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Economic Rationality

The principal behavioral postulate is 

that a decisionmaker chooses its 

most preferred alternative from those 

available to it.

The available choices constitute the 

choice set.

How is the most preferred bundle in 

the choice set located?
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Rational Constrained Choice

x1
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Rational  Constrained Choice
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Rational  Constrained Choice

Utility x2
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Rational Constrained Choice

Utility
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Rational Constrained Choice

Utility

x1

x2

Affordable, but not 

the most preferred 

affordable bundle.
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Rational Constrained Choice

x1

x2

Utility

Affordable, but not 

the most preferred 

affordable bundle.

The most preferred

of the affordable

bundles.
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Rational Constrained Choice
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Rational Constrained Choice
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Rational Constrained Choice
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Rational Constrained Choice
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Rational Constrained Choice

x1

x2

Affordable

bundles
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Rational Constrained Choice

x1

x2

Affordable

bundles



21

Rational Constrained Choice
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Rational Constrained Choice

Affordable

bundles

x1
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More preferred

bundles
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Rational Constrained Choice

x1

x2

x1*

x2*
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Rational Constrained Choice

x1

x2

x1*

x2*

(x1*,x2*) is the most

preferred affordable

bundle.
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Rational Constrained Choice

The most preferred affordable bundle 

is called the consumer’s ORDINARY 

DEMAND at the given prices and 

budget.

Ordinary demands will be denoted by

x1*(p1,p2,m) and x2*(p1,p2,m).
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Rational Constrained Choice

When x1* > 0 and x2* > 0 the 

demanded bundle is INTERIOR.

If buying (x1*,x2*) costs $m then the 

budget is exhausted. 
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Rational Constrained Choice

x1

x2

x1*

x2*

(x1*,x2*) is interior.

(x1*,x2*) exhausts the

budget.
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Rational Constrained Choice

x1

x2

x1*

x2*

(x1*,x2*) is interior.

(a) (x1*,x2*) exhausts the

budget; p1x1* + p2x2* = m.
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Rational Constrained Choice

x1

x2

x1*

x2*

(x1*,x2*) is interior .

(b) The slope of the indiff.

curve at (x1*,x2*) equals

the slope of the budget

constraint.
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Rational Constrained Choice

(x1*,x2*) satisfies two conditions:

(a) the budget is exhausted;

p1x1* + p2x2* = m

(b) the slope of the budget constraint, 

-p1/p2, and the slope of the 

indifference curve containing (x1*,x2*) 

are equal at (x1*,x2*).
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Computing Ordinary Demands

How can this information be used to 

locate (x1*,x2*) for given p1, p2 and 

m?
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Computing Ordinary Demands -

a Cobb-Douglas Example.

Suppose that the consumer has 

Cobb-Douglas preferences.

U x x x xa b
( , )1 2 1 2=
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Computing Ordinary Demands -

a Cobb-Douglas Example.

Suppose that the consumer has 

Cobb-Douglas preferences.

Then

U x x x xa b
( , )1 2 1 2=

MU
U

x
ax xa b

1
1

1
1

2= = −



MU
U

x
bx xa b

2
2

1 2
1= = −


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Computing Ordinary Demands -

a Cobb-Douglas Example.

So the MRS is

MRS
dx

dx

U x

U x

ax x

bx x

ax

bx

a b

a b
= = − = − = −

−

−
2

1

1

2

1
1

2

1 2
1

2

1

 

 

/

/
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Computing Ordinary Demands -

a Cobb-Douglas Example.

So the MRS is

At (x1*,x2*), MRS = -p1/p2 so

MRS
dx

dx

U x

U x

ax x

bx x

ax

bx

a b

a b
= = − = − = −

−

−
2

1

1

2

1
1

2

1 2
1

2

1

 

 

/

/
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Computing Ordinary Demands -

a Cobb-Douglas Example.

So the MRS is

At (x1*,x2*), MRS = -p1/p2 so

MRS
dx

dx

U x

U x

ax x

bx x

ax

bx

a b

a b
= = − = − = −

−

−
2

1

1

2

1
1

2

1 2
1

2

1

 

 

/

/
.

− = −  =
ax

bx

p

p
x
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x2
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1

2
2
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2
1

*

*

* *
. (A)
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Computing Ordinary Demands -

a Cobb-Douglas Example.

(x1*,x2*) also exhausts the budget so

p x p x m1 1 2 2
* *

.+ = (B)
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Computing Ordinary Demands -

a Cobb-Douglas Example.

So now we know that

x
bp

ap
x2

1

2
1

* *= (A)

p x p x m1 1 2 2
* *

.+ = (B)
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Computing Ordinary Demands -

a Cobb-Douglas Example.

So now we know that

x
bp

ap
x2

1

2
1

* *= (A)

p x p x m1 1 2 2
* *

.+ = (B)

Substitute
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Computing Ordinary Demands -

a Cobb-Douglas Example.

So now we know that

x
bp

ap
x2

1

2
1

* *= (A)

p x p x m1 1 2 2
* *

.+ = (B)

p x p
bp

ap
x m1 1 2

1

2
1

* *
.+ =

Substitute

and get

This simplifies to ….
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Computing Ordinary Demands -

a Cobb-Douglas Example.

x
am

a b p
1

1

*

( )
.=

+
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Computing Ordinary Demands -

a Cobb-Douglas Example.

x
bm

a b p
2

2

*

( )
.=

+

Substituting for x1* in 

p x p x m1 1 2 2
* *+ =

then gives

x
am

a b p
1

1

*

( )
.=

+
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Computing Ordinary Demands -

a Cobb-Douglas Example.

