
Chapter 2

The Firm

I think business is very simple. ProÖt. Loss. Take the sales, sub-
tract the costs and you get this big positive number. The math is
quite straightforward. ñ Bill Gates, US News and World Report, 15
February 1993.

2.1 Basic setting

We begin with the economic problem of the Örm, partly because an understand-
ing of this subject provides a good basis for several other topics that arise later
in the book, partly because the formal analysis of this problem is quite straight-
forward and can usually be tied into everyday experience and observation.
We will tackle the issues that arise in the microeconomic analysis of the Örm

in seven stages. The Örst four of these are as follows:

! We analyse the structure of production and introduce some basic concepts
that are useful in solving the Örmís optimisation problem.

! We solve the optimisation problem of the price-taking, proÖt-maximising
Örm. Along the way we look at the problem of cost-minimisation.

! The solution functions from the optimisation are used to characterise the
Örmís responses to market stimuli in the long and the short run.

! The analysis is extended to consider the problems confronting a multi-
product Örm.

The remaining three topics focus on the Örmís relationship with the market
and are dealt with in chapter 3.
In this chapter we will Önd in part a review of some standard results that you

may have already encountered in introductory treatments of microeconomics,
and in part introduce a framework for future analysis. I shall give a brief account
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zi amount used of input i
q amount of output
$ production function
wi price of input i
p price of output

Table 2.1: The Firm: Basic Notation

of the behaviour of a Örm under very special assumptions; we then build on this
by relaxing some of the assumptions and by showing how the main results carry
over to other interesting issues. This follows a strategy that is used throughout
the later chapters ñ set out the principles in simple cases and then move on
to consider the way the principles need to be modiÖed for more challenging
situations and for other economic settings that lend themselves to the same
type of treatment.

2.1.1 The Örm: basic ingredients

Let us introduce the three main components of the problem, the technology, the
environment, and economic motivation.

Technology

You may well be familiar with the idea of a production function. Perhaps the
form you have seen it before is as a simple one-output, two-input equation:
q = F (K;L) (ìquantity of output = a function of capital and labourî), which
is a convenient way of picking up some of the features that are essential to
analysing the behaviour of the Örm.
However, we shall express the technological possibilities for a Örm in terms

of a fundamental inequality specifying the relationship between a single output
and a vector of m inputs:

q ! $(z) (2.1)

Expression (2.1) allows for a generalisation of the idea of the production relation.
Essentially the function $ tells us the maximum amount of output q that can
be obtained from the list of inputs z := (z1; z2; ::; zm); putting the speciÖcation
of technological possibilities given in the form (2.1) allows us to:

" handle multiple inputs,

" consider the possibility of ine¢cient production.

On the second point note that if the ì=î part of (2.1) holds we shall call
production technically e¢cient ñ you cannot get any more output for the given
list of inputs z.
The particular properties of the function $ incorporate our assumptions

about the ìfacts of lifeî concerning the production technology of the Örm.
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Working with the single-product Örm makes description of the ìdirection of
productionî easy. However, sometimes we have to represent multiple outputs,
where this speciÖcation will not do ñ see section 2.5 below where we go further
still in generalising the concept of the production function.

Environment

We assume that the Örm operates in a market in which there is pure competition.
The meaning of this in the present context is simply that the Örm takes as given
a price p for its output and a list of prices w := (w1; w2; ::; wm) for each of the
m inputs respectively (mnemonic ñ think of wi as the ìwageî of input i).
Of course it may be interesting to consider forms of economic organisation

other than the market, and it may also be reasonable to introduce other con-
straints in addition to those imposed by a simple speciÖcation of market con-
ditions ñ for example the problem of ìshort-runî optimisation, or of rationing.
However, the standard competitive, price-taking model provides a solid analyt-
ical basis for a careful discussion of these other possibilities for the Örm and for
situations where a Örm has some control over the price of output p or of some
of the input prices wi.

Motivation

Almost without exception we shall assume that the objective of the Örm is to
maximise proÖts: this assumes either that the Örm is run by owner-managers
or that the Örm correctly interprets shareholdersí interests.1

Within the context of our simpliÖed model we can write down proÖts in
schematic terms as follows:

Örmís sales purchases
= ñ

proÖts revenue of inputs

More formally, we deÖne the expression for proÖts as

% := pq !
nX

i=1

wizi (2.2)

Before we go any further let us note that it seems reasonable to assume that )
in (2.1) has the property:

)(0) = 0 (2.3)

which in plain language means both that the Örm cannot make something for
nothing and that it can always decide to shut up shop, use no inputs, produce
no output, and thus make zero proÖts. Therefore we do not need to concern
ourselves with the possibility of Örms making negative proÖts (tactful name for
losses) in the proÖt-maximisation problem.2

1 What alternative to proÖt-maximisation might it be reasonable to consider?
2 In real life we come across Örms reporting losses. In what ways would our simpliÖed

model need to be extended in order to account for this phenomenon?
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Figure 2.1: Input requirement sets for four di§erent technologies

2.1.2 Properties of the production function

Let us examine more closely the production function given in (2.1) above. We

will call a particular vector of inputs a technique. It is useful to introduce two
concepts relating to the techniques available for a particular output level q:

1. Pick some arbitrary level of output q: then the input-requirement set for
the speciÖed value q is the following set of techniques:

Z(q) := fz : #(z) " qg: (2.4)

2. The q-isoquant of the production function # is the contour of # in the
space of inputs

fz : #(z) = qg: (2.5)

Clearly the q-isoquant is just the boundary of Z(q). Although you may
be familiar with the isoquant and the input requirement-set Z may seem to

be a novelty, the set Z is, in fact, useful for characterising the fundamental

properties of the production function and the consequences for the behaviour of

the optimising Örm. Certain features of shape of Z will dictate the general way
in which the Örm responds to market signals as we will see in section 2.3 below.

In a 2-input version of the model Figure 2.1 illustrates four possible shapes

of Z(q) corresponding to di§erent assumptions about the production function.
Note the following:
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! An isoquant can touch the axis if one input is not essential.

! An isoquant may have áat segments (case 2 in Figure 2.1). We can inter-
pret this as locally perfect substitutes in production.

! The convexity of Z(q) implies that production processes are, in some sense,
divisible. To see this, do the following with cases 1, 2 or 4 in Figure 2.1:
take any two vectors z0 and z00 that lie in Z(q); draw the straight line
between them; any point on this line clearly also belongs to Z(q) and such
a point can be expressed as tz0+[1" t]z00 where 0 < t < 1; what you have
established is that if the production techniques z0 and z00 are feasible for
q, then so too is a mixture of them (half one and half the other, say).3

However, this does not work everywhere in case 3 (check the part of Z
where there is a ìdentî). Here a mixture of two feasible techniques may
lie outside Z: nonconvexity implies that there is some indivisibility in the
production process.

! An isoquant may have ìkinksî or corners: (case four).

Marginal Rate of Technical Substitution

Where % is di§erentiable (i.e. at points on the isoquant