Table of Contents

Table of Contents .. iii

List of Tables ... xv

Preface .. xvii
 About This Manual ... xvii
 Example Data ... xvii
 Time Required ... xvii
 Documentation .. xvii
 Printed Documentation .. xvii
 On-Line Documentation .. xvii
 Documentation Functions ... xix

Conventions Used in This Book ... xx

Getting Started .. xxi
 ERDAS IMAGINE Icon Panel .. xxi
 ERDAS IMAGINE Menu Bar ... xxi
 Dialogs ... xxx

More Information/Help ... xxx

Section I
IMAGINE Essentials™ ... 1

CHAPTER 1
Viewer ... 3
 Introduction ... 3
 Display Preferences .. 3
 Check Band-to-Color Gun Assignments 3
 Display an Image .. 6
 Display Options ... 8
 Utility Menu Options .. 10
 Use Inquiry Functions .. 10
 Take Measurements .. 12
 View Menu Options ... 14
 Arrange Layers ... 14
 Zoom .. 16
 Animated Zoom .. 18
 Box Zoom ... 19
 Real-time Zoom .. 19
 Display Two Images .. 19
 Link Viewers ... 20
 Compare Images .. 21
 Unlink Viewers .. 21
 Raster Menu Options ... 22
Table of Contents

Create an AOI Layer .. 22
Adjust Image Contrast .. 26
Use Piecewise Linear Stretches .. 27
Manipulate Histogram ... 29
Adjust Shift/Bias .. 31
Use Mouse Linear Mapping ... 32

Raster Editor ... 34
 Interpolate ... 35
 Fill with Value ... 36

Raster Attribute Editor .. 38
 Make Layers Transparent ... 39
 Manipulate CellArray Information 41
 Edit Column Properties .. 41

Profile Tools .. 47
 Display Spectral Profile ... 47
 Display Spatial Profile .. 50
 View Surface Profile .. 52

Image Drape .. 54
 Change Options .. 55
 Change Sun Position .. 56
 Dump Contents to Viewer ... 57
 Start Eye/Target .. 57
 Manipulate the Observer and Field of View 58

CHAPTER 2

Image Catalog ... 61
 Introduction .. 61
 Set Catalog Preferences ... 61
 Create an Image Catalog ... 62
 Add Information .. 63
 Perform Graphical Queries .. 64
 Select Area ... 64
 Run Query .. 65
 View Information .. 67
 Modify Views ... 67
 Archive Data .. 69

CHAPTER 3

Map Composer ... 73
 Introduction .. 73
 Create a Map ... 73
 Start Map Composer ... 74
 Prepare the Data Layers .. 76
 Draw the Map Frame .. 76
 Adjust the Size of the Map Frame .. 79
 Adjust the Position of the Map Frame 80

ERDAS IMAGINE
Table of Contents

Edit the Map Frame ... 81
Delete the Map Frame .. 82
Add a Neatline and Tick Marks ... 83
 Change Text/Line Styles ... 85
Make Scale Bars ... 87
Create a Legend .. 88
Add a Map Title ... 90
Place a North Arrow ... 92
Write Descriptive Text ... 94
 Save the Map Composition ... 95
Print the Map Composition ... 95
Edit the Map Composition ... 97
Edit Composition Paths ... 97

CHAPTER 4
Classification ... 101
 Introduction ... 101
 Use Unsupervised Classification ... 101
 Generate Thematic Raster Layer ... 102
 Evaluate Classification .. 104
 Create Classification Overlay ... 104
 Analyze Individual Classes ... 106

CHAPTER 5
Vector Querying and Editing ... 109
 Introduction ... 109
 Query Vector Data ... 109
 Copy Vector Data .. 109
 Display Vector Layers .. 111
 Change Vector Properties ... 112
 View Attributes ... 114
 Use the Marquee Tools to Select Features 116
 Use the Criteria Function ... 118
 Edit Vector Layers .. 119
 Create New Vector Layer ... 123
 Create Attributes .. 127
 Create a Simple Shapefile Layer ... 128

CHAPTER 6
Polynomial Rectification .. 135
 Introduction ... 135
 Rectify a Landsat Image .. 135
 Perform Image to Image Rectification 135
 Display Files .. 135
 Start GCP Tool ... 137
 Select GCPs ... 140
Table of Contents

CHAPTER 7
Image Commands ... 153
 Introduction .. 153
 Image Commands .. 153

CHAPTER 8
Import/Export ... 161
 Introduction .. 161
 Import a SPOT Scene ... 161
 Check Preview Options ... 163
 Check Import Options .. 165
 Export LAN Data .. 167
 Create .tif Files ... 169
 Import Generic Binary Data 173
 Data View .. 174
 Enter Image Dimensions ... 176
 Save Options ... 177
 Preview the Image ... 178
 Get Image Information .. 178
 Edit Image Information ... 178
 View Image Information ... 179

CHAPTER 9
Batch Processing ... 181
 Introduction .. 181
 Set up/Start the Scheduler on NT and 2000 182
 Use Batch with a UNIX System 183
 Execute a Single File/Single Command 183
 Execute Multiple Files/Single Command—Run Now 185
 Set TIFF Image File Preferences 185
 Start the Image Command Tool 186
 Start the Batch Wizard ... 187
 Execute Multiple Files/Single Command—Run Later 190
 Add Multiple Files ... 192
 Execute Multiple Files/Multiple Commands 195
 Set Up ... 195
 Run First Command ... 197
 Run Next Command ... 197
 Run Another Command .. 198
 Create Variables .. 199

Calculate Transformation Matrix from GCPs .. 146
Digitize Check Points .. 146
Resample the Image .. 148
Verify the Rectification Process .. 149
Rotate/Flip/Stretch Images .. 150
Verify the Rectification Process .. 149
Resample the Image .. 148
Digitize Check Points .. 146
Calculate Transformation Matrix from GCPs .. 146
Table of Contents

Modify Variables ... 200
Select Input Files ... 202
Set Start Time ... 203

Work with Variables ... 204
Create a New Variable ... 204
Prepare ... 204
Start Batch Wizard ... 205
Create a New Variable ... 206
Add Additional Files to the Batch Job ... 208
Start Processing ... 208
Check the Output Directory ... 209

Additional Information ... 209
Save/Load Options ... 209
Batch Job Files ... 210

Section II

IMAGINE Advantage™ ... 213

CHAPTER 10

Fourier Transform Editor ... 215
Introduction ... 215
Create an .fft Layer ... 215
Start the Fourier Transform Editor ... 218

Edit Using Menu Options ... 221
Use Low-Pass Filtering ... 221
Use a Circular Mask ... 227
Use a Rectangular Mask ... 229
Use a Wedge Mask ... 230

Edit Using Mouse-Driven Tools ... 232
Use Low-Pass Filtering ... 233
Use High-Pass Filtering ... 233
Apply a Wedge Mask ... 235
Combine Edits ... 236

CHAPTER 11

Image Interpreter ... 239
Introduction ... 239

Subsetting an Image ... 239
Subsetting an Image Without Snapping ... 241
Subsetting an Image With Snap to Raster ... 245

Apply Spatial Enhancement ... 247
Apply Convolution ... 248
Check the File ... 250
Apply Crisp ... 251
View Results ... 253

Apply Radiometric Enhancement ... 254
Apply Brightness Inversion ... 255

Tour Guides
Table of Contents

Reverse .. 256

Apply Spectral Enhancement ... 258
 Use Tasseled Cap ... 258
 Check Results ... 260
 Use the Indices Function .. 261

CHAPTER 12

Orthorectification .. 267
 Introduction .. 267
 Rectify a Camera Image ... 267
 Perform Image to Image Rectification .. 267
 Check for Map Model ... 269
 Perform Geometric Correction .. 270
 Resample the Image ... 279
 Calibrate the Image .. 280

CHAPTER 13

Terrain Surface Interpolation ... 283
 Introduction .. 283
 Create a Surface .. 283
 Import an ASCII File ... 284
 Perform Surfacing .. 287
 Display the Surfacing ... 288

CHAPTER 14

Mosaic .. 291
 Introduction .. 291
 Mosaic Using Air Photo Images .. 291
 Set Input Images ... 294
 Identify Areas of Intersection .. 299
 Draw a Cutline .. 300
 Define Output Images ... 303
 Run the Mosaic ... 304
 Display the Mosaic .. 305
 Mosaic Using LANDSAT Images ... 306
 Display Input Images ... 306
 Add Images for Mosaic .. 308
 Stack Images ... 310
 Match Images .. 310
 Run the Mosaic ... 311
 Display Output Image ... 312
 Mosaic Color Balancing Using Color Infrared Aerial Photos 314
 Add Images for Mosaic .. 316
 Set Exclude Areas .. 317
 Mosaic Color Balancing .. 319
 Match Images .. 321
 Run The Mosaic .. 322
 Display Output Image ... 323
Table of Contents

Chapter 15
Viewshed Analysis ... 325

- Introduction .. 325
- Create a Viewshed ... 325
 - Start an Image Drape Viewer .. 326
 - Start the Viewshed Analysis Tool ... 327
 - Add First Observer ... 329
 - Add Another Observer .. 330
 - Link the Viewers and Set Eye and Target Positions 332
 - Save the Viewshed ... 333
 - Query Viewshed Data ... 334
 - Add Area Column to the CellArray 335
 - Query the Viewshed Layer .. 336
 - Finish .. 337

Section III
IMAGINE Professional™ .. 339

Chapter 16
Spatial Modeler ... 341

- Introduction .. 341
- Start Model Maker ... 341
- Create Sensitivity Layer ... 342
 - Define Input Slope Layer .. 344
 - Define Input Flood Plain Layer .. 349
 - Define Input Land Cover Layer ... 349
 - Define Function ... 351
 - Define Output Raster Layer .. 352
 - Save and Run the Model ... 353
- Enhance SPOT Data .. 354
 - Define Input SPOT Layer ... 356
 - Define Input Convolution Kernel ... 356
 - Define Function ... 357
 - Define Output Raster Layer .. 358
 - Save and Run the Model ... 359
 - Combine Models ... 359
- Combine Sensitivity Layer with SPOT Data 360
 - Define Input Scalar ... 361
 - Define Function ... 361
 - Define Output Raster Layer .. 363
 - Save and Run the Model ... 364
- Display New Layer ... 365
 - Adjust Colors .. 366
- Test the Output ... 369
- Add Annotation to a Model ... 370
- Generate a Text Script ... 373
- Print the Model .. 376
Table of Contents

CHAPTER 17
Advanced Classification .. 455

- Introduction ... 455
 Supervised vs. Unsupervised Classification 455

- Perform Supervised Classification 455
 Define Signatures using Signature Editor 456
 Use Tools to Evaluate Signatures 468
 Perform Supervised Classification 480

- Perform Unsupervised Classification 484
 Generate Thematic Raster Layer 485

- Evaluate Classification 487
 Create Classification Overlay 487
 Analyze Individual Classes 490
 Use Thresholding 492
 Use Accuracy Assessment 497

CHAPTER 18
IMAGINE Expert Classifier™ 503

- Introduction ... 503

- Create a Knowledge Base 503
 Set Up the Output Classes 503
 Enter Rules for the Hypothesis 506
 Add an Intermediate Hypothesis 510
 Copy and Edit ... 512
 Test the Knowledge Base 514

- Create a Portable Knowledge Base 519
 Data .. 519
 Methodology .. 519
 Open a Knowledge Base 520
Table of Contents

Examine the Knowledge Base .. 521
Derive Slope Values ... 522
Build Hypotheses ... 525
Set ANDing Criteria .. 527
Check Other Hypotheses ... 529
Introduce Spatial Logic to the Knowledge Base ... 529
Check Buildings Hypothesis .. 532
Identify Choke Points .. 533
Run the Expert Classification ... 536
Evaluate River Areas .. 538
Use Pathway Feedback .. 539

Section IV
IMAGINE Radar Interpreter™ .. 543

CHAPTER 19
IMAGINE Radar Interpreter™ ... 545
Introduction .. 545
Suppress Speckle Noise ... 545
Calculate Coefficient of Variation ... 549
Run Speckle Suppression Function .. 550
Use Histograms to Evaluate Images .. 552
Enhance Edges .. 554
Enhance Image ... 557
Wallis Adaptive Filter ... 557
Apply Sensor Merge .. 560
Apply Texture Analysis ... 564
Adjust Brightness ... 567
Adjust Slant Range ... 568

Section V
IMAGINE Vector™ ... 571

CHAPTER 20
IMAGINE Vector™ .. 573
Introduction .. 573
Copy Vector Data ... 574
Manipulate Info Files .. 576
Change Vector Symbology ... 583
Add Pattern Polygon Fill ... 586
Build Topology ... 589
Clean Vector Layer ... 590

Section VI
Appendix ... 593

APPENDIX A
Table of Contents

Additional Information .. 595

Classification ... 595
- Flow Chart ... 595
- Advanced Classification ... 596
- Signature Editor ... 596

Fourier Transform Editor ... 597
- Fourier Editor Menu Bar ... 597
- Fourier Editor Tool Bar ... 597

Image Catalog .. 598
- Image Catalog Menu Bar ... 599
- Image Catalog Tool Bar ... 599
- Image Catalog CellArray ... 600
- Adding Custom Maps .. 601

Image Interpreter ... 606
- Image Interpreter Functions ... 606

Import/Export .. 611
- Data View Menu Bar ... 611
- Data View Tool Bar .. 611
- ImagelInfo Menu Bar .. 612
- ImagelInfo Tool Bar ... 612

Map Composer ... 613
- Map Composer Menu Bar .. 616
- Map Composer Tool Bar .. 617
- Annotation Tool Palette ... 618
- Ungroup Elements in Map Composer 620

Mosaic ... 620
- Mosaic Tool Menu Bar .. 621
- Mosaic Tool Tool Bar ... 621

Rectification .. 623
- Input and Reference Images .. 624
- GCP Tool Menu Bar ... 625
- GCP Tool Bar .. 625
- Record Ground Control Points 626

Spatial Modeler .. 626
- About Model Maker .. 626
- Creating Graphical Models ... 628
- Defining Model Files and Parameters 628
- Solving Problems ... 629
- Determine Input Data ... 630
- Determine Functions .. 630
- Model Maker Viewer and Tool Palette 631
- Model Maker Viewer Tool Bar .. 632
- Model Maker Tool Palette ... 633

Table Tool ... 635
- Table Tool Menu Bar .. 635
- Table Tool Tool Bar ... 636

Terrain Surface Editor ... 637
- 3D Surfacing Dialog Menu Bar 637
Table of Contents

3D Surfacing Dialog Tool Bar .. 637

Vector ... 638
Vector Tools .. 638

Viewer ... 639
About the Viewer .. 639
Viewer Menu Bar .. 640
Viewer Tool Bar .. 642
Duplicated Functionality .. 643
Keyboard Shortcuts ... 643
Histogram Edit Tools .. 644
Histogram Numbers ... 645
Manipulating Lookup Table Breakpoints 645
Image Drape Menu Bar .. 645
Image Drape Tool Bar .. 646

Index .. 647
Table of Contents
List of Tables

Table 1: ERDAS IMAGINE Documentation Functions ... xix
Table 2: Session Menu Options ... xxii
Table 3: Main Menu Options ... xxiv
Table 4: Tools Menu Options ... xxv
Table 5: Utility Menu Options ... xxvi
Table 6: Help Menu Options ... xxvii
Table 2-1: Image Catalog Preferences ... 61
Table 12-1: Film X and Film Y Coordinates ... 274
Table 16-1: Class Values for n3_landcover_RC ... 350
Table 16-2: Conditional Statement Class Values ... 352
Table 16-3: Training Samples of Chaparral and Riparian Land Cover 379
Table 16-4: Complete Criteria Table .. 382
Table 19-1: Coefficient of Variation Values for Look-averaged Radar Scenes 549
Table 19-2: Speckle Suppression Parameters ... 551
Table A-1: Signature Editor ... 596
Table A-2: Fourier Editor Menu Bar .. 597
Table A-3: Fourier Editor Tool Bar .. 597
Table A-4: Image Catalog Menu Bar .. 599
Table A-5: Image Catalog Tool Bar .. 599
Table A-6: Image Catalog Data Characteristics ... 600
Table A-7: Image Interpreter Functions .. 606
Table A-8: Data View Menu Bar ... 611
Table A-9: Data View Tool Bar ... 611
Table A-10: ImageInfo Menu Bar ... 612
Table A-11: ImageInfo Tool Bar ... 612
Table A-12: Map Composer Menu Bar .. 616
Table A-13: Map Composer Tool Bar .. 617
Table A-14: Annotation Tool Palette .. 618
Table A-15: Mosaic Tool Menu Bar .. 621
Table A-16: Mosaic Tool Tool Bar ... 621
Table A-17: GCP Tool Menu Bar ... 625
Table A-18: GCP Tool Bar ... 625
Table A-19: Model Maker Viewer Menu Bar .. 632
Table A-20: Model Maker Viewer Tool Bar ... 632
Table A-21: Model Maker Tool Palette .. 633
Table A-22: Table Tool Menu Bar ... 635
Table A-23: Table Tool Tool Bar .. 636
Table A-24: 3D Surfacing Dialog Menu Bar ... 637
Table A-25: 3D Surfacing Dialog Tool Bar ... 637
Table A-26: Vector Tools ... 638
Table A-27: Viewer Menu Bar ... 640
Table A-28: Viewer Menu Bar, Continued ... 641
Table A-29: Viewer Tool Bar ... 642
Table A-30: Histogram Edit Tools ... 644
Table A-31: Image Drape Menu Bar ... 645
Table A-32: Image Drape Tool Bar ... 646
List of Tables
Preface

About This Manual

The ERDAS IMAGINE Tour Guides™ manual is a compilation of tutorials designed to help you learn how to use ERDAS IMAGINE® software. This is a comprehensive manual, representing ERDAS IMAGINE and its add-on modules. Each guide takes you step-by-step through an entire process. The tour guides are not intended to tell you everything there is to know about any one topic, but to show you how to use some of the basic tools you need to get started.

This manual serves as a handy reference that you can refer to while using ERDAS IMAGINE for your own projects. Included is a comprehensive index, so that you can reference particular information later.

There are several sections to this manual. These sections are based upon the way in which ERDAS IMAGINE is packaged. The following sections are composed of the tour guides you go through in a step by step fashion to learn detailed information about the various ERDAS IMAGINE functions.

- Section I—IMAGINE Essentials™
- Section II—IMAGINE Advantage™
- Section III—IMAGINE Professional™
- Section IV—IMAGINE Radar Interpreter™
- Section V—IMAGINE Vector™

Section VI, Appendices, contains further information about interface buttons and menus.

Example Data

Data sets are provided with the software so that your results match those in the tour guides. The data used in the tour guides are in the <IMAGINE_HOME>/examples directory. <IMAGINE_HOME> is the variable name of the directory where ERDAS IMAGINE resides. When accessing data files, you must replace <IMAGINE_HOME> with the name of the directory where ERDAS IMAGINE is loaded on your system.

Time Required

Each individual tour guide takes a different amount of time to complete, depending upon the options you choose and the length of the tour guide. The approximate completion time is stated in the introduction to each tour guide.

Documentation

The ERDAS IMAGINE Tour Guides manual is part of a whole suite of printed and on-line documentation that you receive with ERDAS IMAGINE software.

Printed Documentation

Following is a list of printed documentation that is available with ERDAS IMAGINE software. These may have been delivered in printed form or as digital .pdf files. The pdf files may be found in the <IMAGINE_HOME>/help/hardcopy folder:

- ERDAS Field Guide™ (also as FieldGuide.pdf)
Preface

- *ERDAS IMAGINE Configuration Guide* (ConfigGuide.pdf)
- *ERDAS IMAGINE Tour Guides™* (TourGuide.pdf)
- ERDAS Macro Language Reference Manual (only as EML.pdf)
- ERDAS Spatial Modeler Language Reference Manual (only as SML.pdf)
- ERDAS IMAGINE Read Me First document
- ERDAS IMAGINE V8.5 Release Notes
- FLEXlm End Users Guide (only as enduser.pdf)
- What’s New in ERDAS IMAGINE V8.5 (only as Whats_New_in_IMAGINE_85.pdf)

On-Line Documentation

Following is a list of on-line manuals that can be found in the On-Line Help in ERDAS IMAGINE software. This list may change depending on your software package and add-on modules you have purchased:

- Introduction to ERDAS IMAGINE On-Line Help
- Annotation On-Line Manual
- AOI On-Line Manual
- Classification On-Line Manual
- Stereo Analyst On-Line Manual
- Image Catalog On-Line Manual
- Image Interpreter On-Line Manual
- Import/Export On-Line Manual
- Map Composer On-Line Manual
- OrthoBASE On-Line Manual
- IFSAR DEM on-Line Manual
- StereoSAR DEM On-Line Manual
• OrthoRadar On-Line Manual
• Generic SAR Node On-Line Manual
• Rectification On-Line Manual
• Session On-Line Manual
• Preferences On-Line Manual
• Spatial Modeler On-Line Manual
• Tools and Utilities On-Line Manual
• Vector On-Line Manual
• Viewer On-Line Manual
• Viewer Raster Tools On-Line Manual
• Virtuality On-Line Manual
• Graphical Models Reference Guide
• DLL Reference Guide
• Imagizer On-Line Manual
• Appendices

The following table depicts the different types of information you can extract from ERDAS IMAGINE documentation.

TABLE 1: ERDAS IMAGINE Documentation Functions

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Read...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install ERDAS IMAGINE</td>
<td>ERDAS IMAGINE Release Notes, then ERDAS IMAGINE Configuration Guide</td>
</tr>
<tr>
<td>Set up hardware for use with ERDAS IMAGINE</td>
<td>ERDAS IMAGINE Configuration Guide</td>
</tr>
<tr>
<td>Learn about new features in the latest release</td>
<td>What’s New in IMAGINE 8.5 (PDF)</td>
</tr>
<tr>
<td>Learn to use ERDAS IMAGINE</td>
<td>ERDAS IMAGINE Tour Guides</td>
</tr>
<tr>
<td>Learn about GIS and image processing theory</td>
<td>ERDAS Field Guide</td>
</tr>
<tr>
<td>See what a particular dialog does</td>
<td>On-Line Help</td>
</tr>
<tr>
<td>Get quick information for a button or function</td>
<td>On-Line Help or Status Bar Help</td>
</tr>
<tr>
<td>Learn how to most effectively use the On-Line Help system</td>
<td>Introduction to ERDAS IMAGINE On-Line Help</td>
</tr>
<tr>
<td>Learn more about the Image Interpreter functions</td>
<td>ERDAS IMAGINE Tour Guides</td>
</tr>
</tbody>
</table>
Preace

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Read...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use the Spatial Modeler Language to write models</td>
<td>ERDAS Spatial Modeler Language Reference Manual</td>
</tr>
<tr>
<td>Customize the ERDAS IMAGINE graphical user</td>
<td>ERDAS Macro Language Reference Manual</td>
</tr>
<tr>
<td>interface (GUI)</td>
<td></td>
</tr>
<tr>
<td>Write custom application programs within ERDAS</td>
<td>ERDAS Developers’ Toolkit On-Line Manual</td>
</tr>
<tr>
<td>IMAGINE</td>
<td></td>
</tr>
</tbody>
</table>

Conventions Used in This Book

In ERDAS IMAGINE, the names of menus, menu options, buttons, and other components of the interface are shown in bold type. For example:

“In the Select Layer To Add dialog, select the **Fit to Frame** option.”

When asked to use the mouse, you are directed to click, Shift-click, middle-click, right-click, hold, drag, etc.

- **click**—designates clicking with the left mouse button.
- **Shift-click**—designates holding the Shift key down on your keyboard and simultaneously clicking with the left mouse button.
- **middle-click**—designates clicking with the middle mouse button.
- **right-click**—designates clicking with the right mouse button.
- **hold**—designates holding down the left (or right, as noted) mouse button.
- **drag**—designates dragging the mouse while holding down the left mouse button.
The following paragraphs are used throughout the ERDAS IMAGINE documentation:

⚠️ These paragraphs contain strong warnings or important tips.

🚀 These paragraphs direct you to the ERDAS IMAGINE software function that accomplishes the described task.

📖 These paragraphs lead you to other areas of this book or other ERDAS® manuals for additional information.

NOTE: Notes give additional instruction.

<table>
<thead>
<tr>
<th>Shaded Boxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaded boxes contain supplemental information that is not required to execute the steps of a tour guide, but is noteworthy. Generally, this is technical information.</td>
</tr>
</tbody>
</table>

Getting Started

To start ERDAS IMAGINE, type the following in a UNIX command window: `imagine`, or select **ERDAS IMAGINE 8.5** from the **Start** menu.

ERDAS IMAGINE begins running; the icon panel automatically opens.

ERDAS IMAGINE Icon Panel

The ERDAS IMAGINE icon panel contains icons and menus for accessing ERDAS IMAGINE functions. You have the option (through the **Session | Preferences** menu) to display the icon panel horizontally across the top of the screen or vertically down the left side of the screen. The default is a horizontal display.

The icon panel that displays on your screen looks similar to the following:

![ERDAS IMAGINE Icon Panel](image)

The various icons that are present on your icon panel depend on the components and add-on modules you have purchased with your system.

ERDAS IMAGINE Menu Bar

The menus on the ERDAS IMAGINE menu bar are: **Session**, **Main**, **Tools**, **Utilities**, and **Help**. These menus are described in this section.

NOTE: Any items which are unavailable in these menus are shaded and inactive.
Session Menu

1. Click on the word **Session** in the upper left corner of the ERDAS IMAGINE menu bar. The **Session** menu opens:

![Session Menu Diagram]

The following table contains the **Session** menu selections and their functionalities:

TABLE 2: Session Menu Options

<table>
<thead>
<tr>
<th>Selection</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferences</td>
<td>Set individual or global default options for many ERDAS IMAGINE functions.</td>
</tr>
<tr>
<td>Configuration</td>
<td>Configure peripheral devices for ERDAS IMAGINE.</td>
</tr>
<tr>
<td>Session Log</td>
<td>View a real-time record of ERDAS IMAGINE messages and commands, and to issue commands.</td>
</tr>
<tr>
<td>Active Process List</td>
<td>View and cancel currently active processes running in ERDAS IMAGINE.</td>
</tr>
<tr>
<td>Commands</td>
<td>Open a command shell, in which you can enter commands to activate or cancel processes.</td>
</tr>
<tr>
<td>Enter Log Message</td>
<td>Insert text into the Session Log.</td>
</tr>
<tr>
<td>Start Recording Batch Commands</td>
<td>Open the Batch Wizard. Collect commands as they are generated by clicking the Batch button that is available on many ERDAS IMAGINE dialogs.</td>
</tr>
<tr>
<td>Open Batch Command File</td>
<td>Open a Batch Command File (*.bcf) you have saved previously.</td>
</tr>
</tbody>
</table>
TABLE 2: Session Menu Options (Continued)

<table>
<thead>
<tr>
<th>Selection</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Offline Batch Queue</td>
<td>Open the Scheduled Batch Job list dialog, which gives information about pending batch jobs.</td>
</tr>
<tr>
<td>Flip Icons</td>
<td>Specify horizontal or vertical icon panel display.</td>
</tr>
<tr>
<td>Tile Viewers</td>
<td>Rearrange two or more Viewers on the screen so that they do not overlap.</td>
</tr>
<tr>
<td>Close All Viewers</td>
<td>Close all Viewers that are currently open.</td>
</tr>
<tr>
<td>Main</td>
<td>Access a menu of tools that corresponds to the icons along the ERDAS IMAGINE icon bar.</td>
</tr>
<tr>
<td>Tools</td>
<td>Access a menu of tools that allow you to view and edit various text and image files.</td>
</tr>
<tr>
<td>Utilities</td>
<td>Access a menu of utility items that allow you to perform general tasks in ERDAS IMAGINE.</td>
</tr>
<tr>
<td>Help</td>
<td>Access the ERDAS IMAGINE On-Line Help.</td>
</tr>
<tr>
<td>Exit IMAGINE</td>
<td>Exit the ERDAS IMAGINE session (keyboard shortcut: Ctrl-Q).</td>
</tr>
</tbody>
</table>

Main Menu

2. Click on the word **Main** in the ERDAS IMAGINE menu bar. The **Main** menu opens

The following table contains the **Main** menu selections and their functionalities:
Tools Menu

3. Click on the word **Tools** in the ERDAS IMAGINE menu bar. The **Tools** menu opens:
The following table contains the Tools menu selections and their functionalities:

TABLE 4: Tools Menu Options

<table>
<thead>
<tr>
<th>Selection</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit Text Files</td>
<td>Create and edit ASCII text files.</td>
</tr>
<tr>
<td>Edit Raster Attributes</td>
<td>Edit raster attribute data.</td>
</tr>
<tr>
<td>View Binary Data</td>
<td>View the contents of binary files in a number of different ways.</td>
</tr>
<tr>
<td>View IMAGINE HFA File Structure</td>
<td>View the contents of the ERDAS IMAGINE hierarchical files.</td>
</tr>
<tr>
<td>Annotation Information</td>
<td>View information for annotation files, including number of elements and projection information.</td>
</tr>
<tr>
<td>Image Information</td>
<td>Obtain full image information for a selected ERDAS IMAGINE raster image.</td>
</tr>
<tr>
<td>Vector Information</td>
<td>Obtain full image information for a selected ERDAS IMAGINE vector coverage.</td>
</tr>
<tr>
<td>Image Command Tool</td>
<td>Open the Image Command dialog.</td>
</tr>
<tr>
<td>Coordinate Calculator</td>
<td>Transform coordinates from one spheroid or datum to another.</td>
</tr>
<tr>
<td>Create/Display Movie Sequences</td>
<td>View a series of images in rapid succession.</td>
</tr>
<tr>
<td>Create/Display Viewer Sequences</td>
<td>View a series of images saved from the Viewer.</td>
</tr>
<tr>
<td>Image Drape</td>
<td>Create a perspective view by draping imagery over a terrain DEM.</td>
</tr>
<tr>
<td>Manage PostScript and TrueType Fonts</td>
<td>Add new fonts to ERDAS IMAGINE annotation via FontTastic Font Manager.</td>
</tr>
<tr>
<td>View EML ScriptFiles</td>
<td>Open the EML View dialog, which enables you to view, edit, and print ERDAS IMAGINE dialogs.</td>
</tr>
</tbody>
</table>

Utilities Menu

4. Click on **Utilities** on the ERDAS IMAGINE menu bar. The **Utilities** menu opens:
The following table contains the Utilities menu selections and their functionalities:

TABLE 5: Utility Menu Options

<table>
<thead>
<tr>
<th>Selection</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG Compress Images</td>
<td>Compress raster images using the JPEG compression technique and save them in an ERDAS IMAGINE format.</td>
</tr>
<tr>
<td>Decompress JPEG Images</td>
<td>Decompress images compressed using the JPEG Compress Images utility.</td>
</tr>
<tr>
<td>Convert Pixels to ASCII</td>
<td>Output raster data file values to an ASCII file.</td>
</tr>
<tr>
<td>Convert ASCII to Pixels</td>
<td>Create an image from an ASCII file.</td>
</tr>
<tr>
<td>Convert Images to Annotation</td>
<td>Convert a raster image to polygons saved as ERDAS IMAGINE annotation (.ovr).</td>
</tr>
<tr>
<td>Convert Annotation to Raster</td>
<td>Convert an annotation file containing vector graphics to a raster image file.</td>
</tr>
<tr>
<td>Create/Update Image Chips</td>
<td>Provide a direct means of creating chips for one or more images.</td>
</tr>
<tr>
<td>Mount/Unmount CD-ROM</td>
<td>Mount and unmount a CD-ROM drive.</td>
</tr>
<tr>
<td>Create Lowercase Parallel Links</td>
<td>Make a set of links to items on CD for systems that convert CD paths to uppercase.</td>
</tr>
<tr>
<td>Font to Symbol</td>
<td>Create a symbol library to use as annotation characters from an existing font.</td>
</tr>
<tr>
<td>Create Font Tables</td>
<td>Create a map of characters in a particular font.</td>
</tr>
<tr>
<td>Compare Images</td>
<td>Open Image Compare dialog. Compare layers, raster, map info, etc.</td>
</tr>
<tr>
<td>Reconfigure Raster Formats</td>
<td>Start a DLL to reconfigure raster formats.</td>
</tr>
</tbody>
</table>
5. Select **Help** from the ERDAS IMAGINE menu bar. The **Help** menu opens.

![Help Menu](image)

NOTE: The **Help** menu is also available from the **Session** menu.

The following table contains the **Help** menu selections and their functionalities:

<table>
<thead>
<tr>
<th>Selection</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Help for Icon Panel</td>
<td>View the On-Line Help for the ERDAS IMAGINE icon panel.</td>
</tr>
<tr>
<td>IMAGINE Online Documentation</td>
<td>Access the root of the On-Line Help tree.</td>
</tr>
<tr>
<td>IMAGINE Version</td>
<td>View which version of ERDAS IMAGINE you are running.</td>
</tr>
<tr>
<td>IMAGINE DLL Information</td>
<td>Display and edit DLL class information and DLL instance information.</td>
</tr>
</tbody>
</table>

6. From the **Help** menu, select **Help for Icon Panel**. The following Help page displays in your default internet browser:
The ERDAS IMAGINE On-Line Help (OLH) system is a collection of on-line manuals that functions just like an internet website. The OLH system includes help for all of the dialogs in ERDAS IMAGINE, as well as in-depth Help files that provide more details about a process. Each manual covers a specific topic. These manuals can be printed for convenience. The individual html files may also be bookmarked for quick reference.

7. Click the **Show** button at the upper right corner of the help topic. The Navigation Pane displays in the left portion of your browser.
8. Click on the + beside the Viewer On-Line Manual in the Contents tab to view all of the topics in the Viewer manual.

10. The first page of the Viewer Manual is displayed. Use the << and >> browse buttons to jump from topic to topic and the scroll bars to page through a topic. Click on any hyperlinked text to jump to that topic. Click the Back button to return to the point from which you jumped.

11. Use the Contents, Index, and Search tabs when looking for a specific title, subject, or word or phrase.

12. Select File | Exit from the On-Line Help file menu bar when you are finished reading On-Line Help. The Help window is closed.
Preface

Dialogs

A dialog is a window in which you enter file names, set parameters, and execute processes. In most dialogs, there is very little typing required—simply use the mouse to click on the options you want to use.

Most of the dialogs used throughout the tour guides are reproduced from the software, with arrows showing you where to click. These instructions are for reference only. Follow the numbered steps to actually select dialog options.

For On-Line Help with a particular dialog, click the Help button in that dialog.

All of the dialogs that accompany the raster and vector editing tools, as well as the Select Layer To Add dialog, contain a Preview window, which enables you to view the changes you make to the Viewer image before you click Apply.

Most of the functions in ERDAS IMAGINE are accessible through dialogs similar to the one below:

![Select Layer To Add dialog]

More Information/Help

As you go through the tour guides, or as you work with ERDAS IMAGINE on your own, there are several ways to obtain more information regarding dialogs, tools, or menus, as described below.

On-Line Help

There are two main ways you can access On-Line Help in ERDAS IMAGINE:

- select the Help option from a menu bar
- click the Help button on any dialog.

Status Bar Help

The status bar at the bottom of the Viewer displays a quick explanation for buttons when the mouse cursor is placed over the button. It is a good idea to keep an eye on this status bar, since helpful information displays here, even for other dialogs.
Bubble Help

The Preference Editor enables you to turn on Bubble Help, so that the single-line Help displays directly below your cursor when your cursor rests on a button or frame part. This is helpful if the status bar is obscured by other windows.
Section I
IMAGINE Essentials™
CHAPTER 1
Viewer

Introduction
In this tour guide, you can learn how to:

• set Preferences
• display an image
• query for pixel information
• arrange layers
• adjust image contrast
• link Viewers
• use the Area of Interest (AOI) function
• use the Raster menu functions (Raster Attribute Editor, Measurement tools, etc.)

Approximate completion time for this tour guide is 45 minutes.

Display Preferences
Prepare
ERDAS IMAGINE should be running and a Viewer should be open.

Check Band-to-Color Gun Assignments
ERDAS IMAGINE allows you to set up default band-to-color gun assignments for Landsat MSS, Landsat TM, SPOT, and AVHRR data in the Preference Editor.

1. Click on the word Session in the upper left corner of the ERDAS IMAGINE menu bar.

2. From the Session menu, click on Preferences.

The Preference Editor opens.
3. Drag the scroll bar on the right side of the dialog down to see all of the User Interface & Session preferences (User Interface & Session is the default under Category).

You may change these or any other preferences at any time by selecting the preference category (click on the list below Category) and then editing the text in the text entry fields.

4. Under the User Interface & Session category in the Preference Editor, locate the preferences for the AVHRR Band Defaults, MSS Band Defaults, Spot Band Defaults, and TM Band Defaults.

The number that is entered for these defaults shows the band that is used for the Red, Green, and Blue color guns in your display. You may change these defaults. These are the band assignments that display in the Layers to Colors section of the Select Layer To Add dialog when it opens. These assignments can also be changed in the Select Layer To Add dialog for specific files.

Check Viewer Preferences

1. With the Preference Editor still open, click on the Category list and select Viewer.

The Viewer preferences display.

2. Drag the scroll bar on the right of the dialog down to see all of the Viewer preferences.

These preferences control the way the Viewer automatically displays and responds each time it is opened.

Check Preference Editor Help

1. Click on Help in the lower right corner of the dialog.

The On-Line Help for the Preference Editor opens.
2. When you are through studying the Preference Editor help file, select **File | Exit** from the On-Line Help file menu bar.

The On-Line Help file closes.

View Category Help

1. Click the **Category Help** button on the Preference Editor.

The On-Line Help for this category, **Viewer**, opens.
When you are through studying the Viewer preferences help file, select File | Exit from the Online Help file menu bar.

Click the Close button on the Preference Editor.

NOTE: If you have changed any preferences, you can save them at this time by clicking the User Save or Global Save buttons on the Preference Editor dialog.

Next, you display a Landsat Thematic Mapper (TM) image of Gainesville, Georgia in a Viewer.

Since the data files in the <IMAGINE_HOME>/examples directory are read only, you may want to copy them to a new directory and change the file permissions. Remember, <IMAGINE_HOME> is the variable name for the directory where ERDAS IMAGINE resides.

1. In the Viewer menu bar, select File | Open | Raster Layer.

You can also open this dialog using either of these two methods:

— use the keyboard shortcut, Ctrl-r
Display an Image

— click on this icon in the Viewer tool bar.

The Select Layer To Add dialog opens.

2. In the Select Layer To Add dialog, click on the Recent button.

 A dialog with a listing of the most recent files you have opened displays. You can individually select these files and then click OK to display them quickly in the Select Layer To Add dialog.

3. Click Cancel in the List of Recent Filenames dialog.

4. In the Select Layer To Add dialog, click on the Goto button.

 A dialog with a listing of the most recent directories you have opened displays. You can individually select these directories, or enter the name of a new directory, and then click OK to display that directory quickly in the Select Layer To Add dialog.

5. Click Cancel in the Select a Directory dialog.

 NOTE: The Recent and Goto buttons in the Select Layer To Add dialog are helpful for quickly locating and displaying a file or directory you work with often.

Filename Part

The frame part under Filename is called a filename part. A filename part is a tool used to select specific files for use in an ERDAS IMAGINE function. A filename part consists of:

- a text field—for entering the file name by typing it in, or clicking on, the file from the scroll list.
- a scrolling list—shows the name of all files with the default extension in the selected directory. Files can be selected by clicking on the name in the list.
6. In the filename part of the Select Layer To Add dialog, click on the file `lanier.img`.

This is a Landsat TM image of the Gainesville, Georgia area, including Lake Lanier. Information about this file is reported in the bottom, left corner of the Select Layer To Add dialog. This true color image has seven bands, 512 columns, and 512 rows.

7. Click on the **Raster Options** tab at the top of the Select Layer To Add dialog.

The Raster Options display.

8. Under **Layers to Colors**, display band 4 in the **Red** color gun, band 5 in the **Green** color gun, and band 3 in the **Blue** color gun.

Display Options

1. Note the display options in the Select Layer To Add dialog.
Display Options Defaults

The default settings of the Raster Options tab are briefly described below:

- **Orient Image to Map System**—This checkbox is enabled if calibration is saved to
 the image file. If there is no calibration, this option is disabled. When enabled, the image
 is displayed using calibration. Otherwise, the calibration is ignored.

- **Clear Display**—When this checkbox is enabled, and a new image is loaded, the image
 currently displayed in the Viewer is removed. Disable this checkbox to overlay images.

- **Fit to Frame**—If this checkbox is enabled, the image is magnified or reduced to fit the
 Viewer window at its current size.

- **Data Scaling**—The Viewer performs a two standard deviation stretch by default.
 Click this checkbox to select an alternate data range to stretch.

 If you want to save the contrast stretched values with the image, you can use the
 Radiometric Enhance | LUT Stretch option of Image Interpreter.

- **Zoom by**—If **Fit to Frame** is disabled, then you can enter the zoom ratio for the data
 in this data field.

- **Set View Extent**—Allows you to specify the upper left and lower right coordinates of
 the portion of the image to display.

The coordinates in this dialog set the area of the image to display in the Viewer. This is
useful if you have an image that is larger than the Viewer window, or if you want only
a specific portion of a large image to display in the Viewer. You can also select **View | Extent** from the Viewer menu bar.

- **No Stretch**—Click to display data without applying the normal two standard deviation
 stretch.

- **Background Transparent**—Click to make the background of gray scale,
 pseudocolor, and true color areas transparent—the layer underneath shows through.
 Background areas are automatically transparent in thematic layers.

- **Using**—Resampling is appropriate if the image is magnified (a magnification factor
 greater than one). Use one of the following resampling methods: Nearest Neighbor,
 Bilinear Interpolation, Cubic Convolution.

These methods of resampling are discussed in "CHAPTER 9: Rectification" of the
ERDAS Field Guide.
2. Click **OK** in the Select Layer To Add dialog to display the file.

The file **lanier.img** is displayed in the Viewer. The name of the file and the layers selected are written in the Viewer title bar.

Utility Menu Options

The **Utility** menu on the Viewer enables you to access four separate groups of functions:

- inquiry functions
- measurement tool
- layer viewing
- information

Each function group is separated by a line in the pulldown menu.

Use Inquiry Functions

You can query a displayed image for information about each pixel using the inquiry functions.

Prepare

The file **lanier.img** must be displayed in a Viewer.

1. Select **Utility | Inquire Cursor** from the Viewer menu bar.

A white crosshair displays in the Viewer and the Inquire Cursor dialog opens.
You can move the Inquire Cursor in the Viewer using any of these methods:

- drag the white crosshair over the image.
- enter new coordinates into the CellArray™ of the Inquire Cursor dialog. The Inquire Cursor moves when you move the mouse cursor back into the Viewer.
- click on the black arrows at the bottom of the Inquire Cursor dialog.

As the crosshair is moved, the information in the Inquire Cursor dialog automatically updates.

2. The CellArray in the Inquire Cursor dialog reports a variety of pixel information. Drag on the horizontal scroll bar (or enlarge the Inquire Cursor dialog by dragging any corner) to show all of the pixel information available in the CellArray.

Change Inquire Cursor Style

You can change the color and shape of the Inquire Cursor to make it more visible in the Viewer.

1. To change the color of the Inquire Cursor, select **Utility | Inquire Color** from the Viewer menu bar.

 The Inquire Color dialog opens.

 2. Select a new color for the Inquire Cursor by holding on the **Inquire Color** popup list and dragging to select the desired color.
3. Click **OK** in the Inquire Color dialog.

The Inquire Cursor changes colors.

4. To change the shape of the Inquire Cursor, select **Utility | Inquire Shape** from the Viewer menu bar.

The Inquire Shape dialog opens

5. Click on **circle.cursor** in the scroll list that displays, then click **Apply**.

The Inquire Cursor becomes a circle.

6. In the Inquire Shape dialog, click on the **Use Cursor** button, then **Apply** to return the Inquire Cursor to the original crosshair shape.

7. Click **Close** in the Inquire Shape and the Inquire Cursor dialogs.

The Inquire Cursor is cleared from the Viewer.

Take Measurements

The Measurement tool enables you to measure points, lines, polygons, rectangles and ellipses in the displayed layer. Both distance and area are reported in the units you select.

1. Click on the Measurement icon in the Viewer tool bar or select **Utility | Measure** from the Viewer menu bar.

The Measurement Tool viewer opens.
The Measurement Tool viewer has a menu bar and a tool bar like the Viewer.

2. Click on the Measure Positions icon in the Measurement tool bar.

 ![Image of Measure Positions icon]

 This tool gives the individual point coordinates (x, y) in the image.

 The Measurement tools work similarly to the Annotation tools. For information about the Annotation Tool Palette, see "APPENDIX A: Additional Information" on page 618.

3. Move the cursor into the Viewer and click anywhere.

 In the Measurement Tool viewer, the location of the point displays in the type of units in which the file is saved.

4. Next, click on the Polyline icon in the Measurement Tool viewer tool bar.

 ![Image of Polyline icon]

5. Move the cursor into the Viewer and drag to measure a length between two points. You can then click to add a vertex to the length. Middle-click (or double-click, depending on how your Preferences are set) to end the measurement.

 The length is displayed in the Measurement Tool viewer.
6. Select one of the above ways to print and a Print dialog opens, which allows you to enter the printer device name to be used.

7. Enter the **Printer** name and click **OK** in the Print dialog. If you do not wish to print, click **Cancel**.

8. Experiment with the other measurement tools if you like, and when you are done, select **File | Close** from the Measurement Tool viewer menu bar (or press Ctrl-d with the cursor in the Measurement dialog) to close the Measurement Tool viewer.

You are asked if you want to save the measurements. Save them if you like.

View Menu Options

Arrange Layers

Prepare

ERDAS IMAGINE should be running, and **lanier.img** should be displayed in a Viewer.
1. In the Viewer tool bar, click the Open icon to open another layer on top of *lanier.img*.

 The Select Layer To Add dialog opens.

2. In the Select Layer To Add dialog under **Filename**, click on *lnsoils.img*. This is a thematic soils file of the Gainesville, Georgia area.

3. Click on the **Raster Options** tab at the top of the Select Layer To Add dialog.

4. Check to be sure that the **Clear Display** checkbox is disabled (not selected), so that *lanier.img* is not cleared from the Viewer when *lnsoils.img* is displayed.

5. Click **OK** in the Select Layer To Add dialog to display the file.

 Now, both *lanier.img* and *lnsoils.img* are displayed in the same Viewer, with *lnsoils.img* on top.

6. To bring *lanier.img* to the top of the Viewer, select **View | Arrange Layers** from the Viewer menu bar.

 The Arrange Layers dialog opens.

7. In the Arrange Layers dialog, drag the *lanier.img* box above the *lnsoils.img* box, as illustrated above.

 When you release the mouse button, the layers are rearranged in the Arrange Layers dialog so that the *lanier.img* box is first.
8. Click **Apply** in the Arrange Layers dialog to redisplay the layers in their new order in the Viewer.

The layers are now reversed.

9. Click **Close** in the Arrange Layers dialog.

Zoom

In this section, you zoom in by a factor of 2 and create a magnifier window. Once the image is enlarged, you can roam through it.

Prepare

lanier.img should be displayed on top of *Insoils.img* in a Viewer at a magnification of 1 (this is the case if you have been following through this tour guide from the beginning).

1. Select **View | Zoom | In by 2** from the Viewer menu bar.

The images are redisplayed at a magnification factor of 2.

The Zoom options are also available from:

— the **Quick View menu** (right-hold on the Viewer image) under **Zoom | Zoom In by 2**

— the **Viewer tool bar** by clicking this icon.

2. Move the scroll bars on the bottom and side of the Viewer window to view other parts of the image.

To move by small increments, you can click the small triangles at either end of the scroll bars. To move by larger increments, drag the scroll bars.

You can also enlarge the Viewer window by dragging any corner.

3. Select **View | Create Magnifier** from the Viewer menu bar.

A white cursor box opens in the center of the image. This area is displayed in a small magnifier window that opens over the top corner of the Viewer.
4. With your pointer inside the white cursor box, hold and drag the box around the image.

The data in the magnifier window change as the cursor box is moved over the image. This technique is called chip extraction, which is used in the Rectification tools to help you precisely identify ground control points (GCPs).

Magnifying Areas

There are four ways to change the size of the area magnified:

- With the cursor on any corner (or side) of the cursor box, drag the box until it is the desired size.
- Place the cursor on the lower right corner of the magnifier window and drag the magnifier window until it is the desired size.
- Press the space bar to enter precise positioning coordinates in the inquire box dialog.
- Use the **Quick View** menu (from the right mouse button) or the **View** menu (from the Viewer menu bar) to zoom in either Viewer.

As you try these methods, you notice that each change in size is reflected in the other window. As the cursor box is adjusted, the magnification in the magnifier window is adjusted to accommodate the new area. Likewise, as the magnifier window is adjusted, the cursor box changes to reflect the new size and proportion.

5. In the Viewer menu bar, select **File | Close Other Viewers** to close the magnifier window.
Other methods of zooming in and out of imagery are Animated Zoom, Box Zoom, and Real-time Zoom.

Animated Zoom

Animated Zoom enables you to zoom in and out of the Viewer’s image in a series of steps that are similar to animation. The image is resampled after it is magnified or reduced.

Prepare

Display *lanier.img* in the Viewer.

1. Select **Session | Preferences**.
2. In the Preference Editor dialog, select **Viewer** from the **Category** list.
3. Click the checkbox for **Enable Animated Zoom**.
4. Click **User Save** then **Close** in dialog, and go back to the Viewer.
5. Click the **Zoom In By Two** icon.

![Animated zoom icon](image1)

The Viewer zooms into the image in a simulated animation by a factor of 2. The Viewer center is maintained.

6. Click the **Zoom Out By Two** icon.

![Animated zoom icon](image2)

The Viewer zooms out of the image in a simulated animation by a factor of 2. The Viewer center is maintained.

7. Click either the **Interactive Zoom In** or the **Interactive Zoom Out** icon.

![Interactive zoom icons](image3)

8. Click on a location on the image.

The Viewer recenters the image to that location and zooms in or out in a simulated animation by a factor of 2.

Animated zoom also works with View | Zoom | In by X and Out by X.
Box Zoom

Box Zoom is used to select a boxed area in the image. When zooming in or out by using the zoom recentering icons, the boxed image enlarges or reduces within the Viewer.

Prepare

Display `lanier.img` in the Viewer.

1. Select **Session | Preferences**.
2. In the Preference Editor dialog, select **Viewer** from the **Category** list.
3. Click to select **Enable Box Zoom**.
4. Click **User Save** then **Close** in dialog, and go back to the Viewer.
5. Click the Interactive Zoom In icon.
6. Click and drag a box in the image.
 - The selected area of the image is magnified to fit the Viewer.
7. Select the Interactive Zoom Out icon.
8. Click and drag a box in the image.
 - The area displayed in the Viewer is reduced to fit in the box. Space surrounding the reduced image is populated with available imagery.

Real-time Zoom

When you select either of the Interactive Zoom tools, you can zoom into and out of images in real time by holding the middle mouse button and moving the mouse upward and downward over the image.

NOTE: You can also hold down the Control key and press on the left mouse button to zoom in real time.

Prepare

Display `lanier.img` in the Viewer. There is no need to set up a preference for this feature.

1. Select either of the Interactive Zoom icons.
2. Position the cursor in the Viewer, and hold the middle mouse button.
3. Move the mouse forward to zoom in on the image.
 - The image magnifies at a constant rate, depending on how far forward you move the mouse.
4. Hold the middle mouse button and move the mouse backward.
 - The image reduces at a constant rate, depending on how far downward on the image you move the mouse.

Display Two Images

Two or more Viewers can be geographically or spectrally linked so that when you roam in one image, that area is simultaneously displayed in the linked Viewer(s).
Prepare

`lanier.img` should be displayed on top of `lnsoils.img` in a Viewer window, at a magnification of 2.

1. Drag on a lower corner of the Viewer so that it occupies the entire left half of the screen.
2. In the Viewer menu bar, select `View | Split | Split Horizontal`.

 The Viewer is divided in half, horizontally, to form two Viewers.
3. In the tool bar of the new Viewer, click the Open icon.

 The Select Layer To Add dialog opens.
4. In the Select Layer To Add dialog under `Filename`, click on the file `lnsoils.img`.
5. Click on the `Raster Options` tab at the top of the dialog.
6. Confirm that `Zoom by` is set to `1.00`.
7. Click `OK` in the Select Layer To Add dialog.

 The file `lnsoils.img` is displayed in the second Viewer.

Link Viewers

1. In the first Viewer, select `View | Link/Unlink Viewers | Geographical`.

 The Link/Unlink Instructions display.
2. Move your pointer to the second Viewer.
View Menu Options

The pointer becomes a Link symbol.

3. Move the pointer to the first Viewer.

The No Link symbol displays as the cursor in the first Viewer. Clicking in this Viewer discontinues the link operation.

4. To link the Viewers, click anywhere in the second Viewer.

The two Viewers are now linked. A white cursor box opens over the image in the second Viewer, indicating the image area displayed in the first Viewer.

You can move and resize this cursor box as desired, and the image area in the first Viewer reflects each change. This is similar to the magnification box you used earlier.

Compare Images

1. Drag the cursor box in the second Viewer to a new location.

The image area selected in the second Viewer is displayed in the first Viewer.

2. Drag the scroll bars in the first Viewer to roam in the image.

The white cursor box in the second Viewer moves as the image area in the first Viewer changes.

You could also use the Roam icon in the Viewer tool bar to roam over the image. Just move the hand across the Viewer image to change the view.

Unlink Viewers

1. In either Viewer, select View | Link/Unlink Viewers | Geographical to unlink the Viewers.

The Link/Unlink Instructions display.

2. Move the pointer to the other Viewer.
Viewer

The unlink cursor displays.

3. Click anywhere inside the Viewer to unlink the Viewers.

4. In the menu bar of the second Viewer, select File | Close.

 The second Viewer closes.

5. In the first Viewer, select File | Clear to clear the Viewer.

Raster Menu Options

Create an AOI Layer

These options allow you to define an AOI in the image, excluding other parts of the image. Specific processes can be applied to this AOI only, which can save considerable time and disk space. The option to use a specified AOI for processing is available from many dialogs throughout ERDAS IMAGINE.

This exercise tells you how to create an AOI layer that can be saved as a file and recalled for later use.

NOTE: Each Viewer can display only one AOI layer at a time.

Prepare

Display lanier.img in a Viewer. You must have an image displayed in the Viewer to create an AOI layer.

1. Select File | New | AOI Layer from the Viewer menu bar.

 ERDAS IMAGINE creates an AOI layer.

2. Select View | Arrange Layers from the Viewer menu bar to verify that the AOI layer has been created.

 The Arrange Layers dialog opens, and should look similar to the following example:
3. After verifying the creation of the AOI layer, click **Close** in the Arrange Layers dialog. Later, you are asked to name the layer and save it to a file.

Open AOI Tools

1. Select **AOI | Tools** from the Viewer menu bar (or click the Tools icon on the tool bar).

 The AOI tool palette displays.

2. Click on the Rectangle icon in the AOI tool palette.

3. Move the cursor into the Viewer window. Drag and then release to draw a rectangle over the AOI. Include a portion of the water when designating the AOI.

 This signifies that an AOI layer was created

 Click here when you have verified the creation of the AOI layer

 Click to select an AOI

 Click to draw a rectangular AOI

 Click to plant a seed to grow a regional AOI
A rectangular AOI displays in the Viewer.

Selecting AOs

Following are some tips regarding the selection of the AOI:

- You can move the AOI by dragging the AOI to a new location.
- You can resize the AOI by dragging any of the handles at the corners and sides of the bounding box, or by pressing the space bar to enter precise coordinates.
- The x in the center of the bounding box marks the center coordinate of the AOI.

Select Styles

1. Select AOI | Styles from the Viewer menu bar.

The AOI Styles dialog opens.
This dialog enables you to change the style of the AOI display.

2. Experiment in the AOI Styles dialog with the line widths and colors to find a style that looks best on the displayed image.

3. When you are finished, click **Close** in the AOI Styles dialog.

Set Seed Properties

1. Next, select **AOI | Seed Properties** from the Viewer menu bar.

 The Region Growing Properties dialog opens.

 ![Region Growing Properties dialog](image)

 This dialog enables you to define the region that grows from the seed.

2. In the Region Growing Properties dialog, change the **Spectral Euclidean Distance** to 5.00.

3. Click **Set Constraint AOI** in the Region Growing Properties dialog.

 The Choose AOI dialog opens.

4. In the Choose AOI dialog, select **Viewer** under **AOI Source** and then click **OK**.
5. Click the Region Grow AOI icon in the AOI tool palette.

Click this tool to plant seeds, or points in the Viewer, from which to grow a regional AOI. The region grows in the Viewer as an AOI that can be selected.

6. Move the cursor into the Viewer window and click on the water inside the rectangular AOI to indicate where you want the region growing to take place.

A status meter displays in the status bar of the Viewer. You may click Cancel to terminate the region grow process. The meter dismisses when the region growing process is complete. The area you selected in the Viewer is surrounded by a second bounding box and chaser lights.

7. Click Close in the Region Growing Properties dialog.

Save AOI
1. Select File | Save | AOI Layer As from the Viewer menu bar.

The Save AOI As dialog opens. This dialog allows you to save the selected AOIs as a layer (.aoi extension) that can be used again for other functions.

2. Enter a name for the AOI layer under Save AOI as (the .aoi extension is added automatically). Pay special attention to the directory where the file is saved, so you can find the layer later.

If you wanted to save specific AOIs only, you could turn on the Selected Only checkbox in the Save AOI As dialog, and only selected AOIs would be saved to a file.

3. Click OK in the Save AOI As dialog.

This layer can now be used in any dialog where a function can be applied to a specific AOI layer. You can also edit this layer at any time, adding or deleting areas.

Arrange Layers
1. Select View | Arrange Layers from the Viewer menu bar.

The Arrange Layers dialog opens.

2. In the Arrange Layers dialog, right-hold over the AOI Layer and select Delete Layer from the AOI Options menu.

3. Click Apply and then Close in the Arrange Layers dialog.

The file lanier.img is redisplayed in the Viewer without the AOI layer.

Adjust Image Contrast
When images are displayed in ERDAS IMAGINE, a linear contrast stretch is applied to the data file values, but you can further enhance the image using a variety of techniques.

Prepare
The file lanier.img should be displayed in a Viewer.
1. In the Viewer menu bar, select **Raster | Contrast | Brightness/Contrast**.

 The Contrast Tool dialog opens.

2. In the Contrast Tool dialog, change the numbers and/or use the slider bars to adjust the image brightness and contrast.

3. Click **Apply**.

 The image in the Viewer is redisplayed with new brightness values.

4. Click **Reset** and **Apply** in the Contrast Tool dialog to undo any changes made to the Viewer image.

5. Click **Close** in the Contrast Tool dialog.

Use Piecewise Linear Stretches

1. In the Viewer menu bar, select **Raster | Contrast | Piecewise Contrast**.

 The Contrast Tool dialog for piecewise contrast opens.
Viewer

The Contrast Tool

This tool enables you to enhance a particular portion of an image by dividing the lookup table into three sections: low, middle, and high. You can enhance the contrast or brightness of any section using a single color gun at a time. This technique is very useful for enhancing image areas in shadow, or other areas of low contrast.

The brightness value for each range represents the midpoint of the total range of brightness values occupied by that range.

The contrast value for each range represents the percent of the available output range that particular range occupies.

As one slider bar is moved, the other is automatically adjusted, so that there is no gap in the lookup table. This tool is set up so that there are always pixels in each data file value from 0 to 255. You can manipulate the percentage of pixels in a particular range, but you cannot eliminate a range of data file values.

2. With your pointer over the image in the Viewer, right-hold **Quick View | Inquire Cursor**.

The Inquire Cursor dialog opens and an Inquire Cursor is placed in the Viewer.
3. In the Viewer, drag the intersection of the Inquire Cursor to the lake. Move the Inquire Cursor over the water while keeping an eye on the lookup table values in the blue color gun, as reported in the Inquire Cursor dialog.

This gives you an idea of the range of data file values in the water. You can stretch this range to bring out more detail in the water.

4. In the Contrast Tool dialog, click **Blue** under **Select Color**.

5. Under **Range Specifications**, set the **Low** range **From 34 To 55** and press Return on your keyboard.

6. Drag the Brightness slider bar (the top slider bar) to **50**.

7. Click **Apply** in the Contrast Tool dialog.

The water now has more contrast and shows more detail.

If your image is at a magnification of 1, this new detail may be difficult to see. You can zoom in to a magnification of 2 using the **Quick View** menu in the Viewer.

8. In the Contrast Tool dialog, click **Reset** and then **Apply** to return the image to the original lookup table values.

9. Click **Close** in the Contrast Tool dialog.

10. Click **Close** in the Inquire Cursor dialog.

Manipulate Histogram

1. In the Viewer menu bar, select **Raster | Contrast | Breakpoints**.

The Breakpoint Editor opens.
2. Click on the popup list at the top of the Breakpoint Editor and select **Red**.

Each of the three histogram graphics in the Breakpoint Editor can be expanded up to full size by selecting the appropriate histogram from the popup menu at the top of the Break Point Editor. The parts of the histogram graphic are described in the following illustration.
3. Click on the popup list at the top of the Breakpoint Editor and select **RGB**. All three histograms redisplay in the Breakpoint Editor.

4. Experiment by dragging the breakpoints of the lookup table graphs in the different color guns (**Red**, **Green**, and **Blue**).

5. Click **Apply All** in the Breakpoint Editor to view the results of your changes in the image.

6. To undo the edits you just made, select **Raster | Undo** from the Viewer menu bar.

Adjust Shift/Bias

1. In the Breakpoint Editor, click the Shift/Bias icon on the tool bar.

The Shift/Bias Adjustment dialog opens.
The lookup table graph and the output histogram are updated in the Histogram Tool dialog as you manipulate the information in the Shift/Bias Adjustment dialog.

2. In the Shift/Bias Adjustment dialog, drag the **Shift** slider bar to the right.

 Notice that the value in the number field to the left increases as you move the slider bar. This is the number of pixels that the lookup table graph is moved.

3. In the Shift/Bias Adjustment dialog, double-click on the number in the **Shift** number field and change the number field to **20**. Press Enter on your keyboard.

4. In the Breakpoint Editor, click **Apply All**.

 The image is redisplayed using the new lookup table. It is very dark.

5. In the Shift/Bias Adjustment dialog, return the **Shift** value to **0**.

6. In the Breakpoint Editor, click **Apply All** to return the image to its original contrast.

7. Repeat steps (2. through step 6., using the **Bias** option.

8. When you are finished, click **Close** in the Shift/Bias Adjustment dialog.

Use Mouse Linear Mapping

1. In the Breakpoint Editor, click the Red Mouse Linear Mapping icon, which is located on the left border of the **Red** histogram.

 The Red Mouse Linear Mapping dialog opens.
2. In the Red Mouse Linear Mapping dialog, click the **Rotate** button to disable the rotate option.

3. Drag the dot in the center of the grid left or right to shift the red lookup table graph.

4. In the Breakpoint Editor, click the Run icon for the red histogram to update the image in the Viewer.

5. In the Red Mouse Linear Mapping dialog, click the **Rotate** button to turn it on and the **Shift** button to turn it off.

6. Drag the dot in the grid up or down to change the slope of the lookup table graph.

7. Click the Run icon for the red histogram to update the Viewer image.

8. Click **Close** in the Red Mouse Linear Mapping dialog.

9. With your cursor over the red histogram graph, right-hold **Graph Options** | **Undo All Edits**.

10. Click **Apply All** in the Breakpoint Editor to return the Viewer image to its original contrast.

11. Click **Close** in the Breakpoint Editor.

12. Select **File** | **Clear** from the Viewer menu bar.

Linear Mapping

Moving the dot in the center of the grid left and right shifts the lookup table graph in the histogram graphic left or right. Moving the dot up and down rotates the lookup table graph, changing the slope. Up rotates the graph counterclockwise and down rotates the graph clockwise.

As the dot is moved, the numbers on the right side of the dialog are automatically updated. The **Rotate** number reports the angle of the rotation ramp, with 180 being a straight horizontal line and 90 being a straight vertical line. The **Shift** number reports the pixel value at the center of the lookup table graph.
The Raster Editor enables you to edit portions of the displayed image using various tools in the Viewer Raster menu. When a specific raster editing tool is in use, that tool locks the Viewer, therefore, work with one tool must be completed before opening another one.

All of the dialogs that accompany the raster editing tools contain a preview window, which enables you to view the changes you make to the Viewer image before you click Apply.

Prepare (UNIX)

You must have a writable file displayed to use this function. Follow the steps below to create a writable file to work with.

1. In a command window, copy Indem.img to testdem.img by typing the following:

 `cp $IMAGINE_HOME/examples/Indem.img /your directory/testdem.img`

 Press Return on your keyboard.

2. Change read/write permissions by typing the following in the command window:

 `chmod 644 testdem.img`

 Press Return on your keyboard and close the command window.

Prepare (PC)

1. Open the Explorer.

2. Copy Indem.img from the <IMAGINE_HOME>/examples directory to the directory of your choice.

3. Right-click and select Rename to rename the file testdem.img.

4. Right-click on the file, and select Properties.

5. In the Attributes section of the General tab, make sure Read-only is not checked.

6. Click OK in the Properties dialog.

Open the Image

1. Open testdem.img in the Viewer.

 This is a DEM file of the Gainesville, Georgia area, corresponding to the lanier.img data you have been using.

2. If it is not already displayed, select AOI | Tools from the Viewer menu bar to open the AOI tool palette.

 The AOI tool palette displays. The AOI tools are used to define the area(s) to be edited.

3. Click on the Ellipse icon in the AOI tool palette and then drag near the center of the Viewer image to draw an elliptical AOI, measuring about 1” to 2” in diameter.
When the mouse button is released, the AOI is surrounded by chaser lights and a bounding box.

Interpolate

1. In the Viewer menu bar, select **Raster | Interpolate**.

The Interpolate dialog opens.

![Interpolate dialog](image)

Digitize Points

Digitizing points helps you to control the overall surface generated by the raster editing function. However, you should digitize points only when you know the general areas in the AOI that are bad. The Interpolation function uses the data values of the digitized points and the boundary of the AOI to generate a new surface.

1. Click on the Digitize Points icon in the Interpolate dialog, then click on the Lock icon.

2. Click at least 12 times in the AOI in the Viewer to digitize 12 points.
Viewer

The point coordinates display in the CellArray in the Interpolate dialog.

3. When you are finished digitizing points, click the Lock icon in the Interpolate dialog again to disable it.

4. In the Interpolate dialog under **Buffer Points**, enter **25** to allow up to 25 points in the computation.

5. In the Interpolate dialog under **Polynomial Order**, enter **3** to increase the polynomial order of interpolation.

6. Click **Apply** in the Interpolate dialog.

7. An Attention box displays, asking if you want to remove the data stretch lookup table. Click **Yes**.

8. A Warning box displays, suggesting that you recalculate the statistics. Click **OK**.

 The new surface displays inside the AOI.

9. Observe the changes in the AOI and then select **Raster | Undo** from the Viewer menu bar.

 The data values return to the original values. This lets you undo the edit without changing the original data values.

 NOTE: **Undo** works only for the last edit applied.

10. Click **Close** in the Interpolate dialog.

Fill with Value

Set Constant Value

If the area to be edited is a flat surface, you may use a constant value to replace the bad data values.

1. Select **Raster | Fill** from the Viewer menu bar.

 The Area Fill dialog opens.
2. In the Area Fill dialog, click **Apply** to accept the Constant function and its defaults.

The AOI is replaced with a Constant value of zero—the area is black.

3. Select **Raster | Undo** from the Viewer menu bar.

The image returns to the original values.

4. In the Area Fill dialog, enter **1500** in the **Fill With** number field and click **Apply**.

 Now the AOI fill area is white.

5. Select **Raster | Undo** from the Viewer menu bar.

The image returns to the original values.

Set Global Value

1. In the Area Fill dialog, click on the **Function** popup list and select **Majority**.

 This option uses the majority of the pixel values in the AOI to replace all values in the AOI.

2. Click **Apply** in the Area Fill dialog.

The AOI displays the newly generated surface.

3. After observing the changes, select **Raster | Undo** from the Viewer menu bar.

4. Click **Close** in the Area Fill dialog.

5. Select **File | Clear** from the Viewer menu bar.

 Save the AOI layer in the Viewer if you like.
Viewer

Raster Attribute Editor

You can easily change the class colors in a thematic file. Here, you change the colors in **lnsoils.img**.

Prepare

Display **Insoils.img** in a Viewer.

1. In the Viewer menu bar, select **Raster | Attributes**.

 The Raster Attribute Editor opens.

 The **CellArray** in the Raster Attribute Editor is for manipulating the raster attributes and selecting classes to edit. To change the color of a class, you can select that class in two ways:

 • with your cursor in the Viewer, click on the class you want to edit, or
 • with your cursor in the Row column of the Raster Attribute Editor **CellArray**, click the class to edit.

 You use both methods in the following examples.

2. Move your cursor inside the Viewer and click on an area.

 That class is highlighted in yellow in the Raster Attribute Editor **CellArray**, and the current color assigned to that class is shown in the bar underneath the **Color** column.

3. In the **CellArray**, right-hold with your cursor over the **Color** patch for the selected class and select **Other**.

 The Color Chooser dialog opens.
A dot is present on the colorwheel itself, indicating the current color of the selected class. This color is also shown in the preview window in the lower, right corner of the dialog.

4. In the Color Chooser dialog, change the color of the selected class by dragging the dot on the colorwheel to another spot on the colorwheel. Then, click the **Apply** button.

The selected class changes color in both the Viewer image and the Raster Attribute Editor CellArray.

You can also change the class color using any of these methods:

1) enter RGB (red, green, blue) or IHS (intensity, hue, saturation) values in the Color Selector number fields in the Color Chooser dialog, or

2) click the **Standard** tab in the Color Chooser dialog to select from a list of predefined colors, or

3) move the slider bars in the Color Chooser dialog

5. In the Raster Attribute Editor, select **Edit | Undo Last Edit**.

The change you made in step 4. is undone.

6. Click **Close** in the Color Chooser dialog.

7. Select **File | Close** from the Raster Attribute Editor.

Make Layers Transparent

If you have more than one file displayed in a Viewer, you can make specific classes or entire files transparent. In this example, you make the overlaid soils partially transparent so that the Landsat TM information shows through.

1. Display **lanier.img** over **lnsoils.img** in a Viewer. Be sure that the **Clear Display** checkbox is disabled under **Raster Options** when you are in the Select Layer To Add dialog.

2. In the Viewer menu bar, select **View | Arrange Layers**.

The Arrange Layers dialog opens.
3. In the Arrange Layers dialog, drag the **lnsoils.img** box on top of the **lanier.img** box.

4. Click **Apply**, then **Close** in the Arrange Layers dialog.

Edit Raster Attributes

1. Select **Raster | Attributes** from the Viewer menu bar.

 The Raster Attribute Editor displays.

 The objective is to select a class that covers a section of **lanier.img** that you would like to see through **lnsoils.img**. Then, you can make that class transparent.

2. Select the class to become transparent, either by clicking in the Viewer or in the **Row** column of the CellArray.

3. In the Raster Attribute Editor CellArray, right-hold on the color button in the **Color** column of the selected class and drag to select **Other** from the popup list that displays.

 The Color Chooser dialog opens.

4. In the Color Chooser dialog, click on the **Use Opacity** checkbox.

5. At **O** (which stands for Opacity), change the number to **.40** (opacity percentage of 40) using either the number field or the slider bar.

6. Click **Apply** in the Color Chooser dialog.

 The selected color becomes partially transparent, allowing you to see **lanier.img** underneath.

7. Experiment with different ways to change class color and opacity.

8. When you are finished, click **Close** in the Color Chooser dialog.
1. With your cursor in the title bar of the Raster Attribute Editor, drag it to the top of your screen.

2. Drag one of the bottom corners of the Raster Attribute Editor down until all rows of the CellArray are visible.

3. Drag the corners of the Raster Attribute Editor horizontally until all columns are visible.

 NOTE: The CellArray probably occupies most of your screen.

Select Rows

To select one row, simply click in the **Row** column of the desired row. That row is highlighted in yellow. You can select sequential rows by middle-clicking in additional rows. Shift-click in a selected row to deselect a row. You can also select rows using the **Row Selection** menu that opens when you right-hold in the **Row** column.

Select Columns

To select one column, click in the title box of the desired column. That column is highlighted in blue. You can select multiple columns by middle-clicking in the title bar of additional columns. Shift-click in a selected column to deselect it.

Choose Column Options

Many column options are available from the **Column Options** menu, which opens when you right-hold in a column title bar. You can have multiple columns and rows selected at the same time.

You use many of these features in the following steps.

Resize Columns

You can make each column in the CellArray narrower and then reduce the width of the entire dialog, so that it takes up less room.

Edit Column Properties

1. Click on the Column icon in the Raster Attribute Editor.

 ![Column icon](image)

 The Column Properties dialog opens.
2. In the Column Properties dialog, select **Color** under **Columns** and activate the **Show RGB** checkbox.

3. Click **OK** in the Column Properties dialog.

4. In the Raster Attribute Editor, place your cursor on the column separator in the header row between the **Color** and **Red** columns.

 The cursor changes from the regular arrow to a double-headed arrow. You can now change the size of the **Color** column.

5. Drag the double-headed arrow to the right to make the **Color** column wider.

6. Repeat this procedure, dragging the double-headed arrow to the left, to narrow the other columns.

Generate Statistics

1. In the Raster Attribute Editor CellArray, select the entire **Red** column by clicking in the **Red** title box.

 The entire column is highlighted in blue.

2. With your cursor in the **Red** title box, right-hold **Column Options | Compute Stats**.

 The Statistics dialog opens.
The Statistics for the column selected are reported.

Column Statistics

These statistics include:

- **Count**—number of classes selected
- **Total**—sum of column figures (in this example, total area)
- **Min**—minimum value represented in the column
- **Max**—maximum value represented in the column
- **Mean**—average value represented (Total/Count)
- **Stddev**—standard deviation

3. Click **Close** in the Statistics dialog.

Select Criteria

1. In the Raster Attribute Editor CellArray, select the **Class_Names** column by shift-clicking in the **Class_Names** title box.

Now the **Class_Names** and **Red** columns are both selected; both columns are highlighted in blue.

Next, you generate a report that lists all of the classes and the area covered by each. You do not include classes with an area of 0 (zero).

2. With your cursor in the **Row** column (not the header row of the **Row** column), right-hold **Row Selection | Criteria**.

The Selection Criteria dialog opens.
3. In the Selection Criteria dialog under **Columns**, click **Red**.

 \$“Red” is written in the **Criteria** definition box at the bottom of the dialog.

4. Under **Compares**, click \(>\).

5. In the calculator, click **0**.

 The Criteria should now read:

 \$ “Red” > 0

 This criteria selects all classes in the CellArray with an area that is greater than 0.