So we have discovered that the most

preferred affordable bundle for a consumer

with Cobb-Douglas preferences

U x x x xa b
( , )1 2 1 2=

is
( , )

( )
,
( )

.
* * ( )x x

am

a b p

bm

a b p
1 2

1 2

=
+ +
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Computing Ordinary Demands -

a Cobb-Douglas Example.

x1

x2

x
am

a b p
1

1

*

( )
=

+

x

bm

a b p

2

2

*

( )

=

+

U x x x xa b
( , )1 2 1 2=
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Rational Constrained Choice
When x1* > 0 and x2* > 0 

and    (x1*,x2*) exhausts the budget,

and    indifference curves have no

‘kinks’, the ordinary demands 

are obtained by solving:

(a)        p1x1* + p2x2* = y

(b) the slopes of the budget constraint, 

-p1/p2, and of the indifference curve 

containing (x1*,x2*) are equal at (x1*,x2*).
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Rational Constrained Choice

But what if x1* = 0?

Or if x2* = 0?

If either x1* = 0 or x2* = 0 then the 

ordinary demand (x1*,x2*) is at a 

corner solution to the problem of 

maximizing utility subject to a budget 

constraint.
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Examples of Corner Solutions --

the Perfect Substitutes Case

x1

x2

MRS = -1
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Examples of Corner Solutions --

the Perfect Substitutes Case

x1

x2

MRS = -1

Slope = -p1/p2 with p1 > p2.



49

Examples of Corner Solutions --

the Perfect Substitutes Case

x1

x2

MRS = -1

Slope = -p1/p2 with p1 > p2.
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Examples of Corner Solutions --

the Perfect Substitutes Case

x1

x2

x
y

p
2

2

* =

x1 0
* =

MRS = -1

Slope = -p1/p2 with p1 > p2.
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Examples of Corner Solutions --

the Perfect Substitutes Case

x1

x2

x
y

p
1

1

* =

x2 0
* =

MRS = -1

Slope = -p1/p2 with p1 < p2.
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Examples of Corner Solutions --

the Perfect Substitutes Case
So when U(x1,x2) = x1 + x2, the most

preferred affordable bundle is (x1*,x2*)

where









= 0,

p

y
)x,x(

1

*
2

*
1

and









=

2

*
2

*
1

p

y
,0)x,x(

if p1 < p2

if p1 > p2.
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Examples of Corner Solutions --

the Perfect Substitutes Case

x1

x2

MRS = -1

Slope = -p1/p2 with p1 = p2.

y

p1

y

p2



54

Examples of Corner Solutions --

the Perfect Substitutes Case

x1

x2

All the bundles in the 

constraint are equally the

most preferred affordable

when p1 = p2.

y

p2

y

p1
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Examples of Corner Solutions --

the Non-Convex Preferences Case

x1

x2
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Examples of Corner Solutions --

the Non-Convex Preferences Case

x1

x2
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Examples of Corner Solutions --

the Non-Convex Preferences Case

x1

x2

Which is the most preferred

affordable bundle?



58

Examples of Corner Solutions --

the Non-Convex Preferences Case

x1

x2

The most preferred

affordable bundle
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Examples of Corner Solutions --

the Non-Convex Preferences Case

x1

x2

The most preferred

affordable bundle

Notice that the “tangency solution”
is not the most preferred affordable

bundle.
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Examples of ‘Kinky’ Solutions -

- the Perfect Complements Case

x1

x2
U(x1,x2) = min{ax1,x2}

x2 = ax1
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Examples of ‘Kinky’ Solutions -

- the Perfect Complements Case

x1

x2

MRS = 0

U(x1,x2) = min{ax1,x2}

x2 = ax1
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Examples of ‘Kinky’ Solutions -

- the Perfect Complements Case

x1

x2

MRS = - 

MRS = 0

U(x1,x2) = min{ax1,x2}

x2 = ax1
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Examples of ‘Kinky’ Solutions -

- the Perfect Complements Case

x1

x2

MRS = - 

MRS = 0

MRS is undefined

U(x1,x2) = min{ax1,x2}

x2 = ax1
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Examples of ‘Kinky’ Solutions -

- the Perfect Complements Case

x1

x2
U(x1,x2) = min{ax1,x2}

x2 = ax1
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Examples of ‘Kinky’ Solutions -

- the Perfect Complements Case

x1

x2
U(x1,x2) = min{ax1,x2}

x2 = ax1

Which is the most

preferred affordable bundle?
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Examples of ‘Kinky’ Solutions -

- the Perfect Complements Case

x1

x2
U(x1,x2) = min{ax1,x2}

x2 = ax1

The most preferred

affordable bundle
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Examples of ‘Kinky’ Solutions -

- the Perfect Complements Case

x1

x2
U(x1,x2) = min{ax1,x2}

x2 = ax1

x1*

x2*
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Examples of ‘Kinky’ Solutions -

- the Perfect Complements Case

x1

x2
U(x1,x2) = min{ax1,x2}

x2 = ax1

x1*

x2*

(a) p1x1* + p2x2* = m



69

Examples of ‘Kinky’ Solutions -

- the Perfect Complements Case

x1

x2
U(x1,x2) = min{ax1,x2}

x2 = ax1

x1*

x2*

(a) p1x1* + p2x2* = m

(b) x2* = ax1*
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Examples of ‘Kinky’ Solutions -

- the Perfect Complements Case

(a) p1x1* + p2x2* = m;  (b) x2* = ax1*.
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Examples of ‘Kinky’ Solutions -

- the Perfect Complements Case

(a) p1x1* + p2x2* = m;  (b) x2* = ax1*.

