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Global threat of arsenic in groundwater
Joel Podgorski1,2* and Michael Berg1,3*

Naturally occurring arsenic in groundwater affects millions of people worldwide. We created a global
prediction map of groundwater arsenic exceeding 10 micrograms per liter using a random forest
machine-learning model based on 11 geospatial environmental parameters and more than 50,000
aggregated data points of measured groundwater arsenic concentration. Our global prediction map
includes known arsenic-affected areas and previously undocumented areas of concern. By combining the
global arsenic prediction model with household groundwater-usage statistics, we estimate that
94 million to 220 million people are potentially exposed to high arsenic concentrations in groundwater,
the vast majority (94%) being in Asia. Because groundwater is increasingly used to support growing
populations and buffer against water scarcity due to changing climate, this work is important to raise
awareness, identify areas for safe wells, and help prioritize testing.

T
he natural, or geogenic, occurrence of
arsenic in groundwater is a global prob-
lem with wide-ranging health effects for
humans and wildlife. Because it is toxic
and does not serve any beneficial meta-

bolic function, inorganic arsenic (the species
present in groundwater) can lead to disorders
of the skin and vascular and nervous systems,

as well as cancer (1, 2). The major source of
inorganic arsenic in the diet is through arsenic-
contaminated water, although ingestion through
food, particularly rice, represents another im-
portant route of exposure (3). As a consequence,
the World Health Organization (WHO) has set
a guideline arsenic concentration of 10 mg/liter
in drinking water (4).
At least trace amounts of arsenic occur in

virtually all rocks and sediments around the
world (5). However, in most of the large-scale
cases of geogenic arsenic contamination in
groundwater, arsenic accumulates in aquifers
composed of recently deposited alluvial sedi-
ments. Under anoxic conditions, arsenic is
released from the microbial and/or chemical
reductive dissolution of arsenic-bearing iron(III)
minerals in the aquifer sediments (6–9). Un-

der oxidizing, high-pH conditions, arsenic
can also desorb from iron and aluminum
hydroxides (10). Furthermore, aquifers in
flat-lying sedimentary sequences generally
have a small hydraulic gradient, causing ground-
water to flow slowly. This longer groundwater
residence time allows dissolved arsenic to ac-
cumulate and its concentration to increase.
Other processes responsible for arsenic release
into groundwater include oxidation of arsenic-
bearing sulfide minerals as well as release from
arsenic-enriched geothermal deposits.
That arsenic is generally not included in the

standard suite of tested water quality param-
eters (11) and is not detected by the human
senses means that arsenic is regularly being
discovered in new areas. Since one of the
greatest occurrences of geogenic groundwater
arsenic was discovered in 1993 in the Bengal
delta (5, 12, 13), high arsenic concentrations
have been detected all around the world, with
hot spots including Argentina (14–17), Cam-
bodia (18, 19), China (20–22), India (23–25),
Mexico (26, 27), Pakistan (28, 29), the United
States (30, 31), and Vietnam (32, 33).
To help identify areas likely to contain high

concentrations of arsenic in groundwater, sev-
eral researchers have used statistical learning
methods to create arsenic predictionmaps based
on available datasets of measured arsenic con-
centrations and relevant geospatial parameters.
Previous studies have focused on Burkina Faso
(34), China (21, 35), South Asia (29, 36), South-
east Asia (37), the United States (31, 38, 39), and
the Red River delta in Vietnam (33), as well as
sedimentary basins around the world (40). The
predictor variables used in these studies gener-
ally include various climate and soil parame-
ters, geology, and topography (table S3).
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Fig. 1. Arsenic concentrations, excluding those known to originate from a depth greater than 100 m. Values are from the sources listed in table S1. The
geographical distribution of data is indicated by continent.
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Taking advantage of the increasing avail-
ability of high-resolution datasets of relevant
environmental parameters, we use statistical
learning to model what to our knowledge is
the most spatially extensive compilation of
arsenic measurements in groundwater as-
sembled, which makes a global model possi-
ble. To focus on health risks, we consider the
probability of arsenic in groundwater exceeding
theWHOguideline. For this,wehave chosen the
random forest method, which our preliminary
tests showed to be highly effective in address-
ing this classification problem. We use the re-
sulting model to produce themost accurate and
detailed global prediction map to date of geo-
genic groundwater arsenic, which can be used
to help identify previously unknown areas of
arsenic contamination as well as more clearly

delineate the scope of this global problem and
considerably increase awareness.

