Exercise 2.4 Suppose a firm's production function has the Cobb-Douglas form

$$
q=z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}}
$$

where z_{1} and z_{2} are inputs, q is output and α_{1}, α_{2} are positive parameters.

1. Draw the isoquants. Do they touch the axes?
2. What is the elasticity of substitution in this case?
3. Using the Lagrangean method find the cost-minimising values of the inputs and the cost function.
4. Under what circumstances will the production function exhibit (a) decreasing (b) constant (c) increasing returns to scale? Explain this using first the production function and then the cost function.
5. Find the conditional demand curve for input 1.

Figure 2.7: Isoquants: Cobb-Douglas

Outline Answer

1. The isoquants are illustrated in Figure 2.7. They do not touch the axes.
2. The elasticity of substitution is defined as

$$
\sigma_{i j}:=-\frac{\partial \log \left(z_{j} / z_{i}\right)}{\partial \log \left(\phi_{j}(\mathbf{z}) / \phi_{i}(\mathbf{z})\right)}
$$

which, in the two input case, becomes

$$
\begin{equation*}
\sigma=-\frac{\partial \log \left(\frac{z_{1}}{z_{2}}\right)}{\partial \log \left(\frac{\phi_{1}(\mathbf{z})}{\phi_{2}(\mathbf{z})}\right)} \tag{2.1}
\end{equation*}
$$

In case 1 we have $\phi(\mathbf{z})=z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}}$ and so, by differentiation, we find:

$$
\frac{\phi_{1}(\mathbf{z})}{\phi_{2}(\mathbf{z})}=\frac{\alpha_{1}}{\alpha_{2}} / \frac{z_{1}}{z_{2}}
$$

Taking logarithms we have

$$
\log \left(\frac{z_{1}}{z_{2}}\right)=\log \left(\frac{\alpha_{1}}{\alpha_{2}}\right)-\log \left(\frac{\phi_{1}(\mathbf{z})}{\phi_{2}(\mathbf{z})}\right)
$$

or

$$
u=\log \left(\frac{\alpha_{1}}{\alpha_{2}}\right)-v
$$

where $u:=\log \left(z_{1} / z_{2}\right)$ and $v:=\log \left(\phi_{1} / \phi_{2}\right)$. Differentiating u with respect to v we have

$$
\begin{equation*}
\frac{\partial u}{\partial v}=-1 \tag{2.2}
\end{equation*}
$$

So, using the definitions of u and v in equation (2.2) we have

$$
\sigma=-\frac{\partial u}{\partial v}=1
$$

3. This is a Cobb-Douglas production function. This will yield a unique interior solution; the Lagrangean is:

$$
\begin{equation*}
\mathcal{L}(\mathbf{z}, \lambda)=w_{1} z_{1}+w_{2} z_{2}+\lambda\left[q-z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}}\right] \tag{2.3}
\end{equation*}
$$

and the first-order conditions are:

$$
\begin{gather*}
\frac{\partial \mathcal{L}(\mathbf{z}, \lambda)}{\partial z_{1}}=w_{1}-\lambda \alpha_{1} z_{1}^{\alpha_{1}-1} z_{2}^{\alpha_{2}}=0 \tag{2.4}\\
\frac{\partial \mathcal{L}(\mathbf{z}, \lambda)}{\partial z_{2}}=w_{2}-\lambda \alpha_{2} z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}-1}=0 \tag{2.5}\\
\frac{\partial \mathcal{L}(\mathbf{z}, \lambda)}{\partial \lambda}=q-z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}}=0 \tag{2.6}
\end{gather*}
$$

Using these conditions and rearranging we can get an expression for minimized cost in terms of and q :

$$
w_{1} z_{1}+w_{2} z_{2}=\lambda \alpha_{1} z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}}+\lambda \alpha_{2} z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}}=\left[\alpha_{1}+\alpha_{2}\right] \lambda q
$$

We can then eliminate λ :

$$
\left.\begin{array}{l}
w_{1}-\lambda \alpha_{1} \frac{q}{z_{1}}=0 \\
w_{2}-\lambda \alpha_{2} \frac{q}{z_{2}}=0
\end{array}\right\}
$$

which implies

$$
\left.\begin{array}{l}
z_{1}^{*}=\frac{\alpha_{1}}{w_{1}} \lambda q \tag{2.7}\\
z_{2}^{*}=\frac{\alpha_{2}}{w_{2}} \lambda q
\end{array}\right\} .
$$