Substitution from (b) for x2* in 

(a) gives  p1x1* + p2ax1* = m
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Examples of ‘Kinky’ Solutions -

- the Perfect Complements Case

(a) p1x1* + p2x2* = m;  (b) x2* = ax1*.

Substitution from (b) for x2* in 

(a) gives  p1x1* + p2ax1* = m

which gives

21

*
1

app

m
x

+
=
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Examples of ‘Kinky’ Solutions -

- the Perfect Complements Case

(a) p1x1* + p2x2* = m;  (b) x2* = ax1*.

Substitution from (b) for x2* in 

(a) gives  p1x1* + p2ax1* = m

which gives
.

app

am
x;

app

m
x

21

*
2

21

*
1

+
=

+
=
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Examples of ‘Kinky’ Solutions -

- the Perfect Complements Case

(a) p1x1* + p2x2* = m;  (b) x2* = ax1*.

Substitution from (b) for x2* in 

(a) gives  p1x1* + p2ax1* = m

which gives

A bundle of 1 commodity 1 unit and

a commodity 2 units costs p1 + ap2;

m/(p1 + ap2) such bundles are affordable.

.
app

am
x;

app

m
x

21

*
2

21

*
1

+
=

+
=
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Examples of ‘Kinky’ Solutions -

- the Perfect Complements Case

x1

x2
U(x1,x2) = min{ax1,x2}

x2 = ax1

x
m

p ap
1

1 2

* =
+

x

am

p ap

2

1 2

* =

+
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Properties of Demand Functions

Comparative statics analysis of 

ordinary demand functions -- the 

study of how ordinary demands 

x1*(p1,p2,y) and x2*(p1,p2,y) change as 

prices p1, p2 and income y change.
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Own-Price Changes

How does x1*(p1,p2,y) change as p1

changes, holding p2 and y constant?

Suppose only p1 increases, from p1’
to p1’’ and then to p1’’’.
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x1

x2

p1 = p1’

Fixed p2 and y.

p1x1 + p2x2 = y

Own-Price Changes
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Own-Price Changes

x1

x2

p1= p1’’

p1 = p1’

Fixed p2 and y.

p1x1 + p2x2 = y
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Own-Price Changes

x1

x2

p1= p1’’
p1=

p1’’’

Fixed p2 and y.

p1 = p1’

p1x1 + p2x2 = y
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Own-Price Changes
Fixed p2 and y.
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x1*(p1’)

Own-Price Changes

p1 = p1’

Fixed p2 and y.
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x1*(p1’)

p1

x1*(p1’)

p1’

x1*

Own-Price Changes
Fixed p2 and y.

p1 = p1’
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x1*(p1’)

p1

x1*(p1’)

p1’

p1 = p1’’

x1*

Own-Price Changes
Fixed p2 and y.
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x1*(p1’)

x1*(p1’’)

p1

x1*(p1’)

p1’

p1 = p1’’

x1*

Own-Price Changes
Fixed p2 and y.
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x1*(p1’)

x1*(p1’’)

p1

x1*(p1’)

x1*(p1’’)

p1’

p1’’

x1*

Own-Price Changes
Fixed p2 and y.
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x1*(p1’)

x1*(p1’’)

p1

x1*(p1’)

x1*(p1’’)

p1’

p1’’

p1 = p1’’’

x1*

Own-Price Changes
Fixed p2 and y.
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x1*(p1’’’) x1*(p1’)

x1*(p1’’)

p1

x1*(p1’)

x1*(p1’’)

p1’

p1’’

p1 = p1’’’

x1*

Own-Price Changes
Fixed p2 and y.
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x1*(p1’’’) x1*(p1’)

x1*(p1’’)

p1

x1*(p1’)x1*(p1’’’)

x1*(p1’’)

p1’

p1’’

p1’’’

x1*

Own-Price Changes
Fixed p2 and y.
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x1*(p1’’’) x1*(p1’)

x1*(p1’’)

p1

x1*(p1’)x1*(p1’’’)

x1*(p1’’)

p1’

p1’’

p1’’’

x1*

Own-Price Changes Ordinary

demand curve

for commodity 1Fixed p2 and y.
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x1*(p1’’’) x1*(p1’)

x1*(p1’’)

p1

x1*(p1’)x1*(p1’’’)

x1*(p1’’)

p1’

p1’’

p1’’’

x1*

Own-Price Changes Ordinary

demand curve

for commodity 1Fixed p2 and y.
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x1*(p1’’’) x1*(p1’)

x1*(p1’’)

p1

x1*(p1’)x1*(p1’’’)

x1*(p1’’)

p1’

p1’’

p1’’’

x1*

Own-Price Changes Ordinary

demand curve

for commodity 1

p1 price

offer

curve

Fixed p2 and y.
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Own-Price Changes

The curve containing all the utility-

maximizing bundles traced out as p1

changes, with p2 and y constant, is 

the p1- price offer curve.

