which implies

$$
\begin{equation*}
\lambda q=\left[q\left[\frac{w_{1}}{\alpha_{1}}\right]^{\alpha_{1}}\left[\frac{w_{2}}{\alpha_{2}}\right]^{\alpha_{2}}\right]^{\frac{1}{\alpha_{1}+\alpha_{2}}} \tag{2.8}
\end{equation*}
$$

So, using (2.7) and (2.8), the corresponding cost function is

$$
\begin{aligned}
C(\mathbf{w}, q) & =w_{1} z_{1}^{*}+w_{2} z_{2}^{*} \\
& =\left[\alpha_{1}+\alpha_{2}\right]\left[q\left[\frac{w_{1}}{\alpha_{1}}\right]^{\alpha_{1}}\left[\frac{w_{2}}{\alpha_{2}}\right]^{\alpha_{2}}\right]^{\frac{1}{\alpha_{1}+\alpha_{2}}}
\end{aligned}
$$

4. Using the production functions we have, for any $t>0$:

$$
\phi(t \mathbf{z})=\left[t z_{1}\right]^{\alpha_{1}}\left[t z_{2}\right]^{\alpha_{2}}=t^{\alpha_{1}+\alpha_{2}} \phi(\mathbf{z})
$$

Therefore we have DRTS/CRTS/IRTS according as $\alpha_{1}+\alpha_{2} \lesseqgtr 1$. If we look at average cost as a function of q we find that AC is increasing/constant/decreasing in q according as $\alpha_{1}+\alpha_{2} \lesseqgtr 1$.
5. Using (2.7) and (2.8) conditional demand functions are

$$
\begin{aligned}
& H^{1}(\mathbf{w}, q)=\left[q\left[\frac{\alpha_{1} w_{2}}{\alpha_{2} w_{1}}\right]^{\alpha_{2}}\right]^{\frac{1}{\alpha_{1}+\alpha_{2}}} \\
& H^{2}(\mathbf{w}, q)=\left[q\left[\frac{\alpha_{2} w_{1}}{\alpha_{1} w_{2}}\right]^{\alpha_{1}}\right]^{\frac{1}{\alpha_{1}+\alpha_{2}}}
\end{aligned}
$$

and are smooth with respect to input prices.
3. The coordinates of the corner A are $\left(\alpha_{1} q, \alpha_{2} q\right)$ and, given \mathbf{w}, this immediately yields the minimised cost.

$$
C(\mathbf{w}, q)=w_{1} \alpha_{1} q+w_{2} \alpha_{2} q
$$

The methods in Exercise 2.4 since the Lagrangean is not differentiable at the corner.
4. Conditional demand is constant if all prices are positive

$$
\begin{aligned}
H^{1}(\mathbf{w}, q) & =\alpha_{1} q \\
H^{2}(\mathbf{w}, q) & =\alpha_{2} q
\end{aligned}
$$

5. Given the linear case

$$
q=\alpha_{1} z_{1}+\alpha_{2} z_{2}
$$

- Isoquants are as in Figure 2.9.
- It is obvious that the solution will be either at the corner $\left(q / \alpha_{1}, 0\right)$ if $w_{1} / w_{2}<\alpha_{1} / \alpha_{2}$ or at the corner $\left(0, q / \alpha_{2}\right)$ if $w_{1} / w_{2}>\alpha_{1} / \alpha_{2}$, or otherwise anywhere on the isoquant
- This immediately shows us that minimised cost must be.

$$
C(\mathbf{w}, q)=q \min \left\{\frac{w_{1}}{\alpha_{1}}, \frac{w_{2}}{\alpha_{2}}\right\}
$$

