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0. INTRODUCTION 

The purpose of this chapter is to present a concise summary of the current status of 

microeconomic theory of consumer choice. In one form or another, this theory un-

derpins all economic analyses of food demand. Many modern treatments employ 

household production theory, which combines the economic theory of the firm with 

that of the consumer. A detailed discussion of the naïve neoclassical model of con-

sumer choice is contained in Barten and Böhm (1982), while Deaton (1986) ad-

dresses the econometric issues of naïve demand analysis. Similarly, Nadiri (1982) 

presents an in depth survey of neoclassical production theory, while Jorgenson 

(1986) deals with econometric modeling for producer behavior. The focus here is on 

a synthesis that incorporates consumer preferences, household production activities, 

quality attributes of foods and other goods, and produced nonmarket household 

commodities. An outline of the underlying individual components essential for this 

synthesized framework are presented first, followed by a general abstract model of 

consumer choice in a static framework. This framework is extended and refined to 

accommodate consumer choice problems in intertemporal environments. In this 

framework, expectations for future prices, incomes, and asset returns, durable goods 

in household consumption, and naïve and rational habit formation are analyzed. 

Many new results are contained in this chapter which can not be found elsewhere in 

the literature either in the same form or level of generality. However, they all have 

been derived using straightforward applications of previously existing analytical 

tools. 

The chapter is organized in the following way. Section 1 briefly summarizes the neo-

classical theory of consumer choice. Section 2 develops the theory of household pro-

duction, combines and relates this theory to the neoclassical model and important 
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special cases, including hedonic price functions, Gorman’s and Lancaster’s character-

istics model of quality, and the Fisher-Shell repackaging model. Section 3 discusses 

dynamic models of consumer choice, with an emphasis on the role of individuals’ ex-

pectations about their future economic environment, including models of perfect 

foresight and myopic, adaptive, quasi-rational, and rational expectations. Section 4 

presents the economic theory of intertemporal choice in a household production 

framework with durable stocks. Some of these stocks may be unobservable “con-

sumption habits” and naïve and rational habit formation models are interpreted in 

this context. The final section summarizes the main results. The primary emphasis 

throughout the chapter is to develop and analyze a valid duality in each of the gen-

eralizations to the neoclassical model of consumer choice. 

1. NEOCLASSICAL DEMAND THEORY 

Neoclassical consumer choice theory begins with the set of bundles of consumer 

goods that can be selected by a consuming household, X, a subset of a separable 

topological space. In this section, we take X to be a subset of a finite dimensional 

Euclidean space. Associated with the set X is a binary preference relation, . The 

notation " "x y  means the consumption bundle x is at least as preferred as y. The 

relation  is endowed with properties that ensure that consumer choices are logi-

cally consistent. The following is a standard representation: 

(i) reflexivity; ,x X x x∀ ∈ ; 

(ii) transitivity; , , ,x y z X x y and y z x z∀ ∈ ⇒ ; 

(iii) completeness; , ,x y X either x y or y x∀ ∈ ; 

(iv) closure; x X∀ ∈ , the sets { : }x X x x1 1∈  and { : }x X x x1 1∈  are 

closed. 

These properties imply that  is a complete ordering on X and that there exists a 

continuous utility function, u: X → , such that 1 1, , ( ) ( )x x X u x u x∀ ∈ ≥  if and 

only if 1x x  (Bowen (1968); Debreu (1954, 1959, 1964); Eilenberg (1941); Rader 

(1963)). 

The consumer’s decision problem is to choose a bundle of market goods from the set 

X that is maximal for , given market prices, np +∈ , and income, m +∈ . Given 
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properties i-iv, this can be represented as sup{ ( ): , }u x x X p x m′∈ ≤ .1 Let  de-

note the binary relation “strictly preferred to”, so that x y  means x y  and not 

y x . Then the solution to the consumer’s utility maximization problem is unique 

under the following additional conditions: 

(v) nonsatiation;  1 1/ x X x x x X∃ ∈ ∋ ∀ ∈ ; 

(vi) strict convexity; 1 1 1(0,1) ( (1 ) )x x and t tx t x x∈ ⇒ + − ; 

(vii) survival;  inf{ : }p x x X m′ ∈ < ; and 

(viii) X is convex and bounded from below by 0, i.e., 0ix X x i∈ ⇒ ≥ ∀ . 

In addition to continuity, properties i-viii imply that the utility function is strictly 

quasiconcave (Arrow and Enthoven (1961)), the utility-maximizing demand set is 

nonempty and a singleton, and the budget constraint is satisfied with equality at the 

optimal choice for the consumption bundle. The utility maximizing quantities de-

manded, ( , )x h p m= , are known as the Marshallian ordinary demand functions. 

Marshallian demands are positive-valued and have the following properties: 

(M.1) 0° homogeneity in ( , )p m ; ( , ) ( , ) 0h p m h tp tm t≡ ∀ ≥ ; 

(M.2) adding up; ( , )p h p m m′ ≡ ; and 

(M.3) symmetry and negativity; the matrix of substitution effects, 

 
( , ) ( , )

( , )
h p m h p m

h p m
p m

 
 ′≡ +
 ′ 

S
∂ ∂
∂ ∂

, 

is symmetric and negative semidefinite, provided that S exists and is con-

tinuous. 

The maximum level of utility given prices p and income m, ( , ) [ ( , )]v p m u h p m≡ , is 

the indirect utility function. Under i-viii, the indirect utility function has the follow-

ing properties: 

                                         
1 The notation “sup” denotes the supremum, or least upper bound, of the objective function 

on the associated set. Since the utility function is continuous, if the set X is closed and 

bounded from below and p » 0 , then we can replace “sup” with “max”. Similarly, the nota-

tion "inf" denotes the infimum, or greatest lower bound, of the objective function on the 

choice set. If the choice set is compact (closed and bounded) and the objective function is 

continuous, then we can replace "inf" with "min". 
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(V.1) continuous in ( , )p m ; 

(V.2) decreasing and strictly quasiconvex in p; 

(V.3) increasing in m; 

(V.4) 0° homogeneous in ( , )p m ; 

(V.5) Roy's identity, 

 
( , )

( , )
( , )

v p m p
h p m

v p m m

  ≡ −    

∂ ∂

∂ ∂
, 

provided the right-hand side is well-defined. 

Dual to the utility maximization problem is the problem of minimizing the expendi-

ture necessary to obtain a fixed level of utility, u, given market prices p, 

inf{ , ( ) }′ ∈ ≥p x x X u x u:  . The expenditure minimizing demands, ( , )g p u , are known as 

the Hicksian compensated demand functions. Hicksian demands are positive valued 

and have the following properties: 

(H.1) 0° homogeneous in p; 

(H.2) the Slutsky equations; 

 
( , ) ( , ( , )) ( , ( , ))

( , ( , ))
g p u h p e p u h p e p u

h p e p u
p p m

   
   ′≡ +
   ′ ′   

∂ ∂ ∂
∂ ∂ ∂

 

is symmetric and negative semidefinite, provided the derivatives exist and are 

continuous.  

The expenditure function, ( , ) ( , )e p u p g p u′≡ , has the following properties: 

(E.1) continuous in ( , )p u ; 

(E.3) increasing, 1° homogeneous, and concave in p; 

(E.4) increasing in u; and 

(E.5) Shephard's Lemma, 

 
( , )

( , )
e p u

g p u
p

≡
∂
∂

, 

provided the derivatives on the right exist. 

A large body of theoretical and empirical literature exists for the neoclassical model 

of consumer choice. Much of this literature is based on the observation that ( , )e p u  

and ( , )v p m  are inverse functions with respect to their n+1st arguments, yielding, 

inter alia, the following set of identities: 
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(1.1) e p v p m m[ , , ]b g ≡ ; 

(1.2) v p e p u u[ , , ]b g ≡ ; 

(1.3) ( , ) [ , ( , )]g p u h p e p u≡ ; and 

(1.4) ( , ) [ , ( , )]h p m g p v p m≡ . 

However, the neoclassical model has few empirical implications, embodied in the sign 

and symmetry of the substitution effects due to changes in the market prices of the 

goods x, and leaves all variances in consumption behavior not explained by prices 

and income to differences in tastes and preferences. The neoclassical model also is 

entirely static. Finally, the neoclassical model does not readily accommodate techno-

logical change, the introduction of new goods in the market, or changes in the qual-

ity or characteristics of the goods that are available. These considerations led to ex-

tensions of the neoclassical model of consumer choice. Among these extensions, the 

most widely employed is the theory of household production. The seminal references 

are Becker (1965), Gorman (1956), and Lancaster (1966, 1971). Household produc-

tion theory integrates the neoclassical theory of the consumer with that of the firm. 

The theory of the firm relates to that part of household decision making that is con-

cerned with the efficient use of market goods, household time, and capital as inputs 

in the production of utility-yielding non-market commodities. The model posits that 

market goods and household time are combined via production processes analogous 

to the production functions of the theory of the firm to produce various commodities 

from which utility is obtained directly. This approach advances traditional consumer 

choice theory by permitting analyses of issues such as the number of family members 

in the work force, time as a constraining factor in household consumption choices, 

quality changes among goods, durable goods in consumption, and consumer reac-

tions to the introduction of new goods in the market place. 
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2. THE THEORY OF HOUSEHOLD PRODUCTION 

In this section, we present a model of consumer choice that is sufficiently general 

and rich to account for many of the concerns summarized above. We first need some 

preliminary definitions and notation. Let nx +∈  denote market goods and time 

used by the household, let sb ∈  be a vector of parameters associated with the 

market goods, objectively measured and quantifiable by all economic agents, and let 
mz ∈  be a vector of utility bearing commodities or service flows desired by the 

household and produced from x. We assume that there is a household production 

relationship for each household relating x to z, and this relationship depends explic-

itly on the parameters, b. For given b, let T b m n( ) ⊂ +  denote a joint production pos-

sibilities set and let [ ] ( )y x z T b′ ′ ′= ∈  denote a feasible vector of goods and com-

modities. For each possible b, the properties of T(b) associated with a well-defined 

joint production function are (Rockafellar (1970); Jorgenson and Lau(1974)): 

(i) origin; 0 ∈T b( ) ; 

(ii) bounded; ∀ ∈ < ∞∀ ≠ ⇒ < ∞i y T b and y j i yj i, ( ) | | | | , 

(iii) closure; y T b n and y y y T bn n∈ ∀ → ⇒ ∈( ) ( )  ; 

(iv) convexity; y y T b and t ty t y T b, ( ) [ , ] ( ) ( )1 10 1 1∈ ∈ ⇒ + − ∈ ; 

(v) monotonicity; ∃ ∋ ∈ ′ = ∀ ≠ ′ ≤ ⇒ ′ ∈i y T b y y j i and y y y T bj j i i( ), , ( ) . 

Given i-v, we define the production function by 

(2.1) − = ∈F y b y y T bi i( , ) { : ( )~ sup } , 

where ~iy  is the subvector of elements excluding the ith with i chosen to satisfy v. 

Then ( )y T b∀ ∈ , we have ( )~ , 0i iy F y b+ ≤ . For a given value of b, the function 

F(⋅, b) is closed (lower semicontinuous), proper ( ~( , )iF y b < +∞  for at least one ~iy  

and ~ ~( , )i iF y b y>−∞ ∀ ), and convex. Monotonicity in at least one element of y 

(i.e., free disposal of yi) is equivalent to applicability of the implicit function theorem 

to the transformation ( , ) 0G y b = , which defines the boundary of T(b), to obtain the 

form (2.1). Free disposal of all elements of y implies monotonicity of (, )G b⋅  in y. 

We define the epigraph of F(⋅, b) to be the set 

(2.2) ~* ( ) { : ( , )}m n
i iT b y y F y b+= ∈ − ≥ . 
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It follows immediately from the definition of F(⋅, b) that * ( ) ( )T b T b≡ . Therefore, 

since a convex function is defined by its epigraph — equivalently, a closed convex 

function is the pointwise supremum of all affine functions that are majorized by it 

(Rockafellar (1970), Theorem 12.1), while a closed convex set is the intersection of 

all of the closed half spaces defined by its supporting hyperplanes — the properties 

of F(⋅, b) imply the properties of T(b), and conversely. 

Hence, let the goods/commodities/qualities efficient transformation frontier be de-

fined by the implicit function G x z b( , , ) = 0 . We interpret G(⋅) to be a joint household 

production function with inputs x, outputs z, and parameters b. G(⋅, b) is convex in 

(x, z), increasing in z, decreasing in x, and without loss in generality, strictly increas-

ing in z1. For given b, the feasible goods/commodities production possibilities set is 

defined in terms of G(⋅, b) by 

(2.3) T b x z G x z br m( ) {( , ) ( , , ) }= ∈ × ≤: 0 . 

For fixed b, T(b) is non-empty, closed, and convex; G b( , , )0 0 = 0 ; and ( , , ) 0G x z b =  

and z 0  imply that x ≥ 0 , where x ≥ 0  means 0jx ≥  ∀ j and x ≠ 0 . 

We assume that the correspondence T(b) is continuous over the set of parameter 

vectors, sB ⊂ , and that boundedness and closure of T(b) hold throughout B. 

These conditions ensure that G x z( , , )⋅  is continuous in b B∈ , which can be demon-

strated in the following way. Define F x z b( , , )  by 

(2.4) − = ∈F x z b z x z T b( , , ) { ( , ) ( )} sup :1 . 

Let 1( , , ) ( , , )G x z b z F x z b= + . If ( , ) ( )n n nx z T b n∈ ∀  and ( , , ) ( , , )n n nx z b x z b→  then 

( , ) ( )x z T b∈  by the continuity of T(⋅) in b. Uniqueness of the supremum implies 

( )1 , ,z F z x b≤− . On the other hand, 1 ( , , )n n n nz F x z b n= − ∀  implies that 

z F x z b1 ≥ − , ,b g . Continuity of G x z( , , )⋅  follows immediately. This means simply that 

the boundary of the feasible set T(b) is connected and contained in T(b), and that 

small changes in b do not induce large changes in the boundary of T(b). Therefore 

the greatest possible output of z1 does not change much either. 
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The above conditions on the set T(b) are standard in the general theory of the firm 

and do not exclude cases where the commodity vector z includes some or all of the 

market goods. For example, if m = n and i iz x≡  ∀ i, then the model reduces to the 

neoclassical framework where market goods are the desired commodities from which 

utility is derived directly. More generally, for any pair i and j such that i jz x≡ , we 

can simply incorporate the function i jz x−  into the definition of the transformation 

function G(⋅). 

An important aspect of this model setup is the manner in which time allocation tac-

itly enters the decision problem. If t0 is the vector of labor times supplied to the 

market and w the vector of market wage rates received for this labor, then the 

budget constraint has the form ~ 0x tp x y w t′ ′≤ + , where y is non-labor income. Let t 

denote the vector of household times used in the production of nonmarket commodi-

ties. Then x x tt= ′ ′ ′[ , ]~  and the joint household production function tacitly depends 

upon t. Finally, if T is the vector of time endowments, then 0T t t− −  is a vector of 

leisure times and is tacitly included as part of the vector z. The vector of time con-

straints take the form 0t t T+ =  (Becker (1965); Deaton and Muellbauer (1980); 

Pollak and Wachter (1975)). Substituting 0t T t= −  into the budget constraint 

gives ~ ( )x tp x w T t′ ′≤ − , or equivalently, ~x tp x w t y w T m′ ′ ′+ ≤ + ≡ , where m is 

the household's full income (Becker (1965)). 

2.1 Static Consumer Choice Theory with Household Production 

In addition to the joint transformation function relating goods, commodities, and 

qualities, we assume that there exists a continuous, quasiconcave utility function 

defined over the space of commodities, u(z), such that 1( ) ( )u z u z≥  if and only if z  

z1, where  is the binary preference relation defined over commodities. The con-

sumer's decision problem is taken to be to seek a combination of market goods and 

household time, x, that will produce the vector of commodities, z, that maximizes 

utility, u(z), subject to a budget constraint, p x m′ ≤ . Here p is an n-vector of mar-

ket prices, defined by 
~

( , )
txp p w′ ′= ′  and m y w T′= +  is the household's full in-

come. In addition to the standard budget constraint, the choice problem is subject 

to the constraint that the vector of commodities produced from the market goods 
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and household time is feasible, G x z b( , , ) ≤ 0 . This problem is related to the neoclassi-

cal consumer choice problem by the following theorem, which permits the transla-

tion of the utility function defined over produced nonmarket commodities to an in-

duced utility function defined over market goods and time. 

Theorem 1: For each o( , ) ( )x z T b∈ , the interior of ( )T b , suppose that the 

set of feasible commodity bundles, ( , ) { : ( , , ) 0}mW x b z G x z b= ∈ ≤ , has a 

non-empty interior. Then the induced utility function on the space of mar-

ket goods, *: n su × → , defined by 

 * ( , ) sup{ ( ): ( , )}u x b u z z W x b≡ ∈ , 

is strictly quasiconcave in x. 

PROOF: Fix two feasible goods vectors, x and x1 such that * ( , )u x b k=  and 
1* ( , )u x b k≥  for some real number k. Define 2 1(1 )x tx t x= + −  for some (0,1)t ∈ . 