The plot of the x1-coordinate of the 

p1- price offer curve against p1 is the 

ordinary demand curve for 

commodity 1.
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Own-Price Changes

What does a p1 price-offer curve look 

like for a perfect-complements utility 

function?
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Own-Price Changes

What does a p1 price-offer curve look 

like for a perfect-complements utility 

function?

U x x x x( , ) min , .1 2 1 2=

Then the ordinary demand functions

for commodities 1 and 2 are
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Own-Price Changes

x p p y x p p y
y

p p
1 1 2 2 1 2

1 2

* *
( , , ) ( , , ) .= =

+
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Own-Price Changes

x p p y x p p y
y

p p
1 1 2 2 1 2

1 2

* *
( , , ) ( , , ) .= =

+

With p2 and y fixed, higher p1 causes

smaller x1* and x2*.
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Own-Price Changes

x p p y x p p y
y

p p
1 1 2 2 1 2

1 2

* *
( , , ) ( , , ) .= =

+

With p2 and y fixed, higher p1 causes

smaller x1* and x2*.

p x x
y

p
1 1 2

2

0→ = →, .
* *

As
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Own-Price Changes

x p p y x p p y
y

p p
1 1 2 2 1 2

1 2

* *
( , , ) ( , , ) .= =

+

With p2 and y fixed, higher p1 causes

smaller x1* and x2*.

p x x
y

p
1 1 2

2

0→ = →, .
* *

As

p x x1 1 2 0→  = →, .
* *

As
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Fixed p2 and y.

Own-Price Changes

x1

x2
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p1

x1*

Fixed p2 and y.

x

y

p p

2

1 2

* =

+

x
y

p p
1

1 2

* =
+

Own-Price Changes

x1

x2

p1’

x
y

p p
1

1 2

* =
+’

p1 = p1’

’

’

y/p2
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p1

x1*

Fixed p2 and y.

x

y

p p

2

1 2

* =

+

x
y

p p
1

1 2

* =
+

Own-Price Changes

x1

x2

p1’

p1’’

p1 = p1’’

’’
x

y

p p
1

1 2

* =
+’’

’’

y/p2
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p1

x1*

Fixed p2 and y.

x

y

p p

2

1 2

* =

+

x
y

p p
1

1 2

* =
+

Own-Price Changes

x1

x2

p1’

p1’’

p1’’’

x
y

p p
1

1 2

* =
+

p1 = p1’’’

’’’
’’’

’’’

y/p2
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p1

x1*

Ordinary

demand curve

for commodity 1

is

Fixed p2 and y.

x

y

p p

2

1 2

* =

+

x
y

p p
1

1 2

* =
+

x
y

p p
1

1 2

*
.=

+

Own-Price Changes

x1

x2

p1’

p1’’

p1’’’

y

p2

y/p2
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Own-Price Changes

What does a p1 price-offer curve look 

like for a perfect-substitutes utility 

function?

U x x x x( , ) .1 2 1 2= +

Then the ordinary demand functions

for commodities 1 and 2 are
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Own-Price Changes

x p p y
if p p

y p if p p
1 1 2

1 2

1 1 2

0*
( , , )

,

/ ,
=









x p p y
if p p

y p if p p
2 1 2

1 2

2 1 2

0*
( , , )

,

/ , .
=









and
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Fixed p2 and y.

Own-Price Changes

x2

x1

Fixed p2 and y.

x2 0
* =

x
y

p
1

1

* =

p1 = p1’ < p2

’
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Fixed p2 and y.

Own-Price Changes

x2

x1

p1

x1*

Fixed p2 and y.

x2 0
* =

x
y

p
1

1

* =

p1’

p1 = p1’ < p2

’

x
y

p
1

1

* =
’
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Fixed p2 and y.

Own-Price Changes

x2

x1

p1

x1*

Fixed p2 and y.

p1’

p1 = p1’’ = p2
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Fixed p2 and y.

Own-Price Changes

x2

x1

p1

x1*

Fixed p2 and y.

p1’

p1 = p1’’ = p2
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Fixed p2 and y.

Own-Price Changes

x2

x1

p1

x1*

Fixed p2 and y.

x2 0
* =

x
y

p
1

1

* =

p1’

p1 = p1’’ = p2

’’

  

x1 0
* =













x
y

p
2

2

* =

  
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Fixed p2 and y.

Own-Price Changes

x2

x1

p1

x1*

Fixed p2 and y.

x2 0
* =

x
y

p
1

2

* =

p1’

p1 = p1’’ = p2

  

x1 0
* =













x
y

p
2

2

* =

  

0 1
2

 x
y

p

*

  

p2 = p1’’
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Fixed p2 and y.

Own-Price Changes

x2

x1

p1

x1*

Fixed p2 and y.

x
y

p
2

2

* =

x1 0
* =

p1’

p1’’’

x1 0
* =

p2 = p1’’
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Fixed p2 and y.

Own-Price Changes

x2

x1

p1

x1*

Fixed p2 and y.

p1’

p2 = p1’’

p1’’’

x
y

p
1

1

* =

  

0 1
2

 x
y

p

*

y

p2

p1 price

offer

curve

Ordinary

demand curve

for commodity 1
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Own-Price Changes

Usually we ask “Given the price for 

commodity 1 what is the quantity 

demanded of commodity 1?”

