. First, we plot both histograms in one single graph

[n1,x1] = hist(corg1);
[n2,x2] = hist(corg2);

h1 = bar(x1,n1);
hold on
h2 = bar(x2,n2);

set(h1,'FaceColor','none','EdgeColor','r')
set(h2,'FaceColor','none','EdgeColor','b')

Here we use the command set to change graphic objects of the bar plots 
h1 and h2, such as the face and edge colors of the bars. Now we apply the 
function ttest2(x,y,alpha) to the two independent samples corg1 and 
corg2 at an alpha=0.05 or 5% signifi cance level. The command

[h,significance,ci] = ttest2(corg1,corg2,0.05)

yields

h =
     0

significance =
    0.0745

ci =
   -0.0433    0.9053

The result h=0 means that you cannot reject the null hypothesis without 
another cause at a 5% signifi cance level. The signifi cance of 0.0745 means 
that by chance you would have observed more extreme values of t than the 
one in the example in 745 of 10,000 similar experiments. A 95% confi dence 
interval on the mean is [–0.0433 0.9053], which includes the theoretical 
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(and hypothesized) difference of 0.2.
The second synthetic example shows the performance of the t-test on very 

different distributions in the means. The means are 24.3 and 25.5, whereas 
the standard deviations are again 1.3 and 1.5.

clear

load('organicmatter_three.mat');

This fi le again contains two data sets corg1 and corg2. The t-test at a 5% 
signifi cance level

[h,significance,ci] = ttest2(corg1,corg2,0.05)

yields

h =
     1

significance =
   6.1138e-06

ci =
    0.7011    1.7086

The result h=1 suggests that you can reject the null hypothesis. The signifi -
cance is extremely low and very close to zero. The 95% confi dence interval 
on the mean is [0.7011 1.7086], which again includes the theoretical (and 
hypothesized) difference of 1.2.

3.7 The F-Test

The  F-test by Snedecor and Cochran (1989) compares the variances sa
2 and 

sb
2 of two distributions, where sa

2 > sb
2. An example is the comparison of 

the natural heterogeneity of two samples based on replicated measurements. 
The sample sizes na and nb should be above 30. Then, the proper test statis-
tic to compare variances is

The two variances are not signifi cantly different, i.e., we reject the alterna-
tive hypothesis, if the measured F-value is lower than the critical F-value, 
which depends on the degrees of freedom Φa= na –1 and Φb= nb–1, respec-
tively, and the signifi cance level α .
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Although MATLAB does not provide a ready-to-use F-test, this hypoth-
esis test can easily be implemented. We fi rst apply this test to two distribu-
tions with very similar standard deviations of 1.3 and 1.2.

load('organicmatter_four.mat');

The quantity F is the quotient between the larger and the smaller variance. 
First, we compute the standard deviations, where

s1 = std(corg1)

s2 = std(corg2)

yields

s1 =
    1.2550

s2 =
    1.2097

The F-distribution has two parameters, df1 and df2, which are the num-
bers of observations of both distributions reduced by one, where

df1 = length(corg1) - 1

df2 = length(corg2) - 1

yields

df1 =
    59

df2 =
    59

Next we sort the standard deviations by their absolute value,

if s1 > s2
  slarger  = s1
  ssmaller = s2
else
  slarger  = s2
  ssmaller = s1
end

and get

slarger =
    1.2550
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ssmaller =
    1.2097

Now we compare the calculated F with the critical F. This can be accom-
plished using the function  finv on a 95% signifi cance level. The function 
finv returns the inverse of the F distribution function with df1 and df2
degrees of freedom, at the value of 0.95. Typing

Freal = slarger^2 / ssmaller^2

Ftable = finv(0.95,df1,df2)

yields

Freal =
    1.0762

Ftable =
    1.5400

The F calculated from the data is smaller than the critical F. Therefore, we 
cannot reject the null hypothesis without another cause. We conclude that 
the variances are identical on a 95% signifi cance level.

We now apply this test to two distributions with very different standard 
deviations, 2.0 and 1.2.

load('organicmatter_five.mat');

We compare the calculated F with the critical F at a 95% signifi cance level. 
The critical F can be computed using the function finv. We again type

s1 = std(corg1);

s2 = std(corg2);

df1 = length(corg1) - 1;

df2 = length(corg2) - 1;

if s1 > s2
  slarger  = s1;
  ssmaller = s2;
else
  slarger  = s2;
  ssmaller = s1;
end

Freal = slarger^2 / ssmaller^2

Ftable = finv(0.95,df1,df2)
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and get

Freal =
    3.4967

Ftable =
    1.5400

The F calculated from the data is now larger than the critical F. Therefore, 
we can reject the null hypothesis. The variances are different on a 95% 
signifi cance level. 

3.8 The χ2-Test

The   χ2-test introduced by Karl Pearson (1900) involves the comparison of 
distributions, permitting a test that two distributions were derived from the 
same population. This test is independent of the distribution that is being 
used. Therefore, it can be applied to test the hypothesis that the observations 
were drawn from a specifi c theoretical distribution. Let us assume that we 
have a data set that consists of 100 chemical measurements from a sand-
stone unit. We could use the χ2-test to test the hypothesis that these mea-
surements can be described by a gaussian distribution with a typical central 
value and a random dispersion around. The n data are grouped in K classes, 
where n should be above 30. The frequencies within the classes Ok should 
not be lower than four and never be zero. Then, the proper statistic is

where Ek are the frequencies expected from the theoretical distribution. The 
alternative hypothesis is that the two distributions are different. This can be 
rejected if the measured χ2 is lower than the critical χ2 , which depends on 
the degrees of freedom Φ =K–Z, where K is the number of classes and Z
is the number of parameters describing the theoretical distribution plus the 
number of variables (for instance, Z=2+1 for the mean and the variance 
for a gaussian distribution of a data set of one variable, Z=1+1 for a Poisson 
distribution of one variable) (Fig. 3.12).

As an example, we test the hypothesis that our organic carbon measure-
ments contained in organicmatter_one.txt follow a gaussian distribution. 
We fi rst load the data into the workspace and compute the frequency distri-
bution n_exp of the data.
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corg = load('organicmatter_one.txt');

v = 10 : 0.65 : 14.55;
n_exp = hist(corg,v);

We use the function normpdf to create the synthetic frequency distribution 
n_syn with a mean of 12.3448 and a standard deviation of 1.1660. 

n_syn = normpdf(v,12.3448,1.1660);

The data need to be scaled so that they are similar to the original data set.

n_syn = n_syn ./ sum(n_syn);
n_syn = sum(n_exp) * n_syn;

The fi rst line  normalizes n_syn to a total of one. The second command  scales 
n_syn to the sum of n_exp. We can display both histograms for comparison.

subplot(1,2,1), bar(v,n_syn,'r')
subplot(1,2,2), bar(v,n_exp,'b')

Visual inspection of these plots reveals that they are similar. However, it 
is advisable to use a more quantitative approach. The χ2-test explores the 
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Fig. 3.12 Principles of a χ2-test. The alternative hypothesis that the two distributions are 
different can be rejected if the measured χ2 is lower than the critical χ2. χ2 depends on 
Φ =K–Z , where K is the number of classes and Z is the number of parameters describing the 
theoretical distribution plus the number of variables. In the example, the critical χ2 (Φ =5, 
α =0.05) is 11.0705. If the measured χ2 =2.1685 is below the critical χ2, we cannot reject 
the null hypothesis. In our example, we can conclude that the sample distribution is not 
signifi cantly different from a gaussian distribution.
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squared differences between the  observed and  expected frequencies. The 
quantity χ2 is the sum of the squared differences divided by the expected 
frequencies.

chi2 = sum((n_exp - n_syn).^2 ./ n_syn)

chi2 =
    2.1685

The critical χ2 can be calculated using  chi2inv. The χ2-test requires the 
degrees of freedom Φ. In our example, we test the hypothesis that the data 
are gaussian distributed, i.e., we estimate two parameters μ  and σ. The 
number of degrees of freedom is Φ = 8– (2+1)= 5. We test our hypothesis 
on a p = 95% signifi cance level. The function chi2inv computes the in-
verse of the χ2 CDF with parameters specifi ed by Φ  for the corresponding 
probabilities in p.

chi2inv(0.95,5)

ans = 
    11.0705

The critical χ2 of 11.0705 is well above the measured χ2 of  2.1685. Therefore, 
we cannot reject the null hypothesis. Hence, we conclude that our data fol-
low a gaussian distribution.
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4 Bivariate Statistics

4.1 Introduction

Bivariate analysis aims to understand the relationship between two variables
x and y. Examples are the length and the width of a fossil, the sodium and 
potassium content of volcanic glass or the organic matter content along a 
sediment core. When the two variables are measured on the same object, x is 
usually identifi ed as the  independent variable, whereas y is the  dependent 
variable. If both variables were generated in an experiment, the variable 
manipulated by the experimenter is described as the independent variable. 
In some cases, both variables are not manipulated and therefore indepen-
dent. The methods of bivariate statistics help describe the strength of the 
relationship between the two variables, either by a single parameter such 
as Pearson’s correlation coeffi cient for linear relationships or by an equa-
tion obtained by regression analysis (Fig. 4.1). The equation describing the 
relationship between x and y can be used to predict the y-response from ar-
bitrary x’s within the range of original data values used for regression. This 
is of particular importance if one of the two parameters is diffi cult to mea-
sure. Here, the relationship between the two variables is fi rst determined 
by regression analysis on a small training set of data. Then, the regression 
equation is used to calculate this parameter from the fi rst variable.

This chapter fi rst introduces Pearson’s correlation coeffi cient (Chapter 4.2), 
then explains the widely-used methods of linear and curvilinear regression 
analysis (Chapter 4.3, 4.9 and 4.10). Moreover, a selection of methods is 
explained that are used to assess the uncertainties in regression analysis 
(Chapters 4.4 to 4.8). All methods are illustrated by means of synthetic ex-
amples since they provide excellent means for assessing the fi nal outcome.

4.2 Pearson’s Correlation Coeffi cient

Correlation coeffi cients are often used at the exploration stage of bivariate 
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statistics. They are only a very rough estimate of a rectilinear trend in the 
bivariate data set. Unfortunately, the literature is full of examples where the 
importance of correlation coeffi cients is overestimated and outliers in the 
data set lead to an extremely biased estimator of the population correlation 
coeffi cient.

The most popular correlation coeffi cient is   Pearson’s linear product-mo-
ment correlation coeffi cient ρ  (Fig. 4.2). We estimate the population’s cor-
relation coeffi cient ρ  from the sample data, i.e., we compute the sample 
correlation coeffi cient r, which is defi ned as

Regression line

i-th data point (xi,yi )

Regression line: 
age = 6.6 + 5.1 depth
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Fig. 4.1 Display of a  bivariate data set. The thirty data points represent the age of a 
sediment (in kiloyears before present) in a certain depth (in meters) below the sediment-
water interface. The joint distribution of the two variables suggests a linear relationship 
between age and depth, i.e., the increase of the sediment age with depth is constant. 
Pearson’s correlation coeffi cient (explained in the text) of r = 0.96 supports the strong linear 
dependency of the two variables. Linear regression yields the equation age = 6.6+5.1 depth.
This equation indicates an increase of the sediment age of 5.1 kyrs per meter sediment 
depth (the slope of the regression line). The inverse of the slope is the sedimentation rate of 
ca. 0.2 meters /kyrs. Furthermore, the equation defi nes the age of the sediment surface of 
6.6 kyrs (the intercept of the regression line with the y-axis). The deviation of the surface 
age from zero can be attributed either to the statistical uncertainty of regression or any 
natural process such as erosion or bioturbation. Whereas the assessment of the statistical 
uncertainty will be discussed in this chapter, the second needs a careful evaluation of the 
various processes at the sediment-water interface.
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Fig. 4.2 Pearson’s correlation coeffi cent r for various sample data. a–b Positive and negative 
linear correlation, c random scatter without a linear correlation, d an outlier causing a 
misleading value of r, e curvilinear relationship causing a high r since the curve is close to 
a straight line, f curvilinear relationship clearly not described by r.
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where n is the number of xy pairs of data points, sx and sy are the univariate 
standard deviations. The numerator of Pearson’s correlation coeffi cient is 
known as  the corrected sum of products of the bivariate data set. Dividing 
the numerator by (n–1) yields the  covariance

which is the summed products of deviations of the data from the sample 
means, divided by (n–1). The covariance is a widely-used measure in bivar-
iate statistics, although it has the disadvantage of depending on the dimen-
sion of the data. We will use the covariance in time-series analysis, which 
is a special case of bivariate statistics with time as one of the two variables 
(Chapter 5). Dividing the covariance by the univariate standard deviations 
removes this effect and leads to Pearson’s correlation coeffi cient.

Pearson’s correlation coeffi cient is very sensitive to various disturbances 
in the bivariate data set. The following example illustrates the use of the 
correlation coeffi cients and highlights the potential pitfalls when using this 
measure of linear trends. It also describes the resampling methods that can 
be used to explore the confi dence of the estimate for ρ. The synthetic data 
consist of two variables, the age of a sediment in kiloyears before present 
and the depth below the sediment-water interface in meters. The use of syn-
thetic data sets has the advantage that we fully understand the linear model 
behind the data. 

The data are represented as two columns contained in fi le agedepth.txt.
These data have been generated using a series of thirty random levels (in 
meters) below the sediment surface. The linear relationship age = 5.6 me-
ters +1.2 was used to compute noisefree values for the variable age. This is 
the equation of a straight line with a slope of 5.6 and an intercept with the 
y-axis of 1.2. Finally, some gaussian noise of amplitude 10 was added to the 
age data. We load the data from the fi le agedepth.txt.

agedepth = load('agedepth_1.txt');

We defi ne two new variables, meters and age, and generate a scatter plot 
of the data.

meters = agedepth(:,1);
age = agedepth(:,2);

plot(meters,age,'o')

We observe a strong  linear trend suggesting some dependency between the 
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variables, meters and age. This trend can be described by Pearson’s cor-
relation coeffi cient r, where r =1 represents a perfect positive correlation, 
i.e., age increases with meters, r = 0 suggests no correlation, and r = –1 
indicates a perfect negative correlation. We use the function  corrcoef to 
compute Pearson’s correlation coeffi cient.

corrcoef(meters,age)

which causes the output

ans =
    1.0000    0.9342
    0.9342    1.0000

The function corrcoef calculates a matrix of correlation coeffi -
cients for all possible combinations of the two variables. The combina-
tions (meters, age) and (age, meters) result in r = 0.9342, whereas 
(age, age) and (meters, meters) yield r =1.000. 

The value of r = 0.9342 suggests that the two variables age and meters
depend on each other. However, Pearson’s correlation coeffi cient is highly 
sensitive to outliers. This can be illustrated by the following example. Let 
us generate a normally-distributed cluster of thirty (x,y) data with zero 
mean and standard deviation one. To obtain identical data values, we reset 
the random number generator by using the integer 5 as seed.

 randn('seed',5);
x = randn(30,1); y = randn(30,1);

plot(x,y,'o'), axis([-1 20 -1 20]);

As expected, the correlation coeffi cient of these random data is very low.

corrcoef(x,y)

ans =
    1.0000    0.1021
    0.1021    1.0000

Now we introduce one single outlier to the data set, an exceptionally high 
(x,y)value, which is located precisely on the one-by-one line. The correla-
tion coeffi cient for the bivariate data set including the outlier (x,y)=(5,5)
is much higher than before.

x(31,1) = 5; y(31,1) = 5;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)
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ans =
    1.0000    0.4641
    0.4641    1.0000

After increasing the absolute (x,y) values of this outlier, the correlation 
coeffi cient increases dramatically.

x(31,1) = 10; y(31,1) = 10;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)

ans =
    1.0000    0.7636
    0.7636    1.0000

and reaches a value close to r =1 if the  outlier has a value of 
(x,y)=(20,20).

x(31,1) = 20; y(31,1) = 20;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)

ans =
    1.0000    0.9275
    0.9275    1.0000

Still, the bivariate data set does not provide much evidence for a strong 
dependence. However, the combination of the random bivariate (x,y) data 
with one single outlier results in a dramatic increase of the correlation coef-
fi cient. Whereas outliers are easy to identify in a bivariate scatter, erroneous 
values might be overlooked in large multivariate data sets.

Various methods exist to calculate the signifi cance of Pearson’s correla-
tion coeffi cient. The function corrcoef provides the possibility for evaluat-
ing the quality of the result. Furthermore,  resampling schemes or surrogates
such as the  bootstrap or jackknife method provide an alternative way of as-
sessing the  statistical  signifi cance of the results. These methods repeatedly 
resample the original data set with N data points either by choosing N–1 
subsamples N times (the jackknife) or picking an arbitrary set of subsamples 
with N data points with replacements (the bootstrap). The statistics of these 
subsamples provide a better information on the characteristics of the popula-
tion than statistical parameters (mean, standard deviation, correlation coef-
fi cients) computed from the full data set. The function  bootstrp allows 
resampling of our bivariate data set including the outlier (x,y)=(20,20).
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rhos1000 = bootstrp(1000,'corrcoef',x,y);

This command fi rst resamples the data a thousand times, calculates the 
correlation coeffi cient for each new subsample and stores the result in the 
variable rhos1000. Since corrcoef delivers a 2 × 2 matrix as mentioned 
above, rhos1000 has the dimension 1000 × 4, i.e., 1000 values for each 
element of the 2 × 2 matrix. Plotting the histogram of the 1000 values of 
the second element, i.e., the correlation coeffi cient of (x,y) illustrates the 
dispersion of this parameter with respect to the presence or absence of the 
outlier. Since the distribution of rhos1000 contains many empty classes, 
we use a large number of bins.

hist(rhos1000(:,2),30)

The histogram shows a cluster of correlation coeffi cients at around r = 0.2 
that follow the normal distribution and a strong peak close to r =1 (Fig. 4.3). 
The interpretation of this histogram is relatively straightforward. When 
the subsample contains the outlier, the correlation coeffi cient is close to 
one. Samples without the outlier yield a very low (close to zero) correla-
tion coeffi cient suggesting no strong dependence between the two vari-
ables x and y.
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Fig. 4.3 Bootstrap result for Pearson’s correlation coeffi cient r from 1000 subsamples. 
The histogram shows a roughly normally-distributed cluster of correlation coeffi cients at 
around r = 0.2 suggesting that these subsamples do not contain the outlier. The strong peak 
close to r =1, however, suggests that such an outlier with high values of the two variables x
and y is present in the corresponding subsamples.
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Bootstrapping therefore represents a powerful and simple tool for accept-
ing or rejecting our fi rst estimate of the correlation coeffi cient. The applica-
tion of the above procedure applied to the synthetic sediment data yields a 
clear unimodal gaussian distribution of the correlation coeffi cients.

corrcoef(meters,age)

ans =
    1.0000    0.9342
    0.9342    1.0000

rhos1000 = bootstrp(1000,'corrcoef',meters,age);

hist(rhos1000(:,2),30)

Most rhos1000 fall within the interval between 0.88 and 0.98. Since the 
resampled correlation coeffi cients obviously are gaussian distributed, we 
can use the mean as a good estimate for the true correlation coeffi cient.

mean(rhos1000(:,2))

ans =
    0.9315

This value is not much different to our fi rst result of r = 0.9342. However, 
now we can be certain about the validity of this result. However, in our 
example, the bootstrap estimate of the correlations from the age-depth data 
is quite skewed, as there is a hard upper limit of one. Nevertheless, the boot-
strap method is a valuable tool for obtaining valuable information on the 
reliability of Pearson’s correlation coeffi cient of bivariate data sets. 

4.3 Classical Linear Regression Analysis and Prediction

 Linear regression provides another way of describing the dependence be-
tween the two variables x and y. Whereas Pearson’s correlation coeffi cient 
provides only a rough measure of a linear trend, linear models obtained by 
regression analysis allow to predict arbitrary y values for any given value 
of x within the data range. Statistical testing of the signifi cance of the linear 
model provides some insights into the quality of prediction.

Classical regression assumes that y responds to x, and the entire disper-
sion in the data set is in the y-value (Fig. 4.4). Then, x is the  independent, 
 regressor or  predictor variable. The values of x are defi ned by the experi-
menter and are often regarded as to be free of errors. An example is the 
location x of a sample in a sediment core. The  dependent variable y contains 
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errors as its magnitude cannot be determined accurately. Linear regression 
minimizes the Δy deviations between the xy data points and the value pre-
dicted by the best-fi t line using a least-squares criterion. The basis equation 
for a general linear model is

where b0 and b1 are the regression coeffi cients. The value of b0 is the inter-
cept with the y-axis and b1 is the slope of the line. The squared sum of the 
Δy deviations to be minimized is

Partial differentiation of the right-hand term and equation to zero yields a 
simple equation for the fi rst  regression coeffi cient b1:
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Fig. 4.4  Linear regression. Whereas classical regression minimizes the Δy deviations, 
 reduced major axis regression minimizes the triangular area 0.5(Δ xΔy) between the points 
and the regression line, where Δ x and Δy are the distances between the predicted and the 
true x and y values. The intercept of the line with the y-axis is b0, whereas the slope is b1.
These two parameters defi ne the equation of the regression line.
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The regression line passes through the data centroid defi ned by the sample-
means. We can therefore compute the other regression coeffi cient b0,

using the univariate sample means and the slope b1 computed earlier.
Let us again load the synthetic age-depth data from the fi le agedepth.txt.

We defi ne two new variables, meters and age, and generate a  scatter plot 
of the data.

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

A signifi cant  linear trend in the bivariate scatter plot and a correlation co-
effi cient of more than r = 0.9 suggests a strong linear dependence between 
meters and age. In geologic terms, this suggests that the sedimentation 
rate is constant through time. We now try to fi t a linear model to the data 
that helps us predict the age of the sediment at levels without age data. The 
function  polyfit computes the coeffi cients of a polynomial p (x) of a cer-
tain degree that fi ts the data y in a least-squared sense. In our example, we 
fi t a polynomial of degree 1 (linear) to the data.

p = polyfit(meters,age,1)

p =
    5.6393    0.9986

Since we are working with synthetic data, we know the values for slope 
and intercept with the y-axis. While the estimated slope agrees well with 
the true value (5.6 vs. 5.6393), the intercept with the y-axis is signifi cantly 
different (1.2 vs. 0.9986). Both the data and the fi tted line can be plotted on 
the same graph.

plot(meters,age,'o'), hold

plot(meters,p(1)*meters+p(2),'r')

Instead of using the equation for the regression line, we can also use the 
function polyval to calculate the y-values.

plot(meters,age,'o'), hold

plot(meters,polyval(p,meters),'r')

Both, the functions polyfit and polyval are incorporated in the GUI 
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function  polytool.

polytool(meters,age)

The coeffi cients p(x) and the equation obtained by linear regression can 
now be used to predict y-values for any given x-value. However, we can only 
do this for the depth interval for which the linear model was fi tted, i.e., be-
tween 0 and 20 meters. As an example, the age of the sediment at the depth 
of 17 meters depth is given by

polyval(p,17)

ans =
   96.8667

This result suggests that the sediment at 17 meters depth has an age of ca. 97 
kyrs. The  goodness-of-fi t of the linear model can be determined by calculat-
ing  error bounds. These are obtained by using an additional output param-
eter for polyfit and as an input parameter for  polyval.

[p,s] = polyfit(meters,age,1);
[p_age,delta] = polyval(p,meters,s);

This code uses an interval of ± 2s, which corresponds to a 95%  confi dence 
interval. polyfit returns the polynomial coeffi cients p, and a structure s
that polyval uses to calculate the error bounds.  Structures are MATLAB 
arrays with named data containers called  fi elds. The fi elds of a structure can 
contain any type of data, such as text strings representing names. Another 
might contain a scalar or a matrix. In our example, the structure s contains 
fi elds for the statistics of the residuals that we use to compute the error 
bounds. delta is an estimate of the standard deviation of the error in pre-
dicting a future observation at x by p(x). We plot the results.

plot(meters,age,'+',meters,p_age,'g-',...
   meters,p_age+2*delta,'r--',meters,p_age-2*delta,'r--')
xlabel('meters'), ylabel('age')

Since the plot statement does not fi t on one line, we use an  ellipsis (three 
periods), ..., followed by return or enter to indicate that the statement 
continues on the next line. The plot now shows the data points, the regres-
sion line as well as the error bounds of the regression (Fig. 4.5). This graph 
already provides some valuable information on the quality of the result. 
However, in many cases a better knowledge on the validity of the model is 
required and therefore more sophisticated methods for  confi dence testing of 
the results are introduced in the following chapters.
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4.4 Analyzing the Residuals

When you compare how far the  predicted values are from the actual or  ob-
served values, you are performing an  analysis of the  residuals. The statistics 
of the residuals provides valuable information on the quality of a model 
fi tted to the data. For instance, a signifi cant trend in the residuals suggests 
that the model not fully describes the data. In such a case, a more complex 
model, such as a polynomial of a higher degree should be fi tted to the data. 
Residuals ideally are purely random, i.e., gaussian distributed with zero 
mean. Therefore, we test the hypothesis that our residuals are gaussian dis-
tributed by visual inspection of the histogram and by employing a χ2-test 
introduced in Chapter 3.

res = age - polyval(p,meters);

Plotting the residuals does not show obvious patterned behavior. Thus, no 
more complex model than a straight line should be fi tted to the data.

plot(meters,res,'o')

An alternative way to plot the residuals is a stem plot using stem.
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Fig. 4.5 The result of linear regression. The plot shows the original data points (plus signs), 
the regression line (solid line) as well as the error bounds (dashed lines) of the regression. 
Note that the error bounds are actually curved though they seem to be almost straight lines 
in the example.
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subplot(2,1,1)
plot(meters,age,'o'), hold
plot(meters,p(1)*meters+p(2),'r')

subplot(2,1,2)
stem(meters,res);

Let us explore the distribution of the residuals. We choose six classes and 
calculate the corresponding frequencies.

[n_exp,x] = hist(res,6)

n_exp =
     5     4     8     7     4     2

x =
   -16.0907   -8.7634   -1.4360    5.8913   13.2186   20.5460

By basing the bin centers in the locations defi ned by the function hist, a 
more practical set of classes can be defi ned.

v = -13 : 7 : 23;

n_exp = hist(res,v);

Subsequently, the mean and standard deviation of the residuals are com-
puted. These are then used for generating a theoretical frequency distribu-
tion that can be compared with the distribution of the residuals. The mean 
is close to zero, whereas the standard deviation is 11.5612. The function 
normpdf is used for creating the frequency distribution n_syn similar to 
our example. The theoretical distribution is scaled according to our original 
sample data and displayed.

n_syn = normpdf(v,0,11.5612);

n_syn = n_syn ./ sum(n_syn);
n_syn = sum(n_exp) * n_syn;

The fi rst line normalizes n_syn to a total of one. The second command scales 
n_syn to the sum of n_exp. We plot both distributions for comparison.

subplot(1,2,1), bar(v,n_syn,'r')
subplot(1,2,2), bar(v,n_exp,'b')

Visual inspection of the bar plots reveals similarities between the data sets. 
Hence, the χ2-test can be used to test the hypothesis that the residuals follow 
a gaussian distribution.

chi2 = sum((n_exp - n_syn) .^2 ./ n_syn)
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chi2 =
    2.3465

The critical χ2 can be calculated by using  chi2inv. The χ2 test requires the 
degrees of freedom Φ , which is the number of classes reduced by one and 
the number of parameters estimated. In our example, we test for a gauss-
ian distribution with two parameters, the mean and the standard deviation. 
Therefore, the degrees of freedom is Φ = 6– (1+2) =3. We test at a 95% sig-
nifi cance level.

chi2inv(0.95,3)

ans =
    7.8147

The critical χ2 of 7.8147 is well above the measured χ2 of 2.3465. It is not 
possible to reject the null hypothesis. Hence, we conclude that our residuals 
follow a gaussian distribution and the bivariate data set is well described by 
the linear model.

4.5 Bootstrap Estimates of the Regression Coeffi cients

We use the  bootstrap method to obtain a better estimate of the regression 
coeffi cients. Again, we use the function bootstrp with 1000 samples 
(Fig. 4.6).

p_bootstrp = bootstrp(1000,'polyfit',meters,age,1);

The statistics of the fi rst coeffi cient, i.e., the slope of the regression line is

hist(p_bootstrp(:,1),15)

mean(p_bootstrp(:,1))

ans =
    5.6023

std(p_bootstrp(:,1))

ans =
    0.4421

Your results might be slightly different because of the different state of the 
built-in random number generator used by bootstrp. The small standard 
deviation indicates that we have an accurate estimate. In contrast, the statis-
tics of the second parameter shows a signifi cant dispersion.
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hist(p_bootstrp(:,2),15)
mean(p_bootstrp(:,2))

ans =
    1.3366

std(p_bootstrp(:,2))

ans =
    4.4079

The true values as used to simulate our data set are 5.6 for the slope and 1.2 
for the intercept with the y-axis, whereas the coeffi cients calculated using 
the function polyfit were 5.6393 and 0.9986, respectively. We see that 
indeed the intercept with the y-axis has a large uncertainty, whereas the 
slope is well defi ned.

4.6 Jackknife Estimates of the Regression Coeffi cients

The  jackknife method is a resampling technique that is similar to the boot-
strap. From a sample with n data points, n subsets with n–1 data points 
are taken. The parameters of interest are calculated from each subset, e.g., 
the regression coeffi cients. The mean and dispersion of the coeffi cients are 
computed. The disadvantage of this method is the limited number of n sam-
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Fig. 4.6 Histogram of the a fi rst (slope of the line) and b second ( y-axis intercept of the 
regression line) regression coeffi cient as estimated from bootstrap resampling. Whereas 
the fi rst coeffi cient is very-well constrained, the second coeffi cient shows a large scatter.
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ples. The jackknife estimate of the regression coeffi cients is therefore less 
precise in comparison to the bootstrap results.

MATLAB does not provide a jackknife routine. However, the corre-
sponding code is easy to generate:

for i = 1 : 30
    % Define two temporary variables j_meters and j_age
    j_meters = meters;
    j_age = age;
    % Eliminate the i-th data point
    j_meters(i) = [];
    j_age(i) = [];
    % Compute regression line from the n-1 data points
    p(i,:) = polyfit(j_meters,j_age,1);
end

The jackknife for n–1=29 data points can be obtained by a simple for loop. 
Within each iteration, the i-th element is deleted and the regression coeffi -
cients are calculated for the remaining samples. The mean of the i samples 
gives an improved estimate of the coeffi cients. Similar to the bootstrap re-
sult, the slope of the regression line (fi rst coeffi cient) is well defi ned, where-
as the intercept with the y-axis (second coeffi cient) has a large uncertainty,

mean(p(:,1))

ans =
    5.6382

compared to 5.6023+/–0.4421 and

mean(p(:,2))

ans =
    1.0100

compared to 1.3366+/–4.4079 as calculated by the bootstrap method. The 
true values are 5.6 and 1.2. The histogram of the jackknife results from 30 
subsamples

hist(p(:,1));
figure
hist(p(:,2));

does not display the distribution of the coeffi cients as clearly as the boot-
strap estimates (Fig. 4.7). We have seen that resampling using the jackknife 
or bootstrap methods provides a simple and valuable tool to test the quality 
of regression models. The next chapter introduces an alternative approach 
for quality estimation, which is by far more often used than resampling.
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4.7 Cross Validation

A third method to test the goodness-of-fi t of the regression is  cross valida-
tion. The regression line is computed by using n–1 data points. The n-th 
data point is predicted and the discrepancy between the prediction and the 
actual value is computed. Subsequently, the mean of the discrepancies be-
tween the actual and predicted values is determined.

In this example, the cross validation for n data points is computed. The 
corresponding 30 regression lines display some dispersion in slope and y-
axis intercept.

for i = 1 : 30
    % Define temporary variables j_meters and j_age
    j_meters = meters;
    j_age = age;
    % Eliminate the i-th data point
    j_meters(i) = [];
    j_age(i) = [];
    % Compute regression line from the n-1 data points
    p(i,:) = polyfit(j_meters,j_age,1);
    % Plot the i-th regression line and hold plot for next loop
    plot(meters,polyval(p(i,:),meters),'r'), hold on
    % Store the regression result and errors in p_age and p_error
    p_age(i) = polyval(p(i,:),meters(i));
    p_error(i) = p_age(i) - age(i);
end
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Fig. 4.7 Histogram of the a fi rst (slope of the line) and b second ( y-axis intercept of the 
regression line) regression coeffi cient as estimated from jackknife resampling. Note that 
the parameters are not as clearly defi ned as from bootstrapping.



78 4 Bivariate Statistics

The  prediction error is – in the best case – gaussian distributed with zero 
mean.

mean(p_error)

ans =
    0.0122

The standard deviation is an unbiased mean deviation of the true data points 
from the predicted straight line.

std(p_error)

ans =
   12.4289

Cross validation gives valuable information of the  goodness-of-fi t of the 
regression result. This method can be used also for quality control in other 
fi elds, such as spatial and temporal prediction.

4.8 Reduced Major Axis Regression

In some cases, both variables are not manipulated and can therefore be con-
sidered to be independent. Here, several methods are available to compute 
a best-fi t line that minimizes the distance from both x and y. As an example, 
the method of   reduced major axis (RMA) minimizes the triangular area 
0.5 (ΔxΔy) between the points and the regression line, where Δx and Δy
are the distances between predicted and true x and y values (Fig. 4.4). This 
optimization appears to be complex. However, it can be shown that the fi rst 
regression coeffi cient b1 (the slope) is simply the ratio of the standard devia-
tions of x and y.

Similar to classic regression, the regression line passes through the data 
centroid defi ned by the sample mean. We can therefore compute the second 
regression coeffi cient b0 (the y-intercept),

using the univariate sample means and the slope b1 computed earlier. Let us 
load the age-depth data from the fi le agedepth.txt and defi ne two variables, 
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meters and age. It is ssumed that both of the variables contain errors and 
the scatter of the data can be explained by dispersion of meters and age.

clear
agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

The above formula is used for computing the slope of the regression line b1.

p(1,1) = std(age)/ std(meters)

p =
   6.0367

The second coeffi cient b0, i.e., the y-axis intercept can therefore be com-
puted by

p(1,2) = mean(age) - p(1,1) * mean(meters)

p =
   6.0367   -2.9570

The regression line can be plotted by

plot(meters,age,'o'), hold
plot(meters,polyval(p,meters),'r')

This linear fi t slightly differs from the line obtained from classic regres-
sion. Note that the regression line from RMA is not the bisector of the 
angle between the x-y and y-x classical linear regression analysis, i.e., us-
ing either x or y as independent variable while computing the regression 
lines.

4.9  Curvilinear Regression

It has become apparent from our previous analysis that a linear regression 
model provides a good way of describing the scaling properties of the data. 
However, we may wish to check whether the data could be equally-well 
described by a polynomial fi t of a higher degree.

To clear the workspace and reload the original data, type
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agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

Subsequently, a polynomial of degree 2 can be fi tted by using the function 
polyfit.

p = polyfit(meters,age,2)

p =
   -0.0132    5.8955    0.1265

The fi rst coeffi cient is close to zero, i.e., has not much infl uence on predic-
tion. The second and third coeffi cients are similar to the coeffi cients ob-
tained by linear regression. Plotting the data yields a curve that resembles 
a straight line.

plot(meters,age,'o'), hold
plot(meters,polyval(p,meters),'r')

Let us compute and plot the error bounds obtained by passing an optional 
second output parameter from polyfit as an input parameter to poly-
val.

[p,s] = polyfit(meters,age,2);
[p_age,delta] = polyval(p,meters,s);

This code uses an interval of ± 2s, corresponding to a 95%  confi dence in-
terval. polyfit returns the polynomial coeffi cients p, but also a structure 
s for use with polyval to obtain error bounds for the predictions. The 
structure s contains fi elds for the norm of the residuals that we use to com-
pute the error bounds. delta is an estimate of the standard deviation of the 
prediction error of a future observation at x by p(x). We plot the results.

plot(meters,age,'+',meters,p_age,'g-',...
   meters,p_age+2*delta,'r', meters,p_age-2*delta,'r')
grid on

We now use another synthetic data set that we generate using a quadratic 
relationship between meters and age.

meters = 20 * rand(30,1);
age =  1.6 * meters.^2 - 1.1 * meters + 1.2;
age = age + 40.* randn(length(meters),1);

plot(meters,age,'o')

agedepth = [meters age];
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agedepth = sortrows(agedepth,1);

save agedepth_2.txt agedepth -ascii

The synthetic bivariate data set can be loaded from the fi le agedepth_2.txt.

agedepth = load(agedepth_2.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

plot(meters,age,'o')

Fitting a polynomial of degree 2 yields a convincing regression result com-
pared to the linear model.

p = polyfit(meters,age,2)

p =
    1.7199   -5.6948   33.3508

As shown above, the true values for the three coeffi cients are +1.6, –1.1 and 
+1.2. There are some discrepancies between the true values and the coeffi -
cients estimated using polyfit. The regression curve and the error bounds 
can be plotted by typing (Fig. 4.8)

plot(meters,age,'o'), hold
plot(meters,polyval(p,meters),'r')

[p,s] = polyfit(meters,age,2);
[p_age,delta] = polyval(p,meters,s);

plot(meters,age,'+',meters,p_age,'g',meters,...
   p_age+2*delta,'r--',meters,p_age-2*delta,'r--')
grid on
xlabel('meters'), ylabel('age')

The plot shows that the quadratic model for this data is a good one. The 
quality of the result could again be tested by exploring the residuals, em-
ploying resampling schemes or cross validation. The combination of regres-
sion analysis with one of these methods represent a powerful tool in bivari-
ate data analysis, whereas Pearson’s correlation coeffi cient should be used 
only as a fi rst test for linear relationships.



