ΝΙΚΟΣ ΣΤΡΑΒΕΛΑΚΗΣ Τ.Ο.Ε.- ΕΚΠΑ ΦΘΙΝΌΠΩΡΟ 2023

Μάθημα 4ο

Επανάληψη της θεωρίας του Επιτοκίου και των Αναλυτικών Κατηγοριών στο Μαρξ

Σύγχρονες Θεωρίες προσδιορισμού του επιτοκίου.

Μια πρώτη αναφορά στο ψηφιακό ευρώ

Σκοπός του εμβόλιμου αυτού μαθήματος είναι:

- A) Η εμβάθυνση στις αναλυτικές κατηγορίες: 1) του «χρηματεμπορικού κεφαλαίου» (Money Dealing Capital), 2) του «τοκοφόρου κεφαλαίου» (Interest Bearing Capital) και 3) του «Πλασματικού Κεφαλαίου» (Fictitious Capital) στο Μάρξ. Οι σχετικές σημειώσεις και βιβλιογραφία βρίσκονται στο Μάθημα 3 διαφάνειες 12-21.
- Β) Ο συνδυασμός του (Α) με σύγχρονες θεωρίες προσδιορισμού του επιτοκίου και των χρηματιστηριακών αποδόσεων. Για το σκοπό αυτό ακολουθεί η παρουσίαση άρθρου μου στο συνέδριο του International Initiative for Promoting Political Economy (IIPPE) το 2021. Το άρθρο εξετάζει: 1) «Το Παράδοξο του Συντελεστή Κινδύνου Μετοχών» (Equity Risk Premium Puzzle) στην ορθόδοξη θεωρία του finance (Mehra and Prescott 1985), 2) Την εξίσωση του «οριακού ποσοστού κέρδους» (Incremental Rate of Profit) με την απόδοση των μετοχών του S&P 500, 3) την επέκταση της θεωρίας για τον προσδιορισμό του επιτοκίου μέσα από την εξίσωση των αποδόσεων του τραπεζικού και χρηματοπιστωτικού τομέα και, 4) την εμπειρική εξέταση του αποτελέσματος με στοιχεία από τις ΗΠΑ. Το τελικό συμπέρασμα είναι ότι το επιτόκιο είναι μικρότερο από το οριακό ποσοστό κέρδους σε περιόδους κανονικής συσσώρευσης. Όμως η διαφορά τους δεν έχει να κάνει με τον «μετρήσιμο κίνδυνο» (risk premium). Με αυτή τη λογική εξηγεί το «παράδοξο του συντελεστή κινδύνου των μετοχών» (equity risk premium puzzle).
- Γ) Το συνδυασμό του (Α) με την τρέχουσα συζήτηση για το ψηφιακό ευρώ.

