Exercise 2.8 For any homothetic production function show that the cost function must be expressible in the form

$$
C(\mathbf{w}, q)=a(\mathbf{w}) b(q) .
$$

Figure 2.11: Homotheticity: expansion path

Outline Answer

From the definition of homotheticity, the isoquants must look like Figure 2.11; interpreting the tangents as isocost lines it is clear from the figure that the expansion paths are rays through the origin. So, if $H^{i}(\mathbf{w}, q)$ is the demand for input i conditional on output q, the optimal input ratio

$$
\frac{H^{i}(\mathbf{w}, q)}{H^{j}(\mathbf{w}, q)}
$$

must be independent of q and so we must have

$$
\frac{H^{i}(\mathbf{w}, q)}{H^{i}\left(\mathbf{w}, q^{\prime}\right)}=\frac{H^{j}(\mathbf{w}, q)}{H^{j}\left(\mathbf{w}, q^{\prime}\right)}
$$

for any q, q^{\prime}. For this to true it is clear that the ratio $H^{i}(\mathbf{w}, q) / H^{i}\left(\mathbf{w}, q^{\prime}\right)$ must be independent of \mathbf{w}. Setting $q^{\prime}=1$ we therefore have

$$
\frac{H^{1}(\mathbf{w}, q)}{H^{1}(\mathbf{w}, 1)}=\frac{H^{2}(\mathbf{w}, q)}{H^{2}(\mathbf{w}, 1)}=\ldots=\frac{H^{m}(\mathbf{w}, q)}{H^{m}(\mathbf{w}, 1)}=b(q)
$$

and so

$$
H^{i}(\mathbf{w}, q)=b(q) H^{i}(\mathbf{w}, 1)
$$

Therefore the minimized cost is given by

$$
\begin{aligned}
C(\mathbf{w}, q) & =\sum_{i=1}^{m} w_{i} H^{i}(\mathbf{w}, q) \\
& =\sum_{i=1}^{m} w_{i} b(q) H^{i}(\mathbf{w}, 1) \\
& =b(q) \sum_{i=1}^{m} w_{i} H^{i}(\mathbf{w}, 1) \\
& =a(\mathbf{w}) b(q)
\end{aligned}
$$

where $a(\mathbf{w})=\sum_{i=1}^{m} w_{i} H^{i}(\mathbf{w}, 1)$.

Exercise 2.9 Consider the production function

$$
q=\left[\alpha_{1} z_{1}^{-1}+\alpha_{2} z_{2}^{-1}+\alpha_{3} z_{3}^{-1}\right]^{-1}
$$

1. Find the long-run cost function and sketch the long-run and short-run marginal and average cost curves and comment on their form.
2. Suppose input 3 is fixed in the short run. Repeat the analysis for the short-run case.
3. What is the elasticity of supply in the short and the long run?

Outline Answer

1. The production function is clearly homogeneous of degree 1 in all inputs - i.e. in the long run we have constant returns to scale. But CRTS implies constant average cost. So

$$
\mathrm{LRMC}=\mathrm{LRAC}=\text { constant }
$$

Their graphs will be an identical straight line.

Figure 2.12: Isoquants do not touch the axes
2. In the short run $z_{3}=\bar{z}_{3}$ so we can write the problem as the following Lagrangean

$$
\begin{equation*}
\hat{\mathcal{L}}(\mathbf{z}, \hat{\lambda})=w_{1} z_{1}+w_{2} z_{2}+\hat{\lambda}\left[q-\left[\alpha_{1} z_{1}^{-1}+\alpha_{2} z_{2}^{-1}+\alpha_{3} \bar{z}_{3}^{-1}\right]^{-1}\right] \tag{2.13}
\end{equation*}
$$

or, using a transformation of the constraint to make the manipulation easier, we can use the Lagrangean

$$
\begin{equation*}
\mathcal{L}(\mathbf{z}, \lambda)=w_{1} z_{1}+w_{2} z_{2}+\lambda\left[\alpha_{1} z_{1}^{-1}+\alpha_{2} z_{2}^{-1}-k\right] \tag{2.14}
\end{equation*}
$$

where λ is the Lagrange multiplier for the transformed constraint and

$$
\begin{equation*}
k:=q^{-1}-\alpha_{3} \bar{z}_{3}^{-1} . \tag{2.15}
\end{equation*}
$$