Results
Random forest modeling

We aggregated data from nearly 80 studies of
arsenic in groundwater (see table S1 for refer-
ences and statistics) into a single dataset (n >
200,000). Averaging into 1-km2 pixels resulted
inmore than 55,000 arsenic data points for use
inmodeling based on groundwater samples not
known to originate from greater than 100-m
depth (Fig. 1).
To create the simplest and most accurate

model, an initial set of 52 potentially relevant
environmental predictor variables was itera-
tively reduced in consideration of their rela-
tive importance and impact on the accuracy

of a succession of random forest models. The
final selection of 11 predictor variables (table
S2) includes several soil parameters (topsoil
clay, subsoil sand, pH, and fluvisols), all of
the climate variables (precipitation, actual
and potential evapotranspiration, and com-
binations thereof, as well as temperature),
and the topographic wetness index. By con-
trast, none of the geology variables proved to
be statistically important. This is not to imply
that geology does not play a role in geogenic
arsenic accumulation, but rather that the par-
ticular geology variables tested were not as
relevant as the other variables. This may be
due to the coarse nature of the geologicalmaps,
which are standardized for the entire world.
Although the number of predictor variables
was reduced by nearly 80%, both the area
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Fig. 2. Global prediction of groundwater arsenic. (A to F) Modeled probability of arsenic concentration in groundwater exceeding 10 mg/liter for the entire globe
(A) along with zoomed-in sections of the main more densely populated affected areas (B) to (F). The model is based on the arsenic data points in Fig. 1 and the predictor
variables in table S2. Figs. S2 to S8 provide more detailed views of the prediction map.
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under the curve (AUC, 0.89) andCohen’s kappa
statistic (0.55) remained unchanged.
The final random forest model was created

based on the compiled global dataset of high
and low arsenic concentrations along with the
11 predictor variables. The standard number of
variables to be made available at each branch
of each tree is between three and four (see
methods). Because our tests showed the value
of three performing better than four and higher
values (though error and performance rates
varied only within ~1%), we set this parameter
to three. The global map produced from this
model is displayed in Fig. 2A along with more
detailed views of the more populated affected
continental regions shown in Fig. 2, B to F. It
indicates the probability of the concentration
of arsenic in groundwater in a given 1-km2 cell
exceeding 10 mg/liter. The uncertainty of the
model is inherent in the probabilities them-
selves, because they are simply the average of
the votes or predictions of high or low values
of each of the 10,001 trees grown. That is, each
tree casts a vote of 0 or 1 (“no” or “yes” to As >
10 mg/liter) for each cell based on the values of
the predictor variables in that cell. Figures S2

to S8 also provide more detailed views of the
prediction map for each of the inhabited
continents.
The importance of each of the 11 predictor

variables in terms of mean decrease in ac-
curacy and mean decrease in the Gini index
is listed in fig. S1. Relative to the initial set of
52 variables, the values of these two statistics
for most of the 11 final predictor variables ap-
pear to fall within a fairly narrow range, in-
dicating comparable importance. Exceptions
include fluvisols and soil pH, which have
somewhat greater importance, and temper-
ature, which, according to both statistics, is
the least important of the 11 variables. Soil
pH was also found to be an important pre-
dictor variable in arid, oxidizing environments
in Pakistan (29). Although widespread arsenic
dissolution occurs in Holocene fluvial sedi-
ments (5–7, 9, 37), this geological epoch has
not been consistently mapped around the
world. However, the global dataset of fluvisols
provides a very suitable alternative (29), which
may even bemore appropriate because fluvisols
by definition encompass recent fluvial sedi-
ments and not, for example, aeolian Holocene

sediments that are generally not relevant for
arsenic release. The generally high model im-
portance of climate variables, as evidenced by
them all being selected for the final model,
highlights the strong control that climate has
on arsenic release in aquifers. In particular,
precipitation and evapotranspiration have a
direct role in creating conditions conducive
for arsenic release under reducing condi-
tions (e.g., waterlogged soils) as well as high
aridity associated with oxidizing, high-pH
conditions.
The performance of the random forest

model on the test dataset (20% of the data,
which was randomly selected while maintain-
ing the relative distribution of high and low
values) is summarized in the confusionmatrix
in Table 1. Despite a prevalence of high values
(>10 mg/liter) of only 22% in the dataset, the
model performs well in predicting both high
values (sensitivity: 0.79) and low values (spec-
ificity: 0.85) at a probability cutoff of 0.50. The
average of these two figures, known as balanced
accuracy, is correspondingly high at 0.82. Like-
wise, the model’s AUC, which considers the full
range of possible cutoffs, has a very high value
of 0.89 with the test dataset (Table 1). For
comparison, the AUC of a random forest using
all 52 original predictor variables is also 0.89.
The model was also tested on a dataset of

more than 49,000 arsenic data points origi-
nating from known depths greater than 100m
(average 562 m, standard deviation 623 m).
Although the model was not trained on any
measurements from these depths and the fact
that only surface parameters were used as pre-
dictor variables, the model nevertheless per-
formed quite well in predicting the arsenic
concentrations of these deep groundwater
sources, as evidenced by an AUC of 0.77.

