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Regolith Geochemistry

« What factors control metal mobility?

« Why do river and groundwaters have higher
concentrations of Ca, Na, Mg & K?

* Why is the near surface Australian regolith so rich in Al, Si
& Fe minerals?

« Why do specific trace metals correlate strongly with
Fe/Mn oxides & hydroxide rich materials?

« Can you predict how metals will behave in the regolith

under specific conditions” yJ
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Regolith (PeyoAi80¢g)

* This entire mantle of unconsolidated
material, whatever Iits nature or origin, it
IS proposed to call the regolith.

* ET@pavelako KAAUMHA — UAIKA TTOIKIANG
TpoEAeuoNC (In situ — ex situ)




Fundamentals of Geochemistry

The Periodic Table

— Alkali & alkaline earths: K, Rb, Sr, Cs, Ba, Li

— Transition metals: Sc, Ti, V, Cr Co, Ni, Cu, Zn, Pb, Sn, Bi
 Different valence (oxidation) states; high electronegtivity

— Rare earth elements (lanthanides)
« High charge, large radii

— High Field Strength Elements: Zr, Hf, Ta, Nb
* High ionic charge +4 - +5; smaller radii

— Noble metals: Pt, Au, Pd, Rh, Os

 Rare & unreactive

— Gases/Volatiles: He, Ne, Ar, Kr, Xe, C, S, Cl yl
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Major & Trace Elements

 Major Elements
— make up the majority of silicates (crust and mantle)
— Si, O, Al, Fe, Mg, Na, K, Ca, (Mn), (Ti), (S), (P)
— Reported as Wt % oxide or mg/Kg

 Trace Elements

— the remaining elements, but vary depending on the
geochemical system under study. For example,
trace elements in igneous rocks not same as
oceanic ones

— Generally reported as ppm or mg/Kg y
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Elements in Exploration Geochemistry

« Target or Ore elements
“Commodity” sought
e.g. Au, Cu, Ni, Pt, U, Zn etc
« Pathfinder elements

Elements commonly associated in high or anomalous
concentrations with target elements

E.g. As, Mo, BI, Sb, Sn, W, Cu

g
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Element properties critical to low
temperature geochemistry

 Electrons removed or added to outer orbitals of atoms >
charged particles > ions

« Cations (+ve) but smaller radii, and anions (-ve)

— Hard cations (no outer-shell electrons): Na*, K* Mg?*, Al®*, Si#+
etc;

— Soft cation (some electrons in outer shell): Cr3*, Fe3*, Ni?*,
Co3*, V4* etc;

— Anions: CI-, Br, 0% F, I, S%
 Charge on the ion — Na*, Ca?*, Al3*, Zr*+, P>- 7
* lonic radius —size of the ions - r
* lonic Potential: ratio of ionic charge to ionic radius z/r
« Different charges or redox states for individual

elements ,}
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Factors affecting element mobility in the
regolith

Distribution of elements in the regolith, especially weathering profile,
are dependant on

« Weathering & stability of primary & secondary minerals

« Solution processes (solubllity of elements)

— pH - Solution-Gas
— Dissolution- precipitation - Complexation
— Oxidation-reduction - Sorption

« (Gas-vapour
« Biological activity

« Mechanical activity
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First the element has to come out of
primary minerals..

 Rate of release of elements — depends on stability of primary
minerals

« Zr* release from zircon very slow (Zr-O bond strong)
« Ti** from pyroxene faster than Ti4* from rutile or illmenite

« Release from within secondary minerals (kaolinite, goethite) is
also dependant on stability of that mineral

» Solution process effects are minimal if element or ion is not
“free” from the primary or secondary mineral

* Only mechanical effects are relevant to move elements as

coarse mineral grains y,
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Factors affecting metal mobility

Adsorption
pH & PZC of mineral

Oxidation-reduction

Vegetation
(biogeochemical) Eh$)H
Dissolution - precipitation
Gas-vapour '\ (z/r), pH (secondary minerals)