Pick vectors z, z1 and z2 to satisfy ( , , ) 0G z x b ≤ , 1 1( , , ) 0G z x b ≤ , 2 2( , , ) 0G z x b ≤ , 

( ) * ( , )u z u x b= , 1 1 ( ) * ( , )u z u x b= , and 2 2( ) * ( , )u z u x b= . The strict convexity of 

G(⋅, b) implies that 1 1[ (1 ) , , ] 0G tz t z x b+ − < ; hence 1(1 )tz t z+ −  is a feasible com-

modity bundle. On the other hand, strict quasiconcavity of u(⋅) implies that 

u tz t z u z[ ( ) ] ( )+ − >1 1 . Consequently, 2 2 1* ( , ) ( ) [ (1 ) ] ( )u x b u z u tz t z u z k= ≥ + − > = .  

This result permits the household production model to be translated into the stan-

dard neoclassical model of consumer choice. The consumer choice problem of maxi-

mizing u(z) subject to the constraints p x m′ ≤  and G x z b( , , ) ≤ 0  thus can be repre-

sented in terms of the simpler problem of choosing x to maximize * ( , )u x b  subject to 

p x m′ ≤ . Quasiconcavity of u*(⋅,b) implies that the resulting demands for the goods 

x have the standard properties of neoclassical demand functions. However, these de-

mands also relay information regarding both preferences and consumption technol-

ogy (Pollak and Wachter (1975); Barnett (1977)). 

Under some general regularity conditions on u and G, the following theorem de-

scribes the basic properties of the function u x b*( , )  and the nature of the dual in-

formation on preferences and household consumption technology relayed by it. With 

little loss in generality, we restrict our attention to the case of strictly positive com-

modity consumption bundles. 
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Theorem 2: Suppose that u(⋅) is strictly quasiconcave and continuously 

differentiable, ()G ⋅  is strictly convex in z and continuously differentiable in 

( , , )x z b , ( , )W x b  has a non-empty interior, u(⋅) is nonsatiated on T(b), and 

the optimal commodity vector satisfies z(x, b)  0. Then * ()u ⋅  has the fol-

lowing properties: 

(2.a) u*(⋅, b) is increasing in x; 

(2.b) u*(⋅) is continuously differentiable in (x, b); 

(2.c) 1 1* ( ) ( ) ( )u x u z G x G z= − ⋅∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ; 

(2.d) 1 1* ( ) ( ) ( )u b u z G b G z= − ⋅∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ; 

(2.e) sgn * ) sgn( )k ku b G b k= − ∀(∂ ∂ ∂ ∂ ; 

(2.f) The preference map defined by u*(⋅) is invariant to increasing 

transformations of u(⋅) and G(⋅). 

PROOF: Let the Lagrangean for the constrained maximization problem be  

 ( ) ( , , )L u z G x z b= −µ , 

where µ ≥ 0 is a Lagrange multiplier. Strict quasiconcavity of u(⋅) and strict convex-

ity of G(⋅) in z imply that the necessary and sufficient conditions for an interior con-

strained maximum are 

 ∂ ∂ ∂ ∂ ∂L z u z G z= − =µ∂ 0 , 

 ( , , ) 0L G x z bµ = − =∂ ∂ , 

where the second condition follows from nonsatiation of u throughout T(b). 

Substituting the solution functions, z(x, b), into the first order conditions generates 

identities in a neighborhood of the point (x, b). Define the indirect objective function 

by u x b u z x b*( , ) [ ( , )]≡  and the constraint identity by G x z x b b[ , ( , ), ] ≡ 0 . Substituting 

these and the optimal solution function for the Lagrange multiplier, µ (x, b), into the 

Lagrangean gives u x b L x b*( , ) ( , )≡ . Differentiating with respect to x then gives 

 * ( ) ( ) ( )u x u z G z z x x G G x= −µ − µ −µ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ . 

The first two terms on the right-hand side vanish and the Lagrange multiplier can 

be written as 

 1 1( ) ( ) 0u z G zµ = >∂ ∂ ∂ ∂ . 

Combining the right-hand-side expressions gives, 
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 1 1* ( ) ( ) ( )u x u z G x G z= − ⋅∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ . 

A completely analogous argument applies to *u b∂ ∂ , verifying (2.a) - (2.e). 

To demonstrate (2.f), let : w → and :v → be arbitrary strictly increasing, 

continuously differentiable functions. Define the set 

 W x b z v G x z b vm*( , ) { [ ( , , )] ( )}≡ ∈ ≤: 0 . 

Then W x b W x b*( , ) ( , )≡ ; that is, z W x b∈ ( , )  if and only if z W x b∈ *( , )  and u(z) 

achieves a maximum in W*(x, b) at the same point as it does in W(x, b). Similarly, 

w[u(z)] achieves a maximum on either W(x, b) or W*(x, b) if and only if u(z) does. 

Finally, let 

 L w u z v v G x z b* [ ( )] *{ ( ) [ ( , , )]}= + −µ 0 . 

The first-order conditions for an interior constrained maximum now are 

 * * 0L z w u z v G z′ ′= −µ =∂ ∂ ∂ ∂ ∂ ∂ , 

 * * (0) [ ( , , )] 0L v v G x z bµ = − =∂ ∂ . 

Since 1[ (0)] 0v v− = , the latter is equivalent to ( , , ) 0G x z b = . The former can be writ-

ten as 

 1 1( ) ( ) ( * ) ( * )  i iw u z w u z v G z v G z i′ ′ ′ ′= µ µ ∀∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , 

which after canceling ( )w w′ ′  and ( )* *v v′ ′µ µ  is equivalent to the conditions im-

plied by 

 0u z G z−µ =∂ ∂ ∂ ∂ .  

Several additional properties of the consumer choice model that uses u*(x, b) as its 

starting point can be derived from the duality theory of the neoclassical model. Con-

sider the problem, 

(2.1.1) v p m b u x b p x m x n*( , , ) sup{≡ ′ ≤ ∈ +*( , ): , } . 

This generates ordinary market demands, * * ( , , )x h p m b= , Lagrange multiplier, 

* ( , , )p m bλ , and indirect utility function, * ( , , ) * [ * ( , , ), ]v p m b u h p m b b≡ . Then con-

sider an artificial two-stage formulation of the problem, 

(2.1.2) ( , , ) sup{ ( ): , ( , , ) 0}v p m b u z p x m G x z b′≡ ≤ ≤  

 { }sup sup{ ( ): ( , , ) 0} :u z G x z b p x m′≡ ≤ ≤ . 

This yields ordinary market demands, ( , , )x h p m b= , nonmarket commodity de-

mands, ( , , )z f p m b= , Lagrange multiplier, ( , , )p m bλ , and indirect utility function, 
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( , , ) [ ( , , )]v p m b u f p m b≡ . By the uniqueness of the supremum, we have 

(2.1.3) ( , , ) * ( , , )v p m b v p m b≡ . 

This simple observation leads directly to the following result, which for brevity is 

stated in terms of v(⋅). 

Theorem 3. Under the conditions of Theorem 2, ( , , )v p m b  is continuously 

differentiable, homogeneous of degree zero in ( , )p m , increasing in m, qua-

siconvex and decreasing in p, and  

(3.a) ( , , )v m p m b= λ∂ ∂ ; 

(3.b) ( , , ) ( ) ( )h p m b v p v m≡− ∂ ∂ ∂ ∂  so long as the right-hand-side is 

well-defined; 

(3.c) *v b G b u b≡ −λ ≡∂ ∂ ∂ ∂ ∂ ∂ ; 

(3.d) [ ( , , ), ( , , ), ] 0G h p m b f p m b b ≡ ; and 

(3.e) ( , , )p h p m b m′ ≡ . 

PROOF: Continuous differentiability of v(⋅) follows from the continuous differenti-

ability of u(⋅) and G(⋅), strict quasiconcavity of u(⋅), and strict convexity of G(⋅, b). 

Zero degree homogeneity follows from the fact that the budget set does not change if 

we multiply both sides by a positive constant, p x m′ ≤  if and only if 

tp x tm t′ ≤ ∀ > 0 . For monotonicity, if p p≥ o , then 

B x p x m B x p x m= ′ ≤ ⊂ = ′ ≤{ } { ) }: : (o o , and the maximum of u*(x, b) over B° can be no 

less than the maximum over B. Hence v(⋅, m, b) is decreasing in p. The proof of 

monotonicity in m is of the same nature. 

For quasiconvexity in p, fix p and p1 such that ( , , )v p m b k≤  and 1( , , )v p m b k≤  for 

some real number k. Define p tp t p t2 11 0 1= + − ∈( ) [ , ] for . If 1(1 )( )tp x t p x m′ ′+ − ≤  

then p x m′ ≤ , 1( )p x m′ ≤ , or both. Otherwise, ′ > ⇒ ′ >p x m tp x tm  and 

( ) ( )( ) ( )p x m t p x t m1 11 1′ > ⇒ − ′ > − . Summing the last inequalities in each of case im-

plies tp x t p x m′ + − ′ >( )( )1 1 , which is a contradiction. Therefore, 

 v p m b u x b x m v p m b v p m b k( , , ) *( , ) ( ) max ( , , ), ( , , )2 1= ′ ≤ ≤ ≤sup : p2o t o t . 

Properties a - c are the result of the envelope theorem, d and e follow from the non-

satiation of u(⋅).  

This theorem simply states that there will be one and only one maximum level of 
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utility, and the associated choice functions are invariant to the manner in which we 

choose to view the consumer choice problem, provided of course that the problem is 

well-behaved. In addition, it shows how the joint preference and household produc-

tion technology information contained in u*(⋅) is transmitted to the indirect utility 

function v(⋅) and hence the demand functions h(⋅). 

Analogous to the neoclassical consumer choice model, dual to the utility maximiza-

tion problem is an expenditure minimization problem, 

(2.1.4) e p u b p x u x b u x n( , , ) inf{ : *( , ) , }≡ ′ ≥ ∈ + . 

This generates Hicksian compensated demands, ( , , )x g p u b= , Lagrange multiplier, 

( , , )p u bµ , and expenditure function, ( , , ) ( , , )e p u b p g p u b′≡ . Our next result relates 

the indirect utility function to the expenditure function. 

Theorem 4: Under the conditions of theorem 2, the expenditure function 

is increasing, 1° homogeneous, and concave in p; increasing in u; continu-

ously differentiable in (p, u, b); and, 

(4.a) ( , , ) ( , , )e p u b p g p u b≡∂ ∂ ; 

(4.b) ( , , ) ( , , )e p u b u p u b≡ µ∂ ∂ ; 

(4.c) ( , , ) ( , , ) * ( ( , , ), )e p u b b p u b u g p u b b b≡ −µ ⋅∂ ∂ ∂ ∂ ; 

(4.d) [ , ( , , ), ]e p v p m b b m≡ ; 

(4.e) [ , ( , , ), ]v p e p u b b u≡ ; 

(4.f)  [ , ( , , ), ] ( , , )g p v p m b b h p m b≡ ; 

(4.g) [ , ( , , ), ] ( , , )h p e p u b b g p u b≡ ; 

(4.h) 1( , , ) [ , ( , , ), ]p u b p e p u b b −µ ≡ λ ; 

(4.i)  1( , , ) [ , ( , , ), ]p m b p v p m b b −λ ≡ µ . 

PROOF: With the exception of c, these are all straightforward duality results 

proved in the same manner as in the neoclassical utility theory model. Property c 

follows from the envelope theorem.  

Thus, the static consumer choice model with household production inherits all of the 

properties of the indirect utility function and expenditure function from the neoclas-

sical model. The relationship between the Marshallian ordinary demands and Hick-

sian compensated demands with respect to the parameters b are summarized in the 
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next theorem. 

Theorem 5: The Marshallian demand functions are positive-valued, con-

tinuous and 0° homogeneous in (p, m), and so long as the associated deriva-

tives exist and are continuous, 

(5.a) 
( , , ) ( , ( , , ), ) ( , ( , , ), ) ( , , )g p u b h p e p u b b h p e p u b b e p u b

b b m b
≡ + ⋅

′ ′ ′
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
, and 

(5.b) ′ ≡ ′p h p m b b∂ ∂( , , ) ' 0 . 

PROOF: These results follow from differentiating 4.g and 3.e with respect to b.  

2.2 Hedonic Price Functions 

An alternative approach to the consumer choice problem with a household produc-

tion function as an added constraint is obtained by focusing on the cost of obtaining 

a given vector of commodities from market goods and household time given market 

prices. This perspective is called the method of hedonic price functions (Lucas 

(1975); Muellbauer (1974); Rosen (1974)). To develop this approach in the current 

model framework, we require a version of the Shephard-Uzawa-McFadden duality 

theorem for cost functions. 

Theorem 6: For a feasible commodity vector z, the cost function, 

 ( , , ) inf{ : ( , , ) 0, }nc p z b p x G x z b x +′≡ ≤ ∈ , 

is continuous in (p, z, b), 1° homogeneous, increasing and concave in p, in-

creasing and convex in z. When the inputs requirements set 

 ( , ) { : ( , , ) 0}nX z b x G x z b+= ∈ ≤  

is strictly convex and ( , , )c p z b p∂ ∂  exists, c(p, z, b) obeys Shephard's 

Lemma (Shephard (1953)), 

 [ ( , , ) , , ] 0G c p z b p z b ≡∂ ∂ . 

When G is differentiable in z the ratio of marginal costs of two commodities 

is equal to the marginal rate of transformation between them, 

 ( ) ( ) ( ) ( ) ,i ii ic z c z G z G z i i′ ′ ′= ∀∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ . 

PROOF: Convexity of T(b) implies convexity of X(z, b). To see this, let x0 and x1 be 

any two points such that G x z b( , , )0 0≤  and G x z b( , , )1 0≤ . Define x tx t x2 0 11= + −( )  for 
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[0,1]t ∈ . Then G x z b( , , )2 0≤ , since (1 )z tz t z= + − . Similarly, closure of T(b) im-

plies closure of X(x, b). To see this, let { }zk  and { }xk  be any two sequences such 

that z zk =  ∀ k, x xk → , and ( , , ) 0k kG x z b ≤  ∀ k. Then closure of T(b) implies that 

G x z b( , , ) ≤ 0 ; hence X(z, b) is closed. Decreasing monotonicity of G in x implies free 

disposal, since 0x x≥  and 0( , , ) 0 ( , , ) 0G x z b G x z b= ⇒ ≤ . The nonemptiness of T(b) 

and the feasibility of z imply ( , )X z b ≠ ∅ . Theorems 1 and 2 of Uzawa (1964) and 

Lemma 1 of McFadden (1973) follow from this set of hypotheses, proving continuity, 

monotonicity, 1° homogeneity, and concavity in p. 

To prove convexity in z, fix two feasible outputs z0 and z1, and define 
2 0 1(1 )z tz t z= + −  for [0,1]t ∈ . Let ′ =p x c p z b0 0( , , )  and 1 1( , , )p x c p z b′ = . Then 

2 2 2( , , ) ( , )p x c p z b p x x X z b′ ′≡ ≤ ∀ ∈ . In particular, let x tx t x= + −0 11( ) . Convexity of 

2( ) ( , ) ( )T b x z T b⇒ ∈ . Therefore, since x is feasible but not necessarily optimal for 
2z , 

 2 0 1 0 1( , , ) (1 ) ( , , ) (1 ) ( , , )c p z b p x tp x t p x tc p z b t c p z b′ ′ ′≤ = + − = + − . 

When G(⋅, z, b) is strictly convex in x, so that the input requirements sets are strictly 

convex, Shephard's Lemma is obtained from the primal-dual function 

 ( , , , ) ( , , )p x z b p x c p z b′φ ≡ − . 

φ(⋅) is non-negative for all ( , )x X z b∈  and attains a minimum at ( , , )x x p z b= , the 

cost-minimizing bundle of market goods. If c p∂ ∂  exists, minimizing φ(⋅) with re-

spect to p requires 

 ( , , , ) ( , , ) 0p x z b p x c p z b pφ ≡ − ≡∂ ∂ ∂ ∂ .  

An additional property of the cost function is that if G(⋅, b) exhibits constant returns 

to scale with respect to x and z, so that ( , , ) 0 ( , , ) 0 0G x z b G tx tz b t= ⇒ = ∀ ≥ , then 

( , , )c p z b  is 1° homogeneous in z (Hall (1973)). By Euler's theorem we then have 

(2.2.1) 
( , , )

( , , )
c p z b

c p z b z
z

≡ ©∂
∂

. 

The hedonic price for the i th commodity is the marginal cost of its production, 

( , , ) ( , , )i ip z b c p z b zρ ≡ ∂ ∂ . Under constant returns to scale, then, we can represent 

the consumer’s choice problem as  

(2.2.2) sup{ ( ): , }u z z m z m′ ≤ ∈ +ρ . 
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Now, suppose that we define the implicit commodity prices conditionally on the op-

timal level of commodity consumption, * ( , , )z f p m b= , and then solve the house-

hold's choice problem given * ( , *, )p z bρ = ρ . These  conditional   shadow  prices  ρ*  

define  the  hyperplane  that  separates  the  projection  of  the  production possibility set 

onto the m-dimensional commodity subspace from the upper contour set of the util-

ity function. Under constant returns to scale, the commodity demand vector, 

* ( *, , )z z m b= ρ , possesses all of the properties of neoclassical demand functions with 

respect to (ρ*, m) (Barnett (1977)). That is, taking ρ* as a vector of constants asso-

ciated only with the separating hyperplane, the functions ( *, , )z m bρ  are homogene-

ous of degree zero in ( *, )mρ , satisfy the adding up condition, ρ ρ′ ≡* ( *, , )z m b m , and 

obey the Slutsky sign and symmetry conditions with respect to ρ* and income m, 

i.e., ∂ ∂ρ ∂ ∂z z m z′ + ′* ( )  is symmetric and negative semidefinite. 