- So conditional demand can be multivalued:

$$
\begin{aligned}
& H^{1}(\mathbf{w}, q)=\left\{\begin{array}{cc}
\frac{q}{\alpha_{1}} & \text { if } \frac{w_{1}}{w_{2}}<\frac{\alpha_{1}}{\alpha_{2}} \\
z_{1}^{*} \in\left[0, \frac{q}{\alpha_{1}}\right] & \text { if } \frac{w_{1}}{w_{2}}=\frac{\alpha_{1}}{\alpha_{2}} \\
0 & \text { if } \frac{w_{1}}{w_{2}}>\frac{\alpha_{1}}{\alpha_{2}}
\end{array}\right. \\
& H^{2}(\mathbf{w}, q)=\left\{\begin{array}{cc}
0 & \text { if } \frac{w_{1}}{w_{2}}<\frac{\alpha_{1}}{\alpha_{2}} \\
z_{2}^{*} \in\left[0, \frac{q}{\alpha_{2}}\right] & \text { if } \frac{w_{1}}{w_{2}}=\frac{\alpha_{1}}{\alpha_{2}} \\
\frac{q}{\alpha_{2}} & \text { if } \frac{w_{1}}{w_{2}}>\frac{\alpha_{1}}{\alpha_{2}}
\end{array}\right.
\end{aligned}
$$

- Case 3 is a test to see if you are awake: the isoquants are not convex to the origin: an experiment with a straight-edge to simulate an isocost line will show that it is almost like case $2-$ the solution will be either at the corner $\left(\sqrt{q / \alpha_{1}}, 0\right)$ if $w_{1} / w_{2}<\sqrt{\alpha_{1} / \alpha_{2}}$ or at the corner $\left(0, \sqrt{q / \alpha_{2}}\right)$ if $w_{1} / w_{2}>\sqrt{\alpha_{1} / \alpha_{2}}$ (but nowhere else). So the cost function is :

$$
C(\mathbf{w}, q)=\min \left\{w_{1} \sqrt{\frac{q}{\alpha_{1}}}, w_{2} \sqrt{q / \alpha_{2}}\right\} .
$$

© Frank Cowell 2006
14

$$
\begin{aligned}
z_{\text {it }} \text { it } w_{1} \sqrt{q / \alpha_{1}} & <w_{2} \sqrt{q / \alpha_{2}} \\
\Rightarrow \frac{w_{1}}{w_{2}} & <\sqrt{\frac{\alpha_{1}}{\alpha_{2}}}
\end{aligned}
$$

Exercise 2.8 For any homothetic production function show that the cost function must be expressible in the form

$$
C(\mathbf{w}, q)=a(\mathbf{w}) b(q) .
$$

Figure 2.11: Homotheticity: expansion path

Outline Answer
From the definition of homotheticity, the isoquants must look like Figure 2.11; interpreting the tangents as isocost lines it is clear from the figure that the expansion paths are rays through the origin. So, if $H^{i}(\mathbf{w}, q)$ is the demand for input i conditional on output q, the optimal input ratio

$$
\frac{H^{i}(\mathbf{w}, q)}{H^{j}(\mathbf{w}, q)}=\frac{H^{\prime}\left(w, q^{\prime}\right)}{H^{j}\left(w, q^{\prime}\right)}
$$

must be independent of q and so we must have \square

$$
\frac{H^{i}(\mathbf{w}, q)}{H^{i}\left(\mathbf{w}, q^{\prime}\right)}=\frac{H^{j}(\mathbf{w}, q)}{H^{j}\left(\mathbf{w}, q^{\prime}\right)}
$$

for any q, q^{\prime}. For this to true it is clear that the ratio $H^{i}(\mathbf{w}, q) / H^{i}\left(\mathbf{w}, q^{\prime}\right)$ must be independent of \mathbf{w}. Setting $q^{\prime}=1$ we therefore have

$$
\frac{H^{1}(\mathbf{w}, q)}{H^{1}(\mathbf{w}, 1)}=\frac{H^{2}(\mathbf{w}, q)}{H^{2}(\mathbf{w}, 1)}=\ldots=\frac{H^{m}(\mathbf{w}, q)}{H^{m}(\mathbf{w}, 1)}=b(q)
$$

and so

$$
H^{i}(\mathbf{w}, q)=b(q) H^{i}(\mathbf{w}, 1) .
$$

© Frank Cowell 2006

```
e.j. C. (himomencem)
    (\frac{5}{5}\mp@subsup{)}{}{\frac{1}{2}}\cdot(\frac{u}{v}\mp@subsup{)}{}{5/4}
    => H'(\omega,i)= = '(w,1)|
```