But we could also ask the inverse 

question “At what price for 

commodity 1 would a given quantity 

of commodity 1 be demanded?”
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Own-Price Changes

p1

x1*

p1’

Given p1’, what quantity is

demanded of commodity 1?
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Own-Price Changes

p1

x1*

p1’

Given p1’, what quantity is

demanded of commodity 1?

Answer:  x1’ units.

x1’
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Own-Price Changes

p1

x1*x1’

Given p1’, what quantity is

demanded of commodity 1?

Answer:  x1’ units.

The inverse question is:

Given x1’ units are

demanded, what is the

price of

commodity 1?
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Own-Price Changes

p1

x1*

p1’

x1’

Given p1’, what quantity is

demanded of commodity 1?

Answer:  x1’ units.

The inverse question is:

Given x1’ units are

demanded, what is the

price of

commodity 1?

Answer:  p1’
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Own-Price Changes

Taking quantity demanded as given 

and then asking what must be price 

describes the inverse demand 

function of a commodity.
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Own-Price Changes

A Cobb-Douglas example:

x
ay

a b p
1

1

*

( )
=

+

is the ordinary demand function and

p
ay

a b x
1

1

=
+( )

*

is the inverse demand function.
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Own-Price Changes

A perfect-complements example:

x
y

p p
1

1 2

* =
+

is the ordinary demand function and

p
y

x
p1

1

2= −
*

is the inverse demand function.
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Income Changes

How does the value of x1*(p1,p2,y) 

change as y changes, holding both 

p1 and p2 constant?
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Income Changes
Fixed p1 and p2.

y’ < y’’ < y’’’
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Income Changes
Fixed p1 and p2.

y’ < y’’ < y’’’
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Income Changes
Fixed p1 and p2.

y’ < y’’ < y’’’

x1’’’
x1’’

x1’

x2’’’
x2’’
x2’
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Income Changes
Fixed p1 and p2.

y’ < y’’ < y’’’

x1’’’
x1’’

x1’

x2’’’
x2’’
x2’

Income

offer curve
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Income Changes

A plot of quantity demanded against 

income is called an Engel curve.
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Income Changes
Fixed p1 and p2.

y’ < y’’ < y’’’

x1’’’
x1’’

x1’

x2’’’
x2’’
x2’

Income

offer curve
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Income Changes
Fixed p1 and p2.

y’ < y’’ < y’’’

x1’’’
x1’’

x1’

x2’’’
x2’’
x2’

Income

offer curve

x1*

y

x1’’’
x1’’

x1’

y’
y’’
y’’’
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Income Changes
Fixed p1 and p2.

y’ < y’’ < y’’’

x1’’’
x1’’

x1’

x2’’’
x2’’
x2’

Income

offer curve

x1*

y

x1’’’
x1’’

x1’

y’
y’’
y’’’

Engel

curve;

good 1
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Income Changes
Fixed p1 and p2.

y’ < y’’ < y’’’

x1’’’
x1’’

x1’

x2’’’
x2’’
x2’

Income

offer curve x2*

y

x2’’’
x2’’

x2’

y’
y’’
y’’’
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Income Changes
Fixed p1 and p2.

y’ < y’’ < y’’’

x1’’’
x1’’

x1’

x2’’’
x2’’
x2’

Income

offer curve x2*

y

x2’’’
x2’’

x2’

y’
y’’
y’’’

Engel

curve;

good 2
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Income Changes
Fixed p1 and p2.

y’ < y’’ < y’’’

x1’’’
x1’’

x1’

x2’’’
x2’’
x2’

Income

offer curve

x1*

x2*

y

y

x1’’’
x1’’

x1’

x2’’’
x2’’

x2’

y’
y’’
y’’’

y’
y’’
y’’’

Engel

curve;

good 2

Engel

curve;

good 1
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Income Changes and Cobb-

Douglas Preferences

An example of computing the 

equations of Engel curves; the Cobb-

Douglas case.

The ordinary demand equations are

U x x x xa b
( , ) .1 2 1 2=

x
ay

a b p
x

by

a b p
1

1
2

2

* *

( )
;

( )
.=

+
=

+



136

Income Changes and Cobb-

Douglas Preferences

x
ay

a b p
x

by

a b p
1

1
2

2

* *

( )
;

( )
.=

+
=

+

Rearranged to isolate y, these are:

y
a b p

a
x

y
a b p

b
x

=
+

=
+

( )

( )

*

*

1
1

2
2

Engel curve for good 1

Engel curve for good 2
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Income Changes and Cobb-

Douglas Preferences
y

y
x1*

x2*

y
a b p

a
x=

+( ) *1
1

Engel curve

for good 1

y
a b p

b
x=

+( ) *2
2

Engel curve

for good 2
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Income Changes and Perfectly-

Complementary Preferences

Another example of computing the 

equations of Engel curves; the 

perfectly-complementary case.

The ordinary demand equations are

x x
y

p p
1 2

1 2

* *
.= =

+

U x x x x( , ) min , .1 2 1 2=
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Income Changes and Perfectly-

Complementary Preferences

Rearranged to isolate y, these are:

y p p x

y p p x

= +

= +

( )

( )

*

*

1 2 1

1 2 2

Engel curve for good 1

x x
y

p p
1 2

1 2

* *
.= =

+

Engel curve for good 2
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Fixed p1 and p2.