6. Click **Select** in the Selection Criteria dialog to select these rows in the CellArray.

 All rows except 0, 12, and 34 are selected (i.e., highlighted in yellow). These rows are not selected because the opacity for each of these categories is 0.

7. Click **Close** in the Selection Criteria dialog.

 Generate Report

 1. With your cursor in a **Class_Names** title box, right-hold **Column Options | Report**.

 The Report Format Definition dialog opens.
2. In the Report Format Definition dialog under **Title**, add `for Insoils.img` to the default text string.

3. Under **Header**, add `for Insoils.img` to the default text string.

4. Under **Statistics**, click on each checkbox to include all available statistics in the report.

5. Click **OK** in the Report Format Definition dialog to generate the report.

 A Job Status dialog opens, indicating the progress of the function.

 When the function is complete, the report displays in an IMAGINE Text Editor.
6. To save the report, in the Text Editor menu bar, select **File | Save As**.

The Save As dialog opens.

7. Enter a name for the report, such as **soilsreport.txt**.

8. Click **OK** in the Save As dialog.

The file name is written in the title bar of the Text Editor window.

9. In the Text Editor menu bar, select **File | Close**.

10. Select **File | Close** from the Raster Attribute Editor.

 Save your changes to the Raster Attribute Editor if you like.

11. In the Viewer tool bar, click the Erase icon to clear the window.
Profile Tools

<table>
<thead>
<tr>
<th>Profile Tools</th>
<th>Prepare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ERDAS IMAGINE should be running and a Viewer should be open.</td>
</tr>
</tbody>
</table>

Display Spectral Profile

The spectral profile display is fundamental to the analysis of hyperspectral data sets. As the number of bands increases and the band widths decrease, the remote sensor is evolving toward the visible/infrared spectrometer. The reflectance (DN) of each band within one (spatial) pixel can be plotted to provide a curve approximating the profile generated by a laboratory scanning spectrometer. This allows estimates of the chemical composition of the material in the pixel. To use this tool, follow the steps below.

1. In the Viewer menu bar, select **File | Open | Raster Layer**.

The Select Layer To Add dialog opens.

2. In the Select Layer To Add dialog, select **hyperspectral.img** under **Filename**.

3. Click the **Raster Options** tab at the top of the dialog.

4. In the **Raster Options**, click the **Fit to Frame** checkbox to activate it and then click **OK**.

The file **hyperspectral.img** is displayed in the Viewer.

5. In the Viewer menu bar, select **Raster | Profile Tools**.

The Select Profile Tool dialog opens.

 ![Select Profile Tool](image)

6. Accept the **Spectral** default and click **OK** in the Select Profile Tool dialog.

 The Spectral Profile viewer opens.
7. In the Spectral Profile viewer, click on the Create icon and then select a pixel of interest by clicking it in the Viewer image.

The data for the selected pixel are displayed in the Spectral Profile viewer.

NOTE: The pixel can be moved around the displayed image by dragging it.

Analyze Data

1. In the Spectral Profile viewer menu bar, select **Edit | Chart Options**.

The Chart Options dialog opens.
2. In the Chart Options dialog, click on the **Y Axis** tab at the top of the dialog.

3. Set **Min** to 20 and **Max** to 180 to control the numerical range.

4. Click **Apply** and then **Close** in the Chart Options dialog.

 The selected range is shown in detail in the Spectral Profile viewer.

5. In the Spectral Profile viewer menu bar, select **Edit | Plot Stats**.

 The Spectral Statistics dialog opens.

6. In the Spectral Statistics dialog, change the **Window Size** to 7.

7. Select **Mean** and click **Apply**.

 The mean (within the selected window) of Profile 1 is depicted on the graph.

8. Click **Cancel** in the Spectral Statistics dialog.

9. Select **File | Close** from the Spectral Profile viewer.
Display Spatial Profile

The Spatial Profile display function allows the analyst to view the reflectance(s) of the pixels along a user-defined polyline. The display can be viewed in either two-dimensional (one band) or perspective three-dimensional (multiple bands) mode. To use this tool, follow the steps below.

Prepare

The file `hyperspectral.img` should be displayed in a Viewer, with the Fit to Frame checkbox activated.

1. In the Viewer menu bar, select Raster | Profile Tools.

 The Select Profile Tool dialog opens.

2. Click on the Spatial button in the Select Profile Tool dialog and then click OK.

 The Spatial Profile viewer opens.

Wavelength Axis

Data tapes containing hyperspectral imagery commonly designate the bands as a simple numerical sequence. When plotted using the profile tools, this yields an x-axis labeled as 1, 2, 3, 4, etc. Elsewhere on the tape or in the accompanying documentation is a file which lists the center frequency and width of each band. This information should be linked to the image intensity values for accurate analysis or comparison to other spectra, such as the Spectra Libraries.

To do this, the band position information must be entered into a linkable format, which is an .saf file. An example of this format can be seen by using a texteditor or vi command to view one of the .saf files in `<IMAGINE_HOME>/etc`. Once this file is created, it can be linked with the Spectral Profile by using the Edit | Use Sensor Attributes option.
3. Click on the Polyline icon in the Spatial Profile viewer tool bar and then draw a polyline on the image in the Viewer. Click to set vertices and middle-click to set an endpoint.

![Profile Tools](image)

The spatial profile is displayed in the Spatial Profile viewer.

Analyze Data

1. Select **Edit | Plot Layers** from the Spatial Profile viewer menu bar.

 The Band Combinations dialog opens.

 ![Band Combinations](image)

 Click here and then here to add the layer to the plot

2. Add Layers 2 and 3 to the **Layers to Plot** column by individually selecting them under **Layer** and clicking the Add Selected Layer button.
3. Click **Apply** and then **Close** in the Band Combinations dialog.

 Layers 1, 2, and 3 are plotted in the Spatial Profile viewer.

 NOTE: Moving the cursor around in the Spatial Profile viewer gives you the pixel values for the x and y coordinates of the layers.

4. In the **Plot Layer** box to the right of the tool bar in the Spatial Profile viewer, click on the up arrow to view layers 4 and 5.

5. Select **Edit | Plot Layers** from the Spatial Profile viewer to again bring up the Band Combinations dialog.

6. In the Band Combinations dialog, click the Add All button.

 ![Image](image.png)

 Apply and Close.

 As in the Spectral Profile viewer, you can select **Edit | Chart Options** to optimize the display.

7. Select **File | Close** from the Spatial Profile viewer menu bar.

View Surface Profile

The Surface Profile can be used to view any layer (band) or subset in the data cube as a relief surface. To use this tool, follow the steps below.

Prepare

The file `hyperspectral.img` should be displayed in a Viewer with the **Fit to Frame** checkbox activated.

1. In the Viewer menu bar, select **Raster | Profile Tools**.

 The Select Profile Tool dialog opens.

2. In the Select Profile Tool dialog, click the **Surface** button and then click **OK**.

 The Surface Profile viewer opens.
3. Click on the Rectangle icon in the Surface Profile viewer and then select an AOI in the Viewer by dragging to create a box around it.

When the mouse button is released, the surface profile for the selected area is displayed in the Surface Profile viewer. As with all of the profile tools, selecting **Edit | Chart Options** allows you to optimize the display.

Analyze Data

It may be desirable to overlay a thematic layer onto this surface. For example, a vegetation map could be overlaid onto a DEM surface, or an iron oxide map (Landsat TM3/TM1) onto a kaolinite peak (1.40 µm) layer. In this example, you overlay a true color image.

1. In the Surface Profile viewer, select **Edit | Overlay True Color**.

The Overlay TrueColor on Surface dialog opens.
Viewer

2. In the Overlay TrueColor on Surface dialog, select `hyperspectral.img` under Overlay File.

3. Under Band Combination, enter 55 for Red, 34 for Green, and 2 for Blue.

4. Click OK in the Overlay TrueColor on Surface dialog.

5. When you are finished analyzing the data, select File | Close from the Spatial Profile viewer menu bar.

 For more information on Hyperspectral Image Processing or the Hyperspectral Profile Tools, see "CHAPTER 5: Enhancement" in the ERDAS Field Guide.

Image Drape

It is possible to access the Image Drape utility either through the Tools menu in the ERDAS IMAGINE menu bar or through the Viewer. Here, you access the Image Drape utility via the Viewer.

Prepare

ERDAS IMAGINE should be running and a Viewer should be open.

1. Click the Open icon in the Viewer tool bar.

 The Select Layer To Add dialog opens.

2. In the Select Layer To Add dialog under Filename, select the file `eldodem.img`.

3. Click OK in the Select Layer To Add dialog.

 The file `eldodem.img` displays in the Viewer.
4. Click the Open icon again in the Viewer tool bar.

The Select Layer To Add dialog reopens.

5. In the Select Layer To Add dialog under Filename, select the file \texttt{eldoatm.img}.

6. Click the Raster Options tab at the top of the dialog.

7. In the Raster Options, click the Clear Display checkbox to turn it off. This allows \texttt{eldoatm.img} to display on top of \texttt{eldodem.img}.

8. Click OK in the Select Layer To Add dialog.

 Now, both \texttt{eldodem.img} and \texttt{eldoatm.img} are displayed in the same Viewer, with the \texttt{eldoatm.img} layer on top.

9. Select Utility | Image Drape from the Viewer menu bar.

 An Image Drape viewer displays, with the overlapping images in it.

 \begin{figure}[h]
 \centering
 \includegraphics[width=0.8\textwidth]{image_drape.png}
 \caption{Image Drape}
 \end{figure}

Change Options

1. Select Utility | Options from the Image Drape viewer menu bar.

 The Options dialog opens.
2. Click on the **Background** tab in the Options dialog.

3. In the Background options, hold on the popup list next to **Background Color** and select **Gold**.

4. Click **Apply** in the Options dialog.

 The background of the image in the Image Drape viewer is now gold.

5. Click **Close** in the Options dialog.

Change Sun Position

1. Select **View | Sun Positioning** from the Image Drape viewer menu bar.

 The Sun Positioning dialog opens.

2. In the Sun Positioning dialog, drag the dot to another position on the target. The center of the target indicates the sun position at high noon.

3. Click **Apply** and then **Close** in the Sun Positioning dialog.

 Note how the shadows across the image change to reflect the different sun position you have selected.
Dump Contents to Viewer

1. Select **Utility | Dump Contents to Viewer** from the Image Drape viewer menu bar.

 A second Viewer opens, displaying another view of the image in the Image Drape viewer.

2. Select **File | Close** in the first Viewer to clear it from the screen.

3. Select **View | Link/Unlink with Viewer** from the Image Drape viewer menu bar.

 An instructions box opens, directing you to click in the Viewer to which you want the Image Drape viewer to be linked.

4. Click in the Viewer you just created.

 The viewers are now linked and a Positioning tool displays in the Viewer.

 ![Image Drape Viewer](image)

 NOTE: The bounding box in the Viewer image pictured above is for visual purposes only, and does not actually appear in the Viewer window.

Start Eye/Target

1. To make the Positioning tool easier to see in the Viewer, select **Utility | Selector Properties** from the Viewer menu bar.

 The Eye/Target Edit dialog opens.
2. In the Eye/Target Edit dialog, hold on the **Selector Color** popup list and select a color that displays well in the Viewer image (e.g., Yellow).

3. Click **OK** in the Eye/Target Edit dialog.

 The dialog closes and the color of the Positioning tool is updated to the designated color.

Manipulate the Observer and Field of View

You can manipulate the observer and the observer’s field of view in several ways. See steps (1. through step 3. below to learn how to obtain different views using the Positioning tool and the Position Parameters dialog.

Use the Positioning Tool

1. Click on the Observer Positioning icon in the Image Drape viewer tool bar.

 The Position Parameters dialog opens.

2. Drag on the **Eye** marker of the Positioning tool to change the observer’s point of view in the Image Drape viewer.

 The data in the Position Parameters dialog updates to reflect the changes in the observer’s position. The view in the Image Drape viewer is also updated.
If the image in the Image Drape viewer does not completely refresh when the mouse button is released, click the Update icon.

3. Next, drag on the Target marker of the Positioning tool to change the point of observation in the Image Drape viewer.

 The data in the Position Parameters dialog updates to reflect the changes in the point of observation. The view in the Image Drape viewer is also updated.

4. Change the position of both the observer and the target at once by dragging on the line that connects them in the Viewer.

 The data in the Position Parameters dialog and the Image Drape viewer is updated.

5. In the Image Drape viewer, click the Goto icon to return to the original position of the observer and the target.

 The image and the Positioning tool in the Viewer are updated to their original position. The Position Parameters dialog is also updated.

Use the Position Parameters Dialog

1. In the Position Parameters dialog, change the FOV to 90 and the Roll to 45, then click Apply.

 The image in the Image Drape viewer is updated to reflect this change.

2. In the Position Parameters dialog under Observer Position, enter 3000 in the AGL (Above Ground Level) number field.

3. Click Apply and then Close in the Position Parameters dialog.

 For more information about the Viewer, see "APPENDIX A: Additional Information" on page 595.
Viewer
CHAPTER 2
Image Catalog

Introduction
In this tour guide, you can learn how to:

• set catalog preferences
• create an Image Catalog
• add information to a catalog
• perform queries
• view the information in a catalog
• modify the views/information
• save and restore a specific area of coverage
• archive data
• add custom maps

Approximate completion time for this tour guide is 15 minutes.

Set Catalog Preferences

Prepare
ERDAS IMAGINE should be running. It is not necessary to have a Viewer open.

1. In the ERDAS IMAGINE menu bar, select Session | Preferences.
 The Preference Editor opens.

2. In the Preference Editor under the Category list, select Image Catalog.
 The default preferences for the Image Catalog display.

The following table lists and describes the various catalog preferences.

<table>
<thead>
<tr>
<th>Preference</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalog Directory</td>
<td>The default directory that the catalog uses to save and open catalogs.</td>
</tr>
<tr>
<td>Default Catalog</td>
<td>The name of the catalog that is opened by default when the Image Catalog starts.</td>
</tr>
<tr>
<td>Canvas Backdrop</td>
<td>The backdrop file (ArcInfo coverage) that is displayed when the Graphical Query viewer is initially displayed. This must be one of the files named in catalog.cov.</td>
</tr>
<tr>
<td>Archive Media</td>
<td>The name of the default media used by the archive function of the catalog.</td>
</tr>
</tbody>
</table>
Table 2-1: Image Catalog Preferences (Continued)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Color</td>
<td>The default color used for all of the area outside of the polygons in a coverage, which is assumed to be water.</td>
</tr>
<tr>
<td>Land Color</td>
<td>The default color used to fill the polygons in an area coverage.</td>
</tr>
<tr>
<td>Border Color</td>
<td>The default color used to draw the border around each of the polygons in an area coverage.</td>
</tr>
<tr>
<td>Line Style</td>
<td>The default style used for lines in a line coverage.</td>
</tr>
<tr>
<td>Point Symbol</td>
<td>The default symbol used for points in a point coverage.</td>
</tr>
<tr>
<td>Symbol Color</td>
<td>The default color used for point symbols in a point coverage.</td>
</tr>
<tr>
<td>Symbol Size</td>
<td>The default size of point symbols (in points) in a point coverage.</td>
</tr>
<tr>
<td>Footprint Color</td>
<td>The default color used for image footprints.</td>
</tr>
<tr>
<td>Footprint Selected Color</td>
<td>The default color used for selected image footprints.</td>
</tr>
<tr>
<td>Footprint Fill Style</td>
<td>The default style used to fill image footprints.</td>
</tr>
<tr>
<td>Show Map Grid</td>
<td>Used to control the display of the map grid at startup.</td>
</tr>
<tr>
<td>Grid Color</td>
<td>The default color used for the Lat/Lon grid.</td>
</tr>
<tr>
<td>Show Grid Labels</td>
<td>Used to control the display of the text grid labels.</td>
</tr>
<tr>
<td>Grid Label Color</td>
<td>The default color used for the map grid text labels.</td>
</tr>
<tr>
<td>Level of Detail</td>
<td>Maximum level of detail to use when displaying maps (e.g., local, global).</td>
</tr>
<tr>
<td>Show Map Outlines</td>
<td>Enable to display the map outlines at startup.</td>
</tr>
<tr>
<td>Map Outline Color</td>
<td>The default color used to display the map outlines.</td>
</tr>
<tr>
<td>Map Outline Style</td>
<td>The default line style used for the map outlines (e.g., solid, dashed).</td>
</tr>
<tr>
<td>Restore Directory</td>
<td>The default destination directory for restoring an image.</td>
</tr>
</tbody>
</table>

3. Make any changes you wish to the catalog preferences by entering the new information in the fields and pressing Return on your keyboard.

4. To save your changes and accept them as the new defaults, click **User Save**.

5. Click **Close** on the Preference Editor dialog to close the Preference Editor.

Create an Image Catalog

Prepare

ERDAS IMAGINE should be running.

1. Click the Catalog icon in the ERDAS IMAGINE icon panel.

The default Image Catalog opens.
NOTE: You can specify a default catalog via Session | Preferences in the ERDAS IMAGINE menu. More information on how to do this is located in the “Set Catalog Preferences” section of this tour guide.

For the following example, however, use the default catalog which is distributed with ERDAS IMAGINE.

Add Information

1. Select Edit | Catalog Image or click on the Add Image icon in the Image Catalog tool bar.

The Catalog Image dialog opens.

2. In the Catalog Image dialog file list, select 30meter.img.
3. Click **Add**, and then **Close** in the Catalog Image dialog.

30meter.img is recorded in the Image Catalog.

*NOTE: If you were to select *30meter.img* and then select **Add All**, all files with an .img extension would be added to the Image Catalog.*

Perform Graphical Queries

Prepare

The Image Catalog should be open and it should contain the images in the `<IMAGINE_HOME>/examples` directory.

1. Select **View | Graphical Query Viewer** or click the Visual Query icon in the Image Catalog tool bar.

The Graphical Query viewer opens.

Select Area

First, select an area of the map in which you want to query the images, and then you run the query.

1. Click the Select Area for Zooming icon in the Graphical Query viewer tool bar.

The pointer becomes a crosshair.

2. With the crosshair, draw a bounding box that covers the entire continental United States.

When the mouse button is released, the United States is magnified in the Graphical Query viewer. Note that more detail is presented as the backdrop is zoomed.
Run Query

1. Click the Query icon in the Graphical Query viewer tool bar.

The files of images located within the designated query area (the continental US) are highlighted in yellow in the Image Catalog. Tiny rectangles on the map in the Graphical Query viewer mark the location of these images.
2. Click the Zoom In icon in the Graphical Query viewer tool bar.

3. Place the Zoom In tool over one of the black dots in the map in the Graphical Query viewer and click until the dot is magnified to a yellow box.

4. Click the Select icon in the Graphical Query viewer tool bar.

5. With the Select tool, click on the yellow box you just magnified. Note that all of the other images located in the Graphical Query viewer are characterized by red boxes.

The corresponding filename is highlighted in the Image Catalog.

6. Click the Display Single icon in the Image Catalog tool bar.

The selected image displays in a Viewer.

7. Repeat steps 2. through 6., selecting a red box on the map to display another image. Note that when the box is selected, it turns yellow.

If necessary, click the Roam icon in the Graphical Query viewer tool bar, and then drag the image in the Graphical Query viewer to manipulate the image view. (If you reset the display, be prepared to start back at step 1. in "Select Area")

NOTE: Magnified boxes that are deselected are red in color; selected boxes are yellow.

8. In the Image Catalog tool bar, click the Display Another icon to display the image you selected in step 7. in a second Viewer.
Perform Graphical Queries

View Information

1. To view all of the information for the image in your first Viewer in one convenient form, highlight that file in the Image Catalog by clicking on the Record number of that file.

 The file is highlighted in yellow.

2. In the Image Catalog dialog, select View | Form View or click the Catalog Default icon.

 ![Form View Icon]

 The Form View dialog opens, listing the characteristics of the file you selected.

3. In the bottom left corner of the Form View dialog, there are up and down arrows. Click twice on the down arrow, noting that the information in the Form View dialog corresponds with the highlighted file in the Image Catalog.

4. Click Close to close the Form View dialog.

5. Another way to view information on individual files is to use the ImageInfo dialog. Select View | Image Info from the Image Catalog or click the Info icon.

 ![Image Info Icon]

 The ImageInfo dialog opens.

Modify Views

1. In the Graphical Query viewer, select File | Area Definition.

 The Area Definition dialog opens.
The Area Definition dialog lets you store the extent of particular areas of interest for quick retrieval. For example, if your study area covers the states of North and South Dakota, you could save a view of just that area. You can either enter the coordinates manually into the Area Definition dialog, or you can select an area by drawing a box in the Graphical Query viewer.

The upper left and lower right coordinates are the coordinates of the area currently viewed in the Graphical Query viewer. You can save these coordinates to a bounding box file (.bbox).

2. Click **Save** in the Area Definition dialog.

The Defined Areas dialog opens.

3. In the Defined Areas dialog under **Filename**, enter the name **USA** in the directory of your choice and then click **OK**.

4. Click **Cancel** in the Area Definition dialog to close it.

5. In the Graphical Query viewer, click the Roam icon and then drag on the image to view a different area.

6. In order to recall the view you saved as **USA.bbox**, select **File | Area Definition** in the Graphical Query viewer, and then click **Open** in the Area Definition dialog.

 The Defined Areas dialog opens.

7. In the Defined Areas dialog under **Filename**, click on **USA.bbox**.
Archive Data

8. Click **OK** in the Defined Areas dialog.
 The Defined Areas dialog closes and the coordinates in the Area Definition dialog change.

9. Click **Apply** and then **Cancel** in the Area Definition dialog.
 The Graphical Query viewer redisplays the view you saved as **USA.bbox**.

Archive Data

The following steps detail how data are archived.

⚠️ *You must have a non-rewinding tape device already configured in order to archive data.*

1. Select the image in the Viewer by clicking on its **Record** number in the Image Catalog.
 The file is highlighted in yellow.

2. In the Image Catalog, select **File | Archive**, or click on the Archive icon in the tool bar.

 The Archive dialog opens.
Follow steps (3. through (6. for initial setup only.

3. In the Archive dialog, click **Log New Tape in Database** to set up the tape to be used.

4. Click on the **Media Type** popup list and select either **tape_8mm** or **tape_exabyte**.

5. Enter the **Location** of the tape. This is simply a note to yourself, indicating where you store the tape or which tape you are using (e.g., top shelf or tape #16).

6. Click **Log Tape in Database** to add this tape to the list of available tapes. A message displays with the identification number that should be placed on the tape for later retrieval. The new tape number is displayed in the scrolling list of available tapes.

7. Click the tape from the list.

8. Click **Device** to select the actual tape device to which you archive. A list of configured tape devices displays.

9. In the Select Configured Devices dialog, click the device to which you archive. It must be configured as a non-rewinding device.

10. Click **Select** to select the device.

11. In the Archive dialog, click **Archive** to archive the selected image.

12. You are instructed to place the selected tape in the selected device. Click **Continue** when the tape is loaded.

You are informed when the process is complete.

NOTE: For subsequent images, omit steps (3. through (6.)
For more information about the Image Catalog, see "APPENDIX A: Additional Information" on page 595.
CHAPTER 3
Map Composer

Introduction
The ERDAS IMAGINE Map Composer is an editor for creating cartographic-quality maps and presentation graphics. Maps can include single or multiple continuous raster layers, thematic (GIS) layers, vector layers, and annotation layers.

Map Composer’s extensive annotation capabilities allow you to automatically generate text, legends, scale bars, grid lines, tick marks, borders, symbols, and more. You can select from over 16 million colors, multiple line styles, and over 60 text fonts.

Approximate completion time for this tour guide is 40 minutes.

Create a Map
In this tutorial, you create a map using the file modeler_output.img in the <IMAGINE_HOME>/examples directory. This file contains SPOT panchromatic data overlaid with an environmental sensitivity analysis file.

In creating this map, you use these basic steps:

• plan the map
• start Map Composer
• prepare the data layers
• draw the map frame
• add a neatline and tick marks
• make scale bars
• create a legend
• add a map title
• place a north arrow
• write descriptive text
• print the map

This tour guide also contains information about editing map frames, deleting map frames, and editing map compositions.
Map Composer

Start Map Composer Prepare

You must have ERDAS IMAGINE running.

1. Start Map Composer by clicking the Composer icon on the ERDAS IMAGINE icon panel.

The Map Composer menu displays.

2. In the Map Composer menu, select New Map Composition to create a new map composition.

You can also create a new composition by selecting File | New | Composition from the Viewer menu bar.

The New Map Composition dialog opens.
3. In the New Map Composition dialog under **New Name**, type a unique name for your map (such as *tour.map*). Be sure that you have write permission in the directory where you are creating the new map.

4. Drag across the value in **Map Width** to select it.

5. Type **7.5** and then press the Return key on your keyboard.

6. Drag across the value in **Map Height** to select it.

7. Type **10.0** and then press the Return key on your keyboard.

 Most printers have a small margin on all sides of a sheet that are unprintable. Therefore, even though you output your map to 8.5” × 11.0” paper, you must specify a smaller size here for the actual live area of the map. This ensures that no part of the map occupies that unprintable area, and it leaves a margin around the edge of the composition.

8. Accept the **Display Scale 1** of **1.00** and **inches** for the **Units**.

9. Click **OK** in the New Map Composition dialog.

 A blank Map Composer viewer displays along with the Annotation tool palette.

 NOTE: The tool palette that displays on your screen may look different from the following one, depending upon your ERDAS IMAGINE preferences.

10. With your cursor in the Map Composer viewer, right-hold **Fit Map To Window** from the **Quick View** menu so that you can see the entire map composition page.
Map Composer

Prepare the Data Layers

You must determine what data layer(s) you are going to use in your composition and then display the layer(s) in a Viewer window. In this exercise, you use `modeler_output.img` from the `<IMAGINE_HOME>/examples` directory.

Prepare

ERDAS IMAGINE must be running, and you must have a Viewer and a Map Composer viewer open.

1. In the Viewer, click the Open icon on the tool bar or select `File | Open | Raster Layer` from the menu bar.

The Select Layer To Add dialog opens.

2. In the Select Layer To Add dialog under `Filename`, click on `modeler_output.img`. Be sure that the source directory is `<IMAGINE_HOME>/examples` (the default).

3. Click on the `Raster Options` tab and then select the `Fit to Frame` option so that you can see the entire file and can more easily select the area to include in the map.

4. Click `OK` in the Select Layer To Add dialog.

Draw the Map Frame

You can now begin creating your map composition. The first step in creating your map is to define the map frame.
Prepare

A Viewer must be open, with the data layer you want to use in your composition displayed in it. You must also have an open Map Composer viewer.

1. From the Annotation tool palette, click the Map Frame icon to draw the boundary of the map frame.

2. Near the top of the Map Composer viewer, Shift-drag your cursor downward at an angle to draw the map frame. You position and size the map frame later.

 NOTE: Pressing the Shift key while drawing the map frame allows you to draw a perfect square.

When the mouse is released, the Map Frame Data Source dialog opens.
3. In the Map Frame Data Source dialog, click the **Viewer** button to select the source image from the Viewer.

 The Create Frame Instructions dialog displays.

4. Click anywhere in the image in the Viewer to reference the displayed image to the new map frame.

 The Map Frame dialog opens, giving you options for sizing, scaling, and positioning the map frame.

A cursor box also displays in the Viewer. This cursor box allows you to select the area you want to use in the map composition.
You can move the map frame in the Map Composer viewer window and the cursor box in the Viewer by dragging and resizing them with the mouse, or you can move one or both boxes by manipulating the information in the Map Frame dialog. You can also rotate the box in the Viewer if you want to change the orientation.

Next, you move the map frame by setting parameters in the Map Frame dialog. Then you can select the image area you like by using the mouse to move the cursor box in the Viewer.

The three buttons at the top of the Map Frame dialog allow you to adjust two parameters while keeping the other frozen. Start by selecting the size of the map frame (Change Scale and Frame Area), and then freeze that option to select the scale and position of the map frame (Change Scale and Map Area).

Your map frame is positioned according to the following illustration:

1. In the Map Frame dialog, click the Change Map and Frame Area (Maintain Scale) option so that you can accurately size the map frame in the Map Composer viewer window.

2. In the Map Frame dialog, double-click on the value in Frame Width to select it.

3. Type 5.5 for the width of the map frame and then press the Return key on your keyboard.

4. Double-click on the value in the frame Height (to the right of Frame Width) to select it.

5. Type 5.5 for the height of the map frame and then press the Return key on your keyboard.
Map Composer

Adjust the Position of the Map Frame

1. In the Map Frame dialog, click the **Change Scale and Map Area (Maintain Frame Area)** option so that you can select a map area in the Viewer without losing the dimensions of the map frame in the Map Composer viewer.

2. In the Map Frame dialog, under **Upper Left Frame Coordinates**, change the Y value to **9.0**. Press Return on your keyboard.

3. Double-click on the value in **Scale 1** to select it.

4. Type **50000**. Press Return on your keyboard.

5. With your cursor inside the cursor box in the Viewer, drag the cursor box to the area you want to display in the map composition.

6. When the cursor box is positioned to your satisfaction, click **OK** in the Map Frame dialog to reference that portion of the image to the map composition.

 The image area that you selected in the Viewer is now displayed in the map frame in the Map Composer viewer.

7. To enlarge the image in the Map Composer viewer, drag on the corners of the Map Composer viewer to enlarge it, and the right-hold to select **Fit Map To Window** from the Quick View menu.
8. You are now finished with the Viewer, so select **File | Close** from the Viewer menu bar to close it.

Choose Your Path

- If you are satisfied with your map frame and the image area you have selected, proceed to Add a Neatline and Tick Marks on page 83.
- If you want to edit your map frame or change the image area you selected, proceed to “Edit the Map Frame”.

Edit the Map Frame

The Map Composer is very flexible in allowing you to place a map frame in a composition based on scale, image area, etc. Once you have placed a map frame in a composition, you can move it, change the size of it, and change the image area within it.

Warning

If you want to change the image you are using, you must delete the map frame and redraw it or edit the .map file.

Choose Your Path

- To edit the map frame, proceed with this section.
- To delete the map frame, proceed to Delete the Map Frame on page 82.
- To edit the .map file, proceed to Edit Composition Paths on page 97.
Map Composer

1. To edit a map frame, click the Select Map Frame icon in the Annotation tool palette.

2. Click in the map frame you want to edit to select it.

3. In the Map Composer viewer, select **Annotation | Element Properties** or double-click in the map frame.

 A new Viewer opens, with the image you are using displayed. A white cursor box indicates the area currently in the map frame. The Map Frame dialog also opens, displaying the settings you originally entered to position and size the map frame.

4. Change the information in the Map Frame dialog and/or move the cursor box in the Viewer.

5. Click **OK** in the Map Frame dialog when you are satisfied with the map frame.

6. Select **File | Close** from the Viewer menu bar.

Delete the Map Frame

If you want to delete the map frame altogether, follow the next series of steps.

Deleting a map frame cannot be undone.

Prepare

You must have your map composition open.

1. In the Map Composer viewer menu bar, select **View | Arrange Layers**.

 The Arrange Layers dialog opens.

 Press the third mouse button to delete this map frame

 Click here to delete the map frame
2. In the Arrange Layers dialog, move your pointer to the box titled `MapFrame__modeler_output.img` and right-hold to select `Delete Layer` from the Frame Options popup list.

3. In the Arrange Layers dialog, click `Apply` to delete the map frame.

4. Click `Close` in the Arrange Layers dialog.

You are now ready to redraw the map frame. Return to Draw the Map Frame on page 76.

Add a Neatline and Tick Marks

Now, add a neatline and labeled tick marks around the image in the map composition.

Neatlines and Tick Marks

- A neatline is a rectangular border around a map frame.
- Tick marks are small lines along the edge of the map frame or neatline that indicate regular intervals of distance. Tick marks are usually labeled in meters, feet, or other units.

The Map Composer allows you to generate a neatline and labeled tick marks at the same time. A set of these elements for a map frame is actually a group of line and text elements that is automatically generated to your specifications. (You can also generate grid lines in the same step, but grid lines are not included in this map.)

Prepare

You must have a Map Composer viewer open containing a map frame referenced to a georeferenced image in order to generate georeferenced tick marks. The Annotation tool palette must also be open.

1. If you have not already done so, right-hold `Fit Map To Window` in the Map Composer viewer so that you can see the entire map composition page.

2. Click the Grid/Tick icon on the Annotation tool palette.

3. Click on the image inside the map frame on which you want to place the neatline and tick marks.

The Set Grid/Tick Info dialog opens.
4. Accept the default of **Neat line** to put a neatline around the map and leave the **Margin** at 0 so that the neatline fits to the edge of the map frame.

5. In the **Horizontal Axis** options, drag across the **Length Outside** field to select it.

6. Type a tick length of **0.06**. Press Return on your keyboard.

 Tick marks extend 0.06” outside of the map frame.

7. Drag across the **Spacing** field to select it.

8. Type **5000**. Press Return on your keyboard.

 The **Number of lines** is about 4, indicating that there are 4 horizontal tick marks (depending on the actual image area you selected).

9. Click the **Copy to Vertical** option to apply these settings to the vertical axis.

 The same settings are applied to the vertical axis.

10. Click the **Vertical Axis** tab to verify neatline and label information for the vertical axis.

11. Click **Apply** in the Set Grid/Tick Info dialog to place the neatline and tick marks on the map.

12. If you are satisfied with the appearance of the neatline, click **Close** in the Set Grid/Tick Info dialog. Otherwise, you may make adjustments in the Set Grid/Tick Info dialog and click **Redo** to apply them. Your map should look similar to the following:
Add a Neatline and Tick Marks

The text and line styles used for neatlines, tick marks, and grid lines depend on the default settings in the Styles dialog. You can either set the styles before adding this annotation to your map, or you can change the styles once they are placed in the map.

Next, set the line style to 1 point for the neatline and tick marks, and the text size to 10 points for the tick labels.

1. Select the group of ticks, tick labels, and the neatline by clicking on any of the number labels outside of the map frame.

 A selection box displays around the entire group.

2. From the Map Composer viewer menu bar, select **Annotation | Styles**.

 The Styles dialog opens.

 ![Styles dialog](image)

 Hold on this popup list to select Other
3. In the Styles dialog, hold on the popup list next to **Line Style** and select **Other**.

The Line Style Chooser dialog opens.

4. In the Line Style Chooser dialog next to **Width**, enter **1.00** to change the width in points.

5. Click **Apply** and then **Close** in the Line Style Chooser dialog.

The group redraws with the new line width.

6. In the Styles dialog, hold on the popup list next to **Text Style** and select **Other**.

The Text Style Chooser dialog opens.

7. In the Text Style Chooser dialog, verify that the **Size** is **10.00**.

8. Click **Apply** and then **Close** in the Text Style Chooser dialog.

9. Deselect this annotation group by clicking anywhere in the map composition window outside of the selection box.

10. Click **Close** in the Styles dialog.
A scale bar indicates the scale of the image on the map. You can create one scale bar, or several, showing the scale in different units. A scale bar is actually a group of elements that is automatically generated to your specifications.

In this section, place two scale bars in your map composition, showing scale in kilometers and miles. Then center them under the map frame.

You can create scale bars only for map frames containing georeferenced data.

Prepare

You must have a map composition open and it must contain georeferenced data. The Annotation tool palette must also be open.

1. To place scale bars, select the Scale Bar tool from the Annotation tool palette.

2. Move the cursor into the Map Composer viewer and the cursor changes to the scale bar positioning cursor.

3. Drag the mouse to draw a box under the right corner of the map frame in the Map Composer viewer, outlining the length and location of the scale bar(s).

 You can change the size (length) and location later, if needed.

 When you release the mouse button, the Scale Bar Instructions dialog is activated.

4. Follow the instructions in the Scale Bar Instructions dialog by clicking in the map frame to indicate that this is the image’s scale you are showing.

 The Scale Bar Properties dialog opens.
5. In the Scale Bar Properties dialog under **Units**, select **Kilometers** and **Miles** by clicking the appropriate checkboxes.

6. Set the **Maximum Length** to **2.0** inches. Press Return on your keyboard.

7. Click **Apply** in the Scale Bar Properties dialog.

 The scale bars display where you drew the box in the Map Composer viewer.

8. If you are satisfied with the appearance of the scale bar, click **Close** in the Scale Bar Properties dialog. Otherwise, you may make adjustments in the Scale Bar Properties dialog and click **Redo** to apply them.

Reposition Scale Bars

1. If you need to move the scale bars, first select them by clicking on one of the scale bars. To move, simply drag the selection box to the desired position. Remember to click outside the selection box to deselect the scale bars.

Create a Legend

A legend is a key to the colors that are used in a map. Legends created in the Map Composer are actually groups of elements that are generated automatically to your specifications.

Next, you create a legend explaining the four colors used in the overlaid environmental sensitivity analysis.

Prepare

You must have a map composition open that contains thematic data. The Annotation tool palette should also be open.

1. Click on the Legend icon in the Annotation tool palette.
2. Move the cursor into the Map Composer viewer and the cursor changes to the legend positioning cursor.

3. Click in the Map Composer viewer under the left side of the map frame to indicate the position of the upper left corner of the legend.

4. Click in the map frame to indicate that this is the image you want to use to create the legend. You are reminded to do this with the following dialog:

The Legend Properties dialog opens, with the **Basic** properties displayed. The class names are listed under **Legend Layout**.

5. Under **Legend Layout**, click in the **Class_NAMES** field (entitled **Class_5**) of Row number 6.

6. Type **SPOT Panchromatic**. Press Return on your keyboard.

7. Under **Legend Layout**, move your cursor to the **Row** column and click on **Row 2**, then middle-click on **Row 6** to select the classes to display in the legend.

 Rows 2 and 6, and the rows in between them are highlighted in yellow. These are the only entries that are used in the legend.
8. In the Legend Properties dialog, click the **Title** tab at the top of the dialog.

9. Click on the **Title Alignment** popup menu and select **Left-Justified**.

10. In the Legend Properties dialog, click **Apply**.

 The legend is drawn in the Map Composer viewer.

11. If you are not satisfied with the appearance of your legend, you may make adjustments in the Legend Properties dialog and click **Apply** or **Redo** to apply them.

12. Click **Close** in the Legend Properties dialog when finished.

Reposition Legend

1. If you wish to reposition the legend, click on any of the color patches or text strings in the legend to select it. To move, hold and drag the selection box to the desired position. Remember to click outside the selection box to deselect the legend.

Add a Map Title

Prepare

You must have a map composition and the Annotation tool palette open.

1. Click on the Text icon in the Annotation tool palette.

2. Move your cursor to the top of the map in the Map Composer viewer. The cursor becomes an I-beam, indicating that you are placing text.
3. Click where you want to place the text. The spot where you click is the bottom left corner of your text string.

The Annotation Text dialog opens.

4. Move your pointer into the **Enter Text String** area in the Annotation Text dialog.

5. Type **Environmental Sensitivity Analysis** in the text field.

6. Click **OK** in the Annotation Text dialog to place the text in the map composition.

The text string is now displayed in the map composition.

Change Text Style

1. Click on the text string in the Map Composer viewer to select it.

2. From the Map Composer menu bar, select **Annotation | Styles**.

 The Styles dialog opens.

3. In the Styles dialog, hold on the popup list next to **Text Style** and select **Other**.

 The Text Style Chooser dialog opens.

4. In the Text Style Chooser dialog, change the text **Size** to **20** points.

 The preview window at the bottom right corner of the Text Style Chooser dialog illustrates the change in point size.

5. In the Text Style Chooser dialog, click on the **Custom** tab.

6. In the scrolling list of font names, scroll to the top of the list and select **Antique-Olive**.

 The preview window at the bottom right corner of the dialog illustrates the selected font.

7. Click **Apply** in the Text Style Chooser dialog to change the selected text in the map composition.

8. Click **Close** in the Text Style Chooser dialog if you are satisfied with your changes.
Map Composer

Position Text

1. Double-click on the text string you just edited.

The Text Properties dialog opens, which allows you to edit, position, and align the text.

2. In the Text Properties dialog, under Position, drag across the X value to select it.

3. Type \(\frac{7.5}{2} \) to calculate the center of the map. Press Return.

 The value 3.75 is returned.

4. Change the Y value to 9.5 and press Return on the keyboard.

5. Under Alignment, the Vertical default should be Bottom. Click the Center radio button under Horizontal. This indicates that position \(3.75 \times 9.5 \) (that you just entered) is to be the bottom center of the text string.

6. Click Apply in the Text Properties dialog to center the text.

7. Click Close in the Text Properties dialog.

8. Deselect the text by clicking elsewhere in the background of the Map Composer viewer.

Place a North Arrow

Map Composer contains many symbols, including north arrows. These symbols are predrawn groups of elements that are stored in a library. Other symbols include school, church, marsh, landmark, and many others.
Place a North Arrow

Prepare
You must have a map composition and the Annotation tool palette open.

1. If the Styles dialog is not currently open, select Annotation | Styles from the Map Composer menu bar.

 The Styles dialog opens.

 ![Styles dialog](image)

 Hold on this popup list to select Other

2. In the Styles dialog, hold the popup list next to Symbol Style and select Other.

 The Symbol Chooser dialog opens.

 ![Symbol Chooser dialog](image)

 Click here to select from a list of north arrows

 Select this north arrow

 Change the size here

3. In the Symbol Chooser dialog, click on the popup list and select North Arrows.

4. Select north arrow 4 from the North Arrows list.

 The preview window at the bottom right corner of the Symbol Chooser dialog displays north arrow 4.

5. In the Symbol Chooser dialog, change the Size to 36 points (a size of 72 points is equal to one inch), and press Return on the keyboard.

 The preview window at the bottom right corner of the Symbol Chooser dialog displays the north arrow as it looks in the map composition.

6. Click Apply and then Close in the Symbol Chooser dialog to make this the default symbol.

 Note that the North Arrow is now the default symbol for Symbol Style in the Styles dialog.
7. Select the Symbol tool from the Annotation tool palette.

8. In the Map Composer viewer, click under the map image, between the legend and the scale bars. The north arrow is placed on your composition. You can reposition it by clicking on it to select it, then dragging it to the new position.

You can also double-click on a selected symbol to bring up the Symbol Properties dialog. Here, you can enter size and positioning measurements.

Write Descriptive Text

You can add descriptive text to your map to provide more information. The steps below include the instructions for adding two lines of text. However, you may add more if you like.

Prepare

You must have a map composition and the Annotation tool palette open.

1. If the Styles dialog is not currently open, select **Annotation | Styles** from the Map Composer menu bar.

The Styles dialog opens.

2. In the Styles dialog, hold on the **Text Style** popup list and select **Other**.

The Text Style Chooser dialog opens.

3. In the Text Style Chooser dialog, change the text **Size** to **10** points.

4. Click on the **Custom** tab at the top of the Text Style Chooser dialog.

5. Check to be sure that **Fill Style** is set to **solid black**.

6. Click **Apply** to change the defaults.

7. Click **Close** in the Text Style Chooser dialog and in the Styles dialog.

Place Text

1. Click on the Text icon in the Annotation tool palette to use the text option to write descriptive text.

2. Click in the bottom right side of the map composition to indicate where you want to place the text.

The Annotation Text dialog opens.

3. Move your pointer into the Annotation Text dialog and type the following lines under **Enter Text String**. At the end of the first line, press Return to left-align the text.
San Diego, California
Environmental Sensitivity Analysis

You may click the ASCII File button to import the text from an existing ASCII text file.

4. Click OK in the Annotation Text dialog to place the text.
 The Annotation Text dialog automatically closes.

Save the Map Composition

1. Save your map composition by clicking the Save icon in the Map Composer tool bar.

 You can also save a composition by selecting File | Save | Map Composition from the Map Composer menu bar.

Print the Map Composition

ERDAS IMAGINE supports many output devices, including electrostatic plotters, continuous tone color printers, and PostScript devices. The printers you can use vary depending on your system configuration. These steps illustrate how to print to a PostScript printer.

1. Click on the Composer icon from the ERDAS IMAGINE icon panel.

 The Map Composer menu displays.

2. Select Print Map Composition from the Map Composer menu, or select File | Print from the Map Composer viewer menu bar.

 The Compositions dialog opens.
3. Under **Filename**, click on the name of the map you previously created.

4. Click **OK** in the Compositions dialog.

The Print Map Composition dialog opens.

5. Click on the **Print Destination** popup list to select the printer you want to use.

 If you do not have any output devices configured, you can output your map to an ERDAS IMAGINE image file (.img extension), and display it in a Viewer. When displaying maps converted to image format, assign bands 1, 2, 3 to R, G, B, respectively, in the Select Layer To Add dialog. This gives you an idea of what the map looks like if it is printed.

6. For this exercise, select **EPS File** in the **Print Destination** popup list to create an encapsulated PostScript file. This file can be sent to a PostScript printer using the standard file print command for your platform.

7. Click **OK** to print the map composition.
Edit Composition Paths

This section describes how to edit a map composition when you want to use another image in an existing map frame, or if the original image you used has been moved to another directory.

.map File

When you create a map or a graphic using Map Composer, a file is created with the .map extension. This file contains all of the specifications for your composition, such as size, position of the image, name of the image, annotation, etc. When you display or print a map composition, the software reads this .map file and recreates the map you originally composed.

So, although you place an image in a composition, you are actually only referencing it. The name of the image you are using is listed in the .map file. Therefore, when that image is enhanced or changed in any way, the image in the map composition also changes because it is the same image.

It is necessary to edit a .map file if you wish to move an image that has been used in a map composition to a new directory.

Editing Annotation

The annotation in a map composition can be edited interactively with the Annotation tools in the Annotation tool palette, using the same methods you used to place the annotation when you originally created the map.

Prepare

You must have a saved map composition (.map file).

1. Click the Composer icon on the ERDAS IMAGINE icon panel.

The Map Composer menu displays.

Click here to edit the composition

Map Composer

New Map Composition...
Open Map Composition...
Print Map Composition ...
Print Plot File ...
Edit Composition Paths ...
Map Series Tool ...
Map Database Tool ...
Close Help
Map Composer

2. In the **Map Composer** menu, select **Edit Composition Paths**.

 The Map Path Editor displays.

3. In the Map Path Editor, select **File | Open** or click the Open icon.

 The Compositions dialog opens.

4. In the Compositions dialog under **Filename**, select the map file you wish to edit (e.g., `tour.map`).

5. Click **OK** in the Compositions dialog.

 The information for the selected map file displays in the Map Path Editor.

6. In the Map Path Editor under **Frame**, click `MapFrame_modeler_output.img`.

 The type of **Layer** and **Layer Information** displays for the image. Note the path name for this image (located under **Layer Information** in the **Name** section).

7. Under **Frame**, click on **Composition**.

8. Under **Layer Information**, type the new file name or directory name in the **Name** text entry field.

9. Click **Apply** in the Map Path Editor.

 The changes you made are applied to the map composition.

*After you make each individual edit to each frame or layer, you must click **Apply**.*
10. If you do not want the changes you have just made, click the Reset button.

11. When you are satisfied with your changes, save the file by selecting File | Save from the Map Path Editor menu bar.

[For more information about cartography, see "CHAPTER 12: Cartography" of the ERDAS Field Guide.]

[For more information about the Map Composer, see "APPENDIX A: Additional Information" on page 595.]
Map Composer
CHAPTER 4
Classification

Introduction
Classification is the process of sorting pixels into a finite number of individual classes, or categories of data based on their data file values. If a pixel satisfies a certain set of criteria, then the pixel is assigned to the class that corresponds to that criteria.

In this tour guide, you perform a basic unsupervised classification of an image file (.img).

⚠️ All of the data used in this tour guide are in the <IMAGINE_HOME>/examples directory. You should copy the germtm.img file to a different directory so that you can have write permission to this file.

Approximate completion time for this tour guide is 20 minutes.

Use Unsupervised Classification
This section shows you how to create a thematic raster layer by letting the software identify statistical patterns in the data without using any ground truth data.

ISODATA Classifier
ERDAS IMAGINE uses the ISODATA algorithm to perform an unsupervised classification. The ISODATA clustering method uses the minimum spectral distance formula to form clusters. It begins with either arbitrary cluster means or means of an existing signature set. Each time the clustering repeats, the means of these clusters are shifted. The new cluster means are used for the next iteration.

The ISODATA utility repeats the clustering of the image until either a maximum number of iterations has been performed, or a maximum percentage of unchanged pixel assignments has been reached between two iterations.

Performing an unsupervised classification is simpler than a supervised classification because the signatures are automatically generated by the ISODATA algorithm.

In this example, you generate a thematic raster layer using the ISODATA algorithm.

Prepare
You must have ERDAS IMAGINE running.
Classification

1. Click on the DataPrep icon in the ERDAS IMAGINE icon panel.

 ![Data Preparation Menu](image)

 The Data Preparation menu opens.

Generate Thematic Raster Layer

1. Select Unsupervised Classification from the Data Preparation menu to perform an unsupervised classification using the ISODATA algorithm.

 The Unsupervised Classification (Isodata) dialog opens.

![Unsupervised Classification Dialog](image)

 Enter germtm.img here
 Enter 24 for the maximum number of times the process runs
 This should be set to .950
 Click here to start the process

 Enter germtm_isodata.img here
 Enter 10 here to generate 10 classes (i.e., signatures)

2. Click Close in the Data Preparation menu to clear it from the screen.

3. In the Unsupervised Classification dialog under Input Raster File, enter germtm.img. This is the image file that is classified.
Use Unsupervised Classification

4. Under **Output File**, enter `germtm_isodata.img` in the directory of your choice. This is the name for the output thematic raster layer.

Set Initial Cluster Options
The Clustering Options allow you to define how the initial clusters are generated.

5. Under **Clustering Options**, enter **10** in the **Number of Classes** field.

Choose Processing Options
The Processing Options allow you to specify how the process is performed.

1. Enter **24** in the **Maximum Iterations** number field under **Processing Options**.

 This is the maximum number of times that the ISODATA utility reclusters the data. It prevents this utility from running too long, or from potentially getting stuck in a cycle without reaching the convergence threshold.

2. Confirm that the **Convergence Threshold** number field is set to **.950**.

 Convergence Threshold
 The convergence threshold is the maximum percentage of pixels whose cluster assignments can go unchanged between iterations. This threshold prevents the ISODATA utility from running indefinitely.

 By specifying a convergence threshold of .95, you are specifying that as soon as 95% or more of the pixels stay in the same cluster between one iteration and the next, the utility should stop processing. In other words, as soon as 5% or fewer of the pixels change clusters between iterations, the utility stops processing.

3. Click **OK** in the Unsupervised Classification dialog to start the classification process. The Unsupervised Classification dialog closes automatically.

 A Job Status dialog displays, indicating the progress of the function.

 NOTE: This process could take up to 15 minutes, depending upon your hardware capabilities.

4. In the Job Status dialog, click **OK** when the process is 100% complete.

5. Proceed to the “Use Unsupervised Classification” section to analyze the classes, so that you can identify and assign class names and colors.
Classification

Evaluate Classification

After a classification is performed, you can use a classification overlay or recode the classes to evaluate and test the accuracy of the classification.

Create Classification Overlay

In this example, you use the Raster Attribute Editor to compare the original image data with the individual classes of the thematic raster layer that was created from the unsupervised classification (germtm_isodata.img). This process helps identify the classes in the thematic raster layer. You may also use this process to evaluate the classes of a thematic layer that was generated from a supervised classification.

Prepare

ERDAS IMAGINE should be running and you should have a Viewer open.

Display Files

1. Select File | Open | Raster Layer from the Viewer menu bar to display the germtm.img continuous raster layer.

The Select Layer To Add dialog opens.

2. In the Select Layer To Add dialog under Filename, select germtm.img.

3. Click the Raster Options tab at the top of the Select Layer To Add dialog.

4. Set Layers to Colors at 4, 5, and 3, respectively.

5. Click OK in the Select Layer To Add dialog to display the image file.

6. Select File | Open | Raster Layer from the Viewer menu bar to display the thematic raster layer, germtm_isodata.img, over the germtm.img file.

The Select Layer To Add dialog opens.

7. Under Filename, open the directory in which you previously saved germtm_isodata.img by entering the directory path name in the text entry field and pressing the Return key on your keyboard.
8. Select the file `germ_isodata.img` from the list of files in the directory. You are going to evaluate/identify the classes in this file.

9. Click the Raster Options tab at the top of the Select Layer To Add dialog.

10. Click **Clear Display** to turn off this checkbox.

11. Click **OK** in the Select Layer To Add dialog to display the image file.

Open Raster Attribute Editor

1. Select **Raster | Attributes** from the Viewer menu bar.

 The Raster Attribute Editor displays.

2. In the Raster Attribute Editor, select **Edit | Column Properties** to rearrange the columns in the CellArray so that they are easier to view.

 The Column Properties dialog opens.

 ![Column Properties Dialog](image)

 - Click here to move the selected column up
 - Click here to move this column
 - Click here to rearrange columns

3. In the Column Properties dialog under **Columns**, select **Opacity**, then click **Up** to move **Opacity** so that it is under **Histogram**.

4. Select **Class_NAMES**, then click **Up** to move **Class_NAMES** so that it is under **Color**.

5. Click **OK** in the Column Properties dialog to rearrange the columns in the Raster Attribute Editor.

 The Column Properties dialog closes.
The data in the Raster Attribute Editor CellArray should appear similar to the following example:

![Screenshot of Raster Attribute Editor](image)

Analyze Individual Classes

Before you can begin to analyze the classes individually, you need to set the opacity for all of the classes to zero.

1. In the Raster Attribute Editor, click on the word **Opacity** at the top of the **Opacity** column to select all of the classes.

2. In the Raster Attribute Editor, right-hold on the word **Opacity** at the top of the **Opacity** column and select **Formula** from the **Column Options** menu.

 The Formula dialog opens.

3. In the Formula dialog, click **0** in the number pad.

 A 0 is placed in the **Formula** field.
4. In the Formula dialog, click **Apply** to change all of the values in the **Opacity** column to **0**, and then click **Close**.

5. In the Raster Attribute Editor, click and hold on the color patch under **Color** for **Class 1** in the CellArray and change the color to **Yellow**. This provides better visibility in the Viewer.

6. Verify the **Opacity** for **Class 1** in the CellArray is set to **1**.

 This class is shown in the Viewer.

7. In the Viewer menu bar, select **Utility | Flicker** to analyze which pixels are assigned to this class.

 The Viewer Flicker dialog opens.

8. Turn on the **Auto Mode** in the Viewer Flicker dialog by clicking on the checkbox.

 The flashing black pixels in the `germtm.img` file are the pixels of this class. These areas are water.

9. In the Raster Attribute Editor, click inside the **Class_Names** column for **Class 1**. (You may need to double-click in the column.) Change this name to **Water** and then press Return on the keyboard.

10. In the Raster Attribute Editor, click and hold on the **Color** patch for **Water** and select **Blue** from the popup list. (You may need to select the entire row for this class first.)

11. After you are finished analyzing this class, click **Cancel** in the Viewer Flicker dialog and set the **Opacity** for **Water** back to **0** in the Raster Attribute Editor. Press Return on the keyboard.

12. Change the **Color** for **Class 2** in the CellArray to **Yellow** for better visibility in the Viewer.

13. Change the **Opacity** for **Class 2** to **1** and press Return on the keyboard.

 This class is shown in the Viewer.

14. In the Viewer menu bar, select **Utility | Flicker** to analyze which pixels are assigned to this class.

 The Viewer Flicker dialog opens.

15. Turn on the **Auto Mode** in the Viewer Flicker dialog.

 The flashing yellow pixels in the `germtm.img` file should be the pixels of this class. These are forest areas.

16. In the Raster Attribute Editor, click inside the **Class_Names** column for **Class 2**. (You may need to double-click in the column.) Change this name to **Forest**, then press Return on the keyboard.

17. In the Raster Attribute Editor, click and hold on the **Color** patch for **Forest** and select **Pink** from the popup list. (You may need to select the entire row for this class first.)

18. After you are finished analyzing this class, click **Cancel** in the Viewer Flicker dialog and set the **Opacity** for **Forest** back to **0**. Press Return on the keyboard.
19. Repeat these steps with each class so that you can see how the pixels are assigned to each class. You may also try selecting more than one class at a time.

20. Continue assigning names and colors for the remaining classes in the Raster Attribute Editor CellArray.

21. In the Raster Attribute Editor, select **File | Save** to save the data in the CellArray.

22. Select **File | Close** from the Raster Attribute Editor menu bar.

23. Select **File | Clear** from the Viewer menu bar.

For more information about the Classification, see "APPENDIX A: Additional Information" on page 595.
CHAPTER 5
Vector Querying and Editing

Introduction
The IMAGINE Vector capabilities are designed to provide you with an integrated GIS package for raster and vector processing. The Vector tools in ERDAS IMAGINE are based on the ESRI data models, therefore ArcInfo vector coverages, ESRI shapefiles, and ESRI SDE vectors can be used in ERDAS IMAGINE with no conversion.

This tour guide explains how to edit vector layers

⚠️ The data used in this tour guide are in the `<IMAGINE_HOME>/examples` directory. Replace `<IMAGINE_HOME>` with the directory where ERDAS IMAGINE is installed on your system (e.g., `/usr/imagine/850`).

⚠️ ESRI SDE layers cannot be edited. They can only be displayed, queried, and symbolized.

A Digitizing Template is supplied in the information packet for ERDAS IMAGINE V8.5.

For more information about IMAGINE Vector, see "CHAPTER 20: IMAGINE Vector™" on page 573.

This tour guide covers the following topics:

- creating new vector layers
- changing vector properties
- creating attributes

Approximate completion time for this tour guide is 55 minutes.

Query Vector Data
NOTE: The following section covers only the native Vector functionalities in ERDAS IMAGINE. If you have the IMAGINE Vector module, please see “Section V IMAGINE Vector™” on page 571.

Copy Vector Data
Prepared

Move to the directory where you want to create your workspace. Start ERDAS IMAGINE from this directory. Make sure this is a directory in which you have read/write permission.
Vector Querying and Editing

1. Click on the Vector icon from the ERDAS IMAGINE icon panel.

 ![Vector icon]

 The Vector Utilities menu opens.

 ![Vector Utilities menu]

 The vector utilities in this menu should NOT be run on open vector layers. Close the layer you are using before running the utility, and do NOT attempt to open the layer until the process is complete.

2. In the Vector Utilities menu, select Copy Vector Layer.

 The Copy Vector Layer dialog opens.
3. In the Copy Vector Layer dialog under **Vector Layer to Copy**, select the file named **zone88**.

4. Under **Output Vector Layer**, enter **zone88** in the directory of your choice. This should be the directory from which you started ERDAS IMAGINE.

5. Click **OK** in the Copy Vector Layer dialog.

 A Job Status dialog displays to track the progress of the function. When the Copy ArcInfo coverage process is complete, the files are copied and you are ready to proceed with this tour guide.

6. Click **Close** in the **Vector Utilities** menu to dismiss it.

Display Vector Layers

Prepare

ERDAS IMAGINE should be running and a Viewer should be open. You must have completed the section, “Copy Vector Data” on page 109.

1. In the Viewer menu bar select **File | Open | Vector Layer**.

 The Select Layer To Add dialog opens.
Vector Querying and Editing

2. Under **Filename** select **zone88** from the directory in which you saved it in the last section.

3. Click **OK** to display the layer in the Viewer.

 The **zone88** polygon layer is displayed in the Viewer, similar to the following example:

 ![Viewer showing zone88 layer]

 Change Vector Properties

1. Select **Vector | Viewing Properties** from the Viewer menu bar.

 The Properties dialog opens.

 ![Properties dialog for zone88]
This dialog allows you to determine which and how vector features (lines, points, attributes, polygons, tics, and nodes) are displayed. You can also select the color to use for selected features.

In this example, the lines are currently displayed in the Viewer using the default styles shown in the Properties dialog.

2. In the Properties dialog, click to turn off the **Arcs** checkbox, then click to turn on **Points**.

3. Click **Apply** in the Properties dialog.

 Now, points are displayed in the Viewer and lines are not. These are the polygon label points.

4. In the Properties dialog, click **Points, Arcs, Polygon**, and then **Apply**, so that lines and polygons are displayed and points are not.

5. Left-hold (for UNIX) or left-click (for PC) on the popup list next to **Arcs** and select **Other** to change the line style used.

 The Line Style Chooser dialog opens.

 ![Line Style Chooser](image)

 - **Change line width here**
 - **Change line color here**
 - **Current line style is shown here**

6. In the Line Style Chooser dialog, change the **Width** to **2.00** points.

7. Left-hold (UNIX) or left-click (PC) on the **Outer Color** popup list and select **Red**.

8. Click **Apply** and then **Close** in the Line Style Chooser dialog.

 The Line Style Chooser dialog closes. The new line style is reflected in the Properties dialog.

9. Click **Apply** in the Properties dialog to change the displayed vectors in the Viewer.

 The vectors are redrawn in the Viewer as thick, red lines.

10. In the Properties dialog, right-hold on the popup list next to **Arcs** and select **Other** again.

 The Line Style Chooser dialog opens.
Vector Querying and Editing

11. Change the **Outer Color** back to **Black** and the **Width** back to **0.500** points, then click **Apply**.

12. Click **Close** in the Line Style Chooser dialog and then click **Apply** in the Properties dialog.

 The lines are redisplayed in black.

Display Attributes in the Viewer

1. In the Properties dialog, click the **Points** and **Attribute** checkboxes, then click on the popup list under **Attribute** and select **ZONING**.

2. Click **Apply** in the Properties dialog.

 The polygon label points and zone numbers display in the Viewer.

3. In the Properties dialog, click the **Attribute** checkbox to deselect it, and then click **Apply**.

4. Click **Close** in the Properties dialog.

5. An Attention dialog displays, asking if you want to save these styles in a symbology file. Click **No**.

 The Properties dialog closes.

View Attributes

1. In the Viewer tool bar, click the Tools icon (or select **Vector | Tools** from the Viewer menu bar).

 The Vector tool palette displays
NOTE: Depending on the package you have, your tool palette may include more icons than the one pictured above. If you have the IMAGINE Vector module, please see “Section V IMAGINE Vector™” on page 571 for a description of the entire Vector tool palette.

2. With your cursor in the Viewer, click on a polygon to select it (the Select tool is enabled by default in the Vector tool palette).

 The selected polygon is highlighted in yellow.

3. Shift-click on another polygon to add to the selection.

 Now two polygons are highlighted in yellow.

4. Click outside of the polygons (within the Viewer) to deselect everything.

5. In the Viewer menu bar, select Vector | Attributes.

 The Attributes dialog displays, as in the following example:
Polygon attributes are displayed in a CellArray. Therefore, you have access to the same tools that you use in other CellArrays.

6. In the Viewer, click on another polygon to select it.

The polygon is highlighted in yellow in the Viewer, and the corresponding record in the Attributes CellArray is also highlighted.

7. Click on a record number under **Record** in the Attributes CellArray to select it.

That record is highlighted in the CellArray and the corresponding polygon is highlighted in the Viewer.

8. With your cursor in the **Record** column of the Attributes CellArray, right-hold **Row Selection | Select All**.

All features in both the CellArray and the Viewer are selected.

9. With your cursor in the **Record** column of the Attributes CellArray, right-hold **Row Selection | Select None** to deselect all features.
2. In the Options dialog under **Select By**, click the **Contained In** checkbox.

3. Click **Apply** in the Options dialog.

 When you use the marquee tools in the Vector tool palette now, only the features completely contained within the boundary of the marquee are selected.

4. Click the Marquee icon in the Vector tool palette.

5. Drag to draw a rectangle in the Viewer.

 When you release the mouse button, the polygons and lines contained within the rectangle are selected (outlined in yellow). The corresponding attributes are selected in the Attribute CellArray.

6. In the Viewer, click outside of the polygons to deselect all features.

7. Click the Line Selection icon in the Vector tool palette.

8. In the Viewer, click to start drawing a line over the vectors and either double-click or middle-click once (depending on how your Preferences are set) to terminate the line.

 The features that intersect the line are selected in the Viewer and in the Attribute CellArray.

9. In the Viewer, click outside of the polygons to deselect everything.

10. Click **Close** in the Options dialog.
Vector Querying and Editing

Use the Criteria Function

1. With your cursor in the **Record** column of the Attributes CellArray, right-hold **Row Selection | Criteria**.

 The Selection Criteria dialog opens.

 ![Selection Criteria Dialog](image)

 Next, you create a criteria statement to select only those polygons that have an area greater than 5,000,000 square feet.

2. In the Selection Criteria dialog, click on **AREA** under **Columns**.

 "$\ "\text{AREA}"\ $" is now written in the Criteria statement box at the bottom of the Selection Criteria dialog.

3. Under **Compares**, click on >.

 The greater than symbol displays in the Criteria statement.

4. Use the numeric keypad to enter the number 5000000.

 The Criteria statement now reads:

 "$\ "\text{AREA}"\ >\ 5000000$

5. Click **Select** to compare the attributes in the Attributes CellArray against this criteria statement.

 Only those records that meet the criteria are selected and highlighted in the Viewer and Attributes CellArray.

 Now, you further refine the criteria by limiting the selection to only those polygons that are both greater than 5,000,000 square feet and in zone 4.

6. In the Selection Criteria dialog, click the **and** button.

7. Under **Columns**, click **ZONING**.

8. Under **Compares**, click =.
9. In the numeric keypad, click 4.
 The Criteria statement now reads:

 $$\text{AREA} > 5000000 \text{ and } \text{ZONING} \equiv 4$$

10. Click Select in the Selection Criteria dialog.
 All polygons greater the 5,000,000 square feet and in zone 4 are selected in the Viewer and in the Attribute CellArray.

11. Click Close in the Selection Criteria dialog.

12. In the Viewer, click outside of the polygons (within the Viewer) to deselect everything.

13. Click Close in the Vector tool palette.

14. Select File | Close from the Attributes dialog.

15. Select File | Clear from the Viewer.

Edit Vector Layers

For this section, display a Landsat TM raster layer, then overlay the vector layer you have been using.

Prepare

ERDAS IMAGINE should be running and you should have a Viewer open.

1. Select File | Open | Raster Layer from the Viewer menu bar or click the Open icon on the tool bar.

 The Select Layer To Add dialog opens.

2. In the Select Layer To Add dialog under Filename, select `germtm.img` from the file list.

3. Click the Raster Options tab at the top of the dialog, and then click on the Fit to Frame option so that the entire layer is visible in the Viewer.

4. Click OK in the Select Layer To Add dialog.
 The file `germtm.img` is displayed in the Viewer.

5. In the Viewer menu bar, select File | Open | Vector Layer.
 The Select Layer To Add dialog opens.
Vector Querying and Editing

6. In the Select Layer To Add dialog under **Filename**, select *zone88*.

 *NOTE: If *zone88* does not appear in the file list, click on the popup list next to **File Type** and select **Arc Coverage**.*

7. Click the **Vector Options** tab at the top of the dialog, and then confirm that the **Use Symbology** checkbox is turned off. Also, make sure that the **Clear Display** checkbox is turned off, so that the raster layer remains in the Viewer.

8. Click **OK** in the Select Layer To Add dialog.

 The vector layer is displayed over the raster layer. Since the vectors are black, they may not be easily visible.

9. With your cursor in the Viewer, right-hold **Quick View | Zoom | Rotate and Magnify Area**.

 A white rotation box displays in the Viewer and a Rotate/Magnify Instructions box also displays.

10. Drag the white rotation box so that it is positioned over the vector layer in the Viewer. Make it just big enough to cover the vectors, then double-click within the rotation box to magnify that area.

 The Rotate/Magnify Instructions box dismisses and both the raster and vector layers are magnified in the Viewer.

 For other methods of zooming into an area of interest, see "Animated Zoom", "Box Zoom", and "Real-time Zoom", starting on page 18.

Change Viewing Properties

1. In the Viewer menu bar, select **Vector | Viewing Properties**.

 The Properties dialog opens.

 ![Properties dialog](image)

 - **Hold on this popup list to select Other**
 - **Click here to display points in the vector layer, then hold here to edit the point style**
 - **Click here and then hold here to edit the nodes**

2. In the Properties dialog, hold on the popup list next to **Arcs** and select **Other**.
The Line Style Chooser dialog opens.

3. In the Line Style Chooser dialog, change the **Width** to **2.00** points, and hold on the **Outer Color** popup list to select **White**.

4. Click **Apply** and then **Close** in the Line Style Chooser dialog.

5. Click **Points** in the Properties dialog to display points.

6. Hold on the popup list next to **Points** and select **Other** to change the style of the points so that they are more visible.

 The Symbol Chooser dialog opens.

7. In the Symbol Chooser dialog under **Menu**, click **Black Filled Circle**.

8. Hold on the **Use Color** popup list and select **White**.

9. Change the **Size** to **4.00** points.

10. Click **Apply** and then **Close** in the Symbol Chooser dialog.

 The new style is reflected in the Properties dialog (although you cannot see it because it is a white symbol against a white background).

11. In the Properties dialog, click **Nodes**, then hold on the popup list next to **All** and select **Other** to change the style of nodes.

 The Symbol Chooser dialog opens.

12. Change the **Size** of the symbol to **6.00** points.

13. Hold on the **Use Color** popup list and change the color of the symbol to something that is visible over **germtm.img**, such as **Magenta**.

14. When you have selected a color, click **Apply** and then **Close** in the Symbol Chooser dialog.

15. Click **Apply** in the Properties dialog.
Vector Querying and Editing

The vectors and points are drawn in white, and the nodes appear in the color you selected in step 13.

16. Click Close in the Properties dialog.

17. An Attention dialog displays, asking if you want to save your changes to a symbology file. Click No.

Use Editing Tools and Commands

1. In the Viewer menu bar, select Vector | Tools.

The Vector tool palette displays.

For information about the Vector tools, see “Viewer” on page 639.

2. In the Vector tool palette, move the selector over each of the icons to view the single-line help that describes them in the lower portion of the Viewer.

3. In the Viewer menu bar, select Vector | Enable Editing.

4. In the Viewer, click on a line that you want to edit.

The selected line is highlighted in yellow and it is enclosed in a rotation box. You can simply hold and drag the entire box to move the line. You can hold and drag any of the handles on the box to enlarge or reduce the size of the line, or you can rotate the box.

5. In the Vector tool palette, click on the Split tool.

Your pointer is now a white crosshair when you move it back into the Viewer.

6. Click somewhere on the selected line to split it into two lines.
A node is placed where you clicked.

7. Click again on the line you split.

 Only that part of the line is selected, since it is now two lines.

8. Shift-click on the other part of the split line.

 Now both parts of the line are selected.

9. In the Viewer menu bar, select Vector | Join.

 The node is removed, and the two lines form a single line again.

10. With the line still selected, select Vector | Reshape from the Viewer menu bar.

 The vertices of the line display, similar to the following example.

 ![Vertices](image)

 Each vertex is marked by a black dot in the example above.

11. Drag one of the vertices to a new location to reshape the line.

12. Select Vector | Undo from the Viewer menu bar to undo this edit.

 The line is restored to its original shape and it is deselected.

 NOTE: To delete a vertex, you can Shift-middle click. To add a vertex, middle-click.

Create New Vector Layer

1. Click the Viewer icon in the ERDAS IMAGINE icon panel.

 ![Viewer](image)

 A new Viewer opens.

2. In the new Viewer (Viewer #2) select File | Open | Raster Layer.

 The Select Layer To Add dialog opens.

3. In the Select Layer To Add dialog, select IMAGINE Image from the File Type popup list.
Vector Querying and Editing

4. Under **Filename**, click on the file `germtm.img`.

5. Click on the **Raster Options** tab at the top of the dialog and confirm that the **Fit to Frame** option is enabled.

6. Click **OK** in the Select Layer To Add dialog.

 The file `germtm.img` displays in the Viewer.

7. In the Viewer #2 menu bar, select **File | New | Vector Layer**.

 The New Vector Layer dialog opens.

8. In the New Vector Layer dialog under **Vector Layer**, enter a name for the new layer, such as `zone88subset`, in the directory of your choice.

 Vector coverages include Arc Coverage, SDE Vector Layer, and Shapefile.

9. Click **OK** in the New Vector Layer dialog.

 The New Arc Coverage Layer Option dialog opens.

10. Confirm that **Single Precision** is selected.

11. Click **OK** in the New Arc Coverage Layer Option dialog.

 The title bar in Viewer #2 reflects the name of the new vector layer you are creating.

12. In the menu bar of Viewer #1, select **Vector | Options**.

 The Options dialog opens.
13. In the Options dialog under **Select By**, click **Contained In**.

14. Click **Apply** and then **Close** in the Options dialog.

15. In the menu bar of Viewer #1, select **Vector | Attributes**.

 The Attributes dialog opens.

16. In the Attributes dialog menu bar, click on **View** and make sure that **Point Attributes** is selected.

17. In Viewer #1, click on the Zoom Out by 2 icon.
Export Zoning Attributes

1. Click on the Ellipse Marquee icon in the Vector tool palette.

2. Shift-drag to draw a circle over the vector layer in Viewer #1.

The lines and points completely contained within the circle are selected in the Viewer and in the Attributes CellArray. You are going to export the ZONING attributes for the selected rows and import them into the new vector layer you are creating in Viewer #2.

3. Click the ZONING column header in the Attributes CellArray to select that column (use the bottom scroll bar to view the ZONING column).

The ZONING column is highlighted in green.

4. With your cursor in a column header of the Attributes CellArray, right-hold Column Options | Export.

The Export Column Data dialog opens.

5. In the Export Column Data dialog, enter a name for the ASCII file you are creating, such as zoning. The .dat extension is added automatically.

6. Click OK in the Export Column Data dialog.

7. Select Vector | Copy from the Viewer #1 menu bar.

The selected lines and points are copied into the paste buffer.

8. Click anywhere in Viewer #2, then select Vector | Paste from the Viewer #2 menu bar.

The selected vectors are displayed in Viewer #2.

9. In Viewer #2, click outside of all lines and points of the vector layer to deselect everything.

10. In the Attributes dialog, select File | Close.
11. In the menu bar of Viewer #2, select **File | Save | Top Layer**.

12. In the menu bar of Viewer #2, select **Vector | Attributes**.

The Attributes dialog displays, but it is empty because this new layer has no attribute data. It must be cleaned or built. You can also create attributes using the **Edit | Create Attributes** option of the Attributes dialog. Use this method now, then run Build later.

Create Attributes

1. In the Attributes dialog, select **View | Point Attributes** to select point attributes for display.

2. In the Attributes dialog, select **Edit | Create Attributes**.

 The Attributes CellArray fills with the basic point attributes.

 Next, you create a new column in the Attributes CellArray for the **ZONING** attribute that you exported from the original Attributes CellArray.

3. In the Attributes dialog, select **Edit | Column Attributes**.

 The Column Attributes dialog opens.

4. In the Column Attributes dialog, click **New** to add a new column to the CellArray.

 The options on the right side of the dialog are now enabled, so that you can define the parameters of the new column.

5. For the column **Title**, enter **ZONING**. Press Return on your keyboard.

6. For **Type**, click on the popup list and select **Integer**.

7. For **Precision**, click on the popup list and select **Single**.

8. For **Display Width**, accept the default of **12**.

9. Click **OK** in the Column Attributes dialog to create the new column.
Vector Querying and Editing

The Attributes CellArray now has a new column called ZONING. This new column is placed to the right of the last column.

