Microeconomic Theory I

Consumer preferences and utility

Stella Tsani

stsani@econ.uoa.gr

Lecture slides kindly offered by

Rationality in Economics

- Behavioral Postulate:
 A decisionmaker always chooses its most preferred alternative from its set of available alternatives.
- So to model choice we must model decisionmakers' preferences.

- Comparing two different consumption bundles, x and y:
 - strict preference: x is more preferred than is y.
 - weak preference: x is as at least as preferred as is y.
 - indifference: x is exactly as preferred as is y.

- Strict preference, weak preference and indifference are all preference relations.
- Particularly, they are ordinal relations; i.e. they state only the order in which bundles are preferred.

□ ➤ denotes strict preference;
 x ➤ y means that bundle x is preferred strictly to bundle y.

- □ ➤ denotes strict preference;
 x ➤ y means bundle x is preferred strictly to bundle y.
- denotes indifference; x ~ y means x and y are equally preferred.

- □ ➤ denotes strict preference so
 x ➤ y means that bundle x is preferred strictly to bundle y.
- denotes indifference; x ~ y means x and y are equally preferred.
- □ ≿ denotes weak preference;
 x ≿ y means x is preferred at least as much as is y.

 \Box x \succeq y and y \succeq x imply x ~ y.

- \Box x \succeq y and y \succeq x imply x ~ y.
- \Box x \succ y and (not y \succ x) imply x \succ y.

Assumptions about Preference Relations

 Completeness: For any two bundles x and y it is always possible to make the statement that either

$$x \succeq y$$
 $y \succ x$

or

Assumptions about Preference Relations

 Reflexivity: Any bundle x is always at least as preferred as itself; i.e.

$$x \succeq x$$
.

Assumptions about Preference Relations

Transitivity: If x is at least as preferred as y, and y is at least as preferred as z, then x is at least as preferred as z; i.e.

 $x \succeq y$ and $y \succeq z \longrightarrow x \succeq z$.

- Take a reference bundle x'. The set of all bundles equally preferred to x' is the indifference curve containing x'; the set of all bundles y ~ x'.
- Since an indifference "curve" is not always a curve a better name might be an indifference "set".

Indifference Curves Cannot Intersect

Indifference Curves Cannot Intersect

- When more of a commodity is always preferred, the commodity is a good.
- If every commodity is a good then indifference curves are negatively sloped.

Good 2

 If less of a commodity is always preferred then the commodity is a bad.

Good 2

Extreme Cases of Indifference Curves; Perfect Substitutes

If a consumer always regards units of commodities 1 and 2 as equivalent, then the commodities are perfect substitutes and only the total amount of the two commodities in bundles determines their preference rank-order.

Extreme Cases of Indifference Curves; Perfect Substitutes

Extreme Cases of Indifference Curves; Perfect Complements

If a consumer always consumes commodities 1 and 2 in fixed proportion (e.g. one-to-one), then the commodities are perfect complements and only the number of pairs of units of the two commodities determines the preference rank-order of bundles.

Extreme Cases of Indifference Curves; Perfect Complements

Extreme Cases of Indifference Curves; Perfect Complements

Preferences Exhibiting Satiation

- A bundle strictly preferred to any other is a satiation point or a bliss point.
- What do indifference curves look like for preferences exhibiting satiation?

Indifference Curves Exhibiting Satiation

Indifference Curves Exhibiting Satiation

Indifference Curves Exhibiting Satiation

Indifference Curves for Discrete Commodities

- A commodity is infinitely divisible if it can be acquired in any quantity; e.g. water or cheese.
- A commodity is discrete if it comes in unit lumps of 1, 2, 3, ... and so on; e.g. aircraft, ships and refrigerators.

Indifference Curves for Discrete Commodities

Suppose commodity 2 is an infinitely divisible good (gasoline) while commodity 1 is a discrete good (aircraft). What do indifference "curves" look like?

Indifference Curves With a Discrete Good

Well-Behaved Preferences

- A preference relation is "wellbehaved" if it is
 - -monotonic and convex.
- Monotonicity: More of any commodity is always preferred (*i.e.* no satiation and every commodity is a good).