82 4 Bivariate Statistics

Recommended Reading

Alberède F (2002) Introduction to Geochemical Modeling. Cambridge University Press, 
Cambridge

Davis JC (2002) Statistics and Data Analysis in Geology, Third Edition. John Wiley and 
Sons, New York

Draper NR, Smith, H (1998) Applied Regression Analysis. Wiley Series in Probability and 
Statistics, John Wiley and Sons, New York

Efron B (1982) The Jackknife, the Bootstrap, and Other Resampling Plans. Society of 
Industrial and Applied Mathematics CBMS-NSF Monographs 38

Fisher RA (1922) The Goodness of Fit of Regression Formulae, and the Distribution of 
Regression Coeffi cients. Journal of the Royal Statistical Society 85:597–612

MacTavish JN, Malone PG, Wells TL (1968) RMAR; a Reduced Major Axis Regression 
Program Designed for Paleontologic Data. Journal of Paleontology 42/4:1076–1078

Pearson K (1894–98) Mathematical Contributions to the Theory of Evolution, Part I to IV. 
Philosophical Transactions of the Royal Society 185–191

The Mathworks (2006) Statistics Toolbox User’s Guide – For the Use with MATLAB®. The 
MathWorks, Natick, MA

Depth in sediment (meters)

Regression line

95% Confidence Bounds

95% Confidence Bounds

i-th data point

0 2 4 6 8 10 12 14 16 18 20
−100

0

100

200

300

400

500

600

700
A

g
e 

o
f s

ed
im

en
t 

(k
yr

s)
Curvilinear Regression

Fig. 4.8 Curvilinear regression. The plot shows the original data points (plus signs), the 
regression line for a polynomial of degree 2 (solid line) as well as the error bounds (dashed 
lines) of the regression.
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5.1 Introduction

 Time-series analysis aims to understand the temporal behavior of one of 
several variables y (t). Examples are the investigation of long-term records 
of mountain uplift, sea-level fl uctuations, orbitally-induced insolation varia-
tions and their infl uence on the ice-age cycles, millenium-scale variations of 
the atmosphere-ocean system, the effect of the El Niño/Southern Oscillation 
on tropical rainfall and sedimentation (Fig. 5.1) and tidal infl uences on nobel 
gas emissions of bore holes. The temporal structure of a sequence of events 
can be random, clustered, cyclic or chaotic. Time-series analysis provides 
various tools to detect these temporal structures. The understanding of the 
underlying process that produced the observed data allows us to predict 
future values of the variable. We use the Signal Processing and Wavelet 
Toolbox, which contain all necessary routines for time-series analysis.

The fi rst section is on signals in general and contains a technical de-
scription of how to generate synthetic signals for time-series analysis 
(Chapter 5.2). Then, spectral analysis to detect cyclicities in a single time 
series (autospectral analysis) and to determine the relationship between two 
time series as a function of frequency (crossspectral analysis) is demon-
strated in Chapters 5.3 and 5.4. Since most time series in earth sciences are 
not evenly-spaced in time, various interpolation techniques and subsequent 
spectral analysis are introduced in Chapter 5.5. Evolutionary powerspectra 
to map changes in the cyclicities through time are shown in Chapter 5.6. An 
alternative technique to analyze unevenly-spaced data is in Chapter 5.7. In 
the subsequent Chapter 5.8, the very popular wavelets are introduced having 
the capability to map temporal variations in the spectra, similar to the meth-
od shown in Chapter 5.6.. The chapter closes with an overview of nonlinear 
techniques, in particular the method of recurrence plots (Chapter 5.9).
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5.2 Generating Signals

A  time series is an ordered sequence of values of a variable y (t) at certain 
times tk.

If the time-indexed distance between any two successive observation tk and 
tk+1 is constant, the time series is equally spaced and the sampling interval is

The sampling frequency fs is the inverse of the  sampling interval Δ t. In 
most cases, we try to sample at constant time intervals or  sampling fre-
quencies. However, in some cases equally-spaced data are not available. As 
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Fig. 5.1 a Photograph of ca. 30 kyr-old varved sediments from a landslide-dammed lake 
in the Northwest Argentine Andes. The mixed clastic-biogenic varves consist of reddish-
brown and green to buff-colored clays sourced from Cretaceous redbeds (red-brown) and 
Precambrian to early Paleozoic greenshists (green-buff colored). The clastic varves are 
topped by thin white diatomite layers documenting the bloom of silica algae after the 
austral-summer rainy season. The distribution of the two source rocks and the interannual 
precipitation pattern in the area suggests that the reddish-brown layers refl ect cyclic 
recurrence of enhanced precipitation, erosion and sediment input in the landslide-dammed 
lake. b The powerspectrum of a red-color intensity transect across 70 varves is dominated 
by signifi cant peaks at frequencies of ca. 0.076, 0.313, 0.455 and 1.0 yrs-1 corresponding to 
periods of 13.1, 3.2, 2.2, and around 1.0 years. This cyclicities suggest a strong infl uence 
of the tropical Atlantic sea-surface temperature (SST) variability (characterized by 10 to 
15 year cycles), the El Niño/Southern Oscillation (ENSO) (cycles between two and seven 
years) and the annual cycle at 30 kyrs ago, similar to today (Trauth et al. 2003).
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an example, assume deep-sea sediments sampled at fi ve-centimeter inter-
vals along a sediment core. Radiometric age determination of certain levels 
of the sediment core revealed signifi cant fl uctuations in the sedimentation 
rates. The samples evenly spaced along the sediment core are therefore not 
equally spaced on the time axis. Here, the quantity

where T is the full length of the time series and N is the number of data points, 
represents only an average sampling interval. In general, a time series y (tk)
can be represented as a linear sum of a long-term component or  trend ytr (tk), 
a  periodic component yp (tk) and a  random noise yn(tk).

The long-term component is a linear or higher-degree trend that can be 
extracted by fi tting a polynomial of a certain degree and subtracting the 
values of this polynomial from the data (see Chapter 4). Noise removal will 
be described in Chapter 6. The periodic – or cyclic in a mathematically less 
rigorous sense – component can be approximated by a linear combination 
of cosine (or sine) waves that have different  amplitudes Ai,  frequencies fi

and  phase angles ψ i.

The phase angle ψ  helps to detect temporal shifts between signals of the 
same frequency. Two signals y1 and y2 of the same period are out of phase 
if the difference between ψ 1 and ψ 2 is not zero (Fig. 5.2).

The frequency f of a periodic signal is the inverse of the period τ . The 
Nyquist frequency fNyq is half the sampling frequency fs and provides a max-
imum frequency the data can produce. As an example, audio compact disks 
(CDs) are sampled at frequencies of 44,100 Hz (Hertz, which is 1/second). 
The corresponding Nyquist frequency is 22,050 Hz, which is the highest 
frequency a CD player can theoretically produce. The limited performance 
of anti-alias fi lters used by CD players again reduces the frequency band 
and causes a cutoff frequency at around 20,050 Hz, which is the true upper 
frequency limit of a CD player.

We now generate synthetic signals to illustrate the use of time-series 
analysis tools. While using synthetic data we know in advance which fea-
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tures the time series contains, such as periodic or stochastic components, 
and we can introduce artifacts such as a linear trend or gaps. This knowl-
edge is particularly important if you are new to time series analysis. The 
user encounters plenty of possible effects of parameter settings, potential 
artifacts and errors in the application of spectral analysis tools. Therefore, 
we start with simple data before we apply the methods to more complex 
time series.

The next example illustrates how to generate a basic synthetic data series 
that is characteristic to earth sciences data. First, we create a time axis t
running from  0.01 to 100 in 0.01 intervals. Next, we generate a strictly peri-
odic signal y(t), a sine wave with a period 5 and an amplitude 2 by typing
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Fig. 5.2 Two periodic signals y1 and y2 as a function of time t defi ned by the amplitudes A1
and A2, the period τ1=τ2, which is the inverse of the frequency f1= f2. Two signals y1 and 
y2 of the same period are out of phase if the difference between ψ1 and ψ2 is not zero.
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t = 0.01 : 0.01 : 100;
y = 2*sin(2*pi*t/5);

plot(t,y)

The period of τ =5 corresponds to a frequency of f =1/5= 0.2. Natural 
data series, however, are more complex than a simple periodic signal. The 
next-complicated signal is generated by superposition of several periodic 
components with different periods. As an example, we compute such a sig-
nal by adding three sine waves with the periods τ1=50 ( f1= 0.02), τ2 =15 
( f2≈0.07) and τ 3=5 ( f3= 0.2). The corresponding amplitudes are A1=2, 
A2 =1 and A3= 0.5. The new time axis t runs from 1 to 1000 with 1.0 inter-
vals.

t = 1 : 1000;
y = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

plot(t,y), axis([0 200 -4 4])

Only one fi fth of the original data series is displayed by restricting the x-
axis limits to the interval [0 200]. It is, however, recommended to generate 
long data series as in the example in order to avoid edge effects while apply-
ing spectral-analysis tools for the fi rst time.

In contrast to our synthetic time series, real data also contain various 
disturbances, such as random noise and fi rst or higher-order trends. Firstly, 
a random-number generator can be used to compute gaussian noise with 
zero mean and standard deviation one. The seed of the algorithm needs to 
be set to zero. Subsequently, one thousand random numbers are generated 
using the function randn.

randn('seed',0)
n = randn(1,1000);

We add this noise to the original data, i.e., we generate a signal containing 
additive noise (Fig. 5.3). Displaying the data illustrates the effect of noise 
on a periodic signal. In reality, no record that is free of noise. Hence, it is 
important to familiarize oneself with the infl uence of noise on powerspec-
tra.

yn = y + n;

plot(t,y,'b-',t,yn,'r-'), axis([0 200 -4 4])

The methods of signal processing methods are often applied to remove most 
of the noise although many fi ltering methods make arbitrary assumptions 
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Fig. 5.3 a Synthetic signal with the periodicities τ1=50, τ2=15 and τ3=5, different 
amplitudes, b overlain by gaussian noise and c a linear trend.
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on the signal-to-noise ratio. Moreover, fi ltering introduces artifacts and sta-
tistical dependencies to the data. These may have a profound infl uence on 
the resulting powerspectra.

Finally, we introduce a linear long-term trend to the data by adding 
a straight line with a slope 0.005 and an intercept of zero with the y-axis 
(Fig. 5.3). Such trends are common features in earth sciences. As an example, 
consider the glacial-interglacial cycles observed in marine oxygen-isotope 
records overlain by a long-term cooling trend during the last six million 
years.

yt = y + 0.005 * t;

plot(t,y,'b-',t,yt,'r-'), axis([0 200 -4 4])

In reality, more complex trends exist, such as higher-order trends or trends 
characterized by changing slopes. In practice, it is recommended to elimi-
nate such a trend by fi tting polynomials to the data and to subtract the cor-
responding values. This synthetic time series now contains many character-
istics of a typical data set in the earth sciences. It can be used to illustrate the 
use of spectral-analysis tools that are introduced in the next chapter.

5.3 Blackman-Tukey Autospectral Analysis

Autospectral analysis aims to describe the distribution of variance con-
tained in one single signal x (t) over  frequency or  wavelength. A simple way 
to describe the variance in a signal over a time lag k is the autocovariance. 
An unbiased estimator of the  autocovariance covxx of the signal x (t) with N
data points sampled at constant time intervals Δ t is

The autocovariance series clearly depends on the amplitude of x (t). 
Normalizing the covariance by the variance σ 2 of x (t) yields the  autocor-
relation sequence. Autocorrelation involves correlating a series of data with 
itself, depending on a time lag k.

The most popular method to compute powerspectra in earth sciences is the 
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method introduced by Blackman and Tukey (1958). The  Blackman-Tukey 
method uses the complex Fourier transform X ( f ) of the autocorrelation 
sequence corrxx (k),

where M is the maximum lag and fs the sampling frequency. The Blackman-
Tukey powerspectral density PSD is estimated by

The actual computation of PSD can be performed only at a fi nite number of 
frequency points by employing a  Fast Fourier Transformation (FFT). The 
FFT is a method to compute a discrete Fourier Transform with reduced ex-
ecution time. Most FFT algorithms divide the transform into two pieces of 
size N/2 at each step. It is therefore limited to blocks of a power of two. In 
practice, the PSD is computed by using a number of frequencies close to the 
number of data points in the original signal x (t).

The discrete Fourier transform is an approximation of the continuous 
Fourier transform. The Fourier transform expects an infi nite signal. However, 
real data are limited at both ends, i.e., the signal amplitude is zero beyond the 
limits of the time series. In the time domain, a fi nite signal corresponds to an 
infi nite signal multiplied by a rectangular window that is one within the limits 
of the signal and zero elsewhere. In the frequency domain, the multiplication 
of the time series with this window equals to a convolution of the powerspec-
trum of the signal with the spectrum of the rectangular window. The spectrum 
of the window, however, equals a sin(x)/x function, which has a main lobe 
and several side lobes at both sides of the main peak. Therefore, all maxima in 
a powerspectrum leak, i.e., they lose power about the minor peaks (Fig. 5.4).

A popular way to overcome the problem of  spectral leakage is  windowing. 
The sequence of data is simply multiplied by a window with smooth ends. 
Several window shapes are available, e.g.,  Bartlett (triangular),  Hamming
(cosinusoidal) and  Hanning (slightly different cosinusoidal). The use of 
these windows slightly modifi es the equation of the Fourier transform of 
the autocorrelation sequence:
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where M is the maximum lag considered and window length, and w(k) is 
the windowing function. The Blackman-Tukey method therefore performs 
autospectral analysis in three steps, calculation of the autocorrelation se-
quence corrxx (k), windowing and fi nally computation of the discrete fourier 
transform. MATLAB allows to perform this powerspectral analysis with a 
number of modifi cations of the above method. A useful modifi cation is the 
method by Welch (1967) (Fig. 5.5). The Welch method includes dividing the 
time series into overlapping segments, computing the powerspectrum for 
each segment and averaging the powerspectra. The advantage of averaging 
spectra is obvious, it simply improves the signal-to-noise ratio of a spec-
trum. The disadvantage is a loss of resolution of the spectrum.

The  Welch spectral analysis that is included in the Signal Processing 
Toolbox can be applied to the synthetic data sets. The function periodog
ram(y,window,nfft,fs) computes the powerspectral density of y(t).
We use the default rectangular window by choosing an empty vector [] for 
window. The powerspectrum is computed using a FFT of length nfft of 
1024. We then compute the magnitude of the complex output Pxx of  peri-
odogram by using the function abs. Finally, the sampling frequency fs of 
one is supplied to the function in order to obtain a correct frequency scaling 
of the f-axis.
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[Pxx,f] = periodogram(y,[],1024,1);
magnitude = abs(Pxx);

plot(f,magnitude), grid
xlabel('Frequency')
ylabel('Power')
title('Autospectrum')
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Fig. 5.5 Principle of Welch powerspectral analysis. The time series is divided into 
overlapping segments, then the powerspectrum for each segment is computed and all 
spectra are averaged to improve the signal-to-noise ratio of the powerspectrum.
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The graphical output shows that there are three signifi cant peaks at the posi-
tion of the original frequencies of the three sine waves. The same procedure 
can be applied to the noisy data:

[Pxx,f] = periodogram(yn,[],1024,1);
magnitude = abs(Pxx);

plot(f,magnitude), grid
xlabel('Frequency')
ylabel('Power')
title('Autospectrum')

Let us increase the noise level. The gaussian noise has now a standard de-
viation of fi ve and zero mean.

randn('seed',0);
n = 5 * randn(size(y));
yn = y + n;

[Pxx,f] = periodogram(yn,[],1024,1);
magnitude = abs(Pxx);

plot(f,magnitude), grid
xlabel('Frequency')
ylabel('Power')
title('Autospectrum')

This spectrum resembles a real data spectrum in the earth sciences. The 
spectral peaks now sit on a signifi cant noise fl oor. The peak of the highest 
frequency even disappears in the noise. It cannot be distinguished from 
maxima which are attributed to noise. Both spectra can be compared on the 
same plot (Fig. 5.6):

[Pxx,f] = periodogram(y,[],1024,1);
magnitude = abs(Pxx);

plot(f,magnitude,'b')
hold

[Pxx,f] = periodogram(yn,[],1024,1);
magnitude = abs(Pxx);

plot(f,magnitude,'r'), grid
xlabel('Frequency')
ylabel('Power')
title('Autospectrum')

Next, we explore the infl uence of a linear trend on a spectrum. Long-term 
trends are common features in earth science data. We will see that this trend 
is misinterpreted as a very long period by the FFT. The spectrum therefore 
contains a large peak with a frequency close to zero (Fig. 5.7).
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yt = y + 0.005 * t;

[Pxx,f] = periodogram(y,[],1024,1);
magnitude = abs(Pxx);

[Pxxt,f] = periodogram(yt,[],1024,1);
magnitudet = abs(Pxxt);

subplot(1,2,1), plot(f,abs(Pxx))
xlabel('Frequency')
ylabel('Power')

subplot(1,2,2), plot(f,abs(Pxxt))
xlabel('Frequency')
ylabel('Power')

To eliminate the long-term trend, we use the function detrend.

ydt = detrend(yt);

subplot(2,1,1)
plot(t,y,'b-',t,yt,'r-'), axis([0 200 -4 4])

subplot(2,1,2)
plot(t,y,'b-',t,ydt,'r-'), axis([0 200 -4 4])

The corresponding spectrum does not show the low-frequency peak anymore. 
Some data contain a high-order trend that can be removed by fi tting a higher-
order polynomial to the data and by subtracting the corresponding Y (t) values.
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5.4 Blackman-Tukey Crossspectral Analysis

 Crossspectral analysis correlates two time series in the frequency domain. 
The  crosscovariance is a measure for the variance in two signals over a time 
lag k. An unbiased estimator of the crosscovariance covxy of two signals 
x (t) and y (t) with N data points sampled at constant time intervals Δ t is

The crosscovariance series again depends on the amplitudes of x (t) and 
y (t). Normalizing the covariance by the standard deviations of x (t) and 
y (t) yields the  crosscorrelation sequence.

In practice, the same methods and modifi cations outlined in the previous 
chapter are used to compute the crossspectral density. In addition to the two 
autospectra of x (t) and y (t) and the  crossspectrum,
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the complex Fourier transform X ( f ) also contains information on the  phase 
relationship W ( f ) of the two signals:

The phase difference is important in calculating leads and lags between two 
signals, a parameter often used to propose causalities between the two pro-
cesses documented by the signals. The correlation between the two spectra 
can be calculated by means of the  coherence:

The coherence is a real number between 0 and 1, where 0 indicates no cor-
relation and 1 indicates maximum correlation between x (t) and y (t) at the 
frequency f. A signifi cant degree of coherence is an important precondition 
for computing phase shifts between the two signals. 

We use two sine waves with identical periodicities τ =5 (equivalent to 
f = 0.2) and amplitudes equal to two. The sine waves show a relative phase 
shift of t =1. In the argument of the second sine wave this corresponds to 
2π /5, which is one fi fth of the full wavelength of τ =5.

t = 0.01 : 0.1 : 100;
y1 = 2*sin(2*pi*t/5);
y2 = 2*sin(2*pi*t/5 + 2*pi/5);

plot(t,y1,'b-',t,y2,'r-')
axis([0 20 -2 2]), grid

The crossspectrum is computed by using the function  cpsd (Fig. 5.8).

[Pxy,f] = cpsd(y1,y2,[],0,512,10);
magnitude = abs(Pxy);

plot(f,magnitude), grid
xlabel('Frequency')
ylabel('Power')
title('Crossspectrum')

The function cpsd(y1,y2,window,noverlap,nfft,fs) specifi es the 
number of FFT points nfft used to calculate the cross powerspectral den-
sity estimate, which is 512 in our example. The parameter window is empty 
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in our example, therefore the default rectangular window is used to obtain 
eight sections of y1 and y2. The parameter noverlap defi nes the number 
of samples of overlap from section to section, zero in our example. The sam-
pling frequency fs is 10 in the example. Coherence does not make much 
sense if we have noise-free data with only one frequency. This results in a 
correlation coeffi cient that equals one everywhere. Since the coherence is 
plotted on a log scale (in decibel, dB), the corresponding graph shows a log 
coherence of zero for all frequencies.

[Cxy,f] = mscohere(y1,y2,[],0,512,10);

plot(f,Cxy)
xlabel('Frequency')
ylabel('Magnitude Squared Coherence')
title('Coherence')

The function  mscohere(y1,y2,window,noverlap,nfft,fs) speci-
fi es the number of FFT points nfft=512, the default rectangular window, 
which overlaps by ten data points. The complex part of Pxy is required 
for computing the phase shift using the function angle between the two 
signals.
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phase = angle(Pxy);

plot(f,phase), grid
xlabel('Frequency')
ylabel('Phase Angle')
title('Phase spectrum')

The phase shift at a frequency of f =0.2 (period τ =5) can be interpolated 
from the phase spectrum

interp1(f,phase,0.2)

which produces the output

ans =
  -1.2567

The phase spectrum is normalized to one full period τ =2π , therefore a 
phase shift of –1.2567 equals (–1.2567*5)/(2*π ) = –1.0001, which is the 
phase shift of one that we introduced at the beginning.

We now use two sine waves with different periodicities to illustrate the 
crossspectral analysis. Both signals have a periodicity of 5, but with a phase 
shift of 1, then they both have one other, but different period.

clear

t = 0.1 : 0.1 : 1000;
y1 = sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);
y2 = 2*sin(2*pi*t/50) + 0.5*sin(2*pi*t/5+2*pi/5);

plot(t,y1,'b-',t,y2,'r-')

Now we compute the crossspectrum, which clearly shows the common pe-
riod of τ =5 or frequency of f = 0.2.

[Pxy,f] = cpsd(y1,y2,[],0,512,10);
magnitude = abs(Pxy);

plot(f,magnitude);
xlabel('Frequency')
ylabel('Power')
title('Crossspectrum')

The coherence shows a large value of approximately one at f = 0.2.

[Cxy,f] = mscohere(y1,y2,[],0,512,10);

plot(f,Cxy)
xlabel('Frequency')
ylabel('Magnitude Squared Coherence')
title('Coherence')
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The complex part is required for calculating the phase shift between the two 
sine waves.

[Pxy,f] = cpsd(y1,y2,[],0,512,10);
phase=angle(Pxy);

plot(f,phase)

The phase shift at a frequency of f =0.2 (period τ =5) is

interp1(f,phase,0.2)

which produces the output of

ans =
  -1.2604

The phase spectrum is normalized to one full period τ =2π , therefore a 
phase shift of –1.2604 equals (–1.2604*5)/(2*π ) = –1.0001, which is again 
the phase shift of one that we introduced at the beginning.

5.5  Interpolating and Analyzing  Unevenly-Spaced Data

Now we use our experience in analyzing evenly-spaced data to run a spec-
tral analysis on  unevenly-spaced data. Such data are very common in earth 
sciences. For example, in the fi eld of paleoceanography, deep-sea cores are 
typically sampled at constant depth intervals. The transformation of evenly-
spaced length-parameter data to time-parameter data in an environment 
with changing length-time ratios results in unevenly-spaced time series. 
Numerous methods exist for interpolating unevenly-spaced sequences of 
data or time series. The aim of these  interpolation techniques for x(t) data 
is to estimate the x-values for an equally-spaced t vector from the actual 
irregular-spaced x(t) measurements.  Linear interpolation predicts the x-val-
ues by effectively drawing out a straight line between two neighboring mea-
surements and by calculating the appropriate point along that line. However, 
the method also has its limitations. It assumes linear transitions in the data, 
which introduces a number of artifacts, including the loss of high-frequency 
components of the signal and limiting the data range to that of the original 
measurements. 

Cubic-spline interpolation is another method for interpolating data that 
are unevenly spaced. Cubic splines are piecewise continuous curves, passing 
through at least four data points for each step. The method has the advan-
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tage that it preserves the high-frequency information contained in the data. 
However, steep gradients in the data sequence could cause spurious ampli-
tudes in the interpolated time series, which typically occur at neighboring 
extreme minima and maxima. Since all these and other interpolation tech-
niques might introduce some artifacts into the data, it is always advisable to 
(1) preserve the number of data points before and after interpolation, (2) re-
port the method employed for estimating the evenly-spaced data sequence 
and (3) explore the effect of interpolation on the variance of the data.

After this brief introduction to interpolation techniques, we apply the 
most popular linear and cubic-spline interpolation techniques to unevenly-
spaced data. Having interpolated the data, we use the spectral tools that 
have already been applied to evenly-spaced data (Chapters 5.3 and 5.4). 
First, we load the two time series:

series1 = load('series1.txt');
series2 = load('series2.txt');

Both synthetic data sets contain a two-column matrix with 339 rows. The 
fi rst column contains ages in kiloyears that are not evenly spaced. The sec-
ond column contains oxygen-isotope values measured on foraminifera. The 
data sets contain 100, 40 and 20 kyr cyclicities and they are overlain by 
gaussian noise. In the 100 kyr frequency band, the second data series is 
shifted by 5 kyrs with respect to the fi rst data series. To plot the data we 
type

plot(series1(:,1),series1(:,2))
figure
plot(series2(:,1),series2(:,2))

The statistics of the spacing of the fi rst data series can be computed by

intv1 = diff(series1(:,1));

plot(intv1)

The plot shows that the spacing varies around a mean interval of 3 kyrs with 
a standard deviation of ca. 1 kyrs. The minimum and maximum value of 
the time axis

min(series1(:,1))

max(series1(:,1))

of tmin = 0 and tma x = 997 kyrs gives some information about the temporal 
range of the data. The second data series
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intv2 = diff(series2(:,1));

plot(intv2)

min(series2(:,1))

max(series2(:,1))

has a similar range from 0 to 997 kyrs. We see that both series have a mean 
spacing of 3 kyrs and range from 0 to ca. 1000 kyrs. We now interpolate 
the data to an evenly-spaced time axis. While doing this, we follow the rule 
that number of data points should not be increased. The new time axis runs 
from 0 to 996 kyrs with 3 kyr intervals.

t = 0 : 3 : 996;

We now interpolate the two time series to this axis with linear and spline-
interpolation methods using the function  interp1.

series1L = interp1(series1(:,1),series1(:,2),t,'linear');
series1S = interp1(series1(:,1),series1(:,2),t,'spline');

series2L = interp1(series2(:,1),series2(:,2),t,'linear');
series2S = interp1(series2(:,1),series2(:,2),t,'spline');

The results are compared by plotting the fi rst series before and after inter-
polation.

plot(series1(:,1),series1(:,2),'ko')
hold
plot(t,series1L,'b-',t,series1S,'r-')

We already observe some signifi cant artifacts at ca. 370 kyrs. Whereas the lin-
early-interpolated points are always within the range of the original data, the 
spline interpolation method produces values that are unrealistically high or low 
(Fig. 5.9). The results can be compared by plotting the second data series.

plot(series2(:,1),series2(:,2),'ko')
hold
plot(t,series2L,'b-',t,series2S,'r-')

In this series, only a few artifacts can be observed. We can apply the func-
tion used above to calculate the powerspectral density. We compute the FFT 
for 256 data points, the sampling frequency is 1/3 kyrs–1.

[Pxx,f] = periodogram(series1L,[],256,1/3);
magnitude = abs(Pxx);
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plot(f,magnitude)
xlabel('Frequency')
ylabel('Power')
title('Autospectrum')

Signifi cant peaks occur at frequencies of 0.01, 0.025 and 0.05 approximate-
ly, corresponding to the 100, 40 and 20 kyr cycles. Analysis of the second 
time series

[Pxx,f] = periodogram(series2L,[],256,1/3);
magnitude = abs(Pxx);

plot(f,magnitude)
xlabel('Frequency')
ylabel('Power')
title('Autospectrum')

also yields signifi cant peaks at frequencies of 0.01, 0.025 and 0.05 (Fig. 5.10). 
Now we compute the crossspectrum of both data series.

[Pxy,f] = cpsd(series1L,series2L,[],128,256,1/3);
magnitude = abs(Pxy);

plot(f,magnitude)
xlabel('Frequency')
ylabel('Power')
title('Crossspectrum')

The coherence is quite convincing.
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Fig. 5.9 Interpolation artifacts. Whereas the linearly interpolated points are always within 
the range of the original data, the spline interpolation method causes unrealistic high and 
low values.
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[Cxy,f] = mscohere(series1L,series2L,[],128,256,1/3);

plot(f,Cxy)
xlabel('Frequency')
ylabel('Magnitude Squared Coherence')
title('Coherence')

We observe a fairly high coherence in the frequency bands of the 0.01, 0.025 
and 0.05. The complex part of Pxy is required for calculating the phase dif-
ference per frequency.
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phase = angle(Pxy);

plot(f,phase)
xlabel('Frequency')
ylabel('Phase Angle')
title('Phase spectrum')

The phase shift at a frequency of f = 0.01 is calculated by

interp1(f,phase,0.01)

which produces the output of

ans = 
  -0.2796

The phase spectrum is normalized to a full period τ =2π . Hence, a phase 
shift of –0.2796 equals (–0.2796*100 kyr) /(2*π ) = –4.45 kyr. This cor-
responds roughly to the phase shift of 5 kyr introduced to the second data 
series with respect to the fi rst series.

As a more comfortable tool for spectral analysis, the Signal Processing 
Toolbox also contains a GUI function named sptool, which stands for
 Signal Processing Tool.

5.6  Evolutionary Blackman-Tukey Powerspectrum

The amplitude of spectral peaks usually changes through time. This is par-
ticularly true for paleoclimate time series. Paleoclimate records usually 
show trends in the mean and variance, but also in the relative contribu-
tions of rhythmic components such as the Milankovitch cycles in marine 
oxygen-isotope records. Evolutionary powerspectra have the capability to 
map such changes in the frequency domain. The evolutionary or   windowed 
Blackman-Tukey powerspectrum is a modifi cation of the method introduced 
in Chapter 5.3, which computes the spectrum of overlapping segments of 
the time series. These overlapping segments are relatively short compared 
to the windowed segments used by the Welch method (Chapter 5.3), which 
is used to increase the signal-to-noise ratio of powerspectra. Therefore, the 
windowed Blackman-Tukey method uses the  short-time Fourier transform 
(STFT) instead of the Fast Fourier Transformation (FFT). The output of 
windowed Blackman-Tukey powerspectrum is the short-term, time-local-
ized frequency content of the signal. There are various methods to display 
the results. For instance, time and frequency are plotted on the x- and y-axis, 
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or vice versa, where the color of the plot is proportional to the height of the 
spectral peaks.

As an example, we generate a synthetic data set that is similar to the 
ones used in Chapter 5.5. The data series contains three main periodicities 
of 100, 40 and 20 kyrs and additive gaussian noise. The amplitudes, how-
ever, change through time. Therefore, this example can be used to illustrate 
the advantage of the windowed Blackman-Tukey method. First, we create 
a time vector t.

clear
t = 0 : 3 : 1000;

In a fi rst step, we introduce some gaussian noise to the time vector t to 
make the data unevenly spaced.

randn('seed',0);
t = t + randn(size(t));

In a second step, we compute the signal with the three periodicities and 
varying amplitudes. The 40 kyr cycle appears after ca. 450 kyrs, whereas 
the 100 and 20 kyr cycles are present through the time series.

x1 = 0.5*sin(2*pi*t/100) + ...
     1.0*sin(2*pi*t/40)  + ...
     0.5*sin(2*pi*t/20);
x2 = 0.5*sin(2*pi*t/100) + ...
     0.5*sin(2*pi*t/20);

x = x1; x(1,150:end) = x2(1,150:end);

We add gaussian noise to the signal.

x = x + 0.5*randn(size(x));

Finally, we save the synthetic data series to the fi le series3.txt on the hard 
disk and clear the workspace.

series3(:,1) = t;
series3(:,2) = x;
series3(1,1) = 0;
series3(end,1) = 1000;
series3 = sortrows(series3,1);
save series3.txt series3 -ascii
clear

The above series of commands illustrates how to generate synthetic time 
series that show the same characteristics as oxygen-isotope data from cal-
careous algae (foraminifera) in deep-sea sediments. This synthetic data set 
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Fig. 5.11 Synthetic data set containing three main periodicities of 100, 40, and 20 kyrs and 
additive gaussian noise. Whereas the 100 and 20 kyr cycles are present throughout the time 
series, the 40 kyr cycle appears at around 450 kyr before present.

is suitable to demonstrate the application of methods for spectral analysis. 
The following sequence of commands assumes that real data are contained 
in a fi le named series3.txt. We load and display the data (Fig. 5.11).

series3 = load('series3.txt');
plot(series3(:,1),series3(:,2))
xlabel('Time (kyr)')
ylabel('d18O (permille)')
title('Signal with Varying Cyclicities')

Both, the standard and the windowed Blackman-Tukey method require 
evenly-spaced data. Therefore, we interpolate the data to an evenly-spaced 
time vector t as demonstrated in Chapter 5.5.

t = 0 : 3 : 1000;
y = interp1(series3(:,1),series3(:,2),t,'linear');

First, we compute a non-evolutionary powerspectrum for the full length 
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Fig. 5.12 Blackman-Tukey powerspectrum of the full time series showing signifi cant peaks 
at 100, 40 and 20 kyrs. The plot, however, does not provide any information on the temporal 
behaviour of the cyclicities.

of the time series (Fig. 5.12). This exercise helps us to compare the differ-
ences between the results of the standard and windowed Blackman-Tukey 
powerspectral analysis.

[Pxx,f] = periodogram(y,[],1024,1/3);
plot(f,abs(Pxx))
xlabel('Frequency')
ylabel('Power')
title('Blackman-Tukey Powerspectrum')

The Blackman-Tukey autospectrum shows signifi cant peaks at 100, 40 and 
20 kyr cyclicities and some noise. The powerspectrum, however, does not 
provide any information about fl uctuations of the amplitudes of these peaks. 
The non-evolutionary Blackman-Tukey powerspectrum simply represents 
an average of the spectral information contained in the data.

We use the function spectrogram to map the changes of the powerspec-
trum through time. By default, the time series is divided into eight segments 
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Fig. 5.13 Evolutionary Blackman-Tukey powerspectrum using spectrogram that 
computes the short-time Fourier transform STFT of overlapping segments of the time 
series. We use a Hamming window of 64 data points and 50 data points overlap. The STFT 
is computed for a nfft=256. Since the spacing of the interpolated time vector is 3 kyrs 
the sampling frequency is 1/3 kyr–1. The plot shows the onset of the 40 kyr cycle at around 
450 kyrs before present.

with a 50% overlap. Each segment is windowed with a Hamming window 
to suppress spectral leakage (Chapter 5.3). The function  spectrogram
uses similar input parameters as periodogram used in Chapter 5.3. We 
compute the evolutionary Blackman-Tukey powerspectrum for a window 
of 64 data points and 50 data points overlap. The STFT is computed for 
nfft=256. Since the spacing of the interpolated time vector is 3 kyrs, the 
sampling frequency is 1/3 kyr –1.

spectrogram(y,64,50,256,1/3)
title('Blackman-Tukey Evolutionary Powerspectrum')
xlabel('Frequency (1/kyr)')
ylabel('Time (kyr)')

The output of spectrogram is a color plot (Fig. 5.13) that displays vertical 
stripes in red representing signifi cant maxima at frequencies of 0.01 and 
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0.05 kyr–1, or 100 and 20 kyr cyclicities. The 40 kyr cycle (corresponding 
to a frequency of 0.025 kyr–1), however, only occurs after ca. 450 kyr, as 
documented by the vertical red stripe in the lower half of the graph.

For better visibility of the signifi cant cycles, the coloration of the graph 
can be modifi ed using the  colormap editor.

colormapeditor

The colormap editor displays the colormap of the fi gure as a strip of rectan-
gular cells. Nodes separate regions of uniform slope in the RGB colormap. 
The nodes can be shifted by using the mouse that introduces distortions to 
the colormap and therefore a modifi ed coloration of the spectrogram. For 
example, shifting the yellow node towards the right increases the contrast 
between vertical peak areas at 100, 40 and 20 kyrs compared to the back-
ground.

5.7 Lomb-Scargle Powerspectrum

The Blackman-Tukey method requires evenly-spaced data. In earth sciences, 
however, time series are often unevenly spaced. Interpolating the  unevenly-
spaced data to a grid of evenly-spaced times is one way to overcome this 
problem (Chapter 5.5). However, interpolation introduces numerous arti-
facts to the data, both in the time and the frequency domain. For this rea-
son, an alternative method of time-series analysis has become increasingly 
popular in earth sciences, the  Lomb-Scargle algorithm (e.g., Scargle 1981, 
1982, 1989, 1990, Press et al. 1992, Schulz et al. 1998).

In contrast to the Blackman-Tukey method, the Lomb-Scargle algorithm 
evaluates the data of the time series only at times t i that are actually mea-
sured. Suppose a series y (t) of N data points. Then, the Lomb-Scargle nor-
malized periodogram Px as a function of angular frequency ω  = 2π f > 0 
is given by

where
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are the arithmetic mean and the variance of the data (Chapter 3.2). The 
constant τ  is a kind of offset that makes Px (ω ) independent of shifting the 
t i’s by any constant. Scargle (1982) showed that this particular choice of 
the offset τ  has the consequence that the solution for Px (ω) is identical to a 
least-squares fi t of sine and cosine functions to the data series y (t) : 

The least-squares fi t of harmonic functions to data series in conjunction 
with spectral analysis was already investigated by Lomb (1976) and there-
fore, the method is called normalized Lomb-Scargle Fourier transform. The 
term normalized refers to the factor σ in the dominator of the equation for 
the periodogram.

Scargle (1982) has shown that the Lomb-Scargle periodogram has an 
exponential probability distribution with unit mean. The probability that 
Px (ω ) will be between some positive quantity z and z+dz is exp (–z) dz. If 
we scan M  independent frequencies, the probability of none of them give 
larger values than z is (1– exp(–z)) M. Therefore, we can compute the false-
alarm probability of the null hypothesis, e.g., the probability that a given 
peak in the periodogram is not signifi cant, by

Press et al. (1992) suggest to use the Nyquist criterion (Chapter 5.2) to de-
termine the number of independent frequencies M assuming that the data 
were evenly spaced. In this case, the best value for the number of indepen-
dent frequencies is M = 2N, where N is the length of the time series.

More detailed discussions of the Lomb-Scargle method are given in Scargle 
(1989) and Press et al. (1992). An excellent summary of the method and a 
TURBO PASCAL program to compute the normalized Lomb-Scargle pow-
erspectrum of paleoclimatic data has been published by Schulz and Stattegger 
(1998). A comfortable MATLAB algorithm lombscargle to compute the 
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Lomb-Scargle periodogram has been published by Brett Shoelson (The 
MathWorks Inc.) and can be downloaded from File Exchange at

http://www.mathworks.com/matlabcentral/fileexchange/

The following MATLAB code bases on the original FORTRAN code pub-
lished by Scargle (1989). Signifi cance testing uses the methods proposed by 
Press et al. (1992) explained above.