The unconditional commodity shadow prices are defined by 

(2.2.3) ( , , ) *( , ( , , ), )p m b p f p m b bρ ≡ ρ , 

so that we have the identity 

(2.2.4) ( ( , , ), , ) ( , , )z p m b m b f p m bρ ≡ . 

Therefore, the hedonic prices for the non-market commodities and the commodity 

demands are necessarily simultaneously determined. Consequently, simply estimat-

ing either * ( , *, )p z bρ = ρ  or * ( *, , )z z m b= ρ  with standard techniques leads to bi-

ased and inconsistent empirical results (Pollak and Wachter (1975)). Moreover, 

without constant returns to scale, 

(2.2.5) m p h p m b c p f p m b b p m b f p m b≡ ′ ≡ ≠ ′( , , ) [ , ( , , ), ] ( , , ) ( , , )ρ , 

and the above results for ( *, , )z m bρ  no longer hold. Even with constant returns to 

scale, the hedonic price functions relay information regarding both consumer prefer-

ences and the household production function. 

The simultaneity between the hedonic price functions and the commodity demand 

functions is overcome when the household production function displays both con-

stant returns to scale and nonjoint production. When both of these conditions are 

satisfied, the joint cost function takes the additively separable form (Hall (1973); 

Muellbauer (1974); Samuelson (1966)), 
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(2.2.6) ( , , ) ( , )c p z b c p b z′= , 

where ( , )ic p b  is the cost of producing a unit of the ith commodity. In this case, 

( , , ) ( , )p z b c p bρ ≡  is independent of z, so that constant returns to scale and nonjoint 

production imply a linear budget constraint in commodities space. As long as the 

Jacobian matrix for the hedonic price functions is of full rank, that is, 

min rank ]( , ) [ ~m n c p= ′∂ ∂ , the shadow price functions can be locally inverted to give 

price functions of the form p b= ψ ρ( , ) . This is the form in which nearly all empirical 

analyses of hedonic price functions have been undertaken, with the commodity 

shadow prices ρ estimated as constants in a linear or log-linear regression equation. 

However, Pollak and Wachter point out that nonjointness is a restrictive assumption 

since it implies that the time spent in household production activities cannot yield 

utility except in terms of the amount of leisure time that is reduced by these activi-

ties. Moreover, we expect a priori that different households have different consump-

tion technologies, and hence, different implicit price equations even if we are willing 

to impose constant returns to scale and nonjoint production. This leads to different 

unit cost functions for the commodity outputs and different hedonic price relation-

ships for different households. 

Additionally, in any model of equilibrium price relationships, demand and supply 

conditions combine in the marketplace to create market clearing prices (Rosen 

(1974); Lucas (1975)). The implicit prices for quality calculated from an hedonic 

price equation therefore represent the marginal conditions equating supply and de-

mand, mapping observed market quantities, prices, and qualities into a single point 

in the space of producer costs and consumer preferences. Consequently, these rela-

tionships yield information about consumer preferences only in the sense of market 

equilibrium conditions. They do not contain any information regarding the direction 

or size of quantity or price changes that are likely to result from changes in the 

quality levels contained in market goods. 

2.3 Special Cases 

The Gorman/Lancaster model of product characteristics arises when the household 

production function can be decomposed into the linear system 
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(2.3.1) 
1

, 1,...,
n

i ij j
j

z b x i m
=

= =∑  

where s = m⋅n. The utility function over goods and qualities is then of the form 

(2.3.2) ( )1 21 1 1* ( , ) , , ,n n n
j j j j mj jj j ju x b u b x b x b x= = == ∑ ∑ ∑ . 

The Muth/Becker/Michael model results when ( , , ) 0G x z b =  is nonjoint, so that 

each commodity is produced by an individual production function of the form 

(2.3.3) ( ) ( )( , ), 1,...,i i i iz f x b i m= = , 

where ( )1
m

iix x=∑=  and (1) (2) ( )[ ]mb b b b′ ′ ′ ′= . In this case, the utility function for 

goods has the form 

(2.3.4) ( )1 (1) (1) ( ) ( )* ( , ) ( , ), , ( , )m m mu x b u f x b f x b= . 

The additional property of constant returns to scale, advocated by Muth as merely a 

question of definitions, generates demand-side hedonic price equations discussed 

above. 

Many applications of the hedonic price function model of quality employ translation 

and scaling methods (Pollak and Wales (1981)) to produce a utility function defined 

over goods and qualities in the scaled form 

(2.3.5) 1 (1) 1 ( )* ( , ) ( ( ) , , ( ) )n n nu x b u b x b x= ϕ ϕ , 

or in the translated form 

(2.3.6) 1 1 (1) ( )* ( , ) ( ( ), , ( ))n n nu x b u x b x b= + ϕ + ϕ , 

or a combination of the two. In the former case, the ordinary demand functions take 

the form 

(2.3.7) ( )1 1 (1) ( ) ( )( ), , ( ), ( )i
i n n n i ix h p b p b m b= ϕ ϕ ϕ , 

which is commonly called the Fisher-Shell repackaging model (Fisher and Shell 

(1971)). In the latter case, the ordinary demand functions take the form 

(2.3.8) ( )( ) ( )1, ( ) ( )mi
i i ii i iix h p m p b b=∑= + ϕ −ϕ , 

(Hanemann (1980); Pollak and Wales (1981)). In both cases, one implication is that 

preferences are weakly separable in the partition 1 (1) ( ){( , ), ,( , )}n nx b x b . However, 

this will not be the case if goods are scaled by an n×n matrix, say A( ) [ ( )]b bij= ϕ , 

that is nonsingular and has nonzero off-diagonal elements. Then the Marshallian or-
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dinary demands take the form (Samuelson (1948), p. 137), 

(2.3.9) x b h b p m= − −A A( ) ( ( ) , )1 1 . 

Note that the linear Gorman/Lancaster characteristics model is a special case of 

(2.3.9). 

3. Intertemporal Models of Consumer Choice 

Many studies of food consumption use time series data. The static neoclassical model 

of consumer choice has been extended to accommodate the analysis of household de-

cisions over time. In this section, we discuss models of intertemporal consumer 

choice that combine the structures of the previous section with the dynamic nature 

of household decision problems. Initially, we consider a model that mirrors the static 

neoclassical theory of consumer choice through additively separable preferences 

across points in time. The consuming household’s process of expectations formation 

for future values of economic factors such as prices and income plays an important 

role in this model. Intertemporal models of household production are considered 

next, including the purchase, use, depreciation, maintenance, and replacement of 

durable household goods. Some durable stocks might be interpreted as habits in con-

sumption. One thread of intertemporal consumer choice theory deals with naïve and 

rational models of habit formation. 

In continuous time, the simplest form of the neoclassical intertemporal consumer 

choice model considers a consuming household which chooses the time path of con-

sumption for the vector of goods, x(t) ≥ 0, to2 

(3.1) 
0

maximize ( ( ))
T tU u x t e dt−ρ= ∫  

subject to the intertemporal budget constraint, 

(3.2) 0( )/ ( ) ( ) , (0) , ( ) 0 [0, ]rtdM t dt p t x t e M M M t t T−′= − = ≥ ∀ ∈ , 

                                         
2 The assumption of a constant discount rate for consumers over the life cycle is probably 

too strong, but it simplifies matters considerably, and plays only a minor role in the devel-

opments that follow. The assumption of a fixed, known, and finite planning horizon also is 

almost certainly too strong, as is the lack of risk and uncertainty in the model. However, 

time and space preclude a detailed analysis of these issues here. 
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where u(⋅) is the instantaneous flow of utility from consumption, ρ is the consuming 

household’s rate of time discount, or impatience, r is the real market discount rate, 

at which the consumer can freely borrow or lend, M0 is the household’s initial wealth 

plus the discounted present value of its full income stream, and p(t) is the vector of 

market prices for the goods x(t) in period t.3 We assume throughout that u(⋅) is 

twice continuously differentiable, strictly increasing ( ( )/ 0u x x∂ ∂ ) and strongly 

concave ( ( )/u x x x ′2∂ ∂ ∂  is negative definite) ∀ x ∈ n
+ .4 

3.1 Perfect Foresight 

In this subsection, we assume that the consuming household has complete informa-

tion regarding all past, present, and future prices, incomes, and other relevant eco-

nomic variables. The Hamiltonian for this problem can be written as 

(3.1.1) ( ( )) ( ) ( ) ( )t rtH u x t e t p t x t e−ρ −′= −λ , 

where λ(t) is the shadow price, or costate variable for the equation of motion for 

household wealth. The first-order necessary and sufficient conditions for the maxi-

mum principle are 

(3.1.2) ∂ ∂ ∂ ∂H x e u x e pt rt/ /= − ≤− −ρ λ 0,  x ≥ 0,  ′ = ∀ ∈x H x t T∂ ∂/ [ , ]0 0 , 

(3.1.3) / 0H M = = −λ∂ ∂ , 

(3.1.4) ∂ ∂λH p xe Mrt/ = − ′ =− ,  0(0)M M= ,  M t T≥ ∀ ∈0 0[ , ]. 

                                         
3 We rely primarily on the continuous time maximum principle to study the structure of 

solutions to this problem under different hypotheses about expectations formed by the 

household for future prices, and so forth. However, we freely make use of some results from 

dynamic programming and the calculus of variations to fully develop the duality of this 

choice problem. 
4 Additive separability, twice continuous differentiability, and quasiconcavity of U imply 

that u(⋅) is concave. This can be proven for discrete time with a finite planning horizon by a 

simple extension of the arguments in Gorman (1970). This argument then can be extended 

further to continuous time by passing to the limit via increasingly small time increments and 

by appealing to continuity of the Hessian matrix. It also can be shown that concavity of u(⋅) 

is necessary for the existence of an optimal consumption path. Strong concavity, in turn, 

implies that the optimal consumption path is unique. 
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Consider an interior solution for x [0, ]t T∀ ∈ . Then first-order condition (3.1.4) im-

plies 

(3.1.5) 1 ( )( )r t
xx u e p− ρ−= λ , 

where 1()xu− ⋅  is the n-vector inverse of ux(⋅). The strict monotonicity of u(⋅) com-

bined with strictly positive prices p requires that λ( ) [ , ]t t T> ∀ ∈0 0 . Because the 

Hamiltonian does not depend on current wealth, M(t), equation (3.1.3) implies λ(t) 

is constant over the entire planning horizon, 0( ) [0, ]t t Tλ ≡ λ ∀ ∈ . Therefore, mul-

tiplying by e-rtp(t) and integrating with respect to t produces a defining relationship 

for the wealth shadow price, 0 0( , , , )TM M r Tλ − ρ , 

(3.1.6) ( )1 ( )
0 0 0

0
( ) ( , , , ) ( )

T rt r t
T x TM M e p t u e M M r T p t dt− − ρ−′− ≡ λ − ρ ⋅∫ . 

The integral form of (3.1.6) implies that the optimal solution for λ0 depends on all 

prices at all points in time, but that for given t and any finite change in p(t), with 

prices remaining unchanged at all other times, 0 / ( ) 0p tλ ≡∂ ∂ .5 

Substituting 0 0( , , , )TM M r Tλ − ρ  into (3.1.5) gives the optimal demands at time t, 

(3.1.7) x t u e M M r T p tx
r t

T*( ) ( , , , ) ( )( )≡ − ⋅− −1
0 0

ρ λ ρd i. 
In contrast to the static model of the previous section, the neoclassical dynamic 

model with perfect foresight has a matrix of instantaneous uncompensated price 

slopes that is symmetric and negative definite, 

(3.1.8) ( ) 1
0* / r t

xxx p e uρ− −′ = λ∂ ∂ . 

This difference in the symmetry properties of static and dynamic consumer choice 

models is the result of the intertemporal allocation of expenditure and is not due to 

perfect foresight or income smoothing, per se. The difference is due to the integral 

form of the budget constraint on total household wealth in the dynamic framework. 

The additive structure of intertemporal preferences implies that the flow of utility in 

any given instant is perfectly substitutable for utility flows at every other instant. 

Consequently, a change in market prices at a single point in time generates substitu-

tion effects which are perceptible at the given instant but are imperceptibly spread 

                                         
5 More generally, λ( )⋅  does not vary with any absolutely bounded changes in prices on any 

subset of [0, T] that has Lebesgue measure zero. 
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across the consumption bundles in all other times. Even in the simplest of dynamic 

contexts, therefore, the ubiquitously applied and tested Slutsky symmetry and nega-

tivity conditions of static consumer choice theory do not transcend to models in 

which wealth, rather than current income, is the constraint on consumption choices. 

Continuing this line of inquiry, the marginal wealth effects on the demands at each t 

∈ [0, T] satisfy 

(3.1.9) ( ) 1r t
xxx M e u p Mρ− −= ⋅ λ0 0 0∂ ∗ /∂ ∂ /∂ . 

By differentiating both sides of (3.1.6) with respect to M0, combining the result ob-

tained on the right-hand-side with (3.1.8), regrouping, canceling common terms, and 

distributing the integral, we have 

(3.1.10) ( 2 ) 1
0 0 0
/ 1 0

T r t
xxM e p u pdtρ− −′λ = ∫ <∂ ∂ , 

where the inequality on the far right follows from the (strong) concavity of u(⋅) and 

p t t T( ) » [ , ]0 ∀ ∈ 0 . The maximal level of cumulative discounted utility is defined by 

(3.1.11) V M M r T u x e dtT
tT

( , , , ) ( *)0 0
− ≡ −zρ ρ . 

Differentiating V with respect to M0 gives 

(3.1.12) 
∂
∂

∂
∂

∂
∂

V
M

u
x

x
M
e dtt

T

0 00

≡
′

X
ZY

−* ρ  

 
0//

1
0 0 0

0

/

t x Me u xT
rt

xxe p u p M dt

−ρ

⌠

⌡

′

− −′≡ λ ⋅ λ

∂ ∗ ∂∂ ∂

∂ ∂  

 1 1
0 00 0 0T Trt rt

xx xxe p u pdt e p u pdt− − − −′ ′≡ λ ≡ λ >∫ ∫ , 

which is a direct intertemporal analogue to the envelope theorem (LaFrance and 

Barney (1991)). Following the same steps, but applied to MT implies 

(3.1.13) ( 2 ) 1
0 0
/ 1 0

T r t
T xxM e p u pdtρ− −′λ = − ∫ >∂ ∂ , 

and 

(3.1.14) 
∂
∂
V
MT

≡ − <λ0 0. 

As a consequence, in the absence of any bequeath motive, the optimal terminal 

wealth vanishes. This is the intertemporal analogue to the static budget identity 

when preferences are nonsatiable. Note, however, that V(⋅) is (strongly) concave in 

the household’s initial wealth as a direct consequence of the (strong) concavity of 

u(⋅) in x. This contrasts with the static model where the marginal utility of money 



Duality for the Household 1047 

may be constant, increasing or decreasing due to the ordinality of preferences. 

To relate the intertemporal model more closely to the static framework, define total 

consumption expenditures at time t by ( ) ( ) ( )m t p t x t′≡  and consider the static op-

timization problem of maximizing u(x) subject to x ≥ 0 and p′x ≤ m. Let λ  denote 

the shadow price for the static budget constraint. The first-order conditions for an 

interior solution are u px =
~
λ  and p′x = m, which produce the static neoclassical de-

mand functions, x = h(p, m). In the static problem, we take m as given, and calcu-

late the comparative statics for x and λ  from 

(3.1.15)   
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
x p x m
p m

u p u p u pp u p u p u px p u p u p
p u p p u x p u p

xx xx xx xx xx xx xx xx

xx xx xx

′
′

L
NM

O
QP =

− ′ ′ − ′ ′ ′
− ′ ′ + ′ ′

L
NMM

O
QPP

− − − − − − − − − − −

− − − − −~ ~
~

[ ( ) ] ( ) ( )
( ) (

~
) ( )λ λ

λ
λ

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1
. 

These in turn give the static Slutsky matrix, 

(3.1.16) 1 1 1 1 1( ) [ ( ) ]xx xx xx xxS x p x m x u p u p u pp u− − − − −′ ′ ′ ′= + = λ −∂ ∂ ∂ ∂ , 

a symmetric, negative semidefinite, rank n-1 matrix. 

Let ( , ) ( ( , ))v p m u h p m≡  be the indirect utility function for the static problem, which 

defines the instantaneous flow of maximal utility subject to the static instantaneous 

budget constraint. Then, because of the additively separable structure of intertem-

poral preferences, the dynamic consumption problem can be represented equivalently 

as 

(3.1.17) 0
0 0

maximize ( , )   subject to  , 0 [0, ]
T Tt rtv p m e dt me dt M m t T−ρ − ≤ ≥ ∀ ∈∫ ∫ . 