Substituting the values of z_{1}^{*} and z_{2}^{*} back in the production function we have

$$
\left[\frac{\alpha_{1}}{w_{1}} \lambda q\right]^{\alpha_{1}}\left[\frac{\alpha_{2}}{w_{2}} \lambda q\right]^{\alpha_{2}}=q
$$

which implies

$$
\begin{equation*}
\lambda q=\left[q\left[\frac{w_{1}}{\alpha_{1}}\right]^{\alpha_{1}}\left[\frac{w_{2}}{\alpha_{2}}\right]^{\alpha_{2}}\right]^{\frac{1}{\alpha_{1}+\alpha_{2}}} \tag{2.8}
\end{equation*}
$$

So, using (2.7) and (2.8), the corresponding cost function is

$$
\begin{aligned}
C(\mathbf{w}, q) & =w_{1} z_{1}^{*}+w_{2} z_{2}^{*} \\
& =\left[\alpha_{1}+\alpha_{2}\right]\left[q\left[\frac{w_{1}}{\alpha_{1}}\right]^{\alpha_{1}}\left[\frac{w_{2}}{\alpha_{2}}\right]^{\alpha_{2}}\right]^{\frac{1}{\alpha_{1}+\alpha_{2}}} .
\end{aligned}
$$

4. Using the production functions we have, for any $t>0$:

$$
\phi(t \mathbf{z})=\left[t z_{1}\right]^{\alpha_{1}}\left[t z_{2}\right]^{\alpha_{2}}=t^{\alpha_{1}+\alpha_{2}} \phi(\mathbf{z}) .
$$

Therefore we have DRTS/CRTS/IRTS according as $\alpha_{1}+\alpha_{2} \lesseqgtr 1$. If we look at average cost as a function of q we find that AC is increasing/constant/decreasing in q according as $\alpha_{1}+\alpha_{2} \lesseqgtr 1$.
5. Using (2.7) and (2.8) conditional demand functions are

$$
\begin{aligned}
& H^{1}(\mathbf{w}, q)=\left[q\left[\frac{\alpha_{1} w_{2}}{\alpha_{2} w_{1}}\right]^{\alpha_{2}}\right]^{\frac{1}{\alpha_{1}+\alpha_{2}}} \\
& H^{2}(\mathbf{w}, q)=\left[q\left[\frac{\alpha_{2} w_{1}}{\alpha_{1} w_{2}}\right]^{\alpha_{1}}\right]^{\frac{1}{\alpha_{1}+\alpha_{2}}}
\end{aligned}
$$

and are smooth with respect to input prices.

Exercise 2.5 Suppose a firm's production function has the Leontief form

$$
q=\min \left\{\frac{z_{1}}{\alpha_{1}}, \frac{z_{2}}{\alpha_{2}}\right\}
$$

where the notation is the same as in Exercise 2.4.

1. Draw the isoquants.
2. For a given level of output identify the cost-minimising input combination(s) on the diagram.
3. Hence write down the cost function in this case. Why would the Lagrangean method of Exercise 2.4 be inappropriate here?
4. What is the conditional input demand curve for input 1?
5. Repeat parts 1-4 for each of the two production functions

$$
\begin{aligned}
q & =\alpha_{1} z_{1}+\alpha_{2} z_{2} \\
q & =\alpha_{1} z_{1}^{2}+\alpha_{2} z_{2}^{2}
\end{aligned}
$$

Explain carefully how the solution to the cost-minimisation problem differs in these two cases.

Figure 2.8: Isoquants: Leontief

Outline Answer

1. The Isoquants are illustrated in Figure 2.8 - the so-called Leontief case,
2. If all prices are positive, we have a unique cost-minimising solution at A : to see this, draw any straight line with positive finite slope through A and take this as an isocost line; if we considered any other point B on the isoquant through A then an isocost line through B (same slope as the one through A) must lie above the one you have just drawn.