At fi rst, we load the synthetic data that were generated to illustrate the 
use of the windowed Blackman-Tukey method in Chapter 5.6. The data con-
tain periodicities of 100, 40 and 20 kyrs and additive gaussian noise. The 
data are unevenly spaced about the time axis. We defi ne two new vectors t
and y that contain the original time vector and the synthetic oxygen-isotope 
data sampled at times t.

clear
series3 = load('series3.txt');
t = series3(:,1);
y = series3(:,2);

We generate a frequency axis f. The Lomb-Scargle method is not able to 
deal with the zero-frequency piece, i.e., infi nite periods. Therefore, we start 
at a frequency value that is equivalent to the spacing of the frequency vector. 
opac is the  oversampling parameter that infl uences the resolution of the fre-
quency axis about the N(frequencies)=N(datapoints) case. We also 
need the  highest frequency fhi that can be analyzed by the Lomb-Scargle 
algorithm. A common way to choose fhi is to take the  Nyquist frequency 
fnyq that would be obtained if the N data points were evenly spaced over 
the same time interval. The following code uses the input parameter hifac,
which is defi ned as hifac=fhi/fnyq according to Press et al. (1992),

int = mean(diff(t));
ofac = 4; hifac = 1;
f = ((2*int)^(-1))/(length(y)*ofac): ...
    ((2*int)^(-1))/(length(y)*ofac): ...
    hifac*(2*int)^(-1);

where int is the mean sampling interval. We normalize the data by sub-
tracting the mean.

y = y - mean(y);

We now compute the normalized Lomb-Scargle periodogram px as a func-
tion of the angular frequency wrun using the translation of the fi rst equation 
in Chapter 5.7 into MATLAB code.
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for k = 1:length(f)
    wrun = 2*pi*f(k);
    px(k) = 1/(2*var(y)) * ...
       ((sum(y.*cos(wrun*t - ...
       atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2))).^2) ...
       /(sum((cos(wrun*t - ...
       atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2)).^2)) + ...
       ((sum(y.*sin(wrun*t - ...
       atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2))).^2) ...
       /(sum((sin(wrun*t - ...
       atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2)).^2));
end

Now, the signifi cance level of any peak in the powerspectrum px can be 
computed. The variable prob indicates the false-alarm probability of the 
null hypothesis. Therefore, a low prob indicates a highly signifi cant peak 
in the powerspectrum.

prob = 1-(1-exp(-px)).^length(y);

We plot the powerspectrum and the probabilities (Fig. 5.14).

plot(f,px)
xlabel('Frequency')
ylabel('Power')
title('Lomb-Scargle Powerspectrum')

figure
plot(f,prob)
xlabel('Frequency')
ylabel('Probability')
title('Probabilities')

The two plots suggest that all three peaks are highly signifi cant since the 
errors are extremely low at the cyclicities of 100, 40 and 20 kyrs.

An alternative way to display the signifi cance levels was suggested by 
Press et al. (1992). Here, the equation for the false-alarm probability of 
the null hypothesis is inverted to compute the corresponding power of the 
signifi cance levels. As an example, we choose a signifi cance level of 95%. 
However, this number can also be replaced by a vector of several signifi -
cance levels such as signif=[0.90 0.95 0.99]. We type

m = floor(0.5*ofac*hifac*length(y));
effm = 2*m/ofac;
signif = 0.95;
levels = log((1-signif.^(1/effm)).^(-1));

where m is the true number of independent frequencies and effm is the 
effective number of frequencies using the oversampling factor ofac. The 
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Fig. 5.14 a Lomb-Scargle powerspectrum and b the false-alarm probability of the null 
hypothesis. The plot suggests that the 100, 40 and 20 kyr cycles are highly signifi cant.
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second plot displays the spectral peaks and the corresponding probabilities.

plot(f,px)
hold on
for k = 1:length(signif)
    line(f,levels(:,k)*ones(size(f)),'LineStyle','--')
end
xlabel('Frequency')
ylabel('Power')
title('Lomb-Scargle Powerspectrum')
hold off

All three spectral peaks at frequencies of 0.01, 0.025 and 0.05 kyr–1 exceed 
the 95% signifi cant level suggesting that they represent signifi cant cyclici-
ties. Therefore, we obtain similar results as for the Blackman-Tukey method. 
However, the Lomb-Scargle method does not require any interpolation of un-
evenly-spaced data. Furthermore, it allows for quantitative signifi cance testing.

5.8  Wavelet Powerspectrum

Chapter 5.6 has illustrated a modifi cation of the Blackman-Tukey meth-
od to map nonstationarities in the powerspectrum. In principle, a similar 
modifi cation could be applied to the Lomb-Scargle method, which has the 
advantage that it can be applied to unevenly-spaced data. Both methods, 
however, assume that the data are a composite of sine and cosine waves  
that are globally uniform in time and have infi nite spans. The evolutionary 
Blackman-Tukey method divides the time series into overlapping segments 
and computes the Fourier transform of these segments. To avoid spectral 
leakage, the data are multiplied by windows with fi nite lengths and smooth 
ends (Chapter 5.3). The higher the temporal resolution of the evolutionary 
powerspectrum the lower is the accuracy of the result. Moreover, short time 
windows contain a large number of high-frequency cycles whereas the low-
frequency cycles are underrepresented.

In contrast to the Fourier transform, the  wavelet transform uses base 
functions ( wavelets) that have smooth ends per se (Lau and Weng 1995, 
Mackenzie et al. 2001). Wavelets are small packets of waves with a specifi c 
frequency that approach zero at both ends. Since wavelets can be stretched 
and translated with a fl exible resolution in both frequency and time, they can 
easily map changes in the time-frequency domain. Mathematically, a wave-
let transformation decomposes a signal y (t) into some elementary functions 
ψ a,b(t) derived from a  mother wavelet ψ (t) by dilation and translation,
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where b denotes the  position ( translation) and a (>0) the  scale ( dilation) of 
the wavelet (Lau and Weng 1995). The wavelet transform of the signal y(t)
about the mother wavelet ψ (t) is defi ned as the convolution integral

where ψ * is the complex conjugate of ψ  defi ned on the open time and scale 
real (b,a) half plane.

There are many mother wavelets available in the literature, such as the 
the classic  Haar wavelet, the  Morlet wavelet and the  Daubechies wavelet. 
The most popular wavelet in geosciences is the Morlet wavelet, which is 
given by

where η  is the non-dimensional time and ω 0 is the wavenumber (Torrence 
and Compo 1998). The wavenumber is the number of oscillations within the 
wavelet itself. We can easily compute a discrete version of the Morlet wave-
let wave by translating the above equation into MATLAB code where eta
is the non-dimensional time and w0 is the wavenumber. Change w0 to get 
wavelets with different wave numbers. Note it is important that i is not used 
as index in for loops since it is used here as imaginary unit (Fig. 5.15).

clear
eta = -10 : 0.1 : 10;
w0 = 6;
wave = pi.^(-1/4) .* exp(i*w0*eta) .* exp(-eta.^2/2);
plot(eta,wave)
xlabel('Position')
ylabel('Scale')
title('Morlet Mother Wavelet')

We use a pure sine wave with a period 5 and additive gaussian noise to get 
familiar with  wavelet powerspectra.

clear
t = 0 : 0.5 : 50;
y = sin(2*pi*t/5) + randn(size(t));
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Fig. 5.15 Morlet mother wavelet with wavenumber 6.

In a fi rst step, we defi ne the number of scales for that the wavelet trans-
form will be computed. The scales defi ne how much a wavelet is stretched 
or compressed to map the variability of the time series on different wave-
lengths. Lower scales correspond to higher frequencies and therefore map 
rapidly-changing details, whereas higher scales map the long-term varia-
tions. As an example, we run the wavelet analysis for 120 different  scales
between 1 and 120.

scales = 1 : 120;

In a second step, we compute the real or complex continuous Morlet wavelet 
coeffi cients using the function  cwt contained in the Wavelet Toolbox.

coefs = cwt(y,scales,'morl');

The function  scal2frq converts scales to pseudo-frequencies, using the 
Morley mother wavelet and the sampling period 0.5.

f = scal2frq(scales,'morl',0.5);
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Fig. 5.16 Wavelet powerspectrum showing a signifi cant period at 5 cycles that persists 
through the full length the time vector.

We use a fi lled contour plot to visualize the powerspectrum, i.e., the abso-
lute of the wavelet coeffi cients (Fig. 5.16).

contour(t,f,abs(coefs),'LineStyle','none','LineColor', ...
   [0 0 0],'Fill','on')
xlabel('Time')
ylabel('Frequency')
title('Wavelet Powerspectrum')

We apply this concept to the synthetic data from the example to demon-
strate the windowed Blackman-Tukey method and load the synthetic data 
contained in fi le series3.txt. We recall that the data contain periodici-
ties of 100, 40, 20 kyr and additive gaussian noise. The data are unevenly 
spaced about the time axis.

clear
series3 = load('series3.txt');

Similar to the Fourier transform and in contrast to the Lomb-Scargle algo-
rithm, the wavelet transform requires evenly-spaced data. Therefore, we 
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Fig. 5.17 Wavelet powerspectrum of the synthetic data series contained in series_3.txt.
The plot clearly shows signifi cant periodicities at frequencies of 0.1, 0.025 and 0.05 kyr-1

corresponding to the 100, 40 and 20 kyr cycles. The 100 kyr cycle is present through the 
entire time series, whereas the 40 kyr cycle appears at around 450 kyr before present. The 
20 kyr cycle is relatively weak but probably present throughout the full time series.

interpolate the data using interp1.

t = 0 : 3 : 1000;
y = interp1(series3(:,1),series3(:,2),t,'linear');

Similar to above example, we compute the wavelet transform of 120 scales 
using the function cwt and a Morley mother wavelet.

scales = 1 : 120;
coefs = cwt(y,scales,'morl');

We use scal2freq to convert scales to pseudo-frequencies, using the 
Morley mother wavelet and the sampling period of three.

f = scal2frq(scales,'morl',3);

We use a fi lled contour plot to visualize the powerspectrum, i.e., the abso-
lute of the wavelet coeffi cients (Fig. 5.17).
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5.9  Nonlinear Time-Series Analysis (by N. Marwan)

The methods described in the previous sections detect linear relationships 
in the data. However, natural processes on the Earth often show a more 
complex and chaotic behavior. Methods based on linear techniques may 
therefore yield unsatisfying results. In the last decades, new techniques of 
nonlinear data analysis derived from chaos theory have become increas-
ingly popular. As an example, methods have been employed to describe 
nonlinear behavior by defi ning, e.g., scaling laws and fractal dimensions 
of natural processes (Turcotte 1997, Kantz and Schreiber 1997). However, 
most methods of nonlinear data analysis need either long or stationary 
data series. These requirements are often not satisfi ed in the earth sciences. 
While most nonlinear techniques work well on synthetic data, these meth-
ods fail to describe nonlinear behavior in real data. 

In the last decade,  recurrence plots as a new method of nonlinear data 
analysis have become very popular in science and engineering (Eckmann 
1987). Recurrence is a fundamental property of dissipative dynamical sys-
tems. Although small disturbancies of such a system cause exponentially 
divergence of its state, after some time the system will come back to a state 
that is arbitrary close to a former state and pass through a similar evolution. 

contour(t,f,abs(coefs),'LineStyle', 'none', ...
   'LineColor',[0 0 0],'Fill','on')
xlabel('Time'),ylabel('Frequency')
title('Wavelet Powerspectrum')

The graph shows horizontal clusters of peaks at 0.01 and 0.05 kyr–1 cor-
responding to 100 and 20 kyr cycles, although the 20 kyr cycle is not very 
clear. The powerspectrum also reveals a signifi cant 40 kyr cycle or a fre-
quency of 0.025 kyr–1 that appears at ca. 450 kyr before present. Compared 
to the windowed Blackman-Tukey method, the wavelet powerspectrum 
clearly shows a much higher resolution on both the time and frequency 
axis. Instead of dividing the time series into overlapping segments and 
computing the powerspectrum for each segment, the wavelet transform 
uses short packets of waves that better map temporal changes in the cy-
clicities. The disadvantage of both the Blackman-Tukey and the wavelet 
powerspectral analysis, however, is the requirement of evenly-spaced data. 
The Lomb-Scargle method overcomes this problem, but has – similar to 
the Blackman-Tukey method – limited capabilities in mapping temporal 
changes in the frequency domain.
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Recurrence plots allow to visualize such a recurrent behavior of dynamical 
systems. The method is now a widely accepted tool for the nonlinear analy-
sis of short and nonstationary data sets.

Phase Space Portrait

The starting point of most nonlinear data analysis is the construction of the 
phase space portrait of a system. The state of a system can be described by 
its state variables x1(t), x2 (t), …, xd (t). As an example, suppose the two 
variables temperature and pressure to describe the thermodynamic state of 
the Earth’s mantle as a complex system. The d state variables at time t form 
a vector in a d-dimensional space, the so-called phase space. The state of 
a system typically changes in time. The vector in the phase space therefore 
describes a trajectory representing the temporal evolution, i.e., the dynam-
ics of the system. The course of the trajectory provides all important infor-
mation of the dynamics of the system, such as periodic or chaotic systems 
having characteristic phase space portraits.

In many applications, the observation of a natural process does not yield 
all possible state variables, either because they are not known or they cannot 
be measured. However, due to coupling between the system’s components, 
we can reconstruct a  phase space trajectory from a single observation ui:

where m is the embedding dimension and τ  is the time delay (index based; 
the real time delay is τ =Δt) . This reconstruction of the phase space is 
called  time delay embedding. The phase space reconstruction is not exactly 
the same to the original phase space, but its topological properties are pre-
served, if the embedding dimension is large enough. In practice, the embed-
ding dimension has to be larger then twice the the dimension of the attractor, 
or exactly m>2d+1. The reconstructed trajectory is suffi cient enough for 
the subsequent data analysis.

As an example, we now explore the phase space portrait of a harmonic 
oscillator, like an undamped pendulum. First, we create the position vector 
y1 and the velocity vector y2

x = 0 : pi/10 : 3*pi;
y1 = sin(x);
y2 = cos(x);

The phase space portrait
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plot(y1,y2)
xlabel('y_1')
ylabel('y_2')

is a circle, suggesting an exact recurrence of each state after one cycle 
(Fig. 5.18). Using the time delay embedding, we can reconstruct this phase 
space portrait using only one observation, e.g., the velocity vector, and a 
delay of 5, which corresponds to a quarter of the period of our pendulum.

t = 5;
plot(y2(1:end-t),y2(1+t:end))
xlabel('y_1')
ylabel('y_2')

As we see, the reconstructed phase space is almost the same as the original 
phase space. Next, we compare this phase space portrait with the one of a 
typical nonlinear system, the  Lorenz system (Lorenz 1963). While study-
ing weather patterns, one realizes that weather often does not change as 
predicted. In 1963, Edward Lorenz introduced a simple three-dimensional 
model to describe turbulence in the atmosphere which exhibits such a cha-
otic behaviour. Small initial changes cause dramatic divergent weather pat-
terns. This behavior is often referred to as butterfl y effect. The Lorenz sys-
tem consists of three coupled nonlinear differential equations for the three 
variables, the two temperature distributions and the velocity.
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Fig. 5.18 a Original and b reconstructed phase space portrait of a periodic system. The 
reconstructed phase space is almost the same as the original phase space. 
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Integrating the differential equation yields a simple MATLAB code for 
computing the xyz triplets of the Lorenz system. As system parameters 
controlling the chaotic behavior we use s=10, r=28 and b=8/3, the time 
delay is dt=0.01. The initial values are x1=8, x2=9 and x3=25, that can 
certainly be changed at other values.

clear
dt = .01; 
s = 10; 
r = 28; 
b = 8/3; 
x1 = 8; x2 = 9; x3 = 25; 
for i = 1 : 5000 
   x1 = x1 + (-s*x1*dt) + (s*x2*dt); 
   x2 = x2 + (r*x1*dt) - (x2*dt) - (x3*x1*dt); 
   x3 = x3 + (-b*x3*dt) + (x1*x2*dt); 
   x(i,:) = [x1 x2 x3];
end

Typical traces of a variable, such as the fi rst variable can be viewed by 
plotting x(:,1) over time in seconds (Fig. 5.19).

t = 0.01 : 0.01 : 50;
plot(t,x(:,1))
xlabel('Time')
ylabel('Temperature')

We next plot the phase space portrait of the Lorenz system (Fig. 5.20).

plot3(x(:,1),x(:,2),x(:,3))
grid, view(70,30)
xlabel('x_1')
ylabel('x_2')
zlabel('x_3')

In contrast to the simple periodic system described above, the trajectories of 
the Lorenz system obviously do not follow the same course again, but it re-
curs very closely to a previous state. Moreover, if we follow two very close 
segments of the trajectory, we will see that they run into different regions 
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of the phase space with time. The trajectory is obviously circling one fi xed 
point in the phase space – and after some random time period – circling 
around another. The curious orbit of the phase states around fi xed points is 
known as the Lorenz attractor.

These observed properties are typical of  chaotic systems. While small 
disturbances of such a system cause exponential divergence of its state, the 
system returns approximately to a previous state through a similar course. 
The reconstruction of the phase space portrait using only the fi rst state and 
a delay of six

tau = 6; 
plot3(x(1:end-2*tau,1),x(1+tau:end-tau,1),x(1+2*tau:end,1))
grid, view([100 60])
xlabel('x_1'), ylabel('x_2'), zlabel('x_3')

reveals a similar phase portrait with the two typical ears (Fig. 5.20). The 
characteristic properties of chaotic systems are also seen in this recon-
struction.

The  time delay and  embedding dimension have to be chosen with a pre-
ceding analysis of the data. The delay can be estimated with the help of the 
autocovariance or autocorrelation function. For our example of a periodic 
oscillation,

x = 0 : pi/10 : 3*pi;
y1 = sin(x);

we compute and plot the autocorrelation function
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Fig. 5.19 The Lorenz system. As system parameters we use s=10, r=28 and b=8/3,  the 
time delay is dt=0.01.
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for i = 1 : length(y1) - 2
    r = corrcoef(y1(1:end-i),y1(1+i:end));
    C(i) = r(1,2);
end

plot(C)
xlabel('Delay'), ylabel('Autocorrelation')
grid on

Now we choose such a delay at which the autocorrelation function equals 
zero for the fi rst time. In our case this is 5, which is the value that we have 
already used in our example of phase space reconstruction. The appropriate 
embedding dimension can be estimated by using the false nearest neigh-
bours method or, simpler, recurrence plots, which are introduced in the next 
chapter. The embedding dimension is gradually increased until the majority 
of the diagonal lines are parallel to the line of identity.

The phase space trajectory or its reconstruction is the base of several mea-
sures defined in nonlinear data analysis, like Lyapunov exponents, Rényi 
entropies or dimensions. The book on nonlinear data analysis by Kantz and 
Schreiber (1997) is recommended for more detailed information on these 
methods. Phase space trajectories or their reconstructions are also neces-
sary for constructing recurrence plots.
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Fig. 5.20 a The phase space portrait of the Lorenz system. In contrast to the simple 
periodic system, the trajectories of the Lorenz system obviously do not follow the same 
course again, but it recurs very closely to a previous state. b The reconstruction of the 
phase space portrait using only the fi rst state and a delay of six reveals a topologically  
similar phase portrait with the two typical ears.
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Recurrence Plots

The phase space trajectories of dynamic systems that have more than three 
dimensions are diffi cult to visualize. Recurrence plots provide a way for an-
alyzing higher dimensional systems. They can be used, e.g., to detect tran-
sitions between different regimes or to fi nd interrelations between several 
systems. The method was fi rst introduced by Eckmann and others (1987). 
The recurrence plot is a tool that visualizes the recurrences of states in the 
phase space by a two-dimensional plot.

If the distance between two states i and j on the trajectory are smaller than 
a given threshold ε , the value of the recurrence matrix R is one, otherwise 
zero. This analysis is therefore a pairwise test of all states. For N states we 
compute N2 tests. The recurrence plot is then the two-dimensional display 
of the N×N matrix, where black pixels represent Ri,j =1 and white pixels 
indicate Ri,j = 0 and a coordinate system representing two time axes. Such 
recurrence plots can help to fi nd a fi rst characterization of the dynamics of 
data or to fi nd transitions and interrelations of the system (cf. Fig. 5.21).

As a fi rst example, we load the synthetic time series containing 100 kyr, 
40 kyr and 20 kyr cycles already used in the previous chapter. Since the data 
are unevenly spaced, we have to linearly transform it to an evenly-spaced 
time axis.

series1 = load('series1.txt');
t = 0 : 3 : 996;
series1L = interp1(series1(:,1),series1(:,2),t,'linear');

We start with the assumption that the phase space is only one-dimensional. 
The calculation of the distances between all points of the phase space trajec-
tory reveals the distance matrix S.

N = length(series1L);
S = zeros(N, N);

for i = 1 : N,
    S(:,i) = abs(repmat(series1L(i), N, 1 ) - series1L(:));
end

Now we plot the distance matrix
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imagesc(t,t,S)
colorbar
xlabel('Time'), ylabel('Time')

for the data set, where a colorbar provides a quantitative measure for the 
distances between states (Fig. 5.22). We apply a threshold ε  to the distance 
matrix to generate the black/white recurrence plot (Fig. 5.23).

imagesc(t,t,S<1)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')

Both plots reveal periodically occurring patterns. The distances between 

a

c d

b

Fig. 5.21 Recurrence plots representing typical dynamical behaviours: a stationary 
uncorrelated data (white noise), b periodic oscillation, c chaotic data (Roessler system) and 
d non-stationary data with abrupt changes.
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these periodic patterns represent the cycles contained in the time series. 
The most signifi cant periodic structures have periods of 200 and 100 kyr. 
The 200 kyr period is most signifi cant because of the superposition of the 
100 and 40 kyr cycles, which are common divisors of 200 kyr. Moreover, 
there are small substructures in the recurrence plot, which have sizes of 40 
and 20 kyr.

As a second example, we apply the method of recurrence plots to the 
Lorenz system. We again generate xyz triplets from the coupled differential 
equations.

clear
dt = .01; 
s = 10; 
r = 28; 
b = 8/3; 
x1 = 8; x2 = 9; x3 = 25; 

Fig. 5.22 Visualization of the distance matrix from the synthetic data providing a 
quantitative measure for the distances between states at certain times; blue colors indicate 
small distances, red colors represent large distances.
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for i = 1 : 5000 
   x1 = x1 + (-s*x1*dt) + (s*x2*dt); 
   x2 = x2 + (r*x1*dt) - (x2*dt) - (x3*x1*dt); 
   x3 = x3 + (-b*x3*dt) + (x1*x2*dt); 
   x(i,:) = [x1 x2 x3];
end

We choose the resampled fi rst component of this system and reconstruct a 
phase space trajectory by using an embedding of m =3 and τ =2, which cor-
responds to a delay of 0.17 sec.

t = 0.01 : 0.05 : 50;
y = x(1:5:5000,1);
m = 3; tau = 2;

N = length(y);
N2 = N - tau*(m - 1);

The original data series has a length of 5000, after resampling 1000 data 
points or 50 sec, but because of the time delay method, the reconstructed 
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Fig. 5.23 The recurrence plot of the synthetic data derived from the distance matrix as 
shown in Fig. 5.22 after applying a threshold of ε =1.
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phase space trajectory has the length 996. Now we create the phase space 
trajectory with

for mi = 1:m
   xe(:,mi) = y([1:N2] + tau*(mi-1));
end

We can accelerate the pair-wise test between each points on the trajectory 
with a fully vectorized algorithm supported by MATLAB. For that we need 
to transfer the trajectory vector into two test vectors, whose component-
wise test will provide the pair-wise test of the trajectory vector:

x1 = repmat(xe,N2,1);
x2 = reshape(repmat(xe(:),1,N2)',N2*N2,m);

Using these vectors we calculate the recurrence plot using the Euclidean 
norm without any FOR loop.

S = sqrt(sum((x1 - x2).^ 2,2 ));
S = reshape(S,N2,N2);

imagesc(t(1:N2),t(1:N2),S<10)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')

This recurrence plot reveals many short diagonal lines (Fig. 5.24). These 
lines represent epochs, where the phase space trajectory runs parallel to 
former or later sequences of this trajectory, i.e., the states and the dynamics 
are similar at these times. The distances between these diagonal lines, rep-
resenting the periods of the cycles, differ and are not constant – just as they 
are in a harmonic oscillation (cp. Fig. 5.21).

The structure of recurrence plots can also be described by a suite of quan-
titative measures. Several measures are based on the distribution of the 
lengths of diagonal or vertical lines. These parameters can be used to trace 
hidden transitions in a process. Bivariate and multivariate extensions of re-
currence plots furthermore offer nonlinear correlation tests and synchroni-
zation analysis. A detailed introduction to recurrence plot based methods 
can be found at the web site

http://www.recurrence-plot.tk

The analysis of recurrence plots has already been applied to many problems 
in earth sciences. The comparison of the dynamics of modern precipitation 
data with paleo-rainfall data inferred from annual-layered lake sediments 
in the northwestern Argentine Andes provides a good example of such anal-
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ysis (Marwan et al. 2003). In this example, the method of recurrence plots 
was applied to red-color intensity transects across ca. 30 kyr-old varved 
lake sediments shown in Figure 5.1. Comparing the recurrence plots from 
the sediments with the ones from modern precipitation data revealed that 
the reddish layers document more intense rainy seasons during the La Niña 
years. The application of linear techniques was not able to link the increased 
fl ux of reddish clays and enhanced precipitation to either the El Niño or La 
Niña phase of the ENSO. Moreover, recurrence plots helped to prove the 
hypothesis that a longer rainy seasons, enhanced precipitation and stronger 
infl uence of the El Niño /Southern Oscillation has caused enhanced land-
sliding at 30 kyrs ago (Marwan et al. 2003, Trauth et al. 2003).
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Fig. 5.24 The recurrence plot of the Lorenz system using a threshold of ε =10. The regions 
with organized diagonal lines reveal unstable periodic orbits, typical for chaotic systems.
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6 Signal Processing

6.1 Introduction

Signal processing refers to techniques for manipulating a signal to mini-
mize the effects of  noise, to correct all kinds of unwanted distortions or to 
separate various components of interest. Most signal processing algorithms 
include the design and realization of filters. A  fi lter can be described as a 
system that transforms signals.  System theory provides the mathematical 
background for filter design and realization. A filter as a system has an input 
and an output, where the  output signal y (t) is modifi ed with respect to the 
 input signal x(t) (Fig. 6.1). The signal transformation is often called convo-
lution or, if fi lters are applied, fi ltering.

This chapter is on the design and  realization of  digital fi lters with the 
help of a computer. However, many natural processes resemble  analog 
fi lters that act over a range of spatial dimensions. A single rainfall event 
is not recorded in lake sediments because short and low-amplitude events 
are smeared over a longer time span. Bioturbation also introduces serious 
distortions for instance to deep-sea sediment records. Aside from such 
 natural fi lters, the fi eld collection and sampling of geological data alters 
and smoothes the data with respect to its original form. For example, a 
fi nite size sediment sample integrates over a certain period of time and 
therefore smoothes the natural signal. Similarly, the measurement of mag-

Input signal Output signalSignal transformation

LTI System

Fig. 6.1 Schematic of a linear time-invariant (LTI) system. The input signal is transformed 
into an output signal.
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netic susceptibility with the help of a loop sensor introduces signifi cant 
smoothing since the loop integrates over a certain section of the sediment 
core.

The characteristics of these natural fi lters are often diffi cult to determine. 
Numerical fi lters, however, are designed with well-defi ned characteristics. 
In addition,  artifi cial fi lters are time invariant in most cases, while natural 
fi lters, such as lake mixing or bioturbation, may change with time. An easy 
way to describe or predict the effect of a fi lter is to explore the fi lter output 
of a simple input signal, such as a sine wave, a square wave, a sawtooth, 
ramp or step function. Although there is an endless variety of such signals, 
most systems or fi lters are described by their impulse response, i.e., the 
output of a unit impulse.

The chapter starts with a more technical section on generating periodic 
signals, trends and noise, similar to Chapter 5.2. Chapter 6.3 is on linear 
time-invariant systems, which provide the mathematical background for 
fi lters. The following Chapters 6.4 to 6.9 are on the design, the realization 
and the application of linear time-invariant fi lters. Chapter 6.10 then sug-
gests the application of adaptive fi lters originally developed in telecom-
munication. Adaptive fi lters automatically extract noisefree signals from 
duplicate measurements on the same object. Such fi lters can be used in a 
large number of applications, such as noise removal from duplicate pale-
oceanographic time series or to improve the signal-to-noise ratio of paral-
lel color-intensity transects across varved lake sediments (see Chapter 5, 
Fig. 5.1). Moreover, such fi lters are also widley-used in geophysics for 
noise canceling.

6.2 Generating Signals

MATLAB provides numerous tools to generate basic signals that can be 
used to illustrate the effects of fi lters. In Chapter 5, we have generated a 
signal by adding together three sine waves with different amplitudes and 
periods. In the following example, the time vector is transposed for the 
purpose of generating column vectors.

t = (1:100)';
x = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

plot(t,x), axis([0 100 -4 4])

 Frequency-selective fi lters are very common in earth sciences. They are 
used for removing certain frequency bands from the data. As an example, 
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we could design a fi lter that has the capability to suppress the portion of 
the signal with a periodicity of τ =15, whereas the other two cycles are un-
affected. Such simple periodic signals can also be used to predict signal 
distortions of natural fi lters.

A step function is another basic input signal that can be used for exploring 
fi lter characteristics. It describes the transition from a value of one towards 
zero at a certain time.

t = (1:100)';
x = [ones(50,1);zeros(50,1)];

plot(t,x), axis([0 100 -2 2])

This signal can be used to study the effects of a fi lter on a sudden transi-
tion. An abrupt climate change could be regarded as an example. Most 
natural fi lters tend to smooth such a transition and smear it over a longer 
time period.

The  unit impulse is the third important signal that we will use in the fol-
lowing examples. This signal equals zero for all times except for a single 
data point which equals one.

t = (1:100)';
x = [zeros(49,1);1;zeros(50,1)];

plot(t,x), axis([0 100 -4 4])

The unit impulse is the most popular synthetic signal for studying the per-
formance of a fi lter. The output of the fi lter, the impulse response, describes 
the characteristics of a fi lter very well. Moreover, the output of a linear time-
invariant fi lter can be described by the superposition of impulse responses 
that have been scaled by the amplitude of the input signal.

6.3 Linear Time-Invariant Systems

Filters can be described as systems with an input and output. Therefore, we 
fi rst describe the characteristics of a more general system before we apply 
this theory to fi lters. Important characteristics of a system are

• Continuity – A system with continuous inputs and outputs is continuous. 
Most of the natural systems are continuous. However, after sampling na-
tural signals we obtain discrete data series and model these natural sy-
stems as discrete systems, which have discrete inputs and outputs.
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• Linearity – For linear systems, the output of the linear combination of 
several input signals

is the same linear combination of the outputs:

The important consequence of linearity is scaling and additivity ( super-
position). Input and output can be multiplied by a constant before or af-
ter transformation. Superposition allows to extract additive components 
of the input and transform these separately. Fortunately, many natural 
systems show a linear behavior. Complex linear signals such as additive 
harmonic components can be separated and transformed independently. 
Milankovitch cycles provide an example of linear superposition in pa-
leoclimate records, although there is an ongoing debate about the valid-
ity of this assumption. Numerous nonlinear systems exist in nature that 
do not obey the properties of scaling and additivity. An example of such 
a  linear system is

x = (1:100)';
y = 2*x;

plot(x,y)

An example of a  nonlinear system is

x = (-100:100)';
y = x.^2;

plot(x,y)

• Time invariance – The system output y (t) does not change with a delay 
of the input x (t+ i). The system characteristics are constant with time. 
Unfortunately, natural systems often change their characteristics with 
time. For instance, benthic mixing or bioturbation depends on various 
environmental parameters such as nutrient supply. Therefore, the sys-
tem’s performance varies with time signifi cantly. In such case, the actual 
input of the system is hard to determine from the output, e.g., to extract 
the actual climate signal from a bioturbated sedimentary record.
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• Invertibility – An invertible system is a system where the original input 
signal can be reproduced from the system’s output. This is an important 
property if unwanted signal distortions have to be corrected. Here, the 
known system is inverted and applied to the output to reconstruct the 
undisturbed input. As an example, a core logger measuring the magnetic 
susceptibility with a loop sensor integrates over a certain core interval 
with highest sensitivity at the location of the loop and decreasing sensi-
tivity down- and up-core. The above system is also invertible, i.e., we can 
compute the input signal from the output signal by inverting the system. 
The inverse system of the above linear system is

x = (1:100)';
y = 0.5*x;

plot(t,y)

The nonlinear system

x = (-100:100)';
y = x.^2;

plot(x,y)

is not invertible. Since this system yields equal responses for different 
inputs, such as y = +4 for inputs x= –2 and x= +2, the input cannot be re-
constructed from the output. A similar situation can also occur in linear 
systems, such as

x = (1:100)';
y = 0;

plot(x,y)

The output is zero for all inputs. Therefore, the output does not contain 
any information about the input.

• Causality – The system response only depends on present and past in-
puts x (0), x (–1), …, whereas future inputs x (+1), x (+2), … have no 
effect on the output y (0). All realtime systems, such telecommunication 
systems, must be causal since they cannot have future inputs available 
to them. All systems and fi lters in MATLAB are indexed as causal. In 
earth sciences, however, numerous non-causal fi lters are used. Filtering 
images and signals extracted from sediment cores are examples where 
the future inputs are available at the time of fi ltering. Output signals have 
to be delayed after fi ltering to compensate the differences between causal 
and non-causal indexing. 
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• Stability – A system is stable if the output of a fi nite input is also fi nite. 
Stability is critical in fi lter design, where fi lters often have the disadvan-
tage of provoking diverging outputs. In such cases, the fi lter design has 
to be revised and improved.

Linear time-invariant (LTI) systems as a special type of fi lters are very 
popular. Such systems have all the advantages that have been described 
above. They are easy to design and to use in many applications. The follow-
ing chapters 6.4 to 6.9 describe the design, realization and application of 
LTI-type fi lters to extract certain frequency components of signals. These 
fi lters are mainly used to reduce the noise level in signals. Unfortunately, 
many natural systems do not behave as LTI systems. The signal-to-noise 
ratio often varies with time. Chapter 6.10 describes the application of adap-
tive fi lters that automatically adjust their characteristics in a time-variable 
environment.

6.4 Convolution and Filtering

The mathematical description of a system transformation is the convolution. 
Filtering is one application of the convolution process. A running mean of 
length fi ve provides an example of such a simple fi lter. The output of an 
arbitrary input signal is

The output y (t) is simply the average of the fi ve input values x (t–2), x (t–1), 
x (t), x (t+1) and x (t+2). In other words, all the fi ve consecutive input val-
ues are multiplied by a factor of 1/5 and summed to form y (t). In this exam-
ple, all input values are multiplied by the same factor, i.e., they are equally 
weighted. The fi ve factors used in the above operation are also called fi lter 
weights bk. The fi lter can be represented by the vector

b = [0.2 0.2 0.2 0.2 0.2]

consisting of the identical fi lter weights. Since this fi lter is symmetric, it 
does not shift the signal on the time axis. The only function of this fi lter is 
to smooth the signal. Therefore, running means of a given length are often 
used to smooth signals, mainly for cosmetic reasons. A modern spreadsheet 
software usually contains running means as a function for smoothing data 
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series. The impact of the smoothing fi lter increases with increasing fi lter 
length.

The weights that a fi lter of arbitrary length may take can vary. As an ex-
ample, let us assume an asymmetric fi lter of fi ve weights.

b = [0.05 0.08 0.14 0.26 0.47]

The sum of all of the fi lter weights is one. Therefore, it does not introduce 
energy to the signal. However, since it is highly asymmetric, it shifts the 
signal along the time axis, i.e., it introduces a phase shift.

The general mathematical representation of the fi ltering process is the 
convolution:

where bk is the vector of  fi lter weights, N1+N2 is the  order of the fi lter, which 
is the length of the fi lter reduced by one. Filters with fi ve weights have an 
order of four, as in our example. In contrast to this format, MATLAB uses 
the engineering standard of indexing fi lters, i.e., fi lters are always defi ned 
as  causal. Therefore, the convolution used by MATLAB is

where N is the order of the fi lter. A number of frequency-domain tools 
provided by MATLAB cannot simply be applied to  non-causal fi lters that 
have been designed for applications in earth sciences. Hence, it is common 
to carry out phase corrections to simulate non-causality. For example, fre-
quency-selective fi lters as introduced in Chapter 6.9 can be applied using 
the function filtfilt, which provides zero-phase forward and reverse 
fi ltering.

The functions conv and filter that provide digital fi ltering with 
MATLAB are best illustrated in terms of a simple running mean. The n el-
ements of the vector x (t1), x (t2), x (t3), …, x (tn) are replaced by the arith-
metic means of subsets of the input vector. For instance, a running mean 
over three elements computes the mean of inputs x (tn–1), x (tn), x (tn+1) to 
obtain the output y (tn). We can easily illustrate this by generating a ran-
dom signal
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clear

t = (1:100)';
randn('seed',0);
x1 = randn(100,1);

designing a fi lter that averages three data points of the input signal

b1 = [1 1 1]/3;

and convolving the input vector with the fi lter

y1 = conv(b1,x1);

The elements of b1 are the weights of the fi lter. In our example, all fi lter 
weights are the same and they equal 1/3. Note that the conv function yields 
a vector that has the length n+m–1, where m is the length of the fi lter.

m1 = length(b1);

We should explore the contents of our workspace to check for the length of 
the input and output of conv. Typing

whos

yields

Name        Size            Bytes  Class     Attributes
b1          1x3                24  double
m1          1x1                 8  double
t         100x1               800  double
x1        100x1               800  double
y1        102x1               816  double

Here, we see that the actual input series x1 has a length of 100 data points, 
whereas the output y1 has two more elements. Generally, convolution intro-
duces (m–1) /2 data points at both ends of the data series. To compare input 
and output signal, we cut the output signal at both ends.

y1 = y1(2:101,1);

A more general way to correct the phase shifts of conv is

y1 = y1(1+(m1-1)/2:end-(m1-1)/2,1);

which of course works only for an odd number of fi lter weights. Then, we 
can plot both input and output signals for comparison. We also use legend
to display a legend for the plot.
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plot(t,x1,'b-',t,y1,'r-')
legend('x1(t)','y1(t)')

This plot illustrates the effect of the running mean on the original input se-
ries. The output y1 is signifi cantly smoother than the input signal x1. If we 
increase the length of the fi lter, we obtain an even smoother signal.

b2 = [1 1 1 1 1]/5;
m2 = length(b2);

y2 = conv(b2,x1);
y2 = y2(1+(m2-1)/2:end-(m2-1)/2,1);

plot(t,x1,'b-',t,y1,'r-',t,y2,'g-')
legend('x1(t)','y1(t)','y2(t)')

The next chapter introduces a more general description of fi lters.