10. Click in the header of this new column (ZONING) to select it.

 The column is highlighted in blue.

11. With your cursor in the Record column, right-hold Row Selection | Select All.

12. With your cursor in a column header, right-hold Column Options | Import.

 The Import Column Data dialog opens.

13. In the Import Column Data dialog, enter the name of the ASCII file that you created in the Export Column Data dialog in step 5. (i.e., zoning.dat).

14. Click OK.

 The Attributes CellArray now has the same ZONING column and attributes as the original Attributes CellArray.

15. Select File | Close from the menu bar of Viewer #2. When asked if you would like to save changes, click Yes.

 The Attributes dialog automatically closes.

Create a Simple Shapefile Layer

1. Click the Viewer icon in the ERDAS IMAGINE icon panel.

 A new Viewer opens.

2. In the new Viewer (Viewer #2) select File | Open | Raster Layer.
Edit Vector Layers

The Select Layer To Add dialog opens.

3. In the Select Layer To Add dialog, select IMAGINE Image from the File Type popup list.

4. Under Filename, click on the file germtm.img.

5. Click on the Raster Options tab at the top of the dialog and confirm that the Fit to Frame option is enabled.

6. Click OK in the Select Layer To Add dialog.

The file germtm.img displays in the Viewer.

7. With your cursor in the Viewer, right-hold Quick View | Zoom | Rotate and Magnify Area.

A white rotation box displays in the Viewer and a Rotate/Magnify Instructions box also displays.

8. Drag the white rotation box so that it is positioned over the same area that was covered by the zone88 vector coverage. Double-click within the rotation box to magnify that area.

The Rotate/Magnify Instructions box dismisses and the raster layer is magnified in the Viewer.

For other methods of zooming into an area of interest, see "Animated Zoom", "Box Zoom", and "Real-time Zoom", starting on page 18.

9. In the Viewer #2 menu bar, select File | New | Vector Layer.

The New Vector Layer dialog opens.

10. Under File of Type, select Shapefile (*.shp) from the pulldown list.

11. In the New Vector Layer dialog under Vector Layer, enter a name for the new layer, such as zone88shapefile, in the directory of your choice.

Vector coverages include Arc Coverage, SDE Vector Layer, and Shapefile.

12. Click OK in the New Vector Layer dialog.

The New Shapefile Layer Option dialog opens.

13. Select Polygon Shape from the pulldown list.

Vector Querying and Editing

Create a Shapefile Coverage

1. In the Viewer tool bar, click the Tools icon (or select Vector | Tools from the Viewer menu bar).

The Vector tool palette displays

2. In the Vector tool palette, click on the Polygon tool.

For more information on using the Shapefile editing tools, see the Vector Tools Diagram page in the Vector On-Line Manual.

3. Using the Inquire Cursor, find the triangular field at X: 726102.951800, Y: 497901.936911.

4. Left-click at the north end of the field and begin digitizing a shapefile coverage of the field.

Left-click to begin digitizing the field

The polygon tool automatically draws the closing line

Left-click to add vertices to the field

Middle-click to close the polygon
Your polygon should look something like this:

![Polygon Image]

NOTE: The raster layer of these images have been washed out for the purposes of illustration.

5. Open the Vector Attributes table by selecting **Vector | Attributes** from the Viewer menu bar or by clicking on the **Vector Attributes** button in the Vector Tool palette.

6. The Vector Attributes table displays:

![Vector Attributes Table]

Editing the Shapefile Layer

7. To divide this polygon into two polygons, select the **Polygon Split** tool from the Vector Tools palette.
Vector Querying and Editing

8. Left-click once just outside the left side of the polygon. Move your cursor across the middle and outside of the right side of the polygon so that the split line divide the polygon into no more than two parts. It should look similar to this:

![Image of split polygon]

9. Middle-click to end the split line. The polygon has split into two polygons and should look like this:

![Image of two polygons]

10. Notice that the Area and Perimeter columns were automatically updated in the Vector Attributes table:

![Image of Vector Attributes table]

11. Next you will create a new polygon that shares a common border with an existing polygon. To do this, select the Append Polygon tool from the Vector tools palette.
12. To begin digitizing the field below the original polygon, left-click *Inside* of the existing polygon. Continue to left-click to add vertices until you have digitized the entire field. Your line should end up within the same polygon in which you started and look like this:

![Digitized polygon](image)

13. Double-click to close the polygon. The new polygon should look like this:

![Closed polygon](image)

14. Again note that the columns in the Vector Attributes Table update to show the area and perimeter of the new polygon.

![Attributes Table](image)

15. Next you will reshape this polygon so that it contains more of the field. To do this, you will need to select the Replace Polygon tool from the Vector tools palette.
Vector Querying and Editing

16. Again, start your digitizing by left-clicking inside of the polygon you want to replace. Continue left-clicking to add vertices to the polygon. Your line should end up within the same polygon in which you started and look similar to this:

17. Double-click inside of the starting polygon to reshape the existing polygon to include the newly digitized area. Your new polygon should look like this:

18. The Area and Perimeter values in the Vector Attributes table reflect the dimensions of the polygon:

19. Click **File | Close** from the Viewer menu bar. When asked if you would like to save your changes, click **Yes**.

The Attributes dialog automatically closes.

For more information about IMAGINE Vector, see "APPENDIX A: Additional Information" on page 595.
CHAPTER 6
Polynomial Rectification

Introduction
Rectification is the process of projecting the data onto a plane and making it conform to a map projection system. Assigning map coordinates to the image data is called georeferencing. Since all map projection systems are associated with map coordinates, rectification involves georeferencing.

Approximate completion time for this tour guide is 1 hour.

Rectify a Landsat Image

Perform Image to Image Rectification
In this tour guide, you rectify a Landsat TM image of Atlanta, Georgia, using a georeferenced SPOT panchromatic image of the same area. The SPOT image is rectified to the State Plane map projection.

In rectifying the Landsat image, you use these basic steps:

• display files
• start Geometric Correction Tool
• record GCPs
• compute a transformation matrix
• resample the image
• verify the rectification process

Display Files
First, you display the image to be rectified and an image that is already georeferenced.

Prepare
ERDAS IMAGINE must be running and a Viewer open.

1. Click the Viewer icon on the ERDAS IMAGINE icon panel to open a second Viewer.

The second Viewer displays on top of the first Viewer.
Polynomial Rectification

2. In the ERDAS IMAGINE menu bar, select **Session | Tile Viewers** to position the Viewers side by side.

3. In the first Viewer’s tool bar, click the Open icon (or select **File | Open | Raster Layer**).

The Select Layer To Add dialog opens.

4. In the Select Layer To Add dialog under **Filename**, click on the file **tmAtlanta.img**.

 This file is a Landsat TM image of Atlanta. This image has not been rectified.

5. Click the **Raster Options** tab at the top of the Select Layer To Add dialog.
Rectify a Landsat Image

The Raster Options display in the Select Layer To Add dialog.

6. Click the Display as popup list and select Gray Scale.

7. Under Display Layer, enter 2.

Depending upon your application, it may be easier to select GCPs from a single band of imagery. The image tmAtlanta.img displays in True Color by default.

8. Click Fit to Frame, so that the entire image is visible in the Viewer.

9. Click OK in the Select Layer To Add dialog.

The file tmAtlanta.img displays in the first Viewer.

10. In the second Viewer tool bar, click the Open icon (or select File | Open | Raster Layer).

The Select Layer To Add dialog opens.

11. In the Select Layer To Add dialog, click on the file panAtlanta.img.

This file is a SPOT panchromatic image of Atlanta. This image has been georeferenced to the State Plane map projection.

12. Click OK in the Select Layer To Add dialog.

The file panAtlanta.img displays in the second Viewer.

Start GCP Tool

You start the Geometric Correction Tool from the first Viewer—the Viewer displaying the file to be rectified (tmAtlanta.img).

1. Select Raster | Geometric Correction from the first Viewer’s menu bar.

The Set Geometric Model dialog opens.
2. In the Set Geometric Model dialog, select **Polynomial** and then click **OK**.

 The Geo Correction Tools open, along with the Polynomial Model Properties dialog.

3. Click **Close** in the Polynomial Model Properties dialog to close it for now. You select these parameters later.

 The GCP Tool Reference Setup dialog opens.
4. Accept the default of **Existing Viewer** in the GCP Tool Reference Setup dialog by clicking **OK**.

The GCP Tool Reference Setup dialog closes and a Viewer Selection Instructions box opens, directing you to click in a Viewer to select for reference coordinates.

5. Click in the second Viewer, which displays **panAtlanta.img**.

The Reference Map Information dialog opens showing the map information for the georeferenced image. The information in this dialog is not editable.

6. Click **OK** in the Reference Map Information dialog.
Polynomial Rectification

The Chip Extraction Viewers (Viewers #3 and #4), link boxes, and the GCP Tool open. The link boxes and GCP Tool are automatically arranged on the screen (you can turn off this option in the ERDAS IMAGINE Preferences). You may want to resize and move the link boxes so that they are easier to see.

In this tour guide, you are going to rectify `tmAtlanta.img` in the first Viewer to `panAtlanta.img` in the second Viewer.

Select GCPs

When the GCP Tool is started, the tool is set in Automatic GCP Editing mode by default.

The following icon is active, indicating that this is the case.
1. In the first Viewer, select one of the areas shown in the following picture by clicking on that area. The circled areas are locations for GCPs. You should choose points that are easily identifiable in both images, such as road intersections and landmarks.

 The point you have selected is marked as GCP #1 in the Viewer and its X and Y inputs are listed in the GCP Tool CellArray.

2. In order to make GCP #1 easier to see, right-hold in the Color column to the right of GCP #1 in the GCP Tool CellArray and select the color Black.

3. In Viewer #3 (the Chip Extraction Viewer associated with the first Viewer), drag the GCP to the exact location you would like it to be.
NOTE: (UNIX only) To view the GCP while you are dragging it, turn off the **Use Fast Selectors** checkbox in the **Viewer** category under **Session | Preferences** (this change does not take effect until the Viewer is restarted).

4. In the GCP Tool, click on the Create GCP icon.

5. In the second Viewer, click in the same area that is covered in the source Chip Extraction Viewer (Viewer #3).

 The point you have selected is marked as GCP #1 in the Viewer, and its X and Y coordinates are listed in the GCP Tool CellArray.

6. In order to make GCP #1 easier to see in the second Viewer, right-hold in the **Color** column to the left of the X reference for GCP #1 in the GCP Tool CellArray and select the color **Black**.
The GCP Tool should now look similar to the one pictured below:

![GCP Tool](image)

7. In Viewer #4 (the Chip Extraction Viewer associated with the second Viewer), drag the GCP to the same location you moved it to in Viewer #3.

8. Click on the Create GCP icon in the GCP tool bar.

9. Return to the source Viewer (the first Viewer) and click to digitize another GCP.

10. In order to make GCP #2 easier to see, right-hold in the Color column to the right of GCP #2 in the GCP Tool CellArray and select the color Magenta.

11. In Viewer #3, drag the new GCP (GCP #2) to the exact location you would like it to be.

12. Repeat steps 4. and 5. to digitize the same point in the second Viewer.

13. As in step 10., you can change the color of the GCP marker to make it easier to see.

14. Digitize at least two more GCPs in each Viewer (on `tmAtlanta.img` in the first Viewer and `panAtlanta.img` in the second Viewer) by repeating the above steps. The GCPs you digitize should be spread out across the image to form a large triangle (i.e., they should not form a line).

15. Choose colors that enable you to see the GCPs in the Viewers.

After you digitize the fourth GCP in the first Viewer, note that the GCP is automatically matched in the second Viewer. This occurs with all subsequent GCPs that you digitize.

After you digitize GCPs in the Viewers, the GCP Tool CellArray should look similar to the following example:
Selecting GCPs

Selecting GCPs is useful for moving GCPs graphically or deleting them. You can select GCPs graphically (in the Viewer) or in the GCP CellArray.

- To select a GCP graphically in the Viewer, use the Select icon.

Select it as you would an annotation element. When a GCP is selected, you can drag it to move it to the desired location.

You can also click on any GCP coordinate in the CellArray to enter new coordinates.

- To select GCPs in the CellArray, click in the Point # column, or use any of the CellArray selection options in the right mouse button menu (right-hold in the Point # column).

Deleting a GCP

To delete a GCP, select the GCP in the CellArray in the GCP Tool and then right-hold in the Point # column to select Delete Selection.
Compute Transformation Matrix

A transformation matrix is a set of numbers that can be plugged into polynomial equations. These numbers are called the transformation coefficients. The polynomial equations are used to transform the coordinates from one system to another.

The Transformation tab in the Polynomial Model Properties dialog shows you a scrolling list of the transformation coefficients arranged in the transformation matrix. To access the Polynomial Model Properties dialog and the Transformation tab, click the Display Model Properties icon in the Geo Correction Tools.

The coefficients are placed in the transform editor in two ways:

- the Transformation tab CellArray is automatically populated when the model is solved in the GCP Tool
- using the CellArray located in the GCP tool to enter them directly from the keyboard.

In this tour guide, the transformation coefficients are calculated from the GCP Tool, and are automatically recorded in the Transformation tab.

Preparation

A minimum number of GCPs is necessary to calculate the transformation, depending on the order of the transformation. This number of points is:

\[
\frac{(t + 1)(t + 2)}{2}
\]

Where \(t \) is the order of the transformation.

If the minimum number of points is not satisfied, then a message displays notifying you of that condition, and the RMS errors and residuals are blank. At this point, you are not allowed to resample the data.

Change Order of Transformation

To change the order of the transformation, use the Polynomial Model Properties dialog (available from the Geo Correction Tools). Using this dialog, select the Parameters tab at the top of the dialog. This tab allows the polynomial order to be altered.
Polynomial Rectification

Calculate Transformation Matrix from GCPs

Start Automatic Transform Calculation

The Auto Calculation function is enabled by default in the GCP Tool. The Auto Calculation function computes the transformation in real time as you edit the GCPs or change the selection in the CellArray.

With the Automatic Transform Calculation tool activated, you can move a GCP in the Viewer while watching the transformation coefficients and errors change at the top of the GCP Tool.

You may want to turn off the Auto Calculation function if your system or computation is taking too long.

NOTE: Some models do not support Auto Calculation. If this is the case, the function is disabled.

1. If your model does not support Auto Calculation, click on the Calculate icon in the GCP Tool tool bar.

NOTE: The transformation matrix contains the coefficients for transforming the reference coordinate system to the input coordinate system. Therefore, the units of the residuals and RMS errors are the units of the input coordinate system. In this tour guide, the input coordinate system is pixels.

Digitize Check Points

Check points are useful in independently checking the accuracy of your transformation.

2. In the GCP Tool, turn all of the GCPs to yellow by right-holding Select All in the Point # column and then right-holding Yellow in each of the two Color columns.

3. Right-hold Select None in the Point # column of the GCP Tool CellArray to deselect the GCPs.

4. In the last row of the CellArray, right-hold in each of the two Color columns and select Magenta.

 All of the check points you add in the next steps are Magenta, which distinguishes them from the GCPs.

5. Select the last row of the CellArray by clicking in the Point # column next to that row.

6. Select Edit | Set Point Type | Check from the GCP Tool menu bar.

 All of the points you add in the next steps are classified as check points.

7. Select Edit | Point Matching from the GCP Tool menu bar.

 The GCP Matching dialog opens.
8. In the GCP Matching dialog under **Threshold Parameters**, change the **Correlation Threshold** to .8, and then press the Return key on your keyboard.

9. Click the **Discard Unmatched Point** checkbox to activate it.

10. Click **Close** in the GCP Matching dialog.

11. In the GCP Tool, click the Create GCP icon and then the Lock icon.

12. Create 5 check points in each of the two Viewers, just as you did for the GCPs.

 NOTE: If the previously input points were not accurate, then the check points you designate may go unmatched and be automatically discarded.

13. When the 5 check points have been created, click the Lock icon in the GCP Tool to unlock the Create GCP function.

14. Click the Compute Error icon in the GCP Tool to compute the error for the check points.

 ![Check Point Error](image)

 The **Check Point Error** displays at the top of the GCP Tool. A total error of less than 1 pixel error would make it a reasonable resampling.
Polynomial Rectification

15. To view the polynomial coefficients, click the Model Properties icon in the Geo Correction Tools.

The Polynomial Model Properties dialog opens.

16. Once you have checked the tabs of the Polynomial Model Properties dialog, click Close in the Polynomial Properties dialog.

Resample the Image

Resampling is the process of calculating the file values for the rectified image and creating the new file. All of the raster data layers in the source file are resampled. The output image has as many layers as the input image.

ERDAS IMAGINE provides these widely-known resampling algorithms: Nearest Neighbor, Bilinear Interpolation, and Cubic Convolution

Prepare

Resampling requires an input file and a transformation matrix by which to create the new pixel grid.

1. Click on the Resample icon in the Geo Correction Tools.

The Resample dialog opens.
Rectify a Landsat Image

2. In the Resample dialog under **Output File**, enter the name `tmAtlanta_georef.img` for the new resampled data file. This is the output file from rectifying the `tmAtlanta.img` file to the coordinate system of the `panAtlanta.img` file.

 NOTE: Be sure to enter the output file in a directory where you have write permission and at least 25 Mb of free disk space.

3. Under **Resample Method**, click the popup list and select **Bilinear Interpolation**.

4. Click **Ignore Zero in Stats.**, so that pixels with zero file values are excluded when statistics are calculated for the output file.

5. Click **OK** in the Resample dialog to start the resampling process.

 A Job Status dialog opens to let you know when the processes complete.

6. Click **OK** in the Job Status dialog when the job is 100% complete.

Verify the Rectification Process

One way to verify that the input image (`tmAtlanta.img`) has been correctly rectified to the reference image (`panAtlanta.img`) is to display the resampled image (`tmAtlanta_georef.img`) and the reference image and then visually check that they conform to each other.

1. Display the resampled image (`tmAtlanta_georef.img`) in the first Viewer. Use the **Clear Display** option in the Select Layer To Add dialog to remove `tmAtlanta.img` from the Viewer before the resampled image is opened.

2. When `tmAtlanta.img` closes in the first Viewer, you are asked if you want to save your changes. Click **No** in all of the Save Changes dialogs.

 The Geometric Correction Tool exits.

3. Right-hold **Geo. Link/Unlink** under the **Quick View** menu in the first Viewer.
Polynomial Rectification

4. Click in the second Viewer to link the Viewers together.

5. Right-hold Inquire Cursor under the Quick View menu in the first Viewer.

 The inquire cursor (a crosshair) is placed in both Viewers. An Inquire Cursor dialog also opens.

6. Drag the inquire cursor around to verify that it is in approximately the same place in both Viewers. Notice that, as the inquire cursor is moved, the data in the Inquire Cursor dialog are updated.

7. When you are finished, click Close in the Inquire Cursor dialog.

Rotate/Flip/Stretch Images

It is often necessary to perform a first-order rectification to a layer displayed in the Viewer. You may need to rotate, flip, or stretch the image so that North is up.

Prepare

1. Display the file tmAtlanta.img in a Viewer.

2. In the Viewer, select Raster | Geometric Correction.

 The Set Geometric Model dialog opens.

Choose Model Properties

3. In the Set Geometric Model dialog, click Affine and then OK.

 The Geo Correction Tools open, along with the Affine Model Properties dialog.

5. Select the desired Reflect Option in the Affine Model Properties dialog, then click Apply and Close.

6. Click on the Resample icon in the Geo Correction Tools.
The Resample dialog opens.

7. In the Resample dialog under **Output File**, enter the name `tmAtlanta_rotate.img`.

8. Under **Resample Method**, click the popup list and select **Bilinear Interpolation**.

9. Click **Ignore Zero in Stats.**, so that pixels with zero file values are excluded when statistics are calculated for the output file.

10. Click **OK** in the Resample dialog to start the resampling process.

 A Job Status dialog opens to let you know when the processes complete.

11. Click **OK** in the Job Status dialog when the job is 100% complete.

Check Results

1. Open a new Viewer.

2. Click the Open icon, then select `tmAtlanta_rotate.img` from the directory in which you saved it.

3. Click the **Raster Options** tab, and click the **Display as** dropdown list to select **Gray Scale**.

4. In the **Display Layer** section, select **Layer 2**.

5. Click **OK** in the Select Layer To Add dialog.
6. Compare tmAtlanta_georef.img and tmAtlanta_rotate.img side by side.

For more information about polynomial rectification, see "APPENDIX A: Additional Information" on page 595.
CHAPTER 7
Image Commands

Introduction
ERDAS IMAGINE gives you access to a tool called the Image Commands tool. With it, you can take any file supported by ERDAS IMAGINE and perform many types of operations. One such operation is using the Image Commands tool to create a world file. You can then use the world file with other software packages, such as ESRI’s ArcView.

In this tour guide, you can learn how to:

• access the Image Commands tool
• create a world file from a .tif file

Approximate completion time for this tour guide is 15 minutes.

Image Commands
With the Image Commands tool, you can make many changes to your files.

Prepare
ERDAS IMAGINE must be running

Use Image Interpreter Utilities
1. Click the Interpreter icon on the ERDAS IMAGINE icon panel.

The Image Interpreter menu opens.

2. Click Utilities in the Image Interpreter menu.

The Utilities menu opens.
Use the Subset Function

1. In the **Utilities** menu, select **Subset**.

The Subset dialog opens.

Select the Subset option to create a .tif file

Type the input file here, then select the .tif file type for the output file
2. In the Subset dialog, click the Open icon below **Input File**.

3. In the Input File dialog, navigate to the `<IMAGINE_HOME>/examples` directory, and select the file **germtm.img**.

4. Click **OK** in the Input File dialog to transfer **germtm.img** to the Subset dialog.

5. Click the Open icon under **Output File**.

6. In the Output File dialog, navigate to a directory where you have write permission.

7. Click the **File Type** dropdown list and choose **TIFF**.

8. Type the name **germtm** in the **Filename** window, then press Return on your keyboard.

 The .tif extension is automatically added. By using the Subset utility in this fashion, you can quickly create a TIFF image from an image file.

9. Click **OK** in the Output File dialog.

 The Subset file updates accordingly.

10. Click **OK** in the Subset dialog to generate **germtm.tif**.

 A Job Status dialog opens, tracking the progress of the function.

11. When the Job is complete, click **OK** in the Job Status dialog.

 You can set a preference in the **User Interface & Session** category to automatically dismiss the Job Status dialog once a job is complete.

Check the TIFF file

1. Click the Viewer icon on the ERDAS IMAGINE icon panel.

2. Click the Open icon, and click the **Recent** button in the Select Layer To Add dialog.

3. Select the file you just created, **germtm.tif**.

4. Click the **Raster Options** tab, and select **Fit to Frame**.

5. Click **OK** in the Select Layer to Add dialog.
Image Commands

The TIFF image displays in the Viewer. Notice that it is in the State Plane projection, indicated in the status area of the Viewer.

Now, you can take the file germtm.tif and create a world file using the Image Command Tool.

Start the Image Command Tool

1. From the Tools menu of ERDAS IMAGINE, select Image Command Tool.
2. In the Image Commands dialog, click the Open icon.

The Image File dialog opens.

3. Navigate to the directory in which you saved the file, and select the file *germtm.tif*.

4. Click **OK** in the Image File dialog to transfer the information to the Image Commands dialog. The Image Commands dialog updates accordingly, and the **Map Model to World** option is activated.

5. Click the checkbox next to **Map Model to World**.
Image Commands

By default, the Image Commands tool assigns the same name to the output file, but with the .tfw extension. In this case, the file name is `germtm.tfw`. The world file is saved in the same directory as the image you create it from.

6. If you wish, click the Open icon, and navigate to a different directory in which you want to save the world file. If not, proceed to step 9.

The File Selector dialog opens.

7. Type the name `germtm.tfw` in the Filename window, then press Return on your keyboard.

8. Click OK in the File Selector dialog.

9. Click OK in the Image Commands dialog to start the process.

 A Job Status dialog opens, which tracks the progress of the function.

10. When the job is complete, click OK in the Job Status dialog.

 You can set a preference in the User Interface & Session Category of the Preference Editor, Keep Job Status Box, which allows the Job Status box to close automatically upon completion of a job.

Check for .tfw file

1. Using a UNIX shell or the Microsoft Explorer, navigate to the directory in which you created `germtm.tif`, and generated `germtm.tfw`.

2. Note the presence of the file in that directory.
Now, you can use the .tfw file to supply georeferencing information to other software packages, such as ArcView. Georeferencing information includes coordinate information.
Image Commands
CHAPTER 8
Import/Export

Introduction

The ERDAS IMAGINE Import function allows you to import a wide variety of data types for use in ERDAS IMAGINE. The Export function lets you convert image (ERDAS IMAGINE .img file format) files into one of several data formats.

In this tour guide, you can learn how to:

• import SPOT data from CD
• import ERDAS 7.x GIS and Generic Binary Data files
• export an image file in the ERDAS 7.x LAN format
• create a TIFF file
• view raw data values using the Data View option
• view image data information using the ImagelInfo utility

Approximate completion time for this tour guide varies depending upon the data you are importing or exporting.

Import a SPOT Scene

Prepare

Before you can import data from a peripheral device, such as a tape drive or a CD-ROM drive, you must configure the device in ERDAS IMAGINE.

Refer to the current ERDAS IMAGINE Installation Guide for configuration instructions.

This section takes you through the steps to import SPOT data. Since each individual has different types of SPOT data, these steps are only an example.

1. If your Session Log is not already open, select Session | Session Log from the ERDAS IMAGINE menu bar.

 The Session Log displays real-time messages about what is happening throughout the import process. Following these messages closely helps you understand what is happening.

2. Click on the Import icon on the ERDAS IMAGINE icon panel.

 The Import/Export dialog opens:
The **Import** button is enabled when the dialog first opens, so that all of the prompts that display in the dialog are for importing data. When you click on the **Export** button, the prompts change to options for exporting data.

3. Click on the **Type** popup list to select **SPOT** from the list of available importers.

4. Confirm that the **Media** defaults to **CD ROM**.

 Displayed under **Input CDROM** is a list of configured CD-ROM drives.

5. Click to select the device from which you want to import data.

 > If it is necessary to configure a new device, see the current ERDAS IMAGINE Installation Guide.

6. Under **Output File**, enter a name for the output file in the directory of your choice. You can click on the directory bar popup list or enter the directory name in the filename part to select a different directory.

7. Click **OK** in the Import/Export dialog.

8. Watch the Session Log to see a report of the activities of the import process.

 The Import SPOT dialog opens:
Check Preview Options

1. Click on **Preview Options** and the following dialog opens:
2. Click **OK** in the Preview Options dialog.

3. Click **Preview** in the Import SPOT dialog.

 A Job Status dialog displays, indicating the progress of the function.

 ![Job Status Dialog](image)

 When the Job Status bar shows 100 (indicating that the job is 100% done), the dialog automatically closes. A Viewer window similar to the following opens and displays the preview image:
Preview images have a `.preview.img` file extension. Because the preview image is decimated, it is not suitable for image processing.

Check Import Options

1. In the Import SPOT dialog, click on **Import Options**.

 The Import Options dialog opens. This dialog is similar to the Preview Options dialog.

 ![Import Options dialog](image)

 NOTE: Like the Preview Options dialog, the Import Options dialog is the same for every type of importer.

2. Select **Utility | Inquire Box** from the **SPOT_test.preview.img** Viewer menu bar.
The Inquire Box Coordinates dialog opens and a rectangular box (the Inquire Box) is displayed in the center of the Viewer.

3. When you have selected the subset area to import, click on **From Inquire Box** in the Import Options dialog.

 The coordinates for the subset area display in the Import Options dialog.

 Sometimes, when map coordinate information is not available in the source image, there are apparent differences between the Inquire Box coordinates and those transferred to the Import Options dialog. However, the imported image subset matches the area bounded by the inquire box.

4. Click **OK** in the Import Options dialog.

5. Click **OK** in the Import SPOT dialog.

 A Job Status dialog displays, indicating the progress of the import process:

 Depending on your eml Preferences, when the Job Status bar shows 100 (indicating that the job is 100% done), you must either click **OK** to close the dialog or the dialog closes automatically.

6. Open a Viewer window and display the output file.
Export LAN Data

In this section, you export one of the image example files to an ERDAS Version 7.x LAN file.

Prepare
ERDAS IMAGINE should be running and the Import/Export dialog should be open.

Choose Export Options
1. In the Import/Export dialog, click on Export.
2. Click on the **Type** popup list to see a list of available exporters.
3. Click to select **LAN (Erdas 7.x)** from the **Type** popup list.
4. Confirm that the **Media** lists **File**.
5. Enter **lanier.img** under **Input File**.
6. In the Import/Export dialog, ERDAS IMAGINE automatically enters **lanier.lan** as the output file. You may change this name if you want.

See "CHAPTER 4: Raster and Vector Data Sources" of the ERDAS Field Guide for more information on importing data.
7. Click **OK** in the Import/Export dialog.

 The Export ERDAS 7.5 LAN Data dialog opens:

8. Click **OK** in the Export ERDAS 7.5 LAN Data dialog.

 A Job Status dialog displays.

 The file **lanier.lan** now resides in the selected directory.
Create .tif Files

In this section, run an ERDAS IMAGINE process, producing a .tif file instead of an image file.

NOTE: Since the input image is georeferenced, the output TIFF image has geotiff tags. If you wish to produce a TIFF World file, select the Write option in the TIFF image file category of the Preference Editor.

1. Click on the Classifier icon from the ERDAS IMAGINE icon panel.

The Classification menu opens.

2. Click on **Unsupervised Classification** from the Classification menu.

The Unsupervised Classification (Isodata) dialog appears.

Creating LAN Data

ERDAS IMAGINE also creates two other files when it exports the LAN data:

- **lanier.pro**—contains map projection information
- **lanier.sta**—contains file statistics

These file formats are used in ERDAS 7.5 software. In ERDAS IMAGINE, map projection and file statistics are included in the image file format. You may delete the files **lanier.pro** and **lanier.sta** if desired, since they are not used in this exercise.
3. Click the Open icon by **Input Raster File**.

The Input Raster File dialog opens.

4. In the Input Raster File dialog, click **dmtm.img**, then click **OK**.

 The raster file, dmtm.img, is located in the `<IMAGINE_HOME>/examples` directory.

5. Click the Open icon next to **Output Cluster Layer Filename**.

 The Filename dialog opens.

6. Navigate to a directory where you have write permission.

7. Click the **File Type** dropdown list, and select **TIFF (*.tif)**.

8. Type in **dmtm1.tif** in the **Filename** field, and then click **OK**.

9. Change the **Number of Classes** to **30**. This tells the classifier how many classes to create.

10. Deselect the **Output Signature Set Filename** checkbox.

11. Click **OK** at the bottom of the Unsupervised Classification dialog.
The **Isodata to dmtm1.tif** dialog appears to perform classification of the file.

The resulting classification is created in the .tif format.

Check the Classification

1. Click the Viewer icon to open a Viewer.

2. From the Viewer tool bar, click the Open icon.

3. In the Select Layer To Add dialog, click the **Recent** button.

4. Select the file **dmtm1.tif** from the top of the list.

5. Click **OK** in the List of Recent Files dialog.

6. Click the **Raster Options** tab of the Select Layer to Add dialog.
7. Click the **Display as** dropdown list and select **Gray Scale**.

8. Click the **Fit to Frame** checkbox.

9. Click **OK** in the Select Layer To Add dialog.

The file **dmtm1.tif** displays in the Viewer. The various shades of gray denote different classes of land cover.

Check Map Information

1. Click the ImageInfo Icon on the Viewer tool bar.

The ImageInfo dialog for **dmtm1.tif** opens.
Import Generic Binary Data

In this section, you import the lanier.lan file that you just exported. This file could be imported using the ERDAS 7.x LAN import function. However, you are using this file to learn how the Generic Binary Data dialog works.

This function is designed for importing data types for which there are currently no specific ERDAS IMAGINE importers.

1. In the Import/Export dialog, click on Import.

2. Click on the Type popup list and select Generic Binary.

3. Select File from the Media popup list.

Note the information in the Map Info section and that the Projection Info section shows that the map is georeferenced to State Plane.

2. When you are finished, click File | Close in the ImageInfo dialog.

3. Click File | Close in the Viewer containing dmtm1.tif.
5. Under Output File, ERDAS IMAGINE automatically enters lanier.img as the file name. If you try to save the file in the <IMAGINE_HOME>/examples directory, an Attention message warns you that lanier.img already exists.

6. If the Attention dialog displays, click No.

This prevents the original lanier.img file from being overwritten.

7. In the Import/Export dialog, enter lanier2.img as the Output File in the directory of your choice.

8. In the Import/Export dialog, click OK.

The Import Generic Binary Data dialog opens.

This dialog requires you make many inputs that define the data structure for ERDAS IMAGINE. In some cases, you can get the information for these inputs from the header data of the file (using the Data View option from the Import/Export dialog), but you may have to rely on prior knowledge or assumption for the information.

⚠️ You must enter the correct inputs for the data you are importing. The defaults for this dialog are not acceptable for importing.

Data View

1. Click on the Data View button in the Import/Export dialog.

The DataView dialog opens. The data, as initially displayed, may not appear to be very useful. The following steps result in a display from which you can extract the information needed to complete the generic import.

Data View is also available from the Utility menu on the ERDAS IMAGINE menu bar.
LAN File Format
The LAN format has the following characteristics:

- the first 128 bytes of the file are header data
- the number of bands is stored as a 16-bit integer in bytes 9 and 10
- the number of columns is stored as a 32-bit integer in bytes 17-20
- the number of rows is stored as a 32-bit integer in rows 21-24

With this knowledge, you can look at the data values in these bytes to obtain the information needed to import the file as generic binary data.

2. In the DataView dialog, click on **Data Type** and select **Unsigned 16 bit**.

3. In the DataView dialog, click on **Byte Order** and select **Intel**.

4. Set the **Offset** to 8 and check that the **Format** is **Decimal**.

 The DataView dialog is updated to look like the following:

5. In the DataView dialog, click on **Data Type** and select **Unsigned 32 bit**.

6. In the DataView dialog, click on **Byte Order** and select **Intel**.
7. Set the Offset to 16 and check that the Format is Decimal.

The DataView dialog is updated.
Import Generic Binary Data

Save Options

1. Click on **Save Options**.

 The Save Options File dialog opens.

 ![Save Options File](image)

2. Under **File name**, enter **LAN** and move the cursor out of the text field.

 ERDAS IMAGINE automatically appends the default .gen file extension. Use a descriptive name that helps you to recognize the type of inputs saved in the file.

3. Click **OK** in the Save Options File dialog.
Import/Export

These inputs are now saved and can be used again, when appropriate.

To load the .gen file at a later time, click on the Load Options button in the Import Generic Binary Data dialog.

Preview the Image

1. In the Import Generic Binary Data dialog, click on Preview.

A Job Status dialog displays. When the Job Status bar shows 100 (indicating that the job is 100% done), the dialog closes automatically.

A Viewer automatically opens and displays the file lanier2.preview.img. The .preview file extension is added to indicate that this is a decimated preview file (not suitable for processing).

2. Open another Viewer window and display the file lanier.img.

You see that the two files are similar in appearance. The difference in these files is that lanier.img has map projection information and lanier2.preview.img does not. This is because when lanier.img was exported to a .lan file, the map information was exported to lanier.pro, which is a format used in ERDAS 7.5. The map projection data in lanier.pro was not imported with the Generic Binary Data importer.

However, the imported image does contain statistics (similar to the statistics exported to lanier.sta), because statistics are recalculated after a raster file is imported.

3. In the ERDAS IMAGINE menu bar, select Session | Close All Viewers.

Get Image Information

The ImageInfo utility is a function that gives you information about ERDAS IMAGINE image files. With this function you can access any image file and see the:

- date of last modification
- number of Layers
- layer information: Width, Height, Type, Block Width, Block Height, Data Type, Compression, and Pyramid Layer status for each layer in the file
- calculated statistics
- map coordinates, when available
- map projection information, when available

NOTE: ImageInfo can only be used for image files. Use Vector Info for vector coverages.

Edit Image Information

In image files that have write permission, you can edit file information or perform the following operations using the ImageInfo dialog:

- change layer name
- compute statistics
- add, change, or delete map information
Get Image Information

- add, change, or delete map projection
- delete calibration
- access the Raster Attribute Editor to change file attributes, such as color, histogram values, etc.

View Image Information

In this section, you use the ImageInfo utility to learn more about the `lanier.img` file.

1. Select **Tools | Image Information** from the ERDAS IMAGINE menu bar.

 The ImageInfo dialog opens.

 *This option is also accessible from **Session | Tools | Image Information** on the ERDAS IMAGINE menu bar.*

2. Select **File | Open** from the ImageInfo menu bar, or click the Open icon on the tool bar.

 The Image Files dialog opens. This dialog allows you to select a file for which information is displayed in the ImageInfo dialog.

4. Click **OK** in the Image Files dialog.

 The information for `lanier.img` displays in the ImageInfo dialog.
5. Look over the information listed in the dialog.

 The functions in the ImageInfo menu bar are described in detail in "ImageInfo Menu Bar" on page 612 and the functions in the tool bar are described in "ImageInfo Tool Bar" on page 612.

Since this is a write-protected file, none of these values can be changed. If you want to practice editing image information with this dialog, you can copy `lanier.img` to the directory of your choice and change the write protections. Then open the writable file in the ImageInfo dialog and click on Edit to use the editing functions.

6. Select File | Close from the ImageInfo menu bar when you have read the information in the dialog.

 For more information about Import/Export, see "APPENDIX A: Additional Information" on page 595.
CHAPTER 9
Batch Processing

Introduction

The ERDAS IMAGINE Batch Wizard allows you to process one or more files with one or more commands at any time, from immediately to many years in the future.\(^1\) This is useful if you have a process that requires a long time to run and you want to run it when your system is at minimum utilization (e.g., during the night). It is also useful if you wish to run a repetitive task many times, such as executing the reprojection command to reproject hundreds of images.

Some of the ERDAS IMAGINE functions that can be included in a Batch job are:

- classification
- rectification
- radar processing
- Image Interpreter
- import/export
- reproject

Most of the processing dialogs in ERDAS IMAGINE, such as Importers, Exporters, Image Interpreter functions, Data Preparation functions, and others have a **Batch** button. This button is used to place the command in the Batch queue instead of actually performing the operation. Off-line processing allows unattended operation, enabling you to log off if you wish.

\[^{1}\text{Under Windows NT, a job cannot be scheduled beyond the end of the current month.}\]

1. Under Windows NT, a job cannot be scheduled beyond the end of the current month.
Batch Processing

Set up/Start the Scheduler on NT and 2000

Before you can use the Batch Wizard to schedule jobs to run at a later time on Windows NT systems, you must set up and run the Scheduler. This requirement means that the account that starts Scheduler must remain logged-in for the scheduled job to run.

You must log in as an administrator or as a person with administrator privileges to set up and start the Scheduler. Once started, the Scheduler is available for use by any other person with administrative privileges.

1. From the **Start** menu, select **Settings | Control Panel**.

2. On the Control Panel, select the **Services** icon.

3. Scroll through the Services window and select **Schedule**, then click the **Startup** button.

4. In the Service dialog, select **Automatic** as the **Startup Type**, then click the **This Account** checkbox. Enter your account name and password, confirm your password, and then click **OK**.
5. Click the **Start** button in the Services dialog.

NOTE: The ability to run Batch at a later time is built using the Windows scheduler, which is part of the **at** command. Refer to the Windows help to learn more about the use of the **at** command.

NOTE: (Microsoft Windows NT) If you are submitting jobs for processing later and you are using mapped network drives, then you need to ensure that these maps are in place when the Batch job runs. Typically, a mapped drive is only available to the current user unless the **Reconnect at Logon** option was checked on the Map Network Drive dialog when the drive was mapped.

If this option is not checked, then when the Batch process is run by the Scheduler, it is not able to find the drive. This is one of the reasons to make sure that the Schedule service runs as your account name. This ensures that remembered network drive maps are reestablished when the Batch process runs.

NOTE: (Microsoft Windows 2000 and Microsoft Office 2000) If you are using Windows 2000 or have installed Office 2000 on Windows NT, the Scheduler service is replaced by a new service called the Microsoft Task Scheduler. In this environment, you no longer need to have administrator privileges to submit jobs; however, you do still need to have administrator privileges to start the Task Scheduler service.

Use Batch with a UNIX System

Unlike the Scheduler on NT, you do not have to be an administrator or a person with administrator privileges to set up Batch to run on a UNIX system.

On UNIX, the ability to run Batch at a later time is built using the UNIX **cron** system. See the man pages for more information about **cron** and the **at** command on UNIX.

Execute a Single File/Single Command

This operation is very useful for performing lengthy processes on large files.

1. From the ERDAS IMAGINE icon bar, click the **Interpreter** icon and then select **GIS Analysis** | **Clump** to open the Clump dialog.
Batch Processing

2. In the Clump dialog, select <IMAGINE_HOME>/examples/lnsoils.img for the Input File name and <your_workspace>/lnsoils_clump.img for the Output File name.

Where <your_workspace> is the Default Output Directory specified in the User Interface & Session category in the Preference Editor, and <IMAGINE_HOME> is the directory where ERDAS IMAGINE is installed.

3. In the Clump dialog, click the Batch button. The Batch Wizard opens with the Select Type of Command Processing panel displayed. The Use commands as they are button is already selected.

4. Click the Next > button. The Select When to Process Commands panel displays. The Start Processing Now button is already selected. If you wish to process the file immediately, go to step 6.

5. If you wish to process the file at a later time, click the Start Processing Later At... option, and set the time you wish it to begin processing.
Execute Multiple Files/Single Command—Run Now

6. Click the **Finish** button in the **Select When to Process Commands** panel to begin processing. A double Job Status dialog opens showing the progress of each individual file along with progress of the overall job. When the job is complete, the **OK** button is enabled.

7. Click **OK** to close the status meter.

 The clump operation is complete. If you wish, you can open a Viewer and check the file.

Execute Multiple Files/Single Command—Run Now

The ability to execute a command on multiple files is very useful. In the following example, the Batch Wizard is used to compute statistics for several TIFF images.

NOTE: You must provide your own TIFF files for this exercise.

See "CHAPTER 7: Image Commands" on page 153 for instructions on how to use Image Interpreter utilities to create TIFF images from image files.

Set TIFF Image File Preferences

1. Select **Session | Preferences** from the ERDAS IMAGINE menu bar to open the Preference Editor dialog, and select the **TIFF Image Files** category.
Batch Processing

2. Ensure that the **Edits Allowed** option is enabled (checkbox checked). If you want this to be the default, click **User Save**. Click **Close**.

Now you are ready to start the Image Command Tool, which provides Batch access to many of the functions that the Image Information tool provides interactively.

Start the Image Command Tool

1. Select **Tools | Image Command Tool** from the ERDAS IMAGINE menu bar to open the Image Commands dialog.

2. Click the File Open icon on the Image Commands dialog. In the File Selector dialog, click the **Files of Type** popup list and select **TIFF**. Select a TIFF file and click **OK**. The options on the Image Commands dialog are now enabled.

NOTE: If you do not have a TIFF file, one is created in the exercises of "CHAPTER 7: Image Commands" on page 153.
3. Check the **Compute Statistics** checkbox on the Image Commands dialog.

Start the Batch Wizard

1. Click the **Batch** button in the Image Commands dialog.

 The Batch Wizard starts, and the **Select Type of Command Processing** panel displays. If you click the **Finish** button now, the job runs on the selected file. However, it is more useful to automate the process to run on several files.

2. Select the **Modify commands manually** option in the **Select Type of Command Processing** panel.

3. Click the **Next >** button to display the **Edit Commands/Create Variables** panel.

 Notice that the command, visible in the window, contains the full path of the selected file. In order for the software to be able to make file name substitutions from a list, there must be a variable into which the substitution is made. This is done in the following step.
4. Click the Create and Insert Variables button to create variables.

This tool examines the command for file names and replaces them with variables. In this case, one variable called **Input** is created and replaces a specific file and path.

For more information about variables, see “Work with Variables” on page 204.

The Batch commands can be saved for future use. See "Save/Load Options" on page 209.

5. Click the **Next >** button to display the **Select Files to Process** panel.
6. Select the Add Files button. This opens the File Selector dialog. Click the **File Type** popup list and select **TIFF**.

 ![Add files to the Input list by clicking this button](image)

 NOTE: If you are working on the Windows platform, files can be added to the **Input** list by dragging and dropping from Explorer.

7. Select another TIFF file, and then click the **Multiple Files Selection** tab.

8. Click the **Use the following Selection Pattern** checkbox. The default wild card displayed in the **Selection Pattern** field selects all TIFF files in the specified directory. You may modify the wild card as needed.

 ![Click the Use the following Selection Pattern checkbox](image)

 ![The Selection Pattern is based on the file you choose for input](image)
Batch Processing

9. Click the OK button on in the Multiple File Selection tab. The specified TIFF files are added to the list in the Select Files to Process panel in the Input column.

NOTE: You can repeat step 6. through step 8. to choose TIFF files from other directories.

![Image showing the Multiple File Selection tab with selected files]

NOTE: Entries in the list may be selected by clicking in the number column as shown above, and then removed from the list with the Delete icon.

10. Click Finish to start computing statistics on the listed images now. A double Job Status dialog displays showing the progress of each individual file along with progress of the total job. When the job is complete, the OK button is enabled. Click OK to close the Job Status dialog.

Execute Multiple Files/Single Command—Run Later

In the following example, you are going to perform reprojection on all of the Lake Lanier related files in the ERDAS IMAGINE examples directory.

NOTE: For Windows NT users, you must be an administrator or a person with administrator privileges to run a Batch process at a later time.

1. From the ERDAS IMAGINE icon bar, click the DataPrep icon and then select Reproject Images to open the Reproject Images dialog. Select lanier.img as the Input File and lanier_reproj.img as the Output File. Select UTM WGS 84 South from the Categories popup list. Select UTM Zone 25 from the Projection popup list.

NOTE: If you are creating projections of your own, do not include a slash (/ or \) in the name. The Batch processor uses the presence of a slash in a name to decide if it is an argument to be converted to a variable.
2. Click the **Batch** button. The Batch Wizard starts with the **Select Type of Command Processing** panel. Select the **Modify commands automatically** option.

3. In the Batch Wizard, click the **Next >** button to open the **Edit Commands/Create Variables** panel. Ensure the **Commands** tab is selected. Using the horizontal scroll button, scroll about 2/3 to the left and observe that **Input** and **Output** variables have already been created in the command line.

 ![Batch Wizard Image]

 Save the Output File in the directory of your choice

 Set the projection here

 Click the Batch button

 For more information about variables, see the “Work with Variables” section on page 204.

4. Click the **Next >** button. The **Select Files to Process** panel opens with the selected input file displayed.

 The popup list in the **Select Files to Process** panel determines which variable is populated when the Add Files button is pressed. In this example, there is only an **Input** variable.
Batch Processing

By default, there is always an Input column in the list, which corresponds to the default Input variable.

Add Multiple Files

1. Click the Add Files button. The Select Batch Files dialog opens.

2. Select Inaspect.img from the Select Batch Files dialog. Click the Multiple File Selection tab and click the Use the following Selection Pattern checkbox. Edit the Selection Pattern field to insert ln before the asterisk. It should look like this:

 `<IMAGINE_HOME>/examples/ln*.img`

 Where `<IMAGINE_HOME>` represents the installation directory of ERDAS IMAGINE on your system.
3. Click the OK button in the Select Batch Files dialog.

The input files are displayed under the Input column. Select and delete any duplicate or unwanted files by clicking in the numbered column next to the file name and then clicking the Delete Files icon. This list of input files may be saved for future use.

See “Additional Information” on page 209 for information about saving files.

4. Click the Next > button to open the Select When to Process Commands panel. Click the Start Processing Later At checkbox. Use the default time of the next available minute.
Batch Processing

This Batch file begins on 21 October 1999 at 3:09 p.m.

When you schedule Batch jobs later, a Name is assigned. Names cannot contain certain characters or spaces. Batch renames the job accordingly.

The following characters are converted to a - (dash) when present in the Name field of the Select When to Process Commands panel: \, /, *, ?, |, <, and >. Spaces and tabs are converted to an _ (underscore).

5. Click the Finish button to begin processing. The Scheduled Batch Job List dialog opens, displaying all current Batch jobs.

The Scheduled Batch Job List dialog may be opened any time by selecting Session | View Off-line Batch Queue from the ERDAS IMAGINE menu bar.

When the job begins, the Status changes from WAITING to ACTIVE. When the job has finished, the Status changes from ACTIVE to DONE.

When the job is done, the log file can be viewed by first selecting the job in the Scheduled Batch Job list dialog, and then clicking the Log button. This is useful for checking to see if your Batch command ran successfully on all of the input files.
Execute Multiple Files/Multiple Commands

This procedure is most useful for very complex operations on multiple files involving many commands where the output from one command becomes the input to a succeeding command. In the following example, you are going to perform three operations on each of the Lake Lanier related files in the ERDAS IMAGINE examples directory.

⚠️ It is important to note that some processes depend upon the physical extents of the imagery, or the number of bands, or data types, etc. You must be aware of both the requirements of the processes (commands) as well as the differences between the file types to be processed. In many cases, the data sets provided to multifile processing jobs must share common physical and ephemeral aspects.

Set Up

1. Select **Session | Preferences** from the ERDAS IMAGINE menu bar to open the Preference Editor dialog, and select the **Batch Processing** category.
Batch Processing

2. Ensure that the **Run Batch Commands in Record Mode** option is enabled (checkbox checked).

This preference tells ERDAS IMAGINE to run the commands and record them simultaneously. When running in Record Mode, you are typically collecting a series of commands to automate. Since the first command typically produces input for the next command, it is desirable to have the command run as soon as it is placed into the current list of commands.

Once the command has completed, the resulting file is available to be selected as input to the next command. In this case, the **Create and Insert Variables** button can be used to identify and replace intermediary files with temporary file variables, so that only the final output file is left on disk, and not all of the intermediate steps.

Optionally, you can select the **Run commands as they are recorded** checkbox on the **Record Commands for Automation** panel. This sets the preference for the current session without changing your general preferences.

3. In the Preference Editor, click the **Image Files (General)** category, then click to deselect the **Compute Pyramid Layers** option. You do not want pyramid layers to be generated for the temporary files. Rather, you can run the Image Command Tool as a Batch process to create pyramid layers for the output files only.

4. Click **User Save** in the Preference Editor, then click **Close**.

5. Select **Session | Start Recording Batch Commands** from the ERDAS IMAGINE menu bar to start the Batch Wizard. The **Record Commands for Automation** panel displays.

Note that the flashing record light, located in the lower left corner of the Batch Wizard dialog, has been activated.
1. From the ERDAS IMAGINE icon bar, click the Interpreter icon and then select Radiometric Enhancement | Histogram Equalization to open the Histogram Equalization dialog.

2. Select <IMAGINE_HOME>/examples/lanier.img for the Input File name and <your_workspace>/image1.img for the Output File name.

 Where <your_workspace> is the Default Output Directory specified in the User Interface & Session category in the Preference Editor and <IMAGINE_HOME> is the directory where ERDAS IMAGINE is installed.

3. Click the Batch button in the Histogram Equalization dialog. The command to perform histogram equalization is added to the Record Commands for Automation panel. The histogram equalization process starts and a Job Status dialog displays. When the process is done, click OK.

Run Next Command

1. To open the Brightness Inversion dialog, select Brightness Inversion from the Radiometric Enhance menu you opened in the first command.
2. Select <your_workspace>/image1.img for the Input File name and <your_workspace>/image2.img for the Output File name. The Batch option is now enabled.

3. Click the Batch button. The command to perform brightness inversion is added to the Record Commands for Automation panel. The histogram brightness inversion starts and a Job Status dialog displays. When the process is done, click OK.

Run Another Command
You can also use Batch to create pyramid layers of your data. Now you instruct the Image Command Tool to create pyramid layers for the output files only.

1. From the Tools menu of the ERDAS IMAGINE menu bar, select Image Command Tool. In the Image File window of the Image Commands dialog, select the file you generated in the last example, image2.img.
Execute Multiple Files/Multiple Commands

2. Click the Compute Pyramid Layers checkbox, then click the Options button next to Compute Pyramid Layers to open the Pyramid Layers Options dialog. Notice the Kernel Size, and that the External File option is not checked. You want the output file to contain internal pyramid layers rather than having the pyramid layers stored in an external .rrd file. Click OK in the Pyramid Layers Options dialog.

3. Click the Batch button in the Image Commands dialog. The command to create pyramid layers is added to the Record Commands for Automation panel. The pyramid layer generation starts and a Job Status dialog displays. When the process is done, click OK.

 If you examine the contents of the Record Commands for Automation panel at this time, you notice that the commands explicitly name the input and output files. The next procedure converts the input and output file names into variables so that these commands may be applied to a larger set of input files.

Create Variables

1. On the Record Commands for Automation panel, click the Next > button. The Select Type of Command Processing panel displays. Select the Modify commands automatically option.

2. On the Select Type of Command Processing panel, click the Next > button. The Edit Commands/Create Variables panel displays.
Batch Processing

Modify Variables

This procedure creates an intermediate file that is used to pass the output of the first process to the input of the second. There is no need to keep this file and use disk space. Also, you might want the output file name to be a little more meaningful than image2. The following steps tell you how to modify variables.

1. Click the Variables tab to gain access to the variable editing tools.

2. Select the Temp1 variable. This represents the intermediate files that are not needed after processing. The Delete Before Processing checkbox is automatically selected to remove these files before processing begins. This prevents problems arising from the existence of an old file. The Delete After Processing checkbox is also automatically selected to remove these temporary files when processing finishes.
3. Select the Output variable. This represents the name of the final output file. The Delete Before Processing checkbox is checked automatically to remove these files before processing begins. This prevents problems arising from the existence of an old file.

Notice that the Output variable as well as the Temp1 variable described above are of the Type Auto. This means the software is responsible for creating the file names that are substituted for the variables at run time.

By default, the software uses the output directory that you specified in step 2. under Execute Multiple Files/Multiple Commands on page 197. For the file name, it uses a combination of the root name of the input file and the last specified output file (in this example, image2).

4. Click the Set button. Click in the Pattern window and edit the text string to change image2 to inverse, and then click OK.
NOTE: If your input files have the same root name (e.g., 03807701.nec, 03807701.nwc) change Input.root to Input.name in the Pattern window. This includes the extension and thus preserves the uniqueness of the file name.

Select Input Files

1. Click the Next > button to open the Select Files to Process panel. The original input file is listed in the Input column.

2. Click the Add Files button. The Select Batch Files dialog opens.

3. Select Inaspect.img from the Select Batch Files dialog. Click the Multiple File Selection tab and click the Use the following Selection Pattern checkbox. Edit the Selection Pattern field to insert ln before the asterisk. It should look like this:

 <IMAGINE_HOME>/examples/ln*.img

 Where <IMAGINE_HOME> represents the ERDAS IMAGINE installation directory.
4. Click the **OK** button on the Select Batch Files dialog.

The input files are displayed under the **Input** column. Select and delete any duplicate or unwanted files by clicking in the numbered column next to the file name and then clicking the Delete Files icon. This list of input files may be saved for future use.

See “Additional Information” on page 209 for details on how to save lists of input files.

Set Start Time

1. Click the **Next >** button to open the **Select When to Process Commands** panel. Click the **Start Processing Later At** checkbox. Use the default time of the next available minute.

2. Click the **Finish** button to begin processing. The Scheduled Batch Job List dialog opens, displaying all current Batch jobs.

When the job begins, the **Status** changes from **WAITING** to **ACTIVE**. When the job has finished, the **Status** changes from **ACTIVE** to **DONE**.
Batch Processing

When the job is done, the log file can be viewed by first selecting the job and then clicking the Log button in the Scheduled Batch Job List dialog.

The Scheduled Batch Job List dialog may be opened any time by selecting Session | View Off-line Batch Queue from the ERDAS IMAGINE menu bar.

3. When the Batch jobs are finished, indicated by DONE in the Status column, click Close in the Scheduled Batch Job List dialog.

If you wish, you can check the files you just generated in a Viewer.

NOTE: You may also wish to change your preferences back to the default of Compute Pyramid Layers in the Image Files (General) category of the Preference Editor.

Work with Variables

This section deals with modification of automatically created variables for the purpose of generalizing a command file.

Create a New Variable

A new variable is helpful in the case of an application requiring multiple inputs. The automatically created variables always consist of a single Input, a single Output, and as many Temp variables as necessary. If you are creating a Batch command file that can be used by others, it is much more readable if the Temp variables are replaced by variable names that are meaningful.

When creating variables, it is important to know the distinction between User variables and Auto variables. The value of a User variable is derived from the Select Files to Process panel. You must provide the appropriate value for each User variable in the CellArray.

The value of an Auto variable is generated by the software from parameters specified in the pattern window of the Set dialog. If you recall, you worked with the dialog generated by pressing the Set button, the Edit Replacement Pattern dialog in "Modify Variables" on page 200.

In the following example, you are going to create a variable, OutputDir, which enables another person to enter an output directory of his or her choice for files processed by Batch. For this exercise, you have selected a number of files that you want to reproject.

Prepare

First, you have to start the application from which you launch the Batch Wizard.

ERDAS IMAGINE must be running.

1. Click the Interpreter icon. From the Image Interpreter menu, select Utilities. From the Utilities menu, select Subset.

The Subset dialog opens.
2. In the Subset dialog, click the Open icon underneath **Input File**. In the Input File dialog, navigate to the `<IMAGINE_HOME>/examples` directory. Choose the file `lnaspect.img` from the `/examples` directory. Click **OK** in the Input File dialog to transfer the file to the Subset dialog.

3. Click the Open icon underneath **Output File**. In the Output File dialog, navigate to the directory of your choice. Click the **File Type** dropdown list and select **TIFF**. In the **Filename** window, type `lnaspect`, then press Return on your keyboard. The `.tif` extension is appended automatically. Click **OK** in the Output File dialog.

Start Batch Wizard

1. Click the **Batch** button in the Subset dialog.

2. In the **Select Type of Command Processing** panel of the Batch Wizard dialog, click the **Modify commands automatically** checkbox. Then, click **Next >**.

 The **Edit Commands/Create Variables** panel displays.
Batch Processing

3. Click the Variables tab on the Edit Commands/Create Variables panel. Click on the Output variable to observe its properties.

Notice in the Pattern window of the Variables tab that the path to the Output file is so long that it does not completely fit within it. This directory can be replaced with a new variable called OutputDir. You can set the Pattern of the OutputDir variable to any directory you choose. This makes your command shorter.

Create a New Variable

Since you know that you want your new variable to be named OutputDir, and you know you want it to replace the current path in the Pattern of the Output variable with it, you can begin editing there.

1. Make sure that the Variables tab displays the Output variable’s details.

2. Click in the Pattern window and remove the entire directory structure you want to replace. Once you have eliminated it, type in the following:

 $(OutputDir)
Your Pattern window then looks like the following:

![Pattern window showing new variable](image)

You have to create the new variable, OutputDir, so that the variable Output does not generate errors in your Batch script, and knows where to place output files.

3. In the Variables tab of the Edit Commands/Create Variables panel, click the New button.

The Variables tab changes to accommodate a new variable.

4. In the Name section of the Variables tab, type the name OutputDir.

5. Click the Type dropdown list and choose Auto.

6. In the Pattern window, type the path to the directory and folder that you want generated files to be saved in.

Your Variables tab looks like the following:
Add Additional Files to the Batch Job

1. Click Next > in the Edit Commands/Create Variables panel.
2. In the Select Files to Process panel, click the Select Files to Add button, and add all files with in the <IMAGINE_HOME>/examples directory that start with the letters ln using the Multiple File Selection tab.

If you need to review how to add multiple files, see "Add Multiple Files" on page 192.

Start Processing

1. Click the Next > button to open the Select When to Process Commands panel.
2. Make sure the Start Processing Now option is selected, then click Finish to start the Batch job with the new variable.

The double Job Status dialog opens.
3. When the process completes, click **OK** in the Job Status dialog.

Check the Output Directory

Now, you can check the output directory to see the files that have been stored there. In this example, the directory holds TIFF files you created from image files using the Subset utility of Image Interpreter.

1. Using a UNIX shell or Microsoft Explorer, navigate to the directory you specified as the Output Directory.

2. Check for the new TIFF files created from all files starting with `ln` in the `<IMAGINE_HOME>/examples` directory.

Additional Information

Save/Load Options

The **Edit Commands / Create Variables** panel and the **Select Files to Process** panel provide methods for saving and loading the Batch commands and input file lists, respectively.

Save

Click the Save icon to save the commands in the **Edit Commands/Create Variables** panel to a text (.bcf) file, and the input file list in the **Select Files to Process** panel to a text (.bls) file for later use. The Save Batch Commands dialog opens, allowing you to enter a new file name.
Load
Click the Load icon to load a previously saved command (.bcf) file or input file list (.bls) file. A Load Batch Commands dialog opens, allowing you to select from a previously saved list of files. These lists are text files that may be created outside of ERDAS IMAGINE.

Batch Job Files
Several files are created for each Batch job that runs at a later time. The default file name root is `batch_job`. The file name can be seen in the Name field of the Select When to Process Commands panel. File names for each Batch job are listed in the Scheduled Batch Job List dialog.

PC Version
The following are PC versions of Batch job files that are located in the Batch job directory. The default Batch job directory is `$PERSONAL/batch`, and you can go to Session | Preferences | Batch Processing to change the Batch Job Directory.

- **batch_job.bat**—This is an MS-DOS Batch file. This file sets up the environment for the ERDAS IMAGINE applications and runs “batchprocess,” which runs the commands found in the `batch_job.bcf` file.
- **batch_job.bcf**—These are ERDAS IMAGINE Batch command files. These files hold the variable definitions and issue the ERDAS IMAGINE commands to perform the step, or steps, required to complete a job.
- **batch_job.blx**—These files contain lists of input files.
- **batch_job.id**—This file contains a job number assigned by the system. This file is deleted automatically to indicate completion of the job.
- **batch_job.lck**—This is an empty file that is created when the job actually starts running. This indicates the job is ACTIVE. When the job is done, it is deleted.
- **batch_job.log**—This file contains the results of the Batch job.
UNIX Version

These are UNIX versions of Batch job files:

- **batch_job.bcf**—These are ERDAS IMAGINE Batch command files. These files hold the variable definitions and issue the ERDAS IMAGINE commands to perform the step, or steps, required to complete a job.

- **batch_job.bls**—These files contain lists of input files.

- **batch_job.id**—This file contains a job number assigned by the system. This file is deleted automatically to indicate completion of the job.

- **batch_job.job**—This is a UNIX shell script. This file sets up the environment for the ERDAS IMAGINE applications and runs “batchprocess,” which runs the commands found in the **batch_job.bcf** file.

- **batch_job.lck**—This is an empty file that is created when the job actually starts running. This indicates the job is **ACTIVE**. When the job is done, it is deleted.

- **batch_job.log**—This file contains the results of the Batch job.
Batch Processing
Section II
IMAGINE Advantage™
Section II IMAGINE Advantage™
CHAPTER 10
Fourier Transform Editor

Introduction

In this tour guide, you enhance and destripe a 512×512 subset of a Landsat Thematic Mapper image using both interactive and automatic methods available in the ERDAS IMAGINE Fourier Analysis tools.

Not all of the edits in this tour guide necessarily enhance the image. Many exercises are performed simply to show you how they affect the image. When you use these techniques on other data sets, you may want to experiment with different methods, or combinations of methods, to find the techniques that work best.

It is highly recommended that you read the Fourier Analysis section, beginning on page 183 of the ERDAS Field Guide, before going through this tour guide.

If you are a new to ERDAS IMAGINE, it is recommended that you go through the tour guide "CHAPTER 1: Viewer" before using the Fourier Transform Editor.

Approximate completion time for this tour guide is 45 minutes.

Create an .fft Layer

In order to use the Fourier Transform Editor, you must first create a Fourier Transform (.fft) layer from the input image.

Prepare

ERDAS IMAGINE must be running and you must have a Viewer open.

Display File

1. Select File | Open | Raster Layer from the Viewer menu bar.

The Select Layer To Add dialog opens.
2. In the Select Layer To Add dialog under **Filename**, click on **TM_1.img**.

3. Click on the **Raster Options** tab at the top of the dialog and then select **Gray Scale** from the **Display as** popup list.

4. The **Display Layer** section updates so that you can select which layer of the file to display. Accept the default of **Layer 1**.

5. Click **OK** to display the image file in the Viewer.

NOTE: You do not have to display a file before computing the .fft layer. This step is included to show you the image before any Fourier editing is performed.
6. Click the Image Interpreter icon on the ERDAS IMAGINE icon panel.

The **Image Interpreter** menu displays.

7. Select **Fourier Analysis** from the **Image Interpreter** menu.

The **Fourier Analysis** menu opens.

8. Select **Fourier Transform** from the **Fourier Analysis** menu.

The Fourier Transform dialog opens.
9. In the Fourier Transform dialog under Input File, type in TM_1.img.

Layer 1 of this file is badly striped. In this example, you work with only one layer to make the processing go faster. However, the techniques you use are applicable to multiple layers.

10. The name for the Output File, TM_1.fft, is automatically generated. Make sure it is in a directory in which you have write permission. The default is your default data directory set by Session | Preferences.

11. Enter 1:1 in the Select Layers field.

12. Click OK in the Fourier Transform dialog to create the new file.

A Job Status dialog displays, showing the progress of the function. When the process is 100 percent complete, click OK.

Start the Fourier Transform Editor

With the .fft file created, you are ready to begin using the Fourier Transform Editor.

1. In the Fourier Analysis menu, select Fourier Transform Editor.

The Fourier Editor opens.
2. In the Fourier Editor, click the Open icon on the tool bar, or select File | Open from the menu bar.

The Open FFT Layer dialog opens.

3. In the Open FFT Layer dialog under FFT Layer, enter the path and name of the .fft layer you created in steps 9. through 10. on page 218 (e.g., TM_1.fft).

Since this file contains only one layer, the Layer Number defaults to 1. However, if the file contained more than one layer, you could choose the layer to edit here. Edits performed on one layer can be applied to all layers of the .fft file using the File | Save All option on the Fourier Editor menu bar.
4. Click **OK** to display the selected file in the Fourier Editor.

A status meter opens as the layer is read. Then the layer is displayed.

You can resize the Fourier Editor window to see the entire file.

5. Click on any point inside the Fourier Editor and the coordinates of that point are shown in the status bar. Hold and drag to dynamically update the coordinates.

Fourier Editor Coordinates

The coordinates are referred to as \((u, v)\) with the origin \((u, v = 0,0)\) at the center of the image. See the illustration below.

- \((-u, -v)\)
- \((u, -v)\)
- \((0, 0)\)
- \((-u, v)\)
- \((u, v)\)

Since Fourier images are symmetrical, a point in one quadrant is exactly the same as the corresponding point in the opposite quadrant. For example, point \((64, 170)\) is the same as point \((-64, -170)\). For this reason, all edits are automatically performed on both halves of the image at the same time.
Edit Using Menu Options

As previously stated, the menu bar and mouse-driven tools offer the same techniques and kinds of edits, only the method is different. In the menu bar options, you enter all parameters into dialogs. In many cases you want to use the mouse to view the coordinates of the .fft layer, so that you know what information to enter into the dialogs. In the next series of steps, you use some of the menu bar editing options. Then, in the next section, you perform many of those same edits using the mouse-driven tools.

Use Low-Pass Filtering

Low-pass filtering allows you to attenuate the high-frequency components of the image, but allows the low-frequency components to pass through.

1. Select **Mask | Filters** from the Fourier Editor menu bar.

 The Low/High Pass Filter dialog opens.

 ![Low/High Pass Filter dialog](image)

 Filter Types

 When the **Filter Type** is set to **Low Pass**, its function is the same as the Low Pass Filter icon on the tool bar.

 ![Low Pass Filter icon](image)

 When the **Filter Type** is set to **High Pass**, its function is the same as the High Pass Filter icon on the tool bar.

 ![High Pass Filter icon](image)

 You use these mouse-driven tools later in this tour guide.

2. In the Low/High Pass Filter dialog, click on the **Window Function** popup list and select **Ideal**.

 An ideal window function produces a sharp transition at the edge of the filter.
3. Change the **Radius** to **10.00**.

4. Leave all other parameters as is and click **OK**.

 A low-pass filter is applied to all values outside of the radius of 10.00. Therefore, the image is black, except for a small white circle in the center.

![Image of Fourier Transform Editor with a small white circle in the center](image)

Removing this much of the layer removes much of the content of the image, so you may want to undo this edit and try again.

5. Select **Edit | Undo** from the Fourier Editor menu bar.

 The image is restored to its original state.

Select a Different Filter

1. Select **Mask | Filters**.

2. In the Low/High Pass Filter dialog, click on the **Window Function** popup list and select **Ideal**.

3. Enter a **Radius** of **80.00**.

4. Click **OK** in the Low/High Pass Filter dialog.

 All frequencies outside the radius of 80 are attenuated and frequencies inside the radius are unaffected. The .fft layer looks similar to the following example:
Save the File

1. Select **File | Save As** from the Fourier Editor menu bar.

 The Save Layer As dialog opens.

2. In the directory of your choice, enter a name for the new .fft layer, such as **TM1lowpass.fft**.

3. Click **OK** to save the file.

Apply an Inverse Fourier Transformation

Now, perform an inverse Fourier transformation so that you can view the original image and see what effect this edit had on it.

⚠️ **You must save your edits before performing an Inverse Transform Operation.**
1. In the Fourier Editor, click the Run icon on the tool bar or select **File | Inverse Transform** from the menu bar.

The Inverse Fourier Transform dialog opens.

2. In the Inverse Fourier Transform dialog under **Output File**, enter a name for the new output file, such as **inverse_TM1.img**. This file has an .img extension by default. Be sure to use a directory in which you have write permission.

3. Click **OK** to create the new file.

A Job Status dialog displays, indicating the progress of the function.

4. When the Job Status dialog indicates that the file is created, click **OK** and then display the file in a Viewer.

Your file should look similar to the following example:
For the other edits performed in this tour guide, you can save the .fft layer and perform an inverse Fourier transform at any time. The steps for doing so are not repeated here. However, the result is shown so that you can see how each edit affects the image.

Apply Other Filters

1. In the Fourier Editor, click the Open icon on the tool bar, or select **File | Open** from the menu bar.

2. In the Open FFT Layer dialog under **FFT Layer**, enter the name of the first .fft layer you displayed (e.g., `TM_1.fft`).

3. Click **OK** to display the selected file in the Fourier Editor.

4. When the file displays, select **Mask | Filters** from the Fourier Editor menu bar.

5. In the Low/High Pass Filter dialog, click on the **Window Function** popup list and select **Butterworth**.

 This is a smoother function than the Ideal. Use a radius of 80.00, just as with the Ideal.

6. Change the **Radius** to **80.00**.

7. Click **OK** in the Low/High Pass Filter dialog.

The .fft layer and the resulting image are shown in the following picture:
Fourier Transform Editor

This filter eliminated much of the image content because the radius was too small.

8. Try this same exercise using a **Radius** of **300.00**, rather than **80.00**

The resulting image looks like the following example:

The image is visibly smoothed (perhaps too much). However, the striping remains. You remove the stripes using the wedge filter later in this tour guide. You could try using the Butterworth filter with an even larger radius or the other windows.

The following graphics illustrate some of these other scenarios.
9. Redisplay the original .fft layer in the Fourier Editor.

Use a Circular Mask

There are several bright spots in the .fft layer, such as those in the upper left quadrant. These can be eliminated using the circular mask option.
1. With your cursor in the Fourier Editor, click in the center of one of these bright areas. There is one at \((u,v) = (-58,-199)\). You use this coordinate here, but you can use another if you like.

2. When you have selected a coordinate, select **Mask | Circular Mask** from the Fourier Editor menu bar.

The Circular Mask dialog opens.

3. In the Circular Mask dialog, click on the **Window Function** popup list and select **Butterworth**.

4. Enter -58 for the **Circle Center, U** and -199 for the **Circle Center, V**.

5. Enter a **Circle Radius** of 20.

6. Click **OK** in the Circular Mask dialog to edit the .fft layer.

The bright spot disappears. This edit does not affect the appearance of this particular image very much, since it is such a small area and because the edited area is quite far from the center of the image where most of the image content is contained. However, this technique can be used to remove spikes caused by errant detectors and other types of periodic noise that are manifested by concentrated areas of high or low frequency in the .fft layer.

As an experiment, you create two circles of low frequency to see how they affect the image.

7. In the Fourier Editor, select **Mask | Circular Mask**.

8. In the Circular Mask dialog, enter a **Circle Center, U** of 44 and a **Circle Center, V** of 57.

9. Enter a **Circle Radius** of 20.00 and a **Central Gain** of 10.00.

10. Click **OK** in the Circular Mask dialog.

The .fft layer and resulting image look like the following example:
The resulting image has a pronounced diagonal striping, in addition to the original striping.

NOTE: Remember to select another circle center coordinate before trying each new window.

Use a Rectangular Mask

The rectangular mask allows you to mask a rectangular area of the .fft layer. This is similar to the circular mask in that it allows you to edit non-central regions of the Fourier image.

1. Make sure the .fft file you created in the previous section, “Use a Circular Mask”, is displayed in the Fourier Editor.

2. In the Fourier Editor menu bar, select **Mask | Rectangular Mask**.

 The Rectangular Mask dialog opens.

3. In the Rectangular Mask dialog, click on the **Window Function** popup list and select **Ideal**.

4. Enter an upper left u (UL U) of 80 and an upper left v (UL V) of 80.

5. Enter a lower right u (LR U) of 255 and a lower right v (LR V) of 255.

6. Click **OK** in the Rectangular Mask dialog.
Fourier Transform Editor

The top left and bottom right corners of the .fft layer are black. To mask the other two corners, you must repeat this procedure.

7. Select **Mask | Rectangular Mask**.

8. In the Rectangular Mask dialog, click on the **Window Function** popup list and select **Ideal**.

9. Enter an upper left \(u \) (UL U) of 80 and an upper left \(v \) (UL V) of -255.

10. Enter a lower right \(u \) (LR U) of 255 and a lower right \(v \) (LR V) of -80.

11. Click **OK** in the Rectangular Mask dialog.

The top, right and bottom, left corners of the .fft layer are now black also, making the .fft layer look like a cross.

The resulting image is visibly smoother than the original.

Use a Wedge Mask

The wedge mask option is often used to remove striping in imagery that appears in the .fft layer as radial lines. Most of the striping in the Landsat image you are using is manifested in the .fft layer as the bright, nearly vertical line that passes through the origin.

1. If it is not already displayed, open the original .fft layer in the Fourier Editor (i.e., **TM_1.fft**).

2. With your cursor in the Fourier Editor, click in the center of one of the bright areas that make up the line. You need to enter this information in the dialog. For this example, you use (35, -186).