Η συμπληρωματική βιβλιογραφία που παρατίθεται στην τελευταία διαφάνεια

Σκοπός του Μαθήματος και Περιεχόμενα

Ας Ξαναθυμηθούμε τις Αναλυτικές Κατηγορίες στο Μάρξ

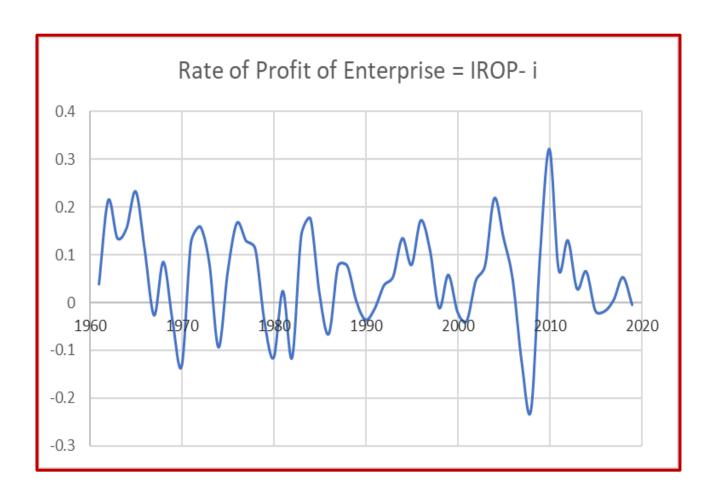
- 1, Υπάρχει εξίσωση των αποδόσεων ανάμεσα σε παραγωγικούς και μη παραγωγικούς κλάδους στο Μάρξ. Ο βασικός μηχανισμός εξίσωσης η κίνηση κεφαλαίων ανάμεσα στους τομείς.
- 2. Ο Μάρξ αναφέρει ξεκάθαρα ότι υπάρχει εξίσωση των αποδόσεων ανάμεσα στο παραγωγικό και το εμπορικό κεφάλαιο. Το Εμπορικό Κεφάλαιο (Merchant Capital) αποτελείται από το Εμπορευματικό Κεφάλαιο (Commercial Capital) και Χρηματεμπορικό Κεφάλαιο (Money Dealing Capital).
- 3. Αυτό σημαίνει ότι αν η εξίσωση των αποδόσεων γίνει γύρω από το μέσο ποσοστό κέρδους τότε αυτό θα έχει την ακόλουθη μορφή

$$3.3 r_1 = \frac{S}{C + V + R}$$
 or in monetary terms $3.3' r_1 = \frac{P}{K + R}$

4. Η εξίσωση μας λέει ότι παρόλο που το Εμπορικό Κεφάλαιο δε δημιουργεί υπεραξία και κέρδη οι συνολικές επενδυτικές δαπάνες σε σταθερό κεφάλαιο C, μεταβλητό κεφάλαιο V, και τραπεζικά αποθεματικά R είναι κομμάτι του συνολικού επενδυτικού κόστους και επηρεάζουν το ποσοστό κέρδους. (Fine 1985/1986 p. 391)

- 5. Όμως στο Μάρξ υπάρχουν δύο επιπλέον αναλυτικές κατηγορίες. 1) Το Τοκοφόρο Κεφάλαιο (interest bearing capital) και 2) Το πλασματικό κεφάλαιο (fictitious capital).
- 6. Το «τοκοφόρο κεφάλαιο», όπως είδαμε το προηγούμενο μάθημα είναι στο μεγαλύτερο βαθμό τα ελεύθερα διαθέσιμα που δημιουργεί η συγκέντρωση των καταθέσεων στις τράπεζες. Από τη σκοπιά αυτή είναι σε σημαντικό βαθμό συνάρτηση της οικονομικής δραστηριότητας, αφού εξαρτάται από το ύψος και την ταχύτητα ανάκτησης και επέκτασης των τραπεζικών καταθέσεων που με τη σειρά του προσδιορίζει το ύψος των αναγκαίων αποθεματικών.
- 7. Το «πλασματικό κεφάλαιο» αποτελείται από απαιτήσεις που είτε θα αποτελέσουν κεφάλαιο στο μέλλον είτε δεν θα αποτελέσουν κεφάλαιο ποτέ. Στην τελευταία κατηγορία ανήκουν τα κρατικά ομόλογα που όμως δίνουν τη δυνατότητα στις τράπεζες να μοχλεύσουν το τοκοφόρο κεφάλαιό τους αφού μπορούν να το προεξοφλήσουν στη Κεντρική Τράπεζα και να ανακτήσουν τη ρευστότητά τους. Αντίστοιχη λειτουργία έχουν και τα "asset backed securities". Επιστρέφουν ρευστότητα από απαιτήσεις που θα ικανοποιηθούν ή δεν θα ικανοποιηθούν στο μέλλον. Όμως έχουν κόστος για τη τράπεζα άρα αποκτούν αξία μόνο αν η τράπεζα ξαναδανείσει αυτά τα χρήματα. Με άλλα λόγια πλασματικό κεφάλαιο μπορεί να μεταβάλλει το ύψος του τοκοφόρου κεφαλαίου. Όμως αυτό έχει όρια αφού και η εξυπηρέτηση του πλασματικού κεφαλαίου εξαρτάται αό το επίπεδο της οικονομικής δραστηριότητας.
- 8. Στην ανάγκη μόχλευσης του «πλασματικού κεφαλαίου από την τράπεζα βρίσκεται η κερδοσκοπική φύση και σχετική αυτονόμηση του «πλασματικού κεφάλαιού» ιδιαίτερα σε περιόδους που προηγούνται χρηματοπιστωτικών κρίσεων. Ο βασικός λόγος είναι ότι το πλασματικό κεφάλαιοη αυτονομεί τη μόχλευση και τα διαθέσιμα από το ύψος των καταθέσεων.