6.5 Comparing Functions for Filtering Data Series

A very simple example of a nonrecursive fi lter was described in the previ-
ous section. The fi lter output y (t) depends only on the fi lter input x (t) and 
the fi lter weights bk . Prior to introducing a more general description for 
linear time-invariant fi lters, we replace the function  conv by  filter that 
can be used also for recursive fi lters. In this case, the output y (tn) depends 
on the fi lter input x (t), but also on previous elements of the output y (tn–1), 
y (tn–2), y (tn–3) and so on (Chapter 6.6). First, we use filter for nonre-
cursive fi lters.

clear

t = (1:100)';
randn('seed',0);
x3 = randn(100,1);

We design a fi lter that averages fi ve data points of the input signal.

b3 = [1 1 1 1 1]/5;
m3 = length(b3);

The input vector can be convolved with the function conv. The output is 
again corrected for the length of the data vector.

y3 = conv(b3,x3);
y3 = y3(1+(m3-1)/2:end-(m3-1)/2,1);

Although the function filter yields an output vector with the same length 
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as the input vector, we have to correct the output as well. Here, the function 
filter assumes that the fi lter is causal. The fi lter weights are indexed n,
n–1, n–2 and so on. Therefore, no future elements of the input vector, such 
as x (n+1), x (n+2) etc. are needed to compute the output y (n). This is of 
great importance in electrical engineering, the classic fi eld of application 
of MATLAB, where fi lters are often applied in real time. In earth sciences, 
however, in most applications the entire signal is available at the time of 
processing the data. Filtering the data series is done by

y4 = filter(b3,1,x3);

and afterwards the phase correction is carried out using

y4 = y4(1+(m3-1)/2:end-(m3-1)/2,1);
y4(end+1:end+m3-1,1) = zeros(m3-1,1);

which works only for an odd number of fi lter weights. This command sim-
ply shifts the output by(m–1)/3 towards the lower end of the t-axis, then 
fi lls the end of the data series by zeros. Comparing the ends of both outputs 
illustrates the effect of this correction, where

y3(1:5,1)
y4(1:5,1)

yields

ans =
    0.3734
    0.4437
    0.3044
    0.4106
    0.2971

ans =
    0.3734
    0.4437
    0.3044
    0.4106
    0.2971

This was the lower end of the output. We see that both vectors y3 and y4
contain the same elements. Now we explorer the upper end of the data vec-
tor, where

y3(end-5:end,1)
y4(end-5:end,1)

causes the output
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ans =
    0.2268
    0.1592
    0.3292
    0.2110
    0.3683
    0.2414

ans =
    0.2268
    0.1592
         0
         0
         0
         0

The vectors are identical up to element y(end–m3+1), then the second vec-
tor y4 contains zeros instead of true data values. Plotting the results with

subplot(2,1,1), plot(t,x3,'b-',t,y3,'g-')
subplot(2,1,2), plot(t,x3,'b-',t,y4,'g-')

or in one single plot,

plot(t,x3,'b-',t,y3,'g-',t,y4,'r-')

shows that the results of conv and filter are identical except for the up-
per end of the data vector. These observations are important for our next 
steps in signal processing, particularly if we are interested in leads and lags 
between various components of signals.

6.6 Recursive and Nonrecursive Filters

Now we expand the  nonrecursive fi lters by a recursive component, i.e., the 
output y (tn) depends on the fi lter input x (t), but also on previous output val-
ues y (tn–1), y (tn–2), y (tn–3) and so on. This fi lter requires the nonrecursive 
fi lter weights bi, but also the  recursive fi lters weights ai (Fig. 6.2). This fi lter 
can be described by the  difference equation:

Whereas this is a non-causal version of the difference equation, MATLAB 
uses the  causal indexing again,
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with the known problems in the design of zero-phase fi lters. The larger of 
the two quantities M and N1+N2 or N is the order of the fi lter.

We use the same synthetic input signal as in the previous example to il-
lustrate the performance of a recursive fi lter.

clear
t = (1:100)';
randn('seed',0);
x5 = randn(100,1);

We fi lter this input using a recursive fi lter with a set of weights a5 and b5,

b5 = [0.0048    0.0193    0.0289    0.0193    0.0048];
a5 = [1.0000   -2.3695    2.3140   -1.0547    0.1874];

m5 = length(b5);

y5 = filter(b5,a5,x5);

and correct the output for the phase

y5 = y5(1+(m5-1)/2:end-(m5-1)/2,1);
y5(end+1:end+m5-1,1) = zeros(m5-1,1);

Now we plot the results.

plot(t,x5,'b-',t,y5,'r-')

bi T

+

T ai

+

Input signal x(t)

Output signal y(t)

Fig. 6.2 Schematic of a  linear time-invariant fi lter with an input x (t) and an output y (t). 
The fi lter is characterized by its weights ai and bi , and the delay elements T. Nonrecursive 
fi lters only have nonrecursive weights bi , whereas the recursive fi lter also requires the 
recursive fi lters weights ai .
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Obviously, this fi lter changes the signal dramatically. The output contains 
only low-frequency components, whereas all higher frequencies are elimi-
nated. The comparison of the periodograms of the input and the output re-
veals that all frequencies above f = 0.1 corresponding to a period of τ =10 are 
suppressed.

[Pxx,F] = periodogram(x5,[],128,1);
[Pyy,F] = periodogram(y5,[],128,1);

plot(F,abs(Pxx),F,abs(Pyy))

Hence, we have now designed a frequency-selective fi lter, i.e., a fi lter that 
eliminates certain frequencies whereas other periodicities are relatively 
unaffected. The next chapter introduces tools to characterize a fi lter in the 
time and frequency domain that help to predict the effect of a frequency-
selective fi lter on arbitrary signals.

6.7 Impulse Response

The  impulse response is a very convenient way of describing the fi lter char-
acteristics (Fig. 6.3). A useful property of the impulse response h in LTI 
systems involves the convolution of the input signal x (t) with h to obtain 
the output signal y (t) .

It can be shown that the impulse response h is identical to the fi lter weights 
in the case of nonrecursive fi lters, but is different for recursive fi lters. 
Alternatively, the convolution is often written in a short form:

In many examples, the convolution in the  time domain is replaced by a 
simple multiplication of the  Fourier transforms H ( f ) and X ( f ) in the  fre-
quency domain.

The output signal y (t) in the time domain is then obtained by a reverse 
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Fourier transformation of Y ( f ). The signals are often convolved in the fre-
quency domain for simplicity of the multiplication as compared to a convo-
lution in the time domain. However, the Fourier transformation itself intro-
duces a number of artifacts and distortions and therefore, convolution in the 
frequency domain is not without problems. In the following examples we 
apply the convolution only in the time domain.

First, we generate an unit impulse:

clear
t = (0:20)';
x6 = [zeros(10,1);1;zeros(10,1)];

stem(t,x6), axis([0 20 -4 4])

The function stem plots the data sequence x6 as stems from the x-axis 
terminated with circles for the data value. This might be a better way to plot 
digital data than using the continuous lines generated by plot. We now 
feed this to the fi lter and explore the output. The impulse response is identi-
cal to the weights of nonrecursive fi lters.

b6 = [1 1 1 1 1]/5;
m6 = length(b6);

y6 = filter(b6,1,x6);

We correct this for the  phase shift of the function filter again, although 
this might not be important in this example.
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Fig. 6.3 Transformation of a a  unit impulse to compute b the impulse response of a system. 
The  impulse response is often used to describe and predict the performance of a fi lter.
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y6 = y6(1+(m6-1)/2:end-(m6-1)/2,1);
y6(end+1:end+m6-1,1) = zeros(m6-1,1);

We obtain an output vector y6 of the same length and phase as the input 
vector x6. We plot the results for comparison.

stem(t,x6)
hold on
stem(t,y6,'filled','r')
axis([0 20 -2 2])

In contrast to plot, the function  stem accepts only one data series. There-
fore, the second series y6 is overlaid on the same plot using the function hold.
The effect of the fi lter is clearly seen on the plot. It averages the unit impulse 
over a length of fi ve elements. Furthermore, the values of the output equal the 
fi lter weights of a6, in our example 0.2 for all elements of a6 and y6.

For a recursive fi lter, the output y6 does not agree with the fi lter weights. 
Again, an impulse is generated fi rst.

clear
t = (0:20)';
x7 = [zeros(10,1);1;zeros(10,1)];

Subsequently, an arbitrary recursive fi lter with weights of a7 and b7 is de-
signed.

b7 = [0.0048    0.0193    0.0289    0.0193    0.0048];
a7 = [1.0000   -2.3695    2.3140   -1.0547    0.1874];

m7 = length(b7);

y7 = filter(b7,a7,x7);

y7 = y7(1+(m7-1)/2:end-(m7-1)/2,1);
y7(end+1:end+m7-1,1) = zeros(m7-1,1);

The stem plot of the input x2 and the output y2 shows an interesting im-
pulse response:

stem(t,x7)
hold on
stem(t,y7,'filled','r')
axis([0 20 -2 2])

The signal is again smeared over a wider area. It is also shifted towards the 
right. Therefore, this fi lter not only affects the amplitude of the signal, but 
also shifts the signal towards lower or higher values. Phase shifts are usu-
ally unwanted characteristics of fi lters, although in some applications shifts 
along the time axis might be of particular interest.
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6.8 Frequency Response

Next, we investigate the  frequency response of a fi lter, i.e., the effect of 
a fi lter on the  amplitude and  phase of a signal (Fig. 6.4). The frequency 
response H ( f ) of a fi lter is the Fourier transform of the impulse response 
h (t) . The absolute of the complex  frequency response H ( f ) is the  magni-
tude response of the fi lter A ( f ).

The argument of the complex frequency response H ( f ) is the phase re-
sponse of the fi lter.

Since MATLAB fi lters are all causal it is diffi cult to explore the phase of 
signals using the corresponding functions included in the Signal Processing 
Toolbox. The user’s guide for this toolbox simply recommends to delay the 
fi lter output in the time domain by a fi xed number of samples, as we have 
done it in the previous examples. As an example, a sine wave with a period 
of 20 and an amplitude of 2 is used as an input signal.
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Fig. 6.4 a Magnitude and b phase response of a running mean over eleven elements.
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clear
t = (1:100)';
x8 = 2*sin(2*pi*t/20);

A running mean over eleven elements is designed and this fi lter is applied 
to the input signal.

b8 = ones(1,11)/11;
m8 = length(b8);

y8 = filter(b8,1,x8);

The phase is corrected for causal indexing.

y8 = y8(1+(m8-1)/2:end-(m8-1)/2,1);
y8(end+1:end+m8-1,1) = zeros(m8-1,1);

Both input and output of the fi lter are plotted.

plot(t,x8,t,y8)

The fi lter obviously reduces the amplitude of the sine wave. Whereas the 
input signal has an amplitude of 2, the output has an amplitude of

max(y8)

ans =
    1.1480

The fi lter reduces the amplitude of a sine with a period of 20 by

1-max(y8(40:60))/2

ans =
    0.4260

i.e., approximately 43%. The elements 40 to 60 are used for computing the 
maximum value of y8 to avoid edge effects. On the other hand, the fi lter 
does not affect the phase of the sine wave, i.e., both input and output are 
in phase.

The same fi lter, however, has a different impact on a different signal. Let 
us design another sine wave with a similar amplitude, but with a different 
period of 15.

clear
t = (1:100)';
x9 = 2*sin(2*pi*t/15);

Applying a similar fi lter and correcting the output for the phase shift of the 
function filter yields
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b9 = ones(1,11)/11;
m9 = length(b9);

y9 = filter(b9,1,x9);

y9 = y9(1+(m9-1)/2:end-(m9-1)/2,1);
y9(end+1:end+m9-1,1) = zeros(m9-1,1);

The output is again in phase with the input, but the amplitude is dramati-
cally reduced as compared to the input.

plot(t,x9,t,y9)

1-max(y9(40:60))/2

ans =
    0.6768

The  running mean over eleven elements reduces the amplitude of this signal 
by 67%. More generally, the fi lter response obviously depends on the fre-
quency of the input. The frequency components of a more complex signal 
containing multiple periodicities are affected in a different way. The fre-
quency response of a fi lter

clear
b10 = ones(1,11)/11;

can be computed using the function freqz.

[h,w] = freqz(b10,1,512);

The function  freqz returns the complex frequency response h of the digital 
fi lter b10. The frequency axis is normalized to π. We transform the frequen-
cy axis to the true frequency values. The true frequency values are w times 
the sampling frequency, which is one in our example, divided by 2*pi.

f = 1*w/(2*pi);

Next, we calculate the magnitude of the frequency response and plot the 
magnitude over the frequency.

magnitude = abs(h);

plot(f,magnitude)
xlabel('Frequency'), ylabel('Magnitude')
title('Magnitude')

This plot can be used to predict the magnitude of the fi lter for any frequency 
of an input signal. An exact value of the magnitude can also be obtained by 
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simple interpolation of the magnitude,

1-interp1(f,magnitude,1/20)

ans =
    0.4260

which is the expected ca. 43% reduction of the amplitude of a sine wave 
with period 20. The sine wave with period 15 experiences an amplitude 
reduction of

1-interp1(f,magnitude,1/15)

ans =
    0.6751

i.e., around 68% similar to the value observed at the beginning. The fre-
quency response can be calculated for all kinds of fi lters. It is a valuable 
tool to predict the effects of a fi lter on signals in general. The phase re-
sponse can also be calculated from the complex frequency response of the 
fi lter (Fig. 6.4):

phase = 180*angle(h)/pi;

plot(f,phase)
xlabel('Frequency'), ylabel('Phase in degrees')
title('Phase')

The phase angle is plotted in degrees. We observe frequent 180° jumps in 
this plot that are an artifact of the arctangent function inside the function 
angle. We can unwrap the phase response to eliminate the 180° jumps us-
ing the function unwrap.

plot(f,unwrap(phase))
xlabel('Frequency'), ylabel('Phase in degrees')
title('Phase')

Since the fi lter has a linear phase response, no shifts of the frequency com-
ponents of the signal occur relative to each other. Therefore, we would not 
expect any distortions of the signal in the frequency domain. The phase 
shift of the fi lter can be computed using

interp1(f,unwrap(phase),1/20) * 20/360 

ans =
   -5.0000

and 
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interp1(f,unwrap(phase),1/15) * 15/360

ans =
   -5.0000

respectively. Since MATLAB uses causal indexing for fi lters, the phase 
needs to be corrected, similar to the delayed output of the fi lter. In our 
example, we used a fi lter of the length eleven. We have to correct the 
phase by (11–1)/2=5. This suggests a zero phase shift of the fi lter for 
both frequencies.

This also works for recursive fi lters. Assume a simple sine wave with 
period 8 and the previously employed recursive fi lter.

clear
t = (1:100)';
x11 = 2*sin(2*pi*t/8);

b11 = [0.0048    0.0193    0.0289    0.0193    0.0048];
a11 = [1.0000   -2.3695    2.3140   -1.0547    0.1874];

m11 = length(b11);

y11 = filter(b11,a11,x11);

Correct the output for the phase shift introduced by causal indexing and plot 
both input and output signals.

y11= y11(1+(m11-1)/2:end-(m11-1)/2,1);
y11(end+1:end+m11-1,1) = zeros(m11-1,1);

plot(t,x11,t,y11)

The magnitude is reduced by

1-max(y11(40:60))/2

ans =
    0.6465

which is also supported by the magnitude response

[h,w] = freqz(b11,a11,512);

f = 1*w/(2*pi);

magnitude = abs(h);

plot(f,magnitude)
xlabel('Frequency'), ylabel('Magnitude')
title('Magnitude Response')
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1-interp1(f,magnitude,1/8)

ans =
    0.6462

The phase response

phase = 180*angle(h)/pi;

f = 1*w/(2*pi);

plot(f,unwrap(phase))
xlabel('Frequency'), ylabel('Phase in degrees')
title('Magnitude Response')

interp1(f,unwrap(phase),1/8) * 8/360

ans =
    -5.0144

must again be corrected for causal indexing. The sampling interval was one, 
the fi lter length is fi ve. Therefore, we have to add (5–1)/2=2 to the phase 
shift of –5.0144. This suggests a corrected phase shift of –3.0144, which is 
exactly the delay seen on the plot.

plot(t,x11,t,y11), axis([30 40 -2 2])

The next chapter gives an introduction to the design of fi lters with a desired 
frequency response. These fi lters can be used to amplify or suppress differ-
ent components of arbitrary signals.

6.9  Filter Design

Now we aim to design fi lters with a desired frequency response. Firstly, 
a synthetic signal with two periods, 50 and 15, is generated. The power-
spectrum of the signal shows the expected peaks at the frequencies 0.02 
and ca. 0.07.

t = 0 : 1000;
x12 = 2*sin(2*pi*t/50) + sin(2*pi*t/15);

plot(t,x12), axis([0 200 -4 4])

[Pxx,f] = periodogram(x12,[],1024,1);

plot(f,abs(Pxx))
xlabel('Frequency')
ylabel('Power')



154 6 Signal Processing

We add some  gaussian noise with amplitude one and explore the signal and 
its periodogram.

xn12 = x12 + randn(1,length(t));

plot(t,xn12), axis([0 200 -4 4])

[Pxx,f] = periodogram(xn12,[],1024,1);

plot(f,abs(Pxx))
xlabel('Frequency')
ylabel('Power')

The  Butterworth fi lter design technique is a widely-used method to cre-
ate fi lters of any order with a  lowpass,  highpass,  bandpass and  bandstop 
confi guration (Fig. 6.5). In our example, we like to design a fi ve-order 
lowpass fi lter with a  cutoff frequency of 0.08. The inputs of the function 
butter are the order of the fi lter and the cutoff frequency normalized 
to the  Nyquist frequency, which is 0.5 in our example, that is half of the 
sampling frequency.

[b12,a12] = butter(5,0.08/0.5);

The  frequency characteristics of the fi lter show a relatively smooth transi-
tion from the  passband to the  stopband, but the advantage of the fi lter is its 
low order.

[h,w] = freqz(b12,a12,1024);
f = 1*w/(2*pi);

plot(f,abs(h)), grid
xlabel('Frequency')
ylabel('Magnitude')

We can again apply the fi lter to the signal by using the function  filter.
However, frequency selective fi lters such as lowpass, highpass, bandpass 
and bandstop are designed to suppress certain frequency bands, whereas 
phase shifts should be avoided. The function  filtfilt provides zero-
phase forward and reverse digital fi ltering. After fi ltering in the forward 
direction, the fi ltered sequence is reversed and it runs back through the fi lter. 
The magnitude of the signal is not affected by this operation, since it is either 
0 or 100% of the initial amplitude, depending on the frequency. In contrast, 
all phase shifts introduced by the fi lter are zeroed by the forward and re-
verse application of the same fi lter. This function also helps to overcome 
the problems with causal indexing of fi lters in MATLAB. It eliminates the 
phase differences of the causal vs. non-causal versions of the same fi lter. 
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Filtering and plotting the results clearly illustrates the effects of the fi lter.

xf12 = filtfilt(b12,a12,xn12);

plot(t,xn12,'b-',t,xf12,'r-')
axis([0 200 -4 4])

One might now wish to design a new fi lter with a more rapid transition from 
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Fig. 6.5 Frequency response of the fundamental types of frequency-selective fi lters. 
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passband to stopband. Such a fi lter needs a higher order. It needs to have a 
larger number of fi lter weights. We now create a 15-order Butterworth fi lter 
as an alternative to the above fi lter.

[b13,a13] = butter(15,0.08/0.5);

[h,w] = freqz(b13,a13,1024);

f = 1*w/(2*pi);

plot(f,abs(h)), grid
xlabel('Frequency')
ylabel('Magnitude')

The frequency response is clearly improved. The entire passband is rela-
tively fl at at a value of 1.0, whereas the stopband is approximately zero 
everywhere. Next, we modify our input signal by introducing a third period 
of 5. This signal is then used to illustrate the operation of a Butterworth 
bandstop fi lter.

x14 = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);
plot(t,x14), axis([0 200 -4 4])

[Pxx,f] = periodogram(x14,[],1024,1);

plot(f,abs(Pxx))

The new Butterworth fi lter is a bandstop fi lter. The stopband of the fi lter is 
between the frequencies 0.06 and 0.08. It can therefore be used to suppress 
the period of 15 corresponding to a frequency of approximately 0.07.

xn14 = x14 + randn(1,length(t));

[b14,a14] = butter(5,[0.06 0.08]/0.5,'stop');
xf14 = filtfilt(b14,a14,x14);

[Pxx,f] = periodogram(xf14,[],1024,1);

plot(f,abs(Pxx))

plot(t,xn14,'b-',t,xf14,'r-'), axis([0 200 -4 4])

The plots show the effect of this fi lter. The frequency band between 0.06 
and 0.08, and therefore also the frequency of 0.07 was successfully removed 
from the signal.
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6.10  Adaptive Filtering

The fi xed fi lters used in the previous chapters make the basic assumption 
that the signal degradation is known and it does not change with time. In 
most applications, however, an a priori knowledge of the  signal and  noise 
statistical characteristics is usually not available. In addition, both the noise 
level and the variance of the genuine signal can be highly nonstationary 
with time, e.g., stable isotope records during the glacial-interglacial transi-
tion. Fixed fi lters thus cannot be used in a nonstationary environment with-
out a knowledge of the signal-to-noise ratio.

In contrast, adaptive fi lters widely used in the telecommunication indus-
try could help to overcome these problems. An adaptive fi lter is an inverse 
modeling process, which iteratively adjusts its own coeffi cients automati-
cally without requiring any a priori knowledge of signal and noise. The op-
eration of an adaptive fi lter includes, (1) a fi ltering process, the purpose of 
which is to produce an output in response to a sequence of data, and (2) an 
 adaptive process providing a mechanism for the adaptive control of the  fi lter 
weights (Haykin 1991).

In most practical applications, the adaptive process is oriented towards 
minimizing an error signal or cost function e. The estimation error e at an in-
stant i is defi ned by the difference between some desired response di and the 
actual fi lter output yi, that is the fi ltered version of a signal xi, as shown by

where i=1, 2, …, N and N is the length of the input data vector. In the case 
of a nonrecursive fi lter characterized by the vector of fi lter weights W with f
elements, the fi lter output yi is given by the inner product of the transposed 
vector W and the input vector Xi.

The selection of the desired response d that is used in the adaptive process 
depends the application. Traditionally, d is a combined signal that contains 
a signal s and random noise n0. The signal x contains a noise n1 uncorre-
lated with the signal s but correlated in some unknown way to the noise n0.
In noise canceling systems, the practical objective is to produce a system 
output y that is a best fi t in the least-squares sense to the signal d.

Different approaches have been developed to solve this multivariate min-
imum error optimization problem (e.g., Widrow and Hoff 1960, Widrow 
et al. 1975, Haykin 1991). Selection of one algorithm over another is in-
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fl uenced by various factors: the rate of convergence (number of adaptive 
steps required for the algorithm to converge close enough to an optimum 
solution), misadjustment (measure of the amount by which the fi nal value 
of the mean-squared error deviates from the minimum squared error of an 
optimal fi lter, e.g., Wiener 1945, Kalman and Bucy 1961), and tracking (the 
capability of the fi lter to work in a nonstationary environment, i.e., to track 
changing statistical characteristics of the input signal) (Haykin 1991).

The simplicity of the   least-mean-squares (LMS) algorithm, originally 
developed by Widrow and Hoff (1960), has made it the benchmark against 
which other adaptive fi ltering algorithms are tested. For applications in 
earth sciences, we use this fi lter to extract the noise from two signals S
and X, both containing the same signal s, but uncorrelated noise n

1
 and n

2

(Hattingh 1988). As an example, consider a simple duplicate set of measure-
ments on the same material, e.g., two parallel stable isotope records from 
the same foraminifera species. What you will expect are two time-series 
with N elements containing the same desired signal overlain by different 
uncorrelated noise. The fi rst record is used as the primary input S

and the second record is the reference input X.

As demonstrated by Hattingh (1988), the required noise-free signal can be 
extracted by fi ltering the  reference input X using the  primary input S as the 
desired response d. The minimum error  optimization problem is solved by 
the norm least-mean-square. The  mean-squared error ei

2 is a second-order 
function of the weights in the nonrecursive fi lter. The dependence of ei

2 on 
the unknown weights may be seen as a multidimensional paraboloid with a 
uniquely defi ned minimum point. The weights corresponding to the mini-
mum point of this error performance surface defi ne the optimum Wiener 
solution (Wiener 1945). The value computed for the weight vector W us-
ing the LMS algorithm represents an estimator whose expected value ap-
proaches the Wiener solution as the number of iterations approaches infi nity 
(Haykin 1991). Gradient methods are used to reach the minimum point of 
the error performance surface. For simplifi cation of the optimization prob-
lem, Widrow and Hoff (1960) developed an approximation for the required 
gradient function that can be computed directly from the data. This leads to 
a simple relation for updating the fi lter-weight vector W.
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The new parameter estimate Wi+1 is based on the previous set of fi lter weights 
Wi plus a term, which is the product of a bounded step size u, a function of 
the input state Xi and a function of the error ei. In other words, error ei cal-
culated from the previous step is fed back to the system to update fi lter coef-
fi cients for the next step (Fig. 6.6). The fi xed convergence factor u regulates 
the speed and stability of adaption. A small value ensures a higher accuracy, 
but more data are needed to teach the fi lter to reach the optimum solution. In 
the modifi ed version of the LMS algorithm by Hattingh (1988), this problem 
is overcome by feeding the data back so that the canceler can have another 
chance to improve its own coeffi cients and adapt to the changes in the data.

In the following function  canc, each of these loops is called an iteration 
since many of these loops are required to achieve optimal results. This algo-
rithm extracts the noise-free signal from two vectors x and s containing the 
correlated signal and uncorrelated noise. As an example, we generate two 
signals containing the same sine wave, but different gaussian noise.

x = 0 : 0.1 : 100;
y = sin(x);
yn1 = y + 0.2*randn(size(y));
yn2 = y + 0.2*randn(size(y));

plot(x,yn1,x,yn2)

Save the following code in a text fi le canc.m and include it into the search 
path. The algorithm canc formats both signals, feeds them into the fi lter loop, 

+
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Algorithm
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Error
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Fig. 6.6 Schematic of an adaptive fi lter. Each iteration involves a new estimate of the fi lter 
weights Wi+1 based on the previous set of fi lter weights Wi plus a term which is the product 
of a bounded step size u, a function of the fi lter input Xi , and a function of the error ei . In 
other words, error ei calculated from the previous step is fed back to the system to update 
fi lter coeffi cients for the next step (modifi ed from Trauth 1998).
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corrects the signals for phase shifts and formats the signals for the output.

function [zz,yy,ee] = canc(x,s,u,l,iter)
% CANC Correlated Adaptive Noise Canceling
[n1,n2] = size(s); n = n2; index = 0;       % Formatting
if n1 > n2
    s = s'; x = x'; n = n1; index = 1;
end
w(1:l) = zeros(1,l); e(1:n) = zeros(1,n);   % Initialization
xx(1:l) = zeros(1,l); ss(1:l) = zeros(1,l);
z(1:n) = zeros(1,n); y(1:n) = zeros(1,n);
ors = s; ms(1:n) = mean(s) .* ones(size(1:n));
s = s - ms; x = x - ms; ors = ors - ms;
for it = 1 : iter                           % Iterations
    for I = (l+1) : (n+1)                   % Filter loop
        for k = 1 : l
            xx(k) = x(I-k); ss(k) = s(I-k);
        end
        for J = 1 : l
            y(I-1) = y(I-1) + w(J) .* xx(J);
            z(I-1) = z(I-1) + w(J) .* ss(J);
        end
            e(I-1) = ors(I-1-(fix(l/2)))-y(I-1);
        for J = 1 : l
            w(J) = w(J) + 2.*u.*e(I-1).*xx(J);
        end
    end                                     % End filter loop
    for I = 1 : n                           % Phase correction
        if I <= fix(l/2)
            yy(I) = 0; zz(I) = 0; ee(I) = 0;
        elseif I > n-fix(l/2)
            yy(I) = 0; zz(I) = 0; ee(I) = 0;
        else
            yy(I) = y(I+fix(l/2));
            zz(I) = z(I+fix(l/2));
            ee(I) = abs(e(I+fix(l/2)));
        end
            yy(I) = yy(I) + ms(I);
            zz(I) = zz(I) + ms(I);
    end                                     % End phase correction
    y(1:n) = zeros(size(1:n));
    z(1:n) = zeros(size(1:n));
    mer(it) = mean(ee((fix(l/2)):(n-fix(l/2))).^2);
end                                         % End iterations
if index == 1                               % Reformatting
    zz = zz'; yy = yy'; ee = ee';
end

The required inputs are the signals x and s, the step size u, the fi lter length 
l and the number of  iterations iter. In our example, the two noisy signals 
are yn1 and yn2. For instance, we choose a fi lter with l=5 fi lter weights. A 
value of u in the range of 0 <u< l /λmax where λmax is the largest eigenvalue 
of the autocorrelation matrix of the reference input, leads to reasonable re-
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sults (Haykin 1991) (Fig. 6.7). The value of u is computed by

k = kron(yn1,yn1');
u = 1/max(eig(k))

which yields

u =
    0.0019

We now run the adaptive fi lter canc for 20 iterations and use the above 
value of u.
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Fig. 6.7 Output of the adaptive fi lter. a The duplicate records corrupted by uncorrelated 
noise are fed into the adaptive fi lter with 5 weights with a convergence factor of 0.0019. 
After 20 iterations, the fi lter yields the b learning curve, c the noisefree record and d the 
noise extracted from the duplicate records.
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[z,e,mer] = canc(yn1,yn2,0.0019,5,20);

The evolution of the mean-squared error

plot(mer)

illustrates the performance of the adaptive fi lter, although the chosen step 
size u=0.0019 obviously leads to a relatively fast convergence. In most ex-
amples, a smaller step size decreases the rate of convergence, but increases 
the quality of the fi nal result. We therefore reduce u by one order of magni-
tude and run the fi lter again with more iterations.

[z,e,mer] = canc(yn1,yn2,0.0001,5,20);

The plot of the mean-squared error against the iterations

plot(mer)

now convergences after around six iterations. We now compare the fi lter 
output with the original noise-free signal.

plot(x,y,'b',x,z,'r')

This plot shows that the noise level of the signal has been reduced dramati-
cally by the fi lter. Finally, the plot

plot(x,e,'r')

shows the noise extracted from the signal. In practice, the user should vary 
the parameters u and l to obtain the optimum result.

The application of this algorithm has been demonstrated on duplicate 
oxygen-isotope records from ocean sediments (Trauth 1998). The work by 
Trauth (1998) illustrates the use of the modifi ed LMS algorithm, but also 
another type of adaptive fi lters, the recursive least-squares (RLS) algorithm 
(Haykin 1991) in various environments.
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7.1 Types of Spatial Data

Most data in earth sciences are  spatially distributed, either as  vector data, 
(points, lines, polygons) or as  raster data (gridded topography). Vector data 
are generated by  digitizing map objects such as drainage networks or out-
lines of lithologic units. Raster data can be obtained directly from a satellite 
sensor output, but in most cases grid data can be interpolated from irregu-
larly-distributed samples from the fi eld ( gridding).

The following chapter introduces the use of vector data by using coast-
line data as an example (Chapter 7.2). Subsequently, the acquisition and 
handling of raster data are illustrated with help of digital topography data 
(Chapters 7.3 to 7.5). The availability and use of digital elevation data has 
increased considerably since the early 90’s. With 5 arc minutes resolution, 
the ETOPO5 was one of the fi rst data sets for topography and bathymetry. In 
October 2001, it was replaced by the ETOPO2 that has a resolution of 2 arc 
minutes. In addition, there is a data set for topography called GTOPO30 
completed in 1996 that has a horizontal grid spacing of 30 arc seconds (ap-
proximately 1 km). Most recently, the 30 and 90 m resolution data from the 
Shuttle Radar Topography Mission (SRTM) have replaced the older data 
sets in most scientifi c studies.

The second part of the chapter deals with surface estimates from ir-
regular-spaced data and statistics on spatial data (Chapters 7.6 to 7.8). In 
earth sciences, most data are collected in an irregular pattern. Access to 
rock samples is often restricted to natural outcrops such as shoreline cliffs 
and the walls of a gorge, or anthropogenic outcrops such as road cuts and 
quarries. Clustered and traversed data are a challenge for all gridding tech-
niques. The corresponding chapters illustrate the use of the most impor-
tant gridding routines and outline the potential pitfalls while using these 
methods. Chapters 7.9 to 7.11 introduce various methods to analyse spa-
tial data, including the application of statistical tests to point distributions 
(Chapter 7.9), the spatial analysis of digital elevation models (Chapter 7.10) 
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and an overview of geostatistics and kriging (Chapter 7.10).
This chapter requires the Mapping Toolbox although most graphics rou-

tines used in our examples can be easily replaced by standard MATLAB 
functions. An alternative and useful mapping toolbox by Rich Pawlowicz 
(Earth and Ocean Sciences at the Unversity of British Columbia) is avail-
able from

http://www2.ocgy.ubc.ca/~rich

The handling and processing of large spatial data sets also requires a power-
ful computing system with at least 1 GB physical memory.

7.2 The GSHHS Shoreline Data Set

The global self-consistent, hierarchical, high-resolution  shoreline data 
base  GSHHS is amalgamated from two public domain data bases by Paul 
Wessel (SOEST, University of Hawaii, Honolulu, HI) and Walter Smith 
(NOAA Laboratory for Satellite Altimetry, Silver Spring, MD). On the web 
page of the US National Geophysical Data Center (NGDC)

http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html

the  coastline vector data can be downloaded as MATLAB vector data. First, 
we defi ne the geographic range of interest as decimal degrees with West and 
South denoted by a negative sign. For example, the East African coast would 
be displayed on the latitude between 0 and +15 degrees and longitude of +35 
to +55 degrees. Subsequently, it is important to choose the coastline data 
base from which the data is to be extracted. As an example, the World Data 
Bank II provides maps at the scale 1 : 2,000,000. Finally, the compression 
method is set to None for the ASCII data that have been extracted. The data 
format is set to be MATLAB and GMT Preview is enabled. The resulting 
GMT map and a link to the raw text data can be displayed by pressing the 
Submit-Extract button at the end of the web page. By opening the 430 KB 
large text fi le on a browser, the data can be saved onto a new fi le called 
coastline.txt. The two columns in this fi le represent the longitude/latitude
coordinates of NaN-separated polygons or coastline segments.

NaN   NaN
42.892067 0.000000
42.893692 0.001760
NaN   NaN
42.891052 0.001467
42.898093 0.007921
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42.904546 0.013201
42.907480 0.016721
42.910414 0.020828
42.913054 0.024642
42.915987 0.028749
42.918921 0.032562
42.922441 0.035789
(cont'd)

The NaN’s perform two functions: they provide a means for identifying break 
points in the data. They also serve as pen-up commands when the Mapping 
Toolbox plots vector maps. The shorelines can be displayed by using

data = load('coastline.txt');

plot(data(:,1),data(:,2),'k'), axis equal
xlabel('Longitude'), ylabel('Latitude')

More advanced plotting functions are contained in the Mapping Toolbox, 
which allow to generate an alternative version of this plot (Fig. 7.1):
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Fig. 7.1 Display of the GSHHS shoreline data set. The map shows an area between 0° and 
15° northern latitude, 40° and 50° eastern longitude. Simple map using the function plot
and equal axis aspect ratios.
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 axesm('MapProjection','mercator', ...
      'MapLatLimit',[0 15], ...
      'MapLonLimit',[35 55], ...
      'Frame','on', ...
      'MeridianLabel','on', ...
      'ParallelLabel','on');
plotm(data(:,2),data(:,1),'k');

Note that the input for plotm is given in the order longitude, followed by 
the latitude. The second column of the data matrix is entered fi rst. In con-
trast, the function plot requires an xy input. The fi rst column is entered 
fi rst. The function axesm defi nes the map axis and sets various map proper-
ties such as the map projection, the map limits and the axis labels.

7.3 The 2-Minute Gridded Global Elevation Data  ETOPO2

ETOPO2 is a global data base of  topography and  bathymetry on a regular 
2-minute grid. It is a compilation of data from a variety of sources. It can 
be downloaded from the US National Geophysical Data Center (NGDC) 
web page

http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html

From the menu bar Free online we select Make custom grids which is linked 
to the GEODAS Grid Translator. First, we choose a Grid ID (e.g., grid01), 
the Grid Data Base (e.g., ETOPO2 2-minute Global Relief ), our computer 
system (e.g., Macintosh) and the Grid Format (e.g., ASCII for both the data 
and the header). Next we defi ne the longitude and latitude bounds. For ex-
ample, the latitude (lat) from –20 to +20 degrees and a longitude (lon) be-
tween +30 and +60 degrees corresponds to the East African coast. The 
selected area can be transformed into a digital elevation matrix by press-
ing Design–a–grid. this matrix may be downloaded from the web page by 
pressing Download your Grid Data, Compress and Retrieve and Retrieve 
compressed fi le in the subsequent windows. Decompressing the fi le grid01.
tgz creates a directory grid01_data. This directory contains various data 
and help fi les. The subdirectory grid01 contains the ASCII raster grid fi le 
grid01.asc that has the following content:

NCOLS   901
NROWS  1201
XLLCORNER  30.00000
YLLCORNER -20.00000
CELLSIZE 0.03333333
NODATA_VALUE  -32768
270   294   278   273   262   248   251   236   228   223 ...
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280   278   278   264   254   253   240   234   225   205 ...
256   266   267   283   257   273   248   228   215   220 ...
272   273   258   258   254   264   232   218   229   210 ...
259   263   268   275   242   246   237   219   211   209 ...
(cont'd)

The header documents the size of the data matrix (e.g., 901 columns and 
1201 rows in our example), the coordinates of the lower-left corner (e.g., 
x=30 and y = –20), the cell size (e.g., 0.033333 = 1/30 degree latitude and 
longitude) and the –32768 fl ag for data voids. We comment the header by 
typing % at the beginning of the fi rst six lines

%NCOLS   901
%NROWS  1201
%XLLCORNER  30.00000
%YLLCORNER -20.00000
%CELLSIZE 0.03333333
%NODATA_VALUE  -32768
270   294   278   273   262   248   251   236   228   223 ...
280   278   278   264   254   253   240   234   225   205 ...
256   266   267   283   257   273   248   228   215   220 ...
272   273   258   258   254   264   232   218   229   210 ...
259   263   268   275   242   246   237   219   211   209 ...
(cont'd)

and load the data into the workspace. 

ETOPO2 = load('grid01.asc');

We fl ip the matrix up and down. Then, the –32768 fl ag for data voids has to 
be replaced by the MATLAB representation for  Not-a-Number  NaN.

ETOPO2 = flipud(ETOPO2);
ETOPO2(find(ETOPO2 == -32768)) = NaN;

Finally, we check whether the data are now correctly stored in the work-
space by printing the minimum and maximum elevations of the area.

max(ETOPO2(:))
min(ETOPO2(:))

In this example, the maximum elevation of the area is 5199 m and the mini-
mum elevation is –5612 m. The reference level is the sea level at 0 m. We 
now defi ne a coordinate system using the information that the lower-left 
corner is s20e30, i.e., 20° southern latitude and 30° eastern longitude. The 
resolution is 2 arc minutes corresponding to 1/30 degrees. 