Biomineralization

:

Complexation

Mechanical
Anions, organics, pH

Primary

7 mineral y
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Then reactions between solution and secondary minerals operate —
Divalent metal hydrolysis

« Hydroxides, oxides, sulphates & carbonates are the least soluble of
metal salts, so solubility of metal hydroxide controls the
solubility/mobility of metals in solution or solid (regolith) >
precipitation of metal bearing secondary minerals (stable solids
establish equilibrium with lowest metal concentration in water)

« Metal oxides & hydroxides hydrolyze in water yielding a variety of
hydrolysis products — M(OH)*, M(OH),, M(OH),....

» For most divalent metals (M?* - Mg, Ca, Zn, Cu, Pb) dominant
species at pH < 9 is M?*

 Thereaction M(OH), <> M?* + 2(OH)-
iInvolves hydroxyls, and is therefore pH dependant, the concentration
of M2* decreasing with increasing pH

» Total amount of metal in solution is sum of all its hydrolysis producﬁll

(species)

OI ‘ﬁ”TE 'lé\l!:é':lE+ [Al(OH)2+] + [Al(OH)+2] ... ginerz_alls
Australigf



Dissolution — precipitation > Solubility Products

CaCO;<> Ca’t+ CO*>

SR X Solution

Precipitation of a metal
«Salt

«Carbonate
*Oxide/Hydroxide
*Silicate

Minerals
Council of
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Solubility Product (SP)

« The hydroxide Is the least soluble salt of the metal

« Example: Ca(OH), <> Ca?* + 2(OH) (Ca(OH), + 2H* = Ca2* +
2H,0)

* Reported as Solubllity Product (SP) — K,
Ksp= [M=*][OH]* (moles/l)® or Ky = [Ca=*][OH]*

 From experimentally determined K, of a reaction —
concentration of metal in solution to maintain equilibrium

with solid hydroxide can be calculated

« For simple reactions (i.e. nothing else is dissolved in water — highly
unlikely!) equilibrium between concentration of M?* in solution with s

hydroxide — corresponding equilibrium pH is known as pH of hydroly%
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Divalent metal hydrolysis
(oxides, hydroxides, sulphates)

 Divalent metals (M?* - Mg, Ca, Zn, Cu) hydrolyze with
dominant species < 9 pH being M?*

e M(OH), = M?* + (OH) reported as Solubility Product
(SP) — K¢, = [M=][OH]# (moles/l)?

 From experimentally determined K, of a reaction —
concentration of metal in solution to maintain

equilibrium with solid hydroxide (oxide & hydroxide
least soluble, but also carbonates, phosphate,

silicates etc) can be calculated y
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Metal Hydrolysis

4=

log [MeZ]

After Stumm & Morgan (1981)

« Concentration of M2* in solution is dependant on pH of solution
(groundwater) M(OH), + 2H* = Me?* + 2H,0

 Slope of solubility curve depends on valence of metal y
« _For many cations, concentration decrease with increasing pH
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Solubility Product — one estimate of mobility
during weathering!
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lonic potential — prediction of solubility
once element/ions in solution

* Low IP cations (z/r < 4) — Na*, Ca?* etc, bond weakly to
O-?because of weakly focussed charge; do not form
stable oxides & prefer solution > soluble

* Intermediate IP cations (z/r 3 -10) — AI¥*, Fe3*, Ti** etc,
compact, moderate charge distributions form stable
oxides > less soluble

« Large IP cations (z/r >10) — P>*, N°*, S®* etc, bond
tightly to O? > stable but soluble radicals like PO,3,

NO, etc > high focused charge on cations repel each
other in solids > not stable oxides > soluble y
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Another way to estimate mobility is via ionic
potential (z/r) — relates to oxide/hydroxide

stability
2.0
Cs Hydrated & soluble cations
PGS Rb
= K Ba Insoluble
5 Pb oxides & hydroxides
5
@ 1.0 =1
.g > OS lubl
O oluble
P anions
N S
I I
1 2 3 4 5 6

W,
lonic Charge (z) J,
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Major elements
Alumino- silicate solubility
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Al Is mobile (soluble) < pH 4 or >
pH 8 (based on alumino-silicate
reaction).