Exercise 2.9 Consider the production function

$$
q=\left[\alpha_{1} z_{1}^{-1}+\alpha_{2} z_{2}^{-1}+\alpha_{3} z_{3}^{-1}\right]^{-1}
$$

1. Find the long-run cost function and sketch the long-run and short-run marginal and average cost curves and comment on their form.
2. Suppose input 3 is fixed in the short run. Repeat the analysis for the short-run case.
3. What is the elasticity of supply in the short and the long run?

Outline Answer

1. The production function is clearly homogeneous of degree 1 in all inputs - i.e. in the long run we have constant returns to scale. But CRTS implies constant average cost. So
$\mathrm{LRMC}=\mathrm{LRAC}=$ constant

Their graphs will be an identical straight line

Figure 2.12: Isoquants do not touch the axes
2. In the short run $z_{3}=\bar{z}_{3}$ so we can write the problem as the following Lagrangean

$$
\begin{equation*}
\hat{\mathcal{L}}(\mathbf{z}, \hat{\lambda})=w_{1} z_{1}+w_{2} z_{2}+\hat{\lambda}\left[q-\left[\alpha_{1} z_{1}^{-1}+\alpha_{2} z_{2}^{-1}+\alpha_{3} \bar{z}_{3}^{-1}\right]^{-1}\right] \tag{2.13}
\end{equation*}
$$

or, using a transformation of the constraint to make the manipulation easier, we can use the Lagrangean

$$
\begin{equation*}
\mathcal{L}(\mathbf{z}, \lambda)=w_{1} z_{1}+w_{2} z_{2}+\lambda\left[\alpha_{1} z_{1}^{-1}+\alpha_{2} z_{2}^{-1}-k\right] \tag{2.14}
\end{equation*}
$$

where λ is the Lagrange multiplier for the transformed constraint and

$$
\begin{equation*}
k:=q^{-1}-\alpha_{3} \bar{z}_{3}^{-1} \tag{2.15}
\end{equation*}
$$

© Frank Cowell 2006
20
 ката入аßаív ω пшৎ проє́ки廿є o túmo̧ tou z_{2} kal o túro̧ 2.20. Өa ε пıӨúuoú $\sigma a \mathrm{va}$ λ úбou $\boldsymbol{\varepsilon}$ бuvo $\lambda ı$ ı́́ тıৎ 2.8 каı

```
\[
\frac{1}{\alpha_{1}\left(z_{1}\right)^{-1}+\alpha_{2}\left(t z_{2}\right)^{-1}+\alpha_{3}\left(t_{z_{3}}\right)^{-1}}=\frac{1}{t^{-1}(\quad)}
\]
\[
=t \cdot q
\]
```

$$
\frac{1}{\frac{1}{2}+\frac{1}{2} \frac{1}{2}}=\bar{q}
$$

Note that the isoquant is

$$
z_{2}=\frac{\alpha_{2}}{k-\alpha_{1} z_{1}^{-1}}
$$

From the Figure 2.12 it is clear that the isoquants do not touch the axes and so we will have an interior solution. The first-order conditions are

$$
\begin{equation*}
w_{i}-\lambda \alpha_{i} z_{i}^{-2}=0, i=1,2 \tag{2.16}
\end{equation*}
$$

which imply

$$
\begin{equation*}
z_{i}=\sqrt{\frac{\lambda \alpha_{i}}{w_{i}}}, i=1,2 \tag{2.17}
\end{equation*}
$$