[LON,LAT] = meshgrid(30:1/30:60,-20:1/30:20);

Now we generate a colored surface from the elevation data using the func-
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tion surf.

surf(LON,LAT,ETOPO2)
 shading interp
axis equal, view(0,90)
 colorbar

This script opens a new fi gure window and generates a colored surface. 
The surface is highlighted by a set of color shades on an overhead view 
(Fig. 7.2). More display methods will be described in the chapter on SRTM 
elevation data.
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Fig. 7.2 Display of the ETOPO2 elevation data set. The map uses the function surf for 
generating a colored surface. The colorbar provides an information on the colormap used 
to visualize topography and bathymetry.
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7.4 The 30-Arc Seconds Elevation Model  GTOPO30

The 30 arc second (approximately 1 km) global digital elevation data set 
GTOPO30 only contains elevation data, not bathymetry. The data set has 
been developed by the Earth Resources Observation System Data Center 
and is available from the web page

http://edcdaac.usgs.gov/gtopo30/gtopo30.html

The model uses a variety of international data sources. However, it is main-
ly based on raster data from the    Digital Terrain Elevation Model ( DTEM) 
and vector data from the Digital Chart of the World (DCW). The GTOPO30 
data set has been divided into 33 pieces or tiles. The tile names refer to the 
longitude and latitude of the upper-left (northwest) corner of the tile. The 
tile name e020n40 refers to the upper-left corner of the tile. In our example, 
the coordinates of the upper-left corner are 20 degrees eastern longitude 
and 40 degrees northern latitude. As example, we select and download the 
tile e020n40 provided as a 24.9 MB compressed tar fi le. After decompress-
ing the tar fi le, we obtain eight fi les containing the raw data and header fi les 
in various formats. Moreover, the fi le provides a GIF image of a shaded 
relief display of the data.

Importing the GTOPO30 data into the workspace is simple. The Mapping 
Toolbox provides an import routine gtopo30 that reads the data and stores 
it onto a regular data grid. We import only a subset of the original matrix:

latlim = [-5 5]; lonlim = [30 40];
GTOPO30 = gtopo30('E020N40',1,latlim,lonlim);

This script reads the data from the tile e020n40 (without fi le extension) in 
full resolution (scale factor = 1) into the matrix GTOPO30 of the dimension 
1200x1200 cells. The coordinate system is defi ned by using the lon/lat lim-
its as listed above. The resolution is 30 arc seconds corresponding to 1/120 
degrees. 

[LON,LAT] = meshgrid(30:1/120:40-1/120,-5:1/120:5-1/120);

We have to reduce the limits by 1/120 to obtain a matrix of similar dimen-
sion as the matrix GTOPO30. A grayscale image can be generated from the 
elevation data by using the function  surf. The fourth power of the colormap 
gray is used to darken the map at higher levels of elevation. Subsequently, 
the colormap is fl ipped vertically in order to obtain dark colors for high 
elevations and light colors for low elevations.
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figure
surf(LON,LAT,GTOPO30)
shading interp
 colormap(flipud(gray.^4))
axis equal, view(0,90)
colorbar

This script opens a new fi gure window, generates the gray surface using 
interpolated shading in an overhead view (Fig. 7.3).
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Fig. 7.3 Display of the GTOPO30 elevation data set. The map uses the function surf for 
generating a gray surface. We use the colormap gray to power of four in order to darken 
the colormap with respect to the higher elevation. In addition, we fl ip the colormap in 
up/down direction using flipud to obtain dark colors for high elevations and light colors 
for low elevations.
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7.5 The Shuttle Radar Topography Mission  SRTM

The  Shuttle Radar Topography Mission (SRTM) incorporates a radar 
system that fl ew onboard the Space Shuttle Endeavour during an 11-day 
mission in February 2000. SRTM is an international project spearheaded 
by the National Geospatial-Intelligence Agency (NGA) and the National 
Aeronautics and Space Administration (NASA). Detailed info on the SRTM 
project including a gallery of images and a users forum can be accessed on 
the NASA web page:

http://www2.jpl.nasa.gov/srtm/

The data were processed at the Jet Propulsion Laboratory. They are being 
distributed through the United States Geological Survey‘s (USGS) EROS 
Data Center by using the Seamless Data Distribution System.

http://seamless.usgs.gov/

Alternatively, the raw data fi les can be downloaded via FTP from

ftp://e0srp01u.ecs.nasa.gov/srtm

This directory contains zipped fi les of SRTM-3 DEM’s from various areas 
of the world, processed by the SRTM global processor and sampled at 3 
arc seconds or 90 meters. As an example, we download the 1.7 MB large 
fi le s01e036.hgt.zip containing the SRTM data. All elevations are in meters 
referenced to the WGS84 EGM96 geoid as documented at

http://earth-info.nga.mil/GandG/wgs84/index.html

The name of this fi le refers to the longitude and latitude of the lower-left 
(southwest) pixel of the tile, i.e., one degree southern latitude and 36 de-
grees eastern longitude. SRTM-3 data contain 1201 lines and 1201 samples 
with similar overlapping rows and columns. After having downloaded and 
unzipped the fi le, we save s01e036.hgt in our working directory. The digital 
elevation model is provided as 16-bit signed integer data in a simple binary 
raster. Bit order is Motorola (big-endian) standard with the most signifi cant 
bit fi rst. The data are imported into the workspace using

fid = fopen('S01E036.hgt','r');
SRTM = fread(fid,[1201,inf],'int16','b');
fclose(fid);
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This script opens the fi le s01e036.hgt for read access using fopen, defi nes 
the fi le identifi er fid, which is then used for reading the binaries from the 
fi le using fread, and writing it into the matrix SRTM. Function fclose
closes the fi le defi ned by fid. First, the matrix needs to be transposed and 
fl ipped vertically.

SRTM = SRTM'; SRTM = flipud(SRTM);

The –32768 fl ag for data voids can be replaced by NaN, which is the MATLAB 
representation for Not-a-Number.

SRTM(find(SRTM == -32768)) = NaN;

Finally, we check whether the data are now correctly stored in the work-
space by printing the minimum and maximum elevations of the area.

max(SRTM(:))

ans =
   3992

min(SRTM(:))

ans =
   1504

In our example, the maximum elevation of the area is 3992 m, the minimum 
altitude is 1504 m above sea level. A coordinate system can be defi ned by 
using the information that the lower-left corner is s01e036. The resolution is 
3 arc seconds corresponding to 1/1200 degrees.

[LON,LAT] = meshgrid(36:1/1200:37,-1:1/1200:0);

A shaded grayscale map can be generated from the elevation data using the 
function surfl. This function displays a shaded surface with simulated 
lighting.

figure
surfl(LON,LAT,SRTM)
 shading interp
colormap gray
view(0,90)
colorbar

This script opens a new fi gure window, generates the shaded-relief map us-
ing interpolated shading and a gray colormap in an overhead view. Since 
SRTM data contain much noise, we fi rst smooth the data using an arbitrary 
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9×9 pixel moving average fi lter. The new matrix is stored in the matrix 
SRTM_FILTERED.

B = 1/81 * ones(9,9);
SRTM_FILTERED = filter2(B,SRTM);

The corresponding shaded-relief map is generated by

figure
surfl(LON,LAT,SRTM_FILTERED)
shading interp
colormap gray
view(0,90)
 colorbar

After having generated the shaded-relief map (Fig. 7.4), the graph has to be 
exported  onto a graphics fi le. For instance, the fi gure may be written onto 
a JPEG format with 70% quality level and a 300 dpi resolution.
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Fig. 7.4 Display of the fi ltered SRTM elevation data set. The map uses the function surfl
for generating a shaded-relief map with simulated lighting using interpolated shading and 
a gray colormap in an overhead view. Note that the SRTM data set contains a lot of gaps, in 
particular in the lake areas.
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print -djpeg70 -r300 srtmimage

The new fi le srtmimage.jpg has a size of 300 KB. The decompressed image 
has a size of 16.5 MB. This fi le can now be imported to another software 
package such as Adobe® Photoshop®.

7.6  Gridding and  Contouring Background

The previous data sets were all stored in evenly-spaced two-dimensional 
arrays. Most data in earth sciences, however, are obtained on an irregular 
sampling pattern. Therefore, irregular-spaced data have to be interpolated, 
i.e., we compute a smooth and continuous surface from our measurements 
in the fi eld.  Surface estimation is typically carried out in two major steps. 
Firstly, the number of  control points needs to be selected. Secondly, the 
grid points have to be estimated. Control points are irregularly-spaced fi eld 
measurements, such as the thicknesses of sandstone units at different out-
crops or the concentrations of a chemical tracer in water wells. The data are 
generally represented as xyz triplets, where x and y are spatial coordinates, 
and z is the variable of interest. In such cases, most gridding methods re-
quire continuous and unique data. However, the spatial variables in earth 
sciences are often discontinuous and spatially nonunique. As an example, 
the sandstone unit may be faulted or folded. Furthermore, gridding requires 
spatial autocorrelation. In other words, the neighboring data points should 
be correlated with each other by a certain relationship. It is not sensible to 
use random z variable for the surface estimation if the data are not autocor-
related. Having selected the control points, the calculation of the z values at 
the evenly-spaced grid points varies from method to method.

Various techniques exist for selecting the control points (Fig. 7.5a). Most 
methods make arbitrary assumptions on the autocorrelation of the z vari-
able. The  nearest-neighbor criterion includes all control points within a 
circular neighborhood of the grid point, where the radius of the circle is 
specifi ed by the user. Since the spatial autocorrelation is likely to decrease 
with increasing distance from the grid point, considering too many distant 
control points is likely to lead to erroneous results while computing the grid 
points. On the other hand, small circular areas limit the calculation of the 
grid points to a very small number of control points. Such an approach leads 
to a noisy estimate of the modeled surface.

It is perhaps due to these diffi culties that  triangulation is often used as an 
alternative method for selecting the control points (Fig. 7.5b). In this tech-
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nique, all control points are connected to a triangular net. Every grid point 
is located in a triangular area of three control points. The z value of the grid 
point is computed from the z values of the grid points. In a modifi cation of 
such gridding, the three points at the apices of the three adjoining triangles 
are also used. The  Delauney triangulation uses the triangular net where 
the acuteness of the triangles is minimized, i.e., the triangles are as close as 
possible to equilateral.

Kriging introduced in Chapter 7.9 is an alternative approach of select-
ing control points. It is often regarded as the method of gridding. Some 
people even use the term  geostatistics synonymous with kriging. Kriging is 
a method for determining the spatial autocorrelation and hence the circle di-
mension. More sophisticated versions of kriging use an elliptical area which 
includes the control points.

The second step of surface estimation is the actual computation of the z
values of the grid points. The  arithmetic mean of the z values at the control 
points

provides the easiest way of computing the grid points. This is a particularly 
useful method if there are only a limited number of control points. If the 
study area is well covered by control points and the distance between these 

Control Point

Grid Point

a b

Fig. 7.5 Methods to select the control points for estimating the grid points. a Construction of 
a circle around the grid point (plus sign) with a radius defi ned by the spatial autocorrelation 
of the z-values at the control points (circles). b Triangulation. The control points are selected 
from the apices of the triangles surrounding the grid point and optional also the apices of 
the adjoining triangles.
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points is highly variable, the z values of the grid points should be computed 
by a  weighted mean. The z values at the control points are weighted by the 
inverse distance di from the grid points.

Depending on the spatial scaling relationship of the parameter z, the inverse 
square or the root of distance may also be used instead of weighing the z
values by the inverse of distance. The fi tting of 3D  splines to the control 
points provides another method for computing the grid points that is com-
monly used in the earth sciences. Most routines used in surface estimation 
involve  cubic polynomial splines, i.e., a third-degree 3D polynomial is fi tted 
to at least six adjacent control points. The fi nal surface consists of a com-
posite of pieces of these splines. MATLAB also provides interpolation with 
biharmonic splines generating very smooth surfaces (Sandwell, 1987).

7.7 Gridding Example

MATLAB provides a biharmonic spline interpolation since the beginnings. 
This interpolation method was developed by Sandwell (1987). This specifi c 
gridding method produces smooth surfaces that are particularly suited for 
noisy data sets with irregular distribution of control points. 

As an example, we use synthetic xyz data representing the vertical dis-
tance of an imaginary surface of a stratigraphic horizon from a reference 
surface. This lithologic unit was displaced by a normal fault. The foot wall 
of the fault shows roughly horizontal strata, whereas the hanging wall is 
characterized by the development of two large sedimentary basins. The xyz
data are irregularly distributed and have to be interpolated onto a regular 
grid. Assume that the xyz data are stored as a three-column table in a fi le 
named normalfault.txt.

4.32e+02   7.46e+01   0.00e+00
4.46e+02   7.21e+01   0.00e+00
4.51e+02   7.87e+01   0.00e+00
4.66e+02   8.71e+01   0.00e+00
4.65e+02   9.73e+01   0.00e+00
4.55e+02   1.14e+02   0.00e+00
4.29e+02   7.31e+01   5.00e+00
(cont'd)
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The fi rst and second column contains the coordinates x (between 420 and 
470 of an arbitrary spatial coordinate system) and y (between 70 and 120), 
whereas the third column contains the vertical z values. The data are loaded 
using

data = load('normalfault.txt');

Initially, we wish to create an overview plot of the spatial distribution of the 
control points. In order to label the points in the plot, numerical z values of 
the third column are converted into string representation with maximum 
two digits.

labels = num2str(data(:,3),2);

The 2D plot of our data is generated in two steps. Firstly, the data are dis-
played as empty circles by using the plot command. Secondly, the data 
are labeled by using the function text(x,y,'string') which adds text 
contained in string to the xy location. The value 1 is added to all x coor-
dinates as a small offset between the circles and the text.

plot(data(:,1),data(:,2),'o')
hold on
text(data(:,1)+1,data(:,2),labels);
hold off

This plot helps us to defi ne the axis limits for gridding and contouring, 
xlim = [420 470] and ylim = [70 120]. The function meshgrid transforms 
the domain specifi ed by vectors x and y into arrays XI and YI. The rows of 
the output array XI are copies of the vector x and the columns of the output 
array YI are copies of the vector y. We choose 1.0 as grid intervals.

x = 420:1:470; y = 70:1:120;
[XI,YI] = meshgrid(x,y);

The biharmonic spline interpolation is used to interpolate the irregular-
spaced data at the grid points specifi ed by XI and YI.

ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

The option v4 depicts the biharmonic spline interpolation, which was the 
sole gridding algorithm until MATLAB4 was replaced by MATLAB5. 
MAT LAB provides various tools for the visualization of the results. The 
simplest way to display the gridding results is a contour plot using con-
tour. By default, the number of contour levels and the values of the contour 
levels are chosen automatically. The choice of the contour levels depends on 



180 7 Spatial Data

the minimum and maximum values of z.

 contour(XI,YI,ZI)

Alternatively, the number of contours can be chosen manually, e.g., ten con-
tour levels.

contour(XI,YI,ZI,10)

Contouring can also be performed at values specifi ed in a vector v. Since 
the maximum and minimum values of z is

min(data(:,3))

ans =
   -25

max(data(:,3))

ans =
   20

we choose

v = -30 : 10 : 20;

The command

[c,h] = contour(XI,YI,ZI,v);

returns contour matrix c and a handle h that can be used as input to the 
function clabel, which labels contours automatically.

 clabel(c,h)

Alternatively, the graph is labeled manually by selecting the manual op-
tion in the function clabel. This function places labels onto locations that 
have been selected with the mouse. Labeling is terminated by pressing the 
return key.

[c,h] = contour(XI,YI,ZI,v);
clabel(c,h,'manual')

Filled contours are an alternative to the empty contours used above. This 
function is used together with colorbar displaying a legend for the graph. 
In addition, we plot the locations and z values of the true data points (black 
empty circles, text labels) (Fig. 7.6).
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 contourf(XI,YI,ZI,v), colorbar
hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels);
hold off

A pseudocolor plot is generated by using the function pcolor. Black con-
tours are also added at the same levels as in the above example.

 pcolor(XI,YI,ZI), shading flat
hold on
contour(XI,YI,ZI,v,'k')
hold off

The third dimension is added to the plot by using the mesh command. We 
use this example also to introduce the function view(az,el) for a view-
point specifi cation. Herein, az is the azimuth or horizontal rotation and el
is the vertical elevation (both in degrees). The values az = –37.5 and el = 
30 defi ne the default view of all 3D plots,

 mesh(XI,YI,ZI), view(-37.5,30)

Fig. 7.6 Contour plot of the locations and z-values of the true data points (black empty 
circles, text labels).
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whereas az = 0 and el = 90 is directly overhead and the default 2D view

mesh(XI,YI,ZI), view(0,90)

The function mesh represents only one of the many 3D visualization meth-
ods. Another commonly used command is the function surf. Furthermore, 
the fi gure may be rotated by selecting the Rotate 3D option on the Edit Tools 
menu. We also introduce the function colormap, which uses predefi ned 
pseudo colormaps for 3D graphs. Typing help graph3d lists a number 
of builtin colormaps, although colormaps can be arbitrarily modifi ed and 
generated by the user. As an example, we use the  colormap hot, which is a 
black-red-yellow-white colormap.

 surf(XI,YI,ZI), colormap('hot'), colorbar

Here, Rotate 3D only rotates the 3D plot, not the colorbar. The function 
surfc combines both a surface and a 2D contour plot in one graph.

 surfc(XI,YI,ZI)

The function surfl can be used to illustrate an advanced application of 
3D visualization. It generates a 3D colored surface with interpolated shad-
ing and lighting. The axis labeling, ticks and background can be turned off 
by typing axis off. In addition, black 3D contours may be added to the 
surface plot. The grid resolution is increased prior to data plotting to obtain 
smooth surfaces (Fig. 7.7).

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

surf(XI,YI,ZI), shading interp, light, axis off
hold on
contour3(XI,YI,ZI,v,'k');
hold off

The biharmonic spline interpolation described in this chapter provides a 
solution to most gridding problems. Therefore, it was the only gridding 
method that came with MATLAB for quite a long time. However, different 
applications in earth sciences require different methods for interpolation, 
but there is no method without problems. The next chapter compares bihar-
monic splines with other gridding methods and summarizes their strengths 
and weaknesses.
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7.8 Comparison of Methods and Potential  Artifacts

The fi rst example illustrates the use of the  bilinear interpolation technique 
for gridding irregular-spaced data. Bilinear interpolation is an extension 
of the one-dimensional linear interpolation. In the two-dimensional case, 
linear interpolation is performed in one direction fi rst, then in the other 
direction. Intuitively, the bilinear method is one of the simplest interpola-
tion techniques. One would not expect serious artifacts and distortions of 
the data. On the contrary, this method has a number of disadvantages and 
therefore other methods are used in many applications.

The sample data used in the previous chapter can be loaded to study the 
performance of a bilinear interpolation.

data = load('normalfault.txt');
labels = num2str(data(:,3),2);

We now choose the option linear while using the function griddata to 
interpolate the data.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'linear');

Fig. 7.7 Three-dimensional colored surface with interpolated shading and simulated 
lighting. The axis labeling, ticks and background are turned off. In addition, the graph 
contains black 3D contours.
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The results are plotted as contours. The plot also includes the location of the 
control points.

contourf(XI,YI,ZI), colorbar, hold on
plot(data(:,1),data(:,2),'o'), hold off

The new surface is restricted to the area that contains control points. By 
default, bilinear interpolation does not extrapolate beyond this region. 
Furthermore, the contours are rather angular compared to the smooth out-
line of the contours of the biharmonic spline interpolation. The most impor-
tant character of the bilinear gridding technique, however, is illustrated by 
a projection of the data in a vertical plane.

plot(XI,ZI,'k'), hold on
plot(data(:,1),data(:,3),'ro')
text(data(:,1)+1,data(:,3),labels)
title('Linear Interpolation'), hold off

This plot shows the projection of the estimated surface (vertical lines) and 
the labeled control points. The z-values at the grid points never exceed the z-
values of the control points. Similar to the linear interpolation of time series 
(Chapter 5), bilinear interpolation causes signifi cant smoothing of the data 
and a reduction of the high-frequency variation.

Biharmonic splines are sort of the other extreme in many ways. They are 
often used for extremely irregular-spaced and noisy data.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

contourf(XI,YI,ZI), colorbar, hold on
plot(data(:,1),data(:,2),'o'), hold off

The contours suggest an extremely smooth surface. In many applications, 
this solution is very useful, but the method also produces a number of ar-
tifacts. As we can see from the next plot, the estimated values at the grid 
points are often out of the range of the measured z-values.

plot(XI,ZI,'k'), hold on
plot(data(:,1),data(:,3),'o')
text(data(:,1)+1,data(:,3),labels);
title('Biharmonic Spline Interpolation'), hold off

This sometimes makes much sense and does not smooth the data in the way 
bilinear gridding does. However, introducing very close control points with 
different z-values can cause serious artifacts.

data(79,:) = [450 105 5];
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data(80,:) = [450 104.5 -5];
labels = num2str(data(:,3),2);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

contourf(XI,YI,ZI), colorbar, hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)

The extreme gradient at the location (450,105) results in a  paired low and 
high (Fig. 7.8). In such cases, it is recommended to delete one of the two 
control points and replace the z-value of the remaining control point by the 
arithmetic mean of both z-values.

Extrapolation beyond the area supported by control points is a common 
feature of splines (see also Chapter 5). Extreme local trends combined with 
large areas with no data often cause unrealistic estimates. To illustrate these 
 edge effects we eliminate all control points in the upper-left corner.

Fig. 7.8 Contour plot of a data set gridded using a biharmonic spline interpolation. At the 
location (450,105), very close control points with different z-values have been introduced. 
Interpolation causes a paired low and high, which is a common artefact of spline 
interpolation of noisy data.
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[i,j] = find(data(:,1)<435 & data(:,2)>105);
data(i,:) = [];

labels = num2str(data(:,3),2);

plot(data(:,1),data(:,2),'ko')
hold on
text(data(:,1)+1,data(:,2),labels);
hold off

We again employ the biharmonic spline interpolation technique.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

v = -40 : 10 : 40;
contourf(XI,YI,ZI,v)
caxis([-40 40])
colorbar
hold on
plot(data(:,1),data(:,2),'ko')

Fig. 7.9 Contour plot of a data set gridded using a biharmonic spline interpolation. No control 
points are available in the upper left corner. The spline interpolation then extrapolates 
beyond the area with control points using gradients at the map edges causing unrealistic z
estimates at the grid points.
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text(data(:,1)+1,data(:,2),labels)
hold off

As we can see from the plot, this method extrapolates beyond the area with 
control points using gradients at the map edges (Fig. 7.9). Such effect is 
particular undesired in the case of gridded closed data, such as percentages, 
or data that have only positive values. In such cases, it is recommended to 
replace the estimated z values by NaN. For instance, we erase the areas with 
z values larger than 20, which is regarded as an unrealistic value. The cor-
responding plot now contains a sector with no data.

ZID = ZI;
ZID(find(ZID > 20)) = NaN;

contourf(XI,YI,ZID,v)
caxis([-40 40])
colorbar
hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)
hold off

Alternatively, we can eliminate a rectangular area with no data.

ZID = ZI;
ZID(131:201,1:71) = NaN;

contourf(XI,YI,ZID,v)
caxis([-40 40])
colorbar
hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)
hold off

In some examples, the area with no control points is simply eliminated by 
putting a legend on this part of the map.

Another very useful MATLAB gridding method are  splines with tension
by Wessel and Bercovici (1998). The  tsplines use biharmonic splines in 
tension t, where the parameter t can vary between 0 and 1. A value of t = 0 
corresponds to a standard cubic spline interpolation. Increasing t reduces 
undesirable oscillations between data points, e.g., the paired lows and highs
observed in one of the above examples. The limiting situation t →1 corre-
sponds to linear interpolation.



188 7 Spatial Data

7.9 Statistics of Point Distributions

This chapter is about the statistical distribution of points in an area, which 
may help understand the relationship between these objects and properties 
of the area. For instance, the spatial concentration of handaxes in an ar-
chaeological site suggests that a larger population of hominins lived in that 
part of the area. The clustered occurrence of fossils may document envi-
ronmental conditions that are favourable to the corresponding organisms. 
Volcano alignments often help to map tectonic structures in the deeper and 
shallower subsurface.

The following text introduces methods for the statistical analysis of  point 
distributions. First, the spatial distribution of objects is tested for uniform 
and random distribution. Then, a simple test for clustered distributions of 
objects is presented.

Test for Uniform Distribution

We compute synthetic data to illustrate the test for uniform distributions. 
The function rand computes uniformly-distributed pseudo-random num-
bers drawn from a uniform distribution on the unit interval. We compute xy
data using rand and multiply the data by ten to obtain data on the interval 
[0,10].

rand('seed',0)
data = 10 * rand(100,2);

We use the χ 2–test introduced in Chapter 3.8 to test the hypothesis that 
the data have a uniform distribution. The xy data are now organized in 
25 classes that are square subareas of the size 2-by-2. We display the data 
as blue points in a plot y versus x. The square areas are outlined by red lines 
(Fig. 7.10).

plot(data(:,1),data(:,2),'o')
hold on
x = 0:10; y = ones(size(x));
for i = 1:4, plot(x,2*i*y,'r-'), end
for i = 1:4, plot(2*i*y,x,'r-'), end
hold off

The three-dimensional version of histogram  hist3 is used to display the 
spatial data organized in classes (Fig. 7.11).

hist3(data,[5 5]), view(30,70)
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Fig. 7.10 Two-dimensional plot of a point distribution. The distribution of objects in the 
fi eld are tested for uniform distribution using the χ 2-test. The xy data are organized in 
25 classes that are square subareas of the size 2-by-2.

Equivalent to the two-dimensional function, the function hist3 can be 
used to compute the frequency distribution n_exp of the data.

n_exp = hist3(data,[5 5]);
n_exp = n_exp(:);

For a uniform distribution, the theoretical frequencies for the classes are 
identical. The expected number of objects in each square area is the size 
of the total area 10 × 10 =100 divided by the 25 subareas or classes, which 
comes to be four. To compare the theoretical frequency distribution with 
the actual distribution of objects, we generate an 5-by-5 array with identical 
elements four.

n_syn = 4 * ones(25,1);

The  χ 2-test explores the squared differences between the observed and ex-
pected frequencies (Chapter 3.8). The quantity χ 2 is defi ned as the sum of 
the squared differences divided by the expected frequencies.
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Fig. 7.11 Three-dimensional histogram displaying the numbers of objects for each subarea. 
The histogram was created using hist3.

chi2_data = sum((n_exp - n_syn).^2 ./n_syn)

chi2 =
    14

The critical χ 2 can be calculated by using chi2inv. The χ 2-test requires the 
degrees of freedom Φ . In our example, we test the hypothesis that the data are 
uniformly distributed, i.e., we estimate only one parameter (Chapter  3.4). 
Therefore, the number of degrees of freedom is Φ =25– (1+1) =23. We test 
the hypothesis on a p = 95% signifi cance level. The function chi2inv com-
putes the inverse of the χ 2 CDF with parameters specifi ed by Φ  for the cor-
responding probabilities in p.

chi2_theo = chi2inv(0.95,25-1-1)

ans = 
    35.1725

The critical χ 2 of 35.1725 is well above the measured χ 2 of 14. Therefore, 
we cannot reject the null hypothesis and conclude that our data follow a 
uniform distribution.
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Test for Random Distribution

The following example illustrates the test for randomly-distributed objects 
in an area. We use the uniformly-distributed data generated in the previous 
example and display the point distribution.

clear
rand('seed',0)
data = 10 * rand(100,2);
plot(data(:,1),data(:,2),'o')
hold on
x = 0:10; y = ones(size(x));
for i = 1:9, plot(x,i*y,'r-'), end
for i = 1:9, plot(i*y,x,'r-'), end
hold off

We generate the three-dimensional histogram and use the function hist3
to count the objects per class. In contrast to the previous test, we now count 
the subareas containing a certain number of observations. The number of 
subareas is usually larger than it would be used for the previous test. In our 
example, we use 49 subareas or classes.

hist3(data,[7 7])
view(30,70)

counts = hist3(data,[7 7]);
counts = counts(:);

The frequency distribution of subareas with a certain number of objects fol-
lows a Poisson distribution (Chapter 3.4) if the objects are randomly distrib-
uted. First, we compute a frequency distribution of subareas with N objects. 
In our example, we count the subareas with 0, …, 5 objects. We also display 
the histogram of the frequency distribution as a two-dimensional histogram 
using hist (Fig. 7.12).

N = 0 : 5;

[n_exp,v] = hist(counts,N);

hist(counts,N)
title('Histogram')
xlabel('Number of observations N')
ylabel('Subareas with N observations')

The expected number of subareas Ej with a certain number of objects j can 
be computed using
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Fig. 7.12 Frequency distribution of subareas with N objects. In our example, we count the 
subareas with 0, …, 5 objects. We display the histogram of the frequency distribution as a 
two-dimensional histogram using hist.

where n is the total number of objects and T is the number of subareas. For 
j = 0, j ! is taken to be 1. We compute the theoretical frequency distribution 
using the equation shown above,

for i = 1 : 6
    n_syn(i) = 49*exp(-100/49)*(100/49)^N(i)/factorial(N(i));
end
n_syn = sum(n_exp)*n_syn/sum(n_syn);

and display both the empirical and theoretical frequency distributions in 
one plot.

h1 = bar(v,n_exp);
hold on
h2 = bar(v,n_syn);
hold off

set(h1,'FaceColor','none','EdgeColor','r')
set(h2,'FaceColor','none','EdgeColor','b')

The  χ 2-test is again employed to compare the empirical and theoretical dis-
tributions. The test is performed on a p = 95% signifi cance level. The Poisson 
distribution is defi ned by only one parameter (Chapter 3.4). Therefore, the 
number of degrees of freedom is Φ = 6– (1+1) = 4. The measured χ 2 of
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chi2 = sum((n_exp - n_syn).^2 ./n_syn)

chi2 =
    1.4357

is well below the critical χ 2, which is

chi2inv(0.95,6-1-1)

ans = 
    9.4877

Therefore, we cannot reject the null hypothesis and conclude that our data 
follow a Poission distribution. Therfore, the point distribution is random.

Test for Clustering

Point distributions in geosciences are often clustered. We use a  nearest-
neighbor criterion to test a spatial distribution for clustering. Davis (2002) 
published an excellent summary of the nearest-neighbor analysis, summa-
rizing the work of a number of other authors. Swan and Sandilands (1996) 
presented a simplifi ed description of this analysis. The test for clustering 
computes the distances di of all possible pairs of nearest points in the fi eld. 
The observed mean nearest-neighbor distance is

where n is the total number of points or objects in the fi eld. The arithmetic 
mean of all distances is related to the area of the map. This relationship is 
expressed by the expected mean nearest-neighbor distance, which is

where A is the map area. Small values of this ratio then suggest signifi cant 
clustering, whereas larger values indicate regularity or uniformity. The test 
uses a Z statistic (Chapter 3.4), which is

where se is the standard error of the mean nearest-neighbor distance, which 
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is defi ned as

The null hypothesis  randomness is tested against two alternative hypothe-
ses, clustering and  uniformity or  regularity. The Z statistic has critical va-
lues of 1.96 and –1.96 at a signifi cance level of 95%. If –1.96< Z <+1.96, 
we accept the null hypothesis that the data are randomly distributed. If 
Z < –1.96, we reject the null hypothesis and accept the fi rst alternative hy-
pothesis of clustering. If Z >+1.96, we also reject the null hypothesis, but 
accept the alternative hypothesis of uniformity or regularity.

As an example, we use the synthetic data analyzed in the previous ex-
amples again.

clear
rand('seed',0)
data = 10 * rand(100,2);
plot(data(:,1),data(:,2),'o')

We fi rst compute the pairwise Euclidian distance between all pairs of ob-
servations using the function  pdist (Chapter 9.4). The resulting distance 
matrix is then reformatted between upper triangular and square form using 
squareform.

distances = pdist(data,'Euclidean');
distmatrix = squareform(distances);

The following for loop fi nds the nearest neighbors, stores the correspond-
ing distances and computes the mean distance.

for i = 1 : 5
    distmatrix(i,i) = NaN;
    k = find(distmatrix(i,:) == min(distmatrix(i,:)));
    nearest(i) = distmatrix(i,k(1));
end
observednearest = mean(nearest)

observednearest =
    0.5471

In our example, the mean nearest distance observednearest comes 
to be 0.5471. Next, we calculate the area of the map. The expected mean 
nearest-neighbor distance is half the squareroot of the map area divided by 
the number of observations.
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maparea = (max(data(:,1)-min(data(:,1)))) ...
         *(max(data(:,2)-min(data(:,2))));
expectednearest = 0.5 * sqrt(maparea/length(data))

expectednearest =
    0.4940

In our example, the expected mean nearest distance expectednearest is 
0.4940. Finally, we compute the standard error of the mean nearest-neigh-
bor distance se

se = 0.26136/sqrt((length(data).^2/maparea))

se =
    0.0258

and the test statistic Z.

Z = (observednearest - expectednearest)/se

Z =
    2.0561

In our example, Z is 2.0561. Since Z>+1.96, we reject the null hypothesis 
and conclude that the data are uniformly or regularly distributed, but not 
clustered.

7.10 Analysis of  Digital Elevation Models (by R. Gebbers)

Digital elevation models (DEM) and their derivatives (e.g., slope and as-
pect) can indicate surface processes like lateral water fl ow, solar irradiation 
or erosion. The simplest derivatives of a DEM are the slope and the aspect. 
The  slope (or  gradient) describes the measurement of the steepness, the 
incline or the grade of a surface measured in percentages or degrees. The 
aspect (or  exposure) generally refers to the direction to which a mountain 
slope faces.

We use the  SRTM data set introduced in Chapter 7.5 to illustrate the 
analysis of a digital elevation model for slopes, aspects and other deriva-
tives. The data are loaded by

fid = fopen('S01E036.hgt','r');
SRTM = fread(fid,[1201,inf],'int16','b');
fclose(fid);

SRTM = SRTM';
SRTM = flipud(SRTM);
SRTM(find(SRTM==-32768)) = NaN;



196 7 Spatial Data

These data are elevation values in meters above sea level sampled at a 3-
arc-second or 90 meter grid. The SRTM data contain small-scale spatial 
disturbances and noise that could cause problems when computing a con-
sistent drainage pattern. Therefore, we lowpass-fi lter the data using a two-
dimensional moving-average fi lter using the function  filter2. The fi lter 
used here is a spatial running mean of 3×3 elements. We use only the subset 
SRTM(400:600,650:850) of the original data set to reduce computation 
time. We also remove the data at the edges of the DEM to eliminate fi lter 
artifacts.

F = 1/9 * ones(3,3);
SRTM = filter2(F, SRTM(750:850,700:800));
SRTM = SRTM(2:99,2:99);

The DEM is displayed as a pseudocolor plot using  pcolor and the color-
map  demcmap included in the Mapping Toolbox. This colormap creates and 
assigns a colormap appropriate for elevation data since it provides land and 
sea colors in proportion to topography and bathymetry. 

h = pcolor(SRTM); 
demcmap(SRTM), colorbar
set(h,'LineStyle','none')
axis equal
title('Elevation [m]')
[r c] = size(SRTM);
axis([1 c 1 r])
set(gca,'TickDir','out');

The DEM is characterized by a horseshoe-shaped mountain range sur-
rounding a valley descending towards the Southeast (Fig. 7.15a).

The SRTM subset is now analyzed for slopes and aspects. While we are 
working with DEMs on a regular grid, slope and aspect can be estimated as 
local derivatives by using centered fi nite differences in a local 3×3 neigh-
borhood. Figure 7.13 shows the  local neighborhood using the cell indexing 
convention of MATLAB. For calculating slope and aspect, we need two 
 fi nite differences of the DEM elements z in x and y direction:

and
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Fig. 7.13 Local neighborhood showing cell number convention of MATLAB.

where h is the cell size, which has the same unit as the elevation. Using the 
fi nite differences, the dimensionless slope is then calculated by

Other primary relief attributes such as the  aspect, the  plan, the  profi le and  
the  tangential curvature can be derived in a similar way using fi nite differ-
ences (Wilson and Galant 2000). The function  gradientm contained in 
the Mapping Toolbox calculates slope and aspect of a data grid z in units 
of degrees clockwise from North and up from the horizontal. Function 
gradientm(z,refvec) requires a three-element referencing vector re-
fvec. The reference vector contains the number of cells per degree as well 
as the latitude and longitude of the upper-left (northwest) element of the 
data array. Since the SRTM digital elevation model is sampled at a 3-arc-
second grid, 60 × 60/3=1200 elements of the DEM correspond to one de-
gree longitude or latitude. For simplicity, we ignore the actual coordinates 
of the SRTM subset in this example and use the indices of the DEM ele-
ments instead.

refvec = [1200 0 0];
[asp, slp] = gradientm(SRTM, refvec);

We display a pseudocolor map of the slope (in degrees) of the DEM 
(Fig 7.15b).

h = pcolor(slp);
colormap(jet), colorbar
set(h,'LineStyle','none')
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axis equal
title('Slope [°]')
[r c] = size(slp);
axis([1 c 1 r])
set(gca,'TickDir','out');

Flat areas can be found everywhere on the summits and the valley bottoms. 
The southeastern and south-southwestern sectors are relatively fl at. Steeper 
slopes are concentrated in the center and the southwestern sector. Next, a 
pseudocolor map of the aspect is generated (Fig. 7.15c).

h = pcolor(asp);
colormap(hsv), colorbar
set(h,'LineStyle','none')
axis equal
title('Aspect')
[r c] = size(asp);
axis([1 c 1 r])
set(gca,'TickDir','out');

This plot displays the aspect in units of degrees clockwise from North. For 
instance, mountain slopes facing North are displayed in red colors, whereas 
green areas depict East-facing slopes.

The aspect changes abruptly along the ridges of the mountain ranges 
where neighboring drainage basins are divided by  watersheds. The Image 
Processing Toolbox includes the function  watershed to detect the drainage 
divides and to label individual watershed regions or catchments by integer 
values, where the fi rst watershed region is labeled 1, the elements labeled 2 
belong to the second catchment, and so on.

watersh = watershed(SRTM);

The watershed regions are displayed by a pseudocolor plot where the labels of 
the regions are assigned by colors given in the color table hsv (Fig 7.15d).

h = pcolor(watersh);
colormap(hsv), colorbar
set(h,'LineStyle','none')
axis equal
title('Watershed')
[r c] = size(watersh);
axis([1 c 1 r])
set(gca,'TickDir','out');

The watersheds are displayed as series of red pixels. The largest catchment   
corresponds to the medium blue region in the center of the map. To the 
Northwest, this large catchment seems to be neighbored by three catch-
ments (represented by green colors) without an outlet. As in this example, 
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watershed often generates unrealistic results as watershed algorithms are 
sensitive to local minima that act as spurious sinks. We can detect such 
sinks in the SRTM data using the function imregionalmin.  The output 
of this function is a binary image that has the value 1 corresponding to the 
elements of the DEM that belong to regional minima and the value of 0 
otherwise.

sinks = 1*imregionalmin(SRTM);

h = pcolor(sinks);
colormap(gray)
set(h,'LineStyle','none')
axis equal
title('Sinks')
[r c] = size(sinks);
axis([1 c 1 r])
set(gca,'TickDir','out');

The pseudocolor plot of the binary image exhibits twelve local sinks repre-
sented by white pixels that are potentially the locations of non-outlet catch-
ments and should be kept in mind while computing the following hydrologi-
cal DEM attributes.