Generally, natural waters are
within this pH range and
therefore Al and Si minerals
dominate the regolith

In extreme acid conditions (pH<
4) Al goes into solution but Si

may not (but it too does!) y,
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Al solubility - Gibbsite

S 2honne » Concentration of dissolved

s T Al species in equilibrium

8 with gibbsite as a function

é _6_AI(OH) of oH

j A Nt aom; * Hydrolysis products of each

2 T /i‘r.\}\ <R Al species plotted
%% "% * Algoes into solution at low

P pH and very high pH

Al(OH); < > Al3* + 30H-

AlR* + H,0 <> Al(OH)#* + H*

W,
Al3* + 2H,0 <> Al(OH),* + 2H* ’
“3+ +CQ'E|29A§> AI(OH)4- +4H" Minerals
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Another way metal mobility is afffected is via
Complexation

« Besides H,0O — other complexes exist in water
« Central ion (cation, Ca, Mg, Fe, Al, K) with ligand
(anions, O, S, Cl, F, I, C)
— OH complexes: FeOH®, Fe(OH),*
— Halide complexes: CuClI-, PbCl;
— Carbonates : CaCO,° MgCO,°

— Sulphate: CaSO,

« Each metal complex has a stability constant —
dependant on
— pH &
— concentration (activity) of metal & ligand
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Complexes and metal mobility

« Availability of complexes affect metal mobility > require specific
concentration of anions & pH

« Metallic Au becomes mobile on complexation with
— Halide (CN-, CI") in acid-oxidizing environments
— Thiosulphate complexes (S,05%) in alkaline conditions

— Organics in organic rich environments
« U is mobile when complexing with CO;? (UO,(CO,),? and PO,
(UO,(HPO,),?% in the pH 4-8
* Zn-Cu mobile with CI-
« Changes in pH can affect complex stability, metal mobility and
precipitation of metal-complex minerals (e.g. precipitation of metal
carbonates, metal sulphates)

=/
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Metal Mobility — pH and complexes

-2 . :
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Organic Complexes

* Chelates — organic molecules capable of binding
metals (multidentate ligands)

« Specific chelates bind metals e.g. Al, Fe and increase
their mobility even in environments that they are
predicted to be immobile purely on pH-Eh, SP

e Some chelates even extract metals from mineral
structure

« e.g. Citric acid, fulvic and humic acids chelate ferric
Iron
* Relevant mechanism affecting metal mobility in upper

parts of soils y
CRCLEME Minerals
A Council of
Australia




Oxidation —reduction (redox)

 Many elements in the regolith exist in two or more
oxidation states

« Elements affected by the oxidation-reduction
potential (redox) of the specific part of regolith

 Redox potential — abllity of the specific environment
to bring about oxidation or reduction

« Electron transfer process
— Oxidation — loss of electrons from elements
— Reduction — gain of electrons

Catalyzed by microbial reactions y
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Redox potential & redox diagrams

« Tendency of an regolith environment to be oxidizing or
reducing — measured in terms of electron activity (pe) or
electron potential (Eh)

« Higher Eh , lower the electron activity

 Eh-pH or pe-pH diagrams provide a way of assessing the
dominance and stability of different redox species in the
environment

* Iron can be present in minerals or as a solute species
depending on redox conditions

=/
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Iron redox diagram

Upper limit of water stability
15

Fe(OH)3 predominant

Fe2* predominant
5 =

Lower Iirpit of watf,-r stability

4 5 6 7 8 9

pH

Fe-O-H,O system

- CRCLEME
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Some redox elements in the regolith