Well-Behaved Preferences

Convexity: Mixtures of bundles are (at least weakly) preferred to the bundles themselves. E.g., the 50-50 mixture of the bundles x and y is z = (0.5)x + (0.5)y.
 z is at least as preferred as x or y.

Well-Behaved Preferences --Convexity.

Well-Behaved Preferences --Convexity.

Well-Behaved Preferences --Convexity.

Well-Behaved Preferences --- Weak Convexity.

Preferences are weakly convex if at least one mixture z is equally preferred to a component bundle.

Non-Convex Preferences

More Non-Convex Preferences

The mixture z is less preferred than x or y.

Slopes of Indifference Curves

- The slope of an indifference curve is its marginal rate-of-substitution (MRS).
- How can a MRS be calculated?

Marginal Rate of Substitution

Marginal Rate of Substitution

Marginal Rate of Substitution

Good 2

Good 2

Good 2

- \square x \succ y: x is preferred strictly to y.
- \Box x ~ y: x and y are equally preferred.
- □ x > y: x is preferred at least as much as is y.

 Completeness: For any two bundles x and y it is always possible to state either that

$$x \succeq y$$
 or that $y \succeq x$.

□ Reflexivity: Any bundle x is always at least as preferred as itself; *i.e.*

$$x \succeq x$$
.

Transitivity: If x is at least as preferred as y, and y is at least as preferred as z, then x is at least as preferred as z; i.e.

$$x \succeq y$$
 and $y \succeq z \implies x \succeq z$.

Utility Functions

- A preference relation that is complete, reflexive, transitive and continuous can be represented by a continuous utility function.
- Continuity means that small changes to a consumption bundle cause only small changes to the preference level.

Utility Functions

 □ A utility function U(x) represents a preference relation ≿ if and only if:

$$x' \succ x'' \longrightarrow U(x') > U(x'')$$
 $x' \prec x'' \longrightarrow U(x'') < U(x'')$
 $x' \sim x'' \longrightarrow U(x'') = U(x'')$.

Utility Functions

- Utility is an ordinal (i.e. ordering) concept.
- E.g. if U(x) = 6 and U(y) = 2 then bundle x is strictly preferred to bundle y. But x is not preferred three times as much as is y.

- Consider the bundles (4,1), (2,3) and (2,2).
- □ Suppose (2,3) \succ (4,1) \sim (2,2).
- Assign to these bundles any numbers that preserve the preference ordering;
 e.g. U(2,3) = 6 > U(4,1) = U(2,2) = 4.
- Call these numbers utility levels.

- An indifference curve contains equally preferred bundles.
- □ Equal preference ⇒ same utility level.
- Therefore, all bundles in an indifference curve have the same utility level.

- □ So the bundles (4,1) and (2,2) are in the indiff. curve with utility level $U \equiv 4$
- But the bundle (2,3) is in the indiff.
 curve with utility level U = 6.
- On an indifference curve diagram, this preference information looks as follows:

Another way to visualize this same information is to plot the utility level on a vertical axis.

Utility Functions & Indiff. Curves 3D plot of consumption & utility levels for 3 bundles

This 3D visualization of preferences can be made more informative by adding into it the two indifference curves.

 Comparing more bundles will create a larger collection of all indifference curves and a better description of the consumer's preferences.

As before, this can be visualized in
 3D by plotting each indifference curve at the height of its utility index.

- Comparing all possible consumption bundles gives the complete collection of the consumer's indifference curves, each with its assigned utility level.
- This complete collection of indifference curves completely represents the consumer's preferences.

- The collection of all indifference curves for a given preference relation is an indifference map.
- An indifference map is equivalent to a utility function; each is the other.

- There is no unique utility function representation of a preference relation.
- □ Suppose $U(x_1,x_2) = x_1x_2$ represents a preference relation.
- Again consider the bundles (4,1), (2,3) and (2,2).

u
$$U(x_1,x_2) = x_1x_2$$
, so

$$U(2,3) = 6 > U(4,1) = U(2,2) = 4;$$

that is,
$$(2,3) \succ (4,1) \sim (2,2)$$
.

u
$$U(x_1,x_2) = x_1x_2$$
 (2,3) \succ (4,1) \sim (2,2).
u Define $V = U^2$.

u
$$U(x_1,x_2) = x_1x_2$$
 (2,3) > (4,1) ~ (2,2).
u Define V = U².