To find the conditional demand function we need to solve for λ. Using the production function and equations (2.15), (2.17) we get

$$
\begin{equation*}
k=\sum_{j=1}^{2} \alpha_{j}\left[\frac{\lambda \alpha_{j}}{w_{j}}\right]^{-1 / 2} \tag{2.18}
\end{equation*}
$$

from which we find

$$
\begin{equation*}
\sqrt{\lambda}=\frac{b}{k} \tag{2.19}
\end{equation*}
$$

where

$$
b:=\sqrt{\alpha_{1} w_{1}}+\sqrt{\alpha_{2} w_{2}} .
$$

Substituting from (2.19) into (2.17) we get minimised cost as

$$
\begin{align*}
\tilde{C}\left(\mathbf{w}, q ; \bar{z}_{3}\right) & =\sum_{i=1}^{2} w_{i} z_{i}^{*}+w_{3} \bar{z}_{3} \tag{2.20}\\
& =\frac{b^{2}}{k}+w_{3} \bar{z}_{3} \tag{2.21}\\
& =\frac{q b^{2}}{1-\alpha_{3} \bar{z}_{3}^{-1} q}+w_{3} \bar{z}_{3} . \tag{2.22}
\end{align*}
$$

Marginal cost is

$$
\begin{equation*}
\frac{b^{2}}{\left[1-\alpha_{3} \bar{z}_{3}^{-1} q\right]^{2}} \tag{2.23}
\end{equation*}
$$

and average cost is

$$
\begin{equation*}
\frac{b^{2}}{1-\alpha_{3} \bar{z}_{3}^{-1} q}+\frac{w_{3} \bar{z}_{3}}{q} \tag{2.24}
\end{equation*}
$$

Let \underline{q} be the value of q for which $\mathrm{MC}=\mathrm{AC}$ in (2.23) and (2.24) - at the minimum of AC in Figure 2.13 - and let \underline{p} be the corresponding minimum value of AC. Then, using $p=\mathrm{MC}$ in $(2.2 \overline{3})$ for $p \geq \underline{p}$ the short-run supply

$$
\text { curve is given by } q^{*}=S(\mathbf{w}, p)= \begin{cases}0 & \text { if } p<\underline{p} \\ 0 \text { or } \underline{q} & \text { if } p=\underline{p} \\ q=\frac{\bar{z}_{3}}{\alpha_{3}}\left[1-\frac{b}{\sqrt{p}}\right] & \text { if } p>\underline{p}\end{cases}
$$

© Frank Cowell 2006

$$
\begin{aligned}
& k:=q^{-1}-\alpha_{3} \bar{z}_{3}^{-1} . \\
& \begin{aligned}
k & =\alpha_{2} z_{1}^{-1}+\alpha_{1} n^{-1}+y_{2} z_{1}^{-1}-\alpha_{1} \hat{z}_{2} \\
& =\alpha_{1}\left[\frac{\alpha_{2}}{w_{1}}\right]^{-\frac{1}{2}}+\alpha_{2}\left[\frac{1 a_{2}}{w_{2}}\right]^{-1 / 2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
k & =a_{1}\left[\frac{\sqrt{ } a_{1}}{w_{1}}\right]^{-1 / 2}+a_{2}\left[\frac{\sqrt{a_{2}}}{\omega_{2}}\right]^{-\frac{1}{2}} \\
& =\lambda^{-\frac{1}{2}}\left(\sqrt{a_{1} w_{1}}+\sqrt{a_{2} \omega_{2}}\right] \Rightarrow \sqrt{\lambda}=\frac{\sqrt{a_{1}}+\sqrt{a_{2} \omega_{2}}}{k}
\end{aligned}
$$