Flow accumulation (specifi c catchment area, upslope contributing area) 
is defi ned as the number of cells, or area, which contribute to runoff of a 
given cell (Fig. 7.14). In contrast to the local parameters slope and aspect, 
fl ow accumulation can only be determined from the global neighborhood. 
The principal operation is to add cell outfl ows iteratively to lower neigh-
bors. Before cascading the cell outfl ows, we have to determine the individ-
ual gradients to each neighbor indexed by N. The array N contains indices 
for the eight neighboring cells according to the MATLAB convention as 
shown in Figure 17.3. We make use of the  circshift function to access 
the neighboring cells. In the case of a two-dimensional matrix Z, the func-
tion circshift(Z,[r c]) circularly shifts the values in the matrix Z by 
an amount of rows and columns given by r and c, respectively. For example, 
circshift(Z,[1 1]) will circularly shift Z one row down and one col-
umn to the right. The individual gradients are calculated by

for the eastern, southern, western, and northern neighbors (the so-called 
rook’s case) and by
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for the diagonal neighbors (bishop’s case). Herein, h is the cell size,  zr,c

is the elevation of the center cell and  zr+y,c+x is the elevation of a neigh-
bor. The cell indices x and y are obtained from the matrix N. The gradients 
are stored in a three-dimensional matrix grads, where grads(:,:,1)
contains the gradients towards the neighbors in the East, grads(:,:,2)
contains the gradients towards the neighbors in the Southeast, and so on. 
Negative gradients indicate outfl ow from the center to the respective neigh-
bor. To obtain relative surface fl ow gradients are transformed by inverse 
tangent divided by 0.5π .

N = [0 -1;-1 -1;-1 0;+1 -1;0 +1;+1 +1;+1 0;-1 +1];
[a b] = size(SRTM);
grads = zeros(a,b,8);
for c = 2 : 2 : 8
   grads(:,:,c) = (circshift(SRTM,[N(c,1) N(c,2)]) ...
      -SRTM)/sqrt(2*90);
end
for c = 1 : 2 : 7
   grads(:,:,c) = (circshift(SRTM,[N(c,1) N(c,2)]) ...
      -SRTM)/90;
end
grads = atan(grads)/pi*2;

Since a center cell can have several downslope neighbors, water can fl ow in 
several directions. This phenomenon is called  divergent fl ow. Early fl ow ac-
cumulation algorithms were based on the single-fl ow-direction method (D8 
method, Fig. 7.14), which allows fl ow to only one of the cell's eight neighbors. 
This method cannot model divergence in ridge areas and tends to produce 
parallel fl ow lines in some examples. Here, we are illustrating the use of a 
multiple-fl ow-direction method, which allows fl ow from a cell to multiple 
neighbors. The fl ow to another neighbor corresponds to the individual gradi-
ent and is a fraction of the total outfl ow. Even though multiple-fl ow methods 
reveal more realistic results in most examples, they tend to cause dispersion 
in valleys where the fl ow should be more concentrated. Thus, a weighting 
factor w is introduced, which controls the relation of the outfl ows.



202 7 Spatial Data

A recommended value for w is 1.1. Higher values will concentrate the fl ow 
in the direction of the steepest slope, while w = 0 would cause an extreme 
dispersion. In the following sequence of commands, we fi rst select the gra-
dients less than zero and multiply the result with the weight.

w = 1.1;
flow = (grads.*(-1*grads<0)).^w;

Then we are summing up the upslope gradients, i.e., the third dimension of 
flow. We replace values of 0 by the value of 1 that avoids the problems with 
division by zero.

upssum = sum(flow,3);
upssum(upssum==0) = 1;

We divide the fl ows by upssum to obtain fractional weights summing up to 
one. In our code, this is done separately for each layer of the 3D flow array 
by a for loop:

for i=1:8
   flow(:,:,i) = flow(:,:,i).*(flow(:,:,i)>0)./upssum;
end

The 2D matrix inflowsum will store the intermediate sums of infl ows for 
each step of the iteration. The infl ows are summed up to the total fl ow accu-
mulation flowac at the end of each iteration. Initial values of inflowsum
and flowac are provided by upssum.

inflowsum = upssum;
flowac = upssum;

Another 3D matrix inflow is now needed to store the intermediate infl ow 
achieved by all neighbors:

inflow = grads*0;

Flow accumulation is terminated when there is no infl ow, or translated 
into MATLAB code, we use a conditional while loop that terminates if 
sum(inflowsum(:)) == 0. The number of non-zero entries in inflow-
sum will decrease during each loop iteration. This is achieved by alternately 
updating inflow and inflowsum. Here, inflowsum is updated with the 
intermediate inflow of the neighbor(s) weighted by flow under the condi-
tion that the neighbors are contributing cells, i.e., where grads are positive. 
Since not all neighbors are contributing cells, the intermediate inflow-
sum, and also inflow is reduced. Flow accumulation flowac is increasing 
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through the consecutive summation of the intermediate inflowsum.

while sum(inflowsum(:))>0
   for i = 1:8
      inflow(:,:,i) = circshift(inflowsum,[N(i,1) N(i,2)]);
   end
   inflowsum = sum(inflow.*flow.*grads>0,3);
   flowac = flowac + inflowsum;
end

We display the result as a pseudocolor map with log-scaled values 
(Fig 7.15e).

h = pcolor(log(1+flowac));
colormap(flipud(jet)), colorbar
set(h,'LineStyle','none')
axis equal
title('Flow accumulation')
[r c] = size(flowac);
axis([1 c 1 r])
set(gca,'TickDir','out');

The plot displays areas with high fl ow accumulation in blue colors, whereas 
areas with low fl ow accumulation are displayed in red colors usually cor-
responding to ridges. We used a logarithmic scaling for mapping the fl ow 
accumulation to obtain a better representation of the results. The simplifi ed 
algorithm to calculate fl ow accumulation introduced here can be used to an-
alyze DEMs representing a sloping terrain. In fl at terrains, where the slope 
becomes zero, no fl ow direction can be generated by our algorithm and 
thus fl ow accumulation stops. Such examples require more sophisticated 
algorithms to perform the analysis of DEMs. Furthermore, more advanced 
algorithms also include sink-fi lling routines to avoid spurious sinks that in-
terrupt fl ow accumulation. Small depressions can be fi lled by smoothing as 
we have done it at the beginning of this chapter.

The fi rst part of this chapter was about primary relief attributes. 
Secondary attributes of a DEM are functions of two or more primary at-
tributes. Examples for secondary attributes are the wetness index and the 
stream power index. The  wetness index is the log of the ratio of the specifi c 
catchment area and tangent of slope:

The term 1+fl owac avoids the problems with calculating the logarithm of 
zero when flowac=0. The wetness index is used to predict the soil water 
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content ( saturation) due to the lateral water movement. The potential for 
water logging is usually high at lower elevations of a catchment with small 
slopes. Flat areas having a large upslope area have a high wetness index as 
compared with steep areas with small catchments. The wetness index weti
is computed and displayed by

weti = log((1+flowac)./tand(slp));

h = pcolor(weti);
colormap(flipud(jet)), colorbar
set(h,'LineStyle','none')
axis equal
title('Wetness index')
[r c] = size(weti);
axis([1 c 1 r])
set(gca,'TickDir','out');

In this graph, blue colors indicate high values of the wetness index, where-
as red colors display low values (Fig. 7.15f). In our example, soils in the 
Southeast most likely have high water content due to the runoff from the 
large central valley and the terrain fl atness.

The  stream power index is another important secondary relief attribute 
which is frequently used in hillslope hydrology, geomorphology, soil science 
and related disciplines. As a measure of stream power it indicates sediment 
transport and erosion by water. It is defi ned as the product of the specifi c 
catchment area and tangent of the slope:

The potential for erosion is high when large quantities of water (calculated 
by the fl ow accumulation) are fast fl owing due to an extreme slope. The fol-
lowing series of commands compute and display the stream power index:

spi = flowac.*tand(slp);

h = pcolor(log(1+spi));
colormap(jet), colorbar
set(h,'LineStyle','none')
axis equal
title('Stream power index')
[r c] = size(spi);
axis([1 c 1 r])
set(gca,'TickDir','out');

The wetness and stream power indices are particularly useful in large-scale 
terrain analysis, i.e., digital elevation models sampled on intervals of less 
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Fig. 7.15 Display of a subset of the SRTM data set used in Chapter 7.5 and primary 
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7.11 Geostatistics and Kriging (by R. Gebbers)

Geostatistics describes the autocorrelation of one or more variables in the 
1D, 2D, and 3D space or even in 4D space-time, to make predictions at 
unobserved locations, to give information about the accuracy of predic-
tion and to reproduce spatial variability and uncertainty. The shape, the 
range, and the direction of the spatial autocorrelation are described by the 
variogram, which is the main tool in linear geostatistics. The origins of 
geostatistics can be dated back to the early 50’s when the South African 
mining engineer Daniel G. Krige fi rst published an interpolation method 
based on spatial dependency of samples. In the 60’s and 70’s, the French 
mathematician George Matheron developed the  theory of  regionalized vari-
ables which provides the theoretical foundations of Kriges’s more practical 
methods. This theory forms the basis of several procedures for the analy-
sis and estimation of spatially dependent variables, which Matheron called 
geostatistics. Matheron as well coined the term  kriging for spatial interpola-
tion by geostatistical methods.

Theorical Background

A basic assumption in geostatistics is that a spatiotemporal process is com-
posed of deterministic and stochastic components (Fig. 7.16). The determin-
istic components can be  global and  local trends (sometimes called  drifts). 
The stochastic component is formed by a purely random and an autocorre-
lated part. An autocorrelated component implies that on average, closer ob-
servations are more similar than more distant observations. This behavior 
is described by the variogram where squared differences between observa-
tions are plotted against their separation distances. The fundamental idea of 
D. Krige was to use the variogram for interpolation as means to determine 
the magnitude of infl uence of neighboring observations when predicting 

than 30 meters. Though we have calculated weti and spi from a medium-
scale DEM, we have to expect scale dependency of these attributes in our 
terrain analysis example.

This chapter has illustrated the use of basic tools to analyze digital eleva-
tion models. More detailed introductions to digital terrain modelling are 
given by the book by Wilson & Galant (2002). Furthermore, the article 
by Freeman (1991) provides a comprehensive summary and introduction to 
advanced algorithms for fl ow accumulation.
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values at unobserved locations. Basic linear geostatistics includes two main 
procedures: variography for modeling the variogram and kriging for inter-
polation.

Preceding Analysis

Because linear geostatistics as presented here is a parametric method, the 
underlying assumptions have to be checked by a preceding analysis. As 
other parametric methods, linear geostatistics is sensitive to outliers and 
deviations from normal distribution. First, after opening the data fi le geost_
dat.mat containing xyz data triplets we plot the sampling locations. Doing 
this, we can check point distribution and detect gross errors on the data 
coordinates x and y.

load geost_dat.mat

plot(x,y,'.')

Checking of the limits of the observations z can be done by

min(z)

ans =
    3.7199

max(z)

ans =
    7.8460

For linear geostatistics, the observations z should be gaussian distributed. 
In most cases, this is only tested by visual inspection of the histogram be-
cause statistical tests are often too sensitive if the number of samples exceed 
ca. 100. In addition, one can calculate skewness and kurtosis of the data.

hist(z)

skewness(z)

ans =
    0.2568

kurtosis(z)

ans =
    2.5220

A fl at-topped or multiple peaks distribution suggests that there is more than 
one population in your data set. If these populations can be related to con-
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tinuous areas they should be treated separately. Another reason for multiple 
peaks can be preferential sampling of areas with high and/or low values. 
This happens usually due to some a priori knowledge and is called cluster 
effect. Handling of the cluster effect is described in Deutsch and Journel 
(1998) and Isaaks and Srivastava (1998).

Most problems arise from positive skewness (long upper tail). According 
to Webster and Oliver (2001), one should consider root transformation if 
skewness is between 0.5 and 1, and logarithmic transformation if skewness 
exceeds 1. A general formula of transformation is: 

for min(z)+m> 0. This is the so called Box-Cox transform with the spe-
cial case k = 0 when a logarithm transformation is used. In the logarithm 
transformation, m should be added when z values are zero or negative. 
Interpolation results of power-transformed values can be backtransformed 
directly after kriging. The backtransformation of log-transformed values 
is slightly more complicated and will be explained later. The procedure is 
known as  lognormal kriging. It can be important because lognormal distri-
butions are not unusual in geology.

Variography with the  Classical Variogram

The variogram describes the spatial dependency of referenced observations 
in a one or multidimensional space. While usually we do not know the true 
variogram of the spatial process we have to estimate it from observations. 
This procedure is called variography. Variography starts with calculating 
the  experimental variogram from the raw data. In the next step, the experi-
mental variogram is summarized by the variogram estimator. Variography 
fi nishes with fi tting a variogram model to the  variogram estimator. The 
experimental variogram is calculated as the difference between pairs of the 
observed values depending on the  separation vector h (Fig. 7.17). The clas-
sical experimental variogram is given by the  semivariance,

where zx is he observed value at location x and zx+h is he observed value at 
another point within a distance h. The length of the separation vector h is 
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called  lag distance or simply lag. The correct term for γ (h) is  semivario-
gram (or  semivariance), where semi refers to the fact that it is half of the 
variance of the difference between zx and zx+h. It is, nevertheless, the vari-
ance per point when points are considered as in pairs (Webster and Oliver, 
2001). Conventionally, γ (h) is termed variogram instead of semivariogram 
and so we do at the end of this chapter. To calculate the experimental vario-
gram we fi rst have to build pairs of observations. This is done by typing

[X1,X2] = meshgrid(x);
[Y1,Y2] = meshgrid(y);
[Z1,Z2] = meshgrid(z);

The matrix of separation distances D between the observation points is

D = sqrt((X1 - X2).^2 + (Y1 - Y2).^2);

where srqt is the square root of the data. Then we get the experimental 
variogram G as half the squared differences between the observed values:

G = 0.5*(Z1 - Z2).^2; 

We used the MATLAB capability to vectorize commands instead of using 
for loops to run faster. However, we have computed n2 pairs of observa-
tions although only n (n–1)/2 pairs are required. For large data sets, e.g., 
more than 3000 data points, the software and physical memory of the com-
puter may become a limiting factor. For such cases, a more effi cient way 
of programming is described in the user manual of the software SURFER 
(2002). The plot of the experimental variogram is called the  variogram 
cloud (Fig. 7.18). We get this after extracting the lower triangular portions 
of the D and G arrays.
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Fig. 7.17 Separation vector h between two points.
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indx = 1:length(z);
[C,R] = meshgrid(indx);
I = R > C;

plot(D(I),G(I),'.' )
xlabel('lag distance')
ylabel('variogram')

The variogram cloud gives you an impression of the dispersion of values at 
the different lags. It might be useful to detect outliers or anomalies, but it 
is hard to judge from it whether there is any spatial correlation, what form 
it might have, and how we could model it (Webster and Oliver, 2001). To 
obtain a clearer view and to prepare variogram modeling the experimental 
variogram is replaced by the variogram estimator in the next section.

The  variogram estimator is derived from the experimental variograms 
to summarize their central tendency (similar to the descriptive statistics 
derived from univariate observations, Chapter 3.2). The classical vario-
gram estimator is the averaged empirical variogram within certain distance 
classes or bins defi ned by multiples of the lag interval. The classifi cation of 
separation distances is visualized in Figure 7.19.
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Fig. 7.18 Variogram cloud: Plot of the experimental variogram (half squared difference 
between pairs of observations) versus the lag distance (separation distance of the pairs).
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The variogram estimator is calculated by:

where N(h) is the number of pairs within the lag interval h.
First, we need an idea about a suitable lag interval h. If you have sampled 

on a regular grid, you can use the length of a grid cell. If the samples have 
irregular spacings, as in our case, the mean minimum distance of pairs is a 
good starting point for the lag interval (Webster and Oliver 2001). To calcu-
late the mean minimum distance of pairs we have to replace the diagonal of 
the lag matrix D zeros with NaN’s, otherwise the minimum distance will be 
zero:

D2 = D.*(diag(x*NaN)+1);
lag = mean(min(D2))

lag =
    8.0107

While the estimated variogram values tend to become more erratic with 
increasing distances, it is important to defi ne a maximum distance which 
limits the calculation. As a rule of thumb, the half maximum distance is 
suitable range for variogram analysis. We obtain the half maximum dis-
tance and the maximum number of lags by:

hmd = max(D(:))/2

hmd =
  130.1901
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Fig. 7.19 Classifi cation of separation distances in the case of equally spaced observations 
along a line. The lag interval is h
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max_lags = floor(hmd/lag)

max_lags =
    16

Then the separation distances are classifi ed and the classical variogram es-
timator is calculated:

LAGS = ceil(D/lag);

for i = 1 : max_lags
    SEL = (LAGS == i);
    DE(i) = mean(mean(D(SEL)));
    PN(i) = sum(sum(SEL == 1))/2;
    GE(i) = mean(mean(G(SEL)));
end

where SEL is the selection matrix defi ned by the lag classes in LAG, DE is 
the mean lag, PN is the number of pairs and GE is the variogram estimator. 
Now we can plot the classical variogram estimator (variogram versus mean 
separation distance) together with the population variance:

plot(DE,GE,'.' )
var_z = var(z); 
b = [0 max(DE)]; 
c = [var_z var_z];

hold on

plot(b,c, '--r') 
yl = 1.1 * max(GE); 
ylim([0 yl])
xlabel('Averaged distance between observations')
ylabel('Averaged semivariance')

hold off

The variogram in Figure 7.20 shows a typical behavior. Values are low at 
small separation distances (near the origin), they are increasing with in-
creasing distances, than reaching a plateau ( sill) which is close to the popu-
lation variance. This indicates that the spatial process is correlated over 
short distances while there is no spatial dependency over longer distances. 
The length of the spatial dependency is called the  range and is defi ned by 
the separation distance where the variogram reaches the sill.

The  variogram model is a parametric curve fi tted to the variogram es-
timator. This is similar to frequency distribution fi tting (see Chapter 3.5), 
where the frequency distribution is modeled by a distribution type and its 
parameters (e.g., a normal distribution with its mean and variance). Due to 
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theoretical reasons, only functions with certain properties should be used as 
variogram models. Common authorized models are the spherical, the expo-
nential and the linear model (more models can be found in the literature).

Spherical model:

Exponential model:

Population
variance
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Fig. 7.20 The classical variogram estimator (gray circles) and the population variance 
(solid line).
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Linear model:

where c is the sill, a is the range, and b is the slope (in the case of the linear 
model). The parameters c and a or b have to be modifi ed when a vario-
gram model is fi tted to the variogram estimator. The so called  nugget effect
is a special type of variogram model. In practice, when extrapolating the 
variogram towards separation distance zero, we often observe a positive 
intercept on the ordinate. This is called the nugget effect and it is explained 
by measurement errors and by small scale fl uctuations ( nuggets), which 
are not captured due to too large sampling intervals. Thus, we sometimes 
have expectations about the minimum nugget effect from the variance of re-
peated measurements in the laboratory or other previous knowledge. More 
details about the nugget effect can be found in Cressie (1993) and Kitanidis 
(1997). If there is a nugget effect, it can be added to the variogram model. 
An exponential model with a nugget effect looks like this:

where c0 is the nugget effect.
We can even combine more variogram models, e.g., two spherical mod-

els with different ranges and sills. These combinations are called  nested 
models. During variogram modeling the components of a nested model are 
regarded as spatial structures which should be interpreted as the results 
of geological processes. Before we discuss further aspects of variogram 
modeling let us just fi t some models to our data. We are beginning with a 
spherical model without nugget, than adding an exponential and a linear 
model, both with nugget variance:

plot(DE,GE,'o','MarkerFaceColor',[.6 .6 .6]) 
var_z = var(z);
b = [0 max(DE)];
c = [var_z var_z];
hold on
plot(b,c,'--r')
xlim(b)
yl = 1.1*max(GE);
ylim([0 yl])

% Spherical model with nugget
nugget = 0;
sill = 0.803;
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range = 45.9;
lags = 0:max(DE);
Gsph = nugget + (sill*(1.5*lags/range - 0.5*(lags/...
   range).^3).*(lags<=range) + sill*(lags>range));
plot(lags,Gsph,':g')

% Exponential model with nugget
nugget = 0.0239;
sill = 0.78;
range = 45;
Gexp = nugget + sill*(1 - exp(-3*lags/range));
plot(lags,Gexp,'-.b')

% Linear model with nugget
nugget = 0.153;
slope = 0.0203;
Glin = nugget + slope*lags;
plot(lags,Glin,'-m')
xlabel('Distance between observations')
ylabel('Semivariance')
legend('Variogram estimator','Population variance',...
'Sperical model','Exponential model','Linear model')
hold off

Variogram modeling is very much a point of discussion. Some advocate 
objective variogram modeling by automated curve fi tting, using a weighted 
least squares, maximum likelihood or maximum entropy method. Contrary 
to this it is often argued that the geological knowledge should be included 
in the modeling process and thus, fi tting by eye is recommended. In many 
cases the problem in variogram modeling is much less the question of the 
appropriate procedure but a question of the quality of the experimental var-
iogram. If the experimental variogram is good, both procedures will yield 
similar results.

Another question important for variogram modeling is the intended use 
of the model. In our case, the linear model seems not to be appropriate 
(Fig. 7.21). At a closer look we can see that the linear model fi ts reason-
ably well over the fi rst three lags. This can be suffi cient when we use the 
variogram model only for kriging, because in kriging the nearby points are 
the most important for the estimate (see discussion of kriging below). Thus, 
different variogram models with similar fi ts near the origin will yield simi-
lar kriging results when sampling points are regularly distributed. If you 
are interested in describing the spatial structures it is another case. Then it 
is important to fi nd a suitable model over all lags and to determine the sill 
and the range accurately. A collection of geologic case studies in Rendu 
and Readdy (1982) show how process knowledge and variography can be 
linked. Good guidelines to variogram modeling are given by Gringarten 
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and Deutsch (2001) and Webster and Oliver (2001). We will now briefl y 
discuss some more aspects of variography.

 Sample size – As in any statistical procedure you need as large a sample 
as possible to get a reliable estimate. For variography it is recommended 
to have more than 100 to 150 samples (Webster and Oliver 2001). If you 
have less, you should consider computing a maximum likelihood vario-
gram (Pardo-Igúzquiza and Dowd 1997).

 Sampling design – To get a good estimation at the origin of the variogram 
sampling design should include observations over small distances. This 
can be done by a nested design (Webster and Oliver 2001). Other designs 
were evaluated by Olea (1984). 

 Anisotropy – Thus far now we have assumed that the structure of spatial 
correlation is independent of direction. We have calculated  omnidirec-
tional variograms ignoring the direction of the separation vector h. In a 
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more thorough analysis, the variogram should not only be discretized in 
distance but also in direction (directional bins). Plotting  directional var-
iograms, usually in four directions, we sometimes can observe different 
ranges ( geometric anisotropy), different scales ( zonal anisotropy), and 
different shapes (indicating a trend). The treatment of anisotropy needs 
a highly interactive graphical user interface, e.g., VarioWin by Panatier 
(1996) which is beyond the scope of this book.

Number of pairs and the lag interval – In the calculation of the classical 
variogram estimator it is recommended to use more than 30 to 50 pairs 
of points per lag interval (Webster and Oliver 2001). This is due to the 
sensitivity to outliers. If there are fewer pairs, the lag interval should be 
enlarged. The lag spacing has not necessarily to be uniform, it can be 
chosen individually for each distance class. It is also an option to work 
with overlapping classes, in this case the  lag width ( lag tolerance) has to 
be defi ned. On the other hand, increasing the lag width can cause unnec-
essary smoothing and detail is lost. Thus, the separation distance and the 
lag width have to be chosen with care. Another option is to use a more 
robust variogram estimator (Cressie 1993, Deutsch and Journel 1998).

Calculation of  separation distance – If your observations are covering a 
large area, let us say more than 1000 km 2, spherical distances should be 
calculated instead of the Pythagorean distances from a plane cartesian 
coordinate system. 

Kriging

Now we will interpolate the observations on a regular grid by  ordinary 
point kriging which is the most popular kriging method. Ordinary point 
kriging uses a weighted average of the neighboring points to estimate the 
value of an unobserved point: 

where λ i are the weights which have to be estimated. The sum of the weights 
should be one to guarantee that the estimates are unbiased:

•

•
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The expected (average) error of the estimation has to be zero. That is:

where zx0 is the true, but unknown value. After some algebra, using the 
preceding equations, we can compute the mean-squared error in terms of 
the variogram:

where E is the estimation or  kriging variance, which has to be minimized, 
γ (xi, x0) is the variogram (semivariance) between the data point and the 
unobserved, γ (xi, xj) is the variogram between the data points xi and xj,
and λ i and λ j are the weights of the i th and j th data point.

For kriging we have to minimize this equation (quadratic objective func-
tion) satisfying the condition that the sum of weights should be one (linear 
constraint). This optimization problem can be solved using a Lagrange mul-
tiplier ν resulting in the  linear kriging system of N+1 equations and N+1 
unknowns:

After obtaining the weights λ i , the kriging variance is given by

The kriging system can be presented in a matrix notation:

where
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is the matrix of the coeffi cients, these are the modeled variogram values for 
the pairs of observations. Note that on the diagonal of the matrix, where 
separation distance is zero, the value of γ  vanishes.

is the vector of the unknown weights and the Lagrange multiplier.

is the right-hand-side vector. To obtain the weights and the Lagrange multi-
plier the matrix G_mod is inverted:

The kriging variance is given by

2 1G R E_

For our calculations with MATLAB we need the matrix of coeffi cients de-
rived from the distance matrix D and a variogram model. D was calculated 
in the variography section above and we use the exponential variogram 
model with a nugget, sill and range from the previous section:

G_mod = (nugget + sill*(1 - exp(-3*D/range))).*(D>0);

Then we get the number of observations and add a column and row vector of 
all ones to the G_mod matrix and a zero at the lower left corner:  

n = length(x);
G_mod(:,n+1) = 1;
G_mod(n+1,:) = 1;
G_mod(n+1,n+1) = 0;
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Now the G_mod matrix has to be inverted:

G_inv = inv(G_mod);

A grid with the locations of the unknown values is needed. Here we use a 
grid cell size of fi ve within a quadratic area ranging from 0 to 200 in x and 
y direction. The coordinates are created in matrix form by:

R = 0 : 5 : 200;
[Xg1,Xg2] = meshgrid(R,R);

and converted to vectors by:

Xg = reshape(Xg1,[],1);
Yg = reshape(Xg2,[],1);

Then we allocate memory for the kriging estimates Zg and the kriging vari-
ance s2_k by:

Zg = Xg * NaN;
s2_k = Xg * NaN;

Now we are kriging the unknown at each grid point:

for k = 1 : length(Xg)
    DOR = ((x - Xg(k)).^2 + (y - Yg(k)).^2).^0.5;
    G_R = (nugget + sill*(1 - exp(-3*DOR/range))).*(DOR>0);
    G_R(n+1) = 1; 
    E = G_inv * G_R; 
    Zg(k) = sum(E(1:n,1).*z); 
    s2_k(k) = sum(E(1:n,1).*G_R(1:n,1))+E(n+1,1); 
end

Here, the fi rst command computes the distance between the grid points 
(Xg,Yg) and the observation points (x,y). Then we build the right-hand-
side vector of the kriging system by using the variogram model G_R and 
add one to the last row. We next obtain the matrix E with the weights and 
the lagrange multiplier. The estimate Zg at each point k is the weighted sum 
of the observations z. Finally, the kriging variance s2_k of the grid point is 
computed. We plot the results. First, we create a grid of the kriging estimate 
and the kriging variance:

r = length(R);
Z = reshape(Zg,r,r);
SK = reshape(s2_k,r,r);

A subplot on the left presents the kriged values:

subplot(1,2,1)
h = pcolor(Xg1,Xg2,Z);
set(h,'LineStyle','none')
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axis equal
ylim([0 200])
title('Kriging Estimate')
xlabel('x-Coordinates')
ylabel('y-Coordinates')
colorbar

The left subplot presents the kriging variance:

subplot(1,2,2)
h = pcolor(Xg1,Xg2,SK);
set(h,'LineStyle','none')
axis equal
ylim([0 200])
title('Kriging Variance')
xlabel('x-Coordinates')
ylabel('y-Coordinates')
colorbar
hold on

and we are overlaying the sampling positions:

plot(x,y,'ok')
hold off

The kriged values are shown in Figure 7.22a. The kriging variance  depends 
only on the distance from the observations and not on the observed values 
(Fig. 7.22b). Kriging reproduces the population mean when observations 
are beyond the range of the variogram, at the same time kriging variance 
increases (lower right corner of the maps in Figure 7.22). The kriging vari-
ance can be used as a criterion to improve sampling design and it is needed 
for backtransformation in lognormal kriging. Back-transformation for log-
normal kriging is done by:

y x z x x( ) exp( ( ) . ( ) )0 0
2

00 5

Discussion of Kriging

Point kriging as presented here is an exact interpolator. It reproduces exactly 
the values at an observation point, even though a variogram with a nugget ef-
fect is used. Smoothing can be caused by including the variance of the mea-
surement errors (see Kitanidis 1997) and by  block kriging which averages 
the observations within a certain neighborhood (block). While kriging vari-
ance depends only on the distance between the observed and the unobserved 
locations it is primary a measure of density of information (Wackernagel 
2003). The accuracy of kriging is better evaluated by cross-validation using 
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a resampling method or surrogate test (Chapter 4.6 and 4.7). The infl uence of 
the neighboring observations on the estimation depends on their confi gura-
tion. Webster and Oliver (2001) summarize: Near points carry more weight 
than more distant ones; the relative weight of a point decreases when the 
number of points in the neighborhood increases; clustered points carry less 
weight individually than isolated ones at the same distance; data points can 
be screened by ones lying between them and the target. Sampling design for 
kriging is different from the design which might be optimal for variography. 
A regular grid, triangular or quadratic, can be regarded as optimum. 

The MATLAB code presented here is a straightforward implementation 
of the kriging system presented in the formulas above. In professional pro-
grams the number of data points entering the G_mod matrix are restricted 
as well as the inversion of G_mod is avoided by working with the covari-
ances instead of the variograms (Webster and Oliver 2001, Kitanidis 1997). 
For those who are interested in programming and in a deeper understanding 
of algorithms, Deutsch and Journel (1992) is a must. The best internet sour-
ce is the homepage of AI-GEOSTATISTICS:

http://www.ai-geostats.org
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8 Image Processing

8.1 Introduction

Computer graphics are stored and processed either as  vector or  raster data. 
Most data types that were encountered in the previous chapter were vec-
tor data, i.e., points, lines and polygons. Drainage networks, the outline of 
geologic units, sampling locations and topographic contours are examples 
of vector data. In Chapter 7, coastlines are stored in the vector format while 
bathymetric and topographic data are saved in the raster format. Vector and 
raster data are often combined in one data set, for instance, the course of 
a river is displayed on a satellite image. Raster data are often converted to 
vector data by digitizing points, lines or polygons. On the other hand, vector 
data are sometimes transformed to raster data.

 Images are generally represented as raster data, i.e., as a 2D array of 
color intensities. Images are everywhere in geosciences. Field geologists 
use aerial photos and satellite images to identify lithologic units, tectonic 
structures, landslides and other features in a study area. Geomorphologists 
use such images for the analysis of drainage networks, river catchments, 
vegetation and soil types. The analysis of images from thin sections, auto-
mated identifi cation of objects and the measurement of varve thicknesses 
employ a great variety of image processing methods.

This chapter is about the analysis and display of image data. Firstly, the 
various ways that raster data can be stored on the computer are explained 
(Chapter 8.2). Subsequently, the main tools for importing, manipulating 
and exporting image data are presented (Chapter 8.3). This knowledge is 
then used to process and to georeference satellite images (Chapter 8.4 and 
8.5). Finally, on-screen digitization techniques are discussed (Chapter 8.6). 
The Image Processing Toolbox is used for the specifi c examples throughout 
this chapter. Whereas the MATLAB User’s Guide to the Image Processing 
Toolbox is an excellent introduction to the analysis of images in generally, 
this chapter provides an overview of typical applications in earth sciences.
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8.2 Data Storage

Vector and raster graphics are the two fundamental methods for storing 
pictures. The typical format for storing  vector data was already introduced 
in the previous chapter. In the following example, the two columns in the 
fi le coastline.txt represent the the longitudes and the latitudes of the points 
of a polygon.

NaN   NaN
42.892067 0.000000
42.893692 0.001760
NaN   NaN
42.891052 0.001467
42.898093 0.007921
42.904546 0.013201
42.907480 0.016721
42.910414 0.020828
42.913054 0.024642
(cont'd)

The NaN’s help to identify break points in the data (Chapter 7.2).
The  raster data are stored as 2D arrays. The elements of the array repre-

sent the altitude of a grid point above sea level, annual rainfall or, in the case 
of an image, color intensity values.

174 177 180 182 182 182
165 169 170 168 168 170
171 174 173 168 167 170
184 186 183 177 174 176
191 192 190 185 181 181
189 190 190 188 186 183

In all cases, raster data can be visualized as 3D plot. The x and y are the 
indices of the 2D array or any other reference frame, and z is the numerical 
value of the elements of the array (see also Chapter 7). Alternatively, the 
numerical values contained in the 2D array can be displayed as pseudo-
color plot, which is a rectangular array of cells with colors determined by 
a colormap. A colormap is a m-by-3 array of real number between 0.0 and 
1.0. Each row defi nes a red, green, blue (RGB) color. An example is the 
above array that could be interpreted as grayscale intensities ranging from 
0 (black) to 255 (white). More complex examples include satellite images 
that are stored in 3D arrays.

As discussed before, a computer stores data as bits, which have one out of 
two states, one and zero (Chapter 2). If the elements of the 2D array repre-
sent the color intensity values of the  pixels (short for  picture elements) of an 
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image, 1-bit arrays contains only ones and zeros.

0   0   1   1   1   1
1   1   0   0   1   1
1   1   1   1   0   0
1   1   1   1   0   1
0   0   0   0   0   0
0   0   0   0   0   0

This 2D array of ones and zeros can be simply interpreted as a white-and-
black image, where the value of one represents white and zero corresponds 
to black. Alternatively, the 1-bit array could be used to store an image con-
sisting of two different colors only, such as red and blue.

In order to store more complex types of data, the bits are joined to larger 
groups, such as bytes consisting of eight bits. The earliest computers could 
only send eight bits at a time and early computer code was written in sets 
of eight bits, which came to be called a byte. Hence, each element of the 2D  
array or pixel contains a vector of eight ones or zeros.

  1    0    1    0    0    0    0    1

These 8  bits or 1  byte allows 28=256 possible combinations of the eight ones 
or zeros. Therefore, 8 bits are enough to represent 256 different intensities 
such as grayscales. The 8 bits can be read in the following way. The bits 
are read from the right to the left. A single bit represents two numbers, two 
bits give four numbers, three bits show eight numbers, and so forth up to a 
byte, or eight bits, which represents 256 numbers. Each added bit doubles 
the count of numbers. Here is a comparison of the binary and the decimal 
representation of the number 161. 

128   64   32   16    8    4    2    1         (value of the bit)
  1    0    1    0    0    0    0    1         (binary)

128 +  0 + 32  + 0 +  0 +  0 +  0 +  1 = 161   (decimal)

The end members of the binary representation of grayscales are

  0    0    0    0    0    0    0    0

which is black, and

  1    1    1    1    1    1    1    1

which is pure white. In contrast to the above 1-bit array, the one-byte array 
allows to store a  grayscale image of 256 different levels. Alternatively, the 
256 numbers could be interpreted as 256 different discrete colors. In any 
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case, the display of such an image requires an additional source of informa-
tion about how the 256 intensity values are converted into colors. Numerous 
global colormaps for the interpretation of 8-bit color images exist that allow 
the cross-platform exchange of raster images, whereas local colormaps are 
often embedded in a graphics fi le.

The disadvantage of 8-bit color images is that the 256 discrete colorsteps 
are not enough to simulate smooth transitions for the human eye. Therefore, 
in many applications a 24-bit system is used with 8 bits of data for each 
 RGB channel giving a total of 2563=16,777,216 colors. Such a 24-bit image 
is stored in three 2D arrays or one 3D array of   intensity values between 0 
and 255.

195  189  203  217  217  221
218  209  187  192  204  206
207  219  212  198  188  190
203  205  202  202  191  201
190  192  193  191  184  190
186  179  178  182  180  169

209  203  217  232  232  236
234  225  203  208  220  220
224  235  229  214  204  205
223  222  222  219  208  216
209  212  213  211  203  206
206  199  199  203  201  187

174  168  182  199  199  203
198  189  167  172  184  185
188  199  193  178  168  172
186  186  185  183  174  185
177  177  178  176  171  177
179  171  168  170  170  163

Compared to the 1-bit and 8-bit representation of raster data, the 24-bit 
storage certainly requires a lot more computer memory. In the case of very 
large data sets such as satellite images and digital elevation models the user 
should therefore carefully think about the suitable way to store the data. 
The default data type in MATLAB is the 64-bit array which allows to store 
the sign of a number (fi rst bit), the exponent (bits 2 to 12) and roughly 16 
signifi cant decimal digits in the range of roughly 10-308 and 10+308 (bits 13 
to 64). However, MATLAB also works with other data types such as 1-bit, 
8-bit and 24-bit raster data to save memory.

The memory required for storing an image depends on the data type and 
the raster dimension. The dimension of an image can be described by the 
numbers of pixels, which is the number of rows multiplied by the number of 
columns of the 2D array. Assume an image of 729×713 pixels, as the one we 



8.2 Data Storage 229

will use in the following chapter. If each pixel needs 8 bits to store an gray-
scale value, the memory required by the data is 729×713×8= 4,158,216 bits 
or 4,158,216/8=519,777 bytes. This number is exactly what we obtain by 
typing whos in the command window. Common prefi xes for bytes are kilo-
byte, megabyte, gigabyte and so forth.

bit = 1 or 0 (b)
8 bits = 1 byte (B)
1024 bytes = 1 kilobyte (KB)
1024 kilobytes = 1 megabyte (MB)
1024 megabytes = 1 gigabyte (GB)
1024 gigabytes = 1 terabyte (TB)

Note that in data communication 1 kilobit = 1,000 bits, while in data stor-
age 1 kilobyte = 1,024 bytes. A 24-bit or  true color image then requires 
three times the memory needed to store a 8-bit image, or 1,559,331 bytes 

= 1,559,331/1,024 kilobytes (KB) ≈1,523 KB≈1,559,331/1,0242 =1.487 mega-
bytes (MB).