* [ron: Fe?* <> Fe3* (FeOOH)

« Manganese: Mn?* <> Mn3*, Mn** (MnO,)
e Carbon: C <> (CO;y)? (CaCO,), C*4(CO,)
« Sulfur: S* <> S%* ((S0,)?), S° (FeS,)

« Arsenic: As3* <> As>* (AsQO,3)

« Gold: Au® <> Au*, Au®* (AuCl,)

* Chrominum: Cr3* <> Cr®* (CrO,%)

« Uranium: U4(UO,) <> U®* (UO,)

More states exist for some elements but are relatively rare
In the regolith environment. Each state can have severﬁl
solute and solid species J
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Redox states and element mobility

Mobility and toxicity of redox elements varies depending
on their redox state — redox potential of environment — z/r

changes

« Fe?* is more soluble than Fe3* (z/r of Fe?* < 3)
« Se®" more soluble but less toxic than Se4*

« As3*is more mobile and toxic than As>*

« Cr%* is more mobile and toxic than Cr3*

However, absorption can change the mobility of the
elements irrespective of their oxidation state y
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Redox and complex stability

Gold becomes soluble
by forming complexes
with different species
— AuCl,, Au(S,05)%,

Oxidizing

Each Au complex has
a redox-pH stability
range

o
D

Bisulfide

Complex can form at
favourable redox
conditions &
destabilize at specific Acid pH Alkaline
redoxs

Reducing

CRCLEME From Taylor & Eggleton (2001) Minerats
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A regolith profile example - ferrolysis

Fe2+ + 3H20 > Fe(OH)3 + 3H+ + e-

Mottled
unit

Saprolite "

=

- CRCLEME

High Eh
Low pH

Fluctuating Formation of iron

water table  pyqroxides lowers pH
attacks kaolinite

C
19 Fe2+
o diffusing to
: % oxygenated water
|2
& Low Eh S _
Jr High pH Precipitation Fe oxides lower pH

which affects metal mobility but also
absorption of metals on Fe oxides
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Sorption

Affects the mobility of metals and ions by
making them immobile or mobile by bonding

« Adsorption: Species on the surface of mineral (layer
silicates, oxides & hydroxides, organics)

* Absorption: species in the structure of mineral
(diffusion?)

* |lon exchange: species A exchanges on or within
structure of mineral with species B (charged bearing
clay layer silicates — clay minerals, organics)

=/
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Mineral surface reactions

« Clay minerals, oxides, hydroxides, organics,
carbonates in regolith have surface charge due to
unsatisfied bonds at crystal surface and edges

« Some clay minerals also have permanent negative
charges due to T and O substitutions

* These charges attract cations or anions that bond
(adsorb or ion exchange) to the surface ions is
specific ways — surface complexes

CRCLEME Minerals
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Point of Zero Charge (PZC)

« Quter surface of most regolith minerals are oxygens
* In acid solutions, surface +ve charged
« In alkaline solutions, surface —ve

« Change from —ve to +ve depends on mineral
occurring at specific pH

« The pH at which it occurs — zero charge on surface -

g

point of zero charge (PZC) for the mineral
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PZC and mineral surfaces

Y P 0 - - M0
M—O—M+ M—O- H C|)—|\|/|—"O
N | Ry |
O—M-O O—M-O-H A\ M—O— H+
I\|/I (l) |\|/|++ H*, OH'|\|/| | \0‘NQ
I —>» M-0-
o | H PZC —
cl)_l\ln_(l)- QMO 7
| M-
M—O—M+ M—0O— H /7,\; CI) I\I/I "
| | | | | é?f7ﬂlﬁy M= O-O-
D e O-M- 0-H

M —metal ion O - Oxygen

Quartz 1.0 _

Birnessite 20 Goethl_te 7.0 y
Smectite 2.0 Hematite 8.0 J
Kaolinite 4.5 Ferrinydrite 8.0
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Adsorption — pH vs cations & anions