- Then $V(x_1,x_2) = x_1^2 x_2^2$ and V(2,3) = 36 > V(4,1) = V(2,2) = 16 so again $(2,3) \succ (4,1) \sim (2,2)$.
- V preserves the same order as U and so represents the same preferences.

u
$$U(x_1,x_2) = x_1x_2$$
 (2,3) \succ (4,1) \sim (2,2).
u Define W = 2U + 10.

- u $U(x_1,x_2) = x_1x_2$ (2,3) \succ (4,1) \sim (2,2).
- u **Define W** = 2U + 10.
- Then $W(x_1,x_2) = 2x_1x_2+10$ so W(2,3) = 22 > W(4,1) = W(2,2) = 18. Again, $(2,3) \succ (4,1) \sim (2,2)$.
- W preserves the same order as U and V and so represents the same preferences.

- - U is a utility function that represents a preference relation ≿ and
 - f is a strictly increasing function,
- □ then V = f(U) is also a utility function representing \succeq .

Goods, Bads and Neutrals

- A good is a commodity unit which increases utility (gives a more preferred bundle).
- A bad is a commodity unit which decreases utility (gives a less preferred bundle).
- A neutral is a commodity unit which does not change utility (gives an equally preferred bundle).

Goods, Bads and Neutrals

Around x' units, a little extra water is a neutral.

Some Other Utility Functions and Their Indifference Curves

□ Instead of $U(x_1,x_2) = x_1x_2$ consider

$$V(x_1,x_2) = x_1 + x_2.$$

What do the indifference curves for this "perfect substitution" utility function look like?

Perfect Substitution Indifference

Perfect Substitution Indifference Curves

All are linear and parallel.

Some Other Utility Functions and Their Indifference Curves

□ Instead of $U(x_1,x_2) = x_1x_2$ or $V(x_1,x_2) = x_1 + x_2$, consider

$$W(x_1,x_2) = min\{x_1,x_2\}.$$

What do the indifference curves for this "perfect complementarity" utility function look like?

Perfect Complementarity Indifference Curves

Perfect Complementarity Indifference Curves

All are right-angled with vertices on a ray from the origin.

Some Other Utility Functions and Their Indifference Curves

A utility function of the form

$$U(x_1,x_2) = f(x_1) + x_2$$

is linear in just x₂ and is called quasilinear.

$$\Box$$
 E.g. $U(x_1,x_2) = 2x_1^{1/2} + x_2$.

Quasi-linear Indifference Curves

Some Other Utility Functions and Their Indifference Curves

Any utility function of the form

$$U(x_1,x_2) = x_1^a x_2^b$$

with a > 0 and b > 0 is called a Cobb-Douglas utility function.

Cobb-Douglas Indifference

- Marginal means "incremental".
- The marginal utility of commodity i is the rate-of-change of total utility as the quantity of commodity i consumed changes; i.e.

$$MU_i = \frac{\partial U}{\partial x_i}$$

 \Box *E.g.* if $U(x_1,x_2) = x_1^{1/2} x_2^2$ then

$$MU_1 = \frac{\partial U}{\partial x_1} = \frac{1}{2}x_1^{-1/2}x_2^2$$

$$\Box$$
 E.g. if $U(x_1,x_2) = x_1^{1/2} x_2^2$ then

$$MU_1 = \frac{\partial U}{\partial x_1} = \frac{1}{2}x_1^{-1/2}x_2^2$$

 \Box *E.g.* if $U(x_1,x_2) = x_1^{1/2} x_2^2$ then

$$MU_2 = \frac{\partial U}{\partial x_2} = 2x_1^{1/2}x_2$$

$$\Box$$
 E.g. if $U(x_1,x_2) = x_1^{1/2} x_2^2$ then

$$MU_2 = \frac{\partial U}{\partial x_2} = 2x_1^{1/2}x_2$$

 \Box So, if $U(x_1,x_2) = x_1^{1/2} x_2^2$ then

$$MU_1 = \frac{\partial U}{\partial x_1} = \frac{1}{2}x_1^{-1/2}x_2^2$$

$$MU_2 = \frac{\partial U}{\partial x_2} = 2x_1^{1/2}x_2$$

Marginal Utilities and Marginal Rates-of-Substitution

The general equation for an indifference curve is
 U(x₁,x₂) ≡ k, a constant.
 Totally differentiating this identity gives