However, the dimension of an image is often not given by the total num-
ber of pixels, but the length and height of the picture and its resolution. 
The resolution of an image is the number of  pixels per inch ( ppi) or  dots 
per inch ( dpi). The standard resolution of a computer monitor is 72 dpi al-
though modern monitors often have a higher  resolution such as 96 dpi. For 
instance, a 17 inch  monitor with 72 dpi resolution displays 1,024×768 pix-
els. If the monitor is used to display images at a different (lower, higher) 
resolution, the image is resampled to match the monitor’s resolution. For 
scanning and printing, a resolution of 300 or 600 dpi is enough in most ap-
plications. However, scanned images are often scaled for large printouts and 
therefore have higher resolutions such as 2,400 dpi. The image used in the 
next chapter has a width of 25.2 cm (or 9.92 inch) and a height of 25.7 cm 
(10.12 inch). The resolution of the image is 72 dpi. The total number of pixels is 
72×9,92≈713 in horizontal direction, the vertical number of pixels is 
72×10,12≈729 as expected.

Numerous formats are available to save vector and raster data into a fi le. 
All these formats have their advantages and disadvantages. Choosing one 
format over another in an application depends on the way the images are 
used in a project and if images are to be analyzed quantitatively. The most 
popular formats for storing vector and raster data are:

Compuserve Graphics Interchange Format (GIF) – This format was de-
veloped in 1987 for raster images using a fi xed colormap of 256 colors. 
The GIF format uses compression without loss of data. It was designed 

•
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for fast transfer rates in the internet. The limited number of colors makes 
it not the right format for smooth color transitions that occur in aerial 
photos or stellite images. In contrast, it is often used for line art, maps, 
cartoons and logos (http://www.compuserve.com/).

Microsoft Windows Bitmap Format ( BMP) – This is the native bitmap 
format for computers running Microsoft Windows as the operating sys-
tem. However, numerous converters exist to read and write BMP fi les 
also on other platforms. Various modifi cations of the BMP format are 
available, some of them without compressions, others with effective and 
fast compression (http://www.microsoft.com/).

Tagged Image File Format ( TIFF) – This format was designed by the 
Aldus Corporation and Microsoft in 1986 to become an industry stan-
dard for image-fi le exchange. A TIFF fi le includes an image fi le header, 
a directory and the data in all available graphics and image fi le formats. 
Some TIFF fi les even contain vector and raster versions of the same pic-
ture, and images in different resolution and colormap. The most impor-
tant advantage of TIFF was portability. TIFF should perform on all com-
puter platforms. Unfortunately, numerous modifi cations of TIFF evolved 
in the following years, causing incompatibilities. Therefore, TIFF is of-
ten called Thousands of Incompatible File Formats.

PostScript ( PS) and  Encapsulated PostScript ( EPS) – The PS format has 
been developed by John Warnock at Parc, the research institute of Xerox. 
J. Warnock was co-founder of Adobe Systems, where the EPS format has 
been created. The vector format PostScript would have never become 
an industry standard without Apple Computers. In 1985, Apple need-
ed a typesetter-quality controller for the new printer apple LaserWriter 
and the operating system Macintosh. The third partner in the history 
of PostScript was the company Aldus, the developer of the software 
PageMaker and now a part of Adobe Systems. The combination of Aldus 
PageMaker, the PS format and the Apple LaserWriter were the founders 
of Desktop Publishing. The EPS format was then developed by Adobe 
Systems as a standard fi le format for importing and exporting PS fi les. 
Whereas the PS fi le generally is a single-page format, containing an il-
lustration of a text, the purpose of an EPS fi le is to be included in other 
pages, i.e., it can contain any combination of text, graphics and images 
(http://www.adobe.com/).

•

•

•
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In 1986, the  Joint Photographic Experts Group ( JPEG) was founded 
for the purpose of developing various standards for image compression. 
Although JPEG stands for the committee, it is now widely used as the 
name for an image compression and format. This compression consists of 
grouping pixel values into 8×8 blocks and transforming each block with a 
discrete cosine transform. Subsequently, all unnecessary high-frequency 
information is eased. Such practice makes the compression method irre-
versible. The advantage of the JPEG format is the availability of a three-
channel 24-bit true color version. This allows to store images with smooth 
color transitions. The new JPEG-2000 format uses a Wavelet transform 
instead of the cosine transform (Chapter 5.8) (http://www.jpeg.org/).

Portable Document Format (PDF) – The PDF designed by Adobe Systems 
is now a true self-contained cross-platform document. The PDF fi les con-
tain the complete formatting of vector illustrations, raster images and 
text, or a combination of all these, including all necessary fonts. These 
fi les are highly compressed, allowing a fast internet download. Adobe 
Systems provides the free-of-charge Acrobat Reader for all computer 
platforms to read PDF fi les (http://www.adobe.com/).

The PICT format was developed by Apple Computers in 1984 as the na-
tive format for Macintosh graphics. The PICT format can be used for 
raster images and vector illustrations. PICT uses various methods for 
compressing data. The PICT 1 format only supports monochrome graph-
ics, but PICT 2 supports a color depth of up to 32-bit. The PICT format 
is not supported on other platforms although some PC software tools can 
work with PICT fi les (http://www.apple.com).

8.3 Importing, Processing and Exporting Images

Firstly, we learn how to read an image from a graphics fi le into the work-
space. As an example, we use a satellite image showing a 10.5 km by 11 km 
subarea in northern Chile:

http://asterweb.jpl.nasa.gov/gallery/images/unconform.jpg

The fi le unconform.jpg is a processed  TERRA-ASTER satellite image that 
can be downloaded free-of-charge from the NASA web page. We save this 
image in the working directory. The command

unconform1 = imread('unconform.jpg');

•

•

•
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reads and decompresses the JPEG fi le, imports the data as 24-bit RGB im-
age array and stores the data in a variable unconform1. The command

whos

shows how the  RGB array is stored in the workspace:

Name              Size                 Bytes  Class    Attributes
unconform1      729x713x3            1559331  uint8

The details indicate that the image is stored as a 729×713×3 array repre-
senting a 729×713 array for each of the colors red, green and blue. The 
listing of the current variables in the workspace also gives the information 
uint8 array, i.e., each array element representing one pixel contains 8-bit 
integers. These integers represent intensity values between 0 (minimum 
intensity) and 255 (maximum). As example, here is a sector in the upper-left 
corner of the data array for red:

unconform1(50:55,50:55,1)

ans =
   174 177 180 182 182 182
   165 169 170 168 168 170
   171 174 173 168 167 170
   184 186 183 177 174 176
   191 192 190 185 181 181
   189 190 190 188 186 183

Next, we can view the image using the command

 imshow(unconform1)

which opens a new Figure Window showing an RGB composite of the im-
age (Fig. 8.1).

In contrast to the RGB image, a grayscale image only needs one single 
array to store all necessary information. We convert the RGB image into a 
grayscale image using the command rgb2gray (RGB to gray):

unconform2 = rgb2gray (unconform1);

The new workspace listing now reads

Name              Size                 Bytes  Class    Attributes
ans               6x6                     36  uint8
unconform1      729x713x3            1559331  uint8
unconform2      729x713               519777  uint8

where you can see the difference between the 24-bit RGB and the 8-bit 
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grayscale arrays. The commands

imshow(unconform1), figure, imshow(unconform2)

display the result. It is easy to see the difference between the two images in 
separate Figure Windows (Fig. 8.1 and 8.2). Let us now process the gray-
scale image. First, we compute a histogram of the distribution of intensity 
values.

 imhist(unconform2)

A simple technique to enhance the contrast of such an image is to transform 
this histogram to obtain an equal distribution of grayscales.

unconform3 = histeq(unconform2);

We can view the difference again using

imshow(unconform2), figure, imshow(unconform3)

and save the results in a new fi le.

 imwrite(unconform3,'unconform3.jpg')

We can read the header of the new fi le by typing

 imfinfo('unconform3.jpg')

which yields

Filename: 'unconform3.jpg'
FileModDate: '18-Jun-2003 16:56:49'
FileSize: 138419
Format: 'jpg'
FormatVersion: ''
Width: 713
Height: 729
BitDepth: 8
ColorType: 'grayscale'
FormatSignature: ''
NumberOfSamples: 1
CodingMethod: 'Huffman'
CodingProcess: 'Sequential'
Comment: {}

Hence, the command iminfo can be used to obtain useful information 
(name, size, format and color type) about the newly-created image fi le.

There are many ways for transforming the original satellite image into 
a practical fi le format. For instance, the image data could be stored as  in-
dexed color image. Such an image consists of two parts, a colormap array 
and a data array. The  colormap array is an m-by-3 array containing fl oat-
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ing-point values between 0 and 1. Each column specifi es the intensity of 
the colors red, green and blue. The data array is an x-by-y array containing 
integer elements corresponding to the lines m of the colormap array, i.e., 
the specifi c RGB representation of a certain color. Let us transfer the above 
RGB image into an indexed image. The colormap of the image should con-
tain 16 different colors. The result of

Fig. 8.1 RGB true color image contained in the fi le unconform.jpg. After decompressing 
and reading the JPEG fi le into a 729×713×3 array, MATLAB interprets and displays the 
RGB composite using the function imshow. See detailed description of the image on the 
NASA TERRA-ASTER webpage http: //asterweb.jpl.nasa.gov. Original image courtesy of 
NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.
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[x,map] = rgb2ind(unconform1,16);
imshow(unconform1), figure, imshow(x,map)

clearly shows the difference between the original 24-bit RGB image (2563 or 
ca. 16.7 million different colors) and a color image of only 16 different col-
ors (Fig. 8.1 and 8.3).

Fig. 8.2 Grayscale image. After converting the RGB image stored in a 729×713×3 array 
into a grayscale image stored in a 729×713 array, the result is displayed using imshow.
Original image courtesy of NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER 
Science Team.
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8.4 Importing, Processing and Exporting  Satellite Images

In the previous chapter, we used a processed ASTER image that we have 
downloaded from the  ASTER web page. The original ASTER raw data con-
tain a lot more information and resolution than the free-of-charge image 
stored in unconform.jpg. The ASTER instrument produces two types of data, 
Level-1A and 1B. Whereas the L1A data are reconstructed, unprocessed in-
strument data, L1B data are radiometrically and geometrically corrected. 
Each ASTER data set contains 15 data arrays representing the intensity 

Fig. 8.3 Indexed color image using a colormap containing 16 different colors. The result 
is displayed using imshow. Original image courtesy of NASA/GSFC/METI/ERSDAC/
JAROS and U.S./Japan ASTER Science Team.
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values from 15 spectral bands (see the ASTER-web page for more detailed 
information) and various additional information such as location, date and 
time. The raw satellite data can be purchased from the USGS online store:

http://edcimswww.cr.usgs.gov/pub/imswelcome/

Enter the data gateway as guest, pick a discipline/top (e.g., Land: ASTER), 
then choose from the list of data sets (e.g., DEM, Level 1A or 1B data), de-
fi ne the search area and click Start Search. The system now needs a few 
minutes to list all relevant data sets. A list of data sets including various 
types of additional information (cloud coverage, exposure date, latitude and 
longitude) can be obtained by clicking on List Data Granules. Furthermore, 
a low resolution preview can be accessed by selecting Image. Having pur-
chased a certain data set, the raw image can be downloaded using a tem-
porary FTP-access. As an example, we process an image from an area in 
Kenya showing Lake Naivasha. The data are stored in two fi les

naivasha.hdf
naivasha.hdf.met

The fi rst fi le (111 MB large) contains the actual raw data, whereas the second 
fi le (100 KB) contains the header with al types of information about the data. 
We save both fi les in our working directory. The image processing Toolbox 
contains various tools for importing and processing fi les stored in the hierar-
chical data format (HDF). The GUI-based import tool for importing certain 
parts of the raw data is

hdftool('naivasha.hdf')

This command opens a GUI that allows us to browse the content of the HDF-
fi le naivasha.hdf, obtains all information the contents and imports certain 
frequency bands of the satellite image. Alternatively, the command hdf-
read can be used as the quicker way of accessing image data. An image 
as the one used in the previous chapter is typically achieved by computing 
an RGB composite from the vnir_Band3n, 2 and 1 in the data fi le. First, we 
read the data

I1 = hdfread('naivasha.hdf','VNIR_Band3N','Fields','ImageData');
I2 = hdfread('naivasha.hdf','VNIR_Band2','Fields','ImageData');
I3 = hdfread('naivasha.hdf','VNIR_Band1','Fields','ImageData');

These commands generate three 8-bit image arrays each representing the 
intensity within a certain infrared (IR) frequency band of a 4200× 4100 pixel 
image. The vnir_Band3n, 2 and 1 typically contain much information about 
lithology (including soils), vegetation and water on the Earth’s surface. 
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Therefore, these bands are usually combined to 24-bit RGB images

naivasha_rgb = cat(3,I1,I2,I3);

Similar to the examples above, the 4200 × 4100 ×3 array can now be dis-
played using

imshow(naivasha_rgb);

MATLAB scales the images to fi t the computer screen. Exporting the pro-
cessed image from the Figure Window, we only save the image at the mon-
itor’s resolution. To obtain an image at a higher resolution (Fig. 8.4), we use 

Fig. 8.4  RGB composite of a TERRA-ASTER image using the spectral infrared bands 
vnir_Band3n, 2 and 1. The result is displayed using imshow. Original image courtesy of 
NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.
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the command

imwrite(naivasha_rgb,'naivasha.tif','tif')

This command saves the RGB composite as a TIFF-fi le naivasha.tif (ca. 
50 MB large) in the working directory that can be processed with other 
software such as Adobe Photoshop.

8.5 Georeferencing Satellite Images

The processed ASTER image does not yet have a coordinate system. Hence, 
the image needs to be tied to a geographical reference frame ( georeferenc-
ing). The raw data can be loaded and transformed into a RGB composite 
by typing

I1 = hdfread('naivasha.hdf','VNIR_Band3N','Fields','ImageData');
I2 = hdfread('naivasha.hdf','VNIR_Band2','Fields','ImageData');
I3 = hdfread('naivasha.hdf','VNIR_Band1','Fields','ImageData');

naivasha_rgb = cat(3,I1,I2,I3);

The  HDF browser can be used

hdftool('naivasha.hdf')

to extract the geodetic coordinates of the four corners of the image. This 
information is contained in the header of the HDF fi le. Having launched the 
HDF tool, we activate File as HDF and select on the uppermost directory 
naivasha.hdf. This produces a long list of fi le attributes including product-
metadata.0, which includes the attribute scenefourcorners that contains the 
following information:

upperleft  = [-0.319922, 36.214332];
upperright = [-0.400443, 36.770406];
lowerleft  = [-0.878267, 36.096003];
lowerright = [-0.958743, 36.652213];

These two-element vectors can be collected into one array inputpoints.
Subsequently, the left and right columns can be fl ipped in order to have 
x= longitudes and y = latitudes.

inputpoints(1,:) = upperleft;
inputpoints(2,:) = lowerleft;
inputpoints(3,:) = upperright;
inputpoints(4,:) = lowerright;
inputpoints = fliplr(inputpoints);
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The four corners of the image correspond to the pixels in the four corners of 
the image that we store in a variable named basepoints.

basepoints(1,:) = [1,4200];
basepoints(2,:) = [1,1];
basepoints(3,:) = [4100,4200];
basepoints(4,:) = [4100,1];

The function  cp2tform now takes the pairs of control points input-
points and basepoints and uses them to infer a spatial transformation 
matrix  tform.

tform = cp2tform(inputpoints,basepoints,'affine');

This transformation can be applied to the original RGB composite naiva-
sha_rgb in order to obtain a georeferenced version of the satellite image 
newnaivasha_rgb.

[newnaivasha_rgb,x,y] = imtransform(naivasha_rgb,tform);

Subsequently, an appropriate grid for the image may be computed. The grid 
is typically defi ned by the minimum and maximum values for the longi-
tude and the latitude. The vector increments are then obtained by dividing 
the longitude and latitude range by the array dimension and by subtracting 
one from the result. Note the difference between the numbering conven-
tion of MATLAB and the common coding of maps used in the literature. 
The north /south suffi x is generally replaced by a negative sign for south, 
whereas MATLAB coding conventions require negative signs for north.

X = 36.096003 : (36.770406-36.096003)/8569 : 36.770406;
Y =  0.319922 : ( 0.958743- 0.319922)/8400 :  0.958743;

Hence, both images can be displayed for comparison (Fig. 8.4 and 8.5).

iptsetpref('ImshowAxesVisible','On')
imshow(naivasha_rgb), title('Original ASTER Image')
figure
imshow(newnaivasha_rgb,'XData',X,'YData',Y);
xlabel('Longitude'), ylabel('Latitude')
title('Georeferenced ASTER Image')
grid on

The command iptsetpref makes the axis of the image visible. Exporting 
the results is possible in many ways, such as

 print -djpeg70 -r600 naivasha_georef.jpg

as JPEG fi le naivasha_georef.jpg compressed at 70% and at a resolution 
of 600 dpi.
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8.6  Digitizing from the Screen

On-screen digitizing is a widely-used image processing technique. While 
practical digitizer tablets exist in all formats and sizes, most people prefer 
digitizing vector data from the screen. Examples for this application are 
digitizing of river networks and drainage areas on topographic maps, the 
outlines of lithologic units in maps, the distribution of landslides on satellite 
images or mineral grains in a microscope image. The digitizing procedure 
consists of the following steps. Firstly, the image is imported into the work-
space. Subsequently, a coordinate system is defi ned. Finally, the objects of 
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Fig. 8.5 Geoferenced RGB composite of an TERRA-ASTER image using the infrared bands 
vnir_Band3n, 2 and 1. The result is displayed using imshow. Original image courtesy of 
NASA/GSFC/METI/ERSDAC/JAROS and U.S. /Japan ASTER Science Team.
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interest are entered by moving a cursor or cross hair and clicking the mouse 
button. The result is a two-dimensional array of xy data, such as longitudes 
and latitudes of the points of a polygon or the coordinates of the objects of 
interest in an area.

The function  ginput included in the standard MATLAB toolbox pro-
vides graphical input using a mouse on the screen. It is generally used to se-
lect points such as specifi c data points from a fi gure created by an arbitrary 
graphics function such as plot. The function is often used for interactive 
plotting, i.e., the digitized points appear on the screen after they were select-
ed. The disadvantage of the function is that it does not provide coordinate 
referencing on an image. Therefore, we use a modifi ed version of the func-
tion that allows to reference an image to an arbitrary rectangular coordinate 
system. Save the following code in a text fi le minput.m.

function data = minput(imagefile)
% Specify the limits of the image
xmin = input('Specify xmin! ');
xmax = input('Specify xmax! ');
ymin = input('Specify ymin! ');
ymax = input('Specify ymax! ');

% Read image and display
B = imread(imagefile);
a = size(B,2); b = size(B,1);
imshow(B);

% Define lower left and upper right corner of image
disp('Click on lower left and upper right corner, then <return>')
[xcr,ycr] = ginput;
XMIN = xmin-((xmax-xmin)*xcr(1,1)/(xcr(2,1)-xcr(1,1)));
XMAX = xmax+((xmax-xmin)*(a-xcr(2,1))/(xcr(2,1)-xcr(1,1)));
YMIN = ymin-((ymax-ymin)*ycr(1,1)/(ycr(2,1)-ycr(1,1)));
YMAX = ymax+((ymax-ymin)*(b-ycr(2,1))/(ycr(2,1)-ycr(1,1)));

% Digitize data points
disp('Click on data points to digitize, then <return>')
[xdata,ydata] = ginput;
XDATA = XMIN + ((XMAX-XMIN)*xdata/size(B,2));
YDATA = YMIN + ((YMAX-YMIN)*ydata/size(B,1));
data(:,1) = XDATA; data(:,2) = YDATA;

The function minput has four parts. In the fi rst part, the user enters the 
limits of the coordinate axis as the reference for the image. Next, the image 
is imported into the workspace and displayed on the screen. The third part 
uses ginput to defi ne the upper left and lower right corners of the image. 
The relationship between the coordinates of the two corners on the fi gure 
window and the reference coordinate system is used to compute the trans-
formation for all points digitized in the fourth part.
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For instance, we use the image stored in the fi le naivasha_georef.jpg and 
digitize the outline of Lake Naivasha in the center of the image. We call the 
new function minput from the Command Window using the commands

data = minput('naivasha_georef.jpg')

The function fi rst calls the coordinates for the limits of the x- and y-axis for 
the reference frame. We enter the corresponding numbers and press return 
after each input.

Specify xmin! 36.1
Specify xmax! 36.7
Specify ymin! -1
Specify ymax! -0.3

Next the function reads the fi le naivasha_georef.jpg and displays the image. 
We ignore the warning

Warning: Image is too big to fit on screen; displaying at 33%

and wait for the next response

Click on lower left and upper right corner, then <return>

The image window can be scaled according to user preference. Clicking 
on the lower left and upper right corner defi nes the dimension of the image. 
These changes are registered by pressing return. The routine then referenc-
es the image to the coordinate system and waits for the input of the points 
we wish to digitize from the image.

Click on data points to digitize, then <return>

We fi nish the input again by pressing return. The xy coordinates of our 
digitized points are now stored in the variable data. We can now use these 
vector data for other applications.

Recommended Reading

Abrams M, Hook S (2002) ASTER User Handbook - Version 2. Jet Propulsion Laboratory 
and EROS Data Center, Sioux Falls

Campbell JB (2002) Introduction to Remote Sensing. Taylor & Francis, London
Francus P (2005) Image Analysis, Sediments and Paleoenvironments – Developments in 

Paleoenvironmental Research. Springer, Berlin Heidelberg New York
Gonzales RC, Eddins SL, Woods RE (2003) Digital Image Processing Using MATLAB. 

Prentice Hall, New Jersey
The Mathworks (2006) Image Processing Toolbox User’s Guide - For the Use with 

MATLAB®. The MathWorks, Natick, MA



9 Multivariate Statistics

9.1 Introduction

Multivariate analysis aims to understand and describe the relationship be-
tween an arbitrary number of variables. Earth scientists often deal with  mul-
tivariate data sets, such as microfossil assemblages, geochemical fi ngerprints 
of volcanic ashes or  clay mineral contents of sedimentary sequences. If there 
are complex relationships between the different parameters, univariate sta-
tistics ignores the information content of the data. There is a number of meth-
ods, however, for investigating the scaling properties of multivariate data.

A multivariate data set consists of measurements of p variables on n ob-
jects. Such data sets are usually stored in n-by-p arrays:

The columns of the array represent the p variables, the rows represent the 
n objects. The characteristics of the 2nd object in the suite of samples is 
described by the vector in the second row of the data array:

As an example, assume the microprobe analysis on glass shards from volca-
nic ashes in a tephrochronology project. Then, the variables represent the p
chemical elements, the objects are the n ash samples. The aim of the study 
is to correlate ashes by means of their geochemical fi ngerprints.

Most of the  multi-parameter methods simply try to overcome the main 
diffi culty associated with multivariate data sets. This problem relates to the 
data visualization. Whereas the character of an univariate or bivariate data 
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set can easily be explored by visual inspection of a 2D histogram or an xy
plot (Chapter 3), the graphical display of a three variable data set requires 
a projection of the 3D distribution of data points into 2D. It is impossible 
to imagine or display a higher number of variables. One solution to the 
problem of visualization of high-dimensional data sets is the  reduction of 
dimensionality. A number of methods group highly-correlated variables 
contained in the data set and then explore a smaller number of groups.

The classic methods to reduce dimensionality are the  principal compo-
nent analysis (PCA) and the  factor analysis (FA). These methods seek the 
directions of maximum variance in the data set and use these as new coor-
dinate axes. The advantage of replacing the variables by new groups of vari-
ables is that the groups are uncorrelated. Moreover, these groups often help 
to interpret the multivariate data set since they often contain valuable infor-
mation on process itself that generated the distribution of data points. In a 
geochemical analysis of magmatic rocks, the groups defi ned by the method 
usually contain chemical elements with similar ion size that are observed 
in similar locations in the lattice of certain minerals. Examples for such 
behavior are Si4+ and Al3+, and Fe2+ and Mg2+ in silicates, respectively.

The second important suite of multivariate methods aims to group objects 
by their similarity. As an example,  cluster analysis (CA) is often applied to 
correlate volcanic ashes as described in the above example. Tephrochronology 
tries to correlate tephra by means of their geochemical fi ngerprint. In com-
bination with a few radiometric age determinations of the key ashes, this 
method allows to correlate sedimentary sequences that contain these ashes 
(e.g., Westgate 1998, Hermanns et al. 2000). More examples for the applica-
tion of cluster analysis come from the fi eld of micropaleontology. In this con-
text, multivariate methods are employed to compare microfossil assemblages 
such as pollen, foraminifera or diatoms (e.g., Birks and Gordon 1985).

The following text introduces the most important techniques of multivari-
ate statistics, principal component analysis and cluster analysis (Chapter 9.2 
and 9.4). A nonlinear extension of the PCA is the  independent component 
analysis (ICA) (Chapter 9.3). First, the chapters provide an introduction to 
the theory behind the techniques. Subsequently, the use of these methods in 
analyzing earth sciences data is illustrated with MATLAB functions.

9.2 Principal Component Analysis

The  principal component analysis (PCA) detects linear dependencies be-
tween variables and replaces groups of correlated variables by new uncor-
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related variables, the  principal components (PC). The performance of the 
PCA is better illustrated with help of a bivariate data set than a multivari-
ate one. Figure 9.1 shows a bivariate data set that exhibits a strong linear 
correlation between the two variables x and y in an orthogonal xy coordi-
nate system. The two variables have their univariate means and variances 
(Chapter 3). The bivariate data set can be described by the bivariate sample 
mean and the covariance (Chapter 4). The xy coordinate system can be re-
placed by a new orthogonal coordinate system, where the fi rst axis passes 
through the long axis of the data scatter and the new origin is the bivariate 
mean. This new reference frame has the advantage that the fi rst axis can 
be used to describe most of the variance, while the second axis contributes 
only a little. Originally, two axes were needed to describe the data set prior 
to the transformation. Therefore, it is possible to reduce the data dimension 
by dropping the second axis without losing much information as shown in 
Figure 9.1.
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Fig. 9.1 Principal component analysis (PCA) illustrated on a bivariate scatter. The original 
xy coordinate system is replaced by a new orthogonal system, where the fi rst axis passes 
through the long axis of the data scatter and the new origin is the bivariate mean. We can 
now reduce dimensionality by dropping the second axis without losing much information.
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This is now expanded to an arbitrary number of variables and samples. 
Suppose a data set of measurements of p parameters on n samples stored in 
an n-by-p array.

The columns of the array represent the p variables, the rows represent the n
samples. After rotating the axis and moving the origin, the new coordinates 
Yj can be computed by

The fi rst principle component PC1 denoted by Y1 contains the greatest vari-
ance, PC2 the second highest variance and so forth. All PCs together con-
tain the full variance of the data set. The variance is concentrated in the fi rst 
few PCs, which explain most of the information content of the data set. The 
last PCs are generally ignored to reduce the data dimension. The factors 
aij in the above equations are the  principal component  loads. The values of 
these factors represent the relative contribution of the original variables to 
the new PCs. If the load aij of a variable Xj in PC1 is close to zero, the infl u-
ence of this variable is low. A high positive or negative aij suggests a strong 
contribution of the variable Xj. The new values Yj of the variables computed 
from the linear combinations of the original variables Xj weighted by the 
loads are called the  principal component  scores.

In the following, a synthetic data set is used to illustrate the use of the 
function  princomp included in the Statistics Toolbox. Our data set con-
tains the percentage of various minerals contained in sediment samples. 
The sediments are sourced from three rock types: a magmatic rock con-
tains amphibole (amp), pyroxene (pyr) and plagioclase (pla), a hydrother-
mal vein characterized by the occurrence of fl uorite (fl u), sphalerite (sph)
and galenite (gal), as well as some feldspars (plagioclase and potassium 
feldspar, ksp) and quartz (qtz), and a sandstone unit containing feldspars, 
quartz and clay minerals (cla).

Ten samples were taken from various levels of this sedimentary sequence 
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containing varying amounts of these minerals. The PCA is used to verify 
the infl uence of the three different source rocks and to estimate their rela-
tive contribution. First, the data are loaded by typing

data = load('sediments.txt');

Next, we defi ne labels for the various graphs created by the PCA. We num-
ber the samples 1 to 10, whereas the minerals are characterized by three-
character abbreviations.

for i = 1:10
   sample(i,:) = ['sample',sprintf('%02.0f',i)];
end
clear i

minerals = ['amp';'pyr';'pla';'ksp';'qtz';'cla';'flu';'sph';'gal']

A successful PCA requires linear correlations between variables. The  cor-
relation matrix provides a technique for exploring such dependencies in the 
data set (Chapter 4). The elements of the correlation matrix are Pearson’s 
correlation coeffi cients for each pair of variables as shown in Figure 9.2. 
Here, the variables are minerals.

corrmatrix = corrcoef(data);
corrmatrix = flipud(corrmatrix);

imagesc(corrmatrix), colormap(hot)
title('Correlation Matrix')
axis square, colorbar, hold
set(gca,'XTickLabel',minerals,'YTickLabel',flipud(minerals))

This pseudocolor plot of the correlation coeffi cients shows strong positive 
correlations between the minerals amp, pyr and pla, the minerals ksp, qtz
and cla, and the minerals fl u, sph and gal, respectively. Moreover, some of 
the minerals show negative correlations. We also observe no dependency 
between some of the variables, for instance between the potassium feldspar 
and the vein minerals. From the observed dependencies, we expect interest-
ing results from the application of the PCA.

Various methods exist for scaling the original data before applying the 
PCA, such as  mean centering (zero means) or  autoscaling (mean zero and 
standard deviation equals one). However, we use the original data for com-
puting the PCA. The output of the function princomp includes the principal 
component loads pcs, the scores newdata and the variances variances.

[pcs,newdata,variances] = princomp(data);
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The loads of the fi rst fi ve principal components PC1 to PC5 can be shown 
by typing

pcs(:,1:5)

ans =
   -0.3303    0.2963   -0.4100   -0.5971    0.1380
   -0.3557    0.0377    0.6225    0.2131    0.5251
   -0.5311    0.1865   -0.2591    0.4665   -0.3010
    0.1410    0.1033   -0.0175    0.0689   -0.3367
    0.6334    0.4666   -0.0351    0.1629    0.1794
    0.1608    0.2097    0.2386   -0.0513   -0.2503
    0.1673   -0.4879   -0.4978    0.2287    0.4756
    0.0375   -0.2722    0.2392   -0.5403   -0.0068
    0.0771   -0.5399    0.1173    0.0480   -0.4246

We observe that PC1 (fi rst column) has high negative loads in the fi rst three 
variables amp, pyr and pla (fi rst to third row), and a high positive load in the 
fi fth variable qtz (fi fth row). PC2 (second column) has high negative loads in 
the vein minerals fl u, sph and gal, and again a positive load in qtz. We create 
a number of plots of the PCs.
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Fig. 9.2 Correlation matrix containing   Pearson’s correlation coeffi cients for each pair of 
variables, such as minerals in a sediment sample. Light colors represent strong positive 
linear correlations, whereas dark colors document negative correlations. Orange suggests 
no correlation.
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subplot(2,2,1), plot(1:9,pcs(:,1),'o'), axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,1),minerals,'FontSize',8), hold
plot(1:9,zeros(9,1),'r'), title('PC 1')

subplot(2,2,2), plot(1:9,pcs(:,2),'o'), axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,2),minerals,'FontSize',8), hold
plot(1:9,zeros(9,1),'r'), title('PC 2')

subplot(2,2,3), plot(1:9,pcs(:,3),'o'), axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,3),minerals,'FontSize',8), hold
plot(1:9,zeros(9,1),'r'), title('PC 3')

subplot(2,2,4), plot(1:9,pcs(:,4),'o'), axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,4),minerals,'FontSize',8), hold
plot(1:9,zeros(9,1),'r'), title('PC 4')

The loads of the index minerals and their relationship to the PCs can be used 
to interpret the relative infl uence of the source rocks. PC1 characterized by 
strong contributions of amp, pyr and pla, and a contribution with an oppo-
site sign of qtz probably describes the amount of magmatic rock clasts in the 
sediment. The second principal component PC2 is clearly dominated by hy-
drothermal minerals hence suggesting the detrital input from the vein. PC3

and PC4 show a mixed and contradictory pattern of loads and are therefore 
not easy to interpret. We will later see that this observation is in line with a 
rather weak and mixed signal from the sandstone source on the sediments.

An alternative way to plot of the loads is a bivariate plot of two principal 
components. We ignore PC3 and PC4 at this point and concentrate on PC1

and PC2.

plot(pcs(:,1),pcs(:,2),'o')
text(pcs(:,1)+0.02,pcs(:,2),minerals,'FontSize',14), hold
x = get(gca,'XLim'); y = get(gca,'YLim');
plot(x,zeros(size(x)),'r')
plot(zeros(size(y)),y,'r')
xlabel('First Principal Component Loads')
ylabel('Second Principal Component Loads')

Here, we observe the same relationships on a single plot that were previous-
ly shown on several graphs (Fig. 9.3). It is also possible to plot the data set as 
functions of the new variables. This needs the second output of princomp
containing the principal component scores.

plot(newdata(:,1),newdata(:,2),'+')
text(newdata(:,1)+0.01,newdata(:,2),sample), hold
x = get(gca,'XLim'); y = get(gca,'YLim');
plot(x,zeros(size(x)),'r')
plot(zeros(size(y)),y,'r')
xlabel('First Principal Component Scores')
ylabel('Second Principal Component Scores')



252 9 Multivariate Statistics

This plot clearly defi nes groups of samples with similar infl uences. The 
samples 1, 2, 8 to 10 dominated by magmatic infl uences cluster in the left 
half of the diagram, the samples 3 to 5 dominated by the hydrothermal vein 
group in the lower part of the right half, whereas the two sandstone domi-
nated samples 6 and 7 fall in the upper right corner.

Next, we use the third output of the function princomp to compute the 
variances of the corresponding PCs.

percent_explained = 100*variances/sum(variances)

percent_explained =
   80.9623
   17.1584
    0.8805
    0.4100
    0.2875
    0.1868
    0.1049
    0.0096
    0.0000

We see that more than 80% of the total variance is contained in PC1, around 
17% is described by PC2, whereas all other PCs do not play any role. This 
means that most of the variability in the data set can be described by two 
new variables only.
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Fig. 9.3 Principal components loads suggesting that the PCs are infl uenced by different 
minerals. See text for detailed interpretation of the PCs.
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9.3 Independent Component Analysis (by N. Marwan)

The principal component analysis (PCA) is the standard method for separat-
ing mixed signals. Such analysis provides signals that are linearly uncor-
related. This method is also called  whitening since this property is char-
acteristic for white noise. Although the separated signals are uncorrelated, 
they could still can be dependent, i.e., nonlinear correlation remains. The 
independent component analysis (ICA) was developed to investigate such 
data. It separates mixed signals into independent signals, which are then 
nonlinearly uncorrelated. Fast ICA algorithms use a criterion which esti-
mates how gaussian distributed the joint distribution of the independent 
components is. The less gaussian this distribution is, the more independent 
the individual components are.

According to the model, n independent signals x (t) are linearly mixed in 
m measurements.

and we are interested in the source signals si and in the mixing matrix A.
For example, we can imagine that we are on a party and a lot of people talk 
independently with others. We hear a mixing of these talks and perhaps 
cannot distinguish the single talks. Now we could install some microphones 
and use these measurements to separate the single conversations. Hence, 
this dilemma is also called the  cocktail party problem. Its correct term is 
blind source separation that is given by

where W T is the separation matrix in order to reverse the mixing and get 
the original signals. Let us consider a mixing of three signals s1, s2 and 
s3 and their separation using PCA and ICA. First, we create three periodic 
signals

clear
i = (1:0.01:10 * pi)';
[dummy index] = sort(sin(i));

s1(index,1) = i/31; s1 = s1 - mean(s1);
s2 = abs(cos(1.89*i)); s2 = s2 - mean(s2);
s3 = sin(3.43*i);
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subplot(3,2,1), plot(s1), ylabel('s_1'), title('Raw signals')
subplot(3,2,3), plot(s2), ylabel('s_2')
subplot(3,2,5), plot(s3), ylabel('s_3')

Now we mix these signals and add some observational noise. We get a three-
column vector x which corresponds to our measurement (Fig. 9.4).

randn('state',1);

x = [.1*s1 + .8*s2 + .01*randn(length(i),1),...
     .4*s1 + .3*s2 + .01*randn(length(i),1),...
     .1*s1 +   s3  + .02*randn(length(i),1)];

subplot(3,2,2), plot(x(:,1)), ylabel('x_1'), title('Mixed signals')
subplot(3,2,4), plot(x(:,2)), ylabel('x_2')
subplot(3,2,6), plot(x(:,3)), ylabel('x_3')

We begin with the separation of the signals using the PCA. We calculate the 
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principal components and the whitening matrix W_PCA with

sPCA = sPCA./repmat(std(sPCA),length(sPCA),1);

The PC scores sPCA are the linearly  separated components of the mixed 
signals x (Fig. 9.5).

subplot(3,2,1), plot(sPCA(:,1))
ylabel('s_{PCA1}'), title('Separated signals - PCA')
subplot(3,2,3), plot(sPCA(:,2)), ylabel('s_{PCA2}')
subplot(3,2,5), plot(sPCA(:,3)), ylabel('s_{PCA3}')

The  mixing matrix A can be found with

A_PCA = E * sqrt (D);
W_PCA = inv(sqrt(diag(D))) * E';

Next, we separate the signals into independent components. We will do 
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this by using a FastICA algorithm which is based on a fi xed-point itera-
tion scheme to fi nd the maximum of the non-gaussianity of the independent 
components WTx. As the nonlinearity function we use a power of three 
function for instance.

rand('state',1);

div = 0;
B = orth(rand(3, 3) - .5);
BOld = zeros(size(B));

while (1 - div) > eps
   B = B * real(inv(B' * B)^(1/2));
   div = min(abs(diag(B' * BOld))); 
   BOld  = B;
   B = (sPCA' * ( sPCA * B) .^ 3) / length(sPCA) - 3 * B;
   sICA = sPCA * B;
end

We plot the separated components with (Fig. 9.5)

subplot(3,2,2), plot(sICA(:,1)), ylabel('s_{ICA1}'),
   title('Separated signals - ICA')
subplot(3,2,4), plot(sICA(:,2)), ylabel('s_{ICA2}')
subplot(3,2,6), plot(sICA(:,3)), ylabel('s_{ICA3}')

The PCA algorithm has not reliably separated the mixed signals. Especially 
the saw-tooth signal was not correctly found. In contrast, the ICA has found 
the source signals almost perfectly. The only remarkable differences are the 
noise, which came through the observation, the wrong sign and the wrong 
order of the signals. However, the sign and the order of the signals are not 
really important, because we have generally not the knowledge about the 
real sources nor their order. With

A_ICA = A_PCA * B;
W_ICA = B' * W_PCA;

we compute the mixing matrix A and the separation matrix W. The mix-
ing matrix A can be used in order to estimate the portion of the separated 
signals on our measurements  The components aij of the mixing matrix A 
correspond to the principal components loads as introduced in Chapter 9.2. 
A FastICA package is available for MATLAB and can be found at

http://www.cis.hut.fi/projects/ica/fastica/
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9.4 Cluster Analysis

 Cluster analysis creates groups of objects that are very similar compared to 
other objects or groups. It fi rst computes the similarity between all pairs of 
objects, then it ranks the groups by their similarity, and fi nally creates a hi-
erarchical tree visualized as a dendrogram. Examples for grouping objects 
in earth sciences are the correlations within volcanic ashes (Hermanns 
et al. 2000) and the comparison of microfossil assemblages (Birks and 
Gordon 1985).