Substituting from (2.19) into (2.17) we get minimised cost as

```
= v,\alpha,
E=\frac{b}{k}\cdot\frac{d}{|}\mp@subsup{|}{1}{\prime}
```



```
    \frac{b}{k}(J+\omega
```

```
\frac{\mp@subsup{b}{}{2}}{1-\mp@subsup{\alpha}{2}{2}\mp@subsup{z}{2}{2}}+\frac{q}{\mp@code{q}}\frac{\mp@subsup{b}{}{2}\mp@subsup{\alpha}{3}{}\mp@subsup{z}{2}{-1}}{(1-\mp@subsup{\alpha}{3}{\prime}\mp@subsup{z}{2}{-1}\mp@subsup{)}{}{2}}
    = \frac{b}{}=(1-\alpha,\mp@subsup{z}{2}{\prime\prime}q)
    \frac{\mp@subsup{b}{}{2}}{(1-\mp@subsup{\alpha}{3}{-2}\mp@subsup{z}{}{-1}q\mp@subsup{)}{}{2}}
```

3. Differentiating the last line in the previous formula we get

$$
\frac{d \ln q}{d \ln p}=\frac{p}{q} \frac{d q}{d p}=\frac{1}{2} \frac{1}{\sqrt{p} / b-1}>0
$$

Note that the elasticity decreases with b. In the long run the supply curve coincides with the MC, AC curves and so has infinite elasticity.

$$
\begin{aligned}
& q=\frac{z_{3}}{\alpha_{3}}\left[1-\frac{b}{\sqrt{p}}\right] \\
& 5 \\
& \text { - }
\end{aligned}
$$

Figure 2.13: Short-run marginal and average cost

Exercise 3.3 A firm has the cost function

$$
F_{0}+\frac{1}{2} a q_{i}^{2}
$$

where q_{i} is the output of a single homogenous good and F_{0} and a are positive numbers.

1. Find the firm's supply relationship between output and price p; explain carefully what happens at the minimum-average-cost point $\underline{p}:=\sqrt{2 a F_{0}}$.
2. In a market of a thousand consumers the demand curve for the commodity is given by

$$
p=A-b q
$$

where q is total quantity demanded and A and b are positive parameters. If the market is served by a single price-taking firm with the cost structure in part 1 explain why there is a unique equilibrium if $b \leq a[A / \underline{p}-1]$ and no equilibrium otherwise.
3. Now assume that there is a large number N of firms, each with the above cost function: find the relationship between average supply by the N firms and price and compare the answer with that of part 1. What happens as $N \rightarrow \infty$?
4. Assume that the size of the market is also increased by a factor N but that the demand per thousand consumers remains as in part 2 above. Show that as N gets large there will be a determinate market equilibrium price and output level.

Outline Answer

1. Given the cost function

$$
F_{0}+\frac{1}{2} a q_{i}^{2}
$$

marginal cost is $a q_{i}$ and average cost is $F_{0} / q_{i}+\frac{1}{2} a q_{i}$. Marginal cost intersects average cost where

$$
a q_{i}=F_{0} / q_{i}+\frac{1}{2} a q_{i}
$$

i.e. where output is

$$
\begin{align*}
& \underline{q}:=\sqrt{2 F_{0} / a} \tag{3.9}\\
& \underline{p}:=\sqrt{2 a F_{0}} \tag{3.10}
\end{align*}
$$

and marginal cost is

For $p>p$ the supply curve is identical to the marginal cost curve $q_{i}=p / a$; for $p<\bar{p}$ the firm supplies 0 to the market; at $p=\underline{p}$ the firm supplies either $0 \stackrel{-}{\text { or }} \underline{q}$. There is no price which will induce a supply in the interior of the interval $(0, \underline{q})$. Summarising, firm i 's optimal output is given by

$$
q_{i}^{*}=S(p):=\left\{\begin{array}{l}
p / a, \text { if } p>\underline{p} \tag{3.11}\\
q \in\{0, \underline{q}\} \text { if } p=\underline{p} \\
0, \text { if } p<\underline{p}
\end{array}\right.
$$

ミтŋv áđкпоণ 3.3 үıatí $S(p)=p / a ~ \sigma \tau \eta \vee ~ п \rho \omega ́ т \eta$ пєрі́тт $\omega \sigma \eta$ каı то $\varepsilon \rho \omega ́ т \eta \mu а$

