Picture Archiving and Communication Systems (PACS)

Basile P. Spyropoulos

Technological Educational Institution of Athens
Medical Instrumentation Technology Department
The PACS

- In medical imaging, picture archiving and communication systems (PACS) are computers or networks dedicated to the:
 - Storage.
 - Retrieval.
 - Distribution.
 - Presentation.

of images.

- The medical images are stored in an independent format.
- The most common format for image storage is DICOM (Digital Imaging and Communications in Medicine).
The application areas of PACs

- Most PACSs handle images from various medical imaging instruments, including:
 - Ultrasound.
 - Magnetic Resonance.
 - PET.
 - Computed tomography.
 - Mammograms.
 - Endoscopy etc.

- The most common format employed in the above application areas is DICOM.
Standards in Digital Imaging

- A crucial issue in developing PACs is the Information Exchange Standards in Digital Imaging and Communication employed in Medicine
- The main aim of the medical information standards is to ensure that all data needed to accomplish a specific communication can be transmitted from one system to another.
- The two most important Standards employed presently in Digital Imaging are:
 - Health Level 7.
 - DICOM.
Health Level 7 (HL7)

- Health Level 7 (HL7) is a standards-developing organization that is accredited by the American National Standards Institute.
- The domain of HL7 is in clinical and administrative data.
- The HL7 standard is a specification, not software, for information exchange between medical applications, and it includes a protocol for data exchange.
- It defines the format and content of the messages that applications must use when exchanging data. (Health Level Seven, I. Health Level-7 Standards Web site. Available at: http://www.hl7.org/).
The evolution of HL7

- HL7 standards are based on the reference information model.
- The current standard is HL7 version 2.4. Version 2.5 and version 2.6 were further constrained by the previous standard. *(R. H. Dolin et al. The HL7 clinical document architecture. J. Am. Med. Inform. Assoc. 8(6):552–569, 2001.)*

The Clinical Document Architecture (CDA)

- A feature of the CDA is its ability to be viewed in a browser using a single style sheet based on XML.
- Messages with CDA are, by definition, able to include text, images, sounds, and other multimedia content.
- A major advantage of HL7 is system independence resulting from open system architecture.
- Open system architecture discloses its specifications, and, by following appropriate protocols, add-on components can be developed without regard to vendor specifications.
- This avoids the need to develop an entire infrastructure simultaneously.
- Each component can be developed and integrated individually.
The evolution of the Digital Imaging and Communications in Medicine (DICOM)

- The move to digital images in radiology and their anticipated dissemination electronically prompted:
 - *The American College of Radiology (ACR)* and
 - *The National Electrical Manufacturers Association (NEMA)* to form a joint committee in 1983 to create a standard format for storing and transmitting medical images National Electrical Manufacturers Association. *(Digital imaging and communication in medicine strategic document version 4.0. Available at: http://medical.nema.org/).*

- The committee published the original *ACRNEMA standard* in 1985, which has been revised since then.

- In 1993, the standard was renamed to digital imaging and communications in medicine (DICOM version 3.0) and permitted the transfer of medical images in a multi-vendor environment.
The DICOM standard contents

- The DICOM standard contains the network components required for file exchange.
- It uses transmission control protocol / Internet protocol to communicate between systems.
- DICOM files can be exchanged between two entities that have the capability to receive the information, both image and patient data.
- The patient data are encoded in a header, including the patient name, type of scan, image dimensions, and other information related to the scan.
- The concept of DICOM arose from a desire to integrate scanners, servers, workstations and network hardware from multiple vendors into a picture archive and communication system.
DICOM conformance statements