Regions and populations at risk

Areas predicted to have high arsenic concen-
trations in groundwater exist on all continents,
withmost being located in Central, South, and
Southeast Asia; parts of Africa; and North and
SouthAmerica (Fig. 2 and figs. S2 to S8). Known
areas of groundwater arsenic contamination
are generally well captured by the global arsenic
predictionmap, for example, parts of thewestern
United States, central Mexico, Argentina, the
Pannonian Basin, Inner Mongolia, the Indus
Valley, the Ganges-Brahmaputra delta, and
the Mekong River and Red River deltas. Areas
of increased arsenic hazard where little con-
centration data exist include parts of Central
Asia, particularly Kazakhstan, Mongolia, and
Uzbekistan; the Sahel region; andbroad areas of
the Arctic and sub-Arctic. Of these, the Central
Asian hazard areas are better constrained, as
evidenced by higher probabilities.
Probability threshold values of 0.57 from

the sensitivity-specificity comparison and 0.72
from the positive predictive value (PPV)–negative
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Fig. 3. Proportions of land area and population potentially affected by arsenic concentrations in
groundwater exceeding 10 mg/liter by continent.

Table 1. Confusion matrix and other statistics summarizing the results of applying the random
forest model to the test dataset at a probability cutoff of 0.50.

Model output Value

Predicted As ≤ 10 mg/liter
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Measured As ≤ 10 mg/liter 7710
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Measured As > 10 mg/liter 555
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Predicted As > 10 mg/liter
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Measured As ≤ 10 mg/liter 1394
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Measured As > 10 mg/liter 2037
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Sensitivity 0.79
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Specificity 0.85
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

PPV 0.59
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

NPV 0.93
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Prevalence 0.22
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Balanced accuracy 0.82
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Cohen’s kappa 0.55
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

AUC 0.89
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .
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predictive value (NPV) comparison were found
using the full dataset (combined training and
test datasets) of arsenic concentrations. The
proportions of high modeled arsenic hazard
by continent associated with each of these
probabilities are shown in Fig. 3. Global maps
of the potentially affected population in the
risk areas, as determined by these two thresh-
olds, are shown in Fig. 4. As described in the
methods, these maps were then used to esti-
mate the population potentially affected by
drinking groundwater with arsenic concen-
trations exceeding 10 mg/liter.
The resulting global arsenic risk assessment

indicates that about 94 million to 220 million
people around the world (of which 85 to 90%
are inSouthAsia) arepotentially exposed tohigh
concentrations of arsenic in groundwater from
their domestic water supply (tables S4 and S5).
This range is consistentwith the previousmost
comprehensive literature compilations, that is,
140 million people (41) and 225 million people
(42). Household groundwater-use statistics
were not available for ~6 to 8% of the affected
countries (depending on the cutoff), for which
the less detailed statistics derived from the
AQUASTAT database of the Food and Agricul-
ture Organization of the United Nations were
used instead (seemethods for details). To deter-
mine the amount of error that using these
more general groundwater-use statistics might
introduce to the overall population figures,
the global potentially affected populations
were recalculated with these countries’ (those
lacking household groundwater-use statistics)
groundwater-use rates set to the extreme values
of 0 and 100%. Because this applied to relatively
few countries and arsenic-affected areas, doing
so affected the overall global population figures
by an inconsequential amount (±0.1%), indicat-
ing that using the AQUASTAT groundwater-
use rates, where necessary, is an acceptable
approximation.
This estimate of risk takes into account

only the proportion of households utilizing
unprocessed groundwater and assumes uniform
rates throughout the urban and nonurban areas
of each country. The uncertainties of these rates
are unknown. The population in each cell was
reduced by the uncertainty of the cell’s predic-
tion, which is justified based on the heteroge-
neity inherent in the accumulation of arsenic in
an aquifer, which is generally at a much finer
scale than that of the 1-km2 resolution of the
arsenic hazard map. Because the arsenic pre-
diction for a cell represents the average outcome
for that cell, we can take themodeledprobability
as a first-order approximation of the proportion
of an aquifer in that cell containing high arsenic
concentrations. Only cells exceeding the proba-
bility threshold (i.e., 0.57 or 0.72) were con-
sidered. The global estimate of 94 million to
220million people potentially affected by con-
suming arsenic-contaminated groundwater is
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Fig. 4. Estimated population at risk. (A to L) Population in risk areas potentially containing aquifers
with arsenic concentrations >10 mg/liter using probability cutoffs of 0.57 (A), at which sensitivity
and specificity are equal [inset in (A)] as applied to the full (training and test) dataset, and 0.72 (G),
at which PPV and NPV are equal [inset in (G)] using the full dataset. The detailed areas of Fig. 2 are also
repeated here for both models (B) to (F) and (H) to (L).
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broken downby continent and country in tables
S4 and S5, respectively, and represents the
most accurate and consistent global estimate
available.