4.
```
p=\muc=>p=\alpha.q=>q=p/a
C= Fo}+\frac{1}{2}a\mp@subsup{q}{i}{}\mp@subsup{}{}{2}=>ML=a\mp@subsup{q}{i}{
```

2. The equilibrium, if it exists, is found where supply=demand at a given price. This would imply

$$
\begin{aligned}
\frac{p}{a} & =\frac{A-p}{b} \\
p & =\frac{a A}{a+b}
\end{aligned}
$$

which would, in turn, imply an equilibrium quantity

$$
q=\frac{A}{a+b}
$$

but it can only be valid if $\frac{A}{a+b} \geq \underline{q}$. Noting that $\underline{q}=\underline{p} / a$ this condition is equivalent to $a\left[\frac{A}{\underline{p}}-1\right] \geq b$.
3. If there are N such firms, each firm responds to price as in (3.11), and so the average output $\bar{q}:=\frac{1}{N} \sum_{i=1}^{N} q_{i}^{*}$ is given by

$$
\bar{q}=\left\{\begin{array}{l}
p / a, \text { if } p>\underline{p} \tag{3.12}\\
q \in J(\underline{q}) \text { if } p=\underline{p} \\
0, \text { if } p<\underline{p}
\end{array}\right.
$$

where $J(\underline{q}):=\left\{\frac{i}{N} \underline{q}: i=0,1, \ldots, N\right\}$. As $N \rightarrow \infty$ the set $J(\underline{q})$ becomes dense in $[0, q]$, and so we have the average supply relationship:

$$
\bar{q}=\left\{\begin{array}{l}
p / a, \text { if } p>\underline{p} \tag{3.13}\\
q \in[0, \underline{q}] \text { if } p=\underline{p} \\
0, \text { if } p<\underline{p}
\end{array}\right.
$$

4. Given that in the limit the average supply curve is continuous and of the piecewise linear form (3.13), and that the demand curve is a downwardsloping straight line, there must be a unique market equilibrium. The equilibrium will be found at $\left(\underline{p}, \frac{A-\underline{p}}{b}\right)$ which, using (3.10) is $\left(\sqrt{2 a F_{0}}, \frac{A-\sqrt{2 a F_{0}}}{b}\right)$. Using (3.9) this can be written ($\underline{p}, \beta \underline{q}$) where

$$
\beta:=\frac{A-\underline{\underline{p}}}{b \underline{p} / a}
$$

In the equilibrium a proportion β of the firms produce \underline{q} and $1-\beta$ of the firms produce 0 .

Exercise 3.4 A firm has a fixed cost F_{0} and marginal costs

$$
c=a+b q
$$

where q is output.

1. If the firm were a price-taker, what is the lowest price at which it would be prepared to produce a positive amount of output? If the competitive price were above this level, find the amount of output q^{*} that the firm would produce.
2. If the firm is actually a monopolist and the inverse demand function is

$$
p=A-\frac{1}{2} B q
$$

(where $A>a$ and $B>0$) find the expression for the firm's marginal revenue in terms of output. Illustrate the optimum in a diagram and show that the firm will produce

$$
q^{* *}:=\frac{A-a}{b+B}
$$

What is the price charged $p^{* *}$ and the marginal cost $c^{* *}$ at this output level? Compare $q^{* *}$ and q^{*}.
3. The government decides to regulate the monopoly. The regulator has the power to control the price by setting a ceiling $p_{\max }$. Plot the average and marginal revenue curves that would then face the monopolist. Use these to show:
(a) If $p_{\max }>p^{* *}$ the firm's output and price remain unchanged at $q^{* *}$ and $p^{* *}$
(b) If $p_{\max }<c^{* *}$ the firm's output will fall below $q^{* *}$.
(c) Otherwise output will rise above $q^{* *}$.