Note that the isoquant is

$$
z_{2}=\frac{\alpha_{2}}{k-\alpha_{1} z_{1}^{-1}}
$$

From the Figure 2.12 it is clear that the isoquants do not touch the axes and so we will have an interior solution. The first-order conditions are

$$
\begin{equation*}
w_{i}-\lambda \alpha_{i} z_{i}^{-2}=0, i=1,2 \tag{2.16}
\end{equation*}
$$

which imply

$$
\begin{equation*}
z_{i}=\sqrt{\frac{\lambda \alpha_{i}}{w_{i}}}, i=1,2 \tag{2.17}
\end{equation*}
$$

To find the conditional demand function we need to solve for λ. Using the production function and equations (2.15), (2.17) we get

$$
\begin{equation*}
k=\sum_{j=1}^{2} \alpha_{j}\left[\frac{\lambda \alpha_{j}}{w_{j}}\right]^{-1 / 2} \tag{2.18}
\end{equation*}
$$

from which we find

$$
\begin{equation*}
\sqrt{\lambda}=\frac{b}{k} \tag{2.19}
\end{equation*}
$$

where

$$
b:=\sqrt{\alpha_{1} w_{1}}+\sqrt{\alpha_{2} w_{2}} .
$$

Substituting from (2.19) into (2.17) we get minimised cost as

$$
\begin{align*}
\tilde{C}\left(\mathbf{w}, q ; \bar{z}_{3}\right) & =\sum_{i=1}^{2} w_{i} z_{i}^{*}+w_{3} \bar{z}_{3} \tag{2.20}\\
& =\frac{b^{2}}{k}+w_{3} \bar{z}_{3} \tag{2.21}\\
& =\frac{q b^{2}}{1-\alpha_{3} \bar{z}_{3}^{-1} q}+w_{3} \bar{z}_{3} . \tag{2.22}
\end{align*}
$$

Marginal cost is

$$
\begin{equation*}
\frac{b^{2}}{\left[1-\alpha_{3} \bar{z}_{3}^{-1} q\right]^{2}} \tag{2.23}
\end{equation*}
$$

and average cost is

$$
\begin{equation*}
\frac{b^{2}}{1-\alpha_{3} \bar{z}_{3}^{-1} q}+\frac{w_{3} \bar{z}_{3}}{q} . \tag{2.24}
\end{equation*}
$$

Let q be the value of q for which $\mathrm{MC}=\mathrm{AC}$ in (2.23) and (2.24) - at the minimum of AC in Figure 2.13 - and let p be the corresponding minimum value of AC. Then, using $p=\mathrm{MC}$ in $(2.2 \overline{3})$ for $p \geq p$ the short-run supply curve is given by $q^{*}=S(\mathbf{w}, p)= \begin{cases}0 & \text { if } p<\underline{p} \\ 0 \text { or } \underline{q} & \text { if } p=\underline{p} \\ q=\frac{\bar{z}_{3}}{\alpha_{3}}\left[1-\frac{b}{\sqrt{p}}\right] & \text { if } p>\underline{p}\end{cases}$
3. Differentiating the last line in the previous formula we get

$$
\frac{d \ln q}{d \ln p}=\frac{p}{q} \frac{d q}{d p}=\frac{1}{2} \frac{1}{\sqrt{p} / b-1}>0
$$

Note that the elasticity decreases with b. In the long run the supply curve coincides with the MC,AC curves and so has infinite elasticity.

Figure 2.13: Short-run marginal and average cost

Exercise 2.10 A competitive firm's output q is determined by

$$
q=z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \ldots z_{m}^{\alpha_{m}}
$$

where z_{i} is its usage of input i and $\alpha_{i}>0$ is a parameter $i=1,2, \ldots, m$. Assume that in the short run only k of the m inputs are variable.

1. Find the long-run average and marginal cost functions for this firm. Under what conditions will marginal cost rise with output?
2. Find the short-run marginal cost function.
3. Find the firm's short-run elasticity of supply. What would happen to this elasticity if k were reduced?

Outline Answer
Write the production function in the equivalent form:

$$
\begin{equation*}
\log q=\sum_{i=1}^{m} \alpha_{i} \log z_{i} \tag{2.25}
\end{equation*}
$$

The isoquant for the case $m=2$ would take the form

$$
\begin{equation*}
z_{2}=\left[q z_{1}^{-\alpha_{1}}\right]^{\frac{1}{\alpha_{2}}} \tag{2.26}
\end{equation*}
$$

which does not touch the axis for finite $\left(z_{1}, z_{2}\right)$.