The first-order conditions for an optimal (interior) solution are 

(3.1.18) ∂ ∂v m e r t/
~ ( )≡ = −λ λρ , 

(3.1.19) 0λ = , 

(3.1.20) 0
0

T rtme dt M− =∫ , 

where the identity in the center of (3.1.18) is due to the (static) envelope theorem. 

Total expenditure therefore is not predetermined in each period, but rather is jointly 

determined with quantities and is smoothed over time to equate the present value of 

the marginal utility of money across all points in time, 

(3.1.21) ( )
0( , *)/ r tv p m m e ρ−≡ λ∂ ∂ , 

where m*(t) denotes the optimal level of total consumption expenditures at each 
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time t ∈ [0, T].6 Applying Roy’s identity to the static problem then gives 

(3.1.22) x t h p t m t v p t m t p
v p t m t m

t T*( ) ( ( ), *( )) ( ( ), *( )) /
( ( ), *( )) /

[ , ]≡ ≡ − ∀ ∈
∂ ∂
∂ ∂

0 . 

Taking the vector product of (3.1.22) with p, multiplying by e-rt and integrating with 

respect to t, and utilizing (3.1.18) and (3.1.19) generates two alternative defining 

relationships for λ0, 

(3.1.23) λ ρ ρ
0 0 0 0 0 0≡ − ′ ≡ z >− −e p t v p t m t dt M e m t v p t m t dt Mt

p
T t

m
T( ) ( ( ), *( )) *( ) ( ( ), *( ))z , 

where the second identity follows from zero degree homogeneity of v(⋅) in (p, m) and 

the inequality follows from the fact that v(⋅) is strictly increasing in m. As before, we 

conclude that λ0 is invariant to all absolutely bounded changes in prices on subsets 

of [0, T] with Lebesgue measure zero. Hence, differentiating both sides of (3.1.21) 

with respect to p implies 

(3.1.24) ∂ ∂
∂ ∂ ∂
∂ ∂

m p
v p m m p
v p m m

* /
( , *) /
( , *) /

= −
2

2 2 . 

The symmetry result in (3.1.8) is then obtained by differentiating (3.1.22) with re-

spect to p, substituting (3.1.24) into the result, and canceling terms that vanish due 

to (3.1.21) and (3.1.22), 

(3.1.25) 
∂
∂

∂ ∂ ∂
∂ ∂

∂ ∂ ∂
∂ ∂

∂
∂

∂ ∂
[∂ ∂

∂
∂ ∂

∂
∂

∂
∂

2 2 2 2x
p

v p p
v m

v m p
v m

m
p

v p
v m

v
m p

v
m

m
p

*
'

/
/

/
/

* /
/ ]

*
= −

′
+

′
F
HG
I
KJ + + ⋅

L
NMM

O
QPP

≡

2 2

0

'
 

 =
−

′
− FHG

I
KJ ′

L
N
MM

O
Q
PP

1 1 2

∂ ∂
∂
∂ ∂ ∂ ∂

∂
∂ ∂

∂
∂ ∂

2 2 2

v m
v

p p v m
v

m p
v

m p/ /
. 

Both matrices in square brackets on the last line of (3.1.25) are symmetric; hence 

∂x*/∂p′ is symmetric. 

                                         
6 In other words, the optimal flow of consumption expenditures generally depends on the 

parameters of the utility function and market prices at time t, as well as initial wealth, indi-

vidual and market discount rates, and the optimal value of the shadow price for the wealth 

constraint. Thus, except for models with myopic expectations, which are discussed in the 

next subsection, and with ρ = r, total consumption expenditures can not be treated as ex-

ogenous (Engel, Hendry, and Richard (1983)) in empirical models of intertemporal consumer 

choice. 
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3.2 Myopic Expectations 

The opposite of full information regarding all future economic values on the part of 

consuming households is myopic expectations. In this case, the household is modeled 

as if it expects no change in relative prices of goods or services throughout its plan-

ning horizon, i.e., p t p t( ) = ∀ ≥0 0. This assumption plays an important part in many 

contemporary dynamic economic models (e.g., Cooper and McLaren (1980); 

McLaren and Cooper (1980); Epstein (1981, 1982); and Epstein and Denny (1983)). 

One drawback is the apparent contradiction between the level of sophistication that 

individuals are presumed to use to formulate their economic plans versus the manner 

in which they formulate and update their expectations about future events. As 

pointed out by Epstein and Denny (1983, pp. 649-650), “Current prices are … ex-

pected to persist indefinitely. As the base period changes and new prices … are ob-

served, the [decision maker] revises its expectations and its previous plans. Thus 

only the t = 0 portion of the plan … is carried out in general.” Thus, an unfortunate 

implication of the myopic expectations hypothesis is that economic decision makers 

are infinitely forward looking when they design their optimal consumption plans, but 

are totally myopic when they formulate their expectations about the future economic 

environment. 

Nevertheless, there are some good reasons to analyze the neoclassical intertemporal 

consumption model with myopic expectations. The appearance of the discount rate r 

in the consumer’s budget constraint implies that any changes in relative prices must 

be real, rather than nominal. Absent general inflation in a competitive economy with 

stable production and consumption technologies, there is no a priori reason to an-

ticipate future relative price changes. Focusing on constant relative prices, therefore, 

separates the primary economic forces associated with the structure of consumer 

preferences from those associated with technological change or other adjustments in 

the general economy when it is out of long-run equilibrium. In addition, a solid un-

derstanding of the dual structure of the intertemporal consumer choice problem un-

der myopic expectations provides a foundation for analyzing more general frame-

works, including adaptive and rational expectations, intertemporal models of house-
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hold production, and naïve and rational habit formation in consumption. Therefore, 

in this subsection we develop and discuss the dynamic consumer choice model with 

myopic expectations at some length. 

Under myopic expectations, the model and solution approach of the previous section 

continues to apply, with the caveat that p(t) is replaced by p0 at all points in time, 

which alters some of our previous conclusions. With this change, the shadow price 

for the budget constraint now satisfies the defining condition 

(3.2.1) M e p u e p M r T p dtrt
x

r tT

0 0
1

0 0 0 00
≡ ′− − −z ( ) ( , , , , )ρ λ ρd i , 

while, since p0 is presumed to be constant over the entire planning horizon, (3.1.8) 

now has the form 

(3.2.2) 
∂
∂

∂λ
∂

x t
p

e u I p
p

r t
xx

*( ) ( )

′
= +

′
L
NM

O
QP

− −

0

1
0 0

0

0

ρ λ . 

Differentiating the intertemporal budget identity, e p x t dt MrtT − ′z ≡00 0*( ) , with respect 

to p0 implies that 

(3.2.3) e
x t
p

p dt e x t dtrt
T

rtT− −′X
ZY ≡ −z∂

∂
*( )

*( )
0

0
0

0
. 

Therefore, post-multiplying (3.2.2) by p0, integrating over t, combining the results 

with (3.2.3), and solving for ∂λ ∂0 0p  gives 

(3.2.4) 
∂λ
∂

0

0

1
0

0
2

0
1

0 0
p

e x u u dt

p e u dt p

rt
xx x

T

r t
xx

T
≡ −

+z
′ z

− −

− −

( * )
( )ρe j

. 

The analogue to (3.1.9) when expectations are myopic replaces p(t) with p0,  

(3.2.5) 
∂ ∗( )
∂ 0

x t
M

e u p

p e u d p

r t
xx

r
xx

T
≡

′ z
− −

− −

( )

( )

ρ

ρ τ τ

1
0

0
2 1

0 0e j
. 

Combining (3.2.4) with (3.2.3) gives the matrix of instantaneous uncompensated 

price derivatives as 

(3.2.6) 
∂
∂
x t
p

e u
u p p e u d

p e u d p

u p e x d

p e u d p
r t

xx
xx

r
xx

T

r
xx

T

xx
rT

r
xx

T

*( ) *( )
( )

( )

( ) ( )′
≡ −

′ z
′ z

L

N
MMM

O

Q
PPP
−

′

′ z
R
S|
T|

U
V|
W|

− −
− − −

− −

− −

− −
0

0
1

1
0 0

2 1
0

0
2 1

0 0

1
0 0

0
2 1

0 0

ρ
ρ τ

ρ τ

τ

ρ τ
λ

τ

τ

τ τ

τe j
z
e j

. 

Simple inspection or direct calculations show that the instantaneous uncompensated 

matrix of cross-price derivatives, the instantaneous “wealth-compensated” substitu-

tion matrix, 
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(3.2.7) 
∂
∂

∂
∂

x t
p

x t
M

x t*( ) *( ) *( )
′

+ ′ ≡
0 0

 

 e u
u p p e u d

p e u d p

u p x t e x d

p e u d p
r t

xx
xx

r
xx

T

r
xx

T

xx
rT

r
xx

T
( )

( )

( ) ( )

*( ) *( )
ρ

ρ τ

ρ τ

τ

ρ τ
λ

τ

τ

τ τ

τ
− −

− − −

− −

− −

− −
−

′ z
′ z

L

N
MMM

O

Q
PPP
+

′ − ′

′ z

R
S|
T|

U
V|
W|

0
1

1
0 0

2 1
0

0
2 1

0 0

1
0 0

0
2 1

0 0e j
ze j

e j
, 

and, using the identity x t h p m t*( ) ( , *( ))≡ 0 , the instantaneous “income-compensated” 

substitution matrix 

(3.2.8) 
∂
∂

∂
∂

x t
p

h p m t
m

x t*( ) ( , *( ))
*( )

′
+ ′ ≡

0

0  

 e u
u p p e u d

p e u d p

u p e x d

p e u d p

u p x t
p u p

r t
xx

xx
r

xx
T

r
xx

T

xx
rT

r
xx

T
xx

xx

( )
( )

( ) ( )

*( ) *( )ρ
ρ τ

ρ τ

τ

ρ τ
λ

τ

τ

τ τ

τ
− −

− − −

− −

− −

− −

−

−−
′ z

′ z
L

N
MMM

O

Q
PPP
−

′

′ z
R
S|
T|

U
V|
W|
+

′
′0

1
1

0 0
2 1

0

0
2 1

0 0

1
0 0

0
2 1

0 0

1
0

0
1

0e j
z
e j

, 

all are generally asymmetric. Thus, the primary mainstay of static consumer choice 

theory — the Slutsky symmetry and negativity condition — does not have any 

short-run (instantaneous) counterpart in intertemporal contexts. As we shall see in 

the next subsection, this result carries over to models of intertemporal consumer 

choice in which individuals formulate expectations for future values of relevant eco-

nomic factors using smooth functions of the current values of those variables. 

Prior to moving on to this more general formulation, however, first it is useful to 

develop a unifying framework to identify the economic structure and duality of the 

intertemporal consumer choice problem with myopic expectations. Many of the 

properties carry over to the more general situations considered later. 

We begin heuristically and constructively by multiplying both sides of equations 

(3.2.5) and (3.2.6) by e-rt and integrating over [0, T] to obtain 

(3.2.9) e x t
M

dt e u dt p p e u dt prt
T

r t
xx

T r t
xx

T− − − − −X
ZY ≡ z ′ z∂ ∗( )

∂ 00

2 1
0 0 0

2 1
0 0

( ) ( )ρ ρe j e j , 

(3.2.10) e x t
p

dt e u dt
e u dt p p e u dt

p e u dt p
rt

T
r t

xx
T

r t
xx

T r t
xx

T

r t
xx

T
− − −

− − − −

− −′
X
ZY ≡ z −

z ′ z
′ z

L

N
MMM

O

Q
PPP

∂
∂
*( ) ( )

( ) ( )

( )
00

0
2 1

0

2 1
0 0 0

2 1
0

0
2 1

0 0

λ ρ

ρ ρ

ρ

e j e j
e j

 

 
( ) ( )

( )

( 2 ) 1
0 00

( 2 ) 1
0 00

* ( )
T Tr t rt

xx

T r t
xx

e u dt p e x t dt

p e u dt p

⌠
⌡

⌠
⌡

ρ− − −

ρ− −

′∫
−

′
. 

Then multiplying (3.2.9) by [ ]*( )e x t dtrtT −z ′0  and adding the result to (3.2.10) gives 
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(3.2.11) e x t
p

dt e x t
M

dt e x t dtrt
T

rt
T

rtT− − −

′
X
ZY + XZY

F
HG

I
KJ ′FH IK ≡z∂

∂
∂ ∗( )
∂ 0

*( ) *( )
00 0 0

 

 
( ) ( )

( )

( 2 ) 1 ( 2 ) 1
0 00 0( 2 ) 1

0 0 ( 2 ) 1
0 00

TT r t r t
xx xxT r t

xx T r t
xx

e u dt p p e u dt
e u dt

p e u dt p

⌠⌠
⌡ ⌡

⌠
⌡

⌠
⌡

− − − −

− −
− −

 ′ 
 − 

′ 
  

ρ ρ

ρ
ρ

λ . 

The n×n matrix on the right-hand-side is symmetric, negative semidefinite, and has 

rank n-1. It turns out that this matrix of wealth-compensated substitution terms is 

precisely the intertemporal analogue to the static Slutsky symmetry condition, a fact 

which we will verify in the course of the developments below.7 

We define the maximal level of discounted utility flows, subject to the wealth con-

straint, by 

(3.2.12) V p M e u x dt e p xdt M
x t

tT rtT
( , ) sup ( ) :

( )
0 0 0 00 0≡ ′ =− −z zl q

{ }ρ , 

where the equality constraint is justified by the strict monotonicity of u(⋅). We call 

V(p0, M0) the dynamic indirect utility function.8 Under myopic expectations, the dy-

namic indirect utility function has properties that are intertemporal analogues to 

those of the static indirect utility function. That is, V(p0, M0) is: 

(DV.1) twice continuously differentiable in ( , )p M0 0 ; 

(DV.2) decreasing and quasiconvex in p0; 

(DV.3) strictly increasing and strongly concave in M0; and 

(DV.4) 0° homogeneous in ( , )p M0 0 ; and 

(DV.5) satisfies the Dynamic Envelope Theorem, 

                                         
7 A simple, heuristic argument for the validity of (3.2.11) as the dynamic Slutsky substitu-

tion matrix is the following. Let U xx
r r t

xx
T e u dt− − −≡ z1 2 1
0

( )  and note that this n×n matrix is nega-

tive definite and defines, in a sense, the “inverse Hessian” matrix that determines how 

changes in consumption choices due to changes in initial prices are allocated over the life 

cycle. Direct substitution into (3.2.11) gives 

 S U U U U≡ − ′ ′− − − − −λ 0
1

0
1

0
1 1

0 0
1

xx xx xx xxp p p p( ) , 

which has exactly the form of the static neoclassical Slutsky substitution matrix. 
8 The function V(⋅) also depends upon the discount rates, ρ and r, and the length of the 

planning horizon, T. Since these parameters are not the central focus of our discussion, they 

have been suppressed as arguments to reduce the notational burden. 
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 ∂ ∂V p M p p M e h p M t dtrtT
( , ) ( , ) ( , , ) «0 0 0 0 0 0 0 00

≡ − −zλ 0 , 

 ∂ ∂ 0V p M M p M( , ) ( , )0 0 0 0 0 0≡ >λ , 

and the Dynamic Roy's Identity, 

 −
F
HG

I
KJ ≡

−z∂ ∂
∂ ∂ 0

V p M p
V p M M

e h p M t dtrtT( , )
( , )

( , , )0 0 0

0 0
0 00

, 

where x t h p M t*( ) ( , , )≡ 0 0  is the vector of dynamic ordinary Marshallian demands at 

time t. 

Twice continuous differentiability of V(⋅) follows from strict monotonicity and twice 

continuous differentiability of u(⋅). Strict monotonicity, and strong concavity in M0 

follow from the adaptation, without change, of (3.1.12) and (3.1.10) to the present 

situation. Monotonicity in p0 also follows from the monotonicity of u(⋅) and the fact 

that the intertemporal budget set contracts as prices increase. Quasiconvexity is 

demonstrated in precisely the same manner as for a static problem. Homogeneity 

follows from the fact that the wealth constraint, ′ z =−p e x t dt MrtT
0 0 0( ) , is invariant to 

proportional changes in all prices and initial wealth. 