Figure 2.9: Isoquants: linear

Figure 2.10: Isoquants: non-convex to origin
3. The coordinates of the corner A are $\left(\alpha_{1} q, \alpha_{2} q\right)$ and, given \mathbf{w}, this immediately yields the minimised cost.

$$
C(\mathbf{w}, q)=w_{1} \alpha_{1} q+w_{2} \alpha_{2} q .
$$

The methods in Exercise 2.4 since the Lagrangean is not differentiable at the corner.
4. Conditional demand is constant if all prices are positive

$$
\begin{aligned}
H^{1}(\mathbf{w}, q) & =\alpha_{1} q \\
H^{2}(\mathbf{w}, q) & =\alpha_{2} q
\end{aligned}
$$

5. Given the linear case

$$
q=\alpha_{1} z_{1}+\alpha_{2} z_{2}
$$

- Isoquants are as in Figure 2.9.
- It is obvious that the solution will be either at the corner $\left(q / \alpha_{1}, 0\right)$ if $w_{1} / w_{2}<\alpha_{1} / \alpha_{2}$ or at the corner $\left(0, q / \alpha_{2}\right)$ if $w_{1} / w_{2}>\alpha_{1} / \alpha_{2}$, or otherwise anywhere on the isoquant
- This immediately shows us that minimised cost must be.

$$
C(\mathbf{w}, q)=q \min \left\{\frac{w_{1}}{\alpha_{1}}, \frac{w_{2}}{\alpha_{2}}\right\}
$$

- So conditional demand can be multivalued:

$$
\begin{aligned}
& H^{1}(\mathbf{w}, q)=\left\{\begin{array}{cc}
\frac{q}{\alpha_{1}} & \text { if } \frac{w_{1}}{w_{2}}<\frac{\alpha_{1}}{\alpha_{2}} \\
z_{1}^{*} \in\left[0, \frac{q}{\alpha_{1}}\right] & \text { if } \frac{w_{1}}{w_{2}}=\frac{\alpha_{1}}{\alpha_{2}} \\
0 & \text { if } \frac{w_{1}}{w_{2}}>\frac{\alpha_{1}}{\alpha_{2}}
\end{array}\right. \\
& H^{2}(\mathbf{w}, q)=\left\{\begin{array}{cc}
0 & \text { if } \frac{w_{1}}{w_{2}}<\frac{\alpha_{1}}{\alpha_{2}} \\
z_{2}^{*} \in\left[0, \frac{q}{\alpha_{2}}\right] & \text { if } \frac{w_{1}}{w_{2}}=\frac{\alpha_{1}}{\alpha_{2}} \\
\frac{q}{\alpha_{2}} & \text { if } \frac{w_{1}}{w_{2}}>\frac{\alpha_{1}}{\alpha_{2}}
\end{array}\right.
\end{aligned}
$$

- Case 3 is a test to see if you are awake: the isoquants are not convex to the origin: an experiment with a straight-edge to simulate an isocost line will show that it is almost like case $2-$ the solution will be either at the corner $\left(\sqrt{q / \alpha_{1}}, 0\right)$ if $w_{1} / w_{2}<\sqrt{\alpha_{1} / \alpha_{2}}$ or at the corner $\left(0, \sqrt{q / \alpha_{2}}\right)$ if $w_{1} / w_{2}>\sqrt{\alpha_{1} / \alpha_{2}}$ (but nowhere else). So the cost function is :

$$
C(\mathbf{w}, q)=\min \left\{w_{1} \sqrt{\frac{q}{\alpha_{1}}}, w_{2} \sqrt{q / \alpha_{2}}\right\}
$$