Income Changes

x1

x2
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Income Changes

x1

x2

y’ < y’’ < y’’’

Fixed p1 and p2.



142

Income Changes

x1

x2

y’ < y’’ < y’’’

Fixed p1 and p2.
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Income Changes

x1

x2

y’ < y’’ < y’’’

x1’’
x1’

x2’’’
x2’’
x2’

x1’’’

Fixed p1 and p2.



144

Income Changes

x1

x2

y’ < y’’ < y’’’

x1’’
x1’

x2’’’
x2’’
x2’

x1’’’ x1*

y

y’
y’’
y’’’

Engel

curve;

good 1

x1’’’
x1’’

x1’

Fixed p1 and p2.
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Income Changes

x1

x2

y’ < y’’ < y’’’

x1’’
x1’

x2’’’
x2’’
x2’

x1’’’

x2*

y

x2’’’
x2’’

x2’

y’
y’’
y’’’

Engel

curve;

good 2
Fixed p1 and p2.
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Income Changes

x1

x2

y’ < y’’ < y’’’

x1’’
x1’

x2’’’
x2’’
x2’

x1’’’ x1*

x2*

y

y x2’’’
x2’’

x2’

y’
y’’
y’’’

y’
y’’
y’’’

Engel

curve;

good 2

Engel

curve;

good 1

x1’’’
x1’’

x1’

Fixed p1 and p2.
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Income Changes

x1*

x2*

y

y x2’’’
x2’’

x2’

y’
y’’
y’’’

y’
y’’
y’’’

x1’’’
x1’’

x1’

y p p x= +( )
*

1 2 2

y p p x= +( )
*

1 2 1

Engel

curve;

good 2

Engel

curve;

good 1

Fixed p1 and p2.
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Income Changes and Perfectly-

Substitutable Preferences

Another example of computing the 

equations of Engel curves; the 

perfectly-substitution case.

The ordinary demand equations are

U x x x x( , ) .1 2 1 2= +



149

Income Changes and Perfectly-

Substitutable Preferences

x p p y
if p p

y p if p p
1 1 2

1 2

1 1 2

0*
( , , )

,

/ ,
=









x p p y
if p p

y p if p p
2 1 2

1 2

2 1 2

0*
( , , )

,

/ , .
=








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Income Changes and Perfectly-

Substitutable Preferences

x p p y
if p p

y p if p p
1 1 2

1 2

1 1 2

0*
( , , )

,

/ ,
=









x p p y
if p p

y p if p p
2 1 2

1 2

2 1 2

0*
( , , )

,

/ , .
=









Suppose p1 < p2.  Then
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Income Changes and Perfectly-

Substitutable Preferences

x p p y
if p p

y p if p p
1 1 2

1 2

1 1 2

0*
( , , )

,

/ ,
=









x p p y
if p p

y p if p p
2 1 2

1 2

2 1 2

0*
( , , )

,

/ , .
=









Suppose p1 < p2.  Then x
y

p
1

1

* = x2 0
* =and
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Income Changes and Perfectly-

Substitutable Preferences

x p p y
if p p

y p if p p
1 1 2

1 2

1 1 2

0*
( , , )

,

/ ,
=









x p p y
if p p

y p if p p
2 1 2

1 2

2 1 2

0*
( , , )

,

/ , .
=









Suppose p1 < p2.  Then x
y

p
1

1

* = x2 0
* =and

x2 0
*

.=y p x= 1 1
*

and
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Income Changes and Perfectly-

Substitutable Preferences

x2 0
*

.=
y p x= 1 1

*

y y

x1* x2*0

Engel curve

for good 1

Engel curve

for good 2
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Income Changes

In every example so far the Engel 

curves have all been straight lines?

Q: Is this true in general?

A: No.  Engel curves are straight 

lines if the consumer’s preferences 

are homothetic.
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Homotheticity

A consumer’s preferences are 

homothetic if and only if

for every k > 0.

That is, the consumer’s MRS is the 

same anywhere on a straight line 

drawn from the origin.

(x1,x2)      (y1,y2)        (kx1,kx2)       (ky1,ky2)pp
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Income Effects -- A 

Nonhomothetic Example

Quasilinear preferences are not 

homothetic.

For example,

U x x f x x( , ) ( ) .1 2 1 2= +

U x x x x( , ) .1 2 1 2= +
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Quasi-linear Indifference Curves
x2

x1

Each curve is a vertically shifted 

copy of the others.

Each curve intersects

both axes.
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Income Changes; Quasilinear 

Utility
x2

x1

x1
~
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Income Changes; Quasilinear 

Utility
x2

x1

x1
~

x1*

y

x1
~

Engel

curve

for

good 1
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Income Changes; Quasilinear 

Utility
x2

x1

x1
~

x2*

y Engel

curve

for

good 2
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Income Changes; Quasilinear 

Utility
x2

x1

x1
~

x1*

x2*
y

y

x1
~

Engel

curve

for

good 2

Engel

curve

for

good 1
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Income Effects

A good for which quantity demanded 

rises with income is called normal.

Therefore a normal good’s Engel 

curve is positively sloped.
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Income Effects

A good for which quantity demanded 

falls as income increases is called 

income inferior.