In a very general context, including both equality and inequality constraints and 

multiple switch points over the planning horizon, the dynamic envelope theorem is 

demonstrated by LaFrance and Barney (1991). Their argument is complex and in-

volved and will not be reproduced here. However, it is pedagogically useful to verify 

DV.5 by direct calculation to lend heuristic support for the complex dynamic enve-

lope theorem results that are presented below. This is accomplished by simply differ-

entiating 

 V p M e u h p M t dttT( , ) ( ( , , ))0 0 0 00≡ z −ρ  

with respect to p0 and M0, substituting the first-order conditions into the resulting 

expressions, grouping terms, and integrating over the planning horizon, to obtain 

(3.2.13) 
∂

∂
∂
∂

V p M
p

e h
p
u dtt
x

T( , )0 0

0 00

≡
′X

ZY
−ρ  

 ≡ −
′ + FH IK ′

′

R
S|

T|

U
V|

W|

F

H
GGG

I

K
JJJ

X

Z

YYY
− − −

− − − − −

− −

−e e u
u p p e u dt e hdt p u

p e u dt p
e p dtt r t

xx

xx
r t

xx
T rtT

xx

r t
xx

T
r t

T

ρ ρ

ρ

ρ

ρλ
λ

λ( )

( )

( )
( )

0
1

0
1

0 0
2 1

0 0 0
1

0
2 1

0 0
0 0

0

ze j u
ze j

 

 ( )2 ( 2 ) 1
0 00

T r t
xxe u dt p⌠

⌡
− −≡ ρλ  
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( ) ( ) ( ) ( )

( )

2 ( 2 ) 1 ( 2 ) 1 ( 2 ) 1
0 0 0 0 0 0 000 0 0

( 2 ) 1
0 00

t T tTr t r t rt r t
xx xx xx

T r t
xx

e u dt p p e u dt p e hdt p e u dt p

p e u dt p

⌠ ⌠ ⌠
⌡ ⌡ ⌡

⌠
⌡

− − − − − − −

− −

 ′ ′+ ∫  −
′

ρ ρ ρ

ρ

λ λ
 

 ≡ − z −λ 0 0 00 e h p M t dtrtT ( , , ) , 

and  

(3.2.14) 0 0

00 0

( , ) T
t

x
V p M h

e u dt
M M

⌠

⌡

− ′≡
∂ ∂

∂ ∂
ρ  

 ( )
( )

( ) 1
( ) 0

0 0 0( 2 ) 1
0 000

T
r t

t r t xx
T r

xx

e u p
e e p dt

p e u d p

⌠




 ⌠ ⌡⌡

− −
− −

− −

 
 
 ′≡ ≡
 ′  

ρ
ρ ρ

ρ τ
λ λ

τ
.  

Dual to the intertemporal utility maximization problem, we define the minimum dis-

counted present value of consumption expenditures subject to the constraint that 

the discounted cumulative flow of utility is no lower 

than a given value, U0,  

(3.2.15) E p U e p xdt e u x dt U
x t

rtT tT
( , ) inf : ( )

( )0 0 00 0 0≡ ′ ≥− −z zl q{ }ρ . 

We call this the dynamic expenditure function. The dynamic expenditure function is: 

(DE.1) twice continuously differentiable, strictly increasing, 1° homogeneous, and 

concave in p0; 

(DE.2) twice continuously differentiable, strictly increasing and strongly convex in 

U0; and  

(DE.3) satisfies the Dynamic Envelope Theorem, 

  
∂

∂
E p U
p

e g p U t dtrtT( , )
( , , )0 0

0
0 00

≡ −z  

 (the Dynamic Hotelling’s/Shephard's Lemma) and 

  
∂

∂
E p U
U

p U
( , )

( , )0 0

0
0 0 0 0≡ >µ , 

where x t g p U t*( ) ( , , )= 0 0  is the vector of wealth-compensated dynamic Hicksian de-

mands at time t and µ0 0 0( , )p U  is the shadow price for the intertemporal utility con-

straint. 

To lay the groundwork for the analysis of the more complicated and general models 

in subsequent sections, we fully develop these properties and the intertemporal dual-

ity between the dynamic indirect utility and expenditure functions. Let U U( )0 0= , 

dU t dt e u x t Tt( ) / ( ) [ , ]= − ∀ ∈−ρ 0 , and introduce the discounted utility flow constraint as 
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an inequality restriction, U T U e u x dttT( ) ( ) ( )= − z ≥−0 00
ρ .9 Then the Hamiltonian for the 

expenditure minimization problem is 

(3.2.16) H e p x e u xrt t= ′ −− −
0 µ ρ ( ) , 

and the first-order necessary and sufficient conditions for an interior optimal path 

are: 

(3.2.17) ∂ ∂ ∂ ∂H x e p e u xrt t= − =− −
0 0µ ρ ; 

(3.2.18) ∂ ∂H U = = −0 µ ; 

(3.2.19) ∂ ∂µH e u Ut= − =−ρ , U T U e udttT
( ) ≡ ≥−z0 0

0- ρ . 

It is easy to see that strict monotonicity of u(⋅) implies that U(T) = 0 since other-

wise the discounted present value of expenditures could be lowered without violating 

the inequality constraint on the present value of discounted utility flows. It also fol-

lows from the assumed properties of u(⋅) that the optimal path is unique. As in the 

case of dynamic utility maximization, condition (3.2.18) implies that the shadow 

price is constant throughout the planning horizon, µ(t) = µ0 ∀ t ∈ [0, T]. 

Let x t g p U t*( ) ( , , )≡ 0 0  denote the optimal dynamic Hicksian demands at time t and 

let µ 0 0 0 0( , )p U >  denote the optimal shadow price for the intertemporal utility con-

straint. We verify DE.1 - DE.6 by direct calculation. We begin by first differentiat-

ing (3.2.17) with respect to p0, and solving for ∂ ∂g p ′0 , 

(3.2.20) 
∂
∂

∂µ
∂

g
p

u e I u
pxx

r t
x′

= −
′

L
NM

O
QP

− − −

0
0

1 1 0

0

µ ρ( ) . 

We differentiate e u g p U t dt UtT −z ≡ρ ( ( , , ))0 00 0 with respect to p0 to get 

e g p u dtt
x

T − ′ ≡ρ ∂ ∂ 00 b gz 0 , transpose both sides of (3.2.20), post-multiply by e ut x
−ρ , inte-

grate over the planning horizon, and solve for ∂µ ∂0 0p , 

(3.2.21) 
∂µ
∂

0

0

1
0

1
0

0

2 1
0 0

0
2 1

0 0
p

e u u dt

e u u u dt

e u dt p

p e u dt p

rt
xx x

T

t
x xx x

T

r t
xx

T

r t
xx

T
≡
z

′z
≡

z
′ z

− −

− −

− −

− −ρ

ρ

ρ
µ

( )

( )

e j
e j

. 

                                         
9 This transformation converts the consumer’s intertemporal expenditure minimization prob-

lem from an isoperimetric calculus of variations problem into a standard optimal control 

problem. The latter form is convenient for generating comparative dynamics results and the 

properties of the optimal solution path. The former, to which we will return momentarily, is 

useful for analyzing dynamic duality. 
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Substituting the far right-hand-side of (3.2.21) into (3.2.20) gives the instantaneous 

wealth-compensated matrix of cross-price substitution effects as 

(3.2.22) 
∂
∂
g
p

e u
u p p e u d

p e u d p
r t

xx
xx

r
xx

T

r
xx

T′
≡ −

′

′

L

N
MMM

O

Q
PPP

− − −

− − −

− −0
0

1 1
1

0 0
2 1

0

0
2 1

0 0

( )
( )

( )
ρ

ρ τ

ρ τ
µ

τ

τ

ze j
ze j

. 

We now can verify the dynamic analogue to Hotelling’s/Shephard’s Lemma. By 

definition of the dynamic expenditure function, E p U e p g p U t dttT( , ) ( , , )0 0 0 0 00≡ ′z −ρ , we 

have 

(3.2.23) 
∂

∂
∂
∂

E p U
p

e g
p
p g dtrt

T
( , )0 0

0 0
0

0

≡
′

+
F
HG

I
KJ

X
ZY

−  

 ( )( )
0

00

T
rt r t

x
g

e e u g dt
p

⌠



⌡

− −ρ ′ ≡ µ +  

∂
∂

 

 ≡
′

+− −z zµ ρ
0

0
0 0
e g

p
u dt e gdtt
x

T rtT∂
∂

 

 ≡ −z e gdtrtT

0
» 0 . 

By the converse to Euler’s theorem, the dynamic expenditure function is linearly 

homogeneous in p0. Since the right-hand-side of (3.2.22) is continuous, E p U( , )0 0  is 

twice continuously differentiable in p0. Although concavity in p0 can be demon-

strated with the arguments used for the static neoclassical model, it is useful to ver-

ify it directly. Differentiating (3.2.23) with respect to p0, using (3.2.22) for the right-

hand-side integrand, we have 

(3.2.24) 
∂
∂ ∂

∂
∂

E p U
p p

e g
p
dtrtT( , )0 0

0 0 00′
≡

′
−z  

 ≡ −
′ z

′ z
L

N
MMM

O

Q
PPP

X

Z
YYY

− − −

− − −

− −
e u

u p p e u d

p e u d p
dtr t

xx

xx
r

xx
T

r
xx

T

T

( )

( )

( )

ρ

ρ τ

ρ τ
µ

τ

τ
2

0
1 1

1
0 0

2 1
0

0
2 1

0 0
0

e j
e j

 

 ≡ −
z ′ z

′ z
L

N
MMM

O

Q
PPP

− − −

− − − −

− −
µ ρ

ρ ρ

ρ0
1 2 1

0

2 1
0 0 0

2 1
0

0
2 1

0 0

e u dt
e u dt p p e u dt

p e u dt p
r t

xx
T

r t
xx

T r t
xx

T

r t
xx

T
( )

( ) ( )

( )
z e j e j

e j
. 

Since µ0 > 0 and U xx
r r t

xx
T e u dt− − −≡ z1 2 1
0

( )  is symmetric, negative definite, the Hessian ma-

trix for E p U( , )0 0  is negative semidefinite with rank n-1. This completes the verifica-

tion of DE.1 and the first half of DE.3. We return to (3.2.24) momentarily to verify 

that it is the symmetric, negative semidefinite, rank n-1 wealth-compensated Slutsky 
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matrix given in (3.2.11) above. 

The steps required to verify DE.2 are similar. Differentiating (3.2.17) with respect to 

U0 implies 

(3.2.25) 
∂
∂

∂µ
∂0

g
U

u u
Uxx x≡ − − −µ0

1 1 0

0

. 

Differentiating e u g p U t dt UtT −z ≡ρ ( ( , , ))0 00 0 with respect to U0 gives e u g U dtt
x

T − ′z ≡ρ ∂ ∂ 00 1. 

Therefore, premultiplying (3.2.25) by e ut x
− ′ρ , integrating over t, and using first-order 

condition (3.2.17) to replace ux, we obtain 

(3.2.26) 
∂µ
∂

0

0

0
1

0

0
3

0
2 1

0 0

0
U e u u u dt p e u dt pt

x xx x
T r t

xx
T

≡
−

′z
≡

−

′ z
>

− − − −

µ µ
ρ ρ( )e j

, 

where the inequality on the far right follows from strong concavity of u(⋅) and p0 ≠ 0. 

Substituting (3.2.26) into (3.2.25) gives  

(3.2.27) 
∂
∂ 0

g
U

u u
e u u u dt

e u p

p e u dt p
xx x
t
x xx x

T

r t
xx

r t
xx

T
≡

′z
≡

′ z
−

− −

− −

− −

1

1
0

0
1

0

0
2 1

0 0
ρ

ρ

ρ

µ( )

( )e j
. 

Differentiating the dynamic expenditure function with respect to U0 then gives 

(3.2.28) 
∂

∂
∂
∂

E p U
U

e p g
U
dt e p

e u p

p e u d p
dtrt

T
rt

r t
xx

r
xx

T

T
( , ) ( )

( )
0 0

0
0

00
0

0
1

0

0
2 1

0 00

0 0≡ ′X
ZY ≡ ′

′ z
X
Z
YY ≡ >− −

− −

− −

ρ

ρ τ

µ

τ
µ

e j
. 

Inspection of (3.2.28) and then (3.2.26) shows us that ∂ ∂ 0
22

0 0 0E p U U( , ) > , thus com-

pleting the validation of DE.2 and the second half of DE.3. 

The duality between the dynamic indirect utility function and the dynamic expendi-

ture function can be established most directly by viewing them as problems in the 

classical theory of the calculus of variations (e.g., Clegg (1968), pp. 117-121). Recall-

ing the strict monotonicity of u(⋅) and noting that ′p x0  is strictly decreasing in at 

least one xi if p0 ≠ 0, the utility maximization and expenditure minimization prob-

lems can be restated in the isoperimetric form 

 V p M e u x t dt e p x t dt M
x t

tT rtT( , ) sup ( ( )) : ( )
{ ( )}

0 0 0 0 00≡ z ′ =z− −ρ{ }, 
 E p U e p x t dt e u x t dt U

x t

rtT tT( , ) inf ( ) : ( ( ))
{ ( )}0 0 00 0 0≡ ′z z =− −ρ{ }. 

A well-known result in the theory of the calculus of variations is that, for isoperi-

metric control problems, the solutions to the two problems are equivalent through-

out the entire optimal path if M E p U0 0 0= ( , ) , or equivalently, if U V p M0 0 0= ( , ) . This 

equivalence is analogous to the duality in static models of consumer choice, 
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M E p V p M0 0 0 0≡ ( , ( , ))  and U V p E p U0 0 0 0≡ ( , ( , )) , except that now all definitions are in 

terms of the discounted present values of consumption expenditures and utility 

flows. Several conclusions follow directly from this fact, each generating the dynamic 

analogue to a corresponding duality property in the static theory: 

(3.2.29) λ µ0 0 0 0 0 0 0
1( , ( , )) ( , )p E p U p U≡ − ; 

(3.2.30) µ λ0 0 0 0 0 0 0
1( , ( , )) ( , )p V p M p M≡ − ; 

(3.2.31) g p U t h p E p U t( , , ) ( , ( , ), )0 0 0 0 0≡ ; 

(3.2.32) h p M t g p V p M t( , , ) ( , ( , ), )0 0 0 0 0≡ ; 

(3.2.33) 
∂

∂
E p U

p
e g p U t dtrtT( , )

( , , )0 0
0 00

≡ −u  

 ≡ ≡ −−e h p E p U t dt
V p E p U p
V p E p U M

rtT
( , ( , ), )

( , ( , ))
( , ( , ))0 0 00

0 0 0

0 0 0
u ∂ ∂

∂ ∂
; 

(3.2.34)  
∂

∂
∂

∂
∂

∂
g p U t

p
h p E p U t

p
h p E p U t

M
e h p E p U t dtrtT( , , ) ( , ( , ), ) ( , ( , ), )

( , ( , ), )0 0 0 0 0 0 0 0
0 0 00′

≡
′

+ ′−ze j ; 

(3.2.35) 
∂

∂ ∂
∂

∂

2
0 0 0 0

0

E p U
p p

e
g p U t

p
dtrt

T( , ) ( , , )
′

≡
′

X
ZY

−  

 ≡
′

X
ZY + XZY

′− − −e
h p E p U t

p
dt e

h p E p U t
M

dt e h p E p U t dtrt
T

rt
T

rtT∂
∂

∂
∂

( , ( , ), ) ( , ( , ), )
( , ( , ), )0 0 0

0

0 0 0

0
0 0 00ze j . 

Equation (3.2.34) defines the instantaneous Slutsky substitution matrix. The first 

matrix on the right-hand-side denotes the instantaneous price effects on the ordinary 

demands at each point in time and the second right-hand-side matrix denotes the 

wealth effects. However, it is (3.2.35) and not (3.2.34) that is symmetric and nega-

tive semidefinite. Even in this simplest of possible dynamic contexts, therefore, cau-

tion is advisable when interpreting hypothesis tests for “Slutsky symmetry and 

negativity” and other strictures of the static theory. Moreover, if consumers plan 

ahead when designing their goods purchases, the manner in which they form expec-

tations for the future economic environment also is a critical determinant of observ-

able behavior. This is the topic of the next subsection. 
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3.3 Other Forecasting Rules 

In the neoclassical model of competition, market prices are invariant to the purchas-

ing and consumption choices of the individual. However, this does not imply that 

consumers are incapable of learning about market price mechanisms or of forming 

expectations about their future economic environment. Perfect foresight and myopic 

expectations are but two possibilities among an uncountable number of alternative 

forecasting rules that may be reasonable hypotheses in a model of consumption be-

havior. In this subsection, therefore, we analyze models in which consuming house-

holds employ rules for forecasting future economic conditions when they formulate 

their dynamic consumption plans. Important members of the class of rules we con-

sider are myopic, adaptive, rational, and quasirational expectations. Notwithstand-

ing the previous subsection’s detailed analysis of myopic expectations, rather than 

treat each of these special cases separately, we attempt to embed all of these hy-

potheses as special cases within a general, unifying framework. 

While it is clear that future incomes, rates of return on assets, and market rates of 

interest at which the individual can borrow or lend are important economic variables 

affecting future opportunity sets, the basic questions, arguments, and conclusions 

arising from expectations processes are most clear and simplest to present when we 

focus on forecasting market prices. Therefore, let the system of ordinary differential 

equations, 

(3.3.1) ( ) ( ( ), ), ( )p t p t t p p= =ψ 0 0 , 

be the rule that a consumer is presumed to use to form expectations for future 

prices, where the “⋅” over a variable (or vector of variables) denotes the ordinary 

time derivative. We assume throughout the discussion that ψ : + +× →n n  is twice 

continuously differentiable and ∂ψ ∂ ′ ≠p 0  throughout its domain. This implies the 

existence of a unique, twice continuously differentiable solution to the differential 

equation system which defines all future price forecasts as a function of the initial 

price vector, p0, and current time, t, 

(3.3.2) p t p t p p d
t

( ) ( , ) ( ( , ), )≡ ≡ + zϕ ψ ϕ τ τ τ0 0 00
. 