There are numerous methods for calculating the similarity between two 
data vectors. Let us defi ne two data sets consisting of multiple measure-
ments on the same object. These data can be described as the vectors:

The most popular measures of similarity of the two sample vectors are the

Euclidian distance – This is simply the shortest distance between the two 
points in the multivariate space:

The Euclidian distance is certainly the most intuitive measure for simi-
larity. However, in heterogenic data sets consisting of a number of differ-
ent types of variables, it should be replaced by the following measure.

Manhattan distance – In the city of Manhattan, one must walk on per-
pendicular avenues instead of diagonal crossing blocks. The Manhattan 
distance is therefore the sum of all differences:

Correlation  similarity coeffi cient – Here, we use Pearson’s linear product-
moment correlation coeffi cient to compute the similarity of two objects:

•

•

•
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This measure is used if one is interested in ratios between the variables mea-
sured on the objects. However, Pearson’s correlation coeffi cient is highly 
sensitive to outliers and should be used with care (see also Chapter 4).

Inner-product similarity index – Normalizing the data vectors to one and 
computing the inner product of these yield another important similarity 
index. This is often used in transfer function applications. In this ex-
ample, a set of modern fl ora or fauna assemblages with known environ-
mental preferences is compared with a fossil sample to reconstruct the 
environmental conditions in the past.

The inner-product similarity varies between 0 and 1. A zero value sug-
gests no similarity and a value of one represents maximum similarity. 

The second step in performing a cluster analysis is to rank the groups by their 
similarity and build a hierarchical tree visualized as a dendrogram. Defi ning 
groups of objects with signifi cant similarity and separating clusters depends 
on the internal similarity and the difference between the groups. Most clus-
tering algorithms simply link the two objects with highest similarity. In the 
following steps, the most similar pairs of objects or clusters are linked it-
eratively. The difference between groups of objects forming a cluster is de-
scribed in different ways depending on the type of data and application.

K-means clustering – Here, the Euclidean distance between the multi-
variate means of the K clusters is used as a measure for the difference 
between the groups of objects. This distance is used if the data suggest 
that there is a true mean value surrounded by random noise.

K-nearest-neighbors clustering – Alternatively, the Euclidean distance of 
the nearest neighbors is used as measure for this difference. This is used 

•

•

•
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if there is a natural heterogeneity in the data set that is not attributed to 
random noise.

It is important to evaluate the data properties prior to the application of a 
clustering algorithm. First, one should consider the absolute values of the 
variables. For example, a geochemical sample of volcanic ash might show 
SiO2 contents of around 77% and Na2O contents of 3.5%, although the 
Na2O content is believed to be of great importance. Here, the data need to 
be transformed to zero means ( mean centering). Differences in the vari-
ances and in the means are corrected by  autoscaling, i.e., the data are stan-
dardized to zero means and variances that equal one. Artifacts arising from 
closed data, such as artifi cial negative correlations, are avoided by using 
Aitchison’s log-ratio transformation (Aitchison 1984, 1986). This ensures 
data independence and avoids the constant sum normalization constraints. 
The log-ratio transformation is

where xtr denotes the transformed score (i =1, 2, 3, …, d–1) of some raw 
data xi. The procedure is invariant under the group of permutations of the 
variables, and any variable can be used as divisor xd.

As an example for performing a cluster analysis, the sediment data stored 
in sediment.txt are loaded and the plotting labels are defi ned.

data = load('sediments.txt');

for i = 1:10
  sample(i,:) = ['sample',sprintf('%02.0f',i)];
end
clear i

minerals= ['amp';'pyr';'pla';'ksp';'qtz';'cla';'flu';'sph';'gal'];

Subsequently, the distances between pairs of samples can be computed. The 
function pdist provides many ways for computing this distance, such as 
the Euclidian or Manhattan city block distance. We use the default setting 
which is the Euclidian distance.

Y = pdist(data);

The function pdist returns a vector Y containing the distances between 
each pair of observations in the original data matrix. We can visualize the 
distances on another pseudocolor plot.
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 squareform(Y);
 imagesc(squareform(Y)), colormap(hot)
title('Euclidean distance between pairs of samples')
xlabel('First Sample No.')
ylabel('Second Sample No.')
colorbar

The function squareform converts Y into a symmetric, square format, so 
that the elements (i,j)of the matrix denote the distance between the i
and j objects in the original data. Next, we rank and link the samples with 
respect to their inverse distance using the function linkage.

Z = linkage(Y);

In this 3-column array Z, each row identifi es a link. The fi rst two columns 
identify the objects (or samples) that have been linked, the third column 
contains the individual distance between these two objects. The fi rst row 
(link) between objects (or samples) 1 and 2 has the smallest distance cor-
responding to the highest similarity. Finally, we visualize the hierarchical 
clusters as a dendrogram which is shown in Figure 9.6.

 dendrogram(Z);
xlabel('Sample No.')
ylabel('Distance')
box on

Clustering fi nds the same groups as the principal component analysis. We 
observe clear groups consisting of samples 1, 2, 8 to 10 (the magmatic 
source rocks), samples 3 to 5 (the hydrothermal vein) and samples 6 and 7 
(the sandstone). One way to test the validity of our clustering result is the 
cophenet correlation coeffi cient. The value of

cophenet(Z,Y)

ans =
    0.7579

looks convincing, since the closer this coeffi cient is to one, the better is the 
cluster solution.
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Fig. 9.6 Output of the cluster analysis. The dendrogram shows clear groups consisting 
of samples 1, 2, 8 to 10 (the magmatic source rocks), samples 3 to 5 (the magmatic dyke 
containing ore minerals) and samples 6 and 7 (the sandstone unit).
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10.1 Introduction

Methods to analyze  circular and spherical data are widely used in earth sci-
ences. For instance, structural geologists measure and analyze the orienta-
tion of slickenlines (or striae) on fault planes.  Circular statistics is also com-
mon in paleomagnetic applications. Microstructural investigations include 
the analysis of the grain shape and quartz c-axis orientation in thin sec-
tions. Paleoenvironmentalists reconstruct paleocurrent directions from fos-
sil alignments (Fig. 10.1). In principle, two types of  directional data exist in 
earth sciences:  directional data sensu stricto and  oriented data. Directional 
data have a true polarity, such as the paleocurrent direction of a river as 
documented by fl ute marks or the fl ow direction of a glacier as indicated by 
glacial striae. Oriented data describe axial data and lines without sense of 
direction, such as the orientation of joints.

MATLAB is not the fi rst choice to analyze directional data since it does 
not provide the relevant functions such as an algorithm to compute the 
probability distribution function of a  von Mises distribution or to run a 
Rayleigh’s test for the signifi cance of a mean direction. Therefore, earth 
scientists have developed numerous standalone programs to analyze such 
data, e.g., the excellent software developed by Rick Allmendinger available 
for Mac OS 9 and X as well as for Microsoft Windows:

http://www.geo.cornell.edu/geology/faculty/RWA/programs.html

The following tutorial on the analysis of directional data is independent of 
these tools. It provides simple MATLAB codes to display directional data, 
to compute the von Mises distribution and to run simple statistical tests. The 
fi rst subchapter introduces rose diagrams as the most widely used method 
to display directional data (Chapter 10.2). Similar to the concept of Chapter 
3 on univariate statistics, the next chapters are on empirical and theoretical 
distributions to describe directional data (Chapters 10.3 and 10.4). The last 
three chapters describe the three most important tests for directional data: 
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The test for randomness of directional data (Chapter 10.5), the signifi cance 
of a mean direction (Chapter 10.6) and the difference of two sets of direc-
tional data (Chapter 10.7).

10.2 Graphical Representation

The classic way to display directional data is the  rose diagram. A rose dia-
gram is a histogram for measurements of  angles. In contrast to a bar histo-
gram with the height of the bars proportional to frequency, the rose diagram 
comprises segments of a circle with the radius of each sector being propor-
tional to the frequency. We use synthetic data to illustrate two types of rose 
diagrams to display directional data. We load a set of directional data from 
the fi le directional_1.txt.

Fig. 10.1 Orthoceras fossils from an outcrop Neptuni Acrar near Byxelkrok on Öland, 
Sweden. Orthoceras is a cephalopod with a straight shell and lived in the Ordovician 
era about 450 million years ago. Such elongated, asymmetric objects tend to orient 
themselves in the hydrodynamically most stable position. Therefore, the fossils can indicate 
 paleocurrent directions. The statistical analysis of the cephalopod orientation at Neptuni 
Acrar reveals a signifi cant southward paleocurrent direction, which is an agreement with 
the paleogeographic reconstructions for Ordovician times.
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data_degrees_1 = load('directional_1.txt');

The data set contains forty measurements of angles in degrees. We use the 
function  rose(az,nb) to display the data. The function plots an angle his-
togram for the angles az in radians, where nb is the number of classes. 
Since the original data are in degrees, we have to convert all measurements 
to radians before we plot the data.

data_radians_1 = pi*data_degrees_1/180;
rose(data_radians_1,12)

The function rose counts in a counterclockwise direction in which zero de-
grees lies along the x-axis of the coordinate graph. In geosciences, however, 
0° points due North, 90° points due East and the angles increase clockwise. 
The command view rotates the plot by +90° (the  azimuth) and mirrors the 
plot by –90° (the  elevation) (Fig. 10.2).

rose(data_radians_1,12)

Fig. 10.2 Rose diagram to display directional data using function rose. The radii of the 
area segments are proportional to the frequencies for each class.
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view(90,-90)

The area of the arc segments increases with frequency. Therefore, the rose 
diagram is scaled to the square root of the class frequency in a fi nal modi-
fi cation. The function rose does not allow to plot the square root of the 
frequencies by default. However, the corresponding fi le rose.m can be easily 
modifi ed. After the histogram of the angles is computed in line 58 by using 
the function histc, add a line with the command nn = sqrt(nn); which 
computes the square root of the frequencies nn. Save the modifi ed function 
as fi le rose_sqrt.m and apply the new function to the data set.

rose_sqrt(data_radians_1,12)
view(90,-90)

This plot satisfi es all conventions in geosciences (Fig. 10.3).

Fig. 10.3 Modifi ed rose diagram to display directional data using function rose. In this 
version of rose, 0° points due North, 90° points due East and the angles increase clockwise. 
The plot scales the rose diagram to the square root of the class frequency. Now the area of 
the arc segments increases with frequency.
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10.3 Empirical Distributions

This chapter introduces the statistical measures to describe empirical dis-
tributions of directional data. The characteristics of directional data are 
described by measures of central tendency and dispersion, similar to the 
statistical characterization of univariate data sets (Chapter 3). Assume that 
we have collected a number of  angular measurements such as fossil align-
ments. The collection of data can be written as

containing N observations θ i. Sine and cosine values are computed for each 
direction θ i to compute the resultant for the set of  angular data.

The resultant or  mean direction of the data set is

The length of the resultant is

The resultant length clearly depends on the dispersion of the data. 
Normalizing the  resulting length to the number of observations yields the 
mean resultant length.

The value of the mean resultant length decreases with increasing dispersion. 
Therefore, the difference between one and the mean resultant length is often 
used as a measure of dispersion for directional data,
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which is the  circular variance.
The following example illustrates the use of these parameters by means 

of synthetic directional data. We fi rst load the data from the fi le direc-
tional_1.txt and convert all measurement to radians.

clear
data_degrees_1 = load('directional_1.txt');
data_radians_1 = pi*data_degrees_1/180;

Now we calculate the resultant vector R. Firstly, we compute the x and y
component of the resultant vector.

x_1 = sum(sin(data_radians_1))
y_1 = sum(cos(data_radians_1))

x_1 =
  -24.3507

y_1 =
  -25.9552

The  mean direction is the inverse tangent of the ratio of x and y.

mean_radians_1 = atan(x_1/y_1)
mean_degrees_1 = 180*mean_radians_1/pi

mean_radians_1 =
    0.7535

mean_degrees_1 =
   43.1731

This result suggests that the resultant vector R is around 0.75 radians or 43°. 
However, since both x and y are negative, the true value of mean_degrees
is located in the third quadrant and we add 180°.

mean_degrees_1 = mean_degrees_1 + 180

mean_degrees_1 =
  223.1731

Therefore, the mean direction is around 223°. The length of this vector is the 
absolute of the vector, which is

R_1 = sqrt(x_1^2 + y_1^2)

R_1 =
   35.5897

The resultant length depends on the dispersion of the directional data. 
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Normalizing the resultant length to the sample size yields the mean resul-
tant length of

Rm_1 = R_1 / (length(data_radians_1))

Rm_1 =
    0.8897

Higher Rm suggests less variance. Therefore, we compute the circular vari-
ance sigma which is

sigma_1 = 1 - Rm_1

sigma_1 =
    0.1103

10.4 Theoretical Distributions

As in Chapter 3, the next step in a statistical analysis is to fi nd a suitable 
theoretical distribution that fi ts the empirical distribution visualized and de-
scribed in the previous chapter. The classic theoretical distribution to de-
scribe directional data is the  von Mises distribution, named after the Austrian 
mathematician Richard Edler von Mises (1883–1953). The probability den-
sity function of a von Mises distribution is

where μ  is the mean direction and κ  is the concentration parameter 
(Fig. 10.4). I0(κ ) is the modifi ed Bessel function of the fi rst kind and order 
zero of κ . The Bessel functions are solutions of a second-order differential 
equation, the Bessel’s differential equation, and are important in many prob-
lems of wave propagation in a cylindrical waveguide and heat conduction in 
a cylindrical object. The von Mises distribution is also known as  circular 
normal distribution since it has similar characteristics as the normal dis-
tribution (Chapter 3.4). The von Mises distribution is used when the mean 
direction is the most frequent and most likely direction. The probability of 
deviations is equal towards both directions and decreases with increasing 
distance from the mean direction.

As an example, let us assume a  mean direction of mu=0 and fi ve different 
values for the  concentration parameter kappa.
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mu = 0; kappa = [0 1 2 3 4]';

In a fi rst step, an angle scale for a plot that runs from –180 to 180 degrees is 
defi ned in intervals of one degree.

theta = -180:1:180;

All angles are converted from degrees to radians.

mu_radians = pi*mu/180;
theta_radians = pi*theta/180;

In a second step, we compute the von Mises distribution for these values. 
The formula uses the modifi ed Bessel function of the fi rst kind and order 
zero that can be calculated by using the function  besseli. We compute the 
probability density function for the fi ve values of kappa.

for i = 1:5
   mises(i,:) = (1/(2*pi*besseli(0,kappa(i))))* ...
   exp(kappa(i)*cos(theta_radians-mu_radians));
   theta(i,:) = theta(1,:);
end

Fig. 10.4 Probability density function f (Θ ) of a von Mises distribution with μ =0 and fi ve 
different values for κ .
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The results are plotted by

for i = 1:5
   plot(theta(i,:),mises(i,:))
   axis([-180 180 0 max(mises(i,:))])
   hold on
end

The mean direction and concentration parameter of such theoretical distri-
butions are easily modifi ed to compare them with empirical distributions.

10.5 Test for Randomness of Directional Data

The fi rst test for directional data compares the data set with a uniform distri-
bution. Directional data following a uniform distribution are purely random, 
i.e., there is no preference for any direction. We use the  χ2-test (Chapter 3.8) 
to compare the empirical frequency distribution with the theoretical uni-
form distribution. We load our sample data.

clear
data_degrees_1 = load('directional_1.txt');

We use the function hist to count the number of observations within 
12 classes. The width of the classes is 30 degrees.

counts = hist(data_degrees_1,15:30:345);

The expected number of observations is 40/12, where 40 is the total number 
of observations and 12 is the number of classes.

expect = 40/12 * ones(1,12);

The χ2-test explores the squared differences between the observed and ex-
pected frequencies. The quantity χ2 is defi ned as the sum of these squared 
differences divided by the expected frequencies.

chi2 = sum((counts - expect).^2 ./expect)

chi2 = 
    94.4000

The critical χ2 can be calculated by using chi2inv. The χ2-test requires the 
degrees of freedom Φ. In our example, we test the hypothesis that the data are 
uniformly distributed, i.e., we estimate one parameter, which is the number 
of possible values N. The number of classes is 12. Therefore, the degrees of 
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freedom are Φ=12–(1+1)=10. We test our hypothesis on a p=95% signifi -
cance level. The function chi2inv computes the inverse of the χ2 CDF with 
parameters specifi ed by Φ for the corresponding probabilities in p.

chi2inv(0.95,12-1-1)

ans = 
    18.3070

The critical χ2 of 18.3070 is well below the measured χ2 of 94.4000. 
Therefore, we reject the null hypothesis and conclude that our data do not 
follow a uniform distribution, i.e., they are not randomly distributed.

10.6 Test for the Signifi cance of a Mean Direction

Having measured a set of directional data in the fi eld, we wish to know 
whether there is a prevailing direction documented in the data. We use the 
Rayleigh’s test for the signifi cance of a mean direction. This test uses the 
mean resultant length introduced in Chapter 10.3, which increases with a 
more signifi cant preferred direction.

The data show a preferred direction if the calculated mean resultant length 
is below the critical value (Mardia 1972). As an example, we load the data 
contained in fi le directional_1.txt again.

clear
data_degrees_1 = load('directional_1.txt');
data_radians_1 = pi*data_degrees_1/180;

We calculate the mean resultant vector Rm.

x_1 = sum(sin(data_radians_1));
y_1 = sum(cos(data_radians_1));

mean_radians_1 = atan(x_1/y_1);
mean_degrees_1 = 180*mean_radians_1/pi;
mean_degrees_1 = mean_degrees_1 + 180;

Rm_1 = 1/length(data_degrees_1) .*(x_1.^2+y_1.^2).^0.5

Rm_1 =
    0.8897
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The mean resultant length in our example is 0.8897. The critical Rm (α = 0.05, 
n = 40) is 0.27 (Table 10.1 from Mardia 1972). Since this value is lower than 
the Rm from the data, we reject the null hypothesis and conclude that there 
is a preferred single direction, which is

theta_1 = 180 * atan(x_1/y_1) / pi

theta_1 =
   43.1731

The negative signs of the sine and cosine, however, suggest that the true 
result is in the third sector (180–270°) and, therefore, the correct result is 
180+43.1731 = 223.1731.

10.7 Test for the Difference of Two Sets of Directions

Let us consider two sets of measurements in two fi les directional_1.txt and 
directional_2.txt. We wish to compare the two sets of directions and test the 
hypothesis that these are signifi cantly different. The test statistic for testing 
equality of two mean directions is the  F-statistic (Chapter 3.7)

where κ  is the concentration parameter, RA and RB are the resultant of 
samples A and B, respectively, and RT is the resultant of the combined 
samples. The concentration parameter can be obtained from tables using 
RT (Batschelet 1965, Gumbel et al. 1953, Table 10.2). The calculated F is 
compared with critical values from the standard F tables. The two mean 
directions are not signifi cantly different if the measured F-value is lower 
than the critical F-value, which depends on the degrees of freedom Φ a=1 
and Φ b=N–1, and the signifi cance level α . Both samples must follow a von 
Mises distribution (Chapter 10.4).

We use two synthetic data sets of directional data to illustrate the applica-
tion of this test. We load the data and convert these to radians.

clear
data_degrees_1 = load('directional_1.txt');
data_degrees_2 = load('directional_2.txt');
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Level of Signifi cance, α
N  0.100 0.050 0.025 0.010 0.001

5  0.677 0.754 0.816 0.879 0.991
6  0.618 0.690 0.753 0.825 0.940
7  0.572 0.642 0.702 0.771 0.891
8  0.535 0.602 0.660 0.725 0.847
9  0.504 0.569 0.624 0.687 0.808

10  0.478 0.540 0.594 0.655 0.775
11  0.456 0.516 0.567 0.627 0.743
12  0.437 0.494 0.544 0.602 0.716
13  0.420 0.475 0.524 0.580 0.692
14  0.405 0.458 0.505 0.560 0.669

15  0.391 0.443 0.489 0.542 0.649
16  0.379 0.429 0.474 0.525 0.630
17  0.367 0.417 0.460 0.510 0.613
18  0.357 0.405 0.447 0.496 0.597
19  0.348 0.394 0.436 0.484 0.583

20  0.339 0.385 0.425 0.472 0.569
21  0.331 0.375 0.415 0.461 0.556
22  0.323 0.367 0.405 0.451 0.544
23  0.316 0.359 0.397 0.441 0.533
24  0.309 0.351 0.389 0.432 0.522

25  0.303 0.344 0.381 0.423 0.512
30  0.277 0.315 0.348 0.387 0.470
35  0.256 0.292 0.323 0.359 0.436
40  0.240 0.273 0.302 0.336 0.409
45  0.226 0.257 0.285 0.318 0.386

50  0.214 0.244 0.270 0.301 0.367
100  0.150 0.170 0.190 0.210 0.260

data_radians_1 = pi*data_degrees_1/180;
data_radians_2 = pi*data_degrees_2/180;

We compute the length of resultant vectors.

x_1 = sum(sin(data_radians_1));

Table 10.1 Critical values of mean resultant length for Rayleigh’s test for the signifi cance of 
a mean direction of N samples (Mardia 1972).
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y_1 = sum(cos(data_radians_1));
x_2 = sum(sin(data_radians_2));
y_2 = sum(cos(data_radians_2));

mean_radians_1 = atan(x_1/y_1);
mean_degrees_1 = 180*mean_radians_1/pi;
mean_radians_2 = atan(x_2/y_2);
mean_degrees_2 = 180*mean_radians_2/pi;

mean_degrees_1 = mean_degrees_1 + 180
mean_degrees_2 = mean_degrees_2 + 180

mean_degrees_1 =
  223.1731

mean_degrees_2 =
  200.8098

R_1 = sqrt(x_1^2 + y_1^2);
R_2 = sqrt(x_2^2 + y_2^2);

The orientation of resultant vectors is ca. 223° and 201°. Now, we also need 
the resultant length of both samples, so we combine both data sets and com-
pute the resultant length again.

data_radians_T = [data_radians_1;data_radians_2];

x_T = sum(sin(data_radians_T));
y_T = sum(cos(data_radians_T));

mean_radians_T = atan(x_T/y_T);
mean_degrees_T = 180*mean_radians_T/pi;

mean_degrees_T = mean_degrees_T + 180;

R_T = sqrt(x_T^2 + y_T^2)
Rm_T = R_T / (length(data_radians_T))

R_T =
   69.4941

Rm_T =
    0.8687

We apply the test statistic to the data for kappa=3.91072 for Rm_T= 0.8687 
(Table 10.2). The computed value for F is

n = length(data_radians_T);

F = (1+3/(8*2.07685)) * (((n-2)*(R_1+R_2-R_T))/(n-R_1-R_2))

F =
   13.5160
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R κ R κ R κ R κ
0.000 0.000 0.260 0.539 0.520 1.224 0.780 2.646

0.010 0.020 0.270 0.561 0.530 1.257 0.790 2.754

0.020 0.040 0.280 0.584 0.540 1.291 0.800 2.871

0.030 0.060 0.290 0.606 0.550 1.326 0.810 3.000

0.040 0.080 0.300 0.629 0.560 1.362 0.820 3.143

0.050 0.100 0.310 0.652 0.570 1.398 0.830 3.301

0.060 0.120 0.320 0.676 0.580 1.436 0.840 3.479

0.070 0.140 0.330 0.700 0.590 1.475 0.850 3.680

0.080 0.161 0.340 0.724 0.600 1.516 0.860 3.911

0.090 0.181 0.350 0.748 0.610 1.557 0.870 4.177

0.100 0.201 0.360 0.772 0.620 1.600 0.880 4.489

0.110 0.221 0.370 0.797 0.630 1.645 0.890 4.859

0.120 0.242 0.380 0.823 0.640 1.691 0.900 5.305

0.130 0.262 0.390 0.848 0.650 1.740 0.910 5.852

0.140 0.283 0.400 0.874 0.660 1.790 0.920 6.539

0.150 0.303 0.410 0.900 0.670 1.842 0.930 7.426

0.160 0.324 0.420 0.927 0.680 1.896 0.940 8.610

0.170 0.345 0.430 0.954 0.690 1.954 0.950 10.272

0.180 0.366 0.440 0.982 0.700 2.014 0.960 12.766

0.190 0.387 0.450 1.010 0.710 2.077 0.970 16.927

0.200 0.408 0.460 1.039 0.720 2.144 0.980 25.252

0.210 0.430 0.470 1.068 0.730 2.214 0.990 50.242

0.220 0.451 0.480 1.098 0.740 2.289 0.995 100.000

0.230 0.473 0.490 1.128 0.750 2.369 0.999 500.000

0.240 0.495 0.500 1.159 0.760 2.455 1.000

0.250 0.516 0.510 1.191 0.770 2.547

Table 10.2 Maximum likelihood estimates of concentration parameter κ  for calculated 
mean resultant length (adapted from Batschelet, 1965 and Gumbel et al., 1953).
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Using the F statistic, we fi nd that for 1, 80 –2 degrees of freedom and 
α = 0.05, the critical value is

finv(0.95,1,78)

ans =
    3.9635

which is well below the observed value of F=13.5160. Therefore, we reject 
the null hypothesis and conclude that the two samples could have not been 
drawn from populations with the same mean direction.
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A

accessible population  2
adaptive fi ltering  157
addition  18
Aitchisons log-ratio transformation  

259
alternative hypothesis  51
amplitude  85, 148
analog fi lter  133
analysis of residuals  72
angle  264
angular data  267
angular measurement  267
anisotropy  217
ans  15, 23
answer  15
arithmetic mean  31, 177
array  15, 18
artifi cial fi lter  134
ASCII  19
aspect  195, 197
ASTER  236
asterisk  18
autocorrelation  89
autocovariance  89
autoscaling  249, 259
autospectral analysis  89
available population  2
axesm  168
axis  27, 65
azimuth  265

B

bandpass fi lter  155
bandstop fi lter  155
bar plot  26
bars  26
Bartlett  90
bathymetry  168
Bernoulli distribution  43
Bessel function  269
besseli  270
bilinear interpolation  183
bimodal  32
binary digits  19
binomial distribution  43
bits  19, 227
bivariate analysis  61
Blackman-Tukey method  90
blank  15
blind source separation  253
block kriging  222
BMP  230
bootstrap  66, 74
bootstrp  66
box and whisker plot  38
boxplot  38
butter  154
Butterworth fi lter  154
bytes  16, 227



280 General Index

C

canc  159
capital letters  16
case sensitive  16
causal  139
causal indexing  143
causality  137
central tendency  30
chaotic system  123
Chi-squared distribution  49
Chi-squared-test  56, 189, 192, 271
chi2inv  58, 74
circshift  199
circular and spherical data  263
circular normal distribution  269
circular statistics  263
circular variance  268
clabel  180
class  16
classes  30
classical regression  68
classical variogram  209
clear  16
closed data  6
cluster analysis  246, 257
clustered sampling  4
clustering  194
coastline vector  166
cocktail party problem  253
coherence  96
colon operator  17
colorbar  170, 175
colormap  172, 182, 233
colormap editor  109
column  15
comma  15
Command History  12, 13
Command Window  12, 13

comment  20
comment line  23
comments  23
concentration parameter  269
confi dence interval  71, 80
confi dence testing  71
continuity  135
contour  180
contourf  181
contouring  176
Control-C  17
control points  176
conv  139, 140, 141
convolution  139
cophenet correlation coeffi cient  260
corrcoef  65
corrected sum of products  64
correlation coeffi cient  62, 250
correlation matrix  249
correlation similarity coeffi cient  257
covariance  64
cp2tform  240
cpsd  96
crosscorrelation  95
crosscovariance  95
Crossspectral analysis  95
crossspectrum  95
cross validation  77
Ctrl-C  17
cubic-spline interpolation  99
cubic polynomial splines  178
cumulative distribution function  41, 50
cumulative histogram  30
Current Directory  12, 13
curvilinear regression  79
cutoff frequency  154
cwt  116
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D

Daubechies  115
degrees of freedom  33, 48
Delauney triangulation  177
DEM  171
demcmap  196
dendrogram  260
dependent variable  61, 68
descriptive statistics  29
difference equation  143
digital elevation model  171, 195
digital fi lter  133
digitizing  165, 241
dilation  115
dimension  16
directional data  6, 263
directional data sensu stricto  263
directional variograms  218
dispersion  30, 34
display  25
disttool  51
divergent fl ow  201
dots per inch  229
dpi  229
drift  206
DTEM  171

E

edge effect  185
edit  13
Edit Mode  27
Editor  12, 13, 20
Edit Plot  26
element-by-element  18
elevation  265
ellipsis  71

embedding dimension  123
empirical distribution  29, 41
Encapsulated PostScript  230
end  21, 22
EPS  230
error bounds  71
ETOPO2  168
Euclidian distance  257
Evolutionary Blackman-Tukey 

powerspectrum  104
expected frequencies  58
experimental variogram  209
export data  19
exposure  195

F

F-statistic  273
F-test  53
factor analysis  246
Fast Fourier Transformation  90
F distribution  48
fi eld  71
Figure  25
Figure Window  25, 26
File  14
File menu  26, 28
fi lter  133, 139, 141, 154
fi lter2  196
fi lter design  153
fi lter weights  139, 157
fi ltfi lt  139, 154
fi nd  38, 174
fi nite differences  196
fi nv  55
fl ow accumulation  199
for  21
Fourier transform  145
frequency  85, 89
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frequency-selective fi lter  155, 134
frequency characteristics  154
frequency distribution  30
frequency domain  145
frequency response  148, 155
freqz  150
function  21, 23, 24

G

Gamma function  49
gaps  20
gaussian distribution  45
gaussian noise  154
general shape  30
Generate M-File  26, 28
geometric anisotropy  218
geometric mean  32
georeferencing  239
geostatistics  177, 206
ginput  242
global trends  206
goodness-of-fi t  71, 78
gradient  195
gradientm  197
graph3d  182
graphical user interface  50
graphics functions  25
grayscale image  227
grid  27
griddata  179, 183
gridding  165, 176
grid points  176
GSHHS  166
GTOPO30  171
GUI  50

H

Haar  115
Hamming  90
Hanning  90
harmonic mean  32
HDF  239
help  24
highest frequency  111
highpass fi lter  155
hist  36
hist3  188
histogram  30
History  12
hold  26
hypothesis  51
hypothesis testing  29
hypothetical population  2

I

if  21, 22
image processing  225
image  225
imagesc  260
imfi nfo  233
imhist  233
import data  19
impulse response  145, 146
imshow  232
imwrite  233
independent component analysis

  246, 253
independent frequencies  110
independent variable  61, 68
indexed color image  233
indexing  17
inner-product similarity index  258
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inner product  18
input  23
input signal  133
Insert Legend  27
intensity image  228
intensity values  228
interp1  101
Interpolation  99
interpolation artifacts  183
interpolation techniques  99
interval data  6
invertibility  137
iterations  160

J

jackknife  66, 75
Joint Photographic Experts Group  231
JPEG  231

K

K-means clustering  258
K-nearest-neighbors clustering  258
Kriging  177, 206
kriging variance  219
kurtosis  35, 39

L

lag distance  210
lag tolerance  218
lag width  218
least-mean-squares algorithm  158
length  54
linear interpolation  99
linear kriging system  219

linear regression  69
linear regression  68
linear system  136
linear time-invariant fi lter  144
linear time-invariant systems  138
linear transformation  18
linear trend  64, 70
linkage  260
LINUX  13
LMS algorithm  158
load  20
loads  248
local neighborhood  196
local trends  206
log-ratio transformation  259
logarithmic normal distribution  46
lognormal kriging  209
Lomb-Scargle algorithm  109
Lorenz system  121
lower-case letters  16
lowpass fi lter  154
LTI systems  138

M

M-fi les  21
Macintosh OS X  13
magnitude response  148
Manhattan distance  257
MAT-fi les  21
matrix  15
matrix division  18
matrix element  16
matrix indexing  17
matrix multiplication  18
max  37
mean  30, 37, 45
mean-squared error  158
mean centering  249, 259
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mean direction  267, 268, 269
mean resultant length  267
median  30, 31, 38
mesh  181
meshgrid  171, 174
Microsoft Windows  13
Microsoft Windows Bitmap Format  

230
min  37
minput  242
missing data  20
mixing matrix  255
mode  32
monitor  229
Morlet  115
mother wavelet  114
mscohere  97
multi-parameter methods  245
multimodal  32
multiplication  18
multiplying element-by-element  18
multivariate analysis  245
multivariate data set  245

N

NaN  20, 169
nanmean  39
natural fi lter  133
nearest-neighbor criterion  176, 193
nested model  215
noise  133, 157
nominal data  3
non-causal fi lter  139
nonlinear system  136
Nonlinear Time-Series Analysis  119
nonrecursive fi lter  143
normal distribution  45
normalizing  57

normcdf  51
normpdf  51
Not-a-Number  20, 169
nugget effect  215
nuggets  215
null hypothesis  51
Nyquist frequency  85, 111, 154

O

objective variogram modeling  216
observed frequencies  58
omni directional variograms  217
optimization problem  158
order of the fi lter  139
ordinal data  3
ordinary point kriging  218
oriented data  263
outlier  66
output  23
output signal  133
oversampling parameter  111

P

paired low and high  185
paleocurrent direction  264
passband fi lter  154
path  14
pathdef  14
pcolor  181, 196
pdist  194, 259
Pearsons correlation coeffi cient  62, 250
percentiles  32
percent sign  20
periodic component  85
periodogram  91, 145
phase  148
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phase angle  85
phase relationship  96
phase shift  146
phase space portrait  120
phase space trajectory  120
picture element  226
pixels  226
pixels per inch  229
plan  197
plot  25
point distribution  188
point kriging  222
Poisson distribution  44
polyfi t  70
polytool  71
polyval  71
population  1, 29
Portable Document Format  231
position  115
PostScript  230
power of matrices  18
powerspectral density  90
ppi  229
prctile  38
predicted values  72
prediction error  78
predictor variable  68
primary input  158
principal component analysis  246
principal component loads  248
principal components  247
principal component scores  248
princomp  248, 249
print  240
probability density function  41, 50
profi le  197
Property Editor  27
PS  230

Q

quantiles  32
quartiles  32
quintiles  32

R

randn  65
randomness  194
random noise  85
random numbers  50
random sampling  4
randtool  50
range  30, 33, 37, 213
raster data  165, 225, 226
ratio data  6
realization  133
rectangular distribution  42
recurrence plots  119, 125
recursive fi lter  143
reduced major axis regression  69, 78
reduction of dimensionality  246
reference input  158
regionalized variables  206
regression coeffi cient  69
regressor variable  68
regularity  194
regular sampling  4
resampling schemes  66
residuals  72
resolution  229
resulting length  267
return  15
RGB  228, 232
RGB composite  238
RMA regression  78
rolling die  43
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rose  265
rose diagram  264
Rotate 3D  27
row  15
running mean  150

S

sample  1, 29
sample size  2, 217
sampling design  217
sampling frequencies  84
sampling interval  84
sampling scheme  2
satellite images  236
saturation  204
save  20
Save as  26, 28
scal2frq  116
scalar  15
scale  115, 116
scaling  57
scatter plot  70
scores  248
scripts  21
search path  14
semicolon  15
semivariance  209, 210
semivariogram  210
separated components  255
separation distance  218
separation vector  209
Set Path  14
shading  170, 174
shape  30, 34
shoreline data  166
short-time Fourier transform  104
Shuttle Radar Topography Mission  173
signal  157

signal processing  133
Signal Processing Tool  104
signifi cance  66
signifi cance level  51
sill  213
similarity coeffi cient  257
similarity index  258
size  22
skewness  35, 39
slope  195
Solaris  13
spatial data  6
spatially-distributed data  165
spatial sampling scheme  2
spectral leakage  90
spectrogram  108
splines  178
splines with tension  187
square brackets  15
squareform  194, 260
SRTM  173, 195
standard deviation  30, 33, 45
standard normal distribution  45
statistical signifi cance  66
std  39
stem  147
step function  135
stopband  154
store data  19
stream power index  204
structures  71
Students t distribution  47
subplot  26
subtraction  18
sum  15
SUN Solaris  13
superposition  136
surf  171, 182
surface estimation  176
surfc  182
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surrogates  66
system theory  133

T

t-test  51
Tagged Image File Format  230
tangential curvature  197
t distribution  47
TERRA-ASTER satellite image  231
Text Editor  12, 13, 20, 21
tform  240
theoretical distribution  29, 41
theory of regionalized variables  206
TIFF  230
time-series analysis  83
time delay  123
time delay embedding  120
time domain  145
time invariance  136
time series  15, 84
title  27
Tools menu  26
topography  168
translation  115
transpose  18
trend  85
triangulation  176
trimodal  32
true color image  229
tsplines  187
ttest2  52

U

uint8  232
Unevenly-Spaced Data  99
unevenly-spaced data  99, 109

uniform distribution  42
uniformity  194
uniform sampling  4
unimodal  32
unit impulse  135, 146
univariate analysis  29
UNIX  13
unwrap  151
user  14
username  14

V

var  39
variables  16
variance  33
variogram  206
variogram cloud  210
variogram estimator  209, 211
variogram model  213
variography  209
vector data  165, 225, 226
vectors  15
visualization  25
von Mises distribution  263, 269

W

watershed  198
watersheds  198
wavelength  89
wavelet  114
Wavelet Powerspectrum  114,115
wavelet transform  114
weighted mean  178
Welch spectral analysis  91
wetness index  203
whitening  253
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whos  16, 17
windowed Blackman-Tukey 

power-spectrum  104
windowing  90
Workspace  12, 13
workspace  15

X

xlabel  27

Y

ylabel  27

Z

z distribution  46
zonal anisotropy  218
Zoom  27
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