Therefore an income inferior good’s 

Engel curve is negatively sloped.
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Income Changes; Goods

1 & 2 Normal

x1’’’
x1’’

x1’

x2’’’
x2’’
x2’

Income

offer curve

x1*

x2*

y

y

x1’’’
x1’’

x1’

x2’’’
x2’’

x2’

y’
y’’
y’’’

y’
y’’
y’’’

Engel

curve;

good 2

Engel

curve;

good 1
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Income Changes; Good 2 Is Normal, 

Good 1 Becomes Income Inferior

x2

x1
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Income Changes; Good 2 Is Normal, 

Good 1 Becomes Income Inferior

x2

x1
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Income Changes; Good 2 Is Normal, 

Good 1 Becomes Income Inferior

x2

x1
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Income Changes; Good 2 Is Normal, 

Good 1 Becomes Income Inferior

x2

x1
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Income Changes; Good 2 Is Normal, 

Good 1 Becomes Income Inferior

x2

x1
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Income Changes; Good 2 Is Normal, 

Good 1 Becomes Income Inferior

x2

x1

Income

offer curve
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Income Changes; Good 2 Is Normal, 

Good 1 Becomes Income Inferior

x2

x1
x1*

y
Engel curve

for good 1
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Income Changes; Good 2 Is Normal, 

Good 1 Becomes Income Inferior

x2

x1
x1*

x2*

y

y

Engel curve

for good 2

Engel curve

for good 1
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Ordinary Goods

A good is called ordinary if the 

quantity demanded of it always 

increases as its own price decreases.
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Ordinary Goods
Fixed p2 and y.

x1

x2
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Ordinary Goods
Fixed p2 and y.

x1

x2

p1 price

offer

curve
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Ordinary Goods
Fixed p2 and y.

x1

x2

p1 price

offer

curve

x1*

Downward-sloping 

demand curve  

Good 1 is

ordinary

p1
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Giffen Goods

If, for some values of its own price, 

the quantity demanded of a good 

rises as its own-price increases then 

the good is called Giffen.
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Ordinary Goods
Fixed p2 and y.

x1

x2
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Ordinary Goods
Fixed p2 and y.

x1

x2 p1 price offer

curve
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Ordinary Goods
Fixed p2 and y.

x1

x2 p1 price offer

curve

x1*

Demand curve has

a positively

sloped part 

Good 1 is

Giffen


p1
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Cross-Price Effects

If an increase in p2

– increases demand for commodity 1 

then commodity 1 is a gross 

substitute for commodity 2.

– reduces demand for commodity 1 

then commodity 1 is a gross 

complement for commodity 2.
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Cross-Price Effects

A perfect-complements example:

x
y

p p
1

1 2

* =
+

( )





x

p

y

p p

1

2 1 2
2

0
*

.= −
+



so

Therefore commodity 2 is a gross

complement for commodity 1.
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Cross-Price Effects

p1

x1*

p1’

p1’’

p1’’’

y

p2’

Increase the price of

good 2 from p2’ to p2’’
and 
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Cross-Price Effects

p1

x1*

p1’

p1’’

p1’’’

y

p2’’

Increase the price of

good 2 from p2’ to p2’’
and the demand curve

for good 1 shifts inwards

-- good 2 is a

complement for good 1. 
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Cross-Price Effects

A Cobb- Douglas example:

x
by

a b p
2

2

*

( )
=

+
so
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Cross-Price Effects

A Cobb- Douglas example:

x
by

a b p
2

2

*

( )
=

+





x

p
2

1

0
*

.=

so

Therefore commodity 1 is neither a gross

complement nor a gross substitute for

commodity 2.
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Slutsky

Equation
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Effects of a Price Change

What happens when a commodity’s  

price decreases?

–Substitution effect: the commodity 

is relatively cheaper, so 

consumers substitute it for now 

relatively more expensive other 

commodities.
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Effects of a Price Change

– Income effect: the consumer’s 

budget of $y can purchase more 

than before, as if the consumer’s  

income rose, with consequent 

income effects on quantities 

demanded.
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Effects of a Price Change

x2

x1

Original choice

Consumer’s budget is $y.

y

p2
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Effects of a Price Change

x1

Lower price for commodity 1

pivots the constraint outwards.

Consumer’s budget is $y.
x2

y

p2
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Effects of a Price Change

x1

Lower price for commodity 1

pivots the constraint outwards.

Consumer’s budget is $y.
x2

y

p2

y

p

'

2

Now only $y’ are needed to buy the

original bundle at the new prices, 

as if the consumer’s income has

increased by $y - $y’.
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Effects of a Price Change

Changes to quantities demanded due 

to this ‘extra’ income are the income 

effect of the price change.
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Effects of a Price Change

Slutsky discovered that changes to 

demand from a price change are 

always the sum of a pure 

substitution effect and an income 

effect.
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Real Income Changes

Slutsky asserted that if, at the new 

prices,

– less income is needed to buy the 

original bundle then “real income”
is increased

–more income is needed to buy the 

original bundle then “real income”
is decreased
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Real Income Changes

x1

x2

Original budget constraint and choice
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Real Income Changes

x1

x2

Original budget constraint and choice

New budget constraint
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Real Income Changes

x1

x2

Original budget constraint and choice

New budget constraint; real

income has risen
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Real Income Changes

x1

x2

Original budget constraint and choice
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Real Income Changes

x1

x2

Original budget constraint and choice

New budget constraint
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Real Income Changes

x1

x2

Original budget constraint and choice

New budget constraint; real

income has fallen
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Pure Substitution Effect

