Lecture 5

Introduction to Stable Isotopes

Stable Isotope Geochemistry

Primarily concerned with the isotope ratios of H, C, N, O, and S – Si and B often included and new instrumentation has opened up others such as Mg, Fe, Cu, Se, Sn, Mo, TI etc.

Common Properties

- 1. Low atomic mass
- 2. Large relative mass difference e.g. D-H 100%
- 3. They form highly covalent chemical bonds e.g. ⁴⁰Ca-⁴⁸Ca shows little range
- 4. More than one oxidation state (C, N, S), form many compounds (O) and are important constituents of common solids and liquids
- 5. Rare isotopes are sufficiently abundant to allow precise measurements

In terrestrial materials, stable isotope geochemistry deals only with isotopic variations that arise from:

- (1) Isotope exchange reactions, (equilibrium isotope distribution) or
- (2) Kinetic effects mass-dependent fractionations that accompany physical and chemical processes and are dependant on differences in reaction rates

We are used to elemental properties being controlled by electronic configuration.

Pa

H H							
Li ³	Be ⁴	Shell	K	L	M	N	0
л Na	Mg ¹²	Orbital	15	2s 2p	3s 3p 3d	4s 4p 4d 4f	
19 K	20 21 22 Ca Sc Ti	Li	2	1			
37 Rb	Sr Y Zr	Na	2	26	1	1	
55 Cs	56 57 72 Ba La Hf	Rb	2	26	2 6 10	2 6	1
87 Fr	88 89 104 Ra Ac Rf		-	_ •	_ • • •	_ •	
		_					
	58 59 Ce Pr						

e.g. Group 1A alkali metals all have a single electron in their outer electron shell

So, different isotopes of an element will have similar properties

However, small differences in mass between isotopes of an element in a molecule can change the physical properties of the molecule e.g. $H_2^{16}O$ b.p. 100°C c.f. $D_2^{16}O$ b.p. 101.42°C

These differences can cause separation of the different isotopes during chemical reactions i.e. isotope fractionation – the partitioning of isotopes between 2 substances or 2 phases of the same substance with different isotope ratios.

The **fractionation factor** between two substances **A** and **B** (α_{A-B}) simply

 $\alpha_{A-B} = R_A/R_B$ where R is an isotope ratio e.g. ¹²C/¹³C

At equilibrium α is related to the thermodynamic equilibrium constant K, such that:

$$\alpha = \mathbf{K}^{1/n}$$

where n is the number of atoms exchanged in the reaction and subject to the (good) approximation that isotopes are randomly distributed among all possible sites in the molecule.

Fractionation Factors

To apply stable isotopes we need to know the size and temperature dependence of isotopic fractionation factors for the minerals and fluids studied.

Fractionation factors are determined in three ways:

- 1. Semi-empirical calculations from spectroscopic data using statistical mechanics
- 2. Laboratory calibration studies
- 3. Measurements of natural samples whose formation conditions are known.

Figure 16. Summary of mineral-calcite fractionation factors given by the carbonate-exchange technique. All data have been fit by straight lines through the origin. Abbreviations and sources of data given in Table 5.

			Table 5	. Coeffic	cients fo	r minera	l-pair ox	ygen iso	otope fra	ctionatio	n factors	s.		
	Cal	Ab	Mu	F-Phl	An	Phl	*Ap	Di	Gr	Gh	Fo	Ru	Mt	Prv
Qtz	0.38	0.94	1.37	1.64	1.99	2.16	2.51	2.75	3.15	3.50	3.67	4.69	6.29	6.80
Cal		0.56	0.99	1.26	1.61	1.78	2.13	2.37	2.77	3.12	3.29	4.31	5.91	6.42
Ab			0.43	0.70	1.05	1.22	1.57	1.81	2.21	2.56	2.73	3.75	5.35	5.86
Mu				0.27	0.62	0.79	1.14	1.38	1.78	2.13	2.30	3.32	4.92	5.43
F-Phl					0.35	0.52	0.87	1.11	1.51	1.86	2.03	3.05	4.65	5.16
An						0.17	0.52	0.76	1.72	1.51	1.68	2.70	4.30	4.81
Phl							0.35	0.59	0.99	1.34	1.51	2.53	4.13	4.64
Ap								0.24	0.64	0.99	1.16	2.18	3.78	4.29
Di									0.40	0.75	0.92	1.94	3.54	4.05
Gr										0.35	0.52	1.54	3.14	3.65
Gh											0.17	1.19	2.79	3.30
Fo												1.02	2.62	3.13
Ru													1.60	2.11
Mt														0.51

Coefficients for mineral-pair fractionation factors of the form 1000 ln α = A x 10⁶ /T²(K), where the coefficient A is given in the table.