Outline Answer

1. Total costs are

$$
F_{0}+a q+\frac{1}{2} b q^{2}
$$

So average costs are

$$
\frac{F_{0}}{q}+a+\frac{1}{2} b q
$$

which are a minimum at

$$
\begin{equation*}
\underline{q}=\sqrt{2 \frac{F_{0}}{b}} \tag{3.14}
\end{equation*}
$$

where average costs are

$$
\begin{equation*}
\sqrt{2 b F_{0}}+a \tag{3.15}
\end{equation*}
$$

Marginal and average costs are illustrated in Figure 3.1: notice that MC is linear and that AC has the typical U-shape if $F_{0}>0$. For a price above the level (3.15) the first-order condition for maximum profits is given by

$$
p=a+b q
$$

Figure 3.1: Perfect competition

from which we find

$$
q^{*}:=\frac{p-a}{b}
$$

- see figure 3.1.

2. If the firm is a monopolist marginal revenue is

$$
\frac{\partial}{\partial q}\left[A q-\frac{1}{2} B q^{2}\right]=A-B q
$$

Hence the first-order condition for the monopolist is

$$
\begin{equation*}
A-B q=a+b q \tag{3.16}
\end{equation*}
$$

from which the solution $q^{* *}$ follows. Substituting for $q^{* *}$ we also get

$$
\begin{align*}
M c=M R \quad c^{* *} & =A-B q^{* *} \tag{3.17}
\end{align*}=\frac{A b+B a}{B+b}, ~\left(p^{* *}=A-\frac{1}{2} B q^{* *}=c^{* *}+\frac{1}{2} B \frac{A-a}{b+B}\right.
$$

- see figure 3.2.

3. Consider how the introduction of a price ceiling will affect average revenue. Clearly we now have

$$
\operatorname{AR}(q)=\left\{\begin{array}{l}
p_{\max } \text { if } q \leq q_{0} \tag{3.19}\\
A-\frac{1}{2} B q \text { if } q \geq q_{0}
\end{array}\right\}
$$

where $q_{0}:=2\left[A-p_{\max }\right] / B$: average revenue is a continuous function of q but has a kink at q_{0}. From this we may derive marginal revenue which is

$$
\operatorname{MR}(q)=\left\{\begin{array}{l}
p_{\max } \text { if } q<q_{0} \tag{3.20}\\
A-B q \text { if } q>q_{0}
\end{array}\right\}
$$

© Frank Cowell 2006
37

$$
B q+b_{q}=A-a \Rightarrow q=\frac{A-a}{B+b}
$$

$$
\begin{aligned}
& \left.p=A-\frac{1}{2} B q \quad(\ln v \operatorname{cn})+D \operatorname{man}\right) \\
& P_{\max }=A-\frac{1}{2} B q \Rightarrow q=2\left[A-P_{\max }\right] / B
\end{aligned}
$$

Chapter 10

Strategic Behaviour

Exercise 10.1 Table 10.1 is the strategic form representation of a simultaneous move game in which strategies are actions.

Table 10.1: Elimination and equilibrıum

1. Is there a dominant strategy for either of the two agents?
2. Which strategies can always be eliminated because they are dominated?
3. Which strategies can be eliminated if it is common knowledge that both players are rational?
4. What are the Nash equilibria in pure strategies?

Outline Answer:

1. No player has a dominant strategy.
2. Both s_{3}^{a} and s_{2}^{b} can be eliminated as individually irrational.
3. With common knowledge of rationality we can eliminate the dominated strategies: s_{3}^{a} and s_{2}^{b}.
4. The Nash Equilibria in pure strategies are $\left(s_{2}^{a}, s_{1}^{b}\right)$ and $\left(s_{1}^{a}, s_{3}^{b}\right)$

ミтఇv áवкŋбך 10.1 үıatí oto $\varepsilon \rho \omega ́ t \eta \mu a 4$ ठєv ε ívaı mıӨavó опиعío ıборропíaৎ то бпиعío 3,2 avtí үıа то 2,4.

```
[F }\mp@subsup{S}{2}{a}\mathrm{ best regonse bor }b\mathrm{ is }\mp@subsup{s}{1}{b}\mp@subsup{}{a}{a}} NAN
If sib
```