The conditional demand function is similar to, but slightly different from, the previous case:

$$
\begin{aligned}
& H^{1}(\mathbf{w}, q)=\left\{\begin{array}{cc}
\frac{q}{\alpha_{1}} & \text { if } \frac{w_{1}}{w_{2}}<\sqrt{\frac{\alpha_{1}}{\alpha_{2}}} \\
z_{1}^{*} \in\left\{0, \frac{q}{\alpha_{1}}\right\} & \text { if } \frac{w_{1}}{w_{2}}=\sqrt{\frac{\alpha_{1}}{\alpha_{2}}} \\
0 & \text { if } \frac{w_{1}}{w_{2}}>\sqrt{\frac{\alpha_{1}}{\alpha_{2}}}
\end{array}\right. \\
& H^{2}(\mathbf{w}, q)=\left\{\begin{array}{cc}
0 & \text { if } \frac{w_{1}}{w_{2}}<\sqrt{\frac{\alpha_{1}}{\alpha_{2}}} \\
z_{2}^{*} \in\left\{0, \frac{q}{\alpha_{2}}\right\} & \text { if } \frac{w_{1}}{w_{2}}=\sqrt{\frac{\alpha_{1}}{\alpha_{2}}} \\
\frac{q}{\alpha_{2}} & \text { if } \frac{w_{1}}{w_{2}}>\sqrt{\frac{\alpha_{1}}{\alpha_{2}}}
\end{array}\right.
\end{aligned}
$$

Note the discontinuity exactly at $w_{1} / w_{2}=\sqrt{\alpha_{1} / \alpha_{2}}$

Exercise 2.6 Assume the production function

$$
\phi(\mathbf{z})=\left[\alpha_{1} z_{1}^{\beta}+\alpha_{2} z_{2}^{\beta}\right]^{\frac{1}{\beta}}
$$

where z_{i} is the quantity of input i and $\alpha_{i} \geq 0,-\infty<\beta \leq 1$ are parameters. This is an example of the CES (Constant Elasticity of Substitution) production function.

1. Show that the elasticity of substitution is $\frac{1}{1-\beta}$.
2. Explain what happens to the form of the production function and the elasticity of substitution in each of the following three cases: $\beta \rightarrow-\infty, \beta \rightarrow 0$, $\beta \rightarrow 1$.
3. Relate your answer to the answers to Exercises 2.4 and 2.5.

Outline Answer

1. Differentiating the production function

$$
\phi(\mathbf{z}):=\left[\alpha_{1} z_{1}^{\beta}+\alpha_{2} z_{2}^{\beta}\right]^{\frac{1}{\beta}}
$$

it is clear that the marginal product of input i is

$$
\begin{equation*}
\phi_{i}(\mathbf{z}):=\left[\alpha_{1} z_{1}^{\beta}+\alpha_{2} z_{2}^{\beta}\right]^{\frac{1}{\beta}-1} \alpha_{i} z_{i}^{\beta-1} \tag{2.9}
\end{equation*}
$$

Therefore the MRTS is

$$
\begin{equation*}
\frac{\phi_{1}(\mathbf{z})}{\phi_{2}(\mathbf{z})}=\frac{\alpha_{1}}{\alpha_{2}}\left[\frac{z_{1}}{z_{2}}\right]^{\beta-1} \tag{2.10}
\end{equation*}
$$

which implies

$$
\log \left(\frac{z_{1}}{z_{2}}\right)=\frac{1}{1-\beta} \log \frac{\alpha_{1}}{\alpha_{2}}-\frac{1}{1-\beta} \log \left(\frac{\phi_{1}(\mathbf{z})}{\phi_{2}(\mathbf{z})}\right) .
$$

Therefore

$$
\sigma=-\frac{\partial \log \left(\frac{z_{1}}{z_{2}}\right)}{\partial \log \left(\frac{\phi_{1}(\mathbf{z})}{\phi_{2}(\mathbf{z})}\right)}=\frac{1}{1-\beta}
$$

2. Clearly $\beta \rightarrow-\infty$ yields $\sigma=0\left(\phi(z)=\min \left\{\alpha_{1} z_{1}, \alpha_{2} z_{2}\right\}\right), \beta \rightarrow 0$ yields $\sigma=1\left(\phi(z)=z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}}\right), \beta \rightarrow 1$ yields $\sigma=\infty\left(\phi(z)=\alpha_{1} z_{1}+\alpha_{2} z_{2}\right)$.
3. The case $\beta \rightarrow-\infty$ corresponds to that in part 1 of Exercise $2.5 ; \beta \rightarrow 0$. corresponds to that in Exercise 2.4; $\beta \rightarrow 1$. corresponds to that in part 5 of Exercise 2.5 .