Το «τοκοφόρο» και το «πλασματικό Κεφάλαιο»


- 9. Επειδή εξαρτάται σε σημαντικό βαθμό από το επίπεδο της οικονομικής δραστηριότητας ναι.
- 10, Η εξίσωση πραγματώνεται με τη κινητικότητα κεφαλαίων ανάμεσα στο πραγματικό και το χρηματοπιστωτικό τομέα.
- 11. Αυτό προϋποθέτει ότι οι τράπεζες είναι καπιταλιστικές επιχειρήσεις που διεκδικούν ενεργητικά την ιδιοποίηση μεταβιβάσεων αξίας και όχι παθητικοί χρηματοπιστωτικοί ενδιάμεσοι όπως στη νεοκλασική θεωρία.
- 11. Σε αυτό το περιβάλλον το επιτόκιο δεν είναι συντελεστής απόδοσης αλλά «τιμή» ή «δικαίωμα χρήσης» (royalty).
- 12. Για τους παραπάνω λόγους 1) το επιτόκιο δεν εξισώνεται με το ποσοστό κέρδους, 2) δεν υπάρχει «φυσικό επιτόκιο» αφού σε κάθε επίπεδο οικονομικής δραστηριότητας αντιστοιχεί και ένα διαφορετικό επιτόκιο.
- 13. Παράλληλα όμως η απορρύθμιση της χρηματαγοράς αγοράς και η συνακόλουθη διόγκωση του πλασματικού κεφαλαίου μπορεί να οδηγήσει σε στρέβλωση των επιτοκίων όπως έγινε τα προηγούμενα χρόνια με τα προγράμματα «ποσοτικής χαλάρωσης»
- 14. Το τελευταίο και ποιο σημαντικό σημείο όμως έχει να κάνει με την επιλογή του κατάλληλου ποσοστού κέρδους γύρω από το οποίο συντελείται η εξίσωση των αποδόσεων. Αφού, η εξίσωση πραγματώνεται μέσω της κινητικότητας του κεφαλαίου τότε δεν μπορεί να γίνει γύρω από το μέσο ποσοστό κέρδους αλλά από το ποσοστό κέρδους στις νέες επενδύσεις (incremental rate of profit-ΔP/I) και μάλιστα των ρυθμιστικών κεφαλαίων.. Μελέτες έχουν δείξει ότι η σχετική εξίσωσή των αποδόσεων των παραγωγικών κλάδων συντελείται γύρω από αυτό το μέγεθος. Η χρησιμοποίηση του "incremental rate of profit" μας επιτρέπει να προσδιορίσουμε το επιτόκιο διότι αντίθετα με το μέσο ποσοστό κέρδους που είδαμε πριν προσδιορίζεται στον παραγωγικό τομέα της οικονομίας.