3. Select **Mask | Wedge Mask**.

The Wedge Mask dialog opens.
4. In the Wedge Mask dialog for the Center Angle, enter the following expression to calculate the center of the wedge, based on the coordinate that you selected.

\[-\text{atan}(-185/36)\]

5. Press Return on your keyboard. The value returned is 78.99.

6. Enter a Wedge Angle of 10.00.

 This is the total angle of the wedge, in this case, 5.00 degrees on either side of the center.

7. Click OK to edit the layer.

 The resulting .fft layer looks similar to the following example:
Fourier Transform Editor

After performing an inverse Fourier transform, the resulting image is destriped.

Edit Using Mouse-Driven Tools

The mouse-driven tools allow you to perform the same types of edits as in the menu options, but they are a bit easier to use since they are more interactive than the dialogs. You can extend a filter radius or indicate where to place a mask simply by dragging the mouse.

1. If it is not already displayed, open the original .fft layer in the Fourier Editor (e.g., TM_1.fft).

2. From the Fourier Editor menu bar, select **Edit | Filter Options**.

 The Filter Options dialog opens.

 ![Filter Options dialog](image)

 Select window function here

 This is where you set the window that is used for all subsequent mouse-driven editing options. However, you can change this window at any time. The **Minimum Affected Frequency** option allows you to enter the minimum frequency value that is affected by the filter. Setting this value to a number less than 10.00 might eliminate very low frequency data that are crucial to the content of the image.

3. In the Filter Options dialog, click on the **Window Function** popup list and select **Ideal**.

4. Click **OK**.
Use Low-Pass Filtering

The first tool you use is the Low-Pass Filter tool.

1. Click the Low-Pass Filter icon on the Fourier Editor tool bar.

2. With your cursor in the center of the Fourier Editor, drag toward the right until the \(u \) coordinate in the status bar reads 80. Then release the mouse.

 The image is filtered as soon as the mouse is released. This is equivalent to the second filtering operation you performed using the menu bar tools.

 You can select **Edit | Undo** at any time to undo an edit. Select **File | Revert** to undo a series of edits. The Low-Pass Filter tool remains active until you either select another tool or click the Select tool.

Use High-Pass Filtering

Next, you use the High-Pass Filter tool.

1. Select **Edit | Filter Options** from the Fourier Editor menu bar.

2. In the Filter Options dialog, click on the **Window Function** popup list and select **Hanning**.

3. Click **OK** in the Filter Options dialog.

4. Click the High-Pass Filter icon on the tool bar.

5. With your cursor in the center of the Fourier Editor, drag toward the right until the \(u \) coordinate in the status bar reads 20. Release the mouse button.

 The image is filtered as soon as the mouse is released. The combination of filters is shown in the following example:
Fourier Transform Editor

6. Select **File | Save As** from the menu bar.

 The Save Layer As dialog opens.

7. In the Save Layer As dialog, enter a new name for the .fft layer, such as **TM1highpass.fft**. Be sure to use a directory in which you have write permission.

8. Click **OK** to save the layer.

9. Click the Run icon on the tool bar or select **File | Inverse Transform** from the menu bar to create an inverse Fourier layer for display.

10. In the Inverse Fourier Transform dialog, enter a name for the new .img layer in the directory of your choice, such as **TM1highpass.img**.

11. Click **OK**.

 A Job Status dialog displays, indicating the progress of the function.

12. When the Job Status dialog indicates that the new .img layer is created, click **OK** and then display the layer in a Viewer.

 Your new image should look similar to the following example:
Apply a Wedge Mask

In the next exercise, you remove the nearly vertical radial line in the image, thereby removing the striping in the original image.

1. Redisplay the original .fft layer in the Fourier Editor if you have not already done so.
2. The Hanning window is still selected from the previous section, so you do not change it.
3. Click the Wedge Mask icon on the tool bar.

4. Using the following example as a guide, with your cursor over the center of the line, drag to the right until the lines of the wedge are about 20 degrees apart. Release the mouse button.
Fourier Transform Editor

The image is filtered as soon as you release the mouse, and similar to the following example. The resulting image is also shown.

Combine Edits

You may combine as many edits as you like during an editing session. Since the Fourier Transform and Inverse Fourier Transform are linear operations, the effect of each edit on the resulting image is independent of the others. Here, you perform a low-pass filter over the wedged .fft layer that you just created.

1. With the .fft layer that you just created displayed in the Fourier Editor, click the Low-Pass Filter tool.
2. With your cursor in the center of the Fourier Editor, drag toward the right until the u coordinate in the status bar is about 200.

The .fft layer and resulting image look similar to the following:

For more information about the Fourier Transform Editor, see "APPENDIX A: Additional Information" on page 595.
Fourier Transform Editor
CHAPTER 11
Image Interpreter

Introduction

Image Interpreter is a group of over 50 functions that can be applied at the touch of a button to images with parameters you input. Most of the Image Interpreter functions are algorithms constructed as graphical models with Model Maker. These algorithms are common enhancements and utilities that have been made easily accessible through the Image Interpreter.

NOTE: Some of these functions are found in other parts of ERDAS IMAGINE, but are also listed in Image Interpreter for convenience.

The models used in Image Interpreter functions can be edited and adapted as needed with Model Maker (from Spatial Modeler) or the Spatial Modeler Language.

See the Spatial Modeler section of this manual for a description of the relationship between Spatial Modeler Language, Model Maker, and Image Interpreter. See "CHAPTER 11: Geographic Information Systems" of the ERDAS Field Guide for more information on modeling.

Approximate completion time for this tour guide is 50 minutes.

Subsetting an Image

Many images used in IMAGINE cover a large area, while the actual area being studied can only cover a small portion of the image. To save on disk space and processing time, IMAGINE will let you make new images out of a subset of the entire dataset.

In this exercise, you will use the Subset Utility to take a subset of a small urbanized Area of Interest (AOI) from a much larger Landsat scene of San Diego.

Prepare

ERDAS IMAGINE should be running with a Viewer open.

1. Select **File | Open Raster Layer** from the Viewer menu bar.

The Select Layer to add dialog opens.
2. Select dmtm.img from the list of examples.

3. Click on **OK** to have the image display in the Viewer.

Selecting an AOI to Subset

In this section, you use the Subset utility to take a small Subset from a large image without using the Snap to Raster option.

1. With the cursor in the Viewer, right-click to access the Quick-View menu.

2. Select **Inquire Box...** from the Quick-View menu. The Inquire Box dialog displays. The title of this dialog is **Viewer #1: dmtm.img**.

 ![Inquire Box dialog](image)

3. Click on the Snap to Raster checkbox to uncheck this option. This will tell the Subset function to use the exact coordinates you enter for the Inquire Box.

4. Enter the following coordinates into the Inquire Box dialog:

 - **ULX**: 1698385.570
 - **ULY**: 288632.691217
 - **LRX**: 1702282.557434
 - **LRY**: 284900.708704

 ![Subset coordinates](image)
5. Click **Apply** on the Inquire Box dialog. The Inquire Box moves to the new coordinates.

6. Use the **Zoom Tool** to zoom in on the Area of Interest.

The image in your Viewer should look something like this:

![Image](image_url)

Subsetting an Image Without Snapping

1. Click on the Interpreter icon in the ERDAS IMAGINE icon panel.

The **Image Interpreter** menu opens. Each of the buttons in the **Image Interpreter** menu displays a submenu of Image Interpreter functions.
2. Select **Utilities** from the **Image Interpreter** menu and the **Utilities** menu opens.
3. Select **Subset** from the **Utilities** menu and the Subset dialog opens.

4. Under **Input File** in the Subset dialog, enter `dmtm.img`.
 This is a Landsat TM image of San Diego, California.

5. Under **Output File**, enter `subset_no_snap.img` in a directory where you have write permission.

6. Click **OK** to begin the Subsetting process.
 A Job Status bar displays, indicating the progress of the subsetting operation.

7. Depending on your eml **Preferences** (under **Session** | **Preferences** | **User Interface & Session** | **Keep Job Status Box**), when the Job Status bar shows 100, indicating that the job is 100% done, you must either click **OK** to close the dialog or the dialog closes automatically.

Displaying the Subset with the Original Data

1. The original image should still be displayed in the Viewer.

2. Select **File** | **Open** from the menu bar on the Viewer.
The Select Layer to Add dialog displays.

3. Click the Recent button to open a list of recently accessed files.

4. Select `subset_no_snap.img` from the List of Recent Files.

5. Click OK to dismiss the List of Recent Files.

6. Click the Raster Options tab

7. Uncheck the Clear Display option so the new subset of the original image will appear superimposed on the original image.

8. Click OK.
Subsetting an Image

The subset displays in the Viewer over the original image.

When a subset of an image is taken from an inquire box that is not snapped to the pixel grid of the original image

9. Click on the Clear Top Layer icon to remove subset_no_snap.img from the Viewer.

The original image and the Inquire Box should still be displayed in the Viewer.

Subsetting an Image With Snap to Raster

1. In the Inquire Box dialog, click the Snap to Raster checkbox to make sure it is active (checked). Click Apply.
The Inquire Box snaps to the pixels centers and looks like this:

![Inquire Box Snaps to the Pixels Centers](image)

The coordinates in the Inquire Box dialog update to reflect the new corner coordinates.

2. In the Utilities dialog, click on the **Subset** button. The Subset dialog displays.
3. Under **Input File**, enter *dmtm.img*.
4. In the **Output File**, enter *subset_snap.img* in a directory where you have write permission.
5. Click the **From Inquire Box** button.

 The coordinates in the **Subset Definition** area update to reflect the corner coordinates of the Inquire Box.

6. Click **OK** to start the Subsetting Process.

 The Subsetting Progress meter appears, displaying the progress of the subsetting.

Viewing the Snapped Subset

1. Select **File | Open** from the menu bar in the Viewer.

 The **Select Layer to Add** dialog opens.

2. Click on the Recent button.

 The **List of Recent Files** dialog displays.

3. Select *subset_snap.img* from the list.
4. Click **OK** on the List of Recent Files to close the dialog.

5. Click on the **Raster Options** tab in the Select Layer to Add dialog.

6. Deselect the **Clear Display** option.

7. Click **OK** to open **subset_snap.img** in the Viewer on top of **dmtm.img**.

 The subsetted image displays in the Viewer.

 Because the Inquire Box was snapped to the centers of the pixels before the image was processed, the pixels in the output file will line up exactly with the pixels in the original image.

8. Click **Close** on the Viewer.

9. Click **Close** on the Utilities menu.

Apply Spatial Enhancement

Prepare

ERDAS IMAGINE should be running with a Viewer open.

In this section, you use the convolution and crisp Spatial Enhancement functions to enhance images.

1. Click on the Interpreter icon in the ERDAS IMAGINE icon panel.
The **Image Interpreter** menu opens.

2. Select **Spatial Enhancement** from the **Image Interpreter** menu and the **Spatial Enhancement** menu opens.

Apply Convolution

1. Select **Convolution** from the **Spatial Enhancement** menu and the Convolution dialog opens.

Click here to see an On-Line Help file describing this dialog
This interactive Convolution tool lets you perform convolution filtering on images. It provides a scrolling list of standard filters and lets you create new kernels. The new kernels can be saved to a library and used again at a later time.

NOTE: Do not close the Image Interpreter menu, as you continue using it in the next section.

Select Input/Output Files

1. In the Convolution dialog, under **Input File**, enter `lanier.img`.

2. Under **Output File**, enter `convolve.img` in the directory of your choice. It is not necessary to add the .img extension when typing the file name—ERDAS IMAGINE automatically appends the correct extension.

NOTE: Make sure you remember in which directory the output file is saved. This is important when you try to display the output file in a Viewer.

Select Kernel

Next, you must select the kernel to use for the convolution. A default kernel library containing some of the most common convolution filters is supplied with ERDAS IMAGINE. This library is opened in the **Kernel Selection** part of this dialog.

1. From the scrolling list under **Kernel**, click on **3x3 Edge Detect**.

2. Click on the **Edit** button in the **Kernel Selection** box.

The 3×3 Edge Detect dialog opens.
For this exercise, you use the Kernel Editor to simply view the kernel used for the 3 × 3 Edge Detect filter. However, if desired, you could make changes to the kernel at this time by editing the CellArray.

3. Select **File | Close** from the 3 × 3 Edge Detect dialog.

4. Click **OK** in the Convolution dialog.

 A Job Status dialog displays, indicating the progress of the function.

5. When the Job Status dialog shows that the process is 100% complete, click **OK**.

Check the File

1. Select **File | Open | Raster Layer** from the Viewer menu bar.

 The Select Layer To Add dialog opens

2. In the Select Layer To Add dialog under **Filename**, click on **lanier.img**.

3. Click **OK** to display the file in the Viewer.

4. Open a second Viewer window by clicking on the Viewer icon in the ERDAS IMAGINE icon panel.
Apply Spatial Enhancement

5. Select **File | Open | Raster Layer** from the menu bar of the Viewer you just opened.

 The Select Layer To Add dialog opens.

6. In the Select Layer To Add dialog under **Filename**, enter the name of the directory in which you saved **convolve.img**, and press the Return key on your keyboard.

7. In the list of files, click on **convolve.img** and then click **OK**.

 The output file generated by the Convolve function, **convolve.img**, displays in the second Viewer.

8. In the ERDAS IMAGINE menu bar, select **Session | Tile Viewers** to compare the two files side by side.

 ![Viewer comparison](image)

9. When you are finished comparing the two files, select **File | Clear** from the menu bar of each Viewer.

Apply Crisp

1. Select **Crisp** from the **Spatial Enhancement** menu.

 The Crisp dialog opens.
The Crisp dialog is a good example of the basic Image Interpreter dialog. Other dialogs may have more prompts for inputs, depending on the function. Each dialog opens with default entries that are acceptable for use. These entries can be changed, if necessary, to achieve specific results.

2. Under **Input File** in the Crisp dialog, enter **panAtlanta.img**.

 This is a SPOT panchromatic scene of downtown Atlanta, Georgia.

3. Under **Output File**, enter **crisp.img** in the directory of your choice as the output file.

4. Under **Output Options** in the Crisp dialog, turn on the **Stretch to Unsigned 8 bit** checkbox by clicking on it.

 This option produces the output file in unsigned 8-bit format, which saves disk space.

Use the View Option

1. Click on the **View** button at the bottom of the Crisp dialog.

 The Model Maker viewer window opens and displays the graphical model used for the Crisp function.
The **View** button in each Image Interpreter dialog lets you view the graphical model behind each function. If you want to change the model for a specific purpose, you can edit it through the Model Maker and apply the edited function to the image by running the model in Model Maker.

See "CHAPTER 16: Spatial Modeler" for information on editing and running a model in Model Maker.

2. Exit the Model Maker by selecting **File | Close All**.

3. Click **OK** in the Crisp dialog to start the process.

 A Job Status dialog opens, indicating the progress of the function.

4. When the Job Status dialog shows that the process is 100% complete, click **OK**.

View Results

1. Display **panAtlanta.img** in a Viewer.
2. Display **crisp.img**, the output file generated by the Crisp function, in the other Viewer.

3. Note the differences between the two images; **crisp.img** appears to be sharper.

4. Use the Zoom In tool in the Viewer tool bar to zoom in for a closer look at the crispening of the image in **crisp.img**.

5. When you are through, close all the Viewers at once by selecting **Session | Close All Viewers** from the ERDAS IMAGINE menu bar.

6. Click **Close** in the **Spatial Enhancement** menu.

 *NOTE: Do not close the **Image Interpreter** menu, as you continue using it in the next section.*

Apply Radiometric Enhancement

1. In the **Image Interpreter** menu, select **Radiometric Enhancement**.

 The **Radiometric Enhance** menu opens.
Apply Radiometric Enhancement

In this section, you use both the Inverse and Reverse options of the Image Inversion function to enhance images. Inverse emphasizes detail in the dark portions of an image. Reverse simply reverses the DN values.

Apply Brightness Inversion

1. In the Radiometric Enhance menu, select Brightness Inversion.

 The Brightness Inversion dialog opens.

2. In the Brightness Inversion dialog under Input File, enter iolakebedsig357.img.

3. Under Output File, enter inverse.img in the directory of your choice.

4. Under Output Options, turn on the Stretch to Unsigned 8 bit checkbox by clicking on it.

5. Under Output Options, click on Inverse.
Image Interpreter

6. Click **OK** in the Brightness Inversion dialog to start the process.

A Job Status dialog displays, indicating the progress of the function.

Reverse

1. Select **Brightness Inversion** from the **Radiometric Enhance** menu.

The Brightness Inversion dialog opens.

2. In the Brightness Inversion dialog, enter `loplakebedsig357.img` as the input file.

3. Enter `reverse.img` in the directory of your choice as the **Output File**.

4. Turn on the **Stretch to Unsigned 8 bit** checkbox under **Output Options**.

5. Click **OK** in the Brightness Inversion dialog to start the process.

A Job Status dialog displays, indicating the progress of the function.

View Changes

1. Open a Viewer and display `inverse.img`.

2. Right-hold within the Viewer and select **Fit Window to Image** from the **Quick View** menu.

The Viewer changes size to bound the image data.

3. Select **View | Split | Split Vertical** from the Viewer menu bar.

A second Viewer opens.

4. In the second Viewer, click on the Open icon (this is the same as selecting **File | Open | Raster Layer** from the Viewer menu bar).

The Select Layer To Add dialog opens.

5. From the Select Layer To Add dialog, open the file `reverse.img`.

6. In the second Viewer, select **View | Split | Split Vertical** from the Viewer menu bar.

A third Viewer opens.

7. With your cursor in Viewer #3, press **Ctrl-r** on your keyboard (this is just another way to open a raster layer).

The Select Layer To Add dialog opens.

8. From the Select Layer To Add dialog, open the file `loplakebedsig357.img`.
Apply Radiometric Enhancement

9. Resize the Viewers on screen so that you can see all three Viewers. Note the differences between `inverse.img` and `reverse.img` compared to the original file.

10. When you are through, close all three Viewers by selecting Session | Close All Viewers from the ERDAS IMAGINE menu bar.

11. Click Close in the Radiometric Enhance menu.

 NOTE: Do not close the Image Interpreter menu, as you continue using it in the next section.
Apply Spectral Enhancement

1. In the Image Interpreter menu, click on Spectral Enhancement.

 The Spectral Enhancement menu opens.

 ![Spectral Enhancement Menu]

 In this section, you use the following Spectral Enhancement functions:
 - Tasseled Cap
 - RGB to IHS
 - IHS to RGB
 - Indices

Use Tasseled Cap

1. In the Spectral Enhancement menu, select Tasseled Cap.

 The Tasseled Cap dialog opens.
2. Under **Input File**, enter `lanier.img`. That image is a Landsat TM image of Lake Lanier, Georgia, which was obtained by the Landsat 5 sensor.

3. Enter `tasseled.img` in the directory of your choice as the **Output File** name.

4. Under **Output Options**, turn on the **Stretch to Unsigned 8 bit** checkbox by clicking on it.

5. Click on **Set Coefficients**.

 The Tasseled Cap Coefficients dialog opens.
Image Interpreter

The coefficients that display are the standard default entries for Landsat 5 TM Tasseled Cap transformation. For this exercise, you use the default entries, although you may change these entries at any time.

6. Click OK in the Tasseled Cap Coefficients dialog.

7. Click OK in the Tasseled Cap dialog to start the function.

A Job Status dialog opens to report the state of the job.

8. When the Job Status dialog indicates that the job is Done, click OK.

Check Results

1. Open a Viewer and display lanier.img.

2. Open a second Viewer and then open the Select Layer To Add dialog by clicking on the Open icon in the Viewer tool bar.

3. In the Select Layer To Add dialog, enter the name of the directory in which you saved tasseled.img, press Return on your keyboard, and then click tasseled.img in the file list to select it.

4. Click the Raster Options tab at the top of the Select Layer To Add dialog. Under Layers to Colors, use layer 1 as Red, layer 2 as Green, and layer 3 as Blue.

5. Click OK in the Select Layer To Add dialog.

The image, tasseled.img, shows a degree of brightness, greenness, and wetness, as calculated by the Tasseled Cap coefficients used.

- Layer 1 (red) = the brightness component (indicates areas of low vegetation and high reflectors)
Apply Spectral Enhancement

- Layer 2 (green) = the greenness component (indicates vegetation)
- Layer 3 (blue) = the wetness component (indicates water or moisture)

6. When you are through, close the Viewers by selecting Session | Close All Viewers from the ERDAS IMAGINE menu bar.

Use the Indices Function

Next, you apply a mineral ratio from the Indices function to a Landsat TM image. Such ratios are commonly used by geologists searching for specific mineral deposits in the earth.

For more information on this transformation, see “CHAPTER 5: Enhancement” in the ERDAS Field Guide.

1. In the Spectral Enhancement menu, select Indices.

The Indices dialog opens.

2. Under Input File, enter tmAtlanta.img.

3. Enter mineral.img in the directory of your choice as the Output File.

4. Under Select Function, click MINERAL COMPOSITE in the scrolling list.

This index is a composite of three mineral ratios.

- Clay minerals = band 5 / band 7
- Ferrous minerals = band 5 / band 4
• Iron oxide = band 3 / band 1

NOTE: Notice how the selected function is defined beside the Function label, underneath the Select Function scroll list.

5. Under Output Options, turn on the Stretch to Unsigned 8 bit checkbox by clicking on it.

6. Click OK in the Indices dialog to start the process.

A Job Status dialog displays, indicating the progress of the function.

7. When the Job Status dialog indicates that the job is Done, click OK.

Choose RGB to IHS

Next, you use the RGB to IHS function (red, green, blue to intensity, hue, saturation) and the reverse IHS to RGB function to enhance the image information obtained by this mineral ratio.

The purpose of this function is to produce an input file for the IHS to RGB function.

1. Select RGB to IHS from the Spectral Enhancement menu.

The RGB to IHS dialog opens.

2. Enter the mineral ratio output from the previous exercise (mineral.img) as the Input File.

3. Enter RGBtoIHS.img (in the directory of your choice) as the Output File.

4. Click OK in the RGB to IHS dialog.

A Job Status dialog displays, reporting the progress of the function.

5. When the Job Status dialog indicates that the job is Done, click OK.

Choose IHS to RGB

Now, you convert the IHS image back into an RGB image.
1. Select **IHS to RGB** from the **Spectral Enhancement** menu.

 The IHS to RGB dialog opens.

2. In the IHS to RGB dialog, enter **RGBtoIHS.img** output from the previous exercise as the **Input File**.

3. Enter **IHStoRGB.img** as the **Output File** in the directory of your choice.

4. On the IHS to RGB dialog, click **Stretch I & S**.

 This option applies a global Min-Max contrast stretch to the Intensity and Saturation values in the image before converting.

5. Click **OK** in the IHS to RGB dialog.

 A Job Status dialog displays, reporting the progress of the function.

6. When the Job Status dialog indicates that the job is **Done**, click **OK**.

View the Results

1. Open three Viewers and then open the following files for comparison.

 - **mineral.img**—mineral ratio index. Proper interpretation can reveal the presence or absence of iron, clay, or ferrous minerals.
• **RGBtoIHS.img**—red, green, and blue values converted to intensity, hue, and saturation values. This image does not appear similar to the input file. It is not meant for interpretation; it is only meant to produce an input for the IHS to RGB function.

• **IHStoRGB.img** (see special instructions below)—intensity, hue, and saturation values converted to red, green, and blue values (appears similar to `mineral.img`). The intensity and saturation (red and blue) values have been contrast-stretched for better interpretation.
In the Open Raster Layer dialog, when displaying IHStoRGB.img, be sure to load Layer 1 as Red, Layer 2 as Green, and Layer 3 as Blue. This is because the order of the layers was reversed in the transformation.

2. When you are through comparing the files, close the Viewers by selecting **Session | Close All Viewers** in the ERDAS IMAGINE menu bar.

3. Click **Close** in the **Image Interpreter** menu.

 The **Image Interpreter** and **Spectral Enhancement** menus close.

 For more information about Image Interpreter, see "APPENDIX A: Additional Information" on page 595.
Image Interpreter
CHAPTER 12
Orthorectification

Introduction

Rectification is the process of projecting the data onto a plane and making it conform to a map projection system. Assigning map coordinates to the image data is called georeferencing. Since all map projection systems are associated with map coordinates, rectification involves georeferencing.

The orthorectification process removes the geometric distortion inherent in imagery caused by camera/sensor orientation, topographic relief displacement, and systematic errors associated with imagery. Orthorectified images are planimetrically true images that represent ground objects in their true “real world” X and Y positions. For these reasons, orthorectified imagery has become accepted as the ideal reference image backdrop necessary for the creation and maintenance of vector data contained within a GIS.

By performing space resection, the effects of camera/sensor orientation have been considered and removed. By defining a DEM or constant elevation value (ideal for use in areas containing minimal relief variation), the effects of topographic relief displacement can be considered and removed.

For information on block bundle adjustment, see the IMAGINE OrthoBASE™ Tour Guide and the IMAGINE OrthoBASE™ User’s Manual.

Approximate completion time for this tour guide is 30 minutes.

Rectify a Camera Image

Perform Image to Image Rectification

In this tour guide, you orthorectify a camera image of Palm Springs, California, using a NAPP (National Aerial Photography Program) photo.

In rectifying the camera image, you use these basic steps:

- display Camera image
- start Geometric Correction Tool
- enter the Camera model properties
- record GCPs
- resample or calibrate the image
Orthorectification

Prepare

ERDAS IMAGINE should be running and a Viewer open. You must have write permission in a file if you wish to calibrate it. In a command shell, copy \texttt{ps_napp.img} to a directory in which you have write permission and at least 10 Mb of space. Set the permissions on \texttt{ps_napp.img} to read, write, execute using the \texttt{chmod 777 ps_napp.img} command (on UNIX).

Next, you should verify that \texttt{ps_napp.img} has no map or projection information. Select \texttt{Tools | Image Information} from the ERDAS IMAGINE menu bar. Open your copy of \texttt{ps_napp.img}. Select \texttt{Edit | Delete Map Model} and click \texttt{Yes} in the Attention dialog that opens. Close the ImageInfo dialog, and begin this exercise.

1. Select \texttt{File | Open | Raster Layer} from the Viewer menu bar, or click the Open icon in the Viewer tool bar.

 \begin{center}
 The Select Layer To Add dialog opens.
 \end{center}

2. In the Select Layer To Add dialog under \texttt{Filename}, select \texttt{ps_napp.img} from the directory into which you copied it.

3. Click \texttt{OK} in the Select Layer To Add dialog to display the camera image in the Viewer.

 The file \texttt{ps_napp.img} opens in the Viewer. The Viewer image is displayed with a view of the top, left corner of the photo, as shown in the following picture:
Check for Map Model

Before you continue with geometric correction, you must first make sure that the image does not already have a map model.

1. From the Viewer tool bar, click the ImageInfo icon.

 The ImageInfo dialog opens.

 ![ImageInfo Dialog](image)

 The model is listed here

2. Look in the Geo. Model section. If the Geo. Model section says Camera, you must delete the map model, therefore, proceed to step 3. If there is no model, proceed to "Perform Geometric Correction" on page 270.

3. Select Edit | Delete Map Model from the ImageInfo menu bar.

4. Select File | Close from the ImageInfo menu bar.

 Redisplay the file

1. Click the Close icon in the Viewer currently displaying ps_napp.img.
Orthorectification

2. Click the Open icon, and select `ps_napp.img` from the directory in which you saved it.

3. Move your cursor around the image and note the small coordinates in the status area.

 The small coordinates are pixel coordinates, not map coordinates. You can now proceed with geometric correction.

Perform Geometric Correction

1. Select **Raster | Geometric Correction** from the Viewer menu bar.

 The Set Geometric Model dialog opens.

 ![Set Geometric Model Dialog]

 Click here to select Camera

2. In the Set Geometric Model dialog, click on **Camera**, and then click **OK**.

 The Geo Correction Tools open.

 ![Geo Correction Tools]

 The Camera Model Properties dialog also opens.
Set Camera Model Properties

1. In the Camera Model Properties dialog, enter the DEM file (`ps_dem.img`) under Elevation File.

 NOTE: Upon request, the data provider supplies the camera calibration certificate with the film at the time of purchase. This certificate provides the information needed for steps 2. and 3.

2. In the Camera Model Properties dialog under Principal Point, enter -0.004 for X and accept 0.000 as the default for Y. Then enter 152.804 for the Focal Length.

 NOTE: From the camera calibration certificate, there may be several possible types of the Principal Point coordinates. The Principal Point of Symmetry is preferable.

3. In Units under Principal Point, accept the default of Millimeters.

 NOTE: The X and Y Principal Point coordinates, Focal Length, and Fiducial Film coordinates must all be entered in the same units.

4. For this example, make sure that the Account for Earth’s curvature checkbox is not selected.

 You should only account for the Earth’s curvature when using small-scale images or when it is necessary to take this factor into account. Alternately activating and deactivating this option (and then clicking Apply) allows you to observe changes to the RMS error. Accounting for the Earth’s curvature slows down the rectification process.

Edit Fiducials

1. Click on the Fiducials tab at the top of the Camera Model Properties dialog.

 The Fiducial options display.
Orthorectification

2. Under **Fiducial Type**, click the first icon.

3. Under **Viewer Fiducial Locator**, click the Toggle icon.

4. Follow the instructions by clicking in the Viewer that contains **ps_napp.img**.

 A link box opens in the first Viewer, and the Chip Extraction Viewer also displays (the second Viewer).

5. In the first Viewer, drag the link box to the point in the image you want to digitize (as illustrated in the following example). Place the center of the link box on the dot at the center of the point (where the crosshair intersects).

 NOTE: Identifying the dot may sometimes require Breakpoint/LUT adjustments.
The second Viewer displays the point in the image that you have chosen with the link box.

6. In the Camera Model Properties dialog, click the Place Image Fiducial icon.

Move your cursor into the Chip Extraction Viewer (the second Viewer), and click on the center point where the crosshair intersects.

The point coordinates display under **Image X** and **Image Y** in the Fiducials CellArray of the Camera Model Properties dialog.

7. Create three more fiducials by repeating steps 5. and 6. for the points in the three other corners of the image in the first Viewer. Move clockwise around the image in the Viewer, using the Viewer scroll bars, as shown in the following diagram:
Orthorectification

Enter Film Coordinates

1. It is necessary to enter the Film coordinates into the Camera Model Properties dialog manually. The data provider can include this information in the camera calibration certificate.

Being sure to match the point numbers with the proper coordinates, enter the Film X and Film Y coordinates from the following table:

<table>
<thead>
<tr>
<th>Point #</th>
<th>Film X</th>
<th>Film Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-106.000</td>
<td>106.000</td>
</tr>
<tr>
<td>2</td>
<td>105.999</td>
<td>105.994</td>
</tr>
<tr>
<td>3</td>
<td>105.998</td>
<td>-105.999</td>
</tr>
<tr>
<td>4</td>
<td>-106.008</td>
<td>-105.999</td>
</tr>
</tbody>
</table>

When the last Film coordinate has been entered in the Camera Model Properties dialog, the Status changes to Solved and the Error is calculated. This indicates that the interior orientation parameters have been solved.
Rectify a Camera Image

An error of less than 1.0000 is acceptable. An error of greater than 1.0000 indicates that the points were inaccurately measured or poorly identified.

2. In the Camera Model Properties dialog under Viewer Fiducial Locator, click the Toggle icon.

The Chip Extraction Viewer (the second Viewer) closes.

3. Click on the Orientation tab in the Camera Model Properties dialog.

The Orientation options display.

![Camera Model Properties](image)

If you have known parameters for the Rotation Angle and Perspective Center Position derived from another triangulation package, or if you have estimated values, you can enter them in the Orientation tab. Select the appropriate settings: Unknown, Estimate, or Fixed.

If no changes are being made to the Orientation, you do not need to click Apply (therefore, it is deactivated).

NOTE: If Account for Earth’s curvature is selected under the General tab (see step 4.), then the Orientation options are disabled.

Change Projection

1. Click on the Projection tab in the Camera Model Properties dialog.

The Projection options display.

2. In the Projection options, click on Add/Change Projection.
Orthorectification

The Projection Chooser dialog opens.

3. In the Projection Chooser dialog, click on the Custom tab.
4. Confirm that Projection Type lists UTM.
5. Confirm that Datum Name lists NAD27.
6. Confirm that 11 is the UTM Zone.
7. Click OK in the Projection Chooser dialog.

 The projection information you just entered displays under Current Reference Map Projection in the Camera Model Properties dialog.
8. In the Camera Model Properties dialog, click on the popup list next to Map Units and select Meters (this activates the Apply button).
9. Click Apply and then Save As in the Camera Model Properties dialog.

Name the Geometric Model
1. The Geometric Model Name dialog opens.
2. In the Geometric Model Name dialog under Filename, enter the name GeoModel in the directory of your choice. The .gms file extension is added automatically.
3. Click OK in the Geometric Model Name dialog.
Rectify a Camera Image

Start the GCP Tool and compute RMS Error

1. In the Geo Correction Tools, click on the GCP Tool icon.

The GCP Tool Reference Setup dialog opens.

2. In the GCP Tool Reference Setup dialog, select GCP File under Collect Reference Points From, and then click OK.

The Reference GCC File dialog opens.

3. In the Reference GCC File dialog under Filename, select ps_camera.gcc.

The reference points in this file were obtained from USGS 1:24,000 scale topographical maps using a digitizer.

4. Click OK in the Reference GCC File dialog.

A Chip Extraction Viewer (the second Viewer), a link box, and the GCP Tool open.

5. In the GCP Tool, click on the Calculate icon.

NOTE: The orthorectification models do not have the option of Automatic Transform Calculation.
Orthorectification

Clicking this icon solves the model and calculates the RMS error and residuals. The **Control Point Error** for the \(\text{X} \) and \(\text{Y} \) values is displayed in the upper, right-hand corner of the GCP Tool.

NOTE: The GCP Tool requires a minimum of three GCPs to run the model and at least six GCPs to make the model accurate and stable.

6. Click **Save** in the Camera Model Properties dialog.

Resampling vs. Calibration

Resampling

Resampling is the process of calculating the file values for the rectified image and creating the new file. All of the raster data layers in the source file are resampled. The output image has as many layers as the input image.

ERDAS IMAGINE provides these widely-known resampling algorithms:

- Nearest Neighbor
- Bilinear Interpolation
- Cubic Convolution

Calibration

Instead of creating a new, rectified image by resampling the original image based on the mathematical model, calibrating an image only saves the mathematical model into the original image as a piece of auxiliary information. Calibration does not generate new images, so when the calibrated image is used, the math model comes into play as needed.

For example, if you want to see the calibrated image in its rectified map space in a Viewer, the image can be resampled on the fly based on the math model, by selecting the **Orient image to map system** option in the Select Layer To Add dialog.

A major drawback to image calibration is that the processes involved with the calibrated image is slowed down significantly if the math model is complicated. One minor advantage to image calibration is that it uses less disk space and leaves the image’s spectral information undisturbed.

> *It is recommended that image calibration be used only when necessary, due to the drawbacks of the process.*

Choose Your Path

- If you would like to resample the camera image, proceed to "Resample the Image" on page 279.
- If you would like to calibrate the camera image, proceed to "Calibrate the Image" on page 280.
Rectify a Camera Image

Resample the Image

Resampling requires an input file and a transformation matrix by which to create the new pixel grid.

1. In the Geo Correction Tools, click on the Resample icon.

 The Resample dialog opens.

 ![Resample Dialog](image)

2. In the Resample dialog under **Output File**, enter **GeoModel.img** in the directory of your choice.

3. Under **Resample Method**, click on the popup list and select **Cubic Convolution**.

4. Under **Output Cell Sizes**, enter **10** for X and **10** for Y.

 *NOTE: The default **Output Cell Sizes** are based on the triangulation. The smaller the pixel size, the larger the output file size.*

5. Click the **Ignore Zero in Stats.** checkbox to activate it.

6. Click **OK** in the Resample dialog.

 A Job Status dialog displays, indicating the progress of the function.

7. When the Job Status dialog indicates that the process is 100% complete, click **OK**.

8. Display **GeoModel.img** in a Viewer to view the resampled orthoimage.
Orthorectification

Prepare
You must have completed the steps to rectify `ps_napp.img` on pages 267 through 278.

1. In the Geo Correction Tools, click on the Calibrate Image icon.

A Calibrate Image warning box displays, indicating that “performing image calibration requires the termination of the Geo Correction Tool and reopening the image in the Viewer.”

2. Click OK in the Calibrate Image warning box.

The Geo Correction Tool and all its associated dialogs close. The file `ps_napp.img` closes and then reopens in the Viewer, with the Orient Image to Map System option turned off.

3. To apply the calibration to the image in the Viewer, redisplay the output image with the Orient Image to Map System option turned on.

 NOTE: Once calibrated, this image cannot be reused in the orthorectification process using the information/coordinates files provided. Calibration must be deleted (Edit | Delete Map Model in the ImageInfo dialog) for this file to be used again for this tour guide.

4. In the Viewer, click on the Info icon to view the calibration information.

 The ImageInfo dialog opens, displaying the information for the calibrated image.
For more information about rectification, see "APPENDIX A: Additional Information" on page 595.

For a more in-depth discussion of the concepts behind rectification, see "CHAPTER 9: Rectification" of the ERDAS Field Guide.
Orthorectification
CHAPTER 13
Terrain Surface Interpolation

Introduction

The Surfacing Tool enables you to create a three-dimensional surface from irregularly spaced points. Supported input data include:

- ASCII point files
- Arc point and line coverages
- ERDAS IMAGINE *.ovr layers
- existing raster images (IMG)

All input data sources must have X, Y, and Z values. Surface Interpolation calculates Z values at spatial locations where no Z samples exist in the input data source. The output is a continuous raster image that contains Z values calculated from the interpolation process.

The ERDAS IMAGINE Surface Tool uses a TIN interpolation method. At each point where there is a known value, that known value remains unchanged in the output surface. Where the value is not known, it is interpolated from the surrounding known values.

Two TIN interpolation methods are available in the Surface Tool: Linear and Nonlinear. The Linear interpolation method, which makes use of a first-order polynomial equation, results in the TIN triangles being defined as angular planes. The Nonlinear interpolation method, which uses a fifth-order polynomial, results in a smooth surface. In this case, the TIN triangle areas are not considered to be planes, but areas that have rubber sheet characteristics. The Linear interpolation method is quicker and the results more predictable. However, the Nonlinear interpolation method produces more continuous results from irregularly distributed data sets where the observed phenomena has a rolling, nonangular surface characteristic.

Approximate completion time for this tour guide is 15 minutes.

Create a Surface

Prepare

ERDAS IMAGINE must be running and a Viewer open.

1. Click on the DataPrep icon on the ERDAS IMAGINE icon panel.

The Data Preparation menu opens.
2. In the **Data Preparation** menu, click **Create Surface**.

The 3D Surfacing dialog opens.

3. Click **Close** in the **Data Preparation** menu to clear it from the screen.

Import an ASCII File

1. In the 3D Surfacing dialog, click the Read Points icon.

The Read Points dialog opens.
2. In the Read Points dialog, click on the popup next to **Source File Type** and select **ASCII File**.

3. Under **Source File Name**, enter **Inpts.dat**.

 This file is located in the `<IMAGINE_HOME>/examples` directory, where `<IMAGINE_HOME>` is the location of ERDAS IMAGINE on your system.

4. Click **OK** in the Read Points dialog.

 The Read Points dialog closes, and the Import Options dialog opens.

5. In the Import Options dialog, click the **Input Preview** tab to see how the ASCII file is imported and mapped under the present parameter settings.
From the **Input Preview** display, you can tell that the **Separator Character** is the comma and that **Field 1** should be ignored.

6. Click the **Field Definition** tab.

7. Click on the popup list next to **Separator Character** and select **Comma**.

8. In the **Column Mapping** CellArray, alter the **Input Field Number** column values vertically from 1, 2, 3 to 2, 3, 4 in order to ignore the ID column of the input file.

9. Click **OK** in the Import Options dialog.

A Job Status dialog opens, reporting the progress of the function.

10. When the Job Status dialog shows that the process is 100% complete, click **OK**.
The X, Y, and Z columns of the 3D Surfacing CellArray are now populated with 4,411 rows of X, Y, and Z coordinates.

11. If you like, you can save these points as a Point Coverage (.arcinfo) or an Annotation Layer (.ovr) by selecting File | Save As from the 3D Surfacing dialog menu bar.

Perform Surfacing

1. In the 3D Surfacing dialog, click the Perform Surfacing icon.

The Surfacing dialog opens. The extent and cell size defaults are filled in automatically, based on the source ASCII file.
The two options for a surfacing method are **Linear Rubber Sheeting** (1st Order Polynomial solution) and **Non-linear Rubber Sheeting** (5th Order Polynomial solution).

2. Under **Output File**, enter the name of the output file (e.g., *surface.img*) in the directory of your choice.

3. Click on the popup list next to **Surfacing Method** and select **Non-linear Rubber Sheeting**.

4. Click the **Ignore Zero In Output Stats** checkbox to enable it.

5. Click **OK** in the Surfacing dialog.

 A Job Status dialog displays, stating the progress of the function.

6. When the Job Status dialog reads that the function is 100% complete, click **OK** (if necessary).

Display the Surface

1. Click the Open icon in a Viewer.

 The Select Layer To Add dialog opens.

2. In the Select Layer To Add dialog under **Filename**, enter the name of the output file you created in step 2., beginning with the directory path in which you saved it.
3. Click **OK** in the Select Layer To Add dialog.

 The output image is displayed in the Viewer for you to examine.

To edit portions of the resulting surface, use the raster editing techniques described in "CHAPTER 1: Viewer", “Raster Editor” on page 34.

For more information see "Terrain Surface Editor" on page 637.
Terrain Surface Interpolation
CHAPTER 14

Mosaic

Introduction

This tour guide gives you the steps for mosaicking two or more image files to produce one image file. The mosaicking process works with rectified and/or calibrated images. Here, you are shown how to mosaic air photo images as well as LANDSAT images.

Approximate completion time for this tour guide is 45 minutes.

Mosaic Using Air Photo Images

In this section, you use a template to mosaic two air photo images.

The two files to be mosaicked are air-photo-1.img and air-photo-2.img.

These data files are air photo images of the Oxford, Ohio area.

Prepare

ERDAS IMAGINE should be running and a Viewer should be open.

1. In the Viewer, select File | Open | Raster Layer or click the Open icon.

The Select Layer To Add dialog opens.
Mosaic

2. In the Select Layer To Add dialog under **Filename**, select **air-photo-1.img** from the file list.

3. Click the **Raster Options** tab at the top of the Select Layer To Add dialog.

4. Click the **Fit to Frame** option to enable it.

5. Click **OK** in the Select Layer To Add dialog.

 The file **air-photo-1.img** displays in the Viewer.

6. Click on the Viewer icon in the ERDAS IMAGINE icon panel to create a second Viewer.

7. Repeat steps 1. through 5. for the second Viewer, selecting **air-photo-2.img** this time.
8. Position the Viewers side by side by selecting **Session | Tile Viewers** from the ERDAS IMAGINE menu bar.

 You can resize each Viewer so that they take up less screen space by dragging any corner of the Viewer.

9. In the ERDAS IMAGINE icon panel, click on the DataPrep icon.

 The **Data Preparation** menu displays.

10. In the **Data Preparation** menu, select **Mosaic Images**.

 The Mosaic Tool viewer opens.
Mosaic

11. Click Close in the Data Preparation menu to clear it from the screen.

Set Input Images

1. In the first Viewer containing air-photo-1.img, select AOI | Tools.

 The AOI tool palette displays.
2. In the AOI tool palette, click on the Polygon icon.

3. In the first Viewer, draw a polygon around the entire image, outlining its shape, by dragging to draw lines and clicking to draw vertices (i.e., on-screen digitize the outline of the image). Middle-click to close the polygon.

 NOTE: If you do not have a three-button mouse, you can double-click to close the polygon.

When you are finished, the AOI layer is highlighted with a dotted line and the image is surrounded by a bounding box. The image in the first Viewer should look like the following example:

![Image of polygon drawn around an image in a Viewer]

Create a Template

1. When you have finished drawing the polygon, select **File | Save | AOI Layer As** in the first Viewer.

 The Save AOI As dialog opens.
2. Under **Save AOI as**, enter `template.aoi` in the directory of your choice and click **OK**.

3. In the Mosaic Tool viewer, select **Edit | Add Images**.

 The Add Images for Mosaic dialog opens.

 Click this radio button and then click the accompanying Set button.

 Click here to save the AOI

 Enter the directory and file name here

 Select this file
5. Under **Image Area Options**, click the **Template AOI** button, and then click the accompanying **Set** button.

The Choose AOI dialog opens.

6. In the Choose AOI dialog under **AOI Source**, select **File**.

7. Under **AOI File**, select **template.aoi** from the directory in which you saved it.

8. Click **OK** in the Choose AOI dialog.

9. Select **Edit | Image List** from the Mosaic Tool viewer.

 The Mosaic Image List displays.

10. Click **Add** in the Add Images for Mosaic dialog.

 The data for **air-photo-1.img** display in the Mosaic Image List CellArray and a graphic of the image displays on the canvas of the Mosaic Tool viewer.
11. In the Add Images for Mosaic dialog under **Image Filename**, select **air-photo-2.img**.

12. Under **Image Area Options**, click the **Compute Active Area** button.

13. Click **Add** and then **Close** in the Add Images for Mosaic dialog.

The data for **air-photo-2.img** display in the Mosaic Image List CellArray, and a graphic of the image displays on top of the **air-photo-2.img** graphic in the canvas of the Mosaic Tool viewer.
Identify Areas of Intersection

1. In the Mosaic Tool viewer, click on the Input icon to verify that the input mode is activated.

2. Click on the Image Matching icon.

The Matching Options dialog opens.

3. In the Matching Options dialog under Matching Method, click the Overlap Areas button.

4. Click OK in the Matching Options dialog.

5. In the Mosaic Tool viewer, click on the Intersection icon to activate the intersect mode.

6. In the canvas of the Mosaic Tool viewer, click on a line that intersects the two images.

The lines that overlap the two images are highlighted in yellow.
Mosaic

Draw a Cutline

The Mosaic Tool enables you to draw one cutline through all the images or a single cutline in an individual image.

1. In the Mosaic Tool viewer, click on the Cutline Selection icon.

Viewer #3 opens, displaying the two images as they intersect.
2. Use the Zoom In tool in the Viewer #3 tool bar to zoom in on the spot where you draw your cutline. (Do this by selecting the Zoom In tool and then clicking on the spot for which you want a closer view.)

3. Select the Line tool from the AOI tool palette.

Once in the Viewer, the cursor becomes a crosshair.

4. In Viewer #3, draw the cutline by dragging inside the intersecting portion of the two images (the portion marked by the AOI box) (i.e., on-screen digitize the intersecting portion). Middle-click when finished.

NOTE: When drawing cutlines, it is best to trace linear landmarks, such as rivers or roads. This conceals any seams in the resulting mosaic.

NOTE: If you do not have a three-button mouse, you can double-click to close the polygon.

5. In the Mosaic Tool viewer, click on the AOI Cutline icon.

The Choose AOI dialog opens.

6. In the Choose AOI dialog under **AOI Source**, select the **Viewer** button and click **OK**.
7. An Attention dialog opens, warning you that cutlines can be lost if projection is changed. Click **Yes** in the dialog.

The cutline is highlighted in red in the Mosaic Tool viewer canvas.

8. Click the Function icon in the Mosaic Tool viewer.

The Set Overlap Function dialog opens.
9. In the Set Overlap Function dialog under **Intersection Type**, select **Cutline Exists**.

10. Under **Select Function**, select **Cut/Feather**.

11. In the Set Overlap Function dialog, click **Apply** and then **Close**.

12. **NOTE:** The cutline viewer will automatically zoom to whatever is in the mosaic tool. In order to only show the overlapping area in the viewer, you need to click **scale canvas to fit selected objects**.

Define Output Images

1. In the Mosaic Tool viewer, click on the Output icon to activate the output mode.

2. In the Mosaic Tool viewer, click on the Output Image icon.

 The Output Image Options dialog opens.
3. In the Output Image Options dialog under Define Output Map Area(s), make sure that Union of All Inputs is selected and click OK.

Run the Mosaic

1. In the Mosaic Tool viewer, select Process | Run Mosaic.

The Run Mosaic dialog opens.
2. In the Run Mosaic dialog under **Output File Name**, enter *AirMosaic* in the directory of your choice, then press Return on your keyboard.

3. Click the **Stats Ignore Value** checkbox to activate it.

4. Click **OK** in the Run Mosaic dialog.

 A Job Status dialog displays, showing the progress of the function.

5. Click **OK** when the Job Status dialog reads that the function is 100% complete.

 NOTE: The Job Status dialog may close automatically, depending on your settings in Session | Preferences | User Interface & Session | Keep Job Status Box.

Display the Mosaic

1. Click on the Viewer icon in the ERDAS IMAGINE icon panel.

 A new Viewer displays.

2. Click the Open icon in the Viewer you just created.

 The Select Layer To Add dialog opens.

3. In the Select Layer To Add dialog under **Filename**, select *AirMosaic.img* from the directory in which you saved it, and then click **OK**.

 AirMosaic.img is displayed in the Viewer.

4. Compare *AirMosaic.img* to the original images (*air-photo-1.img* and *air-photo-2.img*).
Mosaic

Mosaic Using LANDSAT Images

In this section of the tour guide, you mosaic LANDSAT images of MSS and TM scenes.

The three files to be mosaicked are: wasia1_mss.img, wasia2_mss.img, and wasia3_tm.img.

These data files are LANDSAT images of Kazakhstan, in the former USSR.

Prepare

ERDAS IMAGINE should be running and a Viewer should be open.

Display Input Images

1. In the Viewer, select File | Open | Raster Layer or click the Open icon.

 The Select Layer To Add dialog opens.

 ![Select Layer To Add dialog](image)

2. In the Select Layer To Add dialog under Filename, click on wasia1_mss.img.

3. Click the Raster Options tab at the top of the Select Layer To Add dialog.

4. Click the Clear Display option to disable it (this ensures that currently displayed files are not cleared in the Viewer).

5. Click the Background Transparent option to enable it.

6. Check to be sure that the Fit to Frame option is enabled.

7. Click OK in the Select Layer To Add dialog.
Mosaic Using LANDSAT Images

The file wasia1_mss.img displays in the Viewer.

8. Repeat steps 1. through 7., opening wasia2_mss.img and wasia3_tm.img in the same Viewer you used for wasia1_mss.img.

9. When finished, you should be able to see all three files in the Viewer:

![Viewer screenshot](image)

10. In the ERDAS IMAGINE icon panel, click on the DataPrep icon.

![DataPrep icon](image)

The Data Preparation menu displays.

11. In the Data Preparation menu, select Mosaic Images.

![Data Preparation menu](image)
The Mosaic Tool viewer opens.

Refer to “Mosaic” on page 620 for a description of the Mosaic Tool menu bar and tool bar.

12. Click Close in the Data Preparation menu to clear it from the screen.

Add Images for Mosaic

1. In the Mosaic Tool viewer, click on the Add Images icon.

The Add Images for Mosaic dialog opens.
2. In the Add Images for Mosaic dialog under **Image Filename**, select *wasia1_mss.img*.

3. In the Add Images for Mosaic dialog, click the **Compute Active Area** button under **Image Area Options** to enable it, and then click **Add**.

 The file *wasia1_mss.img* displays as image number 1 in the canvas of the Mosaic Tool viewer.

4. Repeat steps (2. and 3.), adding *wasia2_mss.img* and *wasia3_tm.img* to the canvas of the Mosaic Tool viewer. (Note that in step 3. the **Compute Active Area** button is already enabled.)

 When you are finished adding the three images, the Mosaic Tool viewer should look like the following:
5. Click Close in the Add Images for Mosaic dialog.

Stack Images

The images in the Mosaic Tool viewer are positioned as if they were regular photos that a person stacked by hand. One image intersects everything below it in the stack.

1. Experiment with the stacking order in the Mosaic Tool viewer by clicking on any or all of the images in the canvas and then clicking on any of the icons pictured below:

 ![Stacking Icons]

2. When you are finished experimenting with the stacking icons, click outside of the images in the canvas of the Mosaic Tool viewer to deselect the image(s).

Match Images

1. Click the Image Matching icon in the Mosaic Tool viewer.

 ![Image Matching Icon]

 The Matching Options dialog opens.

2. In the Matching Options dialog under Matching Method, select Overlap Areas.
3. Click **OK** in the Matching Options dialog.

4. Click on the Intersection icon in the Mosaic Tool tool bar.

5. In the Mosaic Tool tool bar, click the Function icon.

The Set Overlap Function dialog opens.

6. In the Set Overlap Function dialog under **Select Function**, select **Average** and then click **Apply**.

7. Click **Close** in the Set Overlap Function dialog.

Run the Mosaic

1. In the Mosaic Tool viewer, select **Process | Run Mosaic**.

 The Run Mosaic dialog opens.

 ![Run Mosaic Dialog]

 - **Enter the name of the output file here**: Enter a name for the output file in the directory of your choice (e.g., `wasia_mosaic.img`).
 - **Choose the appropriate directory by clicking here**: Click here to run the mosaic.

2. In the Run Mosaic dialog under **Output File Name**, enter a name for the output file in the directory of your choice (e.g., `wasia_mosaic.img`).
Mosaic

3. Click **OK** in the Run Mosaic dialog.

 A Job Status dialog displays, stating the progress of the mosaic operation.

4. Click **OK** in the Job Status dialog when the mosaic operation is finished.

 NOTE: The mosaic operation can take up to ten minutes to run, based upon your hardware capabilities and the size of the files.

5. Select **File | Close** from the Mosaic Tool viewer to clear it from the screen.

 You are asked if you want to save the changes in the Mosaic Tool viewer. Save them if you like or click **No** to dismiss the dialog.

Display Output Image

1. Click the Viewer icon in the ERDAS IMAGINE icon panel to open a second Viewer.

2. In the Viewer you just opened, select **File | Open | Raster** or click the Open icon.

 The Select Layer To Add dialog opens.

3. In the Select Layer To Add dialog under **Filename**, click on the file `wasia_mosaic.img` (or the output mosaic image you previously created). Remember to look in the directory in which you saved the file.

4. Click the **Raster Options** tab at the top of the Select Layer To Add dialog.

5. Check to be sure that the **Fit to Frame** option is enabled.

6. Click **OK** in the Select Layer To Add dialog.

 The output mosaic file displays in the Viewer.
7. In the ERDAS IMAGINE menu bar, select **Session** | **Tile Viewers** to position the Viewers side by side.

8. Compare the input mosaic images in the first Viewer to the output mosaic image in the second Viewer. You can resize the Viewers by dragging on any of their corners.

Mosaic Color Balancing Using Color Infrared Aerial Photos

In this section of the tour guide, you mosaic color-infrared aerial photograph images of eastern Illinois, USA. The color red in the photos represents vegetation with deep reds representing healthy vegetation.

The nine files to be mosaicked are: 2-2.img, 2-3.img, 2-4.img, 3-2.img, 3-3.img, 3-4.img, 4-2.img, 4-3.img, and 4-4.img.

⚠️ For UNIX only! The nine files you need to use are located on the Data and Documentation CD-ROM that was shipped with IMAGINE 8.5. Before beginning this tour, you will need to copy these files from the examples folder on the Data and Documentation CD-ROM to IMAGINE_HOME/examples.

Prepare
ERDAS IMAGINE should be running and a Viewer should be open.

1. In the Viewer, select File | Open | Raster Layer or click the Open icon.

The Select Layer To Add dialog opens.

2. In the Select Layer To Add dialog under Filename, click on 2-2.img.

3. Click the Raster Options tab at the top of the Select Layer To Add dialog.

4. In the Layers to Colors box make sure Red is 1; Green is 2; and Blue is 3.

5. Click the Clear Display option to disable it (this ensures that currently displayed files are not cleared in the Viewer).

6. Click the Fit to Frame option to enable it.
7. Click the **Background Transparent** option to enable it.

8. Click **OK** in the Select Layer To Add dialog.

 The file **2-2.img** displays in the Viewer.

9. Repeat steps 1. through 8., opening **2-3.img, 2-4.img, 3-2.img, 3-3.img, 3-4.img, 4-2.img, 4-3.img, and 4-4.img** in the same Viewer you used for **2-2.img**.

 When finished, you should be able to see all nine files in the Viewer.

 ![Viewer](image)

 You will see patterned color differences in some of the images. Some spots in some of the photos will appear brighter or darker than the rest of the image. In order to adjust these color differences, you will use the **Mosaic Color Balancing** option in the **Mosaic Tool**.

10. In the ERDAS IMAGINE icon panel, click on the **DataPrep** icon.

 ![DataPrep](image)

 The **Data Preparation** menu displays.
Mosaic

The Mosaic Tool viewer opens.

12. Click Close in the Data Preparation menu to clear it from the screen.

Add Images for Mosaic

1. In the Mosaic Tool viewer, click on the Add Images icon.

![Add Images for Mosaic dialog]

The Add Images for Mosaic dialog opens.

2. In the Add Images for Mosaic dialog under Image Filename, select 2-2.img.

3. In the Add Images for Mosaic dialog, make sure the Use Entire Image button is selected, and then click Add.

The file 2-2.img displays as image number 1 in the canvas of the Mosaic Tool viewer.

4. Repeat steps 2. and 3., adding 2-3.img, 2-4.img, 3-2.img, 3-3.img, 3-4.img, 4-2.img, 4-3.img, and 4-4.img to the canvas of the Mosaic Tool viewer.

When you are finished adding the nine images, the Mosaic Tool viewer should look like the following:
5. Click **Close** in the Add Images for Mosaic dialog.

Set Exclude Areas

1. Click the Image Matching icon in the Mosaic Tool viewer.

The Matching Options dialog opens.
2. Select **Color Balancing**, and under **Matching Method** choose **For All Images**.

3. Click on **Set Exclude Areas** at the top of the Matching Options dialog.

 The Set Exclude Areas dialog opens.

 The overview shows the full extent of the image, and the detail view allows you to zoom in on specific areas to create AOIs to be excluded from the Color Balancing process. Use the link cursor to isolate AOIs.

4. Image **2-2.img** will be the first image displayed in the viewers. Left hold your mouse and drag the link cursor to the dark body of water in the upper left of the center of the image.
In the **Detail View**, the area is magnified so you can create specific AOIs to exclude from the Color Balancing process.

5. Click Create Polygon AOI.

6. Your cursor becomes a cross hair when inside a view. Use the **Detail View** to create polygons around the dark water bodies.

7. When you have finished, use the link cursor to identify any other areas in the image that need to be excluded such as other dark bodies of water, isolated bright urban areas, or bright areas of sun glint.

8. Create a polygon around each of the areas you wish to exclude from color balancing, and click **Apply**.

9. Use the arrow keys or the drop down box to select the next image, **2-3.img**

Continue identifying AOIs to exclude through all nine images. Click **Apply** after excluding areas in each image. Click **Close** in the Set Exclude Areas dialog when finished.

Mosaic Color Balancing

1. Click the **Set** button in the Matching Options dialog.

 The **Set Color Balancing Method** dialog opens.
2. Choose **Manual Color Manipulation** and click **OK**.

The **Mosaic Color Balancing** dialog opens.
Mosaic Color Balancing Using Color Infrared Aerial Photos

3. The first image, 2-2.img, is displayed. If 2-2.img did not need color balancing, you could skip it, and use the Arrow Keys or the Drop Down Menu in the top left corner to choose another image.

4. Choose the surface method you want to use in order to color balance the image. You may choose from Parabolic, Conic, Linear, or Exponential.

 Unless you are using Linear as your surface method, you can click on Common center for all layers in order to use the same center point in each layer of the image.

5. For image 2-2.img, select Conic, and enable Common center for all layers.

6. Click Compute Setting and click on Preview. The preview viewer displays the color balanced image.

7. Click Accept after previewing the color balanced image to accept it for mosaicking.

 The computed settings are based on the surface method chosen. The Image Profile box at the top right of the Mosaic Color Balancing dialog depicts the chosen surface method as a red line plotted against a profile of the pixel values shown as a green line between the center point and end point in the image. Results are best when the red line of the surface method matches the general trend of the green line of the image profile.

8. Repeat steps 3. through 6. for images 2-3.img, 2-4.img, 3-2.img, 3-3.img, 3-4.img, 4-2.img, 4-3.img, and 4-4.img.

9. Click Close in the Mosaic Color Balancing dialog.

Match Images

1. Click the Image Matching icon in the Mosaic Tool viewer.

 The Matching Options dialog opens.

2. In the Matching Options dialog under Matching Method, select For All Images

3. Select Band by Band under Histogram Type.

4. Click OK in the Matching Options dialog.

5. Click on the Intersection icon in the Mosaic Tool tool bar.

6. Click on the Set Default Cutlines icon.
An attention box will appear. Click yes and continue.

7. In the Mosaic Tool tool bar, click the Function icon.

The Set Overlap Function dialog opens.

8. In the Set Overlap Function dialog under **Intersection Type**, select **Cutline Exists** and **Cut/Feather** then click **Apply**.

9. Click **Close** in the Set Overlap Function dialog.

Run The Mosaic

1. In the Mosaic Tool viewer, select **Process | Run Mosaic**.

 The Run Mosaic dialog opens.
Mosaic Color Balancing Using Color Infrared Aerial Photos

2. In the Run Mosaic dialog under **Output File Name**, enter a name for the output file in the directory of your choice (e.g., `color_infrared.img`).

3. Click **OK** in the Run Mosaic dialog.
 A Job Status dialog displays, stating the progress of the mosaic operation.

4. Click **OK** in the Job Status dialog when the mosaic operation is finished.

 NOTE: The mosaic operation can take up to ten minutes to run, based upon your hardware capabilities and the size of the files.

5. Select **File | Close** from the Mosaic Tool viewer to clear it from the screen.

Display Output Image

1. Click on the Viewer icon in the ERDAS IMAGINE icon panel.
 A new Viewer displays.

2. Click the Open icon in the Viewer you just created.

 The Select Layer To Add dialog opens.

3. In the Select Layer To Add dialog under **Filename**, select `color_infrared.img` from the directory in which you saved it, and then click **OK**.

4. Click the **Raster Options** tab at the top of the Select Layer To Add dialog.

5. Check to be sure the **Fit to Frame** option is enabled.

6. Click **OK** in the Select Layer To Add dialog.
Mosaic

The mosaicked output image displays in the viewer.
CHAPTER 15
Viewshed Analysis

Introduction

One of the many tasks you can perform using IMAGINE Advantage is Viewshed Analysis. This tour guide describes how to use this analysis tool.

Viewshed Analysis allows you to position an observer on a DEM in a Viewer and determine the visible areas within the terrain. You can adjust the observer’s height either above ground level or above sea level and set the visible range.

This tool is useful for planning the location and height of towers used for observation or communications. It might also be used to determine areas that lie within poor reception of standard broadcast towers and are thus potential cable markets.

In this tour guide, you can learn how to:

• start an Image Drape viewer
• start the Viewshed tool
• work with multiple observers
• query Viewshed data and layers

Approximate completion time for this tour guide is 15 minutes.

Create a Viewshed

In this exercise, you create a viewshed, and analyze the terrain within it.

Prepare

ERDAS IMAGINE must be running with a Viewer open.

1. Click the Open icon in the Viewer (or select File | Open | Raster Layer).

2. In the Select Layer To Add dialog, navigate to the <IMAGINE_HOME>/examples directory.

3. Select the file eldodem.img, then click the Raster Options tab.

4. In the Raster Options tab, make sure that the Fit to Frame checkbox is active.

5. Click OK in the Select Layer To Add dialog.

Add the Raster Image

1. Click the Open icon again, and navigate to the <IMAGINE_HOME>/examples directory.
Viewshed Analysis

2. Select the file **eldomat.img**, then click the **Raster Options** tab.

3. In the **Raster Options** tab, make sure that the **Clear Display** checkbox is not active.

4. Click **OK** in the Select Layer to Add dialog.

Both files are displayed in the Viewer.

Start an Image Drape Viewer

1. From the menu bar of the Viewer displaying **eldodem.img**, select **Utility | Image Drape**.

 The Image Drape Viewer opens displaying **eldodem.img**, which supplies terrain relief, and **eldomat.img**, which supplies the color. Position the Image Drape Viewer so that it does not cover the first Viewer you opened. Now, you can set the level of detail.

Set the Level of Detail

1. Select **View | LOD Control** from the Image Drape viewer menu bar.

 The Level Of Detail dialog opens.

 ![Level Of Detail dialog](image)

 You can also change the level of detail using these meter controls

2. In the field next to **DEM LOD (%)**, enter **100**, and press Return on your keyboard.

3. Click **Apply** to increase the level of detail in the Image Drape viewer.

4. Click **Close** to dismiss the Level Of Detail dialog.

 Your two Viewers now look like the following:
1. Click the Interpreter icon on the ERDAS IMAGINE icon bar.

The **Image Interpreter** menu opens.

2. From the **Image Interpreter** menu, select **Topographic Analysis**.

 The **Topo Analysis** menu opens.
3. From the **Topo Analysis** menu, select **Viewshed**.

 A Viewer Selection Instructions dialog opens.

4. Click in the Viewer containing `eldodem.img` and `eldoatm.img`.

 The Viewshed dialog opens.

5. At this time, click **Close** on both the **Image Interpreter** menu and the **Topo Analysis** menu to remove them from your display.
An observer marker is automatically placed in the center of the Viewer containing `eldodem.img`.

6. In the **Function** tab of the Viewshed dialog, click the popup list next to **Output Type** to select **Multiple Viewsheds**.

Add First Observer

1. Click the **Observers** tab in the Viewshed dialog.

 The **Observers** tab of the CellArray displays.

2. Click in the cell of the **X** column to enter **471950.88**, then press Return on your keyboard.

3. Click in the cell of the **Y** column to enter **4421011.47**, then press Return on your keyboard.

4. Click **Apply** in the Viewshed dialog.

 The viewshed layer is generated and displays in the Viewer.
Add Another Observer

1. Click **Create** in the Viewshed dialog.

 A new observer is added to the CellArray.

2. Click in the cell of the second observer’s \(\text{X} \) column to enter \(472474.65 \), then press Return on your keyboard.

3. Click in the cell of the second observer’s \(\text{Y} \) column to enter \(4419343.08 \), then press Return on your keyboard.

4. Click **Apply** in the Viewshed dialog.
Create a Viewshed

The second viewshed layer is generated and displays in the Viewer.

5. Click the **Function** tab in Viewshed dialog to view the legend.

The **Function** tab opens, displaying the legend of the viewshed.

There are two basic kinds of output. The Viewshed outputs provide a binary analysis of visibility within the specified range. In other words, the image is color-coded to show only visible or hidden areas. The Height outputs provide a color-coded map of the invisible areas indicating the amount of change in observer height required to see a given zone.
Viewshed Analysis

Link the Viewers and Set Eye and Target Positions

1. Using your mouse, move the **Eye** of the Positioning tool on top of **Observer 1**.

2. Move the **Target** on top of **Observer 2** in the Viewer.

As you move the Positioning tool, the 3D image in the Image Drape viewer is updated. **Observer 1** is now looking at the location of **Observer 2**. The 3D image is positioned so that the target is centered in the Image Drape viewer.

3. Switch the **Eye** and **Target** of the Positioning tool in the Viewer.
Observer 2 is now looking at the location of Observer 1.

Again, the 3D image rotates to match the Eye and Target positions of the Viewer.

Save the Viewshed

What can we do with a saved viewshed? For example, the saved viewshed can be used to create a map composition.

1. In the Viewshed dialog, click **Save**.
 The Save Viewshed Image dialog opens.

2. In a directory where you have write permission, type `vs_tour.img` in the Viewshed File window.

3. Click **OK** to dismiss the Save Viewshed Image dialog.
 A Viewshed Analysis progress meter appears while the image is saved.
Viewshed Analysis

4. Click **Close** to dismiss the Viewshed dialog.

Query Viewshed Data

In this section, use the Raster Attribute Editor to query the viewshed layer in the Viewer.

Create Class Names for Viewshed Regions

1. Select **Raster | Attributes** from the Viewer menu bar.

The Raster Attribute Editor opens.

2. Select **Edit | Add Class Names** from the Raster Attribute Editor menu bar.

A new column is added to the front of the Raster Attributes CellArray.

3. In **Row 1** of the **Class Names** column, enter **Perimeter**, and press Return on your keyboard.

Add Area Column to the CellArray

1. Now select **Edit | Add Area Column** from the Raster Attribute Editor menu bar.

 The Add Area Column dialog opens.

2. Select **acres** from the **Units** popup list and click **OK** to dismiss the Add Area Column dialog.

 The **Area** column is added to end of the Raster Attributes CellArray.

3. Select **Edit | Column Properties** from the Raster Attribute Editor menu bar.

 The Column Properties dialog opens.
4. In the **Columns** field, select **Histogram**, and click the **Up** button four times to move it below the **Color** column.

5. Now select **Area**, and click the **Up** button until it is between **Color** and **Histogram**.

6. Click **OK** to apply these changes to the CellArray. The Column Properties dialog closes.

7. Select **File | Save** in the Raster Attribute Editor to save all edits to the CellArray.

 You can now easily view the size and location of visible and hidden areas in the viewsheds.

Query the Viewshed Layer

1. Click an area inside the Viewer. The corresponding class is highlighted in the CellArray of the Raster Attribute Editor dialog.

2. When you complete your query of the data, select **File | Close** in the Raster Attribute Editor to dismiss the dialog.
Finish

1. Click Close in the Viewshed dialog.
2. Select File | Close in the Viewer.
Viewshed Analysis
Section III
IMAGINE Professional™
CHAPTER 16
Spatial Modeler

Introduction
In ERDAS IMAGINE, GIS analysis functions and algorithms are accessible through three main tools:

- script models created with the Spatial Modeler Language (SML)
- graphical models created with Model Maker
- pre-packaged functions in Image Interpreter

Spatial Modeler Language
SML is the basis for all GIS functions in ERDAS IMAGINE, and it is the most powerful. It is a modeling language that allows you to create script (text) models for a variety of applications. Using models, you can create custom algorithms that best suit your data and objectives.

Model Maker
Model Maker is essentially the SML with a graphical interface. This enables you to create graphical models using a palette of easy-to-use tools. Graphical models can be run, edited, saved, or converted to script form and edited further using the SML.

This tour guide focuses on Model Maker.

Image Interpreter
The Image Interpreter houses a set of common functions that are created using either Model Maker or the SML. They have been given a dialog interface to match the other processes in ERDAS IMAGINE. In most cases, you can run these processes from a single dialog. However, the actual models are also delivered with the software, so that you can edit them if you want more customized processing.

For more information on Image Interpreter functions, see “CHAPTER 11: Image Interpreter” on page 239.

Approximate completion time for this tour guide is 3 hours.

Start Model Maker

Prepare
ERDAS IMAGINE should be running and a Viewer should be open.
1. Click the Modeler icon on the ERDAS IMAGINE icon panel.

 ![Modeler Icon]

The **Spatial Modeler** menu displays.

2. Click on **Model Maker** in the **Spatial Modeler** menu to start Model Maker.

 The Model Maker viewer and tool palette open.

 ERDAS IMAGINE is delivered with several sample graphical models that you can use as templates to create your own models. Open these models in Model Maker by selecting **File | Open** from the Model Maker viewer menu bar or clicking the Open icon on the tool bar.

3. Click **Close** in the **Spatial Modeler** menu to clear it from the screen.

Create Sensitivity Layer

When three input thematic layers are combined, the resulting file has meaningful class values. These values may also be easily color coded in the final output file so that they are visible over the SPOT panchromatic reference data.

Therefore, you recode the data values of the input files so that the most environmentally sensitive areas have the highest class value and the least have the lowest value. You use class values 0-4, with 4 being the most environmentally sensitive and 0 being the least. This recode also facilitates defining the conditional statement within the function. These recodes are done at the same time the files are defined in the Raster dialog.

Prepare

You must have Model Maker running.

NOTE: Refer to the model pictured on page 343 when going through the following steps.

1. Click on the Raster icon in the Model Maker tool palette.

 ![Raster Icon]

2. Click on the Lock icon.
Create Sensitivity Layer

3. Click in the Model Maker viewer in four different places to place three input Raster graphics and one output Raster graphic.

4. Select the Function icon in the Model Maker tool palette.

5. Click in the Model Maker viewer window to place a Function graphic on the page between the three inputs and the one output Raster graphic.

6. Select the Connect icon in the Model Maker tool palette.

7. Connect the three input Raster graphics to the Function and the Function to the output Raster by simply dragging from one graphic to another.

 Your model should look similar to the following example:

8. In the Model Maker tool palette, click the Lock icon to disable the lock tool.

9. Click the Select icon.
10. In the Model Maker viewer menu bar, select Model | Set Window to define the working window for the model.

The Set Window dialog opens.

You want the model to work on the intersection of the input files. The default setting is the union of these files.

11. In the Set Window dialog, click on the Set Window To popup list and select Intersection.

12. Click OK in the Set Window dialog.

Define Input Slope Layer

1. In the Model Maker viewer, double-click the first input Raster graphic.

The graphic is highlighted and the Raster dialog opens.
2. In the Raster dialog, click on the Open icon under **File Name**.

The File Name dialog opens.

3. In the File Name dialog under **Filename**, click on the file **slope.img** and then click **OK**.

This image has some noise around the edges that you want to eliminate, so you use a subset of this image in the model. To take a subset, you display the file in a Viewer and select the processing window with an inquire box.

Display Slope Layer

1. Click the Open icon in a Viewer (or select **File | Open | Raster Layer** from the menu bar).

The Select Layer To Add dialog opens.
2. In the Select Layer To Add dialog under Filename, click on the file slope.img.

3. Click on the Raster Options tab at the top of the dialog, and then select the Fit to Frame option.

4. Click OK in the Select Layer To Add dialog to display the file in the Viewer.

Select Area to Use

1. With your cursor in the Viewer, right-hold Quick View | Inquire Box.
A white inquire box opens near the center of the image displayed in the Viewer. The Inquire Box Coordinates dialog also opens. The title of this dialog is Viewer #1: **slope.img**.

2. Hold inside the inquire box in the Viewer and drag the box to the desired image area. You use the entire image area you select, except for the edges.

You can reduce or enlarge the inquire box by dragging on the sides or corners.

NOTE: You may wish to select nearly the entire image area with the inquire box, as this is helpful when you compare your output image with the example output image at the end of this exercise.

3. In the Raster dialog, under **Processing Window**, click **From Inquire Box**.

The coordinates in the Raster dialog now match the coordinates in the Inquire Box Coordinates dialog.

4. Click **Close** in the Inquire Box Coordinates dialog.

Recode Classes

Now that the processing window is defined, you can recode the values.

1. In the Raster dialog, click the **Recode Data** option.

2. Click the **Setup Recode** button.

 The Recode dialog opens.

 You recode this file so that the classes with a slope greater than 25% have a class value of 1 and all other classes are 0 (zero). This is easy to do using the **Criteria** option of the **Row Selection** menu.

3. With your cursor in the **Value** column of the Recode dialog, right-hold **Row Selection | Criteria**.

 The Selection Criteria dialog opens.
Next, you select all classes with a slope greater than 25%. By looking at the Recode dialog, you can see that all classes greater than \textbf{Value 4} have a slope greater than 25%. You can then invert your selection to recode all classes with values less than 25%.