- For picture archive and communications system imaging devices, servers and workstations have DICOM conformance statements that identify the DICOM classes that are supported.
- DICOM has been widely adopted by hospitals because of its interchangeability.
- HL7 and DICOM require the definition of all data elements that are sent.
- In many cases, the content requires a specific vocabulary that can be interpreted between the systems.
<table>
<thead>
<tr>
<th>Code</th>
<th>Modality Description</th>
<th>Code</th>
<th>Modality Description</th>
<th>Code</th>
<th>Modality Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI</td>
<td>Biomagnetic Imaging</td>
<td>GM</td>
<td>Gross Microscopy</td>
<td>RF</td>
<td>Radio Fluoroscopy</td>
</tr>
<tr>
<td>CD</td>
<td>Color Flow Doppler</td>
<td>LS</td>
<td>Laser Surface Scan</td>
<td>RG</td>
<td>Radiographic Imaging - film screen</td>
</tr>
<tr>
<td>CR</td>
<td>Computed Radiography</td>
<td>MA</td>
<td>Magn. Resonance Angiography</td>
<td>RT</td>
<td>Radiation Therapy</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
<td>MG</td>
<td>Mammography</td>
<td>SC</td>
<td>Secondary Capture</td>
</tr>
<tr>
<td>DD</td>
<td>Duplex Doppler</td>
<td>MR</td>
<td>Magnetic Resonance</td>
<td>SM</td>
<td>Slide Microscopy</td>
</tr>
<tr>
<td>DG</td>
<td>Diaphanography</td>
<td>NS</td>
<td>Magn. Resonance Spectroscopy</td>
<td>ST</td>
<td>Single-Photon Emission Computed Tomography</td>
</tr>
<tr>
<td>EC</td>
<td>Electrocardiography</td>
<td>NM</td>
<td>Nuclear Medicine</td>
<td>TG</td>
<td>Thermography</td>
</tr>
<tr>
<td>EM</td>
<td>Electron Microscope</td>
<td>OT</td>
<td>Other</td>
<td>US</td>
<td>Ultra Sound</td>
</tr>
<tr>
<td>ES</td>
<td>Endoscopy</td>
<td>PT</td>
<td>Positron Emission Tomography</td>
<td>VL</td>
<td>Visible Light</td>
</tr>
</tbody>
</table>
Healthcare Communication Standards

- Insurance
- General Practitioners
- e.g. EDIfact
- Hospital
- e.g. EDIfact
- Laboratory
- HIS
- CPR
- Radiology
- ICU
- Cardiology
- OR Surgery
- Pharmacy
- Wards
- Oncology (RT)
- DICOM
- Pathology
- Teleradiology to clinics
The heterogeneity between the standards

- At present, there is heterogeneity between the standards.
- To improve the electronic interchange of clinical data, universal standard formats should be defined to include:
 - Images.
 - Signals.
 - Multimedia.
 - Text.
PACs’ uses

- PACs replaces hard-copy based means of managing medical images, such as film archives.
- It expands on the possibilities of such conventional systems by providing capabilities of off-site viewing and reporting (Distance Education, Telediagnosis).
- Additionally, it enables practitioners at various physical locations to access the same information simultaneously (Teleradiology).
- With the decreasing price of digital storage, PACSs provide a growing cost and space advantage over film archives.
- PACS is offered by virtually all the major medical imaging equipment manufacturers, medical IT companies and many independent software companies.
Interpreting the DICOM image format

- The most difficult area for PACS is interpreting the DICOM image format.
- DICOM has enough latitude to allow various vendors of medical imaging equipment to create DICOM compliant and incompliant files that differ in the internal tags used to label the data and the metadata.
- A feature common to most PACS is to read the metadata from all the images into a central database.
- This allows the PACS user to retrieve all images with a common feature no matter the originating instrument.
- The differences between vendors' DICOM implementations make this a difficult task.
Radiology Information Systems
RIS Typical Menu
HIS-RIS-PACS
Input subsystem of a PACS
Reduction of lost exams
Reduction of examination time

Results

There was an overall decrease in examination times of 60% with filmless operation.
Reduction of Technologists’ time

Reduction in CT technologist scanner time with filmless operation.
Presentation subsystem of a PACS

![Diagram showing the presentation subsystem of a PACS system.]