Μπορεί να ενταχθεί στην σχετική εξίσωση των αποδόσεων το «τοκοφόρο κεφάλαιο»;

A Reconciliation of Marx's Theory of Interest and the Risk Premium Puzzle

NIKOS STRAVELAKIS

UNIVERSITY OF ATHENS - DEPARTMENT OF ECONOMICS

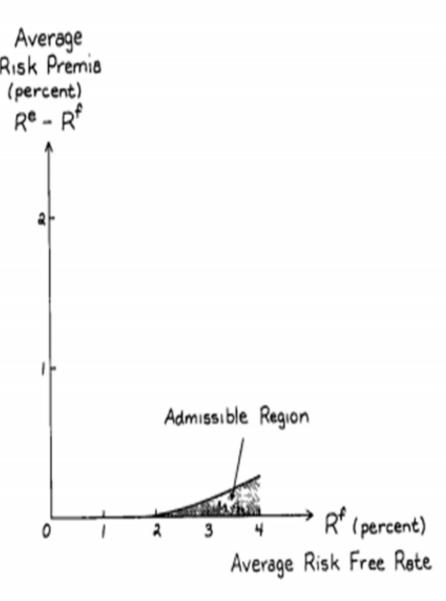


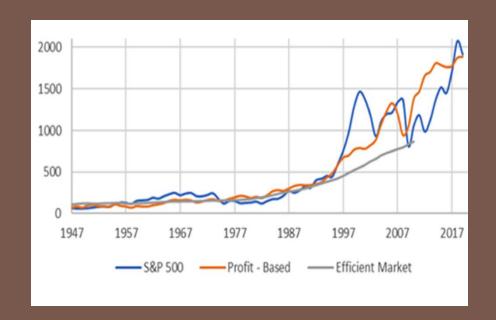
Fig. 4. Set of admissible average equity risk premia and real returns.

The Equity risk Premium Puzzle

Mainstream finance theory cannot explain the difference between the equity returns and the rate of interest.

The reason is that the basic rate of interest is considered a risk-free rate of return and its difference with the returns of other assets is a "risk premium" reflecting asset price/return volatility.

However, the "risk premium" must be compatible with the "risk free asset", The reason is that theory implies a constant "risk aversion" utility function. The latter means that the level and volatility of the "risk free asset" is reflected on the "premium" basis the coefficient of "risk aversion".


Mehra and Prescott (1985) applied this rationale in a simulation of the "risk premium". The real return on the 'risk-free' asset in the United States for the period 1889-1978 was 0,8% whereas the average annual real return on equity index was 6,98%, therefore the actual average annual risk premium was 6,08%. The maximum admissible risk premium in the figure is 0,35% well off the actual data. This huge discrepancy has gone down to literature as the 'equity risk premium puzzle'.

An Alternative Theory of Equity Pricing

An alternative theory of equity pricing can be established on the idea that stock market returns follow the "incremental rate of profit" (IROP). In other words, the profit on the most recent investments. Many analytical and empirical studies indicate that it is around this rate that the return between the "regulating capitals" in the commodity sector takes place. In other words, it regulates the mobility of capital between sectors.

The same notion is extended to encompass the tendency of equalization between the corporate and stock market returns i.e. IROP regulates the mobility of capital between the corporate and the financial sector as well. This is close to the assertions of mainstream theory (Elton & Gruber 1976) but in the classical/ Marxian context the IROP is a highly volatile measure and indeed it is. In the classical theory of competition corporations constantly introduce new products and techniques that alter profitability and returns reflecting back on stock prices.

This happens through market expectations. But here expectations can alter the fundamentals because accumulation depends on the difference of the regulating rate of profit (IROP) from the rate of interest. In turn, the rate of interest depends mainly on banking capital and corporate leverage. This reflects back on equity prices and up to a certain point makes expectations a self fulfilling process. It is the George Soros' "reflexivity theory" that introduces, contrary to rational expectations and the efficient market hypothesis, path dependence and bias in the formation of expectations. The latter can lead to bubbles and exaggerations but if/ when fundamentals deteriorate it leads to the sharp corrections that are witnessed in stock markets.