Equations should not be extrapolated below -600°C. All data derived from experiments using the carbonate-exchange technique. Qtz = quartz; Cal = calcite; Ab = albite; Mu = muscovite; F-Phl = fluorophlogopite; An = anorthite; Phl = hydroxyphlogopite; Ap = apatite; Di = diopside; Gr = grossular; Gh = gehlenite; Fo = forsterite; Ru = rutile; Mt = magnetite; Prv = CaTiO₃ - perovskite. Data from Clayton et al. (1989), Chiba et al. (1989); Chacko et al. (1989, 1996), Gautason et al. (1993), Fortier and Lüttge (1995), and Rosenbaum and Mattey (1995).

*The equation for apatite is not the same as that given in Fortier and Lüttge (1995). Following Chacko et al.'s (1996) suggestion for hydrous minerals, Fortier and Lüttge's 500-800°C apatite-calcite fractionation data have been regressed by a straight line through the origin on a plot of 1000 ln α vs. 10⁶/T².

The Delta Value (δ)

Most commonly stable isotope ratios e.g. ¹⁸O/¹⁶O are expressed as delta values e.g. δ^{18} O. where δ is the measured ratio divided by some standard and multiplied by 1000

i.e.
$$\delta = \frac{R_{(SAMPLE)} - R_{STANDARD}}{R_{STANDARD}} \times 1000 (\%)$$

Two compounds A and B have been analysed.

 $δ_{A} = (R_{A}/R_{STD} - 1) \times 1000$ $δ_{B} = (R_{B}/R_{STD} - 1) \times 1000$

$$\delta_{A} - \delta_{B} = \Delta_{A-B}$$
 ("big delta") ~ 10³ ln α_{A-B}

STANDARDS

δ D	D/H	Standard Mean Ocean Water	Vienna - SMOW
$\delta^{13}\mathbf{C}$	¹³ C/ ¹² C	Cretaceous Belemnite, Peedee	PDB
		Formation, South Carolina	
δ^{15} N	¹⁵ N/ ¹⁴ N	Atmospheric nitrogen	Air
$\delta^{18}\mathbf{O}$	¹⁸ O/ ¹⁶ O	Standard Mean Ocean Water	V-SMOW
δ^{34} S	³⁴ S/ ³² S	Troilite (PbS) from Canyon	CDT
		Diablo iron meteorite	

Sometimes, particularly in palaeoclimate studies of carbonates $\delta^{18}O_{PDB}$ are presented:

$$\begin{split} &\delta^{18} \mathbf{O}_{\mathsf{PDB}} \texttt{= 0.97002} \; \delta^{18} \mathbf{O}_{\mathsf{SMOW}} \texttt{= 29.98} \\ &\delta^{18} \mathbf{O}_{\mathsf{SMOW}} \texttt{= 1.03091} \; \delta^{18} \mathbf{O}_{\mathsf{PDB}} \texttt{= 30.91} \end{split}$$

Isotope Exchange

e.g.
$$\frac{1}{3}CaCO^{16}_{3} + H_{2}O^{18} \implies \frac{1}{3}CaCO^{18}_{3} + H_{2}O^{16}$$

We can write an equilibrium constant (K) for this reaction:

$$K = \frac{[CaCO^{18}_{3}]^{1/3} / [CaCO^{16}_{3}]^{1/3}}{[H_{2}O^{18}] / [H_{2}O^{16}]}$$

so, *K* is the ratio of ¹⁸O/¹⁶O in carbonate divided by ¹⁸O/¹⁶O in water

 $K = R_c/R_w = \alpha$ fractionation factor (α) at 25°C = 1.0286 so carbonate deposited from seawater at 25°C has ¹⁸O/¹⁶O of 1.0286 x seawater.

Since V-SMOW has $\delta^{18}O = 0$ ‰, carbonate precipitated from water at 25°C will have $\delta^{18}O = +28.6$ ‰

Kinetic Isotope Effects

Associated with fast, incomplete or unidirectional processes e.g. evaporation, diffusion and dissociation reactions.