In addition to the above properties for ψ(⋅), we assume that the solution to the fore-



Jeffrey T. LaFrance 1060 

casting rule generates strictly positive price forecasts, ϕ: ++ + ++× →n n . 

It is a well-accepted stylized empirical fact that observed market prices tend to have 

common trends. In the present context, the most general statement of such a prop-

erty is that the forecasting solution, ϕ(⋅, t), is linearly homogeneous in p0. It turns 

out that this property is necessary and sufficient for the dynamic expenditure func-

tion to be linearly homogeneous in current prices in this model. As the following 

lemma shows, this property can be stated equivalently in terms of the condition that 

ψ(⋅, t) is homogeneous of degree one in p(t) ∀ t ∈ [0, T]. 

Lemma 1. ϕ( , )⋅ t  is homogeneous of degree one in p0 ∀ ∈ ×++ +( , )p t n
0 , if 

and only if ψ( , )⋅ t  is homogeneous of degree one in p∀ ∈ ×++ +( , )p t n . 

PROOF:  Suppose that ϕ( , ) ( , ) ( , )p t p t
p

p p t n≡
′

∀ ∈ ×++ +
∂ϕ

∂
. Then  

 
∂ϕ
∂

∂ψ
∂

∂ϕ
∂

( , ) ( ( , ), ) ( , )p t
p

I
p
p

p
p

d
t

0

0

0 0

00′
≡ +

′
×

′
X
ZY

ϕ τ τ τ
τ  

 ⇒ ≡
′

≡ +
′

≡ +X
ZY zϕ

ϕ τ τ
ϕ τ τ ψ ϕ τ τ τ( , )

( , ) ( ( , ), )
( , ) ( ( , ), )p t

p t
p

p p
p
p

p d p p d
tt

0
0

0
0 0

0
0 0 000

∂ϕ
∂

∂ψ
∂

, 

where the far right-hand-side is the definition of the far left-hand-side, while the 

middle identity follows from the linear homogeneity of ϕ(⋅, t) in p0. Subtracting p0 

from the last two expressions implies 

 
∂ψ

∂
( ( ), ) ( ) ( ( ), )p
p

p d p dt
t τ τ

τ τ ψ τ τ τ
′

≡X
ZY z0

0
. 

By the fundamental theorem of calculus, differentiating both sides with respect to t 

gives 

 
∂ψ

∂
( ( ), ) ( ) ( ( ), )p t t
p

p t p t t
′

≡ ψ , 

hence ψ(⋅, t) is homogeneous of degree one in p by the converse to Euler’s theorem. 

This proves necessity. 

We verify sufficiency by employing the method of successive approximations to solve 

the ordinary differential equation system (3.3.1). Each iteration begins with an ap-

proximate solution that is linearly homogeneous. We then show that this property is 

inherited by the subsequent iteration’s approximate solution. The proof is concluded 

by induction, and an appeal to the contraction mapping theorem to verify that the 



Duality for the Household 1061 

sequence of iterations converges to the unique solution to the ordinary differential 

equation system. 

Let ϕ( ) ( , )0
0 0p t p≡ , which is trivially one degree homogeneous in p0, and define 

 ϕ ψ τ τ ψ ϕ τ τ τ(1) ( )( , ) ( , ) ( ( , ), )p t p p d p p d
t t

0 0 00 0
0

00
≡ + ≡ +z z , 

so that 

 
∂ϕ

∂
∂ψ

∂

(1)
(1)( , ) ( , )

( , ) ( , )
p t
p

p p
p
p

p d p p d p t
t t0

0
0 0

0

0
00 0 00 0

′
≡ +

′
≡ + ≡z zτ

τ ψ τ τ ϕ , 

which therefore also is one degree homogeneous in p0. Proceeding by induction, if for 

any i ≥ 2, we have 

 
∂ϕ

∂

( )
( )( , )

( , )
i

ip t
p

p p t
−

−′
≡

1
0

0
0

1
0ϕ  

and we define 

 ϕ ψ ϕ τ τ τ( ) ( )( , ) ( ( , ), )i it
p t p p d0 0

1
00

≡ + −z , 

then 

 
∂ϕ

∂
∂ψ

∂
∂ϕ

∂

( ) ( ) ( )( , ) ( ( , ), ) ( , )i i itp t
p

p p
p
p

p
p

p d0

0
0 0

1
0

1
0

00

′
≡ +

′
⋅

′− −z ϕ τ τ τ
τ  

 ≡ +
′
⋅ ≡ + ≡

−
− −z zp

p
p

p d p p d p t
i

it it i
0

1
0 1

00 0
1

00 0
∂ψ

∂
( ( , ), )

( , ) ( ( , ), ) ( , )
( )

( ) ( ) ( )ϕ τ τ
ϕ τ τ ψ ϕ τ τ τ ϕ , 

and ( )
0( , )i p tϕ  is one degree homogeneous in p0 ∀ i ≥ 1. It follows that the unique 

solution to the ordinary differential equations, 

 ϕ ϕ( , ) lim ( , )( )p t p t
i

i
0 0≡

→∞
, 

also must be linearly homogeneous in p0.  

For the remainder of the chapter, therefore, we assume that the forecasting rule, 

ϕ( , )p t0 , is twice continuously differentiable in ( , )p t0 , and increasing, positively line-

arly homogeneous, and concave in p0. As we shall see in the course of the discussion 

that follows, the last condition is an essential ingredient for concavity of the dy-

namic expenditure function. 

When relative prices change over time and consumers form expectations for future 

price levels according to some rule that is consistent with (3.3.2), the defining equa-

tion for the wealth constraint’s shadow price takes the form 

(3.3.3) e u e p M p t p t dt Mrt
x

rtT − − − ′ ≡z 1
0 0 0 0 00 0λ ϕ ϕ( , ) ( , ) ( , )e j . 
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Consequently, whenever consumers form price expectations in devising their con-

sumption plans, market prices can not be exogenous in the empirical model.10 This 

can be seen most clearly in the case of rational expectations, where ϕ( , )p t0  equals 

the conditional mean of the price vector at time t given information available at 

time 0, so that the parameters of the marginal distribution for prices enter the con-

ditional distribution for quantities given prices. The implication is that if consumers 

form expectations about their future economic environment as they develop con-

sumption plans, then the expectation process must be modeled jointly with demand 

behavior to obtain consistent and efficient empirical results. 

Following the same logic as in the previous subsections, we obtain the instantaneous 

price and wealth effects on demands to be 

(3.3.4) 
∂

∂
∂λ

∂
h p M t

M
e u p t

p M
M

r t
xx

( , , )
( , )

( , )( )0 0

0

1
0

0 0 0

0
≡ − −ρ ϕ , 

(3.3.5) 
∂

∂
∂ϕ
∂

∂λ
∂

h p M t
p

e u p M
p t
p

p t
p M
p

r t
xx

( , , )
( , )

( , )
( , )

( , )( )0 0

0

1
0 0

0

0
0

0 0 0

0′
≡

′
+

′
L
NM

O
QP

− −ρ λ ϕ , 

while the impacts of a change in initial prices and wealth on the marginal utility of 

wealth are 

(3.3.6) 
∂λ

∂

∂ ∂ ∂ ∂
0 0 0

0

2
0

1
0 00

2 1
0

( , ) ( ) ( )( )

( )

p M
p

e p u dt e p hdt

e u dt

r t
xx

T rtT

r t
xx

T≡ −
′ + ′

′

− − −

− −

ρ

ρ

ϕ ϕ ϕ

ϕ ϕ

z ze j
z

 

(3.3.7) 
∂λ

∂
0 0 0

0
2 1

0

1 0
( , )

( )

p M
M e u dtr t

xx
T≡

′z
<

− −ρ ϕ ϕ
. 

It follows from the last two equations that λ0 is homogeneous of degree minus one in 

(p0, M0) if and only if ϕ is homogeneous of degree one in p0. This implies that linear 

homogeneity of the price forecasting rule in current prices is necessary and sufficient 

for zero degree homogeneity of the ordinary demand functions in current prices and 

wealth. In turn, this latter property is necessary and sufficient for linear homogene-

ity of the dynamic expenditure function in current prices, p0. 

In the price forecasting model, the intertemporal Slutsky matrix has the form 

                                         
10 Hendry (1995), especially chapter 5, contains a deep and exhaustive treatment of exogene-

ity in time series econometric models. 
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(3.3.8) S ≡ ′
′

X
ZY +

′X
ZY
F
HG

I
KJ ×

′X
ZY
F
HG

I
KJ
′

− − −e
p

h
p
dt e

p
h
M

dt e
p
hdtrt

T
rt

T
rt

T∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

ϕ ϕ ϕ

0 00 0 00 00
 

 ≡
′

′
X
ZY −

′ ′ ′

′

L

N

MMMM

O

Q

PPPP
− −

− − − −

− −
λ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ
ρ

ρ ρ

ρ0
2

0

1

00

2
0

1
0

2
0

1
0

2 1
0

e
p
u

p
dt

e p u dt e p u dt

e u dt
r t

xx

T r t
xx

T r t
xx

T

r t
xx

T
( )

( ) ( )

( )

( ) ( )∂
∂

∂ϕ
∂

∂ ∂ ∂ ∂ze j ze j
z

, 

a symmetric, negative semidefinite matrix with rank no greater than n-1.11 Notwith-

standing the effects of the  additional terms ∂ ∂′ϕ p0 , the relationship between the 

intertemporal Marshallian and wealth-compensated (Hicksian) demands remains the 

same as in the previous subsection. However, the dynamic Slutsky matrix no longer 

is the Hessian matrix for the dynamic expenditure function. In particular, the dy-

namic envelope theorem now implies  

(3.3.9) 
∂

∂
∂ϕ

∂
E p U
p

e
p t
p

g p U t dtrt
T( , ) ( , )

( , , )0 0

0

0

0
0 0

0
≡

′X
ZY

− , 

where g p U t( , , )0 0  is the time t vector of Hicksian demands which solve the dynamic 

expenditure minimization problem 

 E p U e p t x t dt e u x t dt U
x t

rtT tT
( , ) inf ( , ) ( ) : ( ( ))

{ ( )}0 0 00 0 0≡ ′ =RST
UVW

− −ϕ ρu u . 

Differentiating (3.3.9) with respect to p0 therefore implies  

(3.3.10)   

∂
∂ ∂

∂ϕ
∂

∂
∂

∂
∂ ∂

2 2E p U
p p

e
p t
p

g p U t
p

dt e g p U t
p t

p p
dtrt

T
rt

i
i

T

i

n( , ) ( , ) ( , , )
( , , )

( , )0 0

0 0

0

0

0 0

00
0 0

0

0 001′
≡

′
′

X
ZY +

′
X
ZY

− −

=
∑ ϕ

 

 ≡ +
′

X
ZY

−

=
∑S e g p U t

p t
p p

dtrt
i

i
T

i

n
( , , )

( , )
0 0

0

0 001

∂
∂ ∂

2ϕ
, 

where λ µ0 0 0 0 0 0 01( , ( , )) ( , )p E p U p U≡  has been used on the far right-hand-side. It 

follows that, in general, the dynamic expenditure function will be concave in p0 only 

if all of the components of the price expectation rule are jointly concave in the initial 

price vector.  

Introducing a general class of forecasting rules results in only minor changes to the 

duality between the dynamic indirect utility and expenditure functions. Writing the 

                                         
11 In fact, if the rank of ∂ϕ ∂ ′p  is constant ∀ t ∈ [0, T], then 

 rank rank( ) min , ( )S = − ′n p1 ∂ϕ ∂l q . 
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utility maximization and expenditure minimization problems in their isoperimetric 

forms for the present case, 

(3.3.11) V p M e u x t dt e p t x t dt M
x t

tT rtT( , ) sup ( ( )) : ( , ) ( )
{ ( )}

0 0 0 0 00≡ z ′ =− −ρ ϕz{ } , 

(3.3.12) E p U e p t x t dt e u x t dt U
x t

rtT tT( , ) inf ( , ) ( ) : ( ( ))
{ ( )}0 0 00 0 0≡ ′ z =− −ϕ ρz{ } , 

it follows that M E p V p M0 0 0 0≡ ( , ( , ))  and U V p E p U0 0 0 0≡ ( , ( , )) . Consequently, (3.2.39) 

— (3.2.32) remain unchanged, (3.2.35) becomes (3.3.10), and (3.2.33) and (3.2.34), 

respectively, become: 

(3.3.13) 
∂

∂
∂ϕ

∂
E p U
p

e
p t
p

g p U t dtrt
T( , ) ( , )

( , , )0 0

0

0

0
0 0

0
≡

′X
ZY

−  

 ≡
′X

ZY ≡ −−e
p t
p

h p E p U t dt
V p E p U p
V p E p U M

rt
T ∂ϕ

∂
∂ ∂
∂ ∂

( , )
( , ( , ), )

( , ( , ))
( , ( , ))

0

0
0 0 0

0

0 0 0 0

0 0 0 0
; and 

(3.3.14) 
∂

∂
g p U t

p
( , , )0 0

0′
 

 ≡
′

+
′X

ZY
F
HG

I
KJ
′

−∂
∂

∂
∂

∂ϕ
∂

h p E p U t
p

h p E p U t
M

e
p
p

h p E p U dr
T( , ( , ), ) ( , ( , ), ) ( , )

( , ( , ), )0 0 0

0

0 0 0

0

0

0
0 0 0

0

τ τ
τ τ . 

Similarly, the dynamic envelope theorem for the indirect utility function previously 

given in (3.2.13) above now takes the form 

(3.3.15) 
∂

∂
∂ϕ

∂
V p M

p
e

p t
p

h p M t dtrt
T( , ) ( , )

( , , )0 0

0
0

0

0
0 0

0
≡ −

′X
ZY

−λ , 

while (3.2.14) continues to be ∂ ∂V p M M p M( , ) ( , )0 0 0 0 0 0≡ λ . Note the effect of initial 

prices on future price expectations, which plays a significant and ubiquitous role in 

each of the above results, determining when the dynamic expenditure function is 1o 

homogeneous and concave in prices (equivalently, when the indirect utility function 

is 0o homogeneous in prices and wealth and quasiconvex in prices), as well as the 

functional expressions for the dynamic envelope theorem and the static (instantane-

ous) and dynamic Slutsky equations. 

4. Dynamic Household Production Theory 

This section merges household production theory with the theory of consumer choice 

over time. In this context, it is natural to incorporate durable goods into the house-

hold’s production process. The basic model structure and variable definitions are 
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analogous to previous sections, with x(t) an n-vector flow of consumable market 

goods used at time t, z(t) an m-vector flow of nonmarket commodities produced by 

the household and which generate utility directly, and k(t) an -vector stock of 

household durables, some of which may be interpreted as consumption habits. We 

continue to take the household’s objective to be to maximize the present value of 

discounted lifetime utility flows, but the flow of produced nonmarket commodities is 

now presumed to generate the flow of consumer satisfaction, 

(4.1) U e u z t dttT
= −z ρ ( ( ))

0
. 

The efficient boundary of the household production possibility set for each point in 

time is defined by the joint consumables/durables/commodities transformation func-

tion 

(4.2) G x t k t z t t( ( ), ( ), ( ), , )β ≤ 0 , 

where β is an s-vector of quality characteristics of both the consumables and dur-

ables and the index t tacitly implies that the feasible household production possibili-

ties set may vary over time.12 The rates of change in the household’s holdings of du-

rable stocks are defined by the differential equations, 

(4.3) ( ) ( ( ), ( ), , ) , ( ) ,k t f x t k t t k k= =γ 0 0 given , 

where γ is a vector of durable goods' characteristics that affect the rates of accumu-

lation and/or decay. The household’s life cycle budget constraint is defined by 

(4.4) M e p t x t dtrtT

0 0
= ′−z ( ) ( ) . 

We begin with a straightforward extension of theorem 2 to show that the derived 

instantaneous utility function defined over consumables, durables, qualities, and 

time, 

(4.5) u x k t u z G x k z t
z

*( , , , ) sup ( ) : ( , , , , )β β≡ ≤
≥0

0l q  

                                         
12 One possibility is that the characteristics of market goods vary over time with consumer 

expectations for these changes modeled similarly as for price expectations in section 3.3 

above. This would imply that β in equation (4.2) tacitly represents goods characteristics at 

the initial date in the planning horizon, while the structure of f (⋅) reflects the consuming 

household’s expectations for both future household production technology and goods quali-

ties. 



Jeffrey T. LaFrance 1066 

is jointly strongly concave in (x, k) and increasing (decreasing) in xi or kj if and only 

if f (⋅) is increasing (decreasing) in the corresponding xi or kj. This in turn implies 

that the instantaneous myopic indirect utility function, 

(4.6) υ β β( , , , , ) sup *( , , , ):p m k t u x k t p x m
x

≡ ′ ≤
≥0
l q , 

is neoclassical in (p, m), i.e., υ(⋅, k, β, t) is continuous  and zero degree homogeneous 

in (p, m), increasing in m, and decreasing and quasiconvex in p. The corresponding 

myopic ordinary demands, x h p m k t=
~( , , , , )β , therefore also possess all of the neoclassi-

cal properties, while reflecting the structure commonly known as naïve habit forma-

tion. 