Empirical Evaluation of the Theory

The IROP can be defined as the ratio of the change in profits (ΔPr) normalized by investment (I) IROP= $\Delta Pr/I$. In terms of the theory this means the rate of return on a stock index $\Delta P/P = IROP$. This equation can be reformulated as follows: $P_{t+1} = (1 + IROP_t) \cdot P_t$. Shaikh (2016) has simulated an equation of this form 1947 until 2009 and I extended the simulation until 2019. The results are shown in the chart next. Moreover, IROP has almost the same average with the average return of the S&P 500 (IROP 7.77%, S&P 8,86%) and similar standard deviation.

I have applied also a non-parametric technique using the log growth rate of the Earnings per Share (EPS) as the fundamental. The technique is known as "transfer entropy" and the applied statistic as "Mutual Information" (MI). The statistic measures the "amount of information" obtained about the log growth of the S&P 500 by observing the log growth of the EPS. Here 'mutual information' (MI) is used as a tool for detecting order/ disorder transitions in the stock exchange. This approach is analyzed in Wicks, Chapman, and Dendy (2007). As shown in the chart next it reveals a very interesting pattern that supports "reflexivity theory".

Real Gross Profit	Pr	Time	t
Real Investment	1	Earnings Per Share	EPS
S&P 500 Index Price	Р	Incremental Rate of Profit	IROP=ΔPr/I

Extending the Rationale to the Interest Rate

Can we extend this equalization assumption to encompass interest rate determination? In other words can we consider that the Interest Bearing Capital enters the equalization process like the Money Dealing Capital?

We can, provided that banks are part of the process as capitalist enterprises. The latter means that the rate of interest is not a rate of return but a price that tends to equalize the returns of the "regulating" corporate and banking capitals with those of commodity capitals. This approach was taken by Panico (1989). In his context exogenous liquidity premia determine both the rate of profit and the rate of interest as outlined in the set of equations next where interest rates determine prices.

Shaikh (2016) built on Panico but did not use liquidity premia. He added a banking price equation (including costs and returns) together with the price equations of the corporate sector (as indicated in the second equation set appearing next). This way he determines the interest rate from the solution of a Sraffian model. The theory has many interesting properties: a) the difference between the rate of profit and the rate of interest has nothing to do with "risk", b) there is no "natural interest rate" since for every price level corresponds a different rate of interest, c) it offers an explanation of the "Gibson Paradox".

Nevertheless, the solution is static and points to an "average" "gravity centre" rate of interest.

$$\begin{aligned} \mathbf{p} &= (\mathbf{p} \cdot \mathbf{a} + \mathbf{w} \cdot \mathbf{l})(1 + \mathbf{r}) + \mathbf{i} \cdot \boldsymbol{\ell} - \mathbf{i}_0 \cdot \boldsymbol{dp} \\ \mathbf{i} &= (\mathbf{p} \cdot \mathbf{a}_{bnk} + \mathbf{w} \cdot \mathbf{l}_{bnk})(1 + \mathbf{r}) + \mathbf{i}_0 \cdot \boldsymbol{d}_{\ell} \\ \mathbf{i} &= \mathbf{i}_0 + \vartheta_0 \\ \mathbf{r} &= \mathbf{i}_0 + \vartheta_K \\ \mathbf{w} &= \mathbf{w}^* \end{aligned}$$

$$\mathbf{p} = (\mathbf{p} \cdot \mathbf{a} + \mathbf{w} \cdot \mathbf{l})(1+\mathbf{r})$$
$$\mathbf{i} = (\mathbf{p} \cdot \mathbf{a}_{bnk} + \mathbf{w} \cdot \mathbf{l}_{bnk}) \cdot (1+\mathbf{r}) + \mathbf{r} \cdot \mathbf{r}_d \cdot d_{\ell}$$