. Cations
Anions cu2 Zn?*
41 - 3+
E pp2+ [/ ©°
2 - Cd?*
C
O
2 2 i
S Mn3*
©
< -
0 | I

12 2 4 6 8 10 12
pH

Mineral surfaces — excess +ve at low pH = excess H* - attract anions
Mineral surfaces — excess —ve at high pH = excess OH- - attract cations

. . _ /
Also dependant on high concentration of other anions —CI- JJ

- CRCLEME
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Sorption and element distribution

Arsenic distribution of laterite survey

» Generally strong relationship s
between Fe-Mn concentrations
(Fe-Mn oxides) and metals in
upper parts of profile and
ferruginous materials

* Fe-Mn oxides adsorb metals
from solution (lag, ferricrete
sampling)

« The mobility of trace metals is
then controlled by solution pH
and stability of host mineral

- CRCLEME Image/Data: Ray Smith Minerals
Kustralia




Another way some elements can migrate

Gas or volatiles

* Gases —
— Sulphide weathering: CO,, COS, SO,
— Radioactive: 2?°Rn & “He
— Hydrocarbons: CH, C,-C,,
— Noble gases (Ne, X, Kr)
« Volatile and metal hydride species — Hg, |, As, Sb

« Metal transfer — attached to gas bubbles moving through
water column and unsaturated regolith — Cu, Co, Zn, Pb
— not conclusive yet

« Higher transfer or mobility rates along conduits: Faults,
fractures & shears > faster diffusion & advection

« Minor and selected element process y
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Plants can transfer or increase mobility

« Vegetation requires essential and trace elements (micro-
nutrients) for physiological processes

* Plants act as “biopumps” for specific metals — N, O, Ca,
Cu, Zn, Mo, Ni, Au

« Hyperaccumulators take up more 100-1000ug/g
* Phytoremediation employs vegetation as uptake conduit

Macronutrients | Micronutrients Other element
absorbed
N, P, K, Ca, Fe, Mn, Cu, Zn, |Au, As, Cr, Pb
Mg, S B, Mo, CI, Ni, SiI,
Se
- CRCLEME Eci)rcl?\rcei‘ltif




Vegetation Transfer & Mobility

Evapotranspiration H20

 Transfer elements from + Volatiles (Hg, Se)

subsurface via root systems,
generally adapted to local

Decomposition
Litter and element_
release to soil

nutrient status

 Elements can be transferred to
above ground and released on
the surface after tree death &

litter — continuing on geological
time scales! Basement

Dimorphic root systems —

laterals and sinkers y
Sinkers tap deeper groundwater ’
for nutrients in summer Minerals

Council of
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Microbial Assisted Mobility
- Mineral Dissolution

« Sulphide oxidation (Fe?* & S° oxidation rate)
* Lichens-bacteria accelerate silicate weathering
* Phosphate minerals — P nutrient

« QOrganic contaminanted environments — increase
mineral dissolution rate

« Complex metals — siderophores — increase metal
mobility

* Aid reductive dissolution of insoluble oxides — release
sorbed metals into solution

« Biotransformations — As, Sb, Hg, Se etc. y

CRCLEME Minerals
Council of
Australia




Microbial Assisted Immobility
Biomineralization

 |ntracellular biomineralization
— Fe: Bacterial magnetite
— Zn, Fe & S: sulphides
— Ca : carbonates

« Extracellular biomineralization
— Fe & Mn: Fe oxides & hydroxides
— Fe, Zn & S : Sulphates & sulphides
— P & Fe: Phosphates
— Gold!