$$\frac{\partial U}{\partial x_1} dx_1 + \frac{\partial U}{\partial x_2} dx_2 = 0$$

Marginal Utilities and Marginal Rates-of-Substitution

$$\frac{\partial U}{\partial x_1} dx_1 + \frac{\partial U}{\partial x_2} dx_2 = 0$$

rearranged is

$$\frac{\partial U}{\partial x_2} dx_2 = -\frac{\partial U}{\partial x_1} dx_1$$

Marginal Utilities and Marginal Rates-of-Substitution

And
$$\frac{\partial U}{\partial x_2} dx_2 = -\frac{\partial U}{\partial x_1} dx_1$$

rearranged is

$$\frac{dx_2}{dx_1} = -\frac{\partial U / \partial x_1}{\partial U / \partial x_2}.$$

This is the MRS.

Marg. Utilities & Marg. Rates-of-Substitution; An example

□ Suppose $U(x_1,x_2) = x_1x_2$. Then

$$\frac{\partial U}{\partial x_1} = (1)(x_2) = x_2$$

$$\frac{\partial U}{\partial x_2} = (x_1)(1) = x_1$$

so
$$MRS = \frac{dx_2}{dx_1} = -\frac{\partial U / \partial x_1}{\partial U / \partial x_2} = -\frac{x_2}{x_1}$$

Marg. Utilities & Marg. Rates-of-Substitution; An example

Marg. Rates-of-Substitution for Quasi-linear Utility Functions

□ A quasi-linear utility function is of the form $U(x_1,x_2) = f(x_1) + x_2$.

$$\frac{\partial U}{\partial x_1} = f'(x_1) \qquad \frac{\partial U}{\partial x_2} = 1$$

so
$$MRS = \frac{dx_2}{dx_1} = -\frac{\partial U / \partial x_1}{\partial U / \partial x_2} = -f'(x_1)$$
.

Marg. Rates-of-Substitution for Quasi-linear Utility Functions

□ MRS = - $f'(x_1)$ does not depend upon x_2 so the slope of indifference curves for a quasi-linear utility function is constant along any line for which x_1 is constant. What does that make the indifference map for a quasi-linear utility function look like?

Marg. Rates-of-Substitution for Quasi-linear Utility Functions

Monotonic Transformations & Marginal Rates-of-Substitution

- Applying a monotonic transformation to a utility function representing a preference relation simply creates another utility function representing the same preference relation.
- What happens to marginal rates-ofsubstitution when a monotonic transformation is applied?

Monotonic Transformations & Marginal Rates-of-Substitution

- □ For $U(x_1,x_2) = x_1x_2$ the MRS = x_2/x_1 .
- □ Create $V = U^2$; *i.e.* $V(x_1,x_2) = x_1^2x_2^2$. What is the MRS for V?

$$MRS = -\frac{\partial V / \partial x_1}{\partial V / \partial x_2} = -\frac{2x_1x_2^2}{2x_1^2x_2} = -\frac{x_2}{x_1}$$

which is the same as the MRS for U.

Monotonic Transformations & Marginal Rates-of-Substitution

More generally, if V = f(U) where f is a strictly increasing function, then

$$\begin{split} MRS &= -\frac{\partial V / \partial x_1}{\partial V / \partial x_2} = -\frac{f'(U) \times \partial U / \partial x_1}{f'(U) \times \partial U / \partial x_2} \\ &= -\frac{\partial U / \partial x_1}{\partial U / \partial x_2}. \end{split}$$

So MRS is unchanged by a positive monotonic transformation.