р	Price Vector	abnk	input row banks
a	Input row coomodity sector		labor input com. Sector
W	wage	lbnk	labor input bank Sector
r	regulating rate of profit	io	basic interest rate
θο	banking liquidity premium	θκ	corporate liquidity premium

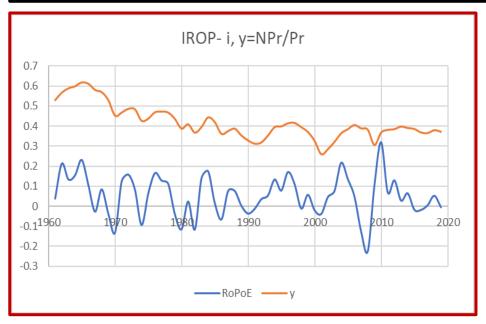
Alternative Formulation and Empirical Evaluation of (IROP – i)

This formulation does not oppose the one in Shaikh (2016) but has different characteristics: a) it places the emphasis on the time series of the difference between the "incremental rate of profit" (IROP) and the "rate of interest" (i), b) it does not necessarily imply an "average (normal) rate of interest".

At the analytical level this means that the IROP is mainly determined in the commodity sector and a highly volatile interest rate tends to make the returns between corporate and interest bearing capital equal.

At the empirical level I worked on the idea that a high ratio of net to gross corporate profits implies quick turnover of loaned funds and a fast restoration of the depository base of the banking sector. In this environment banks will expand their asset side without asking for much higher interest rates. The opposite holds for low net profits. On these grounds the interest rate can be written as

follows
$$\mathbf{i}_t = \mathbf{IROP}_t - \mathbf{a} \cdot \mathbf{y}_t$$
, $\mathbf{y}_t = \frac{\mathbf{NPr}_t}{\mathbf{Pr}_t}$


This can be incorporated in the framework discussed so far. Specifically, abstracting from direct banking costs Shaikh's equation takes the following form $\mathbf{i}_t = \mathbf{IROP}_t \cdot \frac{D_t}{L_t} \cdot \frac{R_t}{D_t} = \mathbf{IROP}_t \cdot \frac{R_t}{L_t}$. Combining the two forms we get $\mathbf{IROP}_t - \mathbf{i}_t = \mathbf{a} \cdot \mathbf{y}_t = \mathbf{IROP}_t \cdot \frac{L_t - R_t}{L_t}$. In words, the rate of profit of enterprise depends on profitability (IROP) and the ratio of free reserves to loans $(\frac{L_t - R_t}{L_t})$.

Continued

Bank deposits are positively correlate to net corporate profits. Net to gross profits are positively related to the loan deposit ratio. But more interestingly the "Mutual Information" statistic (since it is difficult to perform an unbiased estimation of the parameter α) provides information that reduces the uncertainty about the variations of (IROP-i) by 60%. Given that the average IROP is almost equal to the average rate of return of the S&P 500 the equity premium is no "puzzle" and has nothing to do with risk.

Of course one should not take this trouble just to explain the equity premium. The important part is to identify the significance of the "Rate of Profit of Enterprise" in the triggering of major capitalist crises. At first I must stress that the definition of the measure in relation to the IROP instead of the "Average Rate of Profit" does not contradict the argument in Marx. On the contrary, IROP= Δ Pr/I reflects by definition the stagnation in the "mass of profit" that results from a falling "Average Rate of Profit" and signifies capitalist crises. Moreover from the definition of the rate of profit of enterprise a lower IOP (signifying stagnant profits) implies also lower Net Profits, higher interest rates, and a stagnant or even negative "Rate of Profit of Enterprise". This is the pattern of the data that appears in the chart on the right hand side.