Continuity of f (⋅) and ~( )h ⋅  implies that there is a unique solution for the time path 

of household durables holdings defined by 

(4.7) ( , , ) ~( ( ), ( ), ( , , ), , ), ( , , ), ,k k t k f h p m k k k k d
t

0 0 0 00
β τ τ β τ β τ β τ β τ τ≡ + z e j . 

Note that ( , , )k k t0 β  depends upon all past prices and consumption expenditures. 

This implies the following for consumption models under naïve habit formation: 

Current stocks of durables are not weakly exogenous. 

Preferences are intertemporally inconsistent, i.e., current preferences depend on the 

entire history of past consumption choices.  

Consumers understand the effects of changes in household durables on the solution 

to their instantaneous utility maximization problem, but ignore this when planning 

for future consumption. 

If consumers are assumed to be naïve regarding the influence of current consumption 

on future preferences and consumption possibilities, only myopic price expectations 

avoids a logical contradiction regarding household planning and foresight. 

This essentially summarizes the current state of the art in empirical demand analy-

sis. With a few notable exceptions, nearly all empirical demand analyses incorporate 

naïve habit formation and myopic price expectations. There are many reasons for 

this. Perhaps foremost is the fact that household holdings of durable stocks, includ-

ing real capital items (as opposed to the somewhat ethereal concept of “consumption 

habits”), often are not observable, particularly with aggregate time series data. As a 

result, lagged quantities demanded of the consumable (i.e., nondurable) goods typi-
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cally are used to proxy these and other unobservable trends in the data. Even with 

the enormous simplification that results when lagged quantities are used to proxy 

habits and other missing consumption trends, however, incorporating rational habit 

persistence in demand is difficult and complicated (Browning). Rational habits also 

suggest rational expectations, or at least expectations formation processes other than 

myopic, for future economic conditions. This complicates the required econometric 

analysis even further. 

In this context, it is informative to analyze the economic structure of a dynamic 

model of household production that incorporates future expectations and a rational 

dynamic accounting of the effects of changes in the level of household stocks, 

whether they are interpreted as consumption habits or durable goods, on future (de-

rived) preferences and feasible choice sets. With regard to future expectations, we 

will maintain our focus on prices and smooth expectation rules, although the analy-

sis could be extended readily to include other economic variables as deemed appro-

priate. Our focus continues to be establishing the duality theory of the dynamic 

household production model. 

When the household production technology is time dependent, e.g., as a result of 

technological change, the derived instantaneous utility function over consumable 

market goods and household stocks is a function of time, t. Hence, to reduce the no-

tational burden, define ~( , , , ) *( , , , )u x k t e u x k ttβ βρ≡ − . The consumer’s decision problem 

now is to solve 

(4.8) {0 0 0
0

( , , , , ) sup ( , , , ) :
T

V p M k u x k t dt≡ ∫β γ β  

 }0 0
0

, ( , , , ), (0) , ( )
T rtM e xdt k f x k t k k k T− ′= = = ≥∫ ϕ γ 0 . 

Let ω be the -vector of co-state variables (i.e., shadow prices) for the equations of 

motion for household durables and let λ be the co-state variable for the equation of 

motion for the present value of wealth. Then the Hamiltonian can be written as 

(4.9) H u x k t f x k t e xrt= + ′ − ′−~( , , , ) ( , , , )β ω γ λ ϕ . 

To simplify the discussion, assume that the Hamiltonian is jointly concave in (x, k), 

that for each t T∈[ , )0 , ~u g+ ′ω  is strictly increasing in x throughout an open n+ +1-

dimensional open tube in the neighborhood of the optimal path, and that the opti-
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mal path satisfies ( *( ), *( )) » ( ) [ , )x t k t t T0,0 ∀ ∈ 0 . Then the necessary and sufficient 

first-order conditions plus the transversality conditions for the optimal path are: 

(4.10) 
∂
∂

∂
∂

∂
∂

H
x

u
x

f
x

e prt= +
′

− =−
~

ω λ 0 ; 

(4.11) 
∂
∂

∂
∂

∂
∂

H
k

u
k

f
k

= +
′

= −
~

ω ω ; 

(4.12) 
∂
∂
H
M

= = −0 λ ; 

(4.13) 
∂
∂ω
H f k k k k T= = = ≥, ( ) , ( )0 0 0 ; 

(4.14) 
∂
∂λ
H e x M M M M Trt= − ′ = = =− ϕ , ( ) , ( )0 00 ; and 

 (4.15) ω j jT k T j( ) ( ) ,...,= ∀ =0 1 . 

At time t, the optimal Marshallian demands, stocks of household durable goods, and 

shadow prices are  

(4.16) x t h p M k t*( ) ( , , , , , )≡ 0 0 0 β γ , 

(4.17) k t p M k t*( ) ( , , , , , )≡ κ β γ0 0 0 , 

(4.18) ω ω β γ*( ) ( , , , , , )t p M k t≡ 0 0 0 , and 

(4.19) λ λ β γ*( ) ( , , , , )t p M k≡ 0 0 0 0 , 

respectively. Differentiating the intertemporal budget identity, e hdt MrtT − ′z ≡ϕ0 0 , with 

respect to p0 and M0 generates the intertemporal Cournot aggregation and the in-

tertemporal Engel aggregation, respectively, 

(4.20) e
p
h h

p
dtrt

T
− ′

+
′L

NM
O
QP

X
ZY

≡
∂
∂

∂
∂

ϕ
ϕ

0 00

0 , and 

(4.21) e h
M

dtrt
T

− ′X
ZY ≡ϕ

∂
∂ 00

1 . 

Define H u fxx xx i xx
i

i≡ + ∑ =
~ ω1 , H u fxk xk i xk

i
i≡ + ∑ =

~ ω1 , and H u fkk kk i kk
i

i≡ + ∑ =
~ ω1 . Then, 

following the same steps as in the previous section, we obtain  

(4.22) 
∂
∂

∂ϕ
∂

∂λ
∂

∂κ
∂

∂
∂

∂ω
∂

h
p

H e
p p

H
p

f
x pxx

rt
xk′

=
′
+

′
F
HG

I
KJ − ′

−
′

′

L
NMM

O
QPP

− −

0

1
0

0

0

0 0 0
λ ϕ , 

(4.23) 
∂λ
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

0

0

0
0

0 0 0

1

0
2 1

0
p

e
p
h e

p p
H

p
f
x
H dt

e H dt

rt rt
kx xx

T

rt
xx

T=

−
′

+
′
−

′
−

′
′

L
NM

O
QP

RS|T|
UV|W|

X
ZY

′

− − −

− −

ϕ
λ

ϕ κ ω
ϕ

ϕ ϕu
, 
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(4.24) 
∂
∂

∂λ
∂

∂κ
∂

∂
∂

∂ω
∂

0h
M

H e
M

H
M

f
x Mxx

rt
xk

0

1

0 0 0
= − −

′L
NM

O
QP

− − ϕ , 

(4.25) 
∂λ
∂

∂κ
∂

∂
∂

∂ω
∂00

0

1

00

2 1
0

1

M

e H H
M

f
x M

dt

e H dt

rt
xx xk

T

rt
xx

T=
+ ′ +

′F
HG

I
KJ

′

− −

− −

z ϕ

ϕ ϕz
, and 

(4.26) e
p

h
p
dt e

p
h
M

dt e
p
hdtrt

T
rt

T
rt

T
− − −′

′
X
ZY +

′X
ZY
F
HG

I
KJ

′X
ZY
F
HG

I
KJ
′
=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

ϕ ϕ ϕ

0 00 0 00 00
 

 λ
ϕ

ϕ
ϕ

ϕ
ϕ

ϕ ϕ
0

2

0

1

00

2

0

1

0

2

0

1

0

2 1
0

e
p
H

p
dt

e
p
H dt e

p
H dt

e H dt
rt

xx

T
rt

xx

T
rt

xx

T

rt
xx

T
− −

− − − −

− −

′
′

X
ZY −

′X
ZY
F
HG

I
KJ

′X
ZY
F
HG

I
KJ
′

′

L

N

MMMMMM

O

Q

PPPPPP

∂
∂

∂ϕ
∂

∂
∂

∂
∂

z
 

 +

′X
ZY
F
HG

I
KJ

′
′

′
+

′
′

F
HG

I
KJ

X
Z
YY
R
S|
T|

− −

− −
− −

e
p
H dt

e H dt
e H H

p
f
x p

dt

rt
xx

T

rt
xx

T
rt

xx xk

T
2

0

1

0

2 1
0

1

0 00

∂
∂ ∂κ

∂
∂
∂

∂ω
∂

ϕ
ϕ

ϕ ϕ
ϕ

z
 

 + ′ +
′F

HG
I
KJ

X
ZY
L
N
MM

O
Q
PP

′X
ZY
F
HG

I
KJ
′ U
V|
W|

− − −e H H
M

f
x M

dt e
p
hdtrt

xx xk

T
rt

T

ϕ
ϕ1

0 00 00

∂κ
∂

∂
∂

∂ω
∂

∂
∂

 

 −
′

+
′F

HG
I
KJ

X
ZY
L
N
MM

O
Q
PP

′X
ZY
F
HG

I
KJ
′

− − −e
p
H H

M
f
x M

dt e
p
hdtrt

xx xk

T
rt

T∂
∂

∂κ
∂

∂
∂

∂ω
∂

∂
∂

ϕ ϕ

0

1

0 00 00
. 

Note, in particular, the added complexity of the intertemporal wealth-compensated 

price effects represented by the additional terms in the last three lines of (4.26). 

Even symmetry, much less negativity or homogeneity, of all but the first matrix on 

the right-hand-side is very difficult to prove using the direct methods of the previous 

sections. Therefore, another approach to the intertemporal duality of the dynamic 

household production problem given in equation (4.8) is needed. 

Fortunately, such an approach is available, and this alternative way of looking at 

problems of this type has several advantages. The approach is simple and both heu-

ristically and pedagogically appealing. It establishes a connection between the dual-

ity of static models and both discrete and continuous dynamic models, including the 

envelope theorem, adding up, homogeneity, symmetry and negativity, and the rela-

tionships between utility maximization and expenditure minimization. Finally, and 
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at least as important as the simple and clear derivations, the arguments are valid for 

a very large class of problems — essentially all of optimal control theory.13 

Define the “Lagrangean” function for (4.8) by 

(4.27) 1 0 0 0 0
≡ + − ′FH IK + ′ −z z z−~ ( )udt M e xdt f k dt

T rtT T
λ ϕ ω  

 ≡ − ′ + ′ + ′ + + ′ − ′−z ~ ( ) ( ) ( )u e x f k dt M k T k TrtT
λ ϕ ω ω λ ω ωe j0 0 00 , 

where the second line follows from integrating the term − ′ω k  by parts. Finding the 

pointwise maximum with respect to x of either the first or second lines of (4.27) re-

produces first-order condition (4.10). Similarly, minimizing either expression for 1 

with respect to λ reproduces (4.14) and also motivates the constant marginal utility 

of money condition given in (4.12). On the other hand, pointwise minimization of 

the first line of (4.27) with respect to ω gives (4.13), while pointwise maximization of 

the second line with respect to k generates (4.11). Also note that when the first-

order conditions are satisfied ∀ t ∈ [0, T], the integrals of the constraints multiplied 

by their associated shadow prices vanish. This, in turn, implies that 

1 0 0 0 0 0 0*( , , , , ) ( , , , , )p M k V p M kβ γ β γ≡ . From the second line of (4.27), this simple obser-

vation immediately generates the pair of dynamic envelope theorem results: 

(4.28) 
∂
∂
V
M0

0 0≡ >λ ; and 

(4.29) 
∂
∂
V
k

p M k
0

0 0 0 0≡ ω β γ( , , , , , ) . 

Several other dynamic envelope theorem results, as well as symmetry, curvature, 

and homogeneity properties also can be derived from the Lagrangean in (4.27). We 

do so in detail here for ∂ ∂V p0  to illustrate the basic logic. We follow this with a 

statement of the properties of the dynamic indirect utility function for this problem. 

                                         
13 In other words, once the necessary and sufficient conditions for an optimal solution path 

have been identified, the arguments of this section remain valid for: (a) absolutely bounded 

Lebesgue measurable controls; (b) nondifferental inequality and equality constraints; and (c) 

a countable number of switch points along the optimal path. The interested reader is re-

ferred to LaFrance and Barney (1991) for a discussion of one set of sufficient conditions and 

detailed derivations for the special case in which (c) is tightened to a finite number of switch 

points. 



Duality for the Household 1071 

We then proceed with a brief development of the properties of the dynamic expendi-

ture function. We conclude this section with a statement of the intertemporal dual-

ity for this problem. 

We first proceed by substituting (4.16) — (4.19) into (4.27) to generate 

1 0 0 0* ( , , , , )p M k β γL . Then we differentiate the resulting expression term-by-term with 

respect to p0, which gives 

(4.30) 1

0 00

* T
rth u f

e dt
p p x x

⌠


⌡

≡

− ′ ′ ≡ − +    
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

λ ϕ ω

0
L

 

 

0

0
0

00 00

T
T rtu f

dt M e hdt
p k k p

⌠


⌡

≡ ≡

− ′ ′   ′+ + + + −       ∫
∂∂ ∂ ∂

∂ ∂ ∂ ∂
λκ

ω ω ϕ

0

 

 0 0
0 0 0 00 0 0

(, 0)
TT T

rte hdt fdt dt k
p p t p p

⌠⌠ ⌠
     ⌡ ⌡ ⌡

− ′′ ′ ′ ⋅
− + + +

2 ∂∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

ωϕ ω ω
λ κ  

 
0 0

(, ) (, )
(, ) (, )

T T
T T

p p

≡

′ ′⋅ ⋅
− ⋅ − ⋅
∂ ∂
∂ ∂
ω κ

κ ω

0

, 

where the first three terms vanish by the first-order conditions (4.10) — (4.14) and 

the final term vanishes by the transversality conditions (4.15). Given the properties 

hypothesized for ~( )u ⋅ , f ( )⋅ , and ϕ( )⋅ , the Marshallian demands and the marginal 

utility of money are continuously differentiable, while the household durables and 

their shadow prices are twice continuously differentiable. Hence, by Young’s theo-

rem, we can integrate the terms ( ) ( )∂ ∂ ∂ ∂ ∂ ∂0
2

0
2ω κ ω κt p p t≡  by parts, which gives 

(4.31) 
∂
∂ ∂

∂ω
∂

∂ω
∂

∂ω
∂

∂κ
∂

2

00 0 0
0

00

0ω
κ κ

p t
dt T

p
T

p
k

p t
dt

T TX
ZY ≡

⋅ ′
⋅ −

⋅ ′
− XZY

( , ) ( , ) ( , )
. 

Canceling the terms that vanish on the right-hand-side of (4.30) and substituting 

the right-hand-side of (4.31) into (4.30) gives 

(4.32) 
∂
∂

∂
∂

∂
∂

∂κ
∂

∂
∂

1

0
0

00 00
0

00p
e

p
hdt

p
f

t
dt e

p
hdtrt

T T
rt

T

≡ −
′X

ZY +
′X

ZY −FHG
I
KJ ≡ −

′X
ZY

−

≡

−λ
ϕ ω

λ
ϕ

0

. 

Applying the identity 1 0 0 0 0 0 0*( , , , , ) ( , , , , )p M k V p M kβ γ β γ≡  we therefore can state the 

dynamic envelope theorem with respect to the initial price vector as 

(4.33) 
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

V
p

h
p

u
x p

u
k
dt e

p
hdt

T
rt

T

0 0 00
0

00
≡

′
+

′F
HG

I
KJ

X
ZY

≡ −
′X

ZY
−

~ ~κ
λ

ϕ
. 

We follow essentially the same steps for the other parameters to obtain the following 
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list of properties for the dynamic indirect utility function. 

Theorem 6. The dynamic indirect utility function in (4.8) is twice continuously dif-

ferentiable in ( , , , , )p M k0 0 0 β γ  and satisfies 

(6.a) 
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

V
p

h
p

u
x p

u
k
dt e

p
hdt

T
rt

T

0 0 00
0

00
≡

′
+

′F
HG

I
KJ

X
ZY

≡ −
′X

ZY
−

~ ~κ
λ

ϕ
; 

(6.b) 
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

V
M

h
M

u
x M

u
k
dt

T

0 0 00
0 0≡

′
+

′F
HG

I
KJ

X
ZY

≡ >
~ ~κ

λ ; 

(6.c) 
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

V
k

h
k

u
x k

u
k
dt

T

0 0 00

0≡
′

+
′F

HG
I
KJ

X
ZY

≡ ⋅
~ ~

( , )κ
ω ; 

(6.d) 
∂
∂β

∂
∂β

∂
∂

∂
∂β

∂
∂

∂
∂β

∂
∂β

V h u
x

u
k

u dt u dt
T T

≡
′

+
′

+
F
HG

I
KJ

X
ZY ≡ XZY

~ ~ ~ ~κ

0 0
; and 

(6.e) 
∂
∂γ

∂
∂γ

∂
∂

∂
∂γ

∂
∂

∂
∂γ

V h u
x

u
k
dt f dt

T T

≡
′

+
′F

HG
I
KJ

X
ZY ≡

′X
ZY

~ ~κ
ω

0 0
. 

