

PRE-MINING ENVIRONMENTAL GEOCHEMICAL SURVEY OF A MINERALISED WATERSHED IN NORTH GREECE

<u>ARIADNE ARGYRAKI</u>, EFSTRATIOS KELEPERTZIS , ZACHARENIA KYPRITIDOU

9th International Symposium on Environmental Geochemistry Aveiro, 15th-21th July 2012

Presentation Overview

Area description- Research motivation

- Baseline geochemistry of
 - Soil
 - Stream sediment
 - Stream water

Preliminary PHREEQC application for metal transport modeling

Description of mineralised watershed of Piavitsa

Skouries Cu-Au deposit

Plan to mine 146 Mt Mine life over 30 years

Reserves	'000t	Au g/t	Au Moz	Cu %	Cu '000t
Proven	34,444	1.25	1.38	0.68	233
Probable	103,918	0.66	2.21	0.48	503
Total	138,362	0.81	3.59	0.53	736
Resources					
Measured	39,480	1.24	1.57	0.67	266
Indicated	206,870	0.57	3.77	0.45	939
Total	246,350	0.67	5.34	0.49	1,205
Inferred	115,777	0.22	0.83	0.25	288

(source: www.egolfields.com)

Soil sampling

- □ 65 surface soil samples (0-25 cm) on 200x200 m grid
- 3 fold composite samples
- TMF 8 sampling duplicates Ν Paste tailings 35 million tn Plant site waste Tsarkia 46 million tn of tailings Haul road Open pit Legend ▲ soil sample Koufios Platanos Lostaniko stream water / sediment sample . Planned open pit Planned ore mill site Stream Piavitsa watershed Rock type Two-mica gneiss Diorite +oronos Diorite porphyry Quartz-diorite porphyry Volcanic breccia

400 200 0

400 Meters

Dams

Soil characteristics

- Sandy- loamy soil (60-75% sand)
- Positive NP & NNP (5-17)
- Near neutral soil pH

Total elemental concentrations in soil (mg/ kg)

(n= 65) HNO_3 -HCIO₄-HCI dissolution, ICP-AES

Element	Mean	Median	St.Dev.	Wider area median
Pb	526	295	815	325
Zn	350	231	346	240
Cu	49	45	19	104
As	165	126	147	119
Cd	16	16	3	1.3
Mn	1774	1410	1843	1501
Fe	43548	43100	6779	59500
Ni	247	136	218	69
Cr	279	175	194	178

Kelepertsis et al 2006

Geochemical processes affecting soil composition

- Elements related to sulphide mineralisation
- Elements related to metamorphic rocks

Soil mapping based on factor analysis

IDW, power = 2, output grid cell 200 m

Stream sediment sampling

- Three parallel streams N-S direction
- Steep gradient boulder bed material
- Kokkinolakkas draining active
 Pb-Zn mines
- Nineteen stream sediment samples along streams
- Mineralogy and chemical analysis on -150 μm fraction
- Total dissolution ICP-AES measurement

Stream sediment elemental concentrations by subbasin

Metal partitioning in stream sediment samples

Stream water quality (20 sampling locations – filtered samples

0.45 µm- ICP-MS analysis)

(Kelepertzis et al. 2012)

Water quality comparison between sub-basins

Seasonal variation of metal loadings in Piavitsa stream water

November 08

PHREEQC modeling in Piavitsa streamwater

- · low flow conditions, no effect of sudden storms
- transport by PHREEQC
- mix solutions at tributaries
- adjustment by adding Mn-oxide & Cu-oxide phases into the system
- needs refinement = dense sampling, observation of seepage inflow

Use of data for predicting future change

- Sustainable mining / environmental protection
- \Box Mine timelife scale = reduced flow
- Longer timescale = change of contaminant input
- Key role of Mn oxides
- Effects of pH change

Conclusions – Further work

- Unique opportunity to study a changing environment and gather pre-mining data
- Methodology guided by exposure targets and mining development plan
- Geochemical baseline established for soil, stream sediment and water \rightarrow realistic remediation targets in the future
- Health baseline data?
- Need to better understand geochemical processes affecting metal transport
- Need for synoptic sampling for providing spatially detailed water chemistry profile in the streams and continuous monitoring