		Probability Table 1962-2019							
				F					
				Incr.	Decr.	58			
		y4	Incr.	0.36	0.24	0.60			
Frequency	prob	<i>></i>	Decr.	0.09	0.31	0.40			
21	0.36206897			0.45	0.55				
5	0.0862069	H RoPoE	H y4	I(RoPoE, y4)	H(RoPoE, y4)	MI (RoPoE, y4)2			
14	0.24137931	-0.5189	-0.43973	0.152277402	-0.530671293				
18	0.31034483	-0.47337	-0.52917	0	0				
58	1	0.992267	0.968898	-0.090007981	-0.304832147				
				0.156520564	-0.523879446				
				0.218789985	1.359382886	0.601781462			
					Explanatory Power	0.606471525			

			Probability Table 1962-1982					
					RoPoE			
					Incr.	Decr.	21	
			4	Incr.	0.33	0.19	0.52	
	Frequency	prob	y4	Decr.	0.05	0.43	0.48	
both rise	7	0.333333			0.38	0.62		
RoPoE up y down	1	0.047619	H RoPoE	H y4	I(RoPoE, y	H(RoPoE, y4)	MI (RoPoE, y4)2	
RoPoE down y up	4	0.190476	-0.53041	-0.48865	0.246747	-0.528320834		
both fall	9	0.428571	-0.42831	-0.50971	0	0		
	21	1	0.958712	0.998364	-0.09189	-0.209157973		
					0.231375	-0.523882466		
					0.386236	1.261361272	0.695714283	
						Explanatory Power	0.725676082	

			Probability Table 1983-2019					
						RoPoE		
					Incr.	Decr.	38	
			4	Incr.	0.39	0.26	0.66	
	Frequency	prob	у4	Decr.	0.11	0.24	0.34	
both rise	15	0.394737			0.50	0.50		
RoPoE up y down	4	0.105263	H RoPoE	H y4	I(RoPoE,	H(RoPoE, y4)	MI (RoPoE, y4)2	
RoPoE down y up	10	0.263158	-0.5	-0.39742	0.103829	-0.529356678		
both fall	9	0.236842	-0.5	-0.5294	0	0		
	38	1	1	0.926819	-0.07373	-0.341887107		
					0.111194	-0.49215849		
					0.141293	1.363402274	0.56341679	
						Explanatory Power	0.56341679	

Final Remarks – Is this the Theory of Interest in Marx?

It is difficult to say whether Marx intended to treat the rate of interest as a rate of return or as a price. At a point (Ch 21 *V.III*) he says that money in the form of Interest-Bearing Capital turn to a "sui generis commodity". In a different part he states "... There is no reason at all why the average conditions of competition, of equilibrium between lender and borrower, should give the lender an interest of 3, 4, 5 per cent...". Marxist economists have also argued in favor on both ideas appearing in *V.III*. Finally, we should not forget what Engels pointed out on section V of *V.III* "we had no finished draft, not even a scheme whose outlines might have been filled out, but only the beginning of an elaboration-often just a disorderly mass of notes, comments and extracts." So, what I have presented is an attempt to reconcile Marx's theory of interest with the rest of the theory.

Nevertheless, and let this be the closing point, distribution of profit in "profit of capital" and "profit of enterprise" does not depend exclusively on gross and net corporate profitability. As the 19th century Scottish economist George Ramsay (cited on many occasions by Marx) puts it: "... the unproductive borrowers, government and others,... by their competition tend to keep up the rate of interest". This is true especially at times of deregulation of the financial markets. To elaborate on this point, I broke down the calculation of MI in two periods (1962-1982) and the period of neoliberalism (1982-2019). The results shown in the two probability tables are indicative.

Το ψηφιακό ευρώ πριν και μετά τις 26/10/2023

Η αρχική λογική πίσω από το ψηφιακό ευρώ ήταν η ενοποίηση του ιδιωτικού και του δημόσιου χρήματος μέσα από τη κυκλοφορία ενός παράλληλου νομίσματος.