4. In the Selection Criteria dialog, under \textbf{Columns}, click \textit{Value}.

5. Under \textbf{Compares}, click $>$.

6. In the calculator, click the number 4.

The \textbf{Criteria} window now shows $\text{Value} > 4$.

7. In the Selection Criteria dialog, click \textit{Select} to select all classes meeting that criteria in the Recode dialog.

All classes greater than 4 are highlighted in yellow in the Recode dialog.

8. Click \textit{Close} in the Selection Criteria dialog.

9. In the Recode dialog, confirm that the \textbf{New Value} is set to 1.

10. In the Recode dialog, click \textit{Change Selected Rows} to give the selected classes a new value of 1.

11. With your cursor in the \textit{Value} column of the Recode dialog, right-hold \textbf{Row Selection} \textbf{Invert Selection} to deselect all currently selected classes and select all nonselected classes.

12. Enter a \textbf{New Value} of 0 in the Recode dialog.

13. Click \textit{Change Selected Rows} to give the selected classes a new value of 0.

14. Click \textit{OK} in the Recode dialog.

The Recode dialog closes.

15. Click \textit{OK} in the Raster dialog.
Create Sensitivity Layer

The Raster dialog closes. The Raster graphic in the Model Maker viewer now has \text{n1_slope_RC} written under it.

Define Input Flood Plain Layer

1. Double-click the second Raster graphic in the Model Maker viewer.
 The graphic is highlighted and the Raster dialog opens.
2. In the Raster dialog, click on the Open icon under \text{File Name}.

 ![File Name Icon]

 The File Name dialog opens.
3. In the File Name dialog under \text{Filename}, select the file \text{floodplain.img} and then click \text{OK}.
 This file does not need to be subset or recoded.
4. Click \text{OK} in the Raster dialog.
 The Raster dialog closes and \text{n2_floodplain} is written underneath the second Raster graphic.

Define Input Land Cover Layer

1. Double-click the third Raster graphic in the Model Maker viewer.
 The graphic is highlighted and the Raster dialog opens.
2. In the Raster dialog, click on the Open icon under \text{File Name}.

 ![File Name Icon]

 The File Name dialog opens.
3. In the File Name dialog under \text{Filename}, select the file \text{landcover.img} and then click \text{OK}.
 You recode this file so that the most sensitive areas have the highest class value.
4. In the Raster dialog, click the \text{Recode Data} option.
5. Click the \text{Setup Recode} button.
 The Recode dialog opens.
6. In the \text{Value} column of the Recode dialog, click on 1 to select it.
7. In the **New Value** box, enter a **New Value** of **4**.

8. Click **Change Selected Rows** to recode **Riparian** to **4**.

Now both **Riparian** and **Wetlands** have a class value of **4**.

9. With your cursor in the **Value** column, right-hold **Row Selection | Invert Selection**.

Now all classes are selected except one (**Riparian**).

10. With your cursor in the **Value** column, Shift-click on **4** to deselect **Wetlands**.

11. With your cursor in the **Value** column, Shift-click on **0** to deselect the background.

Your Recode dialog looks like the following:

![Recode Dialog](image)

Rows in yellow are recoded to a value of 1

12. Enter a **New Value** of **1**.

13. Click **Change Selected Rows**.

14. Click **OK** to close the Recode dialog.

15. In the Raster dialog, click **OK**.

n3_landcover_RC is written under the third Raster graphic in the Model Maker viewer.

Now, all of the files are set up so that the most sensitive areas have the higher class values:

Table 16-1: Class Values for n3_landcover_RC

<table>
<thead>
<tr>
<th>Class</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 25 percent slope</td>
<td>1</td>
</tr>
<tr>
<td>flood plain</td>
<td>1</td>
</tr>
<tr>
<td>riparian & wetlands</td>
<td>4</td>
</tr>
<tr>
<td>undeveloped land</td>
<td>1</td>
</tr>
</tbody>
</table>
Create Sensitivity Layer

These values are used in the next step to create the sensitivity file.

Define Function

1. In the Model Maker viewer, double-click the Function graphic.

The graphic is highlighted and the Function Definition dialog opens.

2. In the Function Definition dialog, click on the Functions popup list and select Conditional.

3. Click on CONDITIONAL in the box below Functions.

The CONDITIONAL function is placed in the function definition window at the bottom of the dialog.

4. Type the following statement in the definition box, replacing the previously created condition statement:

 \[
 \text{CONDITIONAL \{ ($n3_landcover_RC==0)0,}
 \]

 \[
 ($n3_landcover_RC==4)4,
 ($n1_slope_RC==1)3,
 ($n2_floodplain==1)2,
 ($n3_landcover_RC==1)1 \} \]

NOTE: The file names can be added to your function definition simply by clicking in the appropriate spot in the function definition, and then clicking on the file name in the list of Available Inputs.
Spatial Modeler

This creates a new output file with the class values 0-4. Each class contains the following:

<table>
<thead>
<tr>
<th>Class</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>developed</td>
</tr>
<tr>
<td>1</td>
<td>undeveloped land</td>
</tr>
<tr>
<td>2</td>
<td>flood plain</td>
</tr>
<tr>
<td>3</td>
<td>> 25 percent slope</td>
</tr>
<tr>
<td>4</td>
<td>riparian & wetlands</td>
</tr>
</tbody>
</table>

Areas with a class value of 4 are the most environmentally sensitive, and are therefore unsuitable for development. Classes 3-1 are also environmentally sensitive, but proportionally less so. Further analysis determines whether classes 3-1 are eligible for development.

5. Take a moment to check over the conditional statement you just entered to be sure it is 100% accurate. The model does not run if the information has not been entered accurately.

6. Click OK in the Function Definition dialog.

The Function Definition dialog closes and **CONDITIONAL** is written under the Function graphic.

Define Output Raster Layer

1. In the Model Maker viewer, double-click the output Raster graphic.

 The graphic is highlighted and the Raster dialog opens.

2. Under **File Name**, type the name **sensitivity.img** for the new output file.

 NOTE: Be sure that you specify a directory in which you have write permission.

3. Click the **Delete if Exists** option so that the output file is automatically overwritten when the model is run again.

4. Click on the **File Type** popup list and select **Thematic**.

5. Click **OK** in the Raster dialog.

 The Raster dialog closes and **n4_sensitivity** is written under the output Raster graphic in the Model Maker viewer.

 Your model should look similar to the following example:
Save and Run the Model

1. In the Model Maker viewer tool bar, click the Save icon (or select File | Save As from the Model Maker viewer menu bar) to save the model.

 The Save Model dialog opens.

2. Enter a name for the model. Be sure you are saving in a directory in which you have write permission.
3. Click OK in the Save Model dialog.

Run the Model
You can now run this portion of the model to see if it works correctly.

1. In the Model Maker viewer tool bar, click the Run icon (or select Process | Run from the Model Maker viewer menu bar) to run the model.

While the model runs, a Job Status dialog opens, reporting the status of the model.

2. When the model is finished, click OK in the Job Status dialog.

Enhance SPOT Data
To enhance the detail in the SPOT data, you run a convolution kernel over it before it is combined with the sensitivity layer. This portion of the model includes a Raster input, a Matrix input, a Function, and a Raster output.

Follow the next series of steps to create this portion of the model in a new Model Maker viewer. After you have verified that this portion runs correctly, you paste it into the first Model Maker viewer.

NOTE: Refer to the model pictured on page 356 when going through the following steps.

1. Click the new Window icon in the Model Maker viewer tool bar or select File | New to create a new Model Maker viewer.

The new Model Maker viewer opens.
2. Click on the Raster icon in the Model Maker tool palette, then click the Lock icon.

3. Click twice in the Model Maker viewer to place the input and output Raster graphics.

4. Click on the Matrix icon in the Model Maker tool palette.

5. Click in the Model Maker viewer to place the input Matrix graphic.
 This is where you define the convolution kernel.

6. Click on the Function icon in the Model Maker tool palette.

7. Click on the Model Maker viewer to place a Function graphic on the page.
 Place the Function graphic between the two inputs and the output Raster graphic.

8. Click on the Connect icon.

9. Connect the input Raster graphic to the Function, the input Matrix to the Function, and the Function to the output Raster.
Define Input SPOT Layer

1. Double-click the input Raster graphic in the Model Maker viewer.

 The graphic is highlighted and the Raster dialog opens.

2. In the Raster dialog, click on the Open icon under **Filename**.

 The File Name dialog opens.

3. In the File Name dialog under **Filename**, click on the file *spots.img* and then click **OK**.

4. Click **OK** in the Raster dialog.

 The Raster dialog closes, and *n1_spots* is written under the input Raster graphic.

Define Input Convolution Kernel

In Model Maker, you have access to built-in kernels or you can create your own. In this exercise, use the built-in 5×5 summary filter.

1. Double-click the input Matrix graphic.

 The Matrix Definition and Matrix dialogs open.
2. In the Matrix Definition dialog, click on the **Kernel** popup list and select **Summary**.

3. Click on the **Size** popup list and select **5x5**.

 The kernel displays in the Matrix dialog.

4. Click **OK** in the Matrix Definition dialog.

 The Matrix Definition and Matrix dialogs close, and **n3_Summary** is written under the Matrix graphic in the Model Maker viewer.

Define Function

1. Double-click the Function graphic in the Model Maker viewer.

 The Function Definition dialog opens.
Spatial Modeler

2. Click **CONVOLVE** from the list below **Functions**.

 The **CONVOLVE** statement displays in the function definition window.

3. Click in the first prototype (<raster>), and then click on $n1_{\text{spots}}$ under **Available Inputs** to define the raster input.

4. Click in the second prototype (<kernel>), and then click on $n3_{\text{Summary}}$ under **Available Inputs** to define the kernel.

5. Click **OK** to close the Function Definition dialog.

 The Function Definition dialog closes and **CONVOLVE** is written below the Function graphic in the Model Maker viewer.

Define Output Raster Layer

1. Double-click the output Raster graphic in the Model Maker viewer.

 The Raster dialog opens.

2. In the Raster dialog under **File Name**, type the name **spot_summary** for the new output file. The .img extension is added automatically.

 Be sure that you specify a directory in which you have write permission.

3. Click on the **Delete if Exists** option.

4. Confirm that **Continuous** is selected for the **File Type**.

5. Click **OK** in the Raster dialog.
The Raster dialog closes and n2_spot_summary is written under the Raster graphic in the Model Maker viewer.

Save and Run the Model

1. In the Model Maker viewer tool bar, click the Save icon (or select File | Save As from the Model Maker viewer menu bar) to save the model.

 ![Save icon](image)

 The Save Model dialog opens.

2. Enter a name for the model, such as convolve.gmd, being sure that you specify a directory in which you have write permission.

3. Click OK in the Save Model dialog.

 ![Status box](image)

 Run the Model

 You can now run this portion of the model to see if it works correctly.

1. In the Model Maker viewer tool bar, click the Run icon (or select Process | Run from the Model Maker viewer menu bar) to run the model.

 ![Run icon](image)

 While the model runs, a Status box opens, reporting the status of the model.

2. When the model is finished running, click OK in the Status box.

Combine Models

You now use the Copy and Paste commands to combine these two separate models into one. Make sure that both models you created are open.

1. In the menu bar of the second model you created, select Edit | Select All.

 ![Select All](image)

 You can also select objects by clicking and dragging in the Model Maker viewer. All objects contained within the selection box that you draw are selected.

2. Click the Copy icon in the tool bar of the same model (or select Edit | Copy from the menu bar) to copy the selected objects to the paste buffer.

 ![Copy icon](image)
3. Click the Paste icon in the tool bar of the first model (or select Edit | Paste from the menu bar) to paste the second model into the first Model Maker viewer.

The second model is pasted on top of the first model.

NOTE: Do not select File | Close All, as this closes both of the models.

5. Drag the pasted model to the right in the Model Maker viewer, so that it does not overlap the first model.

You can resize the Model Maker viewer to see the entire model.

6. Click outside of the selection to deselect everything.

Combine Sensitivity Layer with SPOT Data

With both the thematic sensitivity layer (sensitivity.img) and the SPOT data (spot_summary.img) defined, you can use these two files as the input raster layers in a function that combines the two files into one final output. A Scalar is also used in the function to offset the data file values in the SPOT image by five, so that the sensitivity analysis does not overwrite any SPOT data.

NOTE: Refer to the model pictured on page 364 when going through the next set of steps.

1. Click on the Function icon in the Model Maker tool palette.

2. Click in the Model Maker viewer below the output raster graphics (n4_sensitivity and n7_spot_summary) to place a Function graphic.

3. Click on the Scalar icon in the Model Maker tool palette.

4. Click in the Model Maker viewer to the left of the Function graphic you just positioned to place an input Scalar.

5. Click on the Raster icon in the Model Maker tool palette.

6. Click in the Model Maker viewer below the Function to place an output Raster graphic.
7. Click on the Connect icon and then on the Lock icon.

8. Connect the input Raster graphics (\texttt{n4_sensitivity} and \texttt{n7_spot_summary}) to the Function, the input Scalar to the Function, and then the Function to the output Raster.

9. Click the Lock icon to disable the lock tool.

10. Click the Select icon.

Define Input Scalar

1. Double-click the Scalar graphic in the Model Maker viewer.

 The Scalar dialog opens.

2. In the Scalar dialog, enter a \textbf{Value} of \texttt{5}.

3. Click on the \textbf{Type} popup list and select \texttt{Integer}.

4. Click \textbf{OK} in the Scalar dialog.

 The Scalar dialog closes and \texttt{n11_Integer} displays under the Scalar graphic in the Model Maker viewer.

Define Function

Next, you create a file that shows sensitivity data where they exist and allows the SPOT data to show in all other areas. Therefore, you use the conditional statement.

1. Double-click the untitled Function graphic in the Model Maker viewer.

 The Function Definition dialog opens.
2. In the Function Definition dialog, click on the Functions popup list and select Conditional.

3. In the list under Functions, click on EITHER.

 The EITHER statement and prototype arguments display in the function definition window.

4. Double-click in the first prototype \(<\text{arg1}>\), then click \$n4_sensitivity under Available Inputs to automatically replace the prototype with an argument.

5. Double-click in the prototype \(<\text{test}>\), then click \$n4_sensitivity.

 The function definition now reads:

 \[
 \text{EITHER } \$n4_sensitivity \text{ IF (} \$n4_sensitivity \text{) OR } \text{<arg2>} \text{ OTHERWISE}
 \]

6. Click on the Functions popup list and select Analysis.

7. Double-click the remaining prototype, \(<\text{arg2}>\), and then scroll down the list under Functions and click on the first STRETCH function to replace \(<\text{arg2}>\).

 The STRETCH function and its prototype arguments are inserted into the function definition.
8. Click on \textless raster\textgreater, then click on the file name $n7_spot_summary$ under Available Inputs.

9. Click on \textless stdcount\textgreater, then click on the number 2 on the calculator.

10. Using this same method, replace \textless min\textgreater with 0 and \textless max\textgreater with 250.

 The STRETCH function uses two standard deviations to stretch the data file values of \textit{spot_summary.img} between 0 and 250. The scalar is added to ensure that there are no data file values between 0 and 4, since these are the values in the sensitivity file.

11. Click in front of \textit{OTHERWISE} to insert the cursor in the function definition.

12. Click + on the calculator, then $n11_Integer$ under Available Inputs, to add the scalar to the function.

 The final function definition should look like the following:

 \[
 \text{EITHER } n4_sensitivity \text{ IF (} n4_sensitivity \text{) OR STRETCH (} n7_spot_summary , 2 , 0 , 250 \text{) \# } n11_Integer \text{ OTHERWISE}
 \]

13. Click \textit{OK} in the Function Definition dialog.

 The Function Definition dialog closes, and \textit{EITHER $n4_sensitivity$ IF} is written under the Function graphic in the Model Maker viewer.

\begin{itemize}
 \item Define Output Raster Layer
 \begin{itemize}
 \item Double-click the untitled output Raster graphic.
 \end{itemize}
\end{itemize}
Spatial Modeler

The Raster dialog opens.

2. In the Raster dialog, enter the file name `sensitivity_spot` for the new output file.
 Be sure that you specify a directory in which you have write permission.

3. Click on the **Delete if Exists** option.

4. Click on the **File Type** popup list and select **Thematic**.

5. Click **OK** in the Raster dialog.

 The Raster dialog closes, and `n12_sensitivity_spot` is written under the Raster graphic in the Model Maker viewer.

 Your final model should look like the following example:

 ![Diagram](image)

Save and Run the Model

1. In the Model Maker viewer tool bar, click the Save icon (or select **File | Save** from the Model Maker viewer menu bar) to save the model.
Run the Model
You can now run the entire model.

2. In the Model Maker viewer tool bar, click the Run icon (or select Process | Run from the Model Maker viewer menu bar) to run the model.

While the model runs, a Job Status dialog opens, reporting the status of the model.

3. When the model is finished running, click OK in the Job Status dialog.

Display New Layer
Once your model has run, the new output file is created. You can display this file in a Viewer and modify the class colors and class names of the overlaid sensitivity analysis.

Prepare
You must have run the model and you must have a Viewer open.

1. In the Viewer tool bar, click the Open icon (or select File | Open | Raster Layer from the Viewer menu bar).

The Select Layer To Add dialog opens.

2. Under Filename, click the file sensitivity_spot.img.

3. Click on the Raster Options tab at the top of the dialog and confirm that the Fit to Frame option is selected, so that you can see the entire layer.

4. Click OK to display the file.
The sensitivity analysis is displayed with a gray scale color scheme.

1. In the Viewer menu bar, select Raster | Attributes.

 The Raster Attribute Editor opens. You add a Class Names column.

2. In the Raster Attribute Editor, select Edit | Add Class Names.

 A new Class_Names column is added to the CellArray.

 Next, rearrange the columns so that the Color and Class Name columns come first. This makes it easier to change the colors of the overlaid sensitivity analysis.

3. In the Raster Attribute Editor, select Edit | Column Properties.
The Column Properties dialog opens.

4. Click on **Color** under **Columns**, then click **Top** to make **Color** the first column in the Raster Attribute Editor.

5. Click **OK** in the Column Properties dialog to change the order of the columns.

The Raster Attribute Editor now looks similar to the following example:

Next, change the colors and class names.

6. To change the color of the class 1, with your pointer over the color patch for that class, right-hold **Other**.

The Color Chooser dialog opens.
This dialog gives you several options for changing the class colors. You can move the black dot on the color wheel, use the slider bars, select colors from a library (under the Standard tab), or enter RGB values.

7. Experiment with each of these methods to alter the class colors of classes 1 through 4. Change class 1 to **Green**, class 2 to **Yellow**, class 3 to **Tan**, and class 4 to **Red**.

When you have selected the desired color for a class, click Apply and then Close in the Color Selector dialog. Then redisplay the Color Chooser for the next class by moving your cursor to that color patch and right-holding a specific color or Other.

8. Click in the Class Names column of class 1.

9. Type Undeveloped Land. Press Return on your keyboard.

 Your cursor is now in the class name field of class 2.

10. Type Floodplain for class 2. Press Return.

12. Type Riparian and Wetlands for class 4. Press Return.
The following steps describe how to compare your output with the one delivered with ERDAS IMAGINE.

Prepare
You must have completed the Spatial Modeler tour guide up to this point, creating `sensitivity_spot.img` in the process. The file `sensitivity_spot.img` should be displayed in a Viewer.

1. Display the file `<IMAGINE_HOME>/examples/modeler_output.img` in a second Viewer.

2. Select Session | Tile Viewers from the ERDAS IMAGINE menu bar to position the two Viewers side by side, so that you can view both images at once.
3. In Viewer #1, select View | Link/Unlink Viewers | Geographical.

A Link/Unlink Instructions dialog opens, instructing you to click in Viewer #2 to link the two Viewers.

4. Click in Viewer #2 to link the two Viewers and close the Link/Unlink Instructions dialog.

 If sensitivity_spot.img is a subset of modeler_output.img, a white bounding box displays in Viewer #2 (modeler_output.img), marking the area of the image that is shown in Viewer #1 (sensitivity_spot.img).

5. Select Utility | Inquire Cursor from either Viewer’s menu bar.

6. Compare the two images using the Inquire Cursor.

7. When you are finished, click Close in the Inquire Cursor dialog.

8. Right-click in the Viewer displaying sensitivity_spot.img to access the Quick View menu.

10. Click in the Viewer containing modeler_output.img to break the link.

Add Annotation to a Model

You can add annotation to a model to make it more understandable to others, or to help you remember what the model does. It is also a helpful organizational tool if you create several models and need to keep track of them all.

Next, add a title and an explanation of each function to the model you just created.

Prepare

You must have the model open.

NOTE: Refer to the model pictured on page 373 when going through the next set of steps.

Add a Title

1. Select the Text icon in the Model Maker tool palette.

 ![Text icon]

2. Click near the center of the top of the model page to indicate where you want to place the text.

 The Text String dialog opens.
3. Type these words in the Text String dialog:

 Sensitivity Analysis Model

4. Press Return on your keyboard, and then click OK in the Text String dialog.

 The text string you typed in step 3. displays on the page.

Format Text

1. Click on the text string you just added to select it. The string is reversed out (white on black) when it is selected.

2. On the Model Maker viewer menu bar, select **Text | Size | 24**.

 The text string is redisplayed at the new point size. If the text overwrites any of the graphics in the model, you can simply click on it to select it and then drag it to a new location.

3. In the Model Maker viewer menu bar, select **Text | Style | Bold**.

 The text string is redisplayed in bold type.

 NOTE: If you want to edit a line of text, simply double-click it to bring up the Text String dialog again. Correct your entry or type a new one.

Add Text to a Function Graphic

1. In the Model Maker tool palette, select the Text tool and then the Lock tool to add text to the first Function graphic.

2. Click on the center of the **CONDITIONAL** Function graphic, toward the top of the graphic.

 The Text String dialog opens.

3. Type the following words in the Text String dialog:

 Create a sensitivity file by

4. Press Return on your keyboard, and then click OK in the Text String dialog.

5. Click under the first line of text to add another line.

6. In the Text String dialog, type:

 combining Slope, Floodplain, and Landcover

7. Press Return on your keyboard and then click OK in the Text String dialog.

8. Repeat step 5. to add a third line of text:
Spatial Modeler

using a conditional statement.

9. Click **OK**.

All three text strings display over the Function graphic, but they are very large.

Format Text

1. In the Model Maker tool palette, click on the Lock icon to disable the lock tool and then click on the Select icon.

2. Click on the first line on the Function graphic to select it.

3. Shift-click on the second and third lines to add to the selection.

4. Using the same procedure you used to change the point size and style of the title, change these lines to **14** points, **Normal**.

You may also want to adjust the positioning (simply drag on the text).

Add Text to Other Graphics

1. Add the following lines of text to the **CONVOLVE** function:

 Enhance the SPOT image using a summary filter.

2. Next, add these two lines to the final output raster (**n12_sensitivity_spot**):

 Overlay of sensitivity analysis on SPOT Panchromatic image.
3. Save the model by selecting **File | Save** from the menu bar.

Generate a Text Script

The graphical models created in Model Maker can be output to a script file (text) in SML. Select **Tools | Edit Text Files** from the ERDAS IMAGINE menu bar, and then edit these scripts using the SML syntax. Re-run or save the edited scripts in the script library.

SML is designed for advanced modeling, and encompasses all of the functions available in Model Maker, as well as:

- conditional branching and looping
- complex data types
- flexibility in using raster objects

To generate a script from a graphical model, follow these steps:
Prepare
The graphical model must be open.

1. In the Model Maker viewer menu bar, select **Process | Generate Script**.

The Generate Script dialog opens.

The **Script Name** defaults to the same root name as the graphical model. Scripts have the extension .mdl.

2. If you do not want to use the default, enter a new file name under **Script Name**.
3. Click **OK** to generate the script.

The model is now accessible from the **Model Librarian** option of Spatial Modeler.

4. From the ERDAS IMAGINE icon panel, click the Modeler icon.

The **Spatial Modeler** menu displays.

5. Select the **Model Librarian** option in the **Spatial Modeler** menu.
The Model Librarian dialog opens.

From this dialog you can edit, delete, or run script models.

6. Under **Model Library**, select the name you used for your model in step 2.

7. Click **Edit** in the Model Librarian dialog.

 The model is displayed in the Text Editor, as in the following example:
Annotation in scripts is located at the top of the file, in the order in which it was entered. If you want the annotation to be in the order of processing, annotate your graphical model from top to bottom.

8. Select **File | Close** from the Text Editor menu bar.

9. Click **Close** in the Model Librarian dialog and the **Spatial Modeler** menu.

Print the Model

You can output graphical models as ERDAS IMAGINE annotation files (.ovr extension) and as encapsulated PostScript files (.eps extension). You can also output directly to a PostScript printer.

Prepare

You must have a graphical model open.

1. In the Model Maker viewer menu bar, select **File | Page Setup**.

The Page Setup dialog opens.
Print the Model

The default setting specifies a 8.5” × 11” page size. This is acceptable for most PostScript printers.

2. In the Page Setup dialog, adjust the size of the Page Margins to suit your preferences.

3. Click OK.

4. In the Model Maker viewer menu bar, select File | Show Page Breaks.
 Dotted lines indicate page breaks according to the page size specified in the Page Setup dialog. You may have to use the scroll bars on the bottom and side of the Model Maker viewer to see these page breaks.

5. If your model takes up more than one page, you may want to rearrange it so that it fits on a single sheet.

6. In the Model Maker viewer tool bar, click the Print icon (or select File | Print from the Model Maker viewer menu bar).

 The Print dialog opens.

 7. In the Print dialog, select the page(s) to print in the From and To boxes, or select All to print the entire model.
8. Click **OK** to print the model.

Apply the Criteria Function

The Criteria function in Model Maker simplifies the process of creating a conditional statement. In this example, you use data from a thematic raster layer and a continuous raster layer to create a new output layer. The input layers include a Landsat TM file and a slope file. This model performs similar to a parallelepiped classifier, but uses slope and image statistics in the decision process. The output file contains four classes: chaparral in gentle slopes, chaparral in steep slopes, riparian in gentle slopes, and riparian in steep slopes.

For information on the parallelepiped classifier, see "CHAPTER 17: Advanced Classification" page 455.

The model you create looks like this:

![Diagram](image)

Evaluate Training Samples

Before beginning, the ERDAS IMAGINE Classification tools were used to gather training samples of chaparral and riparian land cover. This was done to determine the minimum and maximum data file values of each class in three of the seven TM bands (4, 5, 3). These values are listed in the following table:
Slopes below class value 3 are less than 8 percent, and therefore are characterized as gentle. Slopes in class value 3 or above are greater than 8 percent, and are characterized as steep. These values are used in the criteria function.

Prepare
You must have Model Maker running, with a new Model Maker viewer displayed.

1. Click on the Raster icon in the Model Maker tool palette, then click the Lock icon.

2. Click three times in the Model Maker viewer to place the two input Raster graphics and the one output Raster graphic.

3. Click on the Criteria icon in the Model Maker tool palette.

4. Click in the Model Maker viewer to place the criteria graphic between the input and output Raster graphics.

5. Click on the Connect icon.

6. Connect the input Raster graphics to the criteria and the criteria to the output Raster graphic.

7. Click the Lock icon to disable the lock tool.

8. Click the Select icon.
Define Input Raster Layers

1. Double-click the first Raster graphic in the Model Maker viewer.
 The Raster dialog opens.

2. In the Raster dialog, click on the Open icon under File Name.
 The File Name dialog opens.

3. In the File Name dialog under Filename, select the file dmtm.img and click OK.

4. Click OK in the Raster dialog.
 The Raster dialog closes and n1_dmtm is written underneath the Raster graphic.

5. Double-click the second Raster graphic.
 The Raster dialog opens.

6. In the Raster dialog, click on the Open icon under File Name.
 The File Name dialog opens.

7. In the File Name dialog, select the file slope.img and click OK.

8. Click OK in the Raster dialog.
 The Raster dialog closes and n2_slope is written underneath the Raster graphic.

Define Criteria

1. Double-click the Criteria graphic in the Model Maker viewer.
 The Criteria dialog opens.
Apply the Criteria Function

2. In the Criteria dialog, click on $n2_slope under Available Layers.

The descriptor fields associated with that layer are now listed in the Descriptor popup list.

3. Click on the Descriptor popup list to select the Value descriptor.

4. Click Add Column to add that descriptor to the Criteria Table.

5. Under Available Layers, click on $n1_dmtm(4), then click Add Column to add a column for the minimum data file values in band 4.

6. Click Add Column again to add a column for the maximum data file values in band 4.

7. Repeat this procedure for $n1_dmtm(5) and $n1_dmtm(3).

There are now eight columns in the Criteria Table.

8. Change the number of Rows to 4, because the final output file has four classes.

9. Click in the first row of the $n2_slope column and type <3. Press Return on your keyboard.

10. Under $n2_slope, enter >=3 in row 2, <3 in row 3, and >=3 in row 4.

11. In the same manner, enter the minimum and maximum data file values for chaparral and riparian in the Criteria Table.

Rows 1 and 2 correspond to chaparral, and rows 3 and 4 correspond to riparian (see the chart on page 379).

The Criteria dialog should look like the one in the following diagram:
The complete **Criteria Table** should look similar to the following table:

Table 16-4: Complete Criteria Table

<table>
<thead>
<tr>
<th>Row</th>
<th>$$n1_slope__Value$</th>
<th>$$n1_dmtm(4)$</th>
<th>$$n1_dmtm(5)$</th>
<th>$$n1_dmtm(4)$</th>
<th>$$n1_dmtm(5)$</th>
<th>$$n1_dmtm(3)$</th>
<th>$$n1_dmtm(3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><3</td>
<td>>31</td>
<td><67</td>
<td>>30</td>
<td><61</td>
<td>>23</td>
<td><37</td>
</tr>
<tr>
<td>2</td>
<td>>=3</td>
<td>>31</td>
<td><67</td>
<td>>30</td>
<td><61</td>
<td>>23</td>
<td><37</td>
</tr>
<tr>
<td>3</td>
<td><3</td>
<td>>55</td>
<td><92</td>
<td>>57</td>
<td><87</td>
<td>>27</td>
<td><40</td>
</tr>
<tr>
<td>4</td>
<td>>=3</td>
<td>>55</td>
<td><92</td>
<td>>57</td>
<td><87</td>
<td>>27</td>
<td><40</td>
</tr>
</tbody>
</table>

12. When all of the values are entered into the **Criteria Table**, click **OK**.

 The Criteria dialog closes and **All Criteria** is written under the criteria graphic.

Define Output Raster Layer

1. Double-click the output Raster graphic in the Model Maker viewer.

 The Raster dialog opens.

2. In the Raster dialog under **File Name**, enter the name **slope_ppdclass**, then Return on your keyboard.

 Be sure that you specify a directory in which you have write permission.

3. Click on the **Delete if Exists** option.

4. Click on the **Data Type** popup list and select **Unsigned 4-bit**.

5. Confirm that **Thematic** is selected in the **File Type** popup list.
6. Click **OK** in the Raster dialog.

 The Raster dialog closes and `n3_slope_ppdclass` is written under the output Raster graphic.

7. In the Model Maker viewer menu bar, select **Model | Set Window** to define the working window for the model.

 The Set Window dialog opens.

 ![Set Window Dialog](image)

 You want the model to work on the intersection of the input files. The default setting is the union of these files.

8. In the Set Window dialog, click on the **Set Window To** popup list and select **Intersection**.

9. Click **OK** in the Set Window dialog.

Save the Model

1. Click the Save icon or select **File | Save As** from the Model Maker viewer tool bar to save your model.

 The Save Model dialog opens.

2. In the Save Model dialog, enter a name for your model.

 Be sure you are saving the model in a directory in which you have write permission.

3. Click **OK** in the Save Model dialog.

4. In the Model Maker viewer tool bar, click the Run icon (or select **Process | Run** from the Model Maker viewer menu bar) to run the model.
Spatial Modeler

While the model runs, a Job Status dialog opens, reporting the status of the model.

5. When the model is finished, click **OK** in the Job Status dialog.

6. If you like, display **slope_ppdclass.img** in a Viewer to view the output image of your model.

The image displays in gray scale. The class values are defined in the criteria function where:
1—chaparral in gentle slopes, 2—chaparral in steep slopes, 3—riparian in gentle slopes, and
4—riparian in steep slopes.

For more information about the Spatial Modeler, see "APPENDIX A: Additional Information" on page 595.

Minimizing Temporary Disk Usage

The Spatial Modeler attempts to perform operations in memory where possible, but there are some common operations that produce temporary files. Any time a Global operation is performed on an intermediate result, a temporary file is produced. For example, if the Global Maximum pixel value is required for an image being calculated, nothing other than an estimate may be produced without actually generating the image.

If an intermediate image is going to be used in two or more additional functions in a model, a temporary file is created. Also if nonpoint functions like Spread and Clump are performed on intermediate results, or if their results are used in further processes, temporary files are created.
Minimizing Temporary Disk Usage

There are two types of temporary files created by Spatial Modeler: temporary files, which are declared as such; and intermediate files, which get created due to the mix of operations. The amount of space required by temporary files can be controlled to some degree by user preferences. By default, Spatial Modeler is shipped to maintain the highest degree of precision at the expense of disk space. The default data type for both temporary and intermediate files is double precision floating point, which uses 8 bytes to store a pixel value. Depending on your needs, you can cut the size of your temporary files in half.

Set Preferences

1. Select Session | Preferences from the ERDAS IMAGINE menu bar.
2. In the Preference Editor, select the Spatial Modeler category.
3. Set Float Temp Type to Single Precision Float.
4. Set Float Intermediate Type to Single Precision Float.

Spatial Modeler, by default, also does not constrain the area your model processes, so temporary files extend to the union of all your input images. If, for example, you are doing an operation on two input images and your results are only valid in areas where both images exist, then setting the following preference may significantly reduce your temporary space requirements:

5. Set Window Rule to Intersection.

Also to ensure the temporary files get created on a disk drive where space is available, check the following preference:

6. In the Preference Editor, select the User Interface & Session category.
7. Set the Temporary File Directory to a local disk with sufficient free space.

In some cases, you may be able to adequately predict the output data range of a calculation. For example, if you calculate NDVI within your model, you know that at most, it can range from -0.5 to 0.5. In this case, you could

- store the result as floating point, taking at least 4 bytes per pixel, or
- scale the results to 0-255 in order to store the result as unsigned 8-bit data, taking just 1 byte per pixel. In this case since you know the range, you can re-scale the data by simply adding 0.5 then multiplying by 255, without the need for any temporary files.

For more extensive examples of how models may be written without the use of temporary disk space use Model Maker to open: 8bit_pca.gmd and 8bit_res_merge.gmd in the <IMAGINE_HOME>/etc/models directory, where <IMAGINE_HOME> is the location of ERDAS IMAGINE on your system.
Making Your Models Usable by Others

Prompt User

When you specify specific input rasters or vectors in your model, their complete path is stored in the model. The same is true when you specify output files. So, to give someone else your models, they need to redefine all the inputs and outputs.

Starting with ERDAS IMAGINE 8.3, inputs and outputs can be set to **Prompt User** so that no absolute paths are contained in the model. The model, in turn, may easily be shared without the need to redefine any inputs or outputs.

Providing a User Interface to Your Model

Another method of producing a model that can not only be easily shared with others, but is also very easy to run, is to write an EML front-end to your model.

Prepare

You must have ERDAS IMAGINE running.

1. Click the Modeler icon on the ERDAS IMAGINE icon panel.

The **Spatial Modeler** menu opens.

2. Click **Model Maker** on the **Spatial Modeler** menu.

A blank Spatial Modeler viewer opens along with the Model Maker tool palette.

Open an Existing Model

1. Select **File | Open** or click on the Open Existing Model icon in the tool bar.

The Load Model dialog opens.
2. Select *8bit_res_merge.gmd* in the Load Model dialog, and click OK.

The model opens in the Spatial Modeler viewer.

3. Select **Process** | **Generate Script**.

The Generate Script dialog opens.
Spatial Modeler

4. Click the Open icon in the Generate Script dialog, and navigate to a directory where you have write permission.

5. Name the file `8bit_res_merge.mdl`, then click OK in the dialog.

6. Click OK in the Generate Script dialog.

Edit the Model

1. In the Spatial Modeler menu, click on Model Librarian.
2. Navigate to the directory in which you saved `8bit_res_merge.mdl`, and select it.

3. Click on the Edit button in the Model Librarian dialog.
The following SML script is displayed in the Editor:

```
# Principal Components Resolution Merge
# Input Multispectral (8-bit)
# Principal Components
# Replace PC1 with High Res Data
# Inverse PC
# Output Merged Image (8-bit)
# Input High Resolution (8-bit)
# Stretch to Approximate PC1 Data Range
#
# set cell size for the model
#
SET CELLSIZE MIN;
#
# set window for the model
#
SET WINDOW INTERSECTION;
#
# set area of interest for the model
#
SET AOI NONE;
#
# declarations
#
# declarations

Float RASTER n1_dmtm FILE OLD NEAREST NEIGHBOR AOI NONE
  "$IMAGINE_HOME/examples/dmtm.img";
Integer RASTER n23_spots FILE OLD NEAREST NEIGHBOR AOI NONE
  "$IMAGINE_HOME/examples/spots.img";
Integer RASTER n29_merge_small FILE DELETE_IF_EXISTING IGNORE
  0 ATHEMATIC 8 BIT UNSIGNED INTEGER
  "c:/temp/merge_small.img";
FLOAT MATRIX n3_Output;
FLOAT MATRIX n11_Output;
FLOAT MATRIX n26_Output;
FLOAT TABLE n16_Output;
{
  
  # function definitions
  #
#define n31_memory Float(STRETCH ($n23_spots(1) , 3 , 0 , 255 )
  n3_Output = COVARIANCE ( $n1_dmtm );
  n11_Output = MATTRANS ( EIGENMATRIX ($n3_Output) );
  n26_Output = MATINV ( $n11_Output ) ;
#define n7_memory Float(LINEARCOMB ( $n1_dmtm - GLOBAL MEAN (}
Spatial Modeler

\[
\text{\$n1_dmtm, } \text{\$n11_Output}})
\]
\[
n16\_Output = \text{EIGENVALUES (} \text{\$n3\_Output})
\]
\[
\#\text{define n22\_memory Float(FLOAT((($n31\_memory - 127.5) * 3 * (SQRT($n16\_Output[0])) / 127.5))}
\]
\[
\#\text{define n38\_memory Float(STACKLAYERS($n22\_memory,}$n7\_memory(2: NUMLAYERS ($n7\_memory))))}
\]
\[
n29\_merge\_small = \text{LINEARCOMB (} \text{\$n38\_memory,}$n26\_Output) + \text{GLOBAL MEAN (} \text{\$n1\_dmtm})
\]
\]
\]
\]
\]
\]
\}
QUIT;

4. Locate “$\text{IMAGINE\_HOME/examples/dmtm.img}” (in bold above) on line 24 and change it to arg1.

5. Locate “$\text{IMAGINE\_HOME/examples/spots.img}” (in bold above) on line 25 and change it to arg2.

6. Locate “c:/temp/merge_small.img” (in bold above) on line 26 and change it to arg3.

7. Select File | Save, or click on the Save Current Document icon in the Editor.

The code now has arg1, arg2, and arg3

Edit the EML

1. Select File | New, or click on the New icon in the Editor.

2. Select File | Open, or click on the Open icon.

3. In the Load File dialog, type *.eml for the File Name and press Return on your keyboard.
This searches for EML scripts in the directory.

4. Select 8bit_res_merge.eml, and click OK in the Load File directory.

The .eml file is located in <IMAGINE_HOME>/scripts, where <IMAGINE_HOME> is the location of ERDAS IMAGINE on your system.

The following EML script displays in the Editor:

```eml
component res_merge {
 frame res_merge {
 title "Resolution Merge";
 geometry 140,120,250,230;
 statusbar;
 filename hi_res_pan;
 filename outputname;
 button ok;
 filename multi_spec {
 title above center "Multispectral File:";
 info "Select the multispectral input file.";
 shortform;
 geometry 0,10,245,49;
 select getpref ("eml" "default_data_path")+"/*.img";
 }
 }
}
```
Spatial Modeler

filetypedef "raster";
on input {
if (($multi_spec != "") & ($hi_res_pan != "") & ($outputname != "")) { enable ok;
} else{
  disable ok;
}
}

filename hi_res_pan {
title above center “High Resolution Pan File:”; info “Select the high resolution pan input file.”; shortform; geometry 0,70,245,49; select getpref ("eml" “default_data_path”)+"/*.img"; filetypedef “raster”; on input {
  if (($multi_spec != "") & ($hi_res_pan != "") & ($outputname != "")) { enable ok;
} else{
  disable ok;
}
}

filename outputname {
title above center “Output File:”; info “Select output file.”; shortform; geometry 0,130,245,49; select getpref ("eml" “default_output_path”)+"/*.img"; filetypedef “raster” pseudotypes off creatable on; newfile; on input {
  if (($multi_spec != "") & ($hi_res_pan != "") & ($outputname != "")) { enable ok;
} else{
  disable ok;
}
}

button ok {
title “OK”; info “Accept all info and issue the job.”;
5. Locate “d:/erdas/models/8bit_res_merge.mdl” (in bold above) on line 74, and change it to the location and name of the script you generated.
6. Select **File | Save As**.

7. In the Save As dialog, navigate to a directory where you have write permission.

8. Save the .eml file as **8bit_res_merge_TG.eml**, then click **OK** in the Save As dialog.

### Set Session Commands

1. On the ERDAS IMAGINE menu bar select **Session | Commands**.

   - Change this section of the code to reflect the location of the .mdl file you edited with **arg1**, **arg2**, and **arg3**.

   - Save the .eml file with a new name in a directory where you have write permission.
The Session Command dialog opens.

2. In the Command field enter the following command (replacing the directory with the one you chose).

   \texttt{load "c:/temp/8bit\_res\_merge.eml"}

3. Press Return on your keyboard.

   The following dialog displays:
4. For the Multispectral File, select `dmtm.img` from the /examples directory.

The file `dmtm.img` is located in the `<IMAGINE_HOME>/examples` directory, where `<IMAGINE_HOME>` is the location of ERDAS IMAGINE on your system.

5. For the High Resolution Pan File, select `spots.img` from the examples directory.

6. For the Output File, select a directory in which you have write permission, and enter the name `8bit_res_merge_TG.img`, then press Return on your keyboard.

7. Click OK.

A Job Status dialog opens, tracking the progress.

8. When the job is 100% complete, click OK in the dialog.

You can set the Keep Job Status Box in the User Interface & Session category of the Preference Editor so that the Job Status box is dismissed automatically after an operation is performed.
Check the Results

1. In the ERDAS IMAGINE icon panel, click the Viewer icon.

2. Click the Open icon, and navigate to the directory in which you saved the **Output File** you just created, *8bit_res_merge_TG.img*

3. Click **OK** in the Select Layer To Add dialog to add the file.

The image displays in the Viewer.

4. Click the Open icon, and navigate to the /examples directory.

5. Select the file *dmtm.img* from the list, then click the **Raster Options** tab.

6. Deselect the **Clear Display** option.

7. Click **OK** in the Select Layer To Add dialog.

The multispectral file, *dmtm.img*, lends the color to the resulting file: *8bit_res_merge_TG.img*.
Use the Swipe Utility

1. From the Viewer menu bar, select Utility | Swipe.
2. Move the slider bar back and forth to see how the two images compare.
3. When you are finished, close the Swipe utility.

Check the spots.img image

The panchromatic image, spot.img, is the image that lends the detail to the image you created: 8bit_res_merge_TG.img.

1. Click the Viewer icon on the ERDAS IMAGINE icon panel to open a new Viewer.
2. Click the Open icon, and navigate to the /examples directory in the Select Layer To Add dialog.
3. Select the file spots.img, then click OK in the Select Layer To Add dialog.

The file spots.img displays in the Viewer. Note the detail in the image.
Using Vector Layers in Your Model

Vector layers may be used in several different ways within models. All processing is done in raster format. However, converting the vector layers to raster is done on the fly at either a default resolution or one specified to meet the level of detail required by the application.

Vector Layers as a Mask

One simple application of vector layers is to use polygonal boundaries to cookie-cut your imagery. Whether the polygons represent political boundaries, ownership boundaries, zoning, or study area boundaries, they may be used to limit your analysis to just the portions of the imagery of interest.

In the following example you use a vector coverage to not just cookie-cut an image but to generate an output image for visual presentation that highlights the study area. Inside the study area, you enhance the image, while outside the study area you blur the image to further distinguish the study area.
Spatial Modeler

Prepare
You must have ERDAS IMAGINE running.

1. Click the Modeler icon on the ERDAS IMAGINE icon panel.

The Spatial Modeler menu opens.

2. Click on the Model Maker button in the Spatial Modeler menu.

A blank Model Maker viewer opens along with tools.

Set up the Model

1. Click on the Raster icon in the Model Maker tool palette.

2. Click near the top center of the Model Maker viewer.

3. Click on the Matrix icon in the Model Maker tool palette.

4. Click to the left of the Raster object in the Model Maker viewer.

5. Click on the Matrix icon again in the Model Maker tool palette.

6. Click to the right of the Raster object in the Model Maker viewer.
7. Click on the Function icon in the Model Maker tool palette.

8. Click below and to the left of the Raster object in the Model Maker viewer.

9. Click on the Function icon again in the Model Maker tool palette.

10. Click below and to the right of the Raster object in the Model Maker viewer.

11. Click on the Raster icon in the Model Maker tool palette.

12. Click below the first Function object in the Model Maker viewer.

13. Click on the Raster icon again in the Model Maker tool palette.

14. Click below the second Function object in the Model Maker viewer.

15. Click on the Function icon in the Model Maker tool palette.

16. Click below and between the Raster objects just placed in the Model Maker viewer.

17. Click on the Vector icon in the Model Maker tool palette.

18. Click to the left of the Function object just placed in the Model Maker viewer.

19. Click on the Raster icon in the Model Maker tool palette.

20. Click to the right of the Function object just placed in the Model Maker viewer.
21. Using the Connection tool, and optionally the Lock tool, connect the objects in the model as depicted in the following picture:

![Diagram of model connections]

When you are finished, the model looks like the following:

![Finished model diagram]

**Add Matrix Properties**

1. Make sure the Selector tool is active.

2. Double-click the top left Matrix object in the Model Maker viewer.

The Matrix Definition and Matrix dialogs open.
3. Using the **Kernel** popup list select **Summary**.
4. Using the **Size** popup list select **5x5**.
5. Click the **OK** button in the Matrix Definition dialog.

### Add Raster Properties

1. Double-click the top Raster object in the Model Maker viewer.
2. Click the Open icon to open the File Name dialog.

3. Select `germtm.img` from the examples directory, and click OK in the File Name dialog.

4. Click OK in the Raster dialog to accept the file `germtm.img`.

Add Matrix Properties
1. Double-click the top right Matrix object in the Model Maker viewer.
2. Verify that Low Pass is selected in the Kernel popup list.
3. Using the Size popup list select 7x7.
4. Click the OK button in the Matrix Definition dialog.

Add Function Properties
1. Double-click the left Function object.
   The Function Definition dialog opens.

2. From the Analysis Functions select `CONVOLVE ( <raster> , <kernel> )`, this should be the third item on the list.
3. In the lower portion of the Function Definition dialog, click in the middle of `<raster>`.
4. Under Available Inputs, click on `$n1_germtm`.
5. In the lower portion of the Function Definition dialog, click in the middle of `<kernel>`.
6. Under Available Inputs, click on `$n2_Summary`.
7. Click **OK** in the Function Definition dialog.

**Add Function Properties**
1. Double-click the right Function object.
2. From the Analysis Functions select CONVOLVE ( `<raster>`, `<kernel>` ), this should be the third item on the list.
3. In the lower portion of the Function Definition dialog, click in the middle of `<raster>`.
4. Under Available Inputs, click on `$n1_germtm`.
5. In the lower portion of the Function Definition dialog, click in the middle of `<kernel>`.
6. Under Available Inputs, click on `$n3_Low_Pass`.

Your function string should look like the following:

```
CONVOLVE ($n1_germtm , $n3_Low_Pass)
```
7. Click **OK** in the Function Definition dialog.

**Add Raster Properties**
1. Double-click the Raster object that is output from the Function on the left.

2. In the lower left corner of the dialog click the checkbox **Temporary Raster Only**.
3. Click **OK** in the Raster dialog.
Spatial Modeler

**Add Raster Properties**
1. Double-click the Raster object that is output from the Function on the right.
2. In the lower left corner of the dialog click the checkbox **Temporary Raster Only**.
3. Click **OK** in the Raster dialog.

**Add Vector Properties**
1. Double-click the Vector object in the lower left corner of the model.
   The Vector dialog opens.

2. Click the Open icon under **Vector Layer Name**.

3. In the Vector Layer Name dialog, navigate to the /examples directory, and select **zone88**.
4. Click **OK** in the Vector Layer Name dialog.
5. Click **OK** in the Vector dialog to accept the **Vector Layer Name**.

**Add Function Properties**
1. Double-click the final Function object.
   The Function Definition dialog opens.
Using Vector Layers in Your Model

2. In the Functions popup list, select Conditional.

3. In the list of Functions, select EITHER <arg1> IF ( <test> ) OR <arg2> OTHERWISE, this should be the second item on the list.

4. In the lower portion of the Function Definition dialog, click in the middle of <arg1>.

5. Under Available Inputs, click on $n6_memory.

6. In the lower portion of the Function Definition dialog, click in the middle of <test>.

7. Under Available Inputs, click on $n9_zone88.

8. In the lower portion of the Function Definition dialog, click in the middle of <arg2>.

9. Under Available Inputs, click on $n7_memory.

10. Click OK in the Function Definition dialog.

Add Raster Properties
1. Double-click the final output Raster object.

The Raster dialog opens.
2. Click the Open icon and navigate to a directory where you have write permission.

3. In the Filename section of the File Name dialog, type **hilight_germtm.img** for the output image name, then click **OK** in the File Name dialog.

4. Click on **Delete If Exists** checkbox.

5. Click on the **OK** button in the Raster dialog.
Using Vector Layers in Your Model

Your completed model should look like the following:

![Model Diagram]

**Execute the Model and Check Results**

1. Select **Process | Run**, or click on the Execute the Model icon in the tool bar.

   ![Process Icon]

   A Job Status dialog opens tracking the progress of the function.

2. Click **OK** in the Job Status dialog when it reaches 100% complete.

   Next, use the Viewer to examine your output image and locate the highlighted area.

3. Click the Viewer icon in the ERDAS IMAGINE icon bar.

   ![Viewer Icon]

4. Click the Open icon and navigate to the directory in which you saved the output file, **hilight_germmtn.img**, then click **OK** in the dialog to display the file.
5. Use the Zoom In tool to view the highlighted area.

Notice that the area you emphasized with the model is sharp, while the area surrounding it is fuzzy.

6. When you are finished viewing the image select **File | Close** from the Viewer menu bar.
Another application of using vector layers in models is to calculate summary information about your imagery for each polygon in a vector layer. This summary information can then be stored as an additional attribute of the vector layer.

**Prepare**

You must have ERDAS IMAGINE running.

**Copy Vector Layers**

1. Click the Vector icon on the ERDAS IMAGINE icon bar.

The **Vector Utilities** menu opens.

1. Click the **Copy Vector Layer** button on the Vector Utilities menu.

The Copy Vector Layer dialog opens.
2. In the **Vector Layer to Copy** section, navigate to the `<IMAGINE_HOME>/examples` directory, and select `zone88`.

3. In the **Output Vector Layer** section, navigate to a directory where you have write permission.

4. Type the name `zone88`, then press Enter on your keyboard.

5. Click **OK** in the Copy Vector Layer dialog.

   A Job Status dialog opens tracking the progress.

6. When the job is finished, click **OK** in the Job Status dialog.

7. Click **Close** in the **Vector Utilities** menu.

### Set up the Model

1. Click the Modeler icon on the ERDAS IMAGINE icon panel.

   The **Spatial Modeler** menu opens.

   ![Select Model Maker](image)

   2. Click on the **Model Maker** button in the **Spatial Modeler** menu.

      A blank Model Maker viewer opens along with the tools.

   3. Click on the Raster icon in the Model Maker tool palette.
4. Click near the upper left corner of the Model Maker viewer.

5. Click on the Vector icon in the Model Maker tool palette.

6. Click to the right of the Raster object in the Model Maker viewer.

7. Click on the Function icon in the Model Maker tool palette.

8. Click below and between the Raster and the Vector objects in the Model Maker viewer.

9. Click on the Table icon in the Model Maker tool palette.

10. Click below the Function object in the Model Maker viewer.

11. Using the Connection tool, and optionally the Lock tool, connect the Raster object and the Vector object to the Function object as inputs.

12. Using the Connection tool, connect the Function object to the output Table object.

   When you are finished, the model looks like the following:
Add Raster Properties
1. Confirm the Selector tool is active.

2. Double-click the Raster object.

3. In the Raster dialog, click the Open icon to open the File Name dialog.

4. Select *germtm.img* from the /examples directory and click **OK** in the File Name dialog.

5. Click **OK** in the Raster dialog to accept the file *germtm.img*.

Add Vector Properties
1. Double-click the Vector object.

   The Vector dialog opens.
Using Vector Layers in Your Model

2. Click the Open icon to open the Vector Layer Name dialog.

3. Select the copy of zone88 you made earlier, and click OK in the Vector Layer Name dialog.

4. Click OK in the Vector dialog.

Add Function Properties

1. Double-click the Function object.

The Function Definition dialog opens.

2. In the Functions popup list, select Zonal.
Spatial Modeler

3. In the list of Functions, select ZONAL MEAN ( <zone_raster> , <value_raster> ), this should be the sixteenth item on the list.

4. In the lower portion of the Function Definition dialog, click in the middle of <zone_raster>.

5. Under Available Inputs, click on $n2_zone88.

6. In the lower portion of the Function Definition dialog, click in the middle of <value_raster>.

7. Under Available Inputs, click on $n1_germtm(4).

8. Click on the OK button in the Function Definition dialog.

Add Table Properties

1. Double-click the Table object.

   The Table Definition dialog opens.

2. Verify that Output is selected.

3. Under the Output Options, click on the Output to Descriptor or Attribute checkbox.

4. For the Existing Layer Type popup list, select Vector Layer.

5. For File, select the copy of zone88 from the directory in which you saved it earlier.

6. Since we are computing a new attribute, for Attribute, type MEAN-NIR.

7. The Data Type popup list should now be enabled, so select Float.
The Table Definition dialog should look as follows:

8. Click **OK** in the Table Definition dialog.

Your model should now look like the following:

---

**Execute the Model and Check the Results**

1. Select **Process | Run**, or click on the Execute the Model icon in the tool bar.
2. When the Job Status dialog is 100% complete, click OK.
3. Click the Viewer icon in the ERDAS IMAGINE icon bar.

4. In the Viewer, select Open | Vector Layer from the File menu.
5. In the Select Layer To Add dialog, select the copy of zone88 you created and click OK.
6. From the Viewer’s Vector menu select Attributes.
7. In the Attribute CellArray, scroll to the right to see the newly created MEAN-NIR field.

The values in this column represents the mean pixel value from band 4 (near infrared) of germtm.img for each of the polygons in zone88.

### Debug Your Model
Model Maker facilitates creating a model to accomplish your task, but it may still take some effort to get your model running successfully. Model Maker works hand in hand with Modeler.

Model Maker is used to create models graphically. To execute these models, Model Maker creates an SML script, which it hands off to Modeler for execution. Modeler does all of the syntax and error checking, so finding an error in your model is not a single step operation. The following exercises demonstrate some of the common errors encountered in building new models.

### Eliminate Incomplete Definition
In building a model, Model Maker provides prototypes for function arguments to be replaced with actual arguments. In this exercise, you see what happens if you forget to replace a prototype.

#### Prepare
You must have ERDAS IMAGINE running.

1. Click the Modeler icon on the ERDAS IMAGINE icon panel.

The Spatial Modeler menu opens.
2. Click **Model Maker** on the **Spatial Modeler** menu.

A blank Spatial Modeler viewer opens along with the Model Maker tool palette.

**Create the Model**

1. Click on the Raster icon in the Model Maker tool palette.

2. Click to place a Raster object in the upper left corner of the Model Maker viewer.

3. Click on the Matrix icon in the Model Maker tool palette.

4. Click to place the Matrix object to the right of the Raster object in the Model Maker viewer.

5. Click on the Function icon in the Model Maker tool palette.

6. Click to place the Function object below and centered between the Raster object and the Matrix object in the Model Maker viewer.

7. Click on the Raster icon in the Model Maker tool palette.

8. Click to place the Raster object below the Function object in the Model Maker viewer.

9. Click on the Connection icon in the Model Maker tool palette.

10. Click on the Lock icon in the Model Maker tool palette. It changes to reflect the locked state.

11. Connect the first Raster object and the Matrix object to the Function object as inputs.
12. Connect the Function object to the final Raster object as an output.

13. Click on the Selector icon in the Model Maker tool palette.

14. Click on the Lock icon in the Model Maker tool palette to turn it off.

Your model now looks like the following:

---

**Add Raster Properties**

1. Double-click the first Raster object.

   The Raster dialog opens.
2. Click the Open icon in the Raster dialog to open the File Name dialog.

3. In the File Name dialog, select the file `dmtm.img` from the `/examples` directory.

   ![Select the file here]

   The file `dmtm.img` is located in `<IMAGINE_HOME>/examples`, where `<IMAGINE_HOME>` is the location of ERDAS IMAGINE on your system.

4. Click OK in the File Name dialog.

   The Raster dialog updates with the appropriate File Name.

5. Click OK in the Raster dialog.

   **Add Matrix Properties**

   1. In the Model Maker viewer, double-click the Matrix object.

      The Matrix Definition dialog opens.
2. From the Kernel list, select **Summary**.

3. From the Size list, select **5 × 5**.

4. Click **OK** in the Matrix Definition dialog.

**Add Function Properties**

1. Double-click the Function object.

   The Function Definition dialog opens.
2. Confirm that the Functions dropdown list shows Analysis.

3. Under Functions, select CONVOLVE (<raster>, <kernel>).

4. In the lower portion of the Function Definition dialog, click in the middle of <raster>.

5. Under Available Inputs, click on $n1_dmtm.

   At this point you would normally replace the <kernel> prototype, but you are going to intentionally forget to do that.

6. Click the OK button.

Add Raster Properties

1. Double-click the output Raster object.

   The Raster dialog opens.

2. Click the Open icon, then navigate to a directory where you have write permission.

3. In the File Name dialog, enter sharp_dmtm.img for the output image name.

4. Click OK in the File Name dialog.

   The new file, sharp_dmtm.img, is listed in the Raster dialog.

5. Click on the Delete If Exists checkbox.
Spatial Modeler

This option allows you to run the model many times. You may have to run the model more than once to get it working.

6. Click on the OK button in the Raster dialog.

At this point, your model should look similar to the following:

![Spatial Modeler Diagram]

7. Select Process | Run or click on the Execute the Model icon in the tool bar.

A Job Status dialog opens, which tracks the progress of the model execution.

![Job Status Dialog]

You receive an error similar to the following:
Correct the Model

The next step is to figure out what this error means.

1. Click **OK** to dismiss the Error dialog.

2. Click **OK** to dismiss the Job Status dialog.

   You can set the **Keep Job Status Box** in the **User Interface & Session** category of the Preference Editor so that the Job Status box is dismissed automatically after an operation is performed.

3. In the Model Maker viewer, select **Process/Generate Script**.

4. In the Generate Script dialog, click the Open icon, and navigate to a directory where you have write permission.

5. Enter the name `sharpen.mdl`, and click **OK**.

Start the Model Librarian

1. In the Spatial Modeler dialog, click on the **Model Librarian** button.
The Model Librarian dialog opens.

2. Navigate to the correct directory, then select `sharpen.mdl`.

3. Click on the **Edit** button in the Model Librarian dialog.
4. In the Editor window, select **View | Current Line Number**.

   The Current Line Number dialog opens.

5. In the Current Line Number dialog, enter **36** for the **Line Number** (the line number referred to in the Error dialog).

6. Click the **Go To** button.

   This highlights the line containing the error as depicted in the following picture:
If you examine the selected line, just to the right of the equal sign is a function, which also serves as a label to a Function object in the graphical model. Most syntax errors occur in Function definitions. In general, you generate a script so you can relate the line number given in the error message back to a particular Function object in the model.

**Correct the Function**

1. In the Model Maker viewer, double-click the Function object, **CONVOLVE**.

2. Examine the function definition to determine the error.

   In this case, you determine the function definition still has an argument prototype, `<kernel>`, that needs to be replaced with an actual argument.

3. In the lower portion of the Function Definition dialog, click in the middle of `<kernel>`.

4. Under **Available Inputs**, click on `$n2_Summary`.

   Your Function Definition dialog now looks like the following:
5. Click **OK** in the Function Definition dialog.

### Execute the Model

1. Select **Process | Run** or click on the Execute the Model icon in the tool bar.

   ![Execute the Model icon](image)

   The model should run to completion without error this time.

2. Click on the **OK** button to dismiss the Job Status dialog.

### Check the Results

1. Click the Viewer icon to open a new Viewer.

   ![Viewer icon](image)

2. Click the Open icon, then navigate to the directory where you saved the file `sharp_dmtm.img`.

3. Select the file `sharp_dmtm.img`, then click **OK** in the Select Layer To Add dialog to open it in the Viewer.
Eliminate Object type Mismatch

There are five basic object types that can be either inputs to or outputs from a model. These are:

- Raster
- Vector (input only)
- Matrix
- Table
- Scalar

Depending on the arguments, each function produces a particular object type.

For example, the GLOBAL MAX function produces a Scalar if the argument is either a Matrix or a Table. However, it produces a Table if the argument is a Raster. In other words, for either a Matrix or a Table, the maximum value may be represented by a single number (i.e., Scalar). A Raster has a maximum value in each individual spectral band, so the result in this case is a Table of maximum values: one for each band. In order to be consistent, this is still true for a Raster with only one band. In this case a table is produced with a single entry.

In the following exercise, you build a model that rescales an image based on the maximum pixel value that actually occurs in an image. You do this using the GLOBAL MAX function. Initially, you incorrectly treat the output of the GLOBAL MAX function as a Scalar so you can see the type of error generated.

Prepare

You must have ERDAS IMAGINE running.

1. Click the Modeler icon on the ERDAS IMAGINE icon panel.
The **Spatial Modeler** menu opens.

2. Click **Model Maker** on the **Spatial Modeler** menu.

A blank Spatial Modeler viewer opens along with the Model Maker tool palette.

**Create the Model**

1. Click on the Raster icon in the Model Maker tool palette.

2. Click to position the Raster object in the upper left corner of the Model Maker viewer.

3. Click on the Function icon in the Model Maker tool palette.

4. Click to position the Function object below and to the right of the Raster object in the Model Maker viewer.

5. Click on the Scalar icon in the Model Maker tool palette.

6. Click to position the Scalar object below and to the right of the Function object in the Model Maker viewer.

7. Click on the Function icon in the Model Maker tool palette.

8. Click to position the Function object to the left of the Scalar object in the Model Maker viewer.

9. Click on the Raster icon in the Model Maker tool palette.

10. Click to position the Raster object below the Scalar object in the Model Maker viewer.
11. Click on the Connection icon in the Model Maker tool palette.

12. Click on the Lock icon in the Model Maker tool palette. It changes to the locked state.

13. Connect the first Raster to the first Function.

14. Also connect the first Raster to the second Function.

15. Connect the first Function to the Scalar.

16. Connect the Scalar to the second Function.

17. Connect the second Function to the final output Raster.

NOTE: You may want to refer to the following diagram of the model to verify your connections. Connections may be broken or deleted by using the Connection tool in the reverse direction of the existing connection.

18. Click on the Selector icon in the Model Maker tool palette.

19. Click on the Lock icon in the Model Maker tool palette to turn it off.
Add Raster Properties

1. Double-click the first Raster object.

The Raster dialog opens.
2. Click the Open icon on the Raster dialog, and navigate to the /examples directory.

3. In the Open File dialog, select `spots.img` and click **OK**.

**Add Function Properties**

1. Double-click the first Function object.

   The Function Definition dialog opens.
2. In the Functions popup list, select Global.

3. In the list of Global functions, select GLOBAL MAX (\(<arg1>\))

4. In the lower portion of the Function Definition dialog, click in the middle of \(<arg1>\).

5. Under Available Inputs, click on $n1\_spots$.

6. Click OK in the Function Definition dialog.

Add Scalar Properties

1. Double-click the Scalar object.

The Scalar dialog opens.

2. Verify that the Type is set to Float, and click OK.

You select Float to insure the model uses floating point arithmetic instead of integer arithmetic. You do this because you are calculating a ratio between 255 and the GLOBAL MAX. In other words, you want to be able to multiply the pixel values by numbers such as 1.3, 2.1, or 3.4 and not just 1, 2, or 3.
Add Function Properties
1. Double-click the second Function object.

The Function dialog opens.

2. Using the calculator portion of the Function Definition dialog enter \( \frac{255}{x} \).

3. Under **Available Inputs** click on \( \text{n3\_Float} \).

4. In the calculator portion of the Function Definition dialog click on \( * \).

5. Under **Available Inputs** click on \( \text{n1\_spots} \).

6. Click **OK** in the Function Definition dialog.

Add Raster Properties
1. Double-click the output Raster object.

The Raster dialog opens.
2. Click the Open icon in the Raster dialog, then navigate to a directory where you have write permission.

3. Enter `stretched.img` for the output image name, then click **OK** in the File Name dialog.

4. In the Raster dialog, click the **Delete If Exists** checkbox.

   You may have to run the model more than once to get it working.

5. Click on the **OK** button.
At this point, your model should look similar to the following:

![Spatial Modeler Diagram](image)

**Execute the Model**

1. Select **Process | Run** or click on the Execute the Model icon in the tool bar.

A Job Status dialog opens.

![Job Status Dialog](image)
You receive an error like the following:

![Error Dialog]

The next step is to figure out what this error means.

2. Click **OK** to dismiss the Error dialog.

3. Click **OK** to dismiss the Job Status dialog.

**Check the On-Line Help**

When a model is executed, an Assignment statement is generated for each Function object in the model. The error is telling you that one of the Function objects in the model is generating a different object type than what you have it connected to.

You know that in one of our Function objects we using the GLOBAL MAX function, and in the other you are just doing arithmetic. At this point, you can use the online documentation to help out.

1. Click **Help | Help for Model Maker**.

2. Click on the hyperlink to the **Spatial Modeler Language Reference Manual** in the third paragraph. The on-line manual is in Adobe® portable document format (SML.pdf). It will open in a new browser window.

3. In the Navigation Pane, click on the + beside **Section II SML Function Syntax** to view all topics included in that section.

4. Click on the **Arithmetic** topic to open that page in the Acrobat viewer.
5. After reading the topic, click on the hyperlink to open the Standard Rules page. The Standard Rules for Combining Different Types topic displays.

6. Scroll down to the Object Types section.

   While this section contains some very useful information, it gives no indication that anything is wrong with the Function in which you are doing simple arithmetic.

7. In the Navigation Pane, click on the + beside Global to view all the pages under this topic.

8. Click on GLOBAL MAX (Global Maximum) to display this topic.

9. Scroll down to the Object Types section.

   Note the on-line documentation states, “If <arg1> is a RASTER, the result is a TABLE with the same number of rows as <arg1> has layers”. In your model, you incorrectly connected the output of GLOBAL MAX of a Raster to a Scalar instead of a Table.

10. Select File | Exit from the On-Line Help dialog.
Correct the Model
1. In the Model Maker viewer, click on the Scalar object.
2. Select **Edit | Clear**, or press the Delete key on your keyboard.
3. Click on the Table icon in the Model Maker tool palette.
4. Click to position the Table object in the location where the Scalar object was in the Model Maker viewer.
5. Using the Connection tool, connect the first Function to the Table, and the Table to the second Function.

Add Table Properties
1. Using the Selector tool, double-click the Table object in the Model Maker viewer.

The Table Definition dialog opens.
2. Click the **Data Type** popup list, and select **Float**.

3. Click on the **OK** button.

**Correct Function Properties**

1. Double-click the second Function object.

Notice Model Maker replaced the name of the deleted Scalar object with a `<scalar>` place holder. It did this to remind you what was there before. In this case, you replace `<scalar>` with a Table.

2. In the lower portion of the Function Definition dialog, click in the middle of `<scalar>`.
3. Under **Available Inputs**, click on \$n6\_Output.

4. Click on the **OK** button in Function Definition dialog.

**Execute the Model**

1. Select **Process | Run** or click on the Execute the Model icon in the tool bar.

   ![The correct input, \$n6\_Output displays in the window](image)

   The model should run to completion without error this time.

2. Click on the **OK** button to dismiss the Job Status dialog.

   The other advantage our model has, by properly treating the output of the GLOBAL MAX function as a Table, is that it works whether the input image has only a single band or hundreds of bands. Remember that, with multispectral data, the Table generated by the GLOBAL MAX function has an entry for each band representing the maximum value in each band, respectively. When we multiply a Raster by a Table, each band in the Raster is multiplied by the corresponding entry in the Table. This allows our model to work on all bands at once without having to loop through each band.

**View the Results**

1. Click the Viewer icon to open a new Viewer.
Spatial Modeler

2. Click the Open icon, then navigate to the directory where you saved the file `sharp_dmtm.img`.

3. Select the file `stretched.img`, then click **OK** in the Select Layer To Add dialog to open it in the Viewer.

When you are finished, click **File | Close** in the Viewer to close the image.

Eliminate Division by Zero

Now that you are familiar with the tools and interface of the Spatial Modeler, the following two examples, "Eliminate Division by Zero" and "Use AOs in Processing" do not have detailed instructions, or as many screen captures to guide you through the process.

Calculating band ratios with multispectral imagery is a very common image processing technique. Calculating a band ratio can be as simple as dividing one spectral band by another. Any time division is done, care should be taken to avoid division by zero, which is undefined. In the following model, you can see what errors division by zero can cause and how to correct these errors.

Prepare

You must have Model Maker running.

Create the Model

1. Click on the Raster icon in the Model Maker tool palette.
2. Click near the upper left corner of the Model Maker viewer.
3. Click on the Function icon in the Model Maker tool palette.
4. Click below and to the right of the Raster object in the Model Maker viewer.
5. Click on the Raster icon in the Model Maker tool palette.
6. Click below and to the right of the Function object in the Model Maker viewer.
7. Click on the Connection icon in the Model Maker tool palette.
8. Click on the Lock icon in the Model Maker tool palette.
9. Connect the first Raster object to the Function object as an input.
10. Connect the Function object to the final Raster object as an output.
11. Click on the Selector icon in the Model Maker tool palette.
12. Click on the Lock icon in the Model Maker tool palette to turn it off.

Add Raster Properties
1. Double-click on the first Raster object.
2. Select \texttt{ortho.img} from the examples directory and click \texttt{OK}.

Add Function Properties
1. Double-click on the Function object.
2. Under \texttt{Available Inputs}, click on $\texttt{n1}_\texttt{ortho(1)}$.
3. In the Calculator portion of the Function Definition dialog, click on the / key.
4. Under \texttt{Available Inputs}, click on $\texttt{n1}_\texttt{ortho(2)}$.
5. Click on the \texttt{OK} button.

Add Raster Properties
1. Double-click on the output Raster object.
2. Navigate to a directory where you have write permission, and enter \texttt{veg_index.img} for the output image name.
3. Click on the \texttt{Delete If Exists} (you are going to run the model more than once to get it working properly).
4. Click on the \texttt{OK} button.

At this point, your model should look similar to the following:
Execute the Model

1. Select **Process | Run** or click on the Execute the Model icon in the tool bar.

   After your model appears to have run to completion you receive the following error:

   ![Error dialog](image)

   Next, you attempt to avoid dividing by zero by setting the output pixel value to zero any place there would be a division by zero.

2. Click **OK** to dismiss the Error dialog.

3. Click **OK** to dismiss the Modeler status dialog.

   **Change Function Properties**

   1. In the Model Maker viewer, double-click on the Function object.

   2. Click on the **Clear** button to start our function definition from scratch.

   3. In the **Functions** popup list, select **Conditional**.
4. In the list of functions, select \texttt{EITHER <arg1> IF ( <test> ) OR <arg2> OTHERWISE}, this should be the second item on the list.

5. In the lower portion of the Function Definition dialog, click in the middle of \texttt{<arg1>}.

6. In the Calculator portion of the Function Definition dialog, click on the \texttt{0} key.

7. In the lower portion of the Function Definition dialog, click in the middle of \texttt{<test>}.

8. Under \texttt{Available Inputs}, click on \texttt{$n1\_ortho(2)$}.

9. In the \texttt{Functions} popup list select \texttt{Relational}.

10. In the list of functions select \texttt{==}, this should be the first item on the list.

11. In the Calculator portion of the Function Definition dialog click on the \texttt{0} key.

12. In the lower portion of the Function Definition dialog, click in the middle of \texttt{<arg2>}.

13. Under \texttt{Available Inputs}, click on \texttt{$n1\_ortho(1)$}.

14. In the Calculator portion of the Function Definition dialog, click on the \texttt{/} key.

15. Under \texttt{Available Inputs}, click on \texttt{$n1\_ortho(2)$}.

Your Function Definition dialog should now contain the following:

\[
\text{EITHER 0 IF ( } \frac{n1\_ortho(2) == 0}{n1\_ortho(1) / n1\_ortho(2)} \text{ OTHERWISE}
\]

16. Click on the \texttt{OK} button.

**Execute the Model**

1. Select \texttt{Process | Run}, or click on the Execute the Model icon in the tool bar.

After all the careful checking for division by zero you get the same error. The reason you still get the same error is that Modeler evaluates the entire statement at once. As it turns out, the error is generated when you do an Integer division by zero. So in order to avoid the integer division and the resulting error, you can use floating point arithmetic to set the output pixel value. You can force the use of floating point arithmetic by simply declaring our input Raster to be of type \texttt{Float}.

2. Click \texttt{OK} to dismiss the Error dialog.

3. Click \texttt{OK} to dismiss the Modeler status dialog.

**Change Raster Properties**

1. In the Model Maker viewer, double-click on the input Raster object.

2. In the lower central portion of the Raster dialog, in the \texttt{Declare As} popup list select \texttt{Float}.
Spatial Modeler

3. Click on the **OK** button.

4. Select **Process** | **Run** or click on the Execute the Model icon in the tool bar.

The model now runs successfully to completion without any errors. However, if you view the resulting image, `veg_index.img`, you notice that it is relatively dark and does not contain much detail.

![Image of veg_index.img](image)

This happens because, even though you are calculating a floating-point ratio, you are still outputting an integer result. So, all resulting output pixel values are being truncated to integers. This includes all pixels where the pixel value in band two is larger than the pixel value in band one—these are all set to 0 instead of retaining values such as 0.25, 0.833, or 0.498. In order to maintain the information being calculated, all you have to do is change the type of output file being generated.

**Change Raster Properties**

1. In the Model Maker viewer, double-click on the output Raster object.

2. In the Raster dialog in the **Data Type** popup list select **Float Single**.

3. Click on the **OK** button.

4. Select **Process** | **Run** or click on the Execute the Model icon in the tool bar.

If you view the resulting output image now, you see the full detail from the computations, which are available for further analysis.
Use AOIs in Processing

Area Of Interest (AOI) processing can be used to restrict the area processed of individual images or of the model as a whole. AOIs can be used as masks to cookie cut the desired portions of images. When and how the mask is applied may not be of much interest in a model utilizing point operations. However, in models doing neighborhood operations, when the AOI is applied yields differing results.

For example, if you cookie cut the input image with an AOI before doing an edge detection filter, the model produces artificial edges around the AOI. In this case, you want to do the edge detection on the original input image and cookie cut the results with the AOI. Besides using AOIs as processing masks, Vector layer inputs may also be used. In the following example, you generate and use an AOI to smooth out the appearance of the water in Mobile Bay.

Prepare

You must have Model Maker running.

1. Click on the Raster icon in the Model Maker tool palette.
2. Click near the upper left corner of the Model Maker viewer.

Create AOI

1. In a Viewer, open mobbay.img from the /examples directory.
2. In the Viewer, click on the Show Tool Palette for Top Layer icon.
3. Select the Region Grow AOI tool from the palette.
4. Click a dark portion of the water near the southeast corner of the image.
5. From the AOI menu select Seed Properties.
6. Click the Area checkbox to turn it off.
7. Enter 20.0 for the **Spectral Euclidean Distance**.

8. Click on the **Redo** button.

**Add Raster Properties**
1. Double-click on the first Raster object.
2. Select `mobbay.img` from the /examples directory.
3. Click on the **Choose AOI** button on the right side of the Raster dialog.
4. Select **Viewer** as the **AOI Source** and click **OK**.
5. Click **OK** in the Raster dialog.

**Add Raster Properties**
1. Click on the Raster icon in the Model Maker tool palette.
2. Click to the right of the existing Raster in the Model Maker viewer.
3. Double-click this newly placed Raster object.
4. Select `mobbay.img` from the /examples directory.
5. This time do not select an AOI, but rather just click **OK** in the Raster dialog.

**Add Matrix Properties**
1. Click on the Matrix icon in the Model Maker tool palette.
2. Click just to the right of the two Raster objects in the Model Maker viewer.
3. Double-click this newly placed Matrix object.
4. In the **Size** popup list select $5 \times 5$.
5. Click **OK**.

**Add Function Properties**
1. Click on the Function icon in the Model Maker tool palette.
2. Click below `n3_Low_Pass` in the Model Maker viewer.
3. Connect `n2_mobbay` and `n3_Low_Pass` to the newly placed Function object.
5. From the analysis **Functions** select **CONVOLVE ( <raster> , <kernel> )**, this should be the third item on the list.
6. In the lower portion of the Function Definition dialog, click in the middle of `<raster>`.
7. Under **Available Inputs**, click on `$n2_mobbay$`.
8. In the lower portion of the Function Definition dialog, click in the middle of $<\text{kernel}>$.
9. Under Available Inputs, click on $n3_{\text{Low Pass}}$.
10. Click OK.

**Add Raster Properties**
1. Click on the Raster icon in the Model Maker tool palette.
2. Click below the Function object in the Model Maker viewer.
3. Connect the Function object to the new Raster object.
4. Double-click the new Raster object.
5. Click Temporary Raster Only.
6. Click OK.

**Add Function Properties**
1. Click on the Function icon in the Model Maker tool palette.
2. Click to the left of $n5_{\text{memory}}$ in the Model Maker viewer.
3. Connect $n1_{\text{mobbay}}, n2_{\text{mobbay}},$ and $n5_{\text{memory}}$ to the Function object.
5. In the Functions popup list select Conditional.
6. In the list of functions select EITHER $<\text{arg1}>$ IF ( $<\text{test}>$ ) OR $<\text{arg2}>$ OTHERWISE, this should be the second item on the list.
7. In the lower portion of the Function Definition dialog, click in the middle of $<\text{arg1}>$.
8. Under Available Inputs, click on $n5_{\text{memory}}$.
9. In the lower portion of the Function Definition dialog, click in the middle of $<\text{test}>$.
10. Under Available Inputs, click on $n1_{\text{mobbay}}$.
11. In the lower portion of the Function Definition dialog, click in the middle of $<\text{arg2}>$.
12. Under Available Inputs, click on $n2_{\text{mobbay}}$. 
Spatial Modeler

Your Function Definition dialog should now contain the following:

```
EITHER $n5_memory IF ($n1_mobbay) OR $n2_mobbay OTHERWISE
```

$\_n5\_memory$ is the filtered image, $\_n1\_mobbay$ has the AOI mask, and $\_n2\_mobbay$ is the original image.

13. Click **OK**.

**Add Raster Properties**

1. Click on the Raster icon in the Model Maker tool palette.
2. Click below the new Function object in the Model Maker viewer.
3. Connect the Function object to the Raster object.
4. Double-click on the output Raster object.
5. Navigate to a directory where you have write permission and enter `smooth_water.img` for the output image name.
6. Click on the **Delete If Exists**, in case you need to run the model more than once to get it working properly.
7. Click on the **OK** button.

Your model should look like the following:
Execute the Model

1. Select **Process | Run** or click on the Execute the Model icon in the tool bar.

2. Use the Viewer and the Swipe tool to compare the original mobbay.img and the new smooth_water.img.
Compare the image on the left, above, with the image on the right. The image on the right has been visibly smoothed in the areas of water. You can see this more clearly if you use the Swipe utility in the Viewer.
CHAPTER 17

Advanced Classification

Introduction

Classification is the process of sorting pixels into a finite number of individual classes, or categories of data based on their data file values. If a pixel satisfies a certain set of criteria, then the pixel is assigned to the class that corresponds to that criteria.

There are two ways to classify pixels into different categories:

- supervised
- unsupervised

Supervised vs. Unsupervised Classification

Supervised classification is more closely controlled by you than unsupervised classification. In this process, you select pixels that represent patterns you recognize or that you can identify with help from other sources. Knowledge of the data, the classes desired, and the algorithm to be used is required before you begin selecting training samples.

By identifying patterns in the imagery, you can train the computer system to identify pixels with similar characteristics. By setting priorities to these classes, you supervise the classification of pixels as they are assigned to a class value. If the classification is accurate, then each resulting class corresponds to a pattern that you originally identified.

Unsupervised classification is more computer-automated. It allows you to specify parameters that the computer uses as guidelines to uncover statistical patterns in the data.

In this tour guide, you perform both a supervised and an unsupervised classification of the same image file.

⚠️ All of the data used in this tour guide are in the `<IMAGINE_HOME>/examples` directory. You should copy the `germtm.img` file to a different directory so that you can have write permission to this file.

Approximate completion time for this tour guide is 1 hour, 15 minutes.

Perform Supervised Classification

This section shows how the Supervised Classification tools allow you to control the classification process.

You perform the following operations in this section:

- define signatures
- evaluate signatures
- process a supervised classification
Advanced Classification

Prepare
ERDAS IMAGINE must be running and a Viewer must be open.

Define Signatures using Signature Editor
The ERDAS IMAGINE Signature Editor allows you to create, manage, evaluate and edit signatures (.sig extension). The following types of signatures can be defined:

- parametric (statistical)
- nonparametric (feature space)

In this section, you define the signatures using the following operations:

- collect signatures from the image to be classified using the area of interest (AOI) tools
- collect signatures from the Feature Space image using the AOI tools and Feature Space tools

Display File
1. Select File | Open | Raster Layer from the Viewer menu bar or click the Open icon on the Viewer tool bar to display the image file to be classified.

The Select Layer To Add dialog opens.

2. In the Select Layer To Add dialog under Filename, select germtm.img. This is the image file that is going to be classified.

3. Click on the Raster Options tab at the top of the dialog, and then set the Layers to Colors to 4, 5, and 3 (red, green, and blue, respectively).

4. Click the Fit to Frame option to enable it.
Perform Supervised Classification

5. Click **OK** in the Select Layer To Add dialog.

   The file `germtm.img` displays in the Viewer.

Open Signature Editor

1. Click on the Classifier icon on the ERDAS IMAGINE icon panel.

   ![Classifier Icon](image)
   
   The **Classification** menu displays.

2. Select **Signature Editor** from the **Classification** menu to start the Signature Editor.

   The Signature Editor opens.

3. In the **Classification** menu, click **Close** to remove this menu from the screen.

4. In the Signature Editor, select **View | Columns**.
5. In the View Signature Columns dialog, select all of the rows by Shift-holding in the first row of the first Column and dragging down.

6. Shift-click Red, Green, and Blue in Column boxes 3, 4, and 5 to deselect these rows.

   These are the CellArray columns in the Signature Editor that you remove to make it easier to use. These columns can be returned at any time.

7. In the View Signature Columns dialog, click Apply.

   The Red, Green, and Blue columns are deleted from the Signature Editor.

8. Click Close in the View Signature Columns dialog.

   **Use AOI Tools to Collect Signatures**

   The AOI tools allow you to select the areas in an image to be used as a signature. These signatures are parametric because they have statistical information.

   1. Select AOI | Tools from the Viewer menu bar.

   The AOI tool palette displays.
Perform Supervised Classification

2. Use the Zoom In tool on the Viewer tool bar to zoom in on one of the light green areas in the `germtm.img` file in the Viewer.

3. In the AOI tool palette, click on the Polygon icon.

4. In the Viewer, draw a polygon around the green area you just magnified. Click and drag to draw the polygon and click to draw the vertices. Middle-click or double-click to close the polygon (depending on what is set in `Session | Preferences`).

After the AOI is created, a bounding box surrounds the polygon, indicating that it is currently selected. These areas are agricultural fields.
Advanced Classification

5. In the Signature Editor, click on the Create New Signature(s) from AOI icon or select Edit | Add from the menu bar to add this AOI as a signature.

6. In the Signature Editor, click inside the **Signature Name** column for the signature you just added. Change the name to **Agricultural Field_1**, then press Return on the keyboard.

7. In the Signature Editor, hold in the **Color** column next to **Agricultural Field_1** and select **Green**.

8. Zoom in on one of the light blue/cyan areas in the **germtm.img** file in the Viewer.

9. Draw a polygon as you did in steps 2. through step 4.). These areas are also agricultural fields.

10. After the AOI is created, a bounding box surrounds the polygon, indicating that it is currently selected. In the Signature Editor, click on the Create New Signature(s) from AOI icon or select Edit | Add to add this AOI as a signature.

11. In the Signature Editor, click inside the **Signature Name** column for the signature you just added. Change the name to **Agricultural Field_2**, then press Return on the keyboard.

12. In the Signature Editor, hold in the **Color** column next to **Agricultural Field_2** and select **Cyan**.

**Select Neighborhood Options**

This option determines which pixels are considered contiguous (i.e., similar values) to the seed pixel or any accepted pixels.

1. Select AOI | **Seed Properties** from the Viewer menu bar.
Perform Supervised Classification

The Region Growing Properties dialog opens.

2. Click on the Neighborhood icon in the Region Growing Properties dialog.

   ![Image of Neighborhood Icon]

   This option specifies that four pixels are to be searched. Only those pixels above, below, to the left, and to the right of the seed or any accepted pixels are considered contiguous.

3. Under **Geographic Constraints**, the **Area** checkbox should be turned on to constrain the region area in pixels. Enter **300** into the **Area** number field and press Return on your keyboard.

   This is the maximum number of pixels that are in the AOI.

4. Enter **10.00** in the **Spectral Euclidean Distance** number field.

   The pixels that are accepted in the AOI are within this spectral distance from the mean of the seed pixel.

5. Next, click on **Options** in the Region Growing Properties dialog.

   The Region Grow Options dialog opens.

6. In the Region Grow Options dialog, make sure that the **Include Island Polygons** checkbox is turned on in order to include polygons in the growth region.

7. Click **Close** in the Region Grow Options dialog.

Create an AOI

1. In the AOI tool palette, click on the Region Grow icon.
Advanced Classification

2. Click inside a bright red area in the *germtm.img* file in the Viewer. This is a forest area. A polygon opens and a bounding box surrounds the polygon, indicating that it is selected.

3. In the Region Growing Properties dialog, enter new numbers in the *Area* and *Spectral Euclidean Distance* number fields (e.g., 500 for *Area* and 15 for *Spectral Euclidean Distance*) to see how this modifies the AOI polygon.

4. In the Region Growing Properties dialog, click **Redo** to modify the AOI polygon with the new parameters.

**Add a Signature**

1. After the AOI is created, click on the Create New Signature(s) from AOI icon in the Signature Editor to add this AOI as a signature.

2. In the Signature Editor, click inside the **Signature Name** column for the signature you just added. Change the name to **Forest_1**, then press Return on the keyboard.

3. In the Signature Editor, hold in the **Color** column next to **Forest_1** and select **Yellow**.

4. In the Region Growing Properties dialog, enter **300** in the **Area** number field.
Perform Supervised Classification

Add Another Signature

1. In the Viewer, select Utility | Inquire Cursor.

   The Inquire Cursor dialog opens and the inquire cursor (a white crosshair) is placed in the Viewer. The inquire cursor allows you to move to a specific pixel in the image and use it as the seed pixel.

2. Drag the intersection of the inquire cursor to a dark red area in the `germtm.img` file in the Viewer. This is also a forest area.

3. In the Region Growing Properties dialog, click Grow at Inquire. Wait for the polygon to open.

4. After the AOI is created, click on the Create New Signature(s) from AOI icon in the Signature Editor to add this AOI as a signature.

5. In the Signature Editor, click inside the Signature Name column for the signature you just added. Change the name to Forest_2, then press Return on the keyboard.

6. In the Signature Editor, hold in the Color column next to Forest_2 and select Pink.

7. Click Close in the Inquire Cursor dialog and the Region Growing Properties dialog.

Arrange Layers

1. Now that you have the parametric signatures collected, you do not need the AOIs in the Viewer. Select View | Arrange Layers from the Viewer menu bar.

   The Arrange Layers dialog opens.
Advanced Classification

2. In the Arrange Layers dialog, right-hold over the AOI Layer button and select Delete Layer from the AOI Options menu.

3. Click Apply in the Arrange Layers dialog to delete the AOI layer.

4. You are asked if you want to save the changes before closing. Click No.

5. In the Arrange Layers dialog, click Close.

Create Feature Space Image

The ERDAS IMAGINE Feature Space tools allow you to interactively define areas of interest (polygons or rectangles) in the Feature Space image(s). A Feature Space signature (nonparametric) is based on the AOI(s) in the Feature Space image. Use this technique to extract a signature for water.

1. Select Feature | Create | Feature Space Layers from the Signature Editor menu bar.

The Create Feature Space Images dialog opens.
2. In the Create Feature Space Images dialog under **Input Raster Layer**, enter **germtm.img**. This is the image file from which the Feature Space image is generated.

Under **Output Root Name**, the default name is **germtm**. This is the root name for the Feature Space image files that are generated.

⚠️ Verify that the directory where the Feature Space image files are saved has write permission.

3. In the Create Feature Space Images dialog, click the **Output to Viewer** option so that the Feature Space image is displayed in a Viewer.

4. Under **Feature Space Layers**, click the number 8 in the **FS Image** column in the CellArray to select the **germtm_2_5.fsp.img** row. (You may need to scroll down to get to **FS Image** number 8.)

The output Feature Space image is based on layers two and five of the **germtm.img** file. Layers two and five are selected since water is spectrally distinct in this band combination.

5. Click **OK** in the Create Feature Space Images dialog to create the Feature Space image for layers two and five of the **germtm.img** file.

The Create Feature Space Images dialog closes, then the Job Status dialog opens.
Advanced Classification

After the process is completed, a Viewer (Viewer #2) opens, displaying the Feature Space image.

6. Click **OK** in the Job Status dialog to close this dialog.

**Link Cursors in Image/Feature Space**

The Linked Cursors utility allows you to directly link a cursor in the image Viewer to the Feature Space viewer. This shows you where pixels in the image file are located in the Feature Space image.

1. In the Signature Editor, select **Feature | View | Linked Cursors**.

   The Linked Cursors dialog opens.

2. Click **Select** in the Linked Cursors dialog to define the Feature Space viewer that you want to link to the Image Viewer.

3. Click in Viewer #2 (the Viewer displaying the Feature Space image).
Perform Supervised Classification

The **Viewer** number field in the Linked Cursors dialog changes to 2. You could also enter a 2 in this number field without having to click the **Select** button.

4. In the Linked Cursors dialog, click **Link** to link the Viewers, then click in the Viewer displaying **germtm.img**.

   The linked inquire cursors (white crosshairs) open in the Viewers.

5. Drag the inquire cursor around in the **germtm.img** Viewer (Viewer #1) to see where these pixels are located in the Feature Space image. Notice where the water areas are located in the Feature Space image. These areas are black in the **germtm.img** file (Viewer #1).

**Define Feature Space Signature**

Any Feature Space AOI can be defined as a nonparametric signature in your classification.

1. Use the polygon AOI tool to draw a polygon in the Feature Space image. Draw the polygon in the area that you identified as water. You may need to zoom in on the images (i.e., zoom in on either or both the Feature Space image or **germtm.img**) to draw the polygon. The Feature Space signature is based on this polygon.

   ![Draw a polygon in the area identified as water](image)

2. After the AOI is created, click on the Create New Signature(s) from AOI icon in the Signature Editor to add this AOI as a signature.

3. The signature you have just added is a nonparametric signature. Select **Feature | Statistics** from the Signature Editor menu bar to generate statistics for the Feature Space AOI.

   A Job Status dialog displays, stating the progress of the function.

4. When the function is 100% complete, click **OK** in the Job Status dialog.

   The Feature Space AOI now has parametric properties.
Advanced Classification

5. In the Signature Editor, click inside the **Signature Name** column for the signature you just added. Change the name to **Water**, then press the Return key on the keyboard.

6. In the Signature Editor, hold in the **Color** column next to **Water** and select **Blue**.

7. In the Linked Cursors dialog, click **Unlink** to unlink the viewers.

   The inquire cursors are removed from the viewers.

8. In the Linked Cursors dialog, click **Close**.

9. Now that you have the nonparametric signature collected, you do not need the AOI in the Feature Space viewer. Select **View | Arrange Layers** from the Viewer #2 menu bar.

   The Arrange Layers dialog opens.

10. In the Arrange Layers dialog, right-hold over the **AOI Layer** button and select **Delete Layer** from the AOI Options popup list.

11. Click **Apply** in the Arrange Layers dialog to delete the AOI layer.

12. You are asked if you want to save the changes before closing. Click **No**.

13. In the Arrange Layers dialog, click **Close**.

14. Practice taking additional signatures using any of the signature-generating techniques you have learned in the steps above. Extract at least five signatures.

15. After you have extracted all the signatures you wish, select **File | Save As** from the Signature Editor menu bar.

   The Save Signature File As dialog opens.

16. Use the Save Signature File As dialog to save the signature set in the Signature Editor (e.g., **germtm_siged.sig**).

17. Click **OK** in the Save Signature File As dialog.

**Use Tools to Evaluate Signatures**

Once signatures are created, they can be evaluated, deleted, renamed, and merged with signatures from other files. Merging signatures allows you to perform complex classifications with signatures that are derived from more than one training method (supervised and/or unsupervised, parametric and nonparametric).

Next, the following tools for evaluating signatures are discussed:

- alarms
- contingency matrix
- feature space to image masking
- signature objects
- histograms
- signature separability
- statistics
When you use one of these tools, you need to select the appropriate signature(s) to be used in the evaluation. For example, you cannot use the signature separability tool with a nonparametric (Feature Space) signature.
Advanced Classification

Prepare

You should have at least ten signatures in the Signature Editor, similar to the following:

![Signature Editor](image)

Set Alarms

The Signature Alarm utility highlights the pixels in the Viewer that belong to, or are estimated to belong to a class according to the parallelepiped decision rule. An alarm can be performed with one or more signatures. If you do not have any signatures selected, then the active signature, which is next to the >, is used.

1. In the Signature Editor, select **Forest_1** by clicking in the > column for that signature. The alarm is performed with this signature.

2. In the Signature Editor menu bar, select **View | Image Alarm**.

The Signature Alarm dialog opens.

3. Click **Edit Parallelepiped Limits** in the Signature Alarm dialog to view the limits for the parallelepiped.

The Limits dialog opens.

4. In the Limits dialog, click **Set** to define the parallelepiped limits.

The Set Parallelepiped Limits dialog opens.
The Signature Alarm utility allows you to define the parallelepiped limits by either:

- the minimum and maximum for each layer in the signature, or
- a specified number of standard deviations from the mean of the signature.

5. If you wish, you can set new parallelepiped limits and click **OK** in the Set Parallelepiped Limits dialog, or simply accept the default limits by clicking **OK** in the Set Parallelepiped Limits dialog.

   The new/default limits display in the Limits CellArray.

6. Click **Close** in the Limits dialog.

7. In the Signature Alarm dialog, click **OK**.

   The alarmed pixels display in the Viewer in yellow. You can use the toggle function (**Utility** | **Flicker**) in the Viewer to see how the pixels are classified by the alarm.

⚠️ **Be sure that there are no AOI layers open on top of the Alarm Mask Layer. You can use View | Arrange Layers to remove any AOI layers present in the Viewer.**
Advanced Classification

8. In the Signature Alarm dialog, click **Close**.

9. In the Viewer #1 menu bar, select **View** | **Arrange Layers**.

   The Arrange Layers dialog opens.

10. In the Arrange Layers dialog, right-click over the **Alarm Mask** button and select **Delete Layer** from the **Layer Options** menu.

11. Click **Apply** to delete the alarm layer from the Viewer.

12. You are asked if you want to save the changes before closing. Click **No**.

13. In the Arrange Layers dialog, click **Close**.
Perform Supervised Classification

Evaluate Contingency

**Contingency Matrix**

The Contingency Matrix utility allows you to evaluate signatures that have been created from AOIs in the image. This utility classifies only the pixels in the image AOI training sample, based on the signatures. It is usually expected that the pixels of an AOI are classified to the class that they train. However, the pixels of the AOI training sample only weight the statistics of the signature. They are rarely so homogenous that every pixel actually becomes assigned to the expected class. The Contingency Matrix utility can be performed with multiple signatures. If you do not have any signatures selected, then all of the signatures are used.

The output of the Contingency Matrix utility is a matrix of percentages that allows you to see how many pixels in each AOI training sample were assigned to each class. In theory, each AOI training sample would be composed primarily of pixels that belong to its corresponding signature class.

The AOI training samples are classified using one of the following classification algorithms:

- parallelepiped
- feature space
- maximum likelihood
- Mahalanobis distance

*NOTE: The classification decision rule that is going to be used in the actual image classification should be determined so that it can also be used in the Contingency Matrix utility.*

1. In the Signature Editor, select all of the signatures by Shift-clicking in the first row of the **Class** column and then dragging down through the other classes.

2. In the Signature Editor menu bar, select **Evaluate | Contingency**.

   The Contingency Matrix dialog opens.
3. In the Contingency Matrix dialog, click on the **Non-parametric Rule** popup list and select **Feature Space**.

   See "CHAPTER 6: Classification" of the ERDAS Field Guide for more information on decision rules.

4. Click **OK** in the Contingency Matrix dialog to start the process.

   A Job Status dialog displays, stating the progress of the function.

5. When the process is 100% complete, click **OK** in the Job Status dialog.

   The IMAGINE Text Editor opens (labelled Editor, Dir), displaying the error matrix.

6. After viewing the reference data in the Text Editor, select **File | Close** from the menu bar.

7. Deselect the signatures that were selected by right-clicking in the **Class** column and choosing **Select None** from the **Row Selection** menu.

**Generate a Mask from a Feature Space Signature**

The Feature Space to Image Masking utility allows you to generate a mask from a Feature Space signature (i.e., the AOI in the Feature Space image). Once the Feature Space signature is defined as a mask, the pixels under the mask are identified in the image file and highlighted in the Viewer. This allows you to view which pixels would be assigned to the Feature Space signature’s class. A mask can be generated from one or more Feature Space signatures. If you do not have any signatures selected, then the active signature, which is next to the >, is used.

The image displayed in Viewer #1 must be the image from which the Feature Space image was created.

1. In the Signature Editor, select **Feature | Masking | Feature Space to Image**.

   The FS to Image Masking dialog opens.
Perform Supervised Classification

2. In the Signature Editor, click in the Class row for Water to select that signature.

   The mask is generated from this Feature Space signature.

3. Disable the Indicate Overlap checkbox, and click Apply in the FS to Image Masking dialog to generate the mask in Viewer #1.

   A mask is placed in the Viewer.

4. In the FS to Image Masking dialog, click Close.

5. Deselect the Water feature.

View Signature Objects

The Signature Objects dialog allows you to view graphs of signature statistics so that you can compare signatures. The graphs display as sets of ellipses in a Feature Space image. Each ellipse is based on the mean and standard deviation of one signature. A graph can be generated for one or more signatures. If you do not have any signatures selected, then the active signature, which is next to the >, is used. This utility also allows you to show the mean for the signature for the two bands, a parallelepiped, and a label.

1. In the Signature Editor menu bar, select Feature | Objects.

   The Signature Objects dialog opens.
2. In the Signature Editor, select the signatures for **Agricultural Field_1** and **Forest_1** by clicking in the **Class** row for **Agricultural Field_1** and Shift-clicking in the **Class** row for **Forest_1**.

3. In the Signature Objects dialog, confirm that the **Viewer** number field is set for **2**.

4. Set the **Std. Dev.** number field to **4**.

5. Enable the **Label** checkbox by clicking on it.

6. Click **OK** in the Signature Objects dialog.

   The ellipses for the **Agricultural Field_1** and **Forest_1** signatures are displayed in the Feature Space viewer.

   ![Feature Space viewer with ellipses]

**Compare Ellipses**

By comparing the ellipses for different signatures for a one band pair, you can easily see if the signatures represent similar groups of pixels by seeing where the ellipses overlap on the Feature Space image.

- When ellipses do not overlap, the signatures represent a distinct set of pixels in the two bands being plotted, which is desirable for classification. However, some overlap is expected, because it is rare that all classes are totally distinct.

When the ellipses do overlap, then the signatures represent similar pixels, which is not desirable for classification.

7. In the Signature Objects dialog, click **Close**.

8. Deselect the signatures for **Agricultural Field_1** and **Forest_1**.
Perform Supervised Classification

Plot Histograms

The Histogram Plot Control Panel allows you to analyze the histograms for the layers to make your own evaluations and comparisons. A histogram can be created with one or more signatures. If you create a histogram for a single signature, then the active signature, which is next to the >, is used. If you create a histogram for multiple signatures, then the selected signatures are used.

1. In the Signature Editor, move the > prompt to the signature for Agricultural Field_1 by clicking under the > column.

2. In the Signature Editor menu bar, select View | Histograms or click on the Histogram icon.

The Histogram Plot Control Panel and the Histogram dialogs open.

3. In the Histogram Plot Control Panel dialog, change the Band No number field to 5 in order to view the histogram for band 5 (i.e., layer 5).

4. Click Plot.

The Histogram dialog changes to display the histogram for band 5. You can change the different plot options and select different signatures to see the differences in histograms for various signatures and bands.

5. In the Histogram Plot Control Panel dialog, click Close. The two Histogram dialogs close.
Advanced Classification

Compute Signature Separability

The Signature Separability utility computes the statistical distance between signatures. This distance can be used to determine how distinct your signatures are from one another. This utility can also be used to determine the best subset of layers to use in the classification.

The distances are based on the following formulas:

- euclidean spectral distances between their means
- Jeffries-Matusita distance
- divergence
- transformed divergence

The Signature Separability utility can be performed with multiple signatures. If you do not have any signatures selected, then all of the parametric signatures are used.

1. In the Signature Editor, select all of the parametric signatures.

2. In the Signature Editor menu bar, select Evaluate | Separability.

   The Signature Separability dialog opens.

3. In the Signature Separability dialog, set the Layers Per Combination number field to 3, so that three layers are used for each combination.

4. Click Transformed Divergence under Distance Measure to use the divergence algorithm for calculating the separability.
5. Confirm that the **Summary Report** checkbox is turned on under **Report Type**, in order to output a summary of the report.

The summary lists the separability listings for only those band combinations with best average and best minimum separability.

6. In the Signature Separability dialog, click **OK** to begin the process.

When the process is complete, the IMAGINE Text Editor opens, displaying the report.

![Signature Separability Listing](image)

This report shows that layers (i.e., bands) 2, 4, and 5 are the best layers to use for identifying features.

7. In the Text Editor menu bar, select **File | Close** to close the Editor.

8. In the Signature Separability dialog, click **Close**.
Advanced Classification

Check Statistics

The Statistics utility allows you to analyze the statistics for the layers to make your own evaluations and comparisons. Statistics can be generated for one signature at a time. The active signature, which is next to the >, is used.

1. In the Signature Editor, move the > prompt to the signature for **Forest_1**.

2. In the Signature Editor menu bar, select **View | Statistics** or click on the Statistics icon.

The Statistics dialog opens.

3. After viewing the information in the Statistics dialog, click **Close**.

Perform Supervised Classification

The decision rules for the supervised classification process are multilevel:

- nonparametric
- parametric

In this example, use both nonparametric and parametric decision rules.

---

See "CHAPTER 6: Classification" of the ERDAS Field Guide for more information on decision rules.
Perform Supervised Classification

Nonparametric
If the signature is nonparametric (i.e., Feature Space AOI), then the following decision rules are offered:

- feature space
- parallelepiped

With nonparametric signatures you must also decide the overlap rule and the unclassified rule.

*NOTE: All signatures have a nonparametric definition, due to their parallelepiped boundaries.*

Parametric
For parametric signatures, the following decision rules are provided:

- maximum likelihood
- Mahalanobis distance
- minimum distance

In this tour guide, use the maximum likelihood decision rule.

Output File
The Supervised Classification utility outputs a thematic raster layer (.img extension) and/or a distance file (.img extension). The distance file can be used for post-classification thresholding. The thematic raster layer automatically contains the following data:

- class values
- class names
- color table
- statistics
- histogram

The image file also contains any signature attributes that were selected in the Supervised Classification utility.

1. In the Signature Editor, select all of the signatures so that they are all used in the classification process (if none of the signatures are selected, then they are all used by default.)

2. In the Signature Editor menu bar, select **Classify | Supervised** to perform a supervised classification.

*NOTE: You may also access the Supervised Classification utility from the Classification dialog.*

The Supervised Classification dialog opens.
3. In the Supervised Classification dialog, under **Output File**, type in **germtm_superclass.img**. This is the name for the thematic raster layer.

4. Click the **Output Distance File** checkbox to activate it. In this example, you are creating a distance file that can be used to threshold the classified image file.

5. Under **Filename**, enter **germtm_distance.img** in the directory of your choice. This is the name for the distance image file.

   *NOTE: Make sure you remember the directory in which the output file is saved. It is important when you are trying to display the output file in a Viewer.*

**Select Attribute Options**

1. In the Supervised Classification dialog, click **Attribute Options**. The Attribute Options dialog opens.
The Attribute Options dialog allows you to specify the statistical information for the signatures that you want to be in the output classified layer. The statistics are based on the data file values for each layer for the signatures, not the entire classified image file. This information is located in the Raster Attribute Editor.

2. In the Attribute Options dialog, click **Minimum**, **Maximum**, **Mean**, and **Std. Dev.**, so that the signatures in the output thematic raster layer have this statistical information.

3. Confirm that the **Layer** checkbox is turned on, so that the information is presented in the Raster Attribute Editor by layer.

4. In the Attribute Options dialog, click **Close** to remove this dialog.

Classify the Image

1. In the Supervised Classification dialog, click on the **Non-parametric Rule** popup list to select **Feature Space**.

   You do not need to use the **Classify Zeros** option here because there are no background zero data file values in the `germtm.img` file.

2. Click **OK** in the Supervised Classification dialog to classify the `germtm.img` file using the signatures in the Signature Editor.

   A Job Status dialog displays, indicating the progress of the function.

3. When the process is 100% complete, click **OK** in the Job Status dialog.

   *See "CHAPTER 6: Classification" of the ERDAS Field Guide for information on how the pixels are classified.*

4. Select **File | Close** from the Signature Editor menu bar and from the Viewer #2 menu bar. Click **Yes** when asked if you would like to save the changes to the Signature Editor.
Advanced Classification

5. Click Close in the Raster tool palette.

6. Select File | Clear from the Viewer #1 menu bar.

7. Proceed to the:
   - “Perform Unsupervised Classification” section on page 484 to classify the same image using the ISODATA algorithm.
   - “Evaluate Classification” section on page 487 to analyze the classes and test the accuracy of the classification, or

The super classification image is pictured on the left, and the distance image is pictured on the right.

Perform Unsupervised Classification

This section shows you how to create a thematic raster layer by letting the software identify statistical patterns in the data without using any ground truth data.

ERDAS IMAGINE uses the ISODATA algorithm to perform an unsupervised classification. The ISODATA clustering method uses the minimum spectral distance formula to form clusters. It begins with either arbitrary cluster means or means of an existing signature set, and each time the clustering repeats, the means of these clusters are shifted. The new cluster means are used for the next iteration.

The ISODATA utility repeats the clustering of the image until either a maximum number of iterations has been performed, or a maximum percentage of unchanged pixel assignments has been reached between two iterations.

Performing an unsupervised classification is simpler than a supervised classification, because the signatures are automatically generated by the ISODATA algorithm.

In this example, you generate a thematic raster layer using the ISODATA algorithm.
Perform Unsupervised Classification

Prepare
You must have ERDAS IMAGINE running.

1. Click on the Classifier icon in the ERDAS IMAGINE icon panel to start the Classification utility.

The Classification menu opens.

Generate Thematic Raster Layer

1. Select **Unsupervised Classification** from the Classification menu to perform an unsupervised classification using the ISODATA algorithm.

The Unsupervised Classification dialog opens.
Advanced Classification

2. Click Close in the Classification menu to clear it from the screen.

3. In the Unsupervised Classification dialog under Input Raster File, enter germtm.img. This is the image file that you are going to classify.

4. Under Output Cluster Layer, enter germtm_isodata.img in the directory of your choice. This is the name for the output thematic raster layer.

5. Click Output Signature Set to turn off the checkbox.

For this example, do not create a signature set. The Output Signature Set filename part is disabled.

Set Initial Cluster Options

The Clustering Options allow you to define how the initial clusters are generated.

1. Confirm that the Initialize from Statistics checkbox under Clustering Options is turned on.

This generates arbitrary clusters from the file statistics for the image file.

2. Enter a 10 in the Number of Classes number field.

Set Processing Options

The Processing Options allow you to specify how the process is performed.

1. Enter 24 in the Maximum Iterations number field under Processing Options.
This is the maximum number of times that the ISODATA utility reclusters the data. It prevents this utility from running too long, or from potentially getting stuck in a cycle without reaching the convergence threshold.

2. Confirm that the **Convergence Threshold** number field is set to **.95**.

### Convergence Threshold

The convergence threshold is the maximum percentage of pixels that has cluster assignments that can go unchanged between iterations. This threshold prevents the ISODATA utility from running indefinitely.

By specifying a convergence threshold of .95, you are specifying that as soon as 95% or more of the pixels stay in the same cluster between one iteration and the next, the utility should stop processing. In other words, as soon as 5% or fewer of the pixels change clusters between iterations, the utility stops processing.

3. Click **OK** in the Unsupervised Classification dialog to start the classification process. The Unsupervised Classification dialog closes automatically.

A Job Status dialog displays, indicating the progress of the function.

4. Click **OK** in the Job Status dialog when the process is 100% complete.

5. Proceed to the Evaluate Classification section to analyze the classes so that you can identify and assign class names and colors.

---

**Evaluate Classification**

After a classification is performed, the following methods are available for evaluating and testing the accuracy of the classification:

- classification overlay
- thresholding
- recode classes
- accuracy assessment

See "CHAPTER 6: Classification" of the ERDAS Field Guide for information on thresholding and accuracy assessment.

**Create Classification Overlay**

In this example, use the Raster Attribute Editor to compare the original image data with the individual classes of the thematic raster layer that was created from the unsupervised classification (**germtm_isodata.img**). This process helps identify the classes in the thematic raster layer. You may also use this process to evaluate the classes of a thematic layer that was generated from a supervised classification.

**Prepare**

ERDAS IMAGINE should be running and you should have a Viewer open.
Display Files

1. Select File | Open | Raster Layer from the Viewer menu bar or click the Open icon in the tool bar to display the germtm.img continuous raster layer.

The Select Layer To Add dialog opens.

2. In the Select Layer To Add dialog under Filename, select germtm.img.

3. Click the Raster Options tab at the top of the Select Layer To Add dialog.

4. Set Layers to Colors at 4, 5, and 3, respectively.

5. Click OK in the Select Layer To Add dialog to display the image file.
6. Click the Open icon again in the Viewer tool bar to display the thematic raster layer, `germtm_isodata.img`, over the `germtm.img` file.

   The Select Layer To Add dialog reopens.

7. Under **Filename**, open the directory in which you previously saved `germtm_isodata.img` by entering the directory path name in the text entry field and pressing the Return key on your keyboard.

   You are going to evaluate/identify the classes in this file.

8. Select the file `germtm_isodata.img` from the list of files in the directory you just opened.

9. Click the **Raster Options** tab at the top of the Select Layer To Add dialog.

10. Click **Clear Display** to turn off this checkbox.

11. Click **OK** in the Select Layer To Add dialog to display the image file.

---

**Open Raster Attribute Editor**

1. Select **Raster | Attributes** from the Viewer menu bar.

   The Raster Attribute Editor displays.

2. In the Raster Attribute Editor, select **Edit | Column Properties** to rearrange the columns in the CellArray so that they are easier to view.

   The Column Properties dialog opens.
3. In the Column Properties dialog under Columns, select Opacity, then click Up to move Opacity so that it is under Histogram.

4. Select Class.Names, then click Up to move Class.Names so that it is under Color.

5. Click OK in the Column Properties dialog to rearrange the columns in the Raster Attribute Editor.

The Column Properties dialog closes.

The data in the Raster Attribute Editor CellArray should appear similar to the following example:

Analyze Individual Classes

Before you can begin to analyze the classes individually, you need to set the opacity for all of the classes to zero.

1. In the Raster Attribute Editor, click on the word Opacity at the top of the Opacity column to select all of the classes.
2. In the Raster Attribute Editor, right-hold on the word Opacity at the top of the Opacity column and select Formula from the Column Options menu.

The Formula dialog opens.

3. In the Formula dialog, click 0 in the number pad.

A 0 is placed in the Formula field.

4. In the Formula dialog, click Apply to change all of the values in the Opacity column to 0, and then click Close.

5. In the Raster Attribute Editor, hold on the color patch under Color for Class 1 in the CellArray and change the color to Yellow. This provides better visibility in the Viewer.

6. Change the Opacity for Class 1 in the CellArray to 1 and then press Return on the keyboard. This class is shown in the Viewer.

7. In the Viewer menu bar, select Utility | Flicker to analyze which pixels have been assigned to this class.

The Viewer Flicker dialog opens.

8. Turn on the Auto Mode in the Viewer Flicker dialog.

The flashing black pixels in the germtm.img file are the pixels of this class. These areas are water.

9. In the Raster Attribute Editor, click inside the Class_Names column for Class 1. Change this name to Water and then press the Return key on the keyboard.

10. In the Raster Attribute Editor, hold on the Color patch for Water. Select Blue from the popup list.

11. After you are finished analyzing this class, click Cancel in the Viewer Flicker dialog and set the Opacity for Water back to 0. Press the Return key on the keyboard.

12. Change the Color for Class 2 in the CellArray to Yellow for better visibility in the Viewer.
Advanced Classification

13. Change the **Opacity** for **Class 2** to 1 and press the Return key on the keyboard. This class is shown in the Viewer.

**Use the Flicker Utility**

1. In the Viewer menu bar, select **Utility | Flicker** to analyze which pixels were assigned to this class.

   The Viewer Flicker dialog opens.

2. Turn on the **Auto Mode** in the Viewer Flicker dialog.

   The flashing red pixels in the **germtm.img** file should be the pixels of this class. These are forest areas.

3. In the Raster Attribute Editor, click inside the **Class_Names** column for **Class 2**. (You may need to double-click in the column.) Change this name to **Forest**, then press the Return key on the keyboard.

4. In the Raster Attribute Editor, hold on the **Color** patch for **Forest** and select **Pink** from the popup list.

5. After you are finished analyzing this class, click **Cancel** in the Viewer Flicker dialog and set the **Opacity** for **Forest** back to 0. Press the Return key on the keyboard.

6. Repeat these steps with each class so that you can see how the pixels are assigned to each class. You may also try selecting more than one class at a time.

7. Continue assigning names and colors for the remaining classes in the Raster Attribute Editor **CellArray**.

8. In the Raster Attribute Editor, select **File | Save** to save the data in the **CellArray**.

9. Select **File | Close** from the Raster Attribute Editor menu bar.

10. Select **File | Clear** from the Viewer menu bar.

**Use Thresholding**

The Thresholding utility allows you to refine a classification that was performed using the Supervised Classification utility. The Thresholding utility determines which pixels in the new thematic raster layer are most likely to be incorrectly classified.

This utility allows you to set a distance threshold for each class in order to screen out the pixels that most likely do not belong to that class. For all pixels that have distance file values greater than a threshold you set, the class value in the thematic raster layer is set to another value.

The threshold can be set:

- with numeric input, using chi-square statistics, confidence level, or Euclidean spectral distance, or
- interactively, by viewing the histogram of one class in the distance file while using the mouse to specify the threshold on the histogram graph.

Since the chi-square table is built-in, you can enter the threshold value in the confidence level unit and the chi-square value is automatically computed.
In this example, you threshold the output thematic raster layer from the supervised classification (germtm superclass.img).

Prepare
ERDAS IMAGINE must be running and you must have germtm superclass.img displayed in a Viewer.

1. Click on the Classifier icon in the ERDAS IMAGINE icon panel to start the Classification utility.

The Classification menu displays.

2. Select Threshold from the Classification menu to start the Threshold dialog.

The Threshold dialog opens.

3. Click Close in the Classification menu to clear it from the screen.
Advanced Classification

4. In the Threshold dialog, select File | Open or click the Open icon to define the classified image and distance image files.

The Open Files dialog opens.

Select Classified and Distance Images

1. In the Open Files dialog under Classified Image, open the directory in which you previously saved germtm_superclass.img by entering the directory path name in the text window and pressing Return on your keyboard.

2. Select the file germtm_superclass.img from the list of files in the directory you just opened.

   This is the classified image file that is going to be thresholded.

3. In the Open Files dialog, under Distance Image, open the directory in which you previously saved germtm_distance.img by entering the directory path name in the text entry field and pressing Return on your keyboard.

4. Select the file germtm_distance.img from the list of files in the directory you just opened.

   This is the distance image that was created when the germtm_superclass.img file was created. A distance image file for the classified image is necessary for thresholding.

5. Click OK in the Open Files dialog to load the files.

6. In the Threshold dialog, select View | Select Viewer and then click in the Viewer that is displaying the germtm_superclass.img file.

Compute and Evaluate Histograms

1. In the Threshold dialog, select Histograms | Compute.

   The histograms for the distance image file are computed. There is a separate histogram for each class in the classified image file.
Evaluate Classification

The Job Status dialog opens as the histograms are computed. This dialog automatically closes when the process is completed.

2. If desired, select **Histograms | Save** to save this histogram file.

3. In the CellArray of the Threshold dialog, move the > prompt to the **Agricultural Field_2** class by clicking under the > column in the cell for **Class 2**.

4. Select **Histograms | View**.

   The Distance Histogram for **Agricultural Field_2** displays.

5. Select the arrow on the X axis of the histogram graph to move it to the position where you want to threshold the histogram.

   The **Chi-Square** value in the Threshold dialog is updated for the current class (**Agricultural Field_2**) as you move the arrow.

6. In the Threshold dialog CellArray, move the > prompt to the next class.

   The histogram is updated for this class.

7. Repeat the steps, thresholding the histogram for each class in the Threshold dialog CellArray.

   See "CHAPTER 6: Classification" of the ERDAS Field Guide for more information on thresholding.

8. After you have thresholded the histogram for each class, click **Close** in the Distance Histogram dialog.

**Apply Colors**

1. In the Threshold dialog, select **View | View Colors | Default Colors**.

   Use the default setting so that the thresholded pixels appear black and those pixels remaining appear in their classified color in the thresholded image.
Advanced Classification

2. In the Threshold dialog, select **Process | To Viewer**.

   The thresholded image is placed in the Viewer over the `germtm_superclass.img` file. Yours likely looks different from the one pictured here.

   ![Threshold Mask](image)

   **Use the Flicker Utility**

   1. In the Viewer menu bar, select **Utility | Flicker** to see how the classes were thresholded.

      The Viewer Flicker dialog opens.

      ![Viewer Flicker](image)

      2. When you are finished observing the thresholding, click **Cancel** in the Viewer Flicker dialog.

      3. In the Viewer, select **View | Arrange Layers**.

         The Arrange Layers dialog opens.

         ![Arrange Layers](image)

         4. In the Arrange Layers dialog, right-hold over the thresholded layer (**Threshold Mask**) and select **Delete Layer** from the **Layer Options** menu.

         5. Click **Apply** and then **Close** in the Arrange Layers dialog. When asked if you would like to save your changes, click **No**.

         6. In the Threshold dialog, select **Process | To File**.
Evaluate Classification

The Threshold to File dialog opens.

**Process Threshold**

1. In the Threshold to File dialog under **Output Image**, enter the name `germtm_thresh.img` in the directory of your choice.

   This is the file name for the thresholded image.

2. Click **OK** to output the thresholded image to a file.

   The Threshold to File dialog closes.

3. Wait for the thresholding process to complete, and then select **File | Close** from the Threshold dialog menu bar.

4. Select **File | Clear** from the Viewer menu bar.

   *NOTE: The output file that is generated by thresholding a classified image can be further analyzed and modified in various ERDAS IMAGINE utilities, including the Image Interpreter, Raster Attribute Editor, and Spatial Modeler.*

---

**Recode Classes**

After you analyze the pixels, you may want to recode the thematic raster layer to assign a new class value number to any or all classes, creating a new thematic raster layer using the new class numbers. You can also combine classes by recoding more than one class to the same new class number. Use the **Recode** function under **Interpreter (icon) | GIS Analysis** to recode a thematic raster layer.

See "CHAPTER 11: Geographic Information Systems" of the ERDAS Field Guide for more information on recoding.

---

**Use Accuracy Assessment**

The Accuracy Assessment utility allows you to compare certain pixels in your thematic raster layer to reference pixels, for which the class is known. This is an organized way of comparing your classification with ground truth data, previously tested maps, aerial photos, or other data.

In this example, you perform an accuracy assessment using the output thematic raster layer from the supervised classification (`germtm superclass.img`).

**Prepare**

ERDAS IMAGINE must be running and you must have `germtm.img` displayed in a Viewer.

1. Click the Classifier icon in the ERDAS IMAGINE icon panel.
Advanced Classification

The Classification menu displays.

2. Select Accuracy Assessment from the Classification menu to start the Accuracy Assessment utility.

The Accuracy Assessment dialog opens.

Check the Accuracy Assessment CellArray

The Accuracy Assessment CellArray contains a list of class values for the pixels in the classified image file and the class values for the corresponding reference pixels. The class values for the reference pixels are input by you. The CellArray data reside in the classified image file (e.g., germtm_superclass.img).

1. Click Close in the Classification menu to clear it from the screen.

2. In the Accuracy Assessment dialog, select File | Open or click the Open icon.

The Classified Image dialog opens.
3. In the Classified Image dialog, under **Filename**, open the directory in which you previously saved `germtm_superclass.img` by entering the directory path name in the text entry field and pressing Return on your keyboard.

4. Select the file `germtm_superclass.img` from the list of files in the directory you just opened. This is the classified image file that is used in the accuracy assessment.

5. Click **OK** in the Classified Image dialog to load the file.

6. In the Accuracy Assessment dialog, select **View | Select Viewer** or click the Select Viewer icon, then click in the Viewer that is displaying the `germtm.img` file.

7. In the Accuracy Assessment dialog, select **View | Change Colors**.

   The Change colors dialog opens.

   In the Change colors dialog, the **Points with no reference** color patch should be set to **White**. These are the random points that have not been assigned a reference class value.
Advanced Classification

The Points with reference color patch should be set to Yellow. These are the random points that have been assigned a reference class value.

8. Click OK in the Change colors dialog to accept the default colors.

Generate Random Points

The Add Random Points utility generates random points throughout your classified image. After the points are generated, you must enter the class values for these points, which are the reference points. These reference values are compared to the class values of the classified image.

1. In the Accuracy Assessment dialog, select Edit | Create/Add Random Points.

The Add Random Points dialog opens.

2. In the Add Random Points dialog, enter a 10 in the Number of Points number field and press Return on your keyboard.

In this example, you generate ten random points. However, to perform a proper accuracy assessment, you should generate 250 or more random points.

3. Confirm that the Search Count is set to 1024.

This means that a maximum of 1024 points are analyzed to see if they meet the defined requirements in the Add Random Points dialog. If you are generating a large number of points and they are not collected before 1024 pixels are analyzed, then you have the option to continue searching for more random points.

NOTE: If you are having problems generating a large number of points, you should increase the Search Count to a larger number.

The Distribution Parameters should be set to Random.

4. Click OK to generate the random points.
Evaluate Classification

The Add Random Points dialog closes and the Job Status dialog opens. This dialog automatically closes when the process is completed. A list of the points is shown in the Accuracy Assessment CellArray.

5. In the Accuracy Assessment dialog, select View | Show All.

All of the random points display in the germtm.img file in the Viewer. These points are white.

6. Analyze and evaluate the location of the reference points in the Viewer to determine their class value. In the Accuracy Assessment CellArray Reference column, enter your best guess of a reference relating to the perceived class value for the pixel below each reference point.

As you enter a value for a reference point, the color of the point in the Viewer changes to yellow.

⚠️ If you were performing a proper accuracy assessment, you would be using ground truth data, previously tested maps, aerial photos, or other data.

7. In the Accuracy Assessment dialog, select Edit | Show Class Values.

The class values for the reference points appear in the Class column of the CellArray.

8. In the Accuracy Assessment dialog, select Report | Options. The Error Matrix, Accuracy Totals, and Kappa Statistics checkboxes should be turned on.

The accuracy assessment report includes all of this information.

📚 See "CHAPTER 6: Classification" of the ERDAS Field Guide for information on the error matrix, accuracy totals, and Kappa statistics.


The accuracy assessment report displays in the IMAGINE Text Editor.

Advanced Classification

The accuracy assessment report displays in a second ERDAS IMAGINE Text Editor. The report lists the options and windows used in selecting the random points.

11. If you like, you can save the cell report and accuracy assessment reports to text files.

12. Select File | Close from the menu bars of both ERDAS IMAGINE Text Editors.

13. In the Accuracy Assessment dialog, select File | Save Table to save the data in the CellArray.

   The data are saved in the classified image file (germtm_superclass.img).

14. Select File | Close from the Accuracy Assessment dialog menu bar.

15. If you are satisfied with the accuracy of the classification, select File | Close from the Viewer menu bar.

   If you are not satisfied with the accuracy of the classification, you can further analyze the signatures and classes using methods discussed in this tour guide. You can also use the thematic raster layer in various ERDAS IMAGINE utilities, including the Image Interpreter, Raster Editor, and Spatial Modeler to modify the file.

   For more information about Classification, see "APPENDIX A: Additional Information" on page 595.
CHAPTER 18
IMAGINE Expert Classifier™

Introduction

This chapter is designed to introduce you to the IMAGINE Expert Classifier™. The IMAGINE Expert Classifier is composed of two modules: the Knowledge Engineer and the Knowledge Classifier. The Knowledge Engineer provides the interface for an expert with first-hand knowledge of the data and the application to identify the variables, rules, and output classes of interest and create the hierarchical decision tree. The Knowledge Classifier provides an interface for a non-expert to apply the knowledge base and create the output classification.

This set of exercises guides you through the basic process of creating a new knowledge base from scratch. The Knowledge Engineer tools and their uses are presented.

Create a Knowledge Base

In this tour guide you can learn how to:

• add hypotheses
• enter rules for hypotheses
• edit variables for the rules
• copy and edit existing rules
• test a knowledge base

Approximate completion time for this tour guide is 30 minutes.

Set Up the Output Classes

For the purpose of this exercise, suppose that you are determining Residential and Commercial Services map classes from imagery and existing mapped data. (The example classes are a subset of the lanier.ckb provided in the examples directory.)

This very simple two class example provides an opportunity to use and become familiar with the tools and processes of the Knowledge Engineer. The Knowledge Engineer aids in the process of designing a knowledge base by allowing you to set up a framework which can be easily be edited and rearranged during the design process.

Start the Knowledge Engineer

1. Click the Classifier icon and select Knowledge Engineer from the Classification menu.
The Knowledge Engineer dialog starts with blank slates in the edit window, the decision tree overview section, and the Knowledge Base component list (Hypotheses, Rules, and Variables).

Place Hypotheses into the Edit Window

1. Select **Edit | New Hypothesis** to add the first hypothesis.

The Hypo Props (Hypothesis Properties) dialog opens with **untitled.ckb** in the title bar, a default hypothesis name: **New Hypothesis**, and the **Color** is set to **Grayscale**.
2. Change the default hypothesis **Name** to the first class name, **Residential**.

3. Since you want **Residential** to be an output class, the **Create an Output Class** checkbox is left checked.

   You are going to give colors to each of the classes.

4. Click the **Specify** radio button in the **Color** section. Then use the pulldown menu to select **Orange** as the color for this class.

**Selecting Colors for Output Classes**

If a color is not specified for an output class, it is automatically made grayscale. As additional grayscale output classes are added, grayscale values for each of the grayscale classes are automatically updated and stretched evenly across the range from white to black. This occurs even if some other classes are assigned specific colors.

5. Now click the **Apply** button in the Hypo Props dialog.

   A green rectangle with the hypothesis name **Residential** and chip color appears in the edit window and an outline of the rectangle appears in the knowledge tree overview window. You probably noticed that there are diagonal lines through the hypothesis rectangle in the edit window. These lines remain until conditions have been added that can make the hypothesis true or false.

6. Select **Edit | New Hypothesis** once again to set up the next class, **Commercial Services**. Enter the class **Name** and **Specify Red** as the color for the class.

7. Click **Apply** in the Hypo Props dialog to add the class.

8. Click **Close** on the Hypo Props dialog.
Enter Rules for the Hypothesis

1. Select the Create Rule Graphic Tool icon from the Knowledge Engineer dialog icon bar.

2. Move the cursor, which changes to the shape of a rule, and click on the green hypothesis rectangle for Residential.

   A yellow rule rectangle, called New Rule, is attached to the hypothesis rectangle, Residential, by a line that is mirrored in the knowledge tree overview.
3. Double-click the yellow **New Rule** rectangle to open the Rule Props (Rule Properties) dialog.

4. Change the **Name** of the rule to **Vegetated Within City** and leave the **Compute from Conditions** radio button selected for **Rule Confidence**.

**Enter Variables for the Rule**

1. Click within the cell under **Variable** and select **New Variable** from the popup list.

   The Variable Props dialog opens.
2. Change the **Variable Name** to **Highway Map**, and change the **Variable Type** to **Raster**.

   Changing the type to **Raster** switches the bottom part of the dialog to the **Raster Variable Options**, providing a different set of choices than for the **Scalar** variable type.

3. Click the Select Image File icon, then navigate to and select **Input.img** from the `<IMAGINE_HOME>/examples` directory.

4. Click **OK** in the Select Image dialog to add the file to the Variable Props dialog.

5. Click the **Apply** button in the Variable Properties dialog to add **Highway Map** to the rule properties **CellArray**.
6. Click **Close** to dismiss the Variable Props dialog.

7. In the Rule Props dialog, click in the cell under **Value** and select **Other**.

8. Into the highlighted cell, type **7** and press Return on your keyboard (7 is the class number for urban areas in **Input.img**).

9. Click **Apply** in the Rule Props dialog to enter the changes, then **Close**.

The new rule with its attached variable appears in the edit window. Notice that the diagonal lines in the hypothesis, **Residential**, and rule, **Vegetated Within City**, rectangles have disappeared for the hypothesis and rule you have edited. This is because at least one complete condition is now set.
Add an Intermediate Hypothesis

In this section, you add an intermediate hypothesis as well as its conditions.

1. Select the Create Hypothesis graphic tool and click on the rule, Vegetated Within City.

An intermediate hypothesis, New Hypothesis, is attached to the rule, linked by a New Hypothesis == TRUE variable.

2. Double-click the New Hypothesis rectangle to open the Hypo Props dialog.

3. In the Hypo Props dialog, change the name to Vegetation and deselect the Create an Output Class checkbox since you do not want this to be an output class.

4. Click Apply, then Close.

Create a New Rule

1. Using the Create Rule graphic tool, place a New Rule on the Vegetation hypothesis.

2. Double-click on the New Rule to open the Rule Props dialog, and change the rule Name to High IR and Low Visible.
3. Click in the cell below **Variable** and select **New Variable**.

4. Type the name **TM Band 4** in the **Variable Name** field.

5. Change the **Variable Type** to **Raster**

6. Click the Open icon to open the Select Image dialog, and select **lanier.img** from the `<IMAGINE_HOME>/examples` directory.

7. Click **OK** in the Select Image dialog to add **lanier.img** to the Variable Props dialog.

8. Click the **Layer** dropdown list and select `( :Layer_4 )`.

9. Click **Apply**, then **Close** in the Variable Props dialog.

   The Rule Props dialog updates.

10. In the Rule Props dialog, click in the cell below **Relation** and select `>=`. 

11. Click, then select **Other** from the **Value** cell, change the **Value** to 21, then press Return on your keyboard.

12. Now, using step 3. through step 11. above, add layer 2 of **lanier.img** as the second variable (row 2 under the **AND** column), name it **TM Band 2**, set **Relation** to `<` and set the value to 35.
13. Click **Apply**, then **Close** in the Rule Props dialog.

**Copy and Edit**

Since the hypothesis for the **Commercial Services** class has very similar rules and conditions to the **Residential** class, some of the conditions can be used directly, or copied and edited to save time.

1. Begin editing the **Commercial Services** class by placing a new rule on the **Commercial Services** hypothesis rectangle, then double-clicking the **New Rule** to open the Rule Props dialog.

   Refer to "Enter Rules for the Hypothesis" on page 506 if you forget how to create a new rule.

2. In the Rule Props dialog, change the **Name** of the rule to **Bright Within City**.

   The first variable that is needed is **Highway Map**, which is now in the **Variable** list since it was entered previously.

3. Click in the cell below **Variable** and select **Highway Map**, confirm that the **Relation** is set to **==**, and set the **Value** to **7**.

   As before, this makes the variable equal to the urban area from **Input.img**.

4. Click **Apply** in the Rule Props dialog, then **Close**.

The **Commercial Services** class has the rule **Bright Within City**, which has the Variable **Highway Map**.
5. Now use the Create Hypothesis graphic tool to place a new hypothesis (which is an intermediate hypothesis) on the Bright Within City rule rectangle.

See "Add an Intermediate Hypothesis" on page 510 if you forgot how to create a hypothesis.

6. Double-click on the New Hypothesis to open the Hypo Props dialog.

7. In the Hypo Props dialog, name the new hypothesis Bright and deselect the Create an Output Class checkbox.

8. Click Apply, then Close in the Hypo Props dialog.

The Knowledge Engineer dialog updates accordingly.

Since the rule to be attached to the Bright hypothesis is very similar to the High IR and Low Visible rule that is attached to the Vegetation hypothesis, you can make a copy of it to paste and edit.

9. Click on the High IR and Low Visible rule.

10. Right-click, and select Copy from the Options menu.

11. Click on the Bright hypothesis, then right-click and select Paste from the Options menu.

A new rule is attached to the Bright hypothesis with a default name of High IR and Low Visible (1) (the (1) is added since it is a copy).

12. Double-click the High IR and Low Visible (1) rule to open the Rule Props dialog.

13. In Rule Props dialog for the new rule, change the Name to High IR and High Visible.
The only change that needs to be made to the variables is the **Relation** for **TM Band 2**.

14. Change the **Relation** for **TM Band 2** to **>=**.

15. Click **Apply**, then **Close** in the Rule Props dialog.

At this point, two hypotheses and their conditions have been entered. Now, the two classes can be tested to see what pixels are allocated to them.

**Test the Knowledge Base**

1. On the Knowledge Engineer dialog tool bar, select the Run Test Classification icon (or select **Evaluate** | **Test Knowledge Base**).

The Knowledge Classification dialog opens in Test Mode at the **SELECT THE CLASSES OF INTEREST** panel, along with a new Viewer where the test classification is displayed. All active enabled classes are selected by default.
2. Leave the two classes, Residential and Commercial Services, selected in the Selected Classes section of the Knowledge Classification dialog.

3. Click Next to go to the next panel of the Knowledge Classification dialog.

If the Prompt User option had been selected instead of entering file names for the variables, an intermediate panel, SELECT THE INPUT DATA FOR CLASSIFICATION, would appear here to allow entry of file names.

The Select Classification Output Options panel allows you to set the number of best classes per pixel, set an output area and set an output cell size. The defaults are used here since you only have two classes and small images that are the same size and have the same cell size.

Also note the grayed-out options for Output Classified Image, Output Confidence Image, and Output Feedback Image. These images are made temporary files in Test Mode, but can be selected as output files when running Knowledge Classifier in regular (non-test) mode from the Classification menu.
4. Click **OK** in the Knowledge Classification dialog to start the test classification.

A status bar opens. When the classification has completed, the test classification image is displayed in the Viewer.

5. Click **OK** to dismiss the status bar when the classification is finished.

6. In the Knowledge Engineer dialog, click on the Start Classification Pathway Feedback Mode icon.

The Classification Path Information dialog is opened along with a cursor in the Viewer.
Create a Knowledge Base

7. Move the cursor into the orange and red areas in the Viewer, which correspond to the orange **Residential** class and the red **Commercial Services** class.

Note that when the cursor is placed on a pixel for one of the classes, the path for the class is highlighted in the Knowledge Engineer dialog and in the overview window. In complex knowledge bases, this feature is useful for telling at a glance which hypothesis was used to classify the point of interest.

8. Click the **Close** button to dismiss the Classification Path Information dialog.

9. Select the gray Disable Node icon, then click on the **Commercial Services** hypothesis graphic to disable it.

The Commercial hypothesis path is grayed-out. This means the class is not considered when a test classification is run (or, in the regular Knowledge Classifier, if the knowledge base has been saved with the class disabled).
10. To enable the **Commercial Services** class once again, click on the **Commercial Services** hypothesis graphic with the yellow Enable Node icon (or right-click on the hypothesis graphic and select **Enable**).

11. Save the knowledge base by selecting **File | Save As**.

12. Navigate to a directory in which you have write permission, and name the file **ResComm_Class.ckb**.

13. Click **OK** in the Save Classification Knowledge Base As dialog.

14. Select **File | Close** from the Knowledge Engineer dialog, which is now entitled **ResComm_Class.ckb**, to finish.
Create a Portable Knowledge Base

This exercise is going to give you practice creating and using a portable knowledge base. In this example, you use a knowledge base to determine areas most suitable for cross-country travel.

Data

Data available for the project includes the following:

- a landcover classification (*supervised.img*)
- a DEM (*30meter.img*)
- a map of minor and major roads (*roads.img*)
- a near-infrared degraded air photo with 30m resolution (*mason_ap.img*)

The file *supervised.img* shows a typical landcover classification derived from Landsat TM data (a portion of the Landsat scene is provided as *tm_860516.img* along with the signature file *tm_860516.sig*, which was used to produce a maximum likelihood classification). The image shows the distribution of broad landcover categories such as different types of forestry, human-made features, water and open ground. However, it does not show the land use of each pixel, or how each pixel could be put to use.

Consider a scenario whereby someone wishes to traverse this area of ground with one or more vehicles. They need to use the landcover information, along with other ancillary data to help determine which areas can be traversed easily and which cannot.

Methodology

Given these data sets, we can start to envisage expert rules that are based on these data (and data derived from them) to determine the ease of crossing a particular area.

Prepare

ERDAS IMAGINE must be running.

1. Click the Classifier icon in the ERDAS IMAGINE icon panel.

The Classification menu opens.
2. Click **Knowledge Engineer** in the **Classification** menu.

An empty Knowledge Engineer dialog opens.

Next, you can open the **mobility_factors.ckb** knowledge base to examine what expert rules are used and how their components were created.

1. In the Knowledge Engineer dialog, click the Open icon, or select **File | Open**.

The Open Classification Knowledge Base dialog opens.

2. Navigate to the `<IMAGINE_HOME>/examples` directory, and select the file **mobility_factors.ckb**.
Create a Portable Knowledge Base

<IMAGINE_HOME> is the directory where ERDAS IMAGINE resides on your system.

3. Click OK in the Open Classification Knowledge Base dialog to load the file.

The knowledge base of mobility factors opens.

Examine the Knowledge Base

This knowledge base was created by defining as many of the variables as would be needed as possible. For example, roads are going to be the easiest areas to traverse, so a variable was needed to define where roads are that can be used.

1. In the Knowledge Engineer dialog, click on the Variables tab.

The variables for the mobility_factors.ckb knowledge base display.

2. In the Variables list, double-click the Roads variable.

The Variable Props dialog opens.
In the Variable Properties dialog, you can see that the Variable Type is Raster and the Imagery option is selected because the input is an image.

This knowledge base is transportable—you may want to pass it to a colleague in another office, or reuse it yourself to automate a production process. So, rather than selecting a specific image to be used, the Leave Undefined checkbox is selected and a prompt for the type of data that you want the end user to supply is typed in the Info window (i.e., Select road coverage).

The same type of imagery variables have been defined for the landcover classification (Terrain Categorization), Digital Elevation Model (DEM) and air photo (Aerial Photo).

Some of the imagery variables are used directly in rules (such as the Terrain Categorization variable being used to identify open ground in the image). Others are used indirectly to calculate variable values.

For example, open ground (e.g., grass, scrub) is also good for vehicles to cross, but not if the ground is steeply sloping. The fact that an area is open ground can be determined from the landcover classification (the Terrain Categorization variable), but you do not have an image that provides slope directly. However, you do have a digital elevation model (the DEM variable), which can be used to derive slope.

Derive Slope Values

1. In the Variables tab, double-click the variable called Slope from model.

The Variable Props dialog updates accordingly.
Notice that the variable is again raster in nature, so the **Variable Type** is set to **Raster**. In this case, however, the **Graphic Model** option of the **Raster Variable Options** has been selected. The graphic model associated with this variable is named **slope.gmd**.

2. In the Variable Props dialog, click on the **Edit Model** button to view the graphic model.

A Spatial Modeler viewer opens, which contains the model that defines the **Slope from model** variable.
This is the model that the variable **Slope from model** uses to calculate the slope of any location.

To make the knowledge base transportable, you do not want to define actual image names in the `slope.gmd` model. Instead, the **INPUT RASTER** and the **OUTPUT RASTER** of the model have been set to **PROMPT_USER**.

In the Variable Properties dialog, the **PROMPT_USER Input Node** that was the output in the model has been defined as the **Output**, and the following CellArray has been used to define which variables should be used to supply which **Input Node**. In this instance, clicking in the **Variable Definition** cell gave the list of defined variables from which **DEM** was selected.
Thus, a variable has been defined that calculates values on the fly as needed from another variable (in this case, slope is derived from a DEM).

3. Click the Close Model icon, or select **File | Close** from the Spatial Modeler viewer.

![Close Model icon]

The Spatial Modeler viewer closes.

4. Click **Close** in the Variable Props dialog.

**Build Hypotheses**

Since you have looked at how the two main types of input variable can be defined, now you can look at how each hypothesis is built in the knowledge base.

The knowledge base **mobility_factors.ckb** displays:
The first two hypotheses, **Wide Road** and **Narrow Road**, are fairly simple. The expert rule in these cases is that something identified as a road is going to be easily traversable by the vehicles, with major roads being better than minor roads.

Consequently, the **Wide Road** hypothesis has two rules (i.e., they each have an OR statement so that either needs to be true for the hypothesis to be true). The first looks for major roads (DN value 2) in the **Roads** variable (roads.img), and the second looks for pixels that are potentially identified as roads by the supervised classification.

1. Double-click on the **Highway category** rule.

   The Rule Props dialog opens.
Create a Portable Knowledge Base

The Rule Props dialog shows how this particular rule depends on the Terrain Categorization (supervised.img) file.

2. In the Rule Props dialog, click the horizontal scroll bar until you can see the Confidence value, 0.80.

3. In the Knowledge Engineer dialog, click on the Major Road rule.

   Its properties display in the Rule Props dialog.

4. Click the horizontal scroll bar until you can see the Confidence value, 0.98.

Note that the Confidence field for the Highway category rule has been set to a much lower value than the Confidence for the Major Road rule. This is because you are less certain of the results from a maximum likelihood classification than you would be from a road map.

The next four hypotheses work on the same basis. The expert rule is that open ground types are good for vehicle passage. As slopes get steeper, however, the open ground becomes less and less manageable until it becomes impassable at very steep angles.

5. Click Close in the Rule Props dialog.

Set ANDing Criteria

These hypotheses also demonstrate the ANDing of criteria in a rule. The Flat solid open ground (go) hypothesis has only one rule, but that rule has two conditions. Both conditions must be true for a rule to be true.
1. Double-click the **Slope from model <= 4** condition.

   The Rule Props dialog opens.

   In the **List of Conditions** CellArray, the slope calculated by the **Slope from model** variable must be less than or equal to 4 degrees, and (i.e., **AND**, note the far left column of the CellArray) the **Solid open ground** variable must be true before this rule can be true.

2. Click **Close** in the Rule Props dialog.

   The rule **Flat solid open ground** is defined by an intermediate hypothesis: **Solid open ground**.

3. In the Knowledge Engineer dialog, click the horizontal scroll bar and move it to the right until you can see the intermediate hypothesis **Solid open ground**.
Create a Portable Knowledge Base

The intermediate hypothesis **Solid open ground** uses the **Terrain Categorization** variable to identify various types of open ground cover.

**Check Other Hypotheses**

You can check the other hypotheses listed along the left side of the Knowledge Engineer dialog.

1. Position the horizontal scroll bar to the extreme left in the Knowledge Engineer dialog.
2. Move the vertical scroll bar down until you see the **Water (no go)** hypothesis.

3. Note the hypothesis below **Water (no go): Soft Ground (no go)**.

Similarly, the **Soft Ground (no go)** hypothesis is a simple expert rule that states that if the **Terrain Categorization** variable shows that a location is a type of wetland, it is impassable.

**Introduce Spatial Logic to the Knowledge Base**

The three forest hypotheses are more complicated, and show how spatial operators can be used within the IMAGINE Expert Classifier to create a spatially aware classifier (rather than a traditional per-pixel classifier).

1. Use the vertical scroll bar to scroll down to the various forest hypotheses.

---

**Tour Guides**
The expert rule is that open forest canopies are easier to traverse than closed forest canopies because space between trunks is not as large with a closed canopy (i.e., trees are older and have large trunks). However, it is difficult to determine canopy closure on a per-pixel basis.

To a certain degree, canopy closure can be inferred from the type of tree cover. For instance, if the cover is coniferous, then it is more likely that you have a close canopy and close trunks. However, this is more difficult to state for mixed and other types of tree cover.

Consequently, this particular hypothesis also looks at panchromatic aerial photography to try and determine crown closure. However, you cannot determine crown state on a per-pixel basis. Instead, the **Tree Density model** variable (using the **Aerial Photo** and **Terrain Categorization** variables as inputs) executes a graphical model (**texture.gmd**).

2. Click the **Variables** tab in the Knowledge Engineer dialog.

3. Double-click to select the **Tree Density model** variable.

The Variable Props dialog for the **Tree Density model** variable opens:
4. Note that the **Raster Variable Options** for the **Tree Density model** variable is set to **Graphic Model**.

The model that provides information for the **Tree Density model** variable is **texture.gmd**.

5. Click the **Edit Model** button in the Variable Props dialog.

The Spatial Modeler viewer opens, which displays the model **texture.gmd**.
This model, **texture.gmd**, is a model that looks at every location that has been determined to be tree cover (from the **Terrain Categorization** variable), and analyzes both the air photo DN value at that location and the DN values in surrounding locations (using a $3 \times 3$ moving window) to determine local texture. This spatial variable is then used in the **Close Forest (no go)**, **Medium Density forest (slow go)**, and **Open Forestry (go)** hypotheses to determine the relative density of the tree canopy, and thereby determine the relative ease of vehicular passage.

6. Select **File | Close** from the Spatial Modeler viewer.

7. Click **Close** in the Variable Props dialog displaying properties for the **Tree Density model** variable.

**Check Buildings Hypothesis**

The **Buildings (no go)** hypothesis is a simple expert rule that states that if the **Terrain Categorization** shows that a location is a type of urban area, it is impassable.

Confidences are kept low on these rules so that they do not override the **Wide Road** and **Narrow Road** hypotheses. That is, roads within urban areas are still traversable.

1. Double-click on the **Suburban** rule attached to the **Buildings (no go)** hypothesis.

The Rule Props for the **Suburban** rule open.
2. In the Rule Props dialog, move the horizontal scroll bar all the way to the right.

3. Notice that the **Confidence** values are set to **0.75**.

4. Click **Close** in the Rule Props dialog.

**Identify Choke Points**

The final hypothesis is another good example of spatially enabling the IMAGINE Expert Classifier. This hypothesis identifies choke points in the road network—points where the road narrows considerably and traffic cannot circumnavigate, thereby representing a potential no go point. The main example of this is bridges.

Identification of bridges might sound like an easy proposition: find roads that are on water. However, the only information we have on location of water bodies is from the landcover classification (the **Terrain Categorization** variable), which cannot identify water that flows below other features. Consequently, a more complex approach is required.

1. Click the **Variables** tab in the Knowledge Engineer dialog.

2. In the **Variables** tab, double-click **Identify possible bridges model**.

   The Variable Props dialog for the variable **Identify possible bridges model** opens.
3. Click the **Edit Model** button in the Variable Props dialog.

The model used to identify potential bridges, *identify_bridges.gmd*, shows the expert rule.

![Image of IMAGINE Expert Classifier™](image_url)
Create a Portable Knowledge Base

Since you cannot immediately identify roads over water, you must instead look at roads in close proximity to water. This could be done by buffering (performing a Search function) on the roads and overlaying this with the location of water pixels. However, many roads simply run alongside lakes or rivers and do not necessarily therefore constitute a choke hazard. Instead, it is better to identify roads that occur in close proximity to at least two discrete water bodies (i.e., one on either side of the bridge).

Therefore, identify_bridges.gmd first identifies all water pixels from the landcover classification. These locations are fed into two processes. The first finds all locations that are in close proximity to water by using a $5 \times 5$ circular moving window. These are then overlain with road locations (from Roads and Terrain Categorization variables) to identify roads in close proximity to water. At the same time, the water pixels are run through a Clump process to produce uniquely numbered, discrete water bodies. A Focal Diversity function is then used at each location determined to be a road in close proximity to water to determine how many of these discrete water bodies are close by. If more than two water bodies are identified, then that road is flagged as being a potential bridge or other choke point. This information is then used in the Bridges/landings (Choke Point) expert rule.

This provides a clear example of how the IMAGINE Expert Classifier can be used to integrate spatially aware rules. In this case, the values of neighboring pixels are analyzed to help determine the land use (bridge as opposed to road) of the target pixels.

4. Click the Close Model icon, or select File | Close from the Spatial Modeler viewer.

Also note that the Bridges/landings (Choke Point) hypothesis is always going to occur at pixel locations that have also met the requirements to be in the Wide Road or Narrow Road classes (it is extremely difficult to create expert rules that are always mutually exclusive). Consequently, the Confidence values on the Bridges/landings rule have been set higher than those for the normal road rules. In this way, the Bridges/landings (Choke Point) hypothesis always takes precedence in the classifications.

5. In the Knowledge Engineer dialog, double-click the Bridges/landings rule.

The Rule Props dialog for Bridges/landings opens.
6. Move the horizontal scroll bar to the right see the **Confidence** value.

7. Note that the **Confidence** of the variable **Identify possible bridges model** is set to **0.99**.

8. Click **Close** in the Rule Props dialog.

9. Click **Close** in the Variable Props dialog.

### Run the Expert Classification

1. In the Knowledge Engineer dialog, click the Run icon, or select Evaluate | Test Knowledge Base.

The Knowledge Classification (Test Mode) dialog opens on the **Select the Classes of Interest** panel.
Create a Portable Knowledge Base

You want to see results for all of the classes; therefore, you can proceed to the next panel.

2. Click the **Next** button in the Knowledge Classification (Test Mode) dialog.

   The **Select the Input Data for Classification** panel opens.

   ![Select the Input Data for Classification panel](image)

   This panel enables you to identify the files to be used as variables, which were set to the **Leave Undefined (Prompt Analyst)** state.

3. Use the vertical scroll bar to see the variables and their corresponding files.

   In this Knowledge Base, the **Roads** variable is associated with `roads.img`, the **Terrain Categorization** variable is associated with `supervised.img`, the **DEM** variable is associated with `30meter.img`, and the **Aerial Photo** variable is associated with `mason_ap.img`.

4. Click **Next** in the Knowledge Classification (Test Mode) dialog.

   The **Select Classification Output Options** panel opens.

   ![Select Classification Output Options panel](image)

5. Change the **Best Classes Per Pixel** value to 2.

   **Change the Best Classes Per Pixel value to 2**

   **Confirm that the Cell Size is set to Minimum**
6. Confirm that the **Cell Size** is set to **Minimum**.

7. Click **OK** in the **Select Classification Output Options** panel of the Knowledge Classification (Test Mode) dialog.

   Job Status dialogs open, tracking the progress of the expert classification.

8. When the job is complete, click **OK** in the Job Status dialogs.

   You can set a preference to automatically close the Job Status dialog after computation is complete. It is located in the **User Interface & Session** category of the Preference Editor.

   When the process is complete, the classification displays in a Viewer.

---

**Evaluate River Areas**

Now that the classification is complete, you should zoom in and see what the IMAGINE Expert Classifier designated as potential bridges.

1. In the Viewer tool bar, click the Zoom In icon.
2. Move your mouse into the Viewer, and click on an area of the river.

3. Click as many times as necessary in order to see the detail of the area.

4. Zoom in further until you can see yellow pixels at bridge locations, which indicate the **Bridges/landings (Choke Point)** class.

   If you refer back to the Knowledge Engineer dialog, you can see that the **Bridges/landings (Choke Point)** hypotheses has a yellow color square. Therefore, pixels in that class are also yellow.

**Use Pathway Feedback**

You can use the pathway feedback cursor to analyze the classification in the Viewer.

1. Click the Classification Pathway Feedback Mode icon in the Knowledge Engineer dialog.
The Classification Path Information dialog opens.

In the Classification Path Information dialog, the second row in the CellArray specifies the second most likely class (hypothesis) for this pixel (since you requested the 2 Best Classes Per Pixel on page 537).

An inquire cursor is placed in the Viewer containing the classification, and the pathway it corresponds to is highlighted in red in the Knowledge Engineer dialog.

2. Click the Select icon from the Viewer tool bar.

3. Using your mouse click, hold, and drag the inquire cursor to a yellow pixel in the Viewer. The Classification Path Information dialog and the Knowledge Engineer dialog update accordingly.

4. Continue to move the inquire cursor around in the Viewer, and analyze the results in the Classification Path Information dialog and the Knowledge Engineer dialog.

5. When you are finished, click Close in the Classification Path Information dialog.

A graphical model (clean_up_mobility.gmd) is supplied for removing the salt and pepper classification pixels from the final land-use map. This model uses a focal majority, but avoids altering the road and water classes.
Select **File | Close** in the Viewer containing the classification.

Select **File | Close** in the Knowledge Engineer dialog.

The knowledge base **mobility_factors.ckb** is an example of how a knowledge base can be built to take into account spatial rather than (or as well as) spectral per-pixel relationships to derive land use information. It also shows how commonly repeated tasks can be automated for repeating within an organization, or to repeat the same methodology at other organizations. Instead of running several separate spatial models and trying to integrate the results, the entire process is captured in one knowledge base that can be easily applied to other data and other locations, with consistent results.
Section IV
IMAGINE Radar Interpreter™
CHAPTER 19
IMAGINE Radar Interpreter™

Introduction

Building a model, creating a map, or rectifying an image requires certain steps, regardless of the data you are using. However, processing radar data is application-driven, so there is no preset path to follow. Therefore, this tour guide shows you how the functions work, but you have to experiment on your own data files for your own applications.

The default settings in the IMAGINE Radar Interpreter module dialogs provide acceptable results. However, it is recommended that you experiment with the settings to obtain the best results.

NOTE: The data used in this tour guide are in the `<IMAGINE_HOME>/examples` directory. Replace `<IMAGINE_HOME>` with the name of the directory where ERDAS IMAGINE is installed on your system.

Although you can use the IMAGINE Radar Interpreter functions in any order, it is recommended that you follow this tour guide in the order that it is presented. It is important to address speckle noise before any other processing.

See "CHAPTER 5: Enhancement" in the ERDAS Field Guide for more theoretical information about using the Radar module.

The IMAGINE Radar Interpreter is part of the IMAGINE Radar Mapping Suite™, which also includes IMAGINE OrthoRadar™, IMAGINE StereoSAR DEM™, IMAGINE IFSAR DEM™, and the Generic SAR Node.

Approximate completion time for this tour guide is 45 minutes.

Suppress Speckle Noise

In this section, you display two images—one that has been despeckled, and one raw radar image. The objective is to make the two images look alike by using the Speckle Suppression function.

With all speckle suppression filters there is a trade-off between noise reduction and loss of resolution. Each data set and each application has a different acceptable balance between these two factors. The IMAGINE Radar Interpreter module Speckle Suppression filters have been designed to be versatile and gentle in reducing noise (and resolution).

In this section, you also calculate the coefficient of variation for an image. This variable is required to fine-tune many Speckle Suppression filters.
When processing radar imagery, it is very important to use the Speckle Suppression functions before other image processing functions to avoid incorporating speckle into the image.

Prepare
ERDAS IMAGINE should be running and a Viewer should be open.

1. In the Viewer menu bar, select File | Open | Raster Layer or click the Open icon in the tool bar.

The Select Layer To Add dialog opens.

2. In the Select Layer To Add dialog under Filename, click on loplakebed.img.

3. Click OK in the Select Layer To Add dialog.

The loplakebed.img file is displayed in the Viewer.
This image is a subset from imagery taken by the Shuttle Imaging Radar (SIR-A) experiment. It is L-band with 25 m pixels. This scene is the shore of Lop Nor Lake in the Xinjiang Province, Peoples’ Republic of China. This is an area of desiccated overflow basins surrounded by a series of parallel, wind-scoured, sedimentary ridges. The speckle in this image is obvious.

4. In the ERDAS IMAGINE icon panel, click on the Viewer icon to open another Viewer.

5. From the ERDAS IMAGINE menu bar, select Session | Tile Viewers to position and size the Viewers so that you can see the side-by-side Viewers on the screen.

   This helps you to view and evaluate the resultant image after each filter pass, and then decide if another pass is needed to obtain the desired results.

6. Click on the Radar icon on the ERDAS IMAGINE icon panel.

   The Radar menu opens.
7. In the Radar menu, click Radar Interpreter.

The Radar Interpreter menu opens.

8. In the Radar Interpreter menu, select Speckle Suppression.

The Radar Speckle Suppression dialog opens.

9. In the Radar Speckle Suppression dialog under Input File, enter the file loplakebed.img.
Next, you calculate the coefficient of variation to be used in this function.

### Coefficient of Variation

The coefficient of variation, as a scene-derived parameter, is a necessary input parameter for many of the filters. (It is also useful in evaluating and modifying VIS/IR data for input to a 4-band composite image or in preparing a 3-band ratio color composite.)

Speckle in imaging radar can be mathematically modeled as multiplicative noise with a mean of 1. The standard deviation of the noise can be mathematically defined as:

\[
\text{Standard Deviation of the noise} \Rightarrow \frac{\sqrt{\text{VARIANCE}}}{\text{MEAN}} = \text{Coefficient of Variation}
\]

It is assumed that imaging radar speckle noise follows a Rayleigh distribution. This yields a theoretical value for standard deviation (SD) of .52 for 1-look radar data and SD = .26 for 4-look radar data.

The following table gives theoretical coefficient of variation values for various look-averaged radar scenes.

**Table 19-1: Coefficient of Variation Values for Look-averaged Radar Scenes**

<table>
<thead>
<tr>
<th>Number of Looks (scenes)</th>
<th>Coefficient of Variation Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.52</td>
</tr>
<tr>
<td>2</td>
<td>.37</td>
</tr>
<tr>
<td>3</td>
<td>.30</td>
</tr>
<tr>
<td>4</td>
<td>.26</td>
</tr>
<tr>
<td>6</td>
<td>.21</td>
</tr>
<tr>
<td>8</td>
<td>.18</td>
</tr>
</tbody>
</table>

1. In the Radar Speckle Suppression dialog, click the checkbox for **Calculate Coefficient of Variation**.

   All the other options in the dialog are disabled, except for the **Subset Definition** and **Moving Window**. If desired, you could specify a subset area of the image for which to calculate the coefficient of variation.

2. Under **Moving Windows**, confirm that the **Window Size** is set to 3.

3. Click **OK** in the Radar Speckle Suppression dialog.

   The Radar Speckle Suppression dialog closes and a Job Status dialog displays, indicating the progress of the function.
4. When the Job Status dialog indicates that the job is 100% complete, click OK (if the dialog does not close automatically).

Depending on your eml Preferences (under Session | Preferences | User Interface & Session | Keep Job Status Box), when the Job Status bar shows 100 (indicating that the job is 100% done), you must either click OK to close the dialog or the dialog closes automatically.

5. If it is not already displayed, open the Session Log by selecting Session | Session Log from the ERDAS IMAGINE menu bar.

The calculated coefficient of variation is reported in the Session Log, as shown in the following example.

When using the filters in the Speckle Suppression function, you should calculate the coefficient of variation for the input image and use a number close to the calculated coefficient of variation for optimum results.

6. Click Close in the Session Log.

Run Speckle Suppression Function

1. In the Radar Interpreter menu, select Speckle Suppression.

The Radar Speckle Suppression dialog opens.

2. Under Input File, enter the file name ioplakebed.img.

3. Under Output File, enter despeckle1.img in the directory of your choice.

   NOTE: Be sure to remember the directory where you have saved the output file. This is important when you display the output file in a Viewer.

4. Under Coef. of Var. Multiplier (under Output Options), click 0.5.

5. Under Output Options, confirm Lee-Sigma is selected from the popup list next to Filter.
6. Under **Output Options**, enter **.275** for the **Coef. of Variation** (coefficient of variation), then press Return on your keyboard.

This is the value (.275) that was reported in the Session Log when you calculated the coefficient of variation.

7. Click **OK** in the Radar Speckle Suppression dialog.

The Radar Speckle Suppression dialog closes and a Job Status dialog displays, indicating the progress of the function.

8. When the Job Status dialog indicates that the job is 100% complete, click **OK** (if the dialog does not close automatically).

**View Results**

1. In the menu bar of **Viewer #2**, select **File | Open | Raster Layer** or click the Open icon in the tool bar.

The Select Layer To Add dialog opens.

2. In the Select Layer To Add dialog, select **despeckle1.img** as the file to open and click **OK**.

3. Repeat steps (1. through (7. under "Run Speckle Suppression Function" to apply the Speckle Suppression function iteratively to the output images, using the following parameters for passes 2 and 3.

**Table 19-2: Speckle Suppression Parameters**

<table>
<thead>
<tr>
<th>Pass</th>
<th>Input file</th>
<th>Output file</th>
<th>Coef. of Var.</th>
<th>Coef. of Var. Multiplier</th>
<th>Window Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>loplakebed.img</td>
<td>despeckle1.img</td>
<td>0.275</td>
<td>0.5</td>
<td>3 × 3</td>
</tr>
<tr>
<td>2</td>
<td>despeckle1.img</td>
<td>despeckle2.img</td>
<td>0.195</td>
<td>1</td>
<td>5 × 5</td>
</tr>
<tr>
<td>3</td>
<td>despeckle2.img</td>
<td>despeckle3.img</td>
<td>0.103</td>
<td>2</td>
<td>7 × 7</td>
</tr>
</tbody>
</table>

**You MUST enter a new output file name each time you run a speckle suppression filter. In this exercise, name each pass sequentially (e.g., **despeckle1.img**, **despeckle2.img**, **despeckle3.img**, etc.).**
Use Histograms to Evaluate Images

Next, the ImageInfo method of histogram display is explained.

Histograms

Viewing the histograms of an image is often helpful in determining: the need for filtering, the type of filter to use, and the results of filtering.

You can see a histogram of an image through:

- **Tools | Image Information | View | Histogram** from the ERDAS IMAGINE menu bar
- **Utility | Layer Info | View | Histogram** from the Viewer menu bar

1. Select **Tools | Image Information** from the ERDAS IMAGINE menu bar.

   The ImageInfo dialog opens.

2. Select **File | Open** from the ImageInfo menu bar to select a file. You can also click on the Open icon in the ImageInfo tool bar to select a file.

3. In the Image Files dialog, click on **loplakebed.img** to select it and then click **OK**.

   The information for **loplakebed.img** displays in the ImageInfo dialog.

### Speckle Suppression Filters

The Speckle Suppression filters can be used repeatedly in as many passes as needed. Similarly, there is no reason why successive passes must be done with the same filter.

The following filtering sequence might be useful prior to a classification.

**Table 19-3: Filtering Sequence**

<table>
<thead>
<tr>
<th>Filter</th>
<th>Pass</th>
<th>Sigma Value</th>
<th>Sigma Multiplier</th>
<th>Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee</td>
<td>1</td>
<td>0.26</td>
<td>NA</td>
<td>$3 \times 3$</td>
</tr>
<tr>
<td>Lee</td>
<td>2</td>
<td>0.22</td>
<td>NA</td>
<td>$5 \times 5$</td>
</tr>
<tr>
<td>Local Region</td>
<td>3</td>
<td>NA</td>
<td>NA</td>
<td>$7 \times 7$ or $9 \times 9$</td>
</tr>
</tbody>
</table>
4. In the ImageInfo dialog, select **View | Histogram**, or click the Histogram icon.

The histogram for *loplakebed.img* displays.

5. Select **File | New** from the ImageInfo dialog menu bar to open another ImageInfo dialog.
A second ImageInfo dialog opens.

6. Click on the Open icon in the new ImageInfo dialog.

7. In the Open File dialog, select despeckle1.img from the directory in which you saved it and then click OK.

The information for despeckle1.img displays in the ImageInfo dialog.

8. In the ImageInfo dialog, click the Histogram icon.

The histogram for despeckle1.img displays.

9. Repeat steps (5. through (8. of "Use Histograms to Evaluate Images" to view the subsequent passes of speckle reduction performed (despeckle2.img, despeckle3.img).

10. When finished, click Close in the Histogram viewers.

11. Select File | Close from the ImageInfo dialogs.

12. Select File | Clear in both Viewers.

**Enhance Edges**

In this exercise, you create two images—one that is processed from the original image with the Edge Enhancement function, and one that is processed from the final result of the Speckle Suppression exercise. The objective is to demonstrate the effectiveness of Speckle Suppression prior to Edge Enhancement.

The Edge Enhancement functions in the IMAGINE Radar Interpreter module are similar to the Convolution and Neighborhood options in Image Interpreter.

*NOTE: You can use the Edge Enhancement functions on any type of image—not just radar data.*
1. From the **Radar Interpreter** menu, select **Edge Enhancement**.

The Edge Enhancement dialog opens.

2. In the Edge Enhancement dialog under **Input File**, enter `loplakebed.img`.


4. Under **Output Options**, click on the **Filter** popup list and select **Prewitt Gradient**.

5. Click **OK** in the Edge Enhancement dialog.

The Edge Enhancement dialog closes and a Job Status dialog displays, indicating the progress of the function.

6. Repeat steps (1. through (5.), using `despeckle3.img` as the **Input File** and `edgess.img` as the **Output File**.

**View Results**

1. In Viewer #1, select **File | Open | Raster Layer**.

The Select Layer To Add dialog opens.

2. In the Select Layer To Add dialog, click on the file `edgeuf.img`, then click **OK**.

This is the edge-filtered file derived from the unfiltered radar image file.
3. If necessary, start another Viewer. In Viewer #2, select File | Open | Raster Layer.

4. In the Select Layer To Add dialog, click the file edgess.img, then click OK.

   This is the edge filtered file derived from the speckle-suppressed file.

5. In the ERDAS IMAGINE menu bar, select Session | Tile Viewers to position and size the Viewers so that you can see both of them at once on the screen.

   The results should clearly show a more visible lake bed in the image that was speckle filtered (edgess.img). As an experiment, you may now want to take the unfiltered, edge-enhanced image (edgeuf.img) and pass it through the same Speckle Suppression process done previously. Comparing the result of this experiment with edgess.img should show whether it is better to perform speckle suppression before or after edge enhancement.

   You can experiment with other edge enhancement filters or proceed to the next section.
6. When you are finished comparing the images, select **File | Clear** in Viewer #1 and Viewer #2.

---

**Enhance Image**

The IMAGINE Radar Interpreter module provides three image enhancement categories:

- Wallis Adaptive Filter
- Luminance modification
- Sensor merge

**Wallis Adaptive Filter**

The Wallis adaptive filter is designed to adjust the contrast stretch of an image using only the values within a local region (defined by the window size), which makes it widely applicable. Three possible implementations of this technique are provided: Bandwise, IHS, and PC.

- In the Bandwise operation, the adaptive filter is passed over each band sequentially.
- In the IHS implementation, the input RGB image is transformed into IHS space. The adaptive filter is only passed over the intensity (I) component. The image is then transformed back into RGB.
- In the PC implementation, the input bands are transformed into principal components. The filter is only passed over PC-1. An inverse principal component transform is then performed.

In this section, you apply the Wallis adaptive filter function to an image and observe the results.

---

**Wallis Adaptive Filter**

**Prepare**

Make sure the IMAGINE Radar Interpreter module is running, and display the file **radar_glacier.img** in a Viewer.
1. In the **Radar Interpreter** menu, select **Speckle Suppression**.

   The Radar Speckle Suppression dialog opens.

2. In the Radar Speckle Suppression dialog, enter `radar_glacier.img` as the **Input File**.

3. Type in `despeckle4.img` (in the directory of your choice) as the **Output File**.

4. Select **Gamma-MAP** from the **Filter** popup list.

5. Click **OK** in the Radar Speckle Suppression dialog to filter the image.

   The Radar Speckle Suppression dialog closes and a Job Status dialog displays, indicating the progress of the function.

6. Click **OK** in the Job Status dialog when the process is complete.

7. Select **Image Enhancement** from the **Radar Interpreter** menu.

   The **Image Enhancement** menu opens.

8. Click on **Wallis Adaptive Filter** in the **Image Enhancement** menu.

   The Wallis Adaptive Filter dialog opens.
9. In the Wallis Adaptive Filter dialog under **Input File**, enter the file **despeckle4.img**.

10. Under **Output File**, enter the name **enhanced.img** in the directory of your choice.

11. Under **Data Type**, click **Stretch to Unsigned 8 Bit**.

12. Under **Moving Window**, confirm that the **Window Size** is set to **3**.

   Rough images usually require smaller window sizes ($3 \times 3$), whereas smooth, or cleaner, images can tolerate larger window sizes.

13. Set the **Multiplier** to **3.00**.

14. Click **OK** in the Wallis Adaptive Filter dialog.

   The Wallis Adaptive Filter dialog closes and a Job Status dialog displays, indicating the progress of the function.

15. When the Job Status dialog indicates that the job is 100% complete, click **OK** (if the dialog does not close automatically).

**View Results**

1. In the menu bar of Viewer #2, select **File | Open | Raster Layer**.

   The Select Layer To Add dialog opens.

2. In the Select Layer To Add dialog, select the file **enhanced.img** and then click **OK**.
3. Examine the differences between the two files.

4. When you are finished comparing the images, select **File | Clear** in Viewer #1 and Viewer #2.

**Apply Sensor Merge**

Next, you apply the **Sensor Merge** function to an image and observe the results.

This package of algorithms enables you to combine imagery from different sensors. Examples of this would be radar with TM imagery or multifrequency radar with aeromagnetic data. Three different families of techniques are available: Principal Component, IHS, and Multiplicative (these are similar to those in the Wallis Adaptive Filter option).
Enhance Image

**Principal Component**

In using the **Principal Component** techniques, you have the option to modify the gray scale image in any of the following ways.

- **Remap**—rescales the gray scale image to the range of PC-1.
- **Hist. Match**—matches the histogram of the gray scale image to PC-1.
- **Multiply**—rescales the gray scale image into the 0-1 range and then multiplies the gray scale by PC-1.
- **None**—replaces PC-1 with the input gray scale image.

**IHS**

Using the **IHS** family, two options exist.

- **Intensity**—rescales the gray scale image to the numerical range of the intensity (I) and then substitutes it for I.
- **Saturation**—rescales the gray scale image to the numerical range of saturation (S) and then substitutes it for S.

**Multiplicative**

The **Multiplicative** technique remaps the gray scale image to a 0-1 range. Each band is then sequentially multiplied by the remapped gray scale image.

1. If it is not already open, open the **Image Enhancement** menu by selecting **Image Enhancement** from the **Radar Interpreter** menu.

2. In the **Image Enhancement** menu, select **Sensor Merge**.

   The Sensor Merge dialog opens.
3. In the Sensor Merge dialog under **Gray Scale Image**, enter *flood_tm147_radar.img*.

4. Click on the **Select Layer** popup list and select 4 (the radar image layer).

5. Enter *flood_tm147_radar.img* under **Multispectral Image**.

6. Enter *merge.img* as the **Output File** (in the directory of your choice).

7. Under **Method**, click **IHS**.

8. Under **Resampling Techniques**, click **Nearest Neighbor**.

9. Make sure that **Intensity** is selected under **IHS Substitution**.

10. In the **R**, **G**, and **B** boxes, enter 1 for **R**, 2 for **G**, and 3 for **B** (the TM image layers).

11. Under **Output Options**, click **Stretch to Unsigned 8 bit**.

12. Click **OK** in the Sensor Merge dialog.

    The Sensor Merge dialog closes and a Job Status dialog displays, indicating the progress of the function.

13. When the Job Status dialog indicates that the job is 100% complete, click **OK** (if the dialog does not close automatically).

**View Results**

1. In the menu bar of Viewer #1, select **File | Open | Raster Layer**.

    The Select Layer To Add dialog opens.
2. In the Select Layer To Add dialog, click on the file flood_tm147_radar.img.

3. Click the Raster Options tab at the top of the Select Layer To Add dialog.

4. Under Layers to Colors, select 1 for Red, 2 for Green, and 3 for Blue.

5. Click OK in the Select Layer To Add dialog.

6. In Viewer #2, select File | Open | Raster Layer.

   The Select Layer To Add dialog opens.

7. In the Select Layer To Add dialog, click the file merge.img.

8. Click the Raster Options tab at the top of the Select Layer To Add dialog.

9. Under Layers to Colors, select 1 for Red, 2 for Green, and 3 for Blue.

10. Click OK.
11. Examine the difference between the two files.

12. When you are finished comparing the images, select **File | Clear** in Viewer #1 and Viewer #2.

13. Click **Close** in the **Image Enhancement** menu.

**Apply Texture Analysis**

Next, apply the **Texture Analysis** function to an image and observe the results.

The radar data’s sensitivity to texture is an advantage over other types of imagery where texture is not a quantitative characteristic.

**NOTE:** *Texture analysis has been shown to be useful for geologic discrimination and vegetation classification.*

1. From the **Radar Interpreter** menu, select **Texture Analysis**.

The Texture Analysis dialog opens.
2. In the Texture Analysis dialog, enter flevolandradar.img as the Input File.

3. Enter texture.img (in the directory of your choice) as the Output File.

4. Click on the Operators popup list and select Skewness.

5. Under Moving Window, enter a Window Size of 5.

6. Click OK in the Texture Analysis dialog.

   The Texture Analysis dialog closes and a Job Status dialog displays, indicating the progress of the function.

7. When the Job Status dialog indicates that the job is 100% complete, click OK (if the dialog does not close automatically).

**View Results**

1. In the menu bar of Viewer #1, select File | Open | Raster Layer.

2. In the Select Layer To Add dialog, click on the file flevolandradar.img. This is an agricultural subscene from Flevoland, Holland. This image is from the ERS-1 satellite in C-band with 20-meter pixels.
3. Click **OK** in the Select Layer To Add dialog.

4. In Viewer #2, select **File | Open | Raster Layer**.

5. In the Select Layer To Add dialog, click the file **texture.img**, then click **OK**.

6. Examine the difference between the two files.

7. When you are finished comparing the images, select **File | Clear** in Viewer #1 and Viewer #2.
Adjust Brightness

The **Brightness Adjustment** function works by adjusting pixel DN values so that each line of constant range has the same average. In this way, the image is adjusted to have an overall, even brightness. Therefore, you must tell ERDAS IMAGINE whether the lines of constant range are stored in rows or columns. This depends on the flight path of the sensor and the output raster it produces.

1. Select **Adjust Brightness** from the **Radar Interpreter** menu.

   The Brightness Adjustment dialog opens.

2. In the Adjust Brightness dialog under **Input File**, enter the name of the input file, `flevolandradar.img`.

3. Under **Output File**, enter the name of the output file, `bright.img`, in the directory of your choice.

4. Under **Subset Definition**, select a subset of the file if you want to apply the function to a portion of the image rather than the entire image.

5. Select the **Data Type** under **Output file**. The default is **Float Single**, which is recommended to save disk space.

6. Under **Apply to** in the **Output Options**, select **Column**.

   You can often tell whether the data are stored in rows or columns by looking at the image header data or by consulting documentation supplied with the data.

   *Use the Data View option from the Import/Export dialog or Tools | View Binary Data from the ERDAS IMAGINE menu bar to read the image header data.*

7. Click **OK** in the Adjust Brightness dialog.
The Adjust Brightness dialog closes and a Job Status dialog displays, indicating the progress of the function.

8. When the Job Status dialog indicates that the job is 100% complete, click **OK** (if the dialog does not close automatically).

9. Select **File | Open | Raster layer** in the Viewer menu bar.

10. Navigate to the appropriate directory, then select **bright.img**.

11. After processing is completed, you must view and evaluate the resultant image and decide if another pass is needed to obtain the results you want.


---

**Adjust Slant Range**

This section does not take you through an actual demonstration of the Slant Range Adjustment function, since the full image is required. However, when using this function, you follow the next series of steps.

*The Slant Range Adjustment function applies only to radar data.*

1. Select **Adjust Slant Range** from the **Radar Interpreter** menu.

The Slant Range Adjustment dialog opens.
2. In the Slant Range Adjustment dialog under **Input File**, enter the name of the input file.

3. Under **Output File**, enter the name of the output file in the directory of your choice.

4. Under **Data Type**, select the data type for the **Output File** by clicking on the popup menu. The default is **Float Single**, which is recommended to save disk space but still retain precision.

5. Under **Sensor Info**, you must enter sensor-specific information that is obtained either from the data header information or from the data distributor.

   Use the **Data View** option from the Import/Export dialog or **Tools | View Binary Data** from the ERDAS IMAGINE menu bar to read the image header data.

6. Under **Apply to**, select **Row** or **Column**. See the previous section on “Adjust Brightness” for information about row and column selection.

7. Under the **Surface Definition** section:
   - select **Flat** for shuttle or aircraft data, such as SIR-A or B, or AIRSAR, or
   - select **Spheroid** for satellite data (ERS-1, Fuyo (JERS-1), RADARSAT, etc.)

8. Click **OK** in the Slant Range Adjustment dialog.
   
   A Job Status dialog displays, indicating the progress of the function.

9. When the Job Status dialog indicates that the job is 100% complete, click **OK** (if the dialog does not close automatically).

10. After processing is completed, you must view and evaluate the resultant image and decide if another pass is needed to obtain the desired results.
Section V
IMAGINE Vector™
CHAPTER 20
IMAGINE Vector™

Introduction

The IMAGINE Vector capabilities are designed to provide you with an integrated GIS package for raster and vector processing. The vector tools in ERDAS IMAGINE are based on the ESRI vector data model, therefore ArcInfo vector coverages, ESRI shapefiles, and ESRI SDE vectors can be used in ERDAS IMAGINE with no conversion.

By integrating raster and vector data into one system, you can compile a complete data base of your study area. You can overlay vectors onto current and accurate raster layers to update your vector information, including attributes. You can also use vectors to define an area of interest for an operation, such as classification or enhancement.

The IMAGINE Vector capabilities are divided into these levels:

- **Native**—vector capabilities that are native to ERDAS IMAGINE. These functions provide vector and attribute display and query using multiple selection tools, as well as vector creation and editing.

- **IMAGINE Vector module**—an add-on module for ERDAS IMAGINE that provides you with additional vector utility tools and importers/exporters of various vector formats. The utility tools include coverage clean, build, transform, create-label, raster to vector and vector to raster conversion, and a table tool for an INFO database. The importers/exporters handle the following data formats: DFAD, DGN, DLG, DXF, ETAK, IGES, SDTS, TIGER, and VPF.

---

This tour guide mainly discusses the IMAGINE Vector module. Depending on the package you are using, you may not be able to perform all of the steps. The **Native** capabilities are discussed in "CHAPTER 5: Vector Querying and Editing" on page 109.

This tour guide covers the following topics:

- copying vector data
- manipulating information attributes
- displaying vector layers
- changing vector symbology
- building and cleaning layers

---

The data used in this tour guide are in the `<IMAGINE_HOME>/examples` directory. Replace `<IMAGINE_HOME>` with the directory where ERDAS IMAGINE is installed on your system (e.g., `/usr/imagine/850`).

---

A Digitizing Template is supplied in the information packet for ERDAS IMAGINE V8.5.
The vector data provided with ERDAS IMAGINE do not have write permission, therefore you need to copy them to another directory so that you can edit them. However, vector layers are not simple files. They are stored in directories called workspaces. Using the simple UNIX copy commands does not copy all of the necessary files. You must use the Copy utility provided with ERDAS IMAGINE.

NOTE: If you do not have the full IMAGINE Vector module, you do not need to move the data, since you cannot edit it.

Approximate completion time for this tour guide is 55 minutes.

Copy Vector Data

Prepare

Move to the directory where you want to create your workspace. Start ERDAS IMAGINE from this directory. Make sure this is a directory in which you have read/write permissions.

1. Click on the Vector icon from the ERDAS IMAGINE icon panel.

   The Vector Utilities menu opens.

   Depending on the package you have, you may not see all of these utilities.
2. Select **Copy Vector Layer** from the **Vector Utilities** menu.

The Copy Vector Layer dialog opens.

3. In the Copy Vector Layer dialog under **Vector Layer to Copy**, enter the file name `zone88`. 

**IMAGINE Vector**

This menu lists most of the tools of the IMAGINE Vector module. Through simple dialogs generated from this menu, you can:

- **Clean** a vector coverage
- **Build** topology
- **Copy, Rename, Delete**, and **Externalize** vector layers (native functions)
- **Subset** vector layers
- **Mosaic** polygon layers
- **Transform** vector coverages from digitizer units to real-world units
- Create polygon **Labels**
- Convert **Raster to Vector** layers and **Vector to Raster** layers
- Manipulate information tables using the **Table Tool**
- Generate polygon attributes from a background image (**Zonal Attributes**)
- Convert an **ASCII File to a Point Layer**

**NOTE:** Creating vector layers and vector editing tools are available through the Viewer. If you have the IMAGINE Vector module, you can also use the Import icon to access various external vector data types, such as DFAD, DGN, DLG, DXF, SDTS, TIGER, and VPF.

The vector utilities in the **Vector Utilities** menu should not be run on open vector layers. Close the layer you are using before running the utility, and do not attempt to open the layer until the process is complete.
4. Under **Output Vector Layer**, enter **zone88** in the directory of your choice.

5. Click **OK** in the Copy Vector Layer dialog.

   A Job Status dialog displays to track the progress of the function. When copying is complete, you are ready to proceed with this tour guide.

6. Click **OK** in the Job Status dialog (if it does not dismiss automatically).

   The Copy Vector Layer dialog automatically closes.

7. Click **Close** in the **Vector Utilities** menu to dismiss it.

---

**Manipulate Info Files**

The Table Tool is a utility for managing INFO files. It allows you to view, edit, relate, import/export, copy, rename, delete, merge, and create INFO tables.

**Prepare**

ERDAS IMAGINE must be running and you must have completed the previous section, “Copy Vector Data”.

**Start Table Tool**

1. Click the Vector icon in the ERDAS IMAGINE icon panel.

   The **Vector Utilities** menu opens.

2. In the **Vector Utilities** menu, click on **Start Table Tool**.
The Table Tool opens.

3. Click Close in the Vector Utilities menu to clear it from the screen.

   Display an INFO File
   4. In the Table Tool, click the Open icon or select File | Open from the menu bar.

   The Open Info Table dialog displays.

   5. In the Open Info Table dialog, click the Open icon to select the info directory path.
The Enter the info directory path dialog opens.

6. Under **Directory**, check to be sure that the directory to which you copied **ZONE88** is listed. If it is not, type that directory path in under **Filename** and press Return on your keyboard.

7. In the file list under **Filename**, click **info** and then click **OK**.

The directory path and table list for **info** display in the Open Info Table dialog.

**NOTE:** You can double-click on any table name to browse the table contents before clicking **OK** to open that table.

8. In the Open Info Table dialog under **Table List**, click **ZONE88.PAT** and then click **OK**.

The information for **ZONE88.PAT** displays in the Table Tool CellArray.

![Table Tool - ZONE88.PAT](image-url)

**Create a New Table**

1. In the Table Tool, click on the New icon.

A second Table Tool displays. The new Table Tool CellArray is blank.

2. In the new Table Tool, select **File | New**.

The Create New Table dialog opens.
3. In the Create New Table dialog, enter the name of an **Info Directory Path** in which you have write permission, or click on the Open icon to select the directory to put the new table in. The table list for the path you selected displays in the Create New Table dialog.

4. In the Create New Table dialog under **New Table to Create**, enter the name **ZONE88_NEW.PAT**, and then click **Add**. The New Column dialog opens.

5. In the New Column dialog next to **Column Name** enter **ZONE88-ID**.

6. Next to **Column Type** click on the popup list to select **Integer**.

7. Click **OK** in the New Column dialog.

8. Click **OK** in the Create New Table dialog.

   The new table is entitled **ZONE88_NEW.PAT** and has a column entitled **ZONE88-ID**.
NOTE: If you create a new table by clicking **File | New** in an existing table, the existing table is used as a template and the column definitions of the existing table are listed in the Create New Table dialog as the default columns of the new table.

**Copy From One Table to Another**

1. In the **ZONE88.PAT** Table Tool, click in the column title of **ZONE88-ID** to select that column.

   The column is highlighted in blue.

2. In the **ZONE88.PAT** Table Tool, right-hold in the column title **ZONE88-ID** to select **Column Options | Copy**.

3. In the **ZONE88_NEW.PAT** Table Tool, click on the column title **ZONE88-ID** to select it and then right-hold **Column Options | Paste**.

   The ID numbers for **ZONE88-ID** are entered into the new table, and the **ZONE88-ID** column is highlighted in blue.

**Add a Column to the Table**

1. In the **ZONE88_NEW.PAT** Table Tool, select **Edit | Add A Column** from the menu bar.

   The Add Column dialog opens. This dialog is similar to the New Column dialog.

2. In the Add Column dialog next to **Column Name** enter **NEW_ZONING**.

3. Next to **Column Type** click on the popup list to select **Integer**.

4. Click **OK** in the Add Column dialog.

   The **NEW_ZONING** column is added to **ZONE88_NEW.PAT**.

**Relate the Tables**

Let’s say that you want to compare the **Zoning** information in **ZONE88.PAT** with some new zoning information that you have just received. First, you would need to enter the new zoning information in the **NEW_ZONING** column of the **ZONE88_NEW.PAT** Table Tool.
1. Follow the example and enter imaginary numbers, which somewhat differ from the ZONING numbers, into the NEW_ZONING column. (Enter the numbers by clicking in each cell, typing the number, and pressing Return on your keyboard.)

   NOTE: For this example, it would suffice to only enter numbers for rows 1 through 13. To enter numbers, select Edit | Enable Editing.

   Enter the new Zoning info in this column

   ![Image of Table Tool](image)

   If you had an ASCII file with the new data in it, you could use the Column Options | Import option.

2. In the ZONE88_NEW.PAT Table Tool, click the Save icon to save your changes.

3. In the ZONE88_NEW.PAT Table Tool, select File | Close from the menu bar.

4. In the ZONE88.PAT Table Tool, select Relate | Relate from the menu bar.

   The Relate Manager dialog opens.

5. In the Relate Manager dialog, click New.

   The Creating New Relate dialog opens.
6. In the Creating New Relate dialog under **Relate Name**, enter the name **Comparison**.

7. Under **Source Column**, click on the popup list and select **ZONE88-ID**.

8. Under **Target Info Directory**, enter the path in which you saved the **ZONE88_NEW.PAT** Table Tool (if it is not already listed).

9. Under **Target Table**, click on the popup list and select **ZONE88_NEW.PAT**.

10. Click **OK** in the Creating New Relate dialog.

    The Creating New Relate dialog closes and the information is displayed in the Relate Manager dialog.

11. Click **OK** in the Relate Manager dialog.

    **ZONE88.PAT** is now related to **ZONE88_NEW.PAT**.

    **NOTE:** At this point, you can click **Save** in the Relate Manager dialog to save the relates to a table for future use.
This relationship makes it possible for you to compare the different zoning information.

*NOTE:* Selecting **Utilities | Table Merge** enables you to permanently merge the two tables together.

12. Select **Relate | Drop** in the related Table Tool to drop the related columns.

---

**Change Vector Symbology**

**Prepare**

ERDAS IMAGINE must be running and a Viewer open.

**Display a Layer**

1. In the Viewer menu bar select **File | Open | Vector Layer**.

The Select Layer To Add dialog opens.
2. In the Select Layer To Add dialog, confirm that the **File Type** selected is **Arc Coverage**.

3. Under **Filename**, select **zone88**.

4. Click **OK** in the Select Layer To Add dialog to display the layer in the Viewer.

   The **zone88** polygon layer is displayed in the Viewer, similar to the following example.

   ![Viewer showing zone88 layer](image)

5. In the Viewer menu bar, select **Vector | Symbology**.

   The Symbology dialog opens.

   ![Symbology dialog](image)

   The Symbology dialog has a CellArray, but it does not yet contain any records.
6. In the Symbology dialog, select **Automatic | Unique Value**.

The Unique Value dialog opens.

![](image)

In this example, you want each zone to have a different symbology.

7. In the Unique Value dialog, click on the popup list and select **ZONING**.

8. Click the **Generate New Styles** checkbox to enable it.

9. Click **OK** in the Unique Value dialog.

The Unique Value dialog closes and the CellArray of the Symbology dialog fills with the newly generated styles.

![](image)

10. Click **Apply** in the Symbology dialog to apply this new symbology to the displayed layer.

The vector layer is redrawn with the new symbology. As the Symbology CellArray indicates, red areas are zone 23, green are zone 15, dark blue are zone 4, etc.
Add Pattern Polygon Fill

Now, change the style of zone 15 (green) from a plain solid to a pattern fill over a solid.

1. In the Symbology dialog, hold in the Symbol column for Zone 15 (Row number 14) and select Other.

The Fill Style Chooser dialog opens.

2. In the Fill Style Chooser dialog, click the Custom tab at the top of the dialog.

3. Click the Use Pattern checkbox to activate it.

4. Hold on the Symbol popup list and select Other.

The Symbol Chooser dialog opens.
5. Click the popup list and select **USGS** to display the available USGS symbols.

6. Scroll through the symbol list under **USGS** and click on the **marsh** symbol.

   *NOTE: This zone is not really marsh; this example is simply to show you how the pattern fill option works.*

7. Change the symbol **Size** to **24.00** points.

   The preview window in the Symbol Chooser dialog displays the symbol and the symbol size you have selected.

8. Click **Apply** and then **Close** in the Symbol Chooser dialog.

   The preview window in the Fill Style Chooser dialog displays the symbol and the symbol size you selected in the Symbol Chooser dialog.

9. In the Fill Style Chooser dialog, change both the **X Separation** and **Y Separation** to **10.00** points.

   The new style is reflected in the preview window.

10. Click **Apply** and then **Close** in the Fill Style Chooser dialog.
The Fill Style Chooser dialog closes and the new style displays in the Symbology dialog.

11. Click **Apply** in the Symbology dialog to apply this new style to the vector layer in the Viewer.

The polygons in Zone 15 are redrawn with the pattern fill, as in the following example:

12. In the Symbology dialog, select **File | Save As**.

The Save Symbology As dialog opens.

13. In the Save Symbology As dialog, enter a name for the symbology file, such as `zone88.evs`, in the directory of your choice.

If you use the same root name as your coverage, then this is the default symbology file when you open this vector layer later.
14. Click **OK** to save the file.

15. Click **Close** in the Symbology dialog.

16. Select **File | Clear** from the Viewer menu bar.

---

**Build Topology**

After you have created or edited a vector layer, you must clean or build it to create or maintain the topology and reset the tabular information. If possible, it is always better to run Build instead of Clean. Clean is required only if lines intersect at locations other than nodes, or if there are dangling lines that you wish to automatically delete. This is not the case in this exercise, so you run Build on the new vector layer you just created.

The instructions for running Clean are included at the end of this tour guide for your reference.

⚠️

*Do not clean or build an open vector layer and do not attempt to open a layer that is being cleaned or built.*

📖

*In order to complete this section, you must have already completed the exercises in "CHAPTER 5: Vector Querying and Editing" on page 109. A file you created there, zone88subset, is used in this example.*

1. Click the Vector icon in the ERDAS IMAGINE icon panel.

The **Vector Utilities** menu opens.

2. Select **Build Vector Layer Topology** from the **Vector Utilities** menu.

The Build Vector Layer Topology dialog opens.
3. In the Build Vector Layer Topology dialog under **Input Coverage**, enter `zone88subset` (or the name you used for the subset in “CHAPTER 5: Vector Querying and Editing” on page 109), making sure you are in the proper directory.

4. The **Feature** should be **Polygon**.

5. Click **OK** in the Build Vector Layer Topology dialog.

A Job Status dialog displays, indicating the progress of the function.

6. Click **OK** in the Job Status dialog when the build is complete (unless your Preferences are set to clear the Job Status dialog upon job completion).

7. Display the vector layer and attribute information to verify that the build ran successfully.

---

**Clean Vector Layer**

1. In the **Vector Utilities** menu, click **Clean Vector Layer**.

The Clean Vector Layer dialog opens.
2. In the Clean Vector Layer dialog under **Input Coverage**, enter the name of the layer to be cleaned (e.g., `zone88`).

3. Click the **Write to New Output** checkbox and enter a name for the new file. This file name must not be longer than 13 characters.

   **NOTE:** Although creating a new file is not necessary, it is recommended.

4. The **Feature** should be **Polygon**.

5. For this example, accept the default values for **Fuzzy Tolerance** and **Dangle Length**.

---

### Fuzzy Tolerance and Dangle Length

In general, fuzzy tolerance can be calculated using this formula:

$$
\left( \frac{\text{scale}}{\# \text{ of inches per coverage unit}} \right) \times 0.002
$$

For example, an input source map at a scale of 1:600 with coverage units in feet would have a fuzzy tolerance of .1:

$$
\left( \frac{600}{12} \right) \times 0.002 = 0.1
$$

The dangle length value is based on the length, in map units, of the longest overshoot that exists in the coverage. The value specified removes any dangling lines that are less than, or equal to, the value you specify. Any lines longer than the length specified remain in the coverage. To measure the dangle length needed for your coverage, you can use the Measurement Tool to measure lines in the coverage.
6. Click **OK** in the Clean Vector Layer dialog.

   A Job Status dialog displays, indicating the progress of the function.

7. When the clean is completed, click **OK** in the Job Status dialog (unless your Preferences are set to clear the Job Status dialog upon job completion).

   For more information about IMAGINE Vector, see "APPENDIX A: Additional Information" on page 595.
Section VI
Appendix
Section VI Appendix
APPENDIX A
Additional Information

**Classification**
This section describes menus and tools you use with Classification.

*The tour guide,* "CHAPTER 4: Classification", *starts on page 101.*

*For an explanation of supervised and unsupervised classification, see "Supervised vs. Unsupervised Classification" on page 455.*

**Flow Chart**
The basic steps for both supervised and unsupervised classification are similar.
Advanced Classification

This section describes the advanced classification functions.

---


Signature Editor

The columns in the Signature Editor are discussed in the following table.

<table>
<thead>
<tr>
<th><strong>Table A-1 Signature Editor</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Class #</strong></td>
</tr>
<tr>
<td>&gt; (Current Signature)</td>
</tr>
<tr>
<td><strong>Signature Name</strong></td>
</tr>
<tr>
<td><strong>Color</strong></td>
</tr>
<tr>
<td>Red, Green, and Blue</td>
</tr>
<tr>
<td><strong>Value</strong></td>
</tr>
<tr>
<td><strong>Order</strong></td>
</tr>
<tr>
<td><strong>Count</strong></td>
</tr>
<tr>
<td><strong>Prob.</strong></td>
</tr>
<tr>
<td><strong>P - Parametric</strong></td>
</tr>
<tr>
<td><strong>I - Inverse Covariance Matrix</strong></td>
</tr>
<tr>
<td><strong>H - Histogram</strong></td>
</tr>
<tr>
<td><strong>A - Area of Interest</strong></td>
</tr>
<tr>
<td><strong>FS - Feature Space</strong></td>
</tr>
</tbody>
</table>
This section describes the menus and tools you use with the Fourier Transform Editor.


The Fourier Editor menu bar contains the following options.

<table>
<thead>
<tr>
<th>File</th>
<th>Edit</th>
<th>Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>Undo</td>
<td>Filters...</td>
</tr>
<tr>
<td>Open...</td>
<td>Filter Options...</td>
<td>Circular Mask...</td>
</tr>
<tr>
<td>Revert</td>
<td></td>
<td>Rectangular Mask...</td>
</tr>
<tr>
<td>Save</td>
<td></td>
<td>Wedge Mask...</td>
</tr>
<tr>
<td>Save All</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save As...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverse Transform...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close All</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Fourier Editor tool bar contains the following icons.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Click to open an .fft layer.</td>
</tr>
<tr>
<td>Create</td>
<td>Click to create a new Fourier Editor.</td>
</tr>
<tr>
<td>Save</td>
<td>Click to save the currently displayed .ftf layer.</td>
</tr>
<tr>
<td>Clear</td>
<td>Click to clear the Fourier Editor.</td>
</tr>
<tr>
<td>Select</td>
<td>Click to use the Select tool to get coordinate information from the .fft layer.</td>
</tr>
</tbody>
</table>
All operations performed using the tool bar icons can also be performed with the menu bar options. The mouse-driven tools are more interactive and may be easier to use. On the other hand, the menu options allow you to enter precise coordinates.

| Low-Pass Filter       | Click to perform a low-pass filtering operation. The window used is the one selected under Edit | Filter Options... |
|-----------------------|-------------------------------------------------------------------------------------------------|
| High-Pass Filter      | Click to perform a high-pass filtering operation. The window used is the one selected under Edit | Filter Options... |
| Circular Mask         | Click to use a circular mask. The window used is the one selected under Edit | Filter Options... |
| Rectangular Mask      | Click to use a rectangular mask. The window used is the one selected under Edit | Filter Options... |
| Wedge Mask            | Click to use a wedge mask. The window used is the one selected under Edit | Filter Options... |
| Run                   | Click to perform the Inverse Fourier Transform of the displayed layer.                          |

All operations performed using the tool bar icons can also be performed with the menu bar options. The mouse-driven tools are more interactive and may be easier to use. On the other hand, the menu options allow you to enter precise coordinates.

---

**Image Catalog**

This section describes some of the menus and tools you work with using the Image Catalog.


The ERDAS IMAGINE Image Catalog is used to record information about images for easy access and viewing.

Image Catalog functions are available via:

- the Image Catalog menu bar across the top of the window
- the Image Catalog tool bar below the Image Catalog menu bar
- a **Quick View** menu that opens when you right-hold the mouse cursor in the number column of the Image Catalog window

Some functionality is duplicated in these areas. For example, to open an existing catalog, you can:

- select **File | Open Catalog** from the Image Catalog menu bar
• click the Open Existing Catalog icon on the viewer tool bar

**Image Catalog Menu Bar**

The menu bar across the top of the Image Catalog window has the following options:

<table>
<thead>
<tr>
<th>File</th>
<th>Edit</th>
<th>View</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Catalog...</td>
<td>Catalog Layout...</td>
<td>Graphical Query Viewer...</td>
</tr>
<tr>
<td>New Catalog...</td>
<td>Catalog Image...</td>
<td>Form View...</td>
</tr>
<tr>
<td>Archive...</td>
<td>Manual Entry...</td>
<td>View Image (same Viewer)</td>
</tr>
<tr>
<td>Restore...</td>
<td>Delete Image</td>
<td>View Image (new Viewer)</td>
</tr>
<tr>
<td>Close</td>
<td></td>
<td>Image Info...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use Custom Layout...</td>
</tr>
</tbody>
</table>

**Image Catalog Tool Bar**

The following icons are present in the Image Catalog tool bar:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Click to open an existing catalog.</td>
</tr>
<tr>
<td>Display Single</td>
<td>Click to display the selected image in a single Viewer. A new Viewer is created the first time an image is displayed. Thereafter, any new image displayed replaces the one in the original Viewer.</td>
</tr>
<tr>
<td>Display Another</td>
<td>Click to display the selected image in another Viewer. A new Viewer is created for each image displayed.</td>
</tr>
<tr>
<td>Info</td>
<td>Click to invoke the ImageInfo utility for the selected image.</td>
</tr>
<tr>
<td>Add Image</td>
<td>Click to add one or more images to the catalog.</td>
</tr>
<tr>
<td>Visual Query</td>
<td>Click to display the Image Catalog Graphical Viewer.</td>
</tr>
</tbody>
</table>
The Image Catalog keeps a record of the data in each of the image files you have added. The default fields of data characteristics are listed in the following table:

Table A-6 Image Catalog Data Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filename</td>
<td>The name of the image file minus the path.</td>
</tr>
<tr>
<td>Layers</td>
<td>The number of layers in the file. For a thematic image, this is almost always 1. For continuous images, this is the number of spectral bands.</td>
</tr>
<tr>
<td>Rows</td>
<td>The number of rows of pixels in the image.</td>
</tr>
<tr>
<td>Columns</td>
<td>The number of columns of pixels in the image.</td>
</tr>
<tr>
<td>Type</td>
<td>Data can be thematic or athematic. Thematic data is GIS-type data where each pixel value has a categorical meaning. Athematic data is continuous data where the pixel value is a measure.</td>
</tr>
<tr>
<td>Pixel</td>
<td>The type of storage used for each pixel. See the <em>ERDAS Field Guide</em> for more information on pixel types.</td>
</tr>
<tr>
<td>Projection</td>
<td>The name of the projection that was used to georeference the image. If this cell is blank, then the image is not georeferenced and its footprint cannot be displayed in the Graphical Query viewer.</td>
</tr>
<tr>
<td>Ulx</td>
<td>The upper left map coordinate of the file. Based on the amount of projection information available for the image, this can be presented in latitude/longitude, map coordinates, or pixel coordinates. If map coordinates or pixel coordinates are displayed, then there is insufficient projection information available to display the image footprint in the Graphical Query viewer.</td>
</tr>
<tr>
<td>Uly</td>
<td>The upper left Y coordinate (see Ulx).</td>
</tr>
</tbody>
</table>
The maps which are displayed in the Image Catalog are Arc/Info coverages. The coverages are arranged in four groups:

- global
- regional
- subregional
- local

The intent of these arbitrary groupings is to group the coverages in a small scale (world) to a large scale (local) fashion.

1. Edit `SIMAGINE_HOME/etc/catalog.cov` or create it and put it in a directory in `ERDAS_ETC_PATH`.
2. Refer to the following information regarding syntax.

### Table A-6 Image Catalog Data Characteristics (Continued)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lrx</td>
<td>The lower right X coordinate (see Ulx).</td>
</tr>
<tr>
<td>Lry</td>
<td>The lower right Y coordinate (see Ulx).</td>
</tr>
<tr>
<td>Units</td>
<td>The units used for the Ulx, Uly, Lrx, and Lry coordinates. If <code>dd</code> does not display here, then there is insufficient information to convert the units to lat/lon.</td>
</tr>
<tr>
<td>Cellsize</td>
<td>The size in the horizontal direction for each pixel in the image.</td>
</tr>
<tr>
<td>CenterX</td>
<td>The lat/lon X coordinate of the center of the image.</td>
</tr>
<tr>
<td>CenterY</td>
<td>The lat/lon Y coordinate of the center of the image.</td>
</tr>
<tr>
<td>Catuser</td>
<td>The user name of the person who cataloged the image.</td>
</tr>
<tr>
<td>Logdate</td>
<td>The date on which the image was logged into the catalog.</td>
</tr>
<tr>
<td>Status</td>
<td>Indicates whether an image is on-line, off-line, or archived. If an image is archived, then the Arc fields describe its archive information.</td>
</tr>
<tr>
<td>Arclabel</td>
<td>The label which identifies the particular archive media label.</td>
</tr>
<tr>
<td>Arcmedia</td>
<td>The type of media is identified, which is either tape_8mm or tape_9_track.</td>
</tr>
<tr>
<td>Arcuser</td>
<td>The user name of the person who archived the data.</td>
</tr>
<tr>
<td>Arcdate</td>
<td>The date on which the file was archived.</td>
</tr>
<tr>
<td>Arcsize</td>
<td>The number of bytes that the image occupies on the archive media.</td>
</tr>
<tr>
<td>Arcpos</td>
<td>The position of the archived file on the media.</td>
</tr>
<tr>
<td>Arcloc</td>
<td>The location of the archive media.</td>
</tr>
<tr>
<td>Path</td>
<td>The complete path that specifies the directory in which the image is found on-line.</td>
</tr>
</tbody>
</table>
ArcInfo coverages to be used for Image Catalog backdrops are specified in the file catalog.cov, which is found in a directory in the ERDAS_ETC_PATH (the current directory, $HOME/.imagine830, or $IMAGINE_HOME/etc). In this file, you can specify a vector symbology (EVS) file to be used for the style of the coverages in that group. Within each group, you can specify global, regional, subregional, and local coverages to be displayed, depending on the level of detail appropriate for the area being viewed.

When using EVS files with Catalog backdrops:

- Attributes-based symbology in the EVS file is not used. All features are drawn with the default style defined in the EVS file.
- For the fill style specified in the EVS file for polygons, only the solid color and outline is used—the pattern fill is not used. If there is not a solid color or outline specified, the polygons are drawn in the preference style.
- For line styles specified in the EVS file for lines or polygon outlines, only the outer color and line width is used. No double lines or mark/gap patterns is used. The line width should be specified in paper units. As a rule of thumb, you can assume that 1 point = 1/72 inch is approximately 1 screen pixel.
- For symbol styles specified in the EVS file for points, the symbol, size, and color is used. The symbol size should be specified in paper units.

In the syntax of the catalog.cov file that follows, the conventions used are:

- **coverpath**—the name of the coverage file (including path).
- **evspath**—the optional name of the vector symbology file to be used for the style of the coverages in the group.
- #—the beginning of an optional comment line.
- [...]—a key word (including the square brackets).
- |—indicates that you should use one of the key words specified.
- ...—indicates that there may be multiple coverages specified.

The file must contain at least one coverage name.

**Syntax 1: A single coverage**

Enter the following commands for a single coverage:

```
#
The single coverage to be used as the backdrop at all times.
#
coverpath
```
For example:

```
The single coverage to be used as the backdrop at all times. It is
rendered using the catalog default area styles specified in the catalog
preferences.

$IMAGINE_HOME/etc/backdrops/world
```

**Syntax 2: Detail-level coverages**

Enter the following commands for detail-level coverages:

```
The coverage to be used as the backdrop for global detail
coverpath
[endglobal]
The coverages to be used as the backdrop for regional detail
coverpath ...
[endregional]
The coverages to be used as the backdrop for subregional detail
coverpath ...
[endsubregional]
The coverages to be used as the backdrop for local detail
coverpath ...
[endlocal]
```

For example:

```
The area coverage to be used as the backdrop. Depending on the level of
detail appropriate and the area being viewed, one coverage will be
drawn. It is rendered using the catalog default area styles specified in
the catalog preferences.
#
The coverage to be used as the backdrop for global detail
#
$IMAGINE_HOME/etc/backdrops/world
[endglobal]
The coverages to be used as part of the backdrop for regional detail
#
$IMAGINE_HOME/etc/backdrops/central
Syntax 3: Multiple coverage types

Enter the following commands for multiple coverage types:

```shell
# # A group of area, line, or point coverages to be used as part of the # backdrop. Any number of these groups may be present in the file. Based # on the appropriate level of detail and area being viewed, one coverage # from each group will be drawn. # [areas | lines | points] evspath # # The coverage to be used as part of the backdrop for global detail # coverpath [endglobal] # # The coverages to be used as part of the backdrop for regional detail # coverpath ... [endregional] # # The coverages to be used as part of the backdrop for subregional detail # coverpath ... [endsubregional] # # The coverages to be used as part of the backdrop for local detail # coverpath ... [endlocal] [endareas | endlines | endpoints]
```
For example:

 #
 # A group of area coverages to be used as part of the backdrop. Depending
 # on the level of detail appropriate and the area being viewed, one
 # coverage from this group will be drawn. It will be rendered using the
 # default area styles specified in the catalog preferences.
 #
 [areas]
 #
 # The coverage to be used as part of the backdrop for global detail
 #
 $IMAGINE_HOME/etc/backdrops/world
 [endglobal]
 #
 # The coverages to be used as part of the backdrop for regional detail
 #
 $IMAGINE_HOME/etc/backdrops/central
 $IMAGINE_HOME/etc/backdrops/usa
 $IMAGINE_HOME/etc/backdrops/africa
 $IMAGINE_HOME/etc/backdrops/asia
 $IMAGINE_HOME/etc/backdrops/australia
 $IMAGINE_HOME/etc/backdrops/europe
 $IMAGINE_HOME/etc/backdrops/southamerica
 [endregional]
 #
 # The coverages to be used as part of the backdrop for subregional detail
 #
 $IMAGINE_HOME/etc/backdrops/midwest
 $IMAGINE_HOME/etc/backdrops/northcentral
 $IMAGINE_HOME/etc/backdrops/northeast
 $IMAGINE_HOME/etc/backdrops/northwest
 $IMAGINE_HOME/etc/backdrops/south
 $IMAGINE_HOME/etc/backdrops/southcentral
 $IMAGINE_HOME/etc/backdrops/southwest
 [endsubregional]
 #
 # The coverages to be used as part of the backdrop for local detail
 #
 [endlocal]
 [endareas]
 #
 # A single area coverage to be used as part of the backdrop at all times. It
 # will be rendered with the default area (polygon) style in
 # /data/backdrops/political.evs.
 #
 [areas] /data/backdrops/political.evs
 /data/backdrops/political
 [endareas]
 #
 # A single area coverage to be used as part of the backdrop at all times. It
 # will be rendered with the default area (polygon) style in
Image Interpreter

This section describes some of the functions and tools you use with the Image Interpreter.

The tour guide, "CHAPTER 11: Image Interpreter", begins on page 239.

Image Interpreter Functions

The functions in Image Interpreter are briefly described in the following table:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPATIAL ENHANCEMENT</td>
<td>These functions enhance the image using the values of individual and surrounding pixels.</td>
</tr>
<tr>
<td>Convolution*</td>
<td>Uses a matrix to average small sets of pixels across an image.</td>
</tr>
<tr>
<td>Non-directional Edge</td>
<td>Averages the results from two orthogonal 1st-derivative edge detectors.</td>
</tr>
<tr>
<td>Focal Analysis</td>
<td>Allows you to perform one of several analyses on class values in an image file, using a process similar to convolution filtering.</td>
</tr>
</tbody>
</table>
Image Interpreter

Texture*
Defines texture as a quantitative characteristic in an image.

Adaptive Filter*
A filter that “adapts” the contrast stretch to the region of interest (the area within the moving window).

Statistical Filter*
Improves pixel values that fall outside the user-selected statistical range.

Resolution Merge
Merges imagery of different spatial resolutions.

Crisp
Sharpen the overall scene luminance without distorting the thematic content of the image.

Radiometric Enhancement
These functions enhance the image using the values of individual pixels.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUT (Lookup Table) Stretch</td>
<td>Creates an output image that contains the data values as modified by a lookup table.</td>
</tr>
<tr>
<td>Histogram Equalization</td>
<td>Applies a nonlinear contrast stretch that redistributes pixel values so that there are approximately the same number of pixels with each value within a range.</td>
</tr>
<tr>
<td>Histogram Match</td>
<td>Mathematically determines a lookup table that converts the histogram of one image to resemble the histogram of another.</td>
</tr>
<tr>
<td>Brightness Inversion</td>
<td>Allows both linear and nonlinear reversal of the image intensity range.</td>
</tr>
<tr>
<td>Haze Reduction*</td>
<td>De-hazes Landsat 4 and 5 Thematic Mapper data and panchromatic data.</td>
</tr>
<tr>
<td>Noise Reduction*</td>
<td>Removes noise using an adaptive filter.</td>
</tr>
<tr>
<td>Destripe TM Data</td>
<td>Removes striping from a raw TM4 or TM5 data file.</td>
</tr>
</tbody>
</table>

Spectral Enhancement
These functions enhance the image by transforming the values of each pixel on a multiband basis.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Components</td>
<td>A method of compressing redundant data values into fewer bands, which are often more interpretable than the source data.</td>
</tr>
<tr>
<td>Inverse Principal Components</td>
<td>Performs an inverse principal components analysis.</td>
</tr>
<tr>
<td>Decorrelation Stretch</td>
<td>Applies a contrast stretch to the principal components of an image.</td>
</tr>
<tr>
<td>Tasseled Cap</td>
<td>Rotates the data structure axes to optimize data viewing for vegetation studies.</td>
</tr>
<tr>
<td>RGB to IHS</td>
<td>Transforms red, green, blue values to intensity, hue, saturation values.</td>
</tr>
<tr>
<td>IHS to RGB</td>
<td>Transforms intensity, hue, saturation values to red, green, blue values.</td>
</tr>
<tr>
<td>Indices</td>
<td>Commonly used mineral and vegetation ratios and indices.</td>
</tr>
</tbody>
</table>
Table A-7 Image Interpreter Functions (Continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Color</td>
<td>Simulates natural color for multispectral data.</td>
</tr>
<tr>
<td>HYPERSPECTRAL TOOLS</td>
<td>These functions enhance the image by helping to compensate for atmospheric contamination of the spectra.</td>
</tr>
<tr>
<td>Automatic Relative Reflectance</td>
<td>Implements the following algorithms: Normalize, IAR Reflectance, and Rescale.</td>
</tr>
<tr>
<td>Automatic Log Residuals</td>
<td>Implements the following algorithms: Normalize, Log Residuals, and Rescale.</td>
</tr>
<tr>
<td>Normalize</td>
<td>Shifts each (pixel) spectrum to the same overall average brightness.</td>
</tr>
<tr>
<td>IAR Reflectance</td>
<td>Internal Average Relative Reflectance—Calculates a relative reflectance by dividing each spectrum (pixel) by the scene average spectrum.</td>
</tr>
<tr>
<td>Log Residuals</td>
<td>Corrects the image for atmospheric absorption, systemic instrumental variation, and illuminance differences between pixels.</td>
</tr>
<tr>
<td>Rescale</td>
<td>Maintains the 3-dimensional integrity of the data values.</td>
</tr>
<tr>
<td>Spectrum Average</td>
<td>Enables you to average any set of pixels you define; they do not need to be contiguous, and there is no limit on the number of pixels averaged.</td>
</tr>
<tr>
<td>Signal to Noise</td>
<td>Commonly used to evaluate the usefulness or validity of a particular band.</td>
</tr>
<tr>
<td>Mean per Pixel</td>
<td>Outputs a single band, regardless of the number of input bands, for sensor evaluation.</td>
</tr>
<tr>
<td>Spectral Profile</td>
<td>Enables you to view the reflectance spectrum of a designated pixel.</td>
</tr>
<tr>
<td>Spatial Profile</td>
<td>Enables you to view the reflectance(s) of the pixels along a user-defined polyline.</td>
</tr>
<tr>
<td>Surface Profile</td>
<td>Enables you to view any layer (band) or subset in the data cube as a relief surface.</td>
</tr>
<tr>
<td>Spectral Library</td>
<td>Laboratory measured reflectance spectra of reference minerals, often of high purity and defined particle size.</td>
</tr>
<tr>
<td>FOURIER ANALYSIS</td>
<td>These functions enhance the image by applying a Fourier Transform to the data and enable you to edit a Fourier image.</td>
</tr>
<tr>
<td>Fourier Transform*</td>
<td>A highly efficient version of the Discrete Fourier Transform (DFT).</td>
</tr>
<tr>
<td>Fourier Transform Editor*</td>
<td>Enables you to edit Fourier images using many interactive tools and filters.</td>
</tr>
<tr>
<td>Inverse Fourier Transform*</td>
<td>Computes the inverse two-dimensional Fast Fourier Transform of the spectrum stored.</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Fourier Magnitude*</td>
<td>Converts the Fourier Transform image into an image file, which can be opened in the Viewer.</td>
</tr>
<tr>
<td>Periodic Noise Removal*</td>
<td>Automatically removes striping and other periodic noise from images.</td>
</tr>
<tr>
<td>Homomorphic Filter*</td>
<td>Enhances imagery using an illumination/reflectance model.</td>
</tr>
<tr>
<td>TOPOGRAPHIC ANALYSIS</td>
<td>These functions provide tools for enhancing and analyzing topography in images.</td>
</tr>
<tr>
<td>Slope</td>
<td>Allows you to calculate slope.</td>
</tr>
<tr>
<td>Aspect</td>
<td>Allows you to calculate aspect.</td>
</tr>
<tr>
<td>Level Slice</td>
<td>Divides the data values in a user-defined number of bins.</td>
</tr>
<tr>
<td>Shaded Relief*</td>
<td>Allows you to produce grayscale topographical relief images.</td>
</tr>
<tr>
<td>Painted Relief*</td>
<td>Allows you to produce colorized topographical images</td>
</tr>
<tr>
<td>Topographic Normalize</td>
<td>Allows you to reduce topographic effect in digital imagery by applying transformations such as the Lambertian or Non-Lambertian reflectance models.</td>
</tr>
<tr>
<td>Raster Contour*</td>
<td>Creates contour lines from an input elevation layer.</td>
</tr>
<tr>
<td>Surface</td>
<td>Generates a raster surface from various data types.</td>
</tr>
<tr>
<td>Viewshed*</td>
<td>Allows you to display hidden or visible areas within a set range.</td>
</tr>
<tr>
<td>Anaglyph*</td>
<td>Generates a color anaglyph image from a raster image and a DEM image.</td>
</tr>
<tr>
<td>DEM Height Converter*</td>
<td>Converts elevation data in a DEM from one set of units to another set of units.</td>
</tr>
<tr>
<td>GIS ANALYSIS</td>
<td>These functions provide functions for simple GIS analysis.</td>
</tr>
<tr>
<td>Neighborhood</td>
<td>Evaluates the region surrounding the pixel of interest.</td>
</tr>
<tr>
<td>Clump</td>
<td>Identifies clumps, which are contiguous groups of pixels in one thematic class.</td>
</tr>
<tr>
<td>Sieve</td>
<td>Filters clumps of specific sizes.</td>
</tr>
<tr>
<td>Eliminate</td>
<td>Eliminates small areas or classes and fills them based on the values of neighboring pixels.</td>
</tr>
<tr>
<td>Perimeter</td>
<td>Finds the perimeter of each clump. Use only on a file which is the output of the clump analysis.</td>
</tr>
<tr>
<td>Search</td>
<td>Performs a proximity analysis on an input thematic layer and creates an output thematic layer. The resulting output contains new class values that are assigned based on proximity to user-specified input class values.</td>
</tr>
<tr>
<td>Index</td>
<td>Creates a composite image file by adding together the class values of two to four “weighted” input raster files.</td>
</tr>
</tbody>
</table>
Table A-7 Image Interpreter Functions (Continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlay</td>
<td>Creates a composite output image file by combining two to four input image files based on the minimum or maximum values of the input files.</td>
</tr>
<tr>
<td>Matrix</td>
<td>Analyzes two input raster files and produces a new file. The new file contains class values that indicate how the class values from the original files overlap.</td>
</tr>
<tr>
<td>Recode</td>
<td>Assigns a new class value number to any or all classes of an existing image file, creating an output file using the new class numbers.</td>
</tr>
<tr>
<td>Summary*</td>
<td>Produces cross-tabulation statistics that compare class value areas between two thematic files.</td>
</tr>
<tr>
<td>Zonal Attributes</td>
<td>Computes statistics about a raster layer for each polygon in a polygon coverage.</td>
</tr>
<tr>
<td>UTILITIES</td>
<td>These functions provide basic image processing utilities.</td>
</tr>
<tr>
<td>Change Detection</td>
<td>Allows you to compute and highlight the differences between two images.</td>
</tr>
<tr>
<td>Functions</td>
<td>Allows you to use a specific Spatial Modeler function for processing.</td>
</tr>
<tr>
<td>Operators</td>
<td>Provides six mathematical operations: addition (+), subtraction (-), division (/), multiplication (*), square root (POWER), and modulus (MOD).</td>
</tr>
<tr>
<td>RGB Clustering*</td>
<td>Applies a simple classification and data compression technique to 24-bit data.</td>
</tr>
<tr>
<td>Adv. RGB Clustering</td>
<td>Performs RGB clustering on one or more input image files.</td>
</tr>
<tr>
<td>Layer Stack</td>
<td>Allows you to rearrange or remove layers of data in a file.</td>
</tr>
<tr>
<td>Subset*</td>
<td>Allows you to copy a selected portion, or subset, of an input data file into an output data file.</td>
</tr>
<tr>
<td>Create File</td>
<td>Allows you to create a file of specified size, data type, etc.</td>
</tr>
<tr>
<td>Rescale</td>
<td>Allows ERDAS IMAGINE to utilize any data type as input and output.</td>
</tr>
<tr>
<td>Mask</td>
<td>Uses a image file to select (mask) specific areas from a corresponding raster file and use those areas to create one or more new files. The areas to mask are selected by class value.</td>
</tr>
<tr>
<td>Degrade*</td>
<td>Enables you to reduce the resolution of an image.</td>
</tr>
<tr>
<td>Replace Bad Lines</td>
<td>Replaces bad lines with the line above, below, or an average.</td>
</tr>
<tr>
<td>Vector to Raster</td>
<td>Allows you to convert a vector coverage to a raster coverage.</td>
</tr>
<tr>
<td>Reproject*</td>
<td>Allows you to reproject or transform raster image data from one map projection to another.</td>
</tr>
</tbody>
</table>

* Indicates functions that are *not* graphical models.
This section describes the menu and tools used with the Import/Export function.

The tour guide, “CHAPTER 8: Import/Export”, begins on page 161

Data View Menu Bar

The Data View menu bar contains access to these functions:

<table>
<thead>
<tr>
<th>File</th>
<th>Edit</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>Copy</td>
<td>Help for Data View</td>
</tr>
<tr>
<td>Open File...</td>
<td>Copy</td>
<td></td>
</tr>
<tr>
<td>Open Tape...</td>
<td>Rewind</td>
<td></td>
</tr>
<tr>
<td>Save Tape/File Structure</td>
<td>Define Data Structure...</td>
<td></td>
</tr>
<tr>
<td>Save Record</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close All</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data View Tool Bar

The Data View tool bar contains icons that provide quick access to these functions:

<table>
<thead>
<tr>
<th>Open</th>
<th>Open a File. This allows you to select the file to view in the Data Viewer dialog.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data View</td>
<td>Start a new Data View window. This allows you to open an additional Data Viewer dialog without closing the current Data Viewer dialog.</td>
</tr>
<tr>
<td>Copy</td>
<td>Copy selected text from data field or Tape Structure to a paste buffer. Text can be pasted in a Text Editor document.</td>
</tr>
<tr>
<td>Rewind</td>
<td>Rewind to the beginning of tape.</td>
</tr>
</tbody>
</table>
ImageInfo Menu Bar

The ImageInfo menu bar contains access to these functions:

Table A-10 ImageInfo Menu Bar

<table>
<thead>
<tr>
<th>File</th>
<th>Edit</th>
<th>View</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Change Layer Name</td>
<td></td>
<td>Help for Image Info</td>
</tr>
<tr>
<td>New</td>
<td>Change Layer Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Print Options</td>
<td>Delete Current Layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Print</td>
<td>Compute Statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close</td>
<td>Compute Pyramid Layers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close All</td>
<td>Delete Pyramid Layers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Add/Change Map Info</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delete Map Info</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Add/Change Projection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delete Projection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delete Calibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raster Attribute Editor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keyboard shortcuts to access these menu options are indicated by underlines. For example, to access the File menu from the keyboard, press the Meta key and f. Once the File menu is displayed, use the arrow keys to select an option and then press the Return or Enter key.

ImageInfo Tool Bar

The ImageInfo tool bar contains icons that provide quick access to these functions:

Table A-11 ImageInfo Tool Bar

<table>
<thead>
<tr>
<th>Open</th>
<th>Open a File. This allows you to select the image file containing the information you want to display in the ImageInfo dialog.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImageInfo</td>
<td>Start a new ImageInfo dialog. This allows you to open an additional ImageInfo dialog to display information for another image file without closing the current ImageInfo dialog.</td>
</tr>
<tr>
<td>Print</td>
<td>Print the image information currently displayed.</td>
</tr>
<tr>
<td>Calculate</td>
<td>Compute statistics for the file based on the current image information. This is useful if you make changes in the dialog and need to recompute the statistics based on these changes.</td>
</tr>
</tbody>
</table>
Map Composer

This section describes some things to consider when using the Map Composer.