(6.f) If ϕ( , )⋅ t  is 1º homogeneous in p0, then V k( , , , )⋅ 0 β γ  is 0º homogeneous in (p0, 

M0). 

(6.g) If ϕ( , )⋅ t  is increasing and concave in p0, then V k( , , , )⋅ 0 β γ  is decreasing and 

quasiconvex in p0. 

In addition, the dynamic Marshallian demand functions satisfy the intertemporal 

budget identity, Cournot aggregation, Engle aggregation, and Roy’s identity, 

(6.h) e hdt MrtT − ′z ≡ϕ0 0 , 

(6.i) e
p
h h

p
dtrt

T
− ′

+
′L

NM
O
QP

X
ZY

≡
∂
∂

∂
∂

ϕ
ϕ

0 00

0 , 

(6.j) e h
M

dtrt
T

− ′X
ZY ≡ϕ

∂
∂ 00

1 , and 

(6.k) − ≡
′X

ZY
−∂ ∂

∂ ∂
∂
∂

V p
V M

e
p
hdtrt

T
0

0 00

ϕ
, respectively. 

The properties of the dynamic expenditure function, 

(4.35) {0 0 0
0

( , , , , ) inf :
T rtE p U k e xdt− ′≡ ∫β γ ϕ  

 }0 0
0

( , , , ) , ( , , , ), (0) , ( )
T

u u x k t dt k f x k t k k k T= = = ≥∫ β γ 0 . 

are derived in a similar way. We first define the Lagrangean function for the con-

sumer’s intertemporal cost minimization problem as 
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(4.36) 2 0 0 0 0
≡ ′ + −FH IK + ′ −−z z ze xdt U udt k f dtrtT T T

ϕ µ ψ~ d i  

 ≡ ′ − − ′ − ′ + + ′ − ′−z e xdt u f k dt U T k T krtT
ϕ µ ψ ψ µ ω ω~ ( ) ( ) ( )e j0 0 00 , 

where µ is the shadow price on the discounted utility constraint, ψ is the vector of 

shadow prices for the equations of motion for household durable goods, and as be-

fore, the second line of (4.36) is obtained by integrating the terms ′ψ k  by parts. We 

continue to assume that ( *( ), *( )) » ( ) [ , )x t k t t T0,0 ∀ ∈ 0 , as well as the previous regu-

larity conditions for ~( )u ⋅  and f ( )⋅ . The necessary and sufficient first-order conditions 

for the unique optimal path now are: 

(4.37) e u
x

f
x

rt− − −
′

=ϕ µ ψ
∂
∂

∂
∂

~
0 ; 

(4.38) µ ψ ψ
∂
∂

∂
∂

~u
k

f
k

+
′

+ = 0 ; 

(4.39) µ = 0 ; 

(4.40) f k k k k T= = ≥, ( ) , ( )0 0 0 ; and 

(4.41) U udt
T

0 0
= z ~ ; 

together with the transversality conditions 

(4.42) ψ j jT k T j( ) ( ) ,...,= ∀ =0 1 . 

At time t, the optimal Hicksian demands, stocks of household durable goods, and 

shadow prices are  

(4.43) x t g p U k t*( ) ( , , , , , )≡ 0 0 0 β γ , 

(4.44) k t p U k t*( ) ( , , , , , )≡ ξ β γ0 0 0 , 

(4.45) ψ ψ β γ*( ) ( , , , , , )t p U k t≡ 0 0 0 , and 

(4.46) µ µ β γ*( ) ( , , , , )t p U k≡ 0 0 0 0 , 

respectively. The first-order conditions imply that the optimal Lagrangean function 

and the dynamic expenditure function satisfy 

(4.47) 2 0 0 0 0 0 0 0 0 0 00
*( , , , , ) ( , , , , ) ( , ) ( , , , , , )p U k E p U k e p t g p U k t dtrtT

β γ β γ ϕ β γ≡ ≡ ′−z . 

This, in turn, when combined with the discounted utility constraint, U u dtT
0 0≡ ⋅z ~( ) , 

implies the following set of properties for E p U k( , , , , )0 0 0 β γ : 

Theorem 7. The dynamic expenditure function in (4.36) is twice continu-

ously differentiable in ( , , , , )p U k0 0 0 β γ  and satisfies 
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(6.a) 
∂
∂

∂
∂

E
p

e
p
gdtrt

T

0 00
≡

′X
ZY

− ϕ
; 

(6.b) 
∂
∂
E
U0

0 0≡ >µ ; 

(6.c) 
∂
∂
E
k0

0≡ − ⋅ψ( , ) ; 

(6.d) 
∂
∂β

∂
∂β

∂
∂β

E e g dt u dtrt
T T

≡
′X

ZY ≡ − XZY
− ϕ µ

0
0

0

~
; and 

(6.e) 
∂
∂γ

∂
∂γ

∂
∂γ

E e g dt f dtrt
T T

≡
′X

ZY ≡ −
′X

ZY
− ϕ ψ

0 0
. 

(6.f) E U k( , , , , )⋅ 0 0 β γ  is 1º homogeneous in p0 if and only if ϕ( , )⋅ t  is 1º 

homogeneous in p0. 

(6.g) If ϕ( , )⋅ t  is increasing and concave in p0, then E U k( , , , , )⋅ 0 0 β γ  is 

increasing and concave in p0, with Hessian matrix defined by 

 
∂

∂ ∂
∂
∂ ∂

∂
∂

∂
∂

2 2E
p p

e g
p p p

g
p
dtrt i i

i

nT
x

0 0 0 01 0 00
′
≡

′
′
+

′
′

F
HG

I
KJ

X
ZYY

−

=
∑ ϕ ϕ

. 

In addition, the dynamic Hicksian demand functions and the expenditure 

minimizing demands for household durables satisfy, 

(6.h) ~( , , , )u g t dt UT ξ β0 0z ≡ , 

(6.i) 
∂
∂

∂
∂

∂
∂

∂
∂

′
+

′F
HG

I
KJ

X
ZY

≡
g
p

u
x p

u
k
dt

T

0 00

~ ~ξ 0 , 

(6.j) 
∂
∂

∂
∂

∂
∂

∂
∂

′
+

′F
HG

I
KJ

X
ZY

≡
g
U

u
x U

u
k
dt

T

0 00

1
~ ~ξ

, 

(6.k) 
∂
∂β

∂
∂

∂
∂β

∂
∂

∂
∂β

′
+

′
+

F
HG

I
KJ

X
ZY ≡

g u
x

u
k

u dt
T ~ ~ ~ξ

0

0 , and 

(6.l) 
∂
∂γ

∂
∂

∂
∂γ

∂
∂

′
+

′F
HG

I
KJ

X
ZY ≡

g u
x

u
k
dt

T ~ ~ξ

0

0 . 

The final piece of the puzzle is to establish the dual relationship between the dy-

namic expenditure and indirect utility functions as inverses to each another with 

respect to their n+1st arguments. In other words, we now will show that if 

U V p M k0 0 0 0= ( , , , , )β γ , then E p V p M k k M( , ( , , , , ), , , )0 0 0 0 0 0β γ β γ ≡ ; equivalently, if 

M E p U k0 0 0 0= ( , , , , )β γ , then V p E p U k k U( , ( , , , , ), , , )0 0 0 0 0 0β γ β γ ≡ . Intuitively, this seems 
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obvious —the minimum present value of discounted consumption expenditures nec-

essary to obtain the maximum present value of discounted utility flows that can be 

afforded with initial wealth M0 must be M0. In fact, utilizing the Lagrangeans in 

(4.27) and (4.36) makes the proofs of these facts nearly as obvious. 

The intuition is simple. From theorem 4, recall that in the static case, 

µ λ( , , ) ( , ( , , ), )p u b p e p u b b≡ 1 , and similarly, λ µ( , , ) ( , ( , ), )p m b p v p m b≡ 1 , where λ is the 

marginal utility of money and µ is the marginal cost of utility, and that the first-

order conditions for expenditure minimization and utility maximization are identical 

when income is set equal to expenditure. In the dynamic case, we will show that 

analogous properties hold, although the argument is slightly more involved.  

Let M E p U k0 0 0 0= ( , , , , )β γ , and note that 

(4.48) 1 0 0 0 0 0*( , ( , , , , ), , , )p E p U k kβ γ β γ ≡  

 ~ ( , ( , , , , , ), , , , ), ( , ( , , , , , ), , , ), ,u h p E p U k t k t p E p U k t t t dtT
0 0 0 0 0 0 0 0 00

β γ β γ κ β γ β γ βb gz ≡  

 V p E p U k k U( , ( , , , , ), , , )0 0 0 0 0 0β γ β γ ≥ , 

where the inequality follows from maximization and the fact that U0 is affordable. 

Writing out 1* explicitly, we have 

(4.49) ≤ − = z + − ′z + ′ −z −−
1 0 0 0 0 0 0 0* ~ ( )U udt M e hdt f dt UT rtT Tλ ϕ ω κe j  

 = − ′z + −FH IK + ′ −L
NM

O
QP

RST
UVW

− z zλ ϕ λ ω λ κ0 0 0 0 0 0 00
1M e hdt U udt f dtrtT T Tb g b g b g~  

 = − ≤λ0 0 2 0Me j , 

where 2  is the Lagrangean for the expenditure minimization problem evaluated 

along the utility maximizing path for x and k with µ0 = 1/λ0 and ξ ≡ ω/λ0. The sec-

ond inequality follows from the fact that this path is feasible, so that 

 M e gdt p U k e hdtrtT rtT
0 0 2 0 0 0 2 0= ′z ≡ ≤ ≡ ′z− −ϕ β γ ϕ* ( , , , , ) .  

It follows immediately from this that  

 V p E p U k k U( , ( , , , , ), , , )0 0 0 0 0 0β γ β γ ≡ . 

The argument for 

 E p V p M k k M( , ( , , , , ), , , )0 0 0 0 0 0β γ β γ ≡  

is identical, with the roles of the dynamic expenditure and indirect utility functions 

interchanged. We therefore have the following rather remarkable result. Only parts 

h and i of the next theorem are not immediately obvious from the previous devel-
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opments. However, this pair of conclusions follows from: (a) the uniqueness of the 

optimal paths for the two problems; (b) the above relationships among the shadow 

prices; and (c) the fact that the first-order conditions for the two problems are 

equivalent ∀ t ∈ [0, T]. Hence, no further proof is necessary to establish the follow-

ing. 

Theorem 8. The dynamic indirect utility and expenditure functions for the 

intertemporal consumer choice problem with household production and non-

static price expectations satisfy 

(8.a) V p E p U k k U( , ( , , , , ), , , )0 0 0 0 0 0β γ β γ ≡ ; 

(8.b) E p V p M k k M( , ( , , , , ), , , )0 0 0 0 0 0β γ β γ ≡ ; 

(8.c) 
∂

∂
V p E p U k k

M
p E p U k k

( , ( , , , , ), , , )
( , ( , , , , ), , , )0 0 0 0 0

0
0 0 0 0 0 0

β γ β γ
λ β γ β γ≡  

≡ ≡
1 1

0 0 0 0 0 0 0 0µ β γ β γ( , , , , ) ( , , , , )p U k E p U k U∂ ∂
; 

(8.d) 
∂

∂
E p V p M k k

U
p V p M k k

( , ( , , , , ), , , )
( , ( , , , , ), , , )0 0 0 0 0

0
0 0 0 0 0 0

β γ β γ
µ β γ β γ≡  

≡ ≡
1 1

0 0 0 0 0 0 0 0λ β γ β γ( , , , , ) ( , , , , )p M k V p M k M∂ ∂
; 

(8.e) 
∂

∂
V p E p U k k

k
p E p U k k

( , ( , , , , ), , , )
( , ( , , , , ), , , , )0 0 0 0 0

0
0 0 0 0 0 0

β γ β γ
ω β γ β γ≡  

≡ ≡ −
ψ β γ
µ β γ

β γ
β γ

( , , , , , )
( , , , , )

( , , , , )
( , , , , )

p U k
p U k

E p U k k
E p U k U

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 ∂ ∂
∂ ∂

; 

(8.f) 
∂

∂β
∂ ∂β
∂ ∂

V p E p U k k E p U k
E p U k U

( , ( , , , , ), , , ) ( , , , , )
( , , , , )

0 0 0 0 0 0 0 0

0 0 0 0

β γ β γ β γ
β γ

≡ − ; 

(8.g) 
∂

∂γ
∂ ∂γ
∂ ∂

V p E p U k k E p U k
E p U k U

( , ( , , , , ), , , ) ( , , , , )
( , , , , )

0 0 0 0 0 0 0 0

0 0 0 0

β γ β γ β γ
β γ

≡ − ; 

(8.h) −
∂ ∂
∂ ∂
V p E p U k k p
V p E p U k k M

( , ( , , , , ), , , )
( , ( , , , , ), , , )

0 0 0 0 0 0

0 0 0 0 0 0

β γ β γ
β γ β γ

 

≡
′X

ZY
−e

p t
p

h p E p U k k t dtrt
T ∂ϕ

∂
( , )

( , ( , , , , ), , , , )0

0
0 0 0 0 0

0

β γ β γ  

≡
′X

ZY ≡−e
p t
p

g p U k t dt
E p U k

p
rt

T ∂ϕ
∂

∂
∂

( , )
( , , , , , )

( , , , , )0

0
0 0 0

0

0 0 0

0
β γ

β γ
; 

(8.h) h p E p U k k t g p U k t t T( , ( , , , , ), , , , ) ( , , , , , ) [ , ]0 0 0 0 0 0 0 0 0β γ β γ β γ≡ ∀ ∈ ; 

(8.i) g p V p M k k t h p M k t t T( , ( , , , , ), , , , ) ( , , , , , ) [ , ]0 0 0 0 0 0 0 0 0β γ β γ β γ≡ ∀ ∈ ; and 
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(8.h) 
∂

∂ ∂
∂
∂ ∂

2E p U k
p p

e g p U k t
p t

p p
dtrt i i

i

nT( , , , , )
( , , , , , )

( , )0 0 0

0 0
0 0 0

2
0

0 010

β γ
β γ

ϕ
′

≡
′

X
ZY

−

=
∑  

+
′

′
X
ZY

−e
p t
p

g p U k t
p

dtrt
T ∂ϕ

∂
∂

∂
( , ) ( , , , , , )0

0

0 0 0

00

β γ
 

≡
′

X
ZY

−

=
∑e h p E p U k k t

p t
p p

dtrt i i

i

nT

( , ( , , , , ), , , , )
( , )

0 0 0 0 0

2
0

0 010

β γ β γ
ϕ∂
∂ ∂

 

+
′X

ZY ′
−e

p t
p

h p E p U k k t
p

dtrt
T ∂ϕ

∂
∂

∂
( , ) ( , ( , , , , ), , , , )0

00

0 0 0 0 0

0

β γ β γ
 

+
′X

ZY
F
HG

I
KJ ×

−e
p t
p

h p E p U k k t
M

dtrt
T ∂ϕ

∂
∂

∂
( , ) ( , ( , , , , ), , , , )0

00

0 0 0 0 0

0

β γ β γ
 

e
p t
p

h p E p U k k t dtrt
T

− ′X
ZY
F
HG

I
KJ
′∂ϕ

∂
( , )

( , ( , , , , ), , , , )0

00
0 0 0 0 0β γ β γ  

is a symmetric n×n matrix with rank no greater than n−1 and is negative 

semidefinite if ϕ(�,t) is (weakly) concave in p0. 

4. Discussion 

The static neoclassical model provides a solid foundation for the entire host of gen-

eralizations to consumer choice theory considered in this chapter. The core duality 

theory of the neoclassical model transcends the theory of household production, 

characteristics theory, and intertemporal consumer choice, models of consumer ex-

pectations for future values of important economic variables, durable goods, con-

sumption habits, and changing household production technologies or quality charac-

teristics. This illustrates a robust theoretical framework. But the way that the dual-

ity theory is manifested varies substantially across specifications. When intertempo-

ral considerations are added, there no longer is a static, short-run, or instantaneous, 

counterpart to the neoclassical model’s Slutsky symmetry and negativity conditions. 

Once the proper concept of substitution has been taken into account in a dynamic 

setting, however, the precise nature of the symmetry condition becomes self evident. 

In addition, the standard homogeneity and curvature conditions of the static model 

are not necessarily satisfied in a dynamic framework. Again, however, once the influ-

ences that expectations for the future economic environment have on consumers’ 

optimal plans have been identified, the conditions in which homogeneity and curva-
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ture are satisfied become apparent. 

The above analysis also shows that the naïve way that consumption habits and du-

rable goods are typically treated in empirical demand analysis has some problems, 

particularly when anything other than myopic expectations is assumed. This gives 

rise to questions that could open several avenues for future research in empirical 

demand analysis. Can “rational” consumption habits be estimated econometrically? 

How does one distinguish between changes in households’ holdings of durable assets 

and changes in their stocks of consumption habits? Does habit formation even exist? 

Can future expectations be modeled successfully in empirical demand studies? In 

dynamic settings with fully “rational” consumers, how do we measure the economic 

consequences on consumer of policy changes? My hope is this chapter stimulates 

some fresh thoughts and new answers to these and other important questions in the 

economics of consumer choice. 
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