Παρόλο που αυτή η λογική δεν μπορεί να απομακρύνει τις χρηματοπιστωτικές κρίσεις ικανοποιώντας μέσω του ψηφιακού νομίσματος τη ζήτηση τραπεζογραμματίων είχε μια σειρά από σημαντικές συνέπειες: 1) μπορούσε να περιορίσει το κόστος των συναλλαγών, 2) μπορούσε να αυξήσει τα επιτόκια καταθέσεων, 3) θα μπορούσε να μας βγάλει από τη λογική της διάσωσης Τραπεζών με τη δικαιολογία της προστασίας των καταθετών.

Όμως η πολιτική αυτή φαίνεται ότι είχε σημαντικές αρνητικές συνέπειες για τις τράπεζες και γι' αυτό παραπέμφθηκε στις καλένδες. Επισήμως το project μπήκε σε προπαρασκευαστική φάση 2 ετών. Η πλήρης έκθεση στο https://www.ecb.europa.eu/paym/digital_euro/investigation/profuse/shared/files/dedocs/ecb.dedocs231018.en.pdf

Αξίζει να δούμε τις συνέπειες για τις τράπεζες μέσα από την ανάλυση των ισολογισμών τους. Πλήρη στοιχεία Eurobank.

https://www.eurobank.gr/-/media/eurobank/omilos/enimerosi-ependuton/navigational/oikonomika-apotelesmata/oikonomikes-katastaseis-2022/annual-financial-report-dec-2022.pdf

Στοιχεία Ισολογισμού Τραπεζών

EUROBANK

EUROBANK S.A

Income Statement

		ember	
		2022	2021
	Note	<u>€ million</u>	€ million
Interest income		1,845	1,451
Interest expense		(763)	(513)
Net interest income	6	1,082	938
Banking fee and commission income		366	306
Banking fee and commission expense		(91)	(96)
Net banking fee and commission income	7	275	210
Income from non banking services	8	67	68
Dividend income	9	204	200
Net trading income/(loss)	10	719	(25)
Gains less losses from investment securities	10	0	100
Other income/(expenses)	11	392	28
Operating income		2,739	1,519
Operating expenses	12	(614)	(607)
Profit from operations before impairments,			
provisions and restructuring costs		2,125	912
Impairment losses relating to loans and			
advances to customers	21	(173)	(323)
Other impairment losses and provisions	13	(125)	7
Restructuring costs	13	(87)	(17)
Profit before tax		1,740	579
Income tax	14	(352)	(110)
Net profit		1,388	469

Βιβλιογραφία

Elton, Edwin J., and Martin J. Gruber (1976). "Valuation and Asset Selection Under Alternative Investment Opportunities", *Journal of Finance*, 31(2): 525-539, Papers and Proceedings of the Thirty-Fourth Annual Meeting of the American Finance Association Dallas, Texas December 28-30, 1975.

Mehra, Rajnish, and Edward C. Prescott (1985). "The Equity Premium: A Puzzle", Journal of Monetary Economics, 15(2): 145–161.

Panico, Carlo (1988). Interest and Profit in the Theories of Value and Distribution, London: Palgrave Macmillan. (pp.186-190)

Shaikh, Anwar (1997). "The Stock Market and the Corporate Sector: A Profit-Based Approach", in Malcolm Sawyer, Philip Arestis and Gabriel Palma (eds.), Markets, Unemployment and Economic Policy: Essays in Honour of Geoff Harcourt, Volume Two, London: Routledge:389–404.

Shaikh, Anwar (2010). "Reflexivity, Path-Dependence and Disequilibrium Dynamics", Journal of Post Keynesian Economics, 33(1): 3-16.

Shaikh, Anwar (2016). Capitalism: Competition, Conflict and Crises, New York, NY: Oxford University Press. (pp. 449-452)

Wicks, Robert T., Sandra Chapman and R.O. Dendy. (2007). "Mutual Information as a Tool for Identifying Phase Transitions in Dynamical Complex Systems with Limited Data", *Physical Review E*, 75(5 Pt 1): 051125.