The tour guide, "CHAPTER 3: Map Composer", begins on page 73.

When you create a map or a presentation graphic using Map Composer, you need to have a plan or a blueprint to follow. You must know the output size, annotation required, etc. This information determines the steps needed to create and output your map in ERDAS IMAGINE.

For this exercise, the specifications of the map are planned for you, but in the future, you need to do this groundwork before starting your composition. The map you create in this tutorial resembles the following illustration:
In the drawing, it is indicated that the map should have tick marks, scale bars, a north arrow, legend, title, and other descriptive text.
Maps are created and displayed in Map Composer viewers, appearing similar to the following example.
The menu bar across the top of the Map Composer viewer has the following options:

Table A-12 Map Composer Menu Bar

<table>
<thead>
<tr>
<th>File</th>
<th>Utility</th>
<th>View</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>New...</td>
<td>Inquire Cursor...</td>
<td>Arrange Layers...</td>
<td>Tools ...</td>
</tr>
<tr>
<td>Open...</td>
<td>Inquire Box...</td>
<td>Zoom</td>
<td>Undo</td>
</tr>
<tr>
<td>Save</td>
<td>Inquire Color...</td>
<td>Scale</td>
<td>Cut</td>
</tr>
<tr>
<td>Print...</td>
<td>Inquire Shape...</td>
<td>Background Color</td>
<td>Copy</td>
</tr>
<tr>
<td>Close</td>
<td>Inquire Home</td>
<td>Map Size...</td>
<td>Paste</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Status Bar</td>
<td>Group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scroll Bars</td>
<td>Ungroup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Menu Bar</td>
<td>Reshape</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tool Bar</td>
<td>Raise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Borders</td>
<td>Lower</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Layout Mode</td>
<td>Distribute</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flip</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Align Object North</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alignment...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Element Properties...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Styles...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Attributes</td>
</tr>
</tbody>
</table>
There is also another menu of options, called the **Quick View** menu, that is available when you right-hold while your cursor is in the Map Composer viewer.

Map Composer Tool Bar

The Map Composer tool bar includes the following icons:

<table>
<thead>
<tr>
<th>Map Composer Tool Bar</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Click to open an existing map composition.</td>
</tr>
<tr>
<td>Save</td>
<td>Click to save the map composition.</td>
</tr>
<tr>
<td>Print</td>
<td>Click to print the map composition.</td>
</tr>
<tr>
<td>Reset Zoom</td>
<td>Click to reset the zoom to the default.</td>
</tr>
<tr>
<td>Inquire Cursor</td>
<td>Click to start or update the Inquire cursor.</td>
</tr>
<tr>
<td>Tools</td>
<td>Click to bring up the Annotation tool palette.</td>
</tr>
<tr>
<td>Select</td>
<td>Click to select and reposition objects in the map.</td>
</tr>
</tbody>
</table>

Table A-13 Map Composer Tool Bar

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Click to open an existing map composition.</td>
</tr>
<tr>
<td>Save</td>
<td>Click to save the map composition.</td>
</tr>
<tr>
<td>Print</td>
<td>Click to print the map composition.</td>
</tr>
<tr>
<td>Reset Zoom</td>
<td>Click to reset the zoom to the default.</td>
</tr>
<tr>
<td>Inquire Cursor</td>
<td>Click to start or update the Inquire cursor.</td>
</tr>
<tr>
<td>Tools</td>
<td>Click to bring up the Annotation tool palette.</td>
</tr>
<tr>
<td>Select</td>
<td>Click to select and reposition objects in the map.</td>
</tr>
</tbody>
</table>
The Annotation tools are available from the Viewer menu bar or from the Map Composer menu bar. These tools allow you to place rectangles, squares, polygons, lines, circles, scale bars, legends, map frames, grid lines, tick marks, text, and more in an annotation layer or in a map composition.

When you create a new map in Map Composer, the tools are automatically displayed for you. To display the tools at other times, select **Annotation | Tools** from the Map Composer menu bar or click the Tool icon in the Map Composer tool bar. Your tool palette may look different from the one pictured on page 75, depending upon how the **Tool Palette Size** and the **Combine Tools and Commands** preferences are set in the Viewer category.

The functions of each of the major icons in the Annotation tool palette are described in the following table:

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select</td>
<td>The Select tool is used to select and reposition objects in the map. Click on an object to select it. Shift-click to add to a selection.</td>
</tr>
<tr>
<td>Marquee</td>
<td>Use the Marquee tool to select multiple elements. This is also a useful tool when selecting very small elements.</td>
</tr>
<tr>
<td>Rectangle</td>
<td>The Rectangle tool is used to draw filled or unfilled rectangles and squares. Press the shift key while drawing to create a perfect square.</td>
</tr>
<tr>
<td>Ellipse</td>
<td>Use the Ellipse tool to draw filled or unfilled ellipses and circles. Press the shift key while drawing to create a perfect circle.</td>
</tr>
<tr>
<td>Polygon</td>
<td>Draw filled or unfilled polygons with as many vertices as needed.</td>
</tr>
<tr>
<td>Tool</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Polyline</td>
<td>Draw polylines with as many vertices as needed.</td>
</tr>
<tr>
<td>Arc</td>
<td>Draw elliptical arcs. Press the shift key while drawing to create a perfectly circular arc.</td>
</tr>
<tr>
<td>Symbol</td>
<td>Use the Symbol tool to place symbols such as north arrows.</td>
</tr>
<tr>
<td>Text</td>
<td>Use the Annotation Text tool to indicate where to place text. Text strings are typed in another dialog.</td>
</tr>
<tr>
<td>Region Grow</td>
<td>Use the Region Growing tool to select a single pixel from which a polygonal area “grows” based on the parameters set in the Region Growing Properties dialog.</td>
</tr>
<tr>
<td>Map Frame</td>
<td>The Map Frame tool is used in a map composition for the placement and definition of images.</td>
</tr>
<tr>
<td>Select Map Frame</td>
<td>Use the Select Map Frame tool in a Map Composer viewer only to select a map frame. Use this tool when you need to edit or reposition a map frame.</td>
</tr>
<tr>
<td>Grid/Tick</td>
<td>Use the Grid/Tick tool in a map composition or a Viewer to add grid lines, tick marks, and a neatline.</td>
</tr>
<tr>
<td>Scale Bar</td>
<td>Use the Scale Bar tool in a map composition to add a scale bar(s) to a composition.</td>
</tr>
<tr>
<td>Legend</td>
<td>Use the Legend tool to add a legend to a map composition.</td>
</tr>
<tr>
<td>Help</td>
<td>Click to see the On-Line Help document for Annotation tools.</td>
</tr>
<tr>
<td>Lock</td>
<td>Use the Lock tool to lock and unlock the currently selected tool for repeated use.</td>
</tr>
<tr>
<td>Close</td>
<td>Click to close the tool palette.</td>
</tr>
</tbody>
</table>
Ungroup Elements in Map Composer

Situations may arise in which you need to edit one or more individual elements of a complex object (like the one you have just created). Since grids and ticks are groups of elements, they can be ungrouped and the elements edited individually or copied, cut, or pasted.

⚠️ Because of the large number of elements composing such an object, engaging in this level of editing can be a time-consuming process.

Preparation

The set of elements that you want to ungroup must be selected.

1. In the Map Composer menu bar, select **Annotation | Ungroup** to ungroup the selected elements.

 Selection boxes are drawn around each component that makes up the group.

 NOTE: You may need to use the Ungroup function several times consecutively in order to achieve the desired separation.

2. In the Map Composer viewer, click outside any of the selection boxes to deselect everything.

3. Select any one part of the original group by clicking on it.

 You can now edit, cut, paste, copy, etc.

Regrouping Elements

4. To regroup elements, select all elements you want included in the group by clicking the first element, then Shift-clicking the others until all the elements you want included in the group are selected. Then select **Annotation | Group** from the Map Composer menu bar.

 NOTE: You can also select multiple elements at once using the Marquee tool in the Annotation tool palette.

Mosaic

This section describes some of the menus and tools you work with using the Mosaic tool.

📖 The tour guide, "CHAPTER 14: Mosaic", starts on page 291.
The Mosaic Tool menu bar contains access to these functions:

Table A-15 Mosaic Tool Menu Bar

<table>
<thead>
<tr>
<th>File</th>
<th>Edit</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>New...</td>
<td>Image List...</td>
<td>Run Mosaic...</td>
</tr>
<tr>
<td>Open...</td>
<td>Add Images...</td>
<td>Preview Mosaic</td>
</tr>
<tr>
<td>Save</td>
<td>Delete Image(s)</td>
<td></td>
</tr>
<tr>
<td>Save As...</td>
<td>Image Matching...</td>
<td></td>
</tr>
<tr>
<td>Annotation</td>
<td>Intersection List...</td>
<td></td>
</tr>
<tr>
<td>Close</td>
<td>Set Overlap Function...</td>
<td></td>
</tr>
<tr>
<td>Close All</td>
<td>Output List...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output Options...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delete Outputs</td>
<td></td>
</tr>
</tbody>
</table>

Some of the functionality of these menu items is duplicated in the tool bar, as explained in the next section.

The Mosaic Tool tool bar contains these icons:

Table A-16 Mosaic Tool Tool Bar

<table>
<thead>
<tr>
<th>Add Images</th>
<th>Click to display the Add Images for Mosaic dialog, which allows you to add images to the Mosaic Tool viewer.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Allows you to set the mode for input images.</td>
</tr>
<tr>
<td>Intersection</td>
<td>Allows you to preview the stitched image of the files in a Viewer window.</td>
</tr>
<tr>
<td>Output</td>
<td>Allows you to set the mode for output images.</td>
</tr>
<tr>
<td>Reset Canvas</td>
<td>Allows you to change the canvas size in the Mosaic Tool viewer so that it fits the displayed image.</td>
</tr>
<tr>
<td>Scale Canvas</td>
<td>Allows you to scale the canvas in the Mosaic Tool viewer to fit selected objects.</td>
</tr>
<tr>
<td>Select</td>
<td>Allows you to select a single point in the displayed image for querying.</td>
</tr>
<tr>
<td>Tool</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Query Select</td>
<td>Allows you to select an area of the displayed image for querying.</td>
</tr>
<tr>
<td>Zoom In</td>
<td>Allows you to zoom a selected portion of the image in by 2.</td>
</tr>
<tr>
<td>Zoom Out</td>
<td>Allows you to zoom a selected portion of the image out by 2.</td>
</tr>
<tr>
<td>Select Area for Zoom</td>
<td>A tool which allows you to draw a box in the image to select an area to zoom in on.</td>
</tr>
<tr>
<td>Roam</td>
<td>A tool which allows you to view different parts of the image by dragging to manipulate the image in the canvas.</td>
</tr>
<tr>
<td>Image List</td>
<td>Depending upon which mode you are in, click to display the Add Images for Mosaic dialog, the Mosaic Intersection List, or the Mosaic Output List.</td>
</tr>
<tr>
<td>Image Resample</td>
<td>Click to display the Image Resample Options dialog. This tool is available when you are using the Input mode.</td>
</tr>
<tr>
<td>Image Matching</td>
<td>Allows you to perform contrast matching on files in the file list. Although this step is not required, it can help to reduce the spectral differences among the images.</td>
</tr>
<tr>
<td>Send to Top</td>
<td>Click to send selected image(s) to the top in the stacking order. This tool is available when you are using the Input mode.</td>
</tr>
<tr>
<td>Send Up One</td>
<td>Click to send selected image(s) up one in the stacking order. This tool is available when you are using the Input mode.</td>
</tr>
<tr>
<td>Send to Bottom</td>
<td>Click to send selected image(s) to the bottom in the stacking order. This tool is available when you are using the Input mode.</td>
</tr>
<tr>
<td>Send Down One</td>
<td>Click to send selected image(s) down one in the stacking order. This tool is available when you are using the Input mode.</td>
</tr>
<tr>
<td>Reverse Order</td>
<td>Click to reverse the order of selected image(s) in the stacking order. This tool is available when you are using the Input mode.</td>
</tr>
</tbody>
</table>
Table A-16 Mosaic Tool Tool Bar (Continued)

<table>
<thead>
<tr>
<th>Tool Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next Intersection</td>
<td>Click to select the next intersection. This tool is available when you are using the Intersection mode.</td>
</tr>
<tr>
<td>Previous Intersection</td>
<td>Click to select the previous intersection. This tool is available when you are using the Intersection mode.</td>
</tr>
<tr>
<td>Function</td>
<td>Click to display the Overlap Function dialog. This tool is available when you are using the Intersection mode.</td>
</tr>
<tr>
<td>Default Cutline</td>
<td>Click to set default cutlines for intersections. This tool is available when you are using the Intersection mode.</td>
</tr>
<tr>
<td>AOI Cutline</td>
<td>Click to set user-defined AOI cutlines for intersections. This tool is available when you are using the Intersection mode.</td>
</tr>
<tr>
<td>Toggle Cutline</td>
<td>Click to toggle the cutline application (keep other side). This tool is available when you are using the Intersection mode.</td>
</tr>
<tr>
<td>Delete Cutline</td>
<td>Click to delete the cutlines for intersections. This tool is available when you are using the Intersection mode.</td>
</tr>
<tr>
<td>Cutline Selection viewer</td>
<td>Click to open the Cutline Selection viewer. This tool is available when you are using the Intersection mode.</td>
</tr>
<tr>
<td>Auto Cutline</td>
<td>Click to access the Cutline Selection viewer Auto mode. This tool is available when you are using the Intersection mode.</td>
</tr>
<tr>
<td>Output Image</td>
<td>Click to set the Output Image Options dialog. This tool is available when you are using the Output mode.</td>
</tr>
<tr>
<td>Run Mosaic</td>
<td>Click to run the mosaicking process. This tool is available when you are using the Output mode.</td>
</tr>
<tr>
<td>Preview Mosaic</td>
<td>Click to generate and view a review of the results of the mosaicking process. The preview will open in a temporary Viewer. This tool is available when you are using the Output mode.</td>
</tr>
</tbody>
</table>

The icons in the tool bar provide quick access to the most frequently used mosaic functions.

Rectification

This section describes some of the menus and tools you use when you rectify imagery.
Two types of GCPs are:

- input GCPs, which are in the coordinate system of the source image and are digitized in the Viewer from which you started the GCP Tool (the source Viewer).

- reference GCPs, which are the known reference coordinates of the corresponding input GCPs.

The input Viewer always opens the data to be rectified to the reference coordinate system. In this instance, the input image is `tmAtlanta.img` and the reference image is `panAtlanta.img`.

With the GCP Tool and its Automatic Transform Calculation mode turned on, you can interactively edit GCPs and calculate and edit the transformation matrix until the RMS error is acceptably low.

The residuals, RMS error, Contribution and Match fields in the GCP Tool are not editable. These automatically update as you edit the GCPs and recalculate the transformation (when the Automatic Transform Calculation mode is turned on).

The GCP Tool looks like the following:
Rectification

GCP Tool Menu Bar

The menu bar across the top of the GCP Tool has the following options:

Table A-17 GCP Tool Menu Bar

<table>
<thead>
<tr>
<th>File</th>
<th>View</th>
<th>Edit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Input...</td>
<td>View Only Selected GCPs</td>
<td>Set Point Type</td>
</tr>
<tr>
<td>Save Input</td>
<td>Show Selected GCP in Table</td>
<td>Reset Reference Source...</td>
</tr>
<tr>
<td>Save Input As...</td>
<td>Arrange Frames on Screen</td>
<td>Reference Map</td>
</tr>
<tr>
<td>Load Reference...</td>
<td>Tools...</td>
<td>Projection...</td>
</tr>
<tr>
<td>Save Reference</td>
<td>Start Chip Viewer</td>
<td>Point Prediction...</td>
</tr>
<tr>
<td>Save Reference As...</td>
<td></td>
<td>Point Matching...</td>
</tr>
<tr>
<td>Close</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Not all options are always available. Invalid options appear shaded.

GCP Tool Bar

Table A-18 GCP Tool Bar

<table>
<thead>
<tr>
<th>Toggle</th>
<th>Click to toggle the fully automatic GCP editing mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculate</td>
<td>Click to solve the geometric model with GCPs.</td>
</tr>
<tr>
<td>Automatic</td>
<td>Click to set automatic transformation calculation. When this is set, the transformation is updated automatically as points change.</td>
</tr>
<tr>
<td>Compute Error</td>
<td>Click to compute the error for checkpoints.</td>
</tr>
<tr>
<td>Select</td>
<td>Click to activate the GCP selection tool. This tool allows you to select a GCP symbol displayed in a viewer by clicking on it. This is the default tool.</td>
</tr>
<tr>
<td>Create</td>
<td>Click to create a GCP in a Viewer.</td>
</tr>
<tr>
<td>Lock</td>
<td>Click to lock and unlock the current tool for repeated use.</td>
</tr>
</tbody>
</table>
A ground control point (GCP) is a location within an image for which the map coordinates are known. To be useful in rectification, the coordinates of a GCP must be known in the system to which the data are being rectified. GCPs can be recorded from a Viewer, digitizing tablet, or from an ASCII file.

Corresponding GCPs

Any ERDAS IMAGINE image can have one GCP set associated with it. The GCP set is stored in the data file along with the raster layers. If a GCP set exists for the top raster layer that is shown in the Viewer, then those GCPs are shown when you bring up the GCP Tool.

In the CellArray of GCP data, located in the GCP Tool, one column shows the point ID of each GCP. The point ID is a name given to GCPs in separate files that represent the same geographic location. Such GCPs are called corresponding GCPs.

A default ID string is provided (something like “GCP #1”), but you can enter your own unique ID strings to set up corresponding GCPs as needed. Even though only one set of GCPs is associated with a raster layer, one GCP layer can include GCPs for a number of rectifications by changing the point IDs for different sets of corresponding GCPs.

GCPs in ERDAS IMAGINE Files

GCPs that are digitized in a Viewer are stored with the raster data that are listed in the Viewer. However, GCPs can also be recorded from a digitizing tablet or straight from the keyboard. In these cases, they are stored alone in ERDAS IMAGINE files with the extension .gcc.

Spatial Modeler

This section describes the menus and tools you use with Spatial Modeler.

The tour guide, "CHAPTER 16: Spatial Modeler", *starts on page 341.*

About Model Maker

A model is a set of instructions for performing geoprocessing operations. Models can be created graphically with Model Maker or in text form. Modeling with Model Maker is similar to drawing a flow chart.
Model Maker is not only very easy to use, it is also powerful—providing access to over 200 functions and operators in 24 categories, including:

- analysis
- arithmetic
- bitwise
- boolean
- color
- conditional
- data generation
- descriptor
- distance
- exponential
- focal (scan)
- focal apply opts
- focal use opts
- global
- matrix
- other
- relational
- size
- stack statistical
- statistical
- string
- surface
- trigonometric
- zonal

You can manipulate raster layers, vector layers, matrices, tables, and scalars. In doing so, you can create your own algorithms to best address the goals of your project and data set.
Creating Graphical Models

All of the graphical models you create in Model Maker have the same basic structure: input, function, output. The number of inputs, functions, and outputs can vary, but the overall form remains constant. All components must be connected to one another before the model can be run.

In the following graphic, the model on the left is the most basic form. The model on the right illustrates a more complex model, but as you can see, it retains the same input/function/output flow.

Defining Model Files and Parameters

Once you have placed graphics in the Model Maker viewer, you must define what each of those graphics represents. A question mark underneath a graphic tells you that the element is not yet defined. All elements must be defined before the model can be run.
Double-click on a graphic (or click on it once and select Edit | Properties) to bring up a dialog in which you enter file names, functions, or other specifications. For example, when you double-click on the raster graphic, the Raster dialog opens.

Solving Problems

When you use Model Maker to solve real-world problems, such as site selection, land use planning, resource management, etc., you perform these basic steps:

1. **Define Problem**
2. **Place Object Graphics**
3. **Connect Objects**
4. **Define Objects**
5. **Define Functions and Operators**
6. **Run Model**
The order you use may vary from the linear method outlined here, but all of these steps must be completed to create a syntactically correct model.

The example that follows illustrates these steps in detail.

Define Problem

Before you can begin creating a model, you should have a desired goal in mind. Once you know what your final product should be, you can work back from there to determine what inputs you need and what functions can be applied to those inputs.

In this example, envision yourself as an environmental planner in Del Mar, California. You want to identify the most environmentally sensitive areas in the region so that they can be protected. To give these sensitive areas perspective, you can overlay them onto a satellite image.

Determine Input Data

Based on the goal of this project, you first need a satellite image of the area and thematic layers that are used for determining environmental sensitivity.

What kind of satellite data should you use?

Because the satellite image is used as a reference, you use SPOT panchromatic data. The 10 meter resolution provides good spatial detail. In addition, the black-and-white image does not detract from the colors in the overlaid sensitivity analysis.

What thematic layers are required?

Environmental sensitivity in this study is based on the following three factors:

- **flood plain**—low lying areas, or flood plains, are not suitable for development due to their fragile and changeable condition. This layer was generated by identifying buffers around first- through fourth-order streams to approximate the actual flood plain.

- **land cover**—a land cover classification of the area was produced using Landsat Thematic Mapper data. The Riparian and Wetlands classes are the most environmentally sensitive land cover types.

- **slope**—slopes greater than 25 percent should be protected because of erosion potential.

Determine Functions

This model incorporates three phases. Each phase includes a simple model, with inputs, a function, and an output. The output layers derived from the first two phases are the inputs in the last phase to create the final product. These three steps are combined into one graphical model.

The three phases are:

- **Create sensitivity layer**—the first phase of the model is to combine the three thematic layers into one sensitivity layer.

- **Enhance SPOT data**—to increase the sharpness and contrast of the SPOT layer, you run a convolution kernel over it.

- **Combine sensitivity layer with SPOT data**—create the final product by combining the thematic sensitivity layer and the SPOT satellite data.
Following is a sample Model Maker viewer and tool palette.
Model Maker Viewer Menu Bar

The menu bar across the top of the Model Maker viewer has the following options:

<table>
<thead>
<tr>
<th>File</th>
<th>Edit</th>
<th>Model</th>
<th>Text</th>
<th>Process</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>Cut</td>
<td>Set Cell Size ...</td>
<td>Font</td>
<td>Run</td>
<td>Help for ModelMaker</td>
</tr>
<tr>
<td>Open ...</td>
<td>Copy</td>
<td>Set Window...</td>
<td>Size</td>
<td>Generate Script</td>
<td>Help For This Model</td>
</tr>
<tr>
<td>Close</td>
<td>Paste</td>
<td>Set Projection...</td>
<td>Style</td>
<td></td>
<td>Imagine Version</td>
</tr>
<tr>
<td>Save</td>
<td>Clear</td>
<td>Area of Interest ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save As ...</td>
<td>Select All</td>
<td>Snap to Grid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revert to Saved</td>
<td>Invert Selection</td>
<td>Overview</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page Setup ...</td>
<td>Properties ...</td>
<td>Optimize</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show Page Breaks</td>
<td>Tools ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Print ...</td>
<td>Close All</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model Maker Viewer Tool Bar

All viewers in ERDAS IMAGINE contain tool bars. These tool bars allow you to access commonly used functions quickly. Simply click on the icon to perform that action. The Model Maker viewer tool bar includes the following icons:

<table>
<thead>
<tr>
<th>Open</th>
<th>Click to open an existing graphical model.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close</td>
<td>Click to close the model.</td>
</tr>
<tr>
<td>New Window</td>
<td>Click to open a new Model Maker viewer.</td>
</tr>
<tr>
<td>Save</td>
<td>Click to save the model to a file.</td>
</tr>
<tr>
<td>Print</td>
<td>Click to print the model.</td>
</tr>
</tbody>
</table>
The Model Maker tools allow you to place input and output objects, define functions, specify criteria, connect components, and annotate models. Click on a tool to use it.

Table A-20 Model Maker Viewer Tool Bar

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut</td>
<td>Click to cut selected object(s) from the model.</td>
</tr>
<tr>
<td>Copy</td>
<td>Click to copy the selected object(s) to the paste buffer.</td>
</tr>
<tr>
<td>Paste</td>
<td>Click to paste the buffer contents into the model. The option should be used only after using the Copy option.</td>
</tr>
<tr>
<td>Tools</td>
<td>Click to bring up the Model Maker tool palette.</td>
</tr>
<tr>
<td>Run</td>
<td>Click to run the model. This icon is not active until the model is defined completely.</td>
</tr>
<tr>
<td>Overview</td>
<td>Click to fit the entire model in the current window. This is useful for graphically arranging your model. Annotation elements are not moved with other elements. NOTE: Since Model Maker does not use scalable fonts, annotation is not displayed in this format. However, the annotation is not lost; it redisplays when the model is enlarged to full size.</td>
</tr>
<tr>
<td>Zoom In</td>
<td>Click to zoom back to full resolution, and the image is centered about the point clicked.</td>
</tr>
</tbody>
</table>

Model Maker Tool Palette

The Model Maker tools allow you to place input and output objects, define functions, specify criteria, connect components, and annotate models. Click on a tool to use it.

Table A-21 Model Maker Tool Palette

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select</td>
<td>Used to select and reposition objects in a model. Simply click on a graphic in the Model Maker viewer to select it. Middle-click or Shift-click to add to a selection. Double-click on an graphic in the Model Maker viewer to bring up that tool’s definition dialog. Drag and draw a rectangle over several objects to select them as a group.</td>
</tr>
<tr>
<td>Raster</td>
<td>Used to place an input or output raster object in a model, such as satellite data or thematic layers. The raster is undefined until you double-click on the Raster graphic in the Model Maker viewer to open the Raster dialog.</td>
</tr>
<tr>
<td>Vector</td>
<td>Used to place an input vector object in a model. The vector layer is undefined until you double-click on the Vector graphic in the Model Maker viewer to bring up the Vector dialog.</td>
</tr>
</tbody>
</table>
Table A-21 Model Maker Tool Palette (Continued)

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix</td>
<td>Used to place an input or output matrix object in a model, such as a convolution kernel. The matrix is undefined until you double-click on the Matrix graphic in the Model Maker viewer to bring up the Matrix Definition dialog.</td>
</tr>
<tr>
<td>Table</td>
<td>Used to place a table object in a model, such as a color table. The table is undefined until you double-click on the Table graphic in the Model Maker viewer to bring up the Table dialog.</td>
</tr>
<tr>
<td>Scalar</td>
<td>Used to place a scalar object in a model, such as a weighting factor. The scalar is undefined until you double-click on the Scalar graphic in the Model Maker viewer to bring up the Scalar dialog.</td>
</tr>
<tr>
<td>Function</td>
<td>Used to place a function object in a model, such as arithmetic operators, conditional statements, distance functions, and more. The function is undefined until you double-click on the Function graphic in the Model Maker viewer to bring up the Function Definition dialog.</td>
</tr>
<tr>
<td>Criteria</td>
<td>Used to simplify the process of creating a conditional function. The criteria are undefined until you double-click on the Criteria graphic in the Model Maker viewer to bring up the Criteria dialog.</td>
</tr>
<tr>
<td>Connect</td>
<td>Used to define connections between data objects and functions. Simply click and drag from a Data Object icon to a Function icon to connect the two. All objects and functions must be connected before the model can be run.</td>
</tr>
<tr>
<td>Text</td>
<td>Used to place descriptive text on the model diagram. Click on the model page where you want the text to be, and a dialog opens where you type the text.</td>
</tr>
<tr>
<td>Help</td>
<td>Click to see the On-Line Help document for the Model Maker tool palette.</td>
</tr>
<tr>
<td>Lock</td>
<td>Use the Lock tool to lock and unlock the currently selected tool for repeated use.</td>
</tr>
<tr>
<td>Close</td>
<td>Click to close the tool palette.</td>
</tr>
</tbody>
</table>
This section describes the menus and tools you use with the Table Tool located in the IMAGINE Vector module. The Vector tour guide starts on page 573.

Table Tool Menu Bar

<table>
<thead>
<tr>
<th>File</th>
<th>Edit</th>
<th>Utilities</th>
<th>Relate</th>
<th>View</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open...</td>
<td>Enable Edit</td>
<td>Table Copy...</td>
<td>Relate...</td>
<td>New Window...</td>
</tr>
<tr>
<td>New...</td>
<td>Add Rows...</td>
<td>Table Rename...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear</td>
<td>Add A Column...</td>
<td>Table Delete...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save</td>
<td>Delete Selected Rows</td>
<td>Table Merge...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save As...</td>
<td>Delete Selected Columns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close</td>
<td>Undo Last Edit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close All</td>
<td>Create New Table...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select All Columns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deselect All Columns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select All Rows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deselect All Rows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select Rows by Criteria...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A-23 Table Tool Tool Bar

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Click to open a table to view.</td>
</tr>
<tr>
<td>Clear</td>
<td>Click to close the current table and clear the CellArray display.</td>
</tr>
<tr>
<td>New</td>
<td>Click to start another Table Tool window.</td>
</tr>
<tr>
<td>Close</td>
<td>Click to close this Table Tool.</td>
</tr>
<tr>
<td>Save</td>
<td>Click to save your edits.</td>
</tr>
<tr>
<td>Add Column</td>
<td>Click to add a column to the table.</td>
</tr>
<tr>
<td>Add Row</td>
<td>Click to add a row to the end of the table.</td>
</tr>
<tr>
<td>Delete Column</td>
<td>Click to delete the selected column(s) from the table.</td>
</tr>
<tr>
<td>Delete Row</td>
<td>Click to delete the selected row(s) from the table.</td>
</tr>
<tr>
<td>Copy</td>
<td>Click to copy the currently selected columns to a buffer.</td>
</tr>
<tr>
<td>Paste</td>
<td>Click to paste the buffer into the selected columns.</td>
</tr>
<tr>
<td>Undo</td>
<td>Click to undo the last edit.</td>
</tr>
</tbody>
</table>
This section describes the menus and tools you use with the Terrain Surface Editor.

The Terrain Surface Editor tour guide, "CHAPTER 13: Terrain Surface Interpolation", starts on page 283.

3D Surfacing Dialog Menu Bar

Table A-24 3D Surfacing Dialog Menu Bar

<table>
<thead>
<tr>
<th>File</th>
<th>Row</th>
<th>Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read...</td>
<td>Use Only Selected Rows</td>
<td>Surfacing...</td>
</tr>
<tr>
<td>Save As...</td>
<td>Add Selected Rows To Used Rows</td>
<td></td>
</tr>
<tr>
<td>Close</td>
<td>Append New Rows To Bottom</td>
<td></td>
</tr>
</tbody>
</table>

3D Surfacing Dialog Tool Bar

Table A-25 3D Surfacing Dialog Tool Bar

<table>
<thead>
<tr>
<th>Read Points</th>
<th>Click to read data from a file.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save Points</td>
<td>Click to save the output to a new file.</td>
</tr>
<tr>
<td>Perform Surfacing</td>
<td>Click to start the surfacing program.</td>
</tr>
</tbody>
</table>
This section describes the menus and tools you use in IMAGINE Vector.

The tour guides, "CHAPTER 5: Vector Querying and Editing" and "CHAPTER 20: IMAGINE Vector™" begin on page 109 and page 573, respectively.

Vector Tools

The main Vector tools are described briefly in the following table:

Table A-26 Vector Tools

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select</td>
<td>Use the Select tool to select features. To add to a selection, Shift-click.</td>
</tr>
<tr>
<td></td>
<td>To deselect everything, click outside of the selection.</td>
</tr>
<tr>
<td>Point</td>
<td>Use the Point tool to place a point feature in a Vector layer. Editing must</td>
</tr>
<tr>
<td></td>
<td>be enabled.</td>
</tr>
<tr>
<td>Tic</td>
<td>Use the Tic tool to place a tic feature in a vector layer. Editing must be</td>
</tr>
<tr>
<td></td>
<td>enabled.</td>
</tr>
<tr>
<td>Line</td>
<td>Use the Line tool to draw new lines in a vector layer. Click to place points</td>
</tr>
<tr>
<td></td>
<td>along the line where it changes direction. Double-click or middle-click to</td>
</tr>
<tr>
<td></td>
<td>terminate the line (depending on how your Preferences are set). Editing must</td>
</tr>
<tr>
<td></td>
<td>be enabled.</td>
</tr>
<tr>
<td>Split</td>
<td>This tool enables you to split a line into two lines. Click at the point</td>
</tr>
<tr>
<td></td>
<td>where you want to split the line. Editing must be enabled.</td>
</tr>
<tr>
<td>Replace</td>
<td>The Replace tool allows you to replace a portion of a line. Editing must be</td>
</tr>
<tr>
<td></td>
<td>enabled.</td>
</tr>
<tr>
<td>Polygon</td>
<td>The Polygon tool allows you to create a simple polygon in a vector layer.</td>
</tr>
<tr>
<td></td>
<td>Double-click or middle-click to close the polygon (depending on how your</td>
</tr>
<tr>
<td></td>
<td>Preferences are set). Editing must be enabled.</td>
</tr>
<tr>
<td>Region Growing</td>
<td>The Region Growing tool allows you to create a closed polygon in a vector</td>
</tr>
<tr>
<td></td>
<td>layer being displayed on top of an image. Editing must be enabled.</td>
</tr>
<tr>
<td>Split Polygon</td>
<td>The Split Polygon tool allows you to split an existing polygon into two new</td>
</tr>
<tr>
<td></td>
<td>polygons. This tool is used when editing shapefiles.</td>
</tr>
<tr>
<td>Replace Polygon</td>
<td>The Replace Polygon tool allows you to add or remove a portion of a polygon.</td>
</tr>
<tr>
<td></td>
<td>This tool is used when editing shapefiles.</td>
</tr>
</tbody>
</table>
The following section provides information about the Viewer.

The Viewer tour guide, "CHAPTER 1: Viewer", starts on page 3.

About the Viewer

The Viewer is the main window for displaying raster, vector, annotation, and AOI (area of interest) data. You can open as many Viewer windows as can fit on your screen and your window manager supports.

Viewer functions are available via:

- the Viewer menu bar across the top of the window
- the Viewer tool bar below the Viewer menu bar
- a Quick View menu that displays when you right-hold the mouse cursor in a Viewer window

<table>
<thead>
<tr>
<th>Table A-26 Vector Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Append Polygon</td>
</tr>
<tr>
<td>Marquee</td>
</tr>
<tr>
<td>Ellipse Marquee</td>
</tr>
<tr>
<td>Polygon Marquee</td>
</tr>
<tr>
<td>Line Selection</td>
</tr>
<tr>
<td>Help</td>
</tr>
<tr>
<td>Lock</td>
</tr>
<tr>
<td>Close</td>
</tr>
</tbody>
</table>
Viewer Menu Bar

The menu bar across the top of the Viewer window has the following options:

<table>
<thead>
<tr>
<th>File</th>
<th>Utility</th>
<th>View</th>
<th>AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>Inquire Cursor...</td>
<td>Arrange Layers...</td>
<td>Tools...</td>
</tr>
<tr>
<td>Open</td>
<td>Inquire Box...</td>
<td>Create Magnifier...</td>
<td>Undo</td>
</tr>
<tr>
<td>Save</td>
<td>Inquire Color...</td>
<td>Tile Viewers</td>
<td>Cut</td>
</tr>
<tr>
<td>View to .IMG File...</td>
<td>Inquire Shape...</td>
<td>Window Information...</td>
<td>Delete Raster Mask</td>
</tr>
<tr>
<td>Print...</td>
<td>Inquire Home</td>
<td>Split</td>
<td>Group</td>
</tr>
<tr>
<td>Clear</td>
<td>Measure...</td>
<td>Zoom</td>
<td>Ungroup</td>
</tr>
<tr>
<td>Close</td>
<td>Selector Properties...</td>
<td>Scale</td>
<td>Reshape</td>
</tr>
<tr>
<td>Close Other Viewers</td>
<td>Blend...</td>
<td>Rotate...</td>
<td>Invert Polygon</td>
</tr>
<tr>
<td></td>
<td>Swipe...</td>
<td>Rotate/Flip/Stretch...</td>
<td>Element Properties...</td>
</tr>
<tr>
<td></td>
<td>Flicker...</td>
<td>North Arrow</td>
<td>Styles...</td>
</tr>
<tr>
<td></td>
<td>Enable Hyperlinks</td>
<td>Scale Bar</td>
<td>Seed Properties...</td>
</tr>
<tr>
<td>Layer Info...</td>
<td>Virtual Roaming</td>
<td>Link/Unlink Viewers</td>
<td>Copy Selection to AOI...</td>
</tr>
<tr>
<td>HFA Info...</td>
<td>Background Color...</td>
<td>Status Bar</td>
<td>Link</td>
</tr>
<tr>
<td>Image Drape...</td>
<td>Virtual GIS...</td>
<td>Scroll Bars</td>
<td>Tablet Input</td>
</tr>
<tr>
<td>Virtual GIS...</td>
<td></td>
<td>Menu Bar</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tool Bar</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Borders</td>
<td></td>
</tr>
</tbody>
</table>
NOTE: The underlined letters indicate keyboard shortcuts (see page 643).

<table>
<thead>
<tr>
<th>Raster</th>
<th>Vector</th>
<th>Annotation</th>
<th>TerraModel</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tools...</td>
<td>Enable Editing</td>
<td>Tools...</td>
<td>Palette...</td>
<td>Help for Viewer</td>
</tr>
<tr>
<td>Undo</td>
<td>Tools...</td>
<td>Tools...</td>
<td>Select Layer...</td>
<td></td>
</tr>
<tr>
<td>Copy</td>
<td>Undo</td>
<td>Cut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paste...</td>
<td>Cut</td>
<td>Copy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band Combinations...</td>
<td>Paste</td>
<td>Reshape</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixel Transparency...</td>
<td>Delete</td>
<td>Raise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Scaling...</td>
<td>Spline</td>
<td>Lower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrast</td>
<td>Densify</td>
<td>Distribute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtering</td>
<td>Generalize</td>
<td>Flip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recode...</td>
<td>Join</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fill...</td>
<td>Group/Ungroup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset Values...</td>
<td>Attributes...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interpolate...</td>
<td>Viewing Properties...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recompute Statistics</td>
<td>Symbology...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recompute Statistics on Window</td>
<td>Options...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes...</td>
<td>Seed Properties...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometric Correction...</td>
<td>Copy Selection to Vector...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Drop Point...</td>
<td>Tablet Input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profile Tools...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relief Shading Tool...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following icons are located in the Viewer tool bar:

Table A-29 Viewer Tool Bar

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Click to open a raster file.</td>
</tr>
<tr>
<td></td>
<td>Click to close the top layer displayed in the Viewer without closing the Viewer.</td>
</tr>
<tr>
<td></td>
<td>Click to display the ImageInfo or Vector Info dialogs.</td>
</tr>
<tr>
<td></td>
<td>Click to save the top, nonAOI layer to a file.</td>
</tr>
<tr>
<td></td>
<td>Click to print the contents of the Viewer.</td>
</tr>
<tr>
<td></td>
<td>Click to close all layers in a Viewer without closing the Viewer.</td>
</tr>
<tr>
<td></td>
<td>Click to reset the image to the original zoom.</td>
</tr>
<tr>
<td></td>
<td>Click to zoom in by two from the center of the displayed portion of the image.</td>
</tr>
<tr>
<td></td>
<td>Click to zoom out by two from the center of the displayed portion of the image.</td>
</tr>
<tr>
<td></td>
<td>Click to measure points, lines, and areas in the displayed layer. The Measurement tool displays.</td>
</tr>
<tr>
<td></td>
<td>Click to start/update the inquire cursor. The Inquire Cursor dialog displays.</td>
</tr>
<tr>
<td></td>
<td>Click to display the AOI, Annotation, or Vector tool palette for the top layer.</td>
</tr>
</tbody>
</table>
Duplicated Functionality

Some functionality is duplicated in these areas. For example, when starting up an Inquire Cursor to obtain information on individual image pixels, you can:

- click Utility | Inquire Cursor on the Viewer menu bar
- right-hold in the Viewer window and drag to select Inquire Cursor... from the Quick View menu
- click the Inquire Cursor icon on the Viewer tool bar:

Keyboard Shortcuts

You can access some Viewer options using the keyboard.

NOTE: Keyboard shortcuts for use on Sun workstations use the Meta key in the place of Alt.

- Display the File menu by typing Alt-f.
- Display the View menu by typing Alt-v.
- Open a raster file by typing Ctrl-r.
- Open a vector coverage by typing Ctrl-v.
- Open an annotation file by typing Ctrl-a.
• Save a layer by typing **Ctrl-s**.

Following is an example of the Viewer:

Viewer Menu Bar

Viewer Tool Bar

Status Bar

To see the Quick View menu, right-hold the mouse button with the cursor in the Viewer window

Histogram Edit Tools

Five icons in the Breakpoint Editor make up the Histogram Edit tools:

<table>
<thead>
<tr>
<th>Table A-30 Histogram Edit Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert Breakpoint</td>
</tr>
<tr>
<td>Cut Breakpoint</td>
</tr>
<tr>
<td>Left-Right Curve</td>
</tr>
<tr>
<td>Right-Left Curve</td>
</tr>
<tr>
<td>Reference Line</td>
</tr>
</tbody>
</table>
Histogram Numbers

When the mouse cursor is in a histogram, other numbers display near the graph to show you values that are represented by the cursor location:

- At the bottom center, the data value represented by the cursor location is shown.
- At center left, the frequency (number of pixels) of that data value is shown, followed by the cursor Y position.

Manipulating Lookup Table Breakpoints

The lookup table (LUT) graph can be edited by moving, adding, or deleting breakpoints. Breakpoints are the vertices of the lookup table graph. There is a breakpoint each time the slope of the line changes. Breakpoints are represented by small boxes along the graph line. You can manipulate breakpoints in the following ways:

- hold on a breakpoint and drag it to a new location
- add a breakpoint with a Shift-click in the desired location
- remove a breakpoint with a Ctrl-click on the breakpoint that you want to delete
- copy a lookup table from one color gun to another using the **Graph Options** menu (this menu opens when you right-hold inside the X,Y axis of a histogram)
- use the Histogram Edit tools from the tool bar

Image Drape Menu Bar

<table>
<thead>
<tr>
<th>File</th>
<th>Utility</th>
<th>View</th>
<th>Position</th>
<th>Raster</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>Options...</td>
<td>Update Display</td>
<td>Current Position...</td>
<td>Band Combinations</td>
</tr>
<tr>
<td>Open</td>
<td>Dump Contents to Viewer</td>
<td>LOD Control...</td>
<td>Reset Position</td>
<td>Toggle</td>
</tr>
<tr>
<td>Save</td>
<td>Layer Info...</td>
<td>Arrange Layers...</td>
<td>Save Position</td>
<td>Transparency</td>
</tr>
<tr>
<td>View to .IMG File...</td>
<td>HFA Info</td>
<td>Sun Positioning...</td>
<td>Goto Last</td>
<td></td>
</tr>
<tr>
<td>Print...</td>
<td></td>
<td>Link/Unlink with Viewer</td>
<td>Positions Editor...</td>
<td></td>
</tr>
<tr>
<td>Close Top Layer</td>
<td></td>
<td>Show Coverage in Viewer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear Scene</td>
<td></td>
<td>Background Color...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close Image Drape</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Image Drape Tool Bar

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Click to open a file.</td>
</tr>
<tr>
<td>Close</td>
<td>Click to close the top feature layer.</td>
</tr>
<tr>
<td>ImageInfo</td>
<td>Click to open the Image Information dialog.</td>
</tr>
<tr>
<td>Update</td>
<td>Click to update (refresh) the image in the Image Drape viewer.</td>
</tr>
<tr>
<td>Print</td>
<td>Click to print the image in the Image Drape viewer.</td>
</tr>
<tr>
<td>Clear</td>
<td>Click to remove all layers from Image Drape.</td>
</tr>
<tr>
<td>Save Current Position</td>
<td>Click to save the current position of the Eye and Target.</td>
</tr>
<tr>
<td>Goto</td>
<td>Click to return to the original position of the Eye and Target.</td>
</tr>
<tr>
<td>Observer Positioning</td>
<td>Click to open the Position Parameters dialog.</td>
</tr>
<tr>
<td>Dump to Viewer</td>
<td>Click to dump the contents of the Image Drape viewer (3-D) to a Viewer (2-D).</td>
</tr>
<tr>
<td>Sun Position</td>
<td>Click to open the Sun Positioning dialog.</td>
</tr>
</tbody>
</table>
Symbols
.gen file (generic data) 177
.preview.img file (import preview) 165
.sig file (signature file) 456

Numerics
3D Surfacing dialog 284
3X3 Edge Detect 249
3X3 Edge Detect dialog 249

A
Accuracy assessment 497
Accuracy Assessment dialog 498
Add Image icon 63, 599
Add Images for Mosaic dialog 296
Add intermediate hypothesis 510
Add Random Points dialog 500
Affine Model Properties dialog 150
Air photo images 291
AIRSAR 569
Animated Zoom 18
Annotation 73
 borders 73
 color 73
 copy 620
 cut 620
 deselect 86
 edit 97
 grid lines 73, 83
group elements 83, 620
legend 73
line style 73
lines 85
neatline 619
paste 620
scale bar 73
select 618
style 85
 change 85
symbol 73
text 73, 85
 font 73
 point size 85
tools 618, 619
 ellipse 618
 grid line 83, 619
 legend 88, 619
 map frame 77, 619
 marquee 618, 620
 pointer 618
 polygon 618
 polyline 619
 rectangle 618
 scale bar 87, 619
 select 617
 select map frame 82, 619
 symbol 94, 619
 tick mark 73, 83, 619
 ungroup elements 620
Annotation Text dialog 91, 94
AOI 22, 456, 473
 selecting signatures 458
AOI Cutline icon 301
AOI Styles dialog 24
AOI tool palette 23, 294, 301, 458
Arc icon 619
Archive dialog 69
Archive External icon 600
Archive Retrieval 600
Archive Retrieval icon 600
ArcInfo
 vector coverage 109, 573
Area Definition dialog 67
Area Fill dialog 36
Arrange Layers dialog 15, 23, 39, 82, 463, 468, 472
ASCII file 626
Attention dialog 122
Attribute Options dialog 482
Attributes viewer 115, 125, 127
Index

B
Band Combinations dialog 51
Band-to-color gun assignment 3
Batch
 add multiple files 192
 create new variable 204
 modify commands automatically 205
 modify commands manually 187
 multiple files/multiple commands 195
 multiple files/single command 185, 190
 process later 190
 process now 185
 save/load options 209
 single file/single command 183
 use commands as they are 184
Batch scheduler NT 182
Box Zoom 19
Breakpoint Editor 29
Breakpoints 645
Brightness 28
 adjust 27
Brightness Adjustment dialog 567
Brightness Inversion dialog 255
Build 589
Build Vector Layer Topology dialog 589

C
Camera Model 267
Camera Model Properties dialog 270
Canvas 297
Catalog Default icon 600
Catalog icon 62
Catalog Image dialog 63
CellArray 38, 116, 626
 add columns 127
 column
 adjust size 41
 Column Options menu 41, 42
 GCP Tool 143
 report 44
 Row Selection menu 41, 116, 118, 347
 select columns 41
 select rows 41
 using criteria 43
 selection criteria 43
 statistics 42
Change Colors 499
Change Colors dialog 499
Chart Options dialog 48
Chip extraction 17
Chip Extraction Viewer 140, 272, 277
Choose AOI dialog 297, 301
Circular Mask dialog 228
Circular Mask icon 598
Class color
 change 38
Class name
 edit 368
Classification 101, 104, 455, 487, 573
 decision rule 480
 feature space 481
 Mahalanobis distance 481
 maximum likelihood 481
 minimum distance 481
 parallelepiped 481
 distance file 481
 output file 481
 overlay 104, 487
 steps 595
 supervised 455
 unsupervised 101, 455, 484
Classification icon 503
Classification menu 457, 485, 504
Classification tools 378
Classified Image dialog 498
Classifier icon 457, 485, 493
Clean 589
Clean Vector Layer dialog 590
Clear icon 597
Close icon 632, 642
Coefficient of variation 550, 551
 calculating 549
 color balancing
mosaic 314
Color Chooser dialog 38, 40, 367
Color printer 95
Colorwheel (see Color Selector dialog)
Column Attributes dialog 127
Column icon 41
Column Properties dialog 41, 105, 367, 489
Composer icon 74, 95, 97
Compositions dialog 95, 98
Conditions
 copy 512
Connect icon 634
Constant value 36
Contingency matrix 473
Contingency Matrix dialog 473
Contrast 28
 adjust 26, 47, 48, 50, 51, 52
 shift/ bias 32
Contrast matching 310
Contrast stretch
 linear 26
 piecewise linear 27
Contrast Tool (piecewise) dialog 27
Contrast Tool dialog 27
Convolution dialog 248
Convolution kernel 354
 define 356
 summary 356
Coordinate
 reference 624
Copy icon 359, 633
Copy rules and conditions 512
Copy Vector Layer dialog 110, 575
Create Feature Space Maps dialog 464
Create Frame Instructions dialog 78
Create GCP tool 143
Create icon 597
Create New Signature icon 460
Create New Table dialog 578
Create Rule Graphic icon 506
Create Sensitivity Layer 342
Creating New Relate dialog 581
Crisp dialog 251
Criteria (see Selection Criteria dialog)
Criteria dialog 380, 634
Criteria icon 634
Cursor box 17, 78, 80
 rotate 79
Cut icon 633
Cutline 300
Cutline Selection viewer icon 300
D
Dangle length 591
Data
 ASCII 126
 display 135
 annotation 639
 AOI 639
 preference 3, 61
 raster 639
 vector 639
 export (see Export)
 flood plain 349, 630
 georeferenced 87
 import (see Import)
 land cover 349, 630
 Landsat MSS 3
 Landsat TM 3, 6, 135, 630
 raster 573
 satellite 630
 sensitivity 366
 combine with SPOT 360, 365
 slope 344, 630
 SPOT 3
 SPOT panchromatic 135, 342, 354, 361, 630
 enhance 354–359
 subset 345
 thematic 73
 transparent 39
 vector 73, 573
 build 589
 clean 589
Index

copy 110, 126, 574, 575
create 123
edit 119
 undo 123
select 115, 116
style 112
symbology 584
Data file value
 frequency 645
Data Preparation menu 102, 283
Data View 174, 567, 569
 icons 611
 menu bar 611
 tool bar 611
Data Viewer dialog 174
DataPrep icon 102, 307
Default symbol 93
Defined Areas dialog 68
Delete icon 600
DEM 34
 edit 34
Dialog xxx
 3D Surfacing 284
 3X3 Edge Detect 249
 Accuracy Assessment 498
 Add Images for Mosaic 296
 Add Random Points 500
 Affine Model Properties 150
 Annotation Text 91, 94
 AOI Styles 24
 Archive 69
 Area Definition 67
 Area Fill 36
 Arrange Layers 15, 23, 39, 82, 463, 468, 472
 Attention 122
 Attribute Options 482
 Band Combinations 51
 Brightness Adjustment 567
 Brightness Inversion 255
 Build Vector Layer Topology 589
 Camera Model Properties 270
 Catalog Image 63
 Chart Options 48
 Choose AOI 297, 301
 Circular Mask 228
 Classified Image 498
 Clean Vector Layer 590
 Color Chooser 38, 40, 367
 Column Attributes 127
 Column Properties 41, 105, 367, 489
 Compositions 95, 98
 Contingency Matrix 473
 Contrast Tool 27
 Contrast Tool (piecewise) 27
 Convolution 248
 Copy Vector Layer 110, 575
 Create Feature Space Maps 464
 Create Frame Instructions 78
 Create New Table 578
 Creating New Relate 581
 Crisp 251
 Criteria 380, 634
 Data Viewer 174
 Defined Areas 68
 Edge Enhancement 555
 Export Column Data 126
 Export ERDAS 7.5 LAN Data 168
 Eye/Target Edit 57
 Feature Space to Image Masking 474
 Fill Style Chooser 586
 Filter Options 232
 Form View 67
 Formula 106, 491
 Fourier Transform 217
 Function Definition 351, 357, 361, 634
 GCP Matching 146
 GCP Tool Reference Setup 277
 Generate Script 374
 Geo Correction Tools 138, 148, 270
 Histogram 477
 Histogram Plot Control 477
 Hypo Props 505
 IHS to RGB 263
Image Files 179
ImageInfo 67, 179, 280, 552
IMAGINE Radar Interpreter module 545
Import Column Data 128
Import Generic Binary Data 174
Import Options 165, 285
Import SPOT 162
Import/Export 161, 167, 567, 569
Indices 261
Inquire Box Coordinates 166, 347
Inquire Color 11
Inquire Cursor 10, 28, 150, 463, 642
Inquire Shape 12
Interpolate 35
Inverse Fourier Transform 224
Job Status 164, 250, 305, 312, 323, 465, 576
Knowledge Base Editor 504
Legend Properties 89
Limits 470
Line Style Chooser 86, 113, 121
Link/Unlink Instructions 20, 370
Linked Cursors 466
List of Recent Files 7
Low/High Pass Filter 221
Map Frame 78, 82
Map Frame Data Source 77
Matching Options 299, 310, 317, 321
Matrix 356, 634
Measurement Tool 642
Model Librarian 375
New Column 579
New Map Composition 74
New Vector Layer 124, 129
Open FFT Layer 219
Open Files 494
Open Info Table 577
Options 55, 116, 124
Output Image Options 303
Overlay True Color on Surface 53
Page Setup 376
Polynomial Model Properties 138, 145, 148
Position Parameters 58
Preview Options 163, 164
Print 14, 377
Print Map Composition 96
Projection Chooser 276
Properties 112, 120
Radar Speckle Suppression 548, 550, 558
Raster 342, 344, 347, 349, 352, 356, 380, 629, 633
Read Points 284
Recode 347, 349
Rectangular Mask 229
Red Mouse Linear Mapping 32
Reference GCC File 277
Region Grow Options 461
Region Growing Properties 25, 461
Relate Manager 581
Report Format Definition 44
Resample 148, 151, 279
RGB to IHS 262
Rule Props 507
Run Mosaic 304, 311, 322
Save AOI As 26, 295
Save As 46
Save Layer As 223, 234
Save Model 353, 359, 383
Save Options File 177
Save Signature File As 468
Save Symbology As 588
Scalar 361, 634
Scale Bar Instructions 87
Scale Bar Properties 87
Select A Directory 7
Select Profile Tool 47
Selection Criteria 43, 118, 347
Sensor Merge 561
Index

Set Geometric Model 137, 150, 270
Set Grid/Tick Info 83
Set Overlap Function 302, 311, 322
Set Parallelepiped Limits 470
Set Window 344, 383
Shift/Bias Adjustment 31
Signature Alarm 470
Signature Objects 475
Signature Separability 478
Slant Range Adjustment 568
Spectral Statistics 49
Statistics 42, 480
Styles 85
Sun Positioning 56
Supervised Classification 481
Surfacing 287
Symbol Chooser 93, 121, 586
Symbol Properties 94
Symbology 584
Table 634
Tasseled Cap 258
Tasseled Cap Coefficients 259
Text Properties 92
Text String 370, 371
Text Style Chooser 86
Texture Analysis 564
Threshold 493
Threshold to File 497
Unique Value 585
Unsupervised Classification 485
Unsupervised Classification (Isodata) 102
Vector 633
View Extent 9
View Signature Columns 458
Viewer Flicker 107, 491, 496
Wallis Adaptive Filter 558
Wedge Mask 230
Digitize Points icon 35
Digitizing tablet 626
Display Another icon 599
Display options 8
Display Single icon 66, 599
Display thematic data 15
Divergence 478
E
Edge Enhancement dialog 555
Electrostatic plotter 95
Ellipse icon 34, 618
Ellipse measurement 12
Enhancement 573
in graphical models 354
radiometric 254
spatial 247
spectral 258
Erase icon 46, 642
ERDAS Field Guide 281, 545, 568
ERDAS IMAGINE
start 109, 574
ERDAS IMAGINE icon panel xxi, 74, 97, 102, 161, 342, 457, 485, 493
ERDAS IMAGINE Viewer 76, 78, 365, 639
ERS-1 569
Evaluate 104, 487
Export
LAN data 167
statistics 169
Export Column Data dialog 126
Export ERDAS 7.5 LAN Data dialog 168
Eye/Target Edit dialog 57
F
Feature space 456
to image masking 474
Feature Space image 464
display image 466
Feature Space to Image Masking dialog 474
Feature Space viewer 466
Field of View (FOV) 58
Fill Style Chooser dialog 586
Filter 249
Prewitt Gradient 555
Filter Options dialog 232
Form View dialog 67
Formula dialog 106, 491
Fourier Analysis menu 217
Fourier Editor 218
Fourier Transform
create 215
Editor 215
start 218
using tool bar icons 232
Fourier Transform dialog 217
Frame area 77
FS to Image Masking 474
Function Definition dialog 351, 357, 361, 634
Function icon 302, 634
Fuyo 569
Fuzzy tolerance 591

G
.gen file (generic data) 177
GCP 17, 626
calculating 145
corresponding 626
delete 144
input 624
number required 145
placement 143
point ID 626
reference 624
select 144
GCP Matching dialog 146
GCP Tool 277, 624
CellArray 143
edit GCPs 624
tool bar 625
GCP Tool Reference Setup dialog 277
Generate Script dialog 374
Geo Correction Tools dialog 138, 148, 270
Geologic discrimination 564
Geometric correction 137, 270
Geometric Correction Tool
starting 137
Georeferencing 135, 267
Global value 37
Graph Options menu 645
Graphical model 252
adjust class colors 366
annotation
add 370
edit 371
select 372
style 371
create 628, 630
define function 351, 357, 361
define input 344, 356, 361
define output 352, 358, 363
display output 365
edit 253
generate text script from 373
print 376
run 354, 359
save 359
title 370
using scalars in 360
view 252
Graphical Query viewer 64
Graphics
presentation 73, 613
Grid/Tick icon 619
Ground control point (see GCP)

H
Help icon 619, 634
High-Pass Filter icon 233, 598
Histogram 552
Histogram dialog 477
Histogram graphic 30
Histogram icon 477
Histogram manipulation 29
Histogram Plot Control dialog 477
Hypothesis
add intermediate 510
rules for 506
Hypothesis properties dialog 505
I

Icons
 Add Image 63, 599
 AOI Cutline 301
 Arc 619
 Archive External 600
 Archive Retrieval 600
 Catalog 62
 Catalog Default 600
 Circular Mask 598
 Classification 503
 Classifier 457, 485, 493
 Clear 597
 Close 632, 642
 Column 41
 Composer 74, 95, 97
 Connect 634
 Copy 359, 633
 Create 597
 Create New Signature 460
 Create Rule Graphic 506
 Criteria 634
 Cut 633
 Cutline Selection viewer 300
 DataPrep 307
 Delete 600
 Digitize Points 35
 Display Another 599
 Display Single 66, 599
 Ellipse 34, 618
 Erase 46, 642
 Function 302, 634
 Grid/Tick 619
 Help 619, 634
 High-Pass Filter 233, 598
 Histogram 477
 Image Interpreter 217, 241, 247
 Image Matching 299
 Import 161, 575
 Info 599, 642
 Input 299
 Inquire Cursor 617, 642

Intersection 299
Legend 619
Line Selection 117
Lock 35, 619, 634
Low-Pass Filter 233, 598
Manual Insert 600
Map Frame 619
Marquee 117, 618
Matrix 634
Measure 642
Measurement 12
Modeler 342, 374
Mouse Linear Mapping 32
New Window 632
Open 7, 15, 76, 119, 136, 137, 256, 305, 323, 342, 345, 552, 554, 597, 599, 617, 632, 642
Open Existing Catalog 599
Output 303
Output Image 303
Overview 633
Paste 360, 633
Polygon 618
Polyline 13, 51, 619
Print 14, 377, 617, 632
Profile 643
Query 65
Radar 547
Raster 633
Rectangle 618
Rectangular Mask 598
Region Grow 461, 619
Reset Zoom 617
Roam 21, 618, 643
Run 33, 224, 354, 359, 598, 633
Save 95, 353, 359, 597, 617, 632, 642
Scalar 634
Scale Bar 619
Select 597, 617, 618, 633, 643
Select Area for Zooming 64
Select Map Frame 619
Shift/Bias 31
Tour Guides

Statistics 480
Symbol 619
Table 634
Text 90, 619, 634
Tools 23, 114, 130, 617, 633, 642
Vector 110, 574, 589, 633
Viewer 123, 128, 135, 250, 292, 305, 323, 547
Visual Query 64, 599
Wedge Mask 598
Window 354
Zoom 633
Zoom In 16, 618, 642
Zoom Out 618, 642, 643

IHS 39
IHS to RGB 262, 263
IHS to RGB dialog 263
Image
 invert 255
 reverse 255
Image Catalog 62
 add information 63
 create 61
 menu bar 599
 tool bar 599
Image Commands tool 153
Image Drape viewer 55
Image Enhancement menu 558
Image Files dialog 179
Image Interpreter 9, 239, 341, 497
 functions 606
 Convolution 554
 Neighborhood 554
Image Interpreter icon 217, 241, 247
Image Interpreter menu 217, 241, 248
Image matching 310
Image Matching icon 299
Image resampling 9
Image Stacking 310
ImageInfo
 icons 612
 menu bar 612
 tool bar 612
ImageInfo dialog 67, 179, 280, 552
ImageInfo utility 178
 edit 178
IMAGINE Radar Interpreter module
 using the IMAGINE Radar Interpreter module 545
IMAGINE Radar Interpreter module dialogs 545
IMAGINE Radar Interpreter module functions
 Brightness Adjustment 567
 Edge Enhancement 554
 Luminance Modification 557
 Sensor Merge 557
 Slant Range Adjustment 568
 Speckle Suppression 545
 Wallis Adaptive Filter 557
Import
 binary data 173
 column data 128
 decimated image 164
 generic data 173
 Landsat TM 164
 SPOT data 161
 subset 166
Import Column Data dialog 128
Import Generic Binary Data dialog 174
Import icon 161, 575
Import Options dialog 165, 285
Import SPOT dialog 162
Import/Export dialog 161, 167, 567, 569
Index 261
Indices dialog 261
Info icon 599, 642
Input icon 299
Input Slope Layer 344
Inquire Box Coordinates dialog 166, 347
Inquire Color dialog 11
Inquire Cursor 150, 643
 icon 643
 style 11
Index

Inquire Cursor dialog 10, 28, 150, 463, 642
Inquire Cursor icon 617, 642
Inquire Shape dialog 12
Interpolate dialog 35
Intersection icon 299
Inverse Fourier Transform dialog 224
ISODATA 101, 484

J
Jeffries-Matusita 478
JERS-1 569
Job Status dialog 164, 250, 305, 312, 323, 465, 576

K
Kernel 249
 CellArray 250
 library 249
Keyboard shortcut 6
Knowledge Base
test 514
Knowledge Base Editor dialog 504
Knowledge engineer 503
 add hypothesis 504
 add intermediate hypothesis 510
 ANDing criteria 527
 copy and edit rules/conditions 512
 enter rules for hypothesis 506
 enter variable for rule 507
 graphic model option 523
 pathway feedback 539
 prompt analyst 537
 set up output classes 503
 test knowledge base 514
 use with spatial logic 529

L
Label point 114
Land use planning 629
LANDSAT images 306
Legend 88
 columns 90
 position 89, 90
 specify contents 89
Legend icon 619
Legend Properties dialog 89
Level of Detail 326
Limits dialog 470
Line
 join 123
 reshape 123
 split 122
Line measurement 12
Line of constant range 567
Line Selection icon 117
Line Style Chooser dialog 86, 113, 121
Link box tool 140
Link symbol 21
Link/Unlink Instructions dialog 20, 370
Linked Cursors dialog 466
List of Recent Files dialog 7
Lock icon 35, 619, 634
Lookup table (LUT) graph 645
 breakpoints 645
 copy 645
 rotate 33
 shift 33
Lookup table (LUT) values
 change 26
 modify 29
 reset 29
Low/High Pass Filter dialog 221
Low-Pass Filter icon 233, 598

M
Magnifier window 16
Magnify image (see Zoom)
Manual insert 600
Manual Insert icon 600
Map
 area 77
 create 74
 prepare data layers 76
 steps 73
edit 97
file (.map) 97
name 75
output size 613
outside margin 84
planning 613
print 95
to file 96
sample 615
save 95
scale 75
size 75
title 90
units 75, 77
page 77
Map Composer
components 615
icon 74, 97
menu bar 616, 618
start 74
tool bar 617
viewer 75
Map Composer menu 74, 97
Map frame 77
adjust size 79
create 76
delete 82
dimensions 77
edit 81
position 78, 80
reference to image in Viewer 80
scale 78, 80
select 82
size 78
Map Frame Data Source dialog 77
Map Frame dialog 78, 82
Map Frame icon 619
Map Path Editor 98
Map projection 10, 135, 162, 169, 267, 600, 625
State Plane 135
Marquee icon 117, 618
Mask 474
Matching Options dialog 299, 310, 317, 321
Matrix dialog 356, 634
Matrix icon 634
Measure icon 642
Measurement icon 12
Measurement Tool dialog 642
Measurement Tool viewer 12
Menu
Classification 457, 485, 504
Data Preparation 102
Fourier Analysis 217
Graph Options 645
Image Enhancement 558
Image Interpreter 217, 241, 248
Map Composer 74, 97
Radar 547
Radar Interpreter 548
Radiometric Enhance 254
Session xxii
Spatial Enhancement 248
Spatial Modeler 342, 374
Spectral Enhancement 258
Tools xxiv
Utilities xxv
Vector Utilities 110, 574, 576, 589
Mineral ratio 261
Model 626
using conditional statements 351
working window 344, 383
Model Librarian dialog 375
Model Maker 239, 252, 341
functions 362
Analysis 362
Conditional 362
CONVOLVE 358
Criteria 378
EITHER 362
STRETCH 362, 363
start 342
tool palette 633
viewer
Index

menu bar 632
tool bar 632
Model Maker viewer 631
Modeler icon 342, 374
Modify commands automatically 205
Modify commands manually 187
Modify variables 200
Mosaic 291
 color balancing 314
cutline 300
display 305
input 294
intersection 299
output 303
run 304, 311
Mosaic Image List 297
Mosaic Tool
 menu bar 621
tool bar 621
viewer 293, 308
Mouse linear mapping 32
Mouse Linear Mapping icon 32

N
Neatline 83, 84
New Column dialog 579
New Map Composition dialog 74
New variable 204
New Vector Layer dialog 124, 129
New Window icon 632
No Link symbol 21
North arrow 92

O
Observer 58
On-Line Help xxvii
Opacity 40
Open Existing Catalog icon 599
Open FFT Layer dialog 219
Open Files dialog 494
Open icon 7, 15, 76, 119, 136, 137, 256, 305,
 323, 342, 345, 552, 554, 597, 599, 617,
 632, 642
Open Info Table dialog 577
Options dialog 55, 116, 124
Orthorectification 267
Output icon 303
Output Image icon 303
Output Image Options dialog 303
Overlay thematic data 53
Overlay True Color on Surface dialog 53
Overview icon 633

P
.overlay.img file (import preview) 165
Page Setup dialog 376
Paste icon 360, 630
Pattern Polygon Fill 586
Point measurement 12
Polygon icon 618
Polygon measurement 12
Polyline icon 13, 51, 619
Polynomial Model Properties dialog 138,
 145, 148
Position Parameters dialog 58
PostScript 377
PostScript device 95
Preference Editor 3, 243
 eml 3
 saving changes 6
 viewer 4
Preview Options dialog 163, 164
Preview window xxx, 34, 39, 91, 93, 587
Prewitt Gradient filter 555
Print dialog 14, 377
Print icon 14, 377, 617, 632
Print Map Composition dialog 96
Profile icon 643
Projection Chooser dialog 276
Properties dialog 112, 120

Q
Query
 coordinates 11
pixel information 10
Query icon 65
Quick View menu 16, 28, 150, 256, 598, 617, 639

R
Radar icon 547
Radar Interpreter menu 548
Radar menu 547
Radar Speckle Suppression dialog 548, 550, 558
RADARSAT 569
Radiometric Enhance menu 254
Raster Attribute Editor 34, 38, 40, 41, 104, 105, 366, 483, 487, 489, 497
Raster dialog 342, 344, 347, 349, 352, 356, 380, 629, 633
Raster icon 633
Raster options 292
Rayleigh distribution 549
Read Points dialog 284
Real Time Zoom 19
Recode 342, 347, 349, 497
using Criteria 347
Recode dialog 347, 349
Rectangle icon 618
Rectangle measurement 12
Rectangular Mask dialog 229
Rectangular Mask icon 598
Rectification 17
 image to image 135, 267
 steps 135, 267
 verifying 149
Red Mouse Linear Mapping dialog 32
Reference GCC File dialog 277
Region Grow icon 461, 619
Region Grow Options dialog 461
Region Growing Properties dialog 25, 461
Relate Manager dialog 581
Report Format Definition dialog 44
Resample 9, 148, 278
 Bilinear Interpolation 148, 278
 Cubic Convolution 148, 278
 Nearest Neighbor 148, 278
 Resample dialog 148, 151, 279
 Reset Zoom icon 617
 Resource management 629
 RGB 39
 RGB to IHS 262
 RGB to IHS dialog 262
 RMS error 145, 624
 residuals 624
 Roam 19
 Roam icon 21, 618, 643
 Rotate/Magnify Instructions box 120, 129
 Rotation box (rot box) 120, 122, 129
 Rule Properties dialog 507
 Rules
copy 512
 Rules for hypothesis 506
 Run icon 33, 224, 354, 359, 598, 633
 Run Mosaic dialog 304, 311, 322
 S
 .sig file (signature file) 456
 Save AOI As dialog 26, 295
 Save As dialog 46
 Save icon 95, 353, 359, 597, 617, 632, 642
 Save Layer As dialog 223, 234
 Save Model dialog 353, 359, 383
 Save Options File dialog 177
 Save Signature File As dialog 468
 Save Symbology As dialog 588
 Scalar dialog 361, 634
 Scalar icon 634
 Scale 77
 Scale bar 87
 Scale Bar icon 619
 Scale Bar Instructions dialog 87
 Scale Bar Properties dialog 87
 Script model
 annotation in 376
 delete 375
 edit 375
Index

run 375
Select A Directory dialog 7
Select Area for Zooming icon 64
Select icon 597, 617, 618, 633, 643
Select Map Frame icon 619
Select Profile Tool dialog 47
Selection Criteria dialog 43, 118, 347
Sensor Merge 560
 IHS 561
 Multiplicative 561
 Principal Component 561
Sensor Merge dialog 561
Session Log 161, 550
Session menu xxii, 3
Set Geometric Model dialog 137, 150, 270
Set Grid/Tick Info dialog 83
Set Overlap Function dialog 302, 311, 322
Set Parallelepiped Limits dialog 470
Set up scheduler 182
Set Window dialog 344, 383
Shadow
 enhance 28
Shift/Bias Adjustment dialog 31
Shift/Bias icon 31
Signature
 alarm 470
 contingency matrix 473
 ellipse 476
 evaluate 468
 feature space to image masking 474
 histogram 477
 merge 468
 non-parametric 456, 481
 parametric 456, 481
 separability 478
 statistics 475
Signature Alarm dialog 470
Signature Editor 456, 457

CellArray 596
Signature Objects dialog 475
Signature Separability dialog 478
SIR-A 547, 569
SIR-B 569
Site selection 629
Slant Range Adjustment dialog 568
Space resection 267
Spatial Enhancement menu 248
Spatial Modeler 239, 497
 Library 374
Spatial Modeler Language 239, 341, 373
Spatial Modeler menu 342, 374
Spatial Profile viewer 50
Speckle noise 545
Spectral Enhancement menu 258
Spectral Profile viewer 47
Spectral Statistics dialog 49
Stacking 310
Statistics dialog 42, 480
Statistics icon 480
Styles dialog 85
Subset 240
Sun Positioning dialog 56
Supervised Classification dialog 481
Surface Profile viewer 52
Surfacing dialog 287
Symbol Chooser dialog 93, 121, 586
Symbol icon 619
Symbol Properties dialog 94
Symbology dialog 584
Symbols 92

T
Tab 216, 456
Table dialog 634
Table icon 634
Table Tool 576
 CellArray 578
Tasseled Cap Coefficients dialog 259
Tasseled Cap dialog 258
Tasseled Cap transformation 258
Text Knowledge Base 514
Text 94
 align 92
 default style 94
 deselect 92
 edit 92
 fonts 91
 position 92
 style 91
Text Editor 45, 474, 479
 ERDAS IMAGINE 375
 menu bar 46
Text entry fields 98
Text icon 90, 619, 634
Text Properties dialog 92
Text String dialog 370, 371
Text Style Chooser dialog 86
Texture 564
Texture Analysis dialog 564
Threshold 482, 492
Threshold dialog 493
Threshold to File dialog 497
Tick label 85
Tick mark 73, 83
 length 84
 select 85
 spacing 84
Tool palette
 AOI 294, 301, 458
 Vector 114, 122, 130
Tools icon 23, 114, 130, 617, 633, 642
Tools menu xxiv, 567, 569
Transformation
 automatic calculation 146
 changing the order of 145
 coefficients 145
Transformation matrix
 calculate and edit 624
 compute 145
Transformed divergence 478

U
Unique Value dialog 585
Unlink cursor 22
Unsupervised Classification (Isodata) dialog 102
Unsupervised Classification dialog 485
Utilities menu xxv
Utility menu 174

V
Variable 204
Vector dialog 633
Vector icon 110, 574, 589, 633
Vector tool palette 114, 122, 130
Vector Utilities menu 110, 574, 576, 589
Vegetation classification 564
View Extent dialog 9
View Signature Columns dialog 458
Viewer 3
 Attributes 115, 125, 127
 Chip Extraction 272, 277
 Feature Space 466
 Image Drape 55
 Measurement Tool 12
 Model Maker 631
 Mosaic Tool 293, 308
Viewer (ERDAS IMAGINE) 76, 78, 291, 365, 639
 AOI menu 22
 arrange layers in 15
 close 17, 22
 link 19, 150
 menu bar 6, 345, 618, 639, 640
 number allowed 639
 open new 20
 Quick View menu 150
 resize 16, 293
 source 624
 split 256
 title bar 10
 tool bar 114, 130, 639, 642
 unlink 21
Index

Viewer Flicker dialog 107, 491, 496
Viewer icon 123, 128, 135, 250, 292, 305, 323, 547
Viewshed Analysis 325
Viewshed dialog 328, 330
viewshed layer 329, 331
Visual Query icon 64, 599

W
Wallis Adaptive Filter 557
Wallis Adaptive Filter dialog 558
Warning box 280
Wedge Mask dialog 230
Wedge Mask icon 598
Window icon 354

Z
Zoom 16
Zoom icon 633
Zoom In icon 16, 618, 642
Zoom Out icon 618, 642, 643