1. The cost-minimisation problem can be represented as minimising the Lagrangean

$$
\begin{equation*}
\sum_{i=1}^{m} w_{i} z_{i}+\lambda\left[\log q-\sum_{i=1}^{m} \alpha_{i} \log z_{i}\right] \tag{2.27}
\end{equation*}
$$

where w_{i} is the given price of input i, and λ is the Lagrange multiplier for the modified production constraint. Given that the isoquant does not touch the axis we must have an interior solution: first-order conditions are

$$
\begin{equation*}
w_{i}-\lambda \alpha_{i} z_{i}^{-1}=0, i=1,2, . ., m \tag{2.28}
\end{equation*}
$$

which imply

$$
\begin{equation*}
z_{i}=\frac{\lambda \alpha_{i}}{w_{i}}, i=1,2, . ., m \tag{2.29}
\end{equation*}
$$

Now solve for λ. Using (2.25) and (2.29) we get

$$
\begin{gather*}
z_{i}^{\alpha_{i}}=\left[\frac{\lambda \alpha_{i}}{w_{i}}\right]^{\alpha_{i}}, i=1,2, . ., m \tag{2.30}\\
q=\prod_{i=1}^{m} z_{i}^{\alpha_{i}}=\left[\frac{\lambda}{A}\right]^{\gamma} \prod_{i=1}^{m} w_{i}^{-\alpha_{i}} \tag{2.31}
\end{gather*}
$$

where $\gamma:=\sum_{j=1}^{m} \alpha_{j}$ and $A:=\left[\prod_{i=1}^{m} \alpha_{i}^{\alpha_{i}}\right]^{-1 / \gamma}$ are constants, from which we find

$$
\begin{align*}
\lambda & =A\left[\frac{q}{\prod_{i=1}^{m} w_{i}^{-\alpha_{i}}}\right]^{1 / \gamma} \\
& =A\left[q w_{1}^{\alpha_{1}} w_{2}^{\alpha_{2}} \ldots w_{m}^{\alpha_{m}}\right]^{1 / \gamma} . \tag{2.32}
\end{align*}
$$

Substituting from (2.32) into (2.29) we get the conditional demand function:

$$
\begin{equation*}
H^{i}(\mathbf{w}, q)=z_{i}^{*}=\frac{\alpha_{i}}{w_{i}} A\left[q w_{1}^{\alpha_{1}} w_{2}^{\alpha_{2}} \ldots w_{m}^{\alpha_{m}}\right]^{1 / \gamma} \tag{2.33}
\end{equation*}
$$

and minimised cost is

$$
\begin{align*}
C(\mathbf{w}, q) & =\sum_{i=1}^{m} w_{i} z_{i}^{*}=\gamma A\left[q w_{1}^{\alpha_{1}} w_{2}^{\alpha_{2}} \ldots w_{m}^{\alpha_{m}}\right]^{1 / \gamma} \tag{2.34}\\
& =\gamma B q^{1 / \gamma} \tag{2.35}
\end{align*}
$$

where $B:=A\left[w_{1}^{\alpha_{1}} w_{2}^{\alpha_{2}} \ldots w_{m}^{\alpha_{m}}\right]^{1 / \gamma}$. It is clear from (2.35) that cost is increasing in q and increasing in w_{i} if $\alpha_{i}>0$ (it is always nondecreasing in w_{i}). Differentiating (2.35) with respect to q marginal cost is

$$
\begin{equation*}
C_{q}(\mathbf{w}, q)=B q^{\frac{1-\gamma}{\gamma}} \tag{2.36}
\end{equation*}
$$

Clearly marginal cost falls/stays constant/rises with q as $\gamma \gtreqless 1$.
2. In the short run inputs $1, \ldots, k(k \leq m)$ remain variable and the remaining inputs are fixed. In the short-run the production function can be written as

$$
\begin{equation*}
\log q=\sum_{i=1}^{k} \alpha_{i} \log z_{i}+\log \theta_{k} \tag{2.37}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta_{k}:=\exp \left(\sum_{i=k+1}^{m} \alpha_{i} \log \bar{z}_{i}\right) \tag{2.38}
\end{equation*}
$$

and \bar{z}_{i} is the arbitrary value at which input i is fixed; note that B is fixed in the short run. The general form of the Lagrangean (2.27) remains unchanged, but with q replaced by q / θ_{k} and m replaced by k. So the first-order conditions and their corollaries (2.28)-(2.32) are essentially as before, but γ and A are replaced by