The average kinetic energy (K.E.) per molecule is the same for all ideal gases at a given temperature. Consider the molecules ¹²C¹⁶O and ¹²C¹⁸O with masses 28 and 30

K.E. = 1/2mv² so, if K.E. is equal, but mass is different, velocity must also be different by $(30/28)^{1/2} = 1.035$ i.e. At all temperatures the average velocity of $12C^{16}O$ is 3.5% higher than $12C^{18}O$ in the same system. This causes isotopic fractionation because e.g. in a diffusive system, the light molecules will leave more quickly, leaving the system enriched in the heavy isotope.

In evaporation, the higher velocities of the light molecules allow them to break through the liquid surface preferentially. For example the δ^{18} O of water vapour above the ocean is about -13‰ _{SMOW} but the equilbrium fractionation factor predicts -9 ‰, the difference is the kinetic effect.

Heavy isotope molecules are more stable and it is easier to break e.g. ³²S-O than ³⁴S-O bonds. Dissociation and bacterial reactions can produce large fractionations, predominantly in **low temperature processes.**

Evaporation - Precipitation

During evaporation, water vapour is enriched in ¹⁶O because H₂¹⁶O has a higher vapour pressure than other combinations of isotopes.

Rain drops and snow are enriched in ¹⁸O.

Thus, an air mass evolves lower $\delta^{18}\text{O}$ as precipitation is removed from it.

Rayleigh Distillation

Global Meteoric Water Curve

In all evaporation – condensation processes H isotopes are fractionated in proportion to O isotopes because a corresponding difference in vapour pressure exists between H₂O- HDO and H₂¹⁶O - H₂¹⁸O. Therefore, δ D and δ^{18} O in meteoric waters are always correlated.

Carbon – important reservoirs

Carbon

Fractionation mechanisms

1. Isotopic equilibrium exchange reactions within inorganic C system Low temperature: $CO_2 + H_2O \leftrightarrow H^+ + H_2CO_3$ $H_2O + CO_2 \leftrightarrow H^+ + HCO_3^ CaCO_3 + H^+ \leftrightarrow Ca^{2+} + HCO_3^-$

Each of these equilibria involves a temperature dependent isotope fractionation. Calcite enriched in ¹³C relative to CO_2 by c. 10‰ at 20°C

At high temperature equilibrium isotope exchange within the system CO_2 – Carbonate – graphite – CH_4 . In particular, the calcite – graphite fractionation yields a useful geothermometer.

Calcite-Graphite C-lsotope Geothermometry

Adirondacks Marbles

After: Kitchen & Valley (1995) J. Metamor.Geol. 12, 7577-594

Carbon

Fractionation mechanisms

2. Kinetic effects during photosynthesis concentrate ¹²C in synthesized organic matter.

So-called C3 and C4 plants vary in the mechanisms used to fix C and synthesize plant tissue. C3 plants are less efficient at C fixation and induce a large isotope fractionation. C4 plants are more efficient and induce less isotope factionation.

C3
$$\delta^{13}$$
C = -18 ‰

C4 $\delta^{13}C = -4$ % relative to atmospheric CO₂

Oxygen – important reservoirs

Oxygen

Minerals ranked in order of tendency to concentrate ¹⁸O

Sulphur

Fractionation mechanisms:

1. Sulphate reduction by bacteria e.g. *Desufovibrio desulfuricans*

 $SO_4 + H_2 \longrightarrow H_2S + 2O_2$

in which H₂S in enriched in ^{32}S cf SO₄ producing strongly negative $\delta^{34}S$ in reduced S.

2. Chemical exchange reactions between sulphate and sulphide and between sulphide minerals.

Pairs of sulphide minerals show different δ^{34} S with the difference being a function of formation temperature of the form:

 Δ^{34} S = A/T² - where A is a characteristic constant and T is absolute temperature (K)

Biogenic S fractionation

Over 100 organisms are known that gain energy through reduction of sulphate while oxidising organic C or H

 $SO_4^{2-} + 2CH_2O \longrightarrow H_2S + 2HCO_3^{-}$

In general the rate limiting step is the breaking of the first S-O bond as sulphate is reduced to sulphite.

Laboratory experiments using bacterial cultures gave mixed results with sulphite depleted in ³⁴S by 4-46 ‰.

Recent experiments on natural populations yield large fractionations.

Sulphur – important reservoirs