Discussion

The accuracy of the global groundwater arsenic
predictionmodel presented here, as indicated,
for example, with an AUC of 0.89 calculated
with the test dataset, exceeds that found in
previous arsenic prediction studies (table S3).
The dominance of climate and soil parame-
ters in the final model is indicative of their
direct influence or at least strong association
with the processes of arsenic accumulation in
groundwater.
With respect to previous arsenic prediction

maps of global sedimentary basins (40, 43),
the new model represents a substantial ad-
vancement on a few different levels. First, the
new model presented here provides predic-
tions for all areas of the inhabited continents,
whereas the previous first-generation statisti-
cal model covered only about half of the land
areas. In addition, a 10-fold increase in mea-
surement points has allowed arsenic concen-
trations to be incorporated from many more
areas of the globe. The greatly expanded avail-
ability and quality of global predictor datasets
over the past 10 years has enabled new variables
to be considered, such as soil type (e.g., fluvisols),
as well as provided a 10- to 60-fold greater
spatial resolution (i.e., 30 arc-sec versus 5 to
30 arc-min). However, the presence of high
arsenic in groundwater at a given location is of
course predicated on the existence of an aquifer
in the first place, which may not be so in the
case of unfractured solid rock, steep terrain, or
very dry conditions. Models are only as good
as the data onwhich they are based. As accurate
as the new arsenic model is, it could be further
improved as more arsenic data and more de-
tailed predictor datasets come into existence.
Particularly in sedimentary aquifers, arsenic

concentration is often highly dependent on
depth, that is, on specific sedimentary sequen-
ces that differ in the concentration of arsenic
in sediments as well as the geochemical con-
ditions conducive to arsenic release. To better
characterize this relationship in a given sedi-
mentary basin, detailed depth information of
groundwater samples would need to be incor-
porated in a separate basin-level study. Unfor-
tunately, it is not feasible in a global-scale
study to account for all of the diversity of the
sedimentary basins of the world, especially
because depth information of groundwater
samples is often not available. As such, we
have relied on a statistical analysis of model
performance against depth ranges of samples
(where present) to determine model sensitiv-
ity to depth.
Our approach in the risk assessment of po-

tentially affected populations is relatively dis-

cerning and/or conservative. As such, the
resulting population estimates may in some
cases be lower than those found in earlier
studies. One reason for this is that we used
country-specific statistics of rural and urban
domestic groundwater usage, which allowed
us to subtract the proportion of the population
that uses surface water, tap water, or other
sources. This was not the case, for example, in
a previous study of China that estimated that
19.6 million people were affected in the coun-
try (21), whereas our estimate is considerably
lower at 4.3 million to 12.1 million. Further-
more, we consider only areas in which the prob-
ability of high arsenic exceeds the statistically
determined cutoffs, that is, 0.57 and 0.72. Taking
the United States as an example, applying this
criterion left only 0.2 to 2% of the area of the
country over which to sum the potentially af-
fected population (≤0.21 million, this study).
In a previous arsenic risk assessment of the
United States (31), the entire country was used
to estimate affected population (2.1 million),
that is, not only the high-risk areas.
The actual proportion of groundwater usage

varies spatially throughout a country, and so
more detailed usage statistics beyond only
urban versus rural would improve the accuracy
of a risk assessment. In addition, more ground-
water samples (ideally including depth infor-
mation) from areas that currently have poor
coverage would benefit future modeling efforts
by allowing the model to be better adapted to
those areas.
The presented arsenic probability maps

should be used as a guide to further ground-
water arsenic testing, for example, in Central
Asia, the Sahel, and other regions of Africa.
Only actual groundwater quality testing can
definitively determine the suitability of ground-
water with respect to arsenic, particularly
because of small-scale (<1 km) aquifer hetero-
geneities that cannot bemodeledwith existing
global datasets (9, 44). The hazard maps high-
light areas at risk and provide a basis for
targeted surveys, which continue to be impor-
tant. The already large number of people po-
tentially affected can be expected to increase
as groundwater use expands with a growing
population and increasing irrigation, especially
in the light of water scarcity associated with
warmer and drier conditions related to climate
change. The maps can also help aid mitigation
measures, such as awareness raising, coordi-
nation of government and financial support,
health intervention programs, securing alter-
native drinking water resources, and arsenic
removal options tailored to the local ground-
water conditions as well as social setting.
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