$$
\begin{equation*}
\gamma_{k}:=\sum_{j=1}^{k} \alpha_{j} \tag{2.39}
\end{equation*}
$$

and $A_{k}:=\left[\prod_{i=1}^{k} \alpha_{i}^{\alpha_{i}}\right]^{-1 / \gamma_{k}}$. Hence short-run conditional demand is

$$
\begin{equation*}
\tilde{H}^{i}\left(\mathbf{w}, q ; \bar{z}_{k+1}, \ldots, \bar{z}_{m}\right)=\frac{\alpha_{i}}{w_{i}} A_{k}\left[\frac{q}{\theta_{k}} w_{1}^{\alpha_{1}} w_{2}^{\alpha_{2}} \ldots w_{k}^{\alpha_{k}}\right]^{1 / \gamma_{k}} \tag{2.40}
\end{equation*}
$$

and minimised cost in the short run is

$$
\begin{align*}
\tilde{C}\left(\mathbf{w}, q ; \bar{z}_{k+1}, \ldots, \bar{z}_{m}\right) & =\sum_{i=1}^{k} w_{i} z_{i}^{*}+c_{k} \\
& =\gamma_{k} A_{k}\left[\frac{q}{\theta_{k}} w_{1}^{\alpha_{1}} w_{2}^{\alpha_{2}} \ldots w_{k}^{\alpha_{k}}\right]^{1 / \gamma_{k}}+c_{k}(2.41) \\
& =\gamma_{k} B_{k} q^{1 / \gamma_{k}}+c_{k} \tag{2.42}
\end{align*}
$$

where

$$
\begin{equation*}
c_{k}:=\sum_{i=k+1}^{m} w_{i} \bar{z}_{i} \tag{2.43}
\end{equation*}
$$

is the fixed-cost component in the short run and $B_{k}:=A_{k}\left[w_{1}^{\alpha_{1}} w_{2}^{\alpha_{2}} \ldots w_{k}^{\alpha_{k}} / \theta_{k}\right]^{1 / \gamma_{k}}$. Differentiating (2.42) we find that short-run marginal cost is

$$
\tilde{C}_{q}\left(\mathbf{w}, q ; \bar{z}_{k+1}, \ldots, \bar{z}_{m}\right)=B_{k} q^{\frac{1-\gamma_{k}}{\gamma_{k}}}
$$

3. Using the "Marginal cost=price" condition we find

$$
\begin{equation*}
B_{k} q^{\frac{1-\gamma_{k}}{\gamma_{k}}}=p \tag{2.44}
\end{equation*}
$$

where p is the price of output so that, rearranging (2.44) the supply function is

$$
\begin{equation*}
q=S\left(\mathbf{w}, p ; \bar{z}_{k+1}, \ldots, \bar{z}_{m}\right)=\left[\frac{p}{B_{k}}\right]^{\frac{\gamma_{k}}{1-\gamma_{k}}} \tag{2.45}
\end{equation*}
$$

wherever $\mathrm{MC} \geq \mathrm{AC}$. The elasticity of (2.45) is given by

$$
\begin{equation*}
\frac{\partial \log S\left(\mathbf{w}, p ; \bar{z}_{k+1}, \ldots, \bar{z}_{m}\right)}{\partial \log p}=\frac{\gamma_{k}}{1-\gamma_{k}}>0 \tag{2.46}
\end{equation*}
$$

It is clear from (2.39) that $\gamma_{k} \geq \gamma_{k-1} \geq \gamma_{k-2} \ldots$ and so the positive supply elasticity in (2.46) must fall as k falls.

Exercise 2.11 A firm produces goods 1 and 2 using goods 3,...,5 as inputs. The production of one unit of good $i(i=1,2)$ requires at least $a_{i j}$ units of good j, ($j=3,4,5)$.

1. Assuming constant returns to scale, how much of resource j will be needed to produce q_{1} units of commodity 1?
2. For given values of q_{3}, q_{4}, q_{5} sketch the set of technologically feasible outputs of goods 1 and 2.

Outline Answer

1. To produce q_{1} units of commodity $1 a_{1 j} q_{1}$ units of resource j will be needed.

$$
q_{1} a_{1 i}+q_{2} a_{2 i} \leq R_{i} .
$$

2. The feasibility constraint for resource j is therefore going to be

$$
q_{1} a_{1 j}+q_{2} a_{2 j} \leq R_{j} .
$$

Taking into account all three resources, the feasible set is given as in Figure 2.14

Figure 2.14: Feasible set

Exercise 2.12 [see Exercise 2.4]