Slutsky isolated the change in 

demand due only to the change in 

relative prices by asking “What is the 

change in demand when the 

consumer’s income is adjusted so 

that, at the new prices, she can only 

just buy the original bundle?”
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Pure Substitution Effect Only
x2

x1

x2’

x1’



204

Pure Substitution Effect Only
x2

x1

x2’

x1’
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Pure Substitution Effect Only
x2

x1

x2’

x1’
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Pure Substitution Effect Only
x2

x1

x2’

x2’’

x1’ x1’’
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Pure Substitution Effect Only
x2

x1

x2’

x2’’

x1’ x1’’
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Pure Substitution Effect Only
x2

x1

x2’

x2’’

x1’ x1’’

Lower p1 makes good 1 relatively

cheaper and causes a substitution

from good 2 to good 1.
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Pure Substitution Effect Only
x2

x1

x2’

x2’’

x1’ x1’’

Lower p1 makes good 1 relatively

cheaper and causes a substitution

from good 2 to good 1.  

(x1’,x2’) → (x1’’,x2’’) is the

pure substitution effect.
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And Now The Income Effect
x2

x1

x2’

x2’’

x1’ x1’’

(x1’’’,x2’’’)
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And Now The Income Effect
x2

x1

x2’

x2’’

x1’ x1’’

(x1’’’,x2’’’)

The income effect is 

(x1’’,x2’’) → (x1’’’,x2’’’).
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The Overall Change in Demand
x2

x1

x2’

x2’’

x1’ x1’’

(x1’’’,x2’’’)

The change to demand due to 

lower p1 is the sum of the 

income and substitution effects,

(x1’,x2’) → (x1’’’,x2’’’).
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Slutsky’s Effects for Normal Goods

Most goods are normal (i.e. demand 

increases with income).

The substitution and income effects 

reinforce each other when a normal 

good’s own price changes.
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Slutsky’s Effects for Normal Goods

x2

x1

x2’

x2’’

x1’ x1’’

(x1’’’,x2’’’)

Good 1 is normal because

higher income increases

demand 
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x2

x1

x2’

x2’’

x1’ x1’’

(x1’’’,x2’’’)

Good 1 is normal because

higher income increases

demand, so the income

and substitution

effects reinforce

each other. 

Slutsky’s Effects for Normal Goods
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Slutsky’s Effects for Normal Goods

Since both the substitution and 

income effects increase demand 

when own-price falls, a normal 

good’s ordinary demand curve 

slopes down.

The Law of Downward-Sloping 

Demand therefore always applies to 

normal goods.
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Slutsky’s Effects for Income-Inferior 

Goods

Some goods are income-inferior (i.e.  

demand is reduced by higher 

income).

The substitution and income effects 

oppose each other when an income-

inferior good’s own price changes.
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Slutsky’s Effects for Income-Inferior 

Goods
x2

x1

x2’

x1’
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Slutsky’s Effects for Income-Inferior 

Goods
x2

x1

x2’

x1’
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Slutsky’s Effects for Income-Inferior 

Goods
x2

x1

x2’

x1’
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Slutsky’s Effects for Income-Inferior 

Goods
x2

x1

x2’

x2’’

x1’ x1’’
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Slutsky’s Effects for Income-Inferior 

Goods
x2

x1

x2’

x2’’

x1’ x1’’

The pure substitution effect is as for

a normal good.   But, ….
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Slutsky’s Effects for Income-Inferior 

Goods
x2

x1

x2’

x2’’

x1’ x1’’

(x1’’’,x2’’’)

The pure substitution effect is as for a 

normal good.   But, the income effect is

in the opposite direction.  
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Slutsky’s Effects for Income-Inferior 

Goods
x2

x1

x2’

x2’’

x1’ x1’’

(x1’’’,x2’’’)

The pure substitution effect is as for a 

normal good.   But, the income effect is

in the opposite direction.  Good 1 is

income-inferior

because an

increase to income

causes demand to

fall. 
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Slutsky’s Effects for Income-Inferior 

Goods
x2

x1

x2’

x2’’

x1’ x1’’

(x1’’’,x2’’’)

The overall changes to demand are

the sums of the substitution and

income effects.
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Giffen Goods

In rare cases of extreme income-

inferiority, the income effect may be 

larger in size than the substitution 

effect, causing quantity demanded to 

fall as own-price rises.

Such goods are Giffen goods.
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Slutsky’s Effects for Giffen Goods

x2

x1

x2’

x1’

A decrease in p1 causes 

quantity demanded of 

good 1 to fall.
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Slutsky’s Effects for Giffen Goods

x2

x1

x2’

x1’x1’’’

x2’’’

A decrease in p1 causes 

quantity demanded of 

good 1 to fall.
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Slutsky’s Effects for Giffen Goods

x2

x1

x2’

x2’’

x1’ x1’’x1’’’

x2’’’

Substitution effect

Income effect

A decrease in p1 causes 

quantity demanded of 

good 1 to fall.
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Slutsky’s Effects for Giffen 

Goods

Slutsky’s decomposition of the 

effect of a price change into a pure 

substitution effect and an income 

effect thus explains why the Law of 

Downward-Sloping Demand is 

violated for extremely income-

inferior goods.
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