CRCLEME Minerals
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Microbial Immobilization - Si

e

agn. WD 1 5um
9 85 COR 4%

i ©68x 87 COR4

Siliceous diatom clusters
from surface of acid sulfate
soils

11799x 86 COR 4

AR
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Microbial Immobilization of Fe

Surface reddish ppt - AAS

Iron oxidizing bacteria
(Leptothrix) - tube like
structures - encrustrations
of Fe hydroxides

A
CRCLEME
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9.7 0.5 mBar
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Mechanical Transfer

« Biomantle — biomechanically active
part of regolith

» Biotransfer of subsurface material
to surface (bioturbation, vegetation)
and then moved laterally downslope
by mechanical processes —
particles (lag)

* “Immobile” elements are so made
mobile because mechanical activity
does not distinguish on SP, redox
or adsorption

CRCLEME Minerals
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Major element mobility in profiles

Rock type Order of decreasing loss
Till Na > Al >K > Si>Ca>Fe > Mg
Basalt Ca>Mg>Na>K>SI>Al>Fe>Ti

Granite Ca>Na>Mg>Fe>K>SI>Al>Ti

Gabbro Ca>Mg>Fe>Si=Al=Na>Ti>K

Basedon |[Na>K>Ca>Mg>Si>Al>Fe>Ti
SP

CRCLEME Minerals
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The rock discrimination plot (Hallberg
plot)

Zr and Ti in stable primary minerals

700
> Both have low solubility products
= - _
2 / s ZIr between 4-8 - insoluble
_é)s. v @ e :
ool £, "/ @ Comparitively less mobile
gmo ':;.:‘F:: x
& x
N 300

200

) ’."’ .
— ¢ . "
. T :
100 W AR il
' Basalt field
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TiOg (Wt %)
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Vegetation uptake of Au,
Cu, Zn & release on

§surface

. AUCI- + Fe2* + 3H,0 > Au(s) + Fe(OH), + 3H"*

Au/Cu- organic or CN
complexes > dispersion

As, Sb, Bi oxidize
and adsorb onto
Fe oxides

Au-ClI, Cu/Pb/zZn-CI

complex destabilized due

to low pH > Au ppt

Redox > As, Sb, Bi migrate
due to low Eh in reduced
State

Metallic Au & Cu, Zn,

Pb complexed with CI-

Soluble ions > Ca, Na, K, Mg
‘ lost to solution (flow
conditions) some may remain
due to saturation

g
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Landscape scale mobility
(absolute accumulation)

« Mechanical dispersion downslope — aggregate, biomantle
& landform controlled

— Quartz (Si), Ferruginous (Fe), aluminious (Al) and siliceous (Si)
particles (lag) transport
— Fe particle aggregates likely to transfer trace metals (adsorbed)

« Solute transport via groundwater to discharge sites — flow
zones and climatic controls
— Ca, Mg, Ba, S, CI, Fe, Si, U, V dispersion to lower sites

— Solutes either removed via rivers or accumulated as crusts or

precipitates y
- CRCLEME Minerals
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Landscape mobility

Mechanical: Zr (zircon), Ti (rutile), other heavies, Si (quartz,
silcrete), Fe-Al-adsorbed trace metals (ferruginous particles)

Groundwater: Soluble cations & anions > complexed ~ redox

Valley cretes, acid sulfate
soils, saline seeps

Discharge sites

Soluble: Ca, Mg, Na, CI, S
Complexed: U, Au, V
Redox: Fe, U, S, Mn

Basement

< 100 m to 100 km -

AN
CRCLEME
I—-
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Valley Calcretes — U and V deposits

Ca, U, Vinflux via groundwater
from large area into smaller area
of paleo-valleys

Images: C Butt
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Geochemical Analysis Techniques

« XRF and INNA - dry powder methods

* Micro-XRF — synchrotron based — great for
guantitative micron sized chemical maps

« AAS, ICP-MS, ICP-AES - wet methods — need
sample dissolution with reagents (generally acids)

« Electron microprobe (EDXA) — micron sized
guantitative major element analysis

e Laser ablation ICPMS — micron sized quantitative
trace metal analysis

« SHRIMP and TIMS - high resolution isotopic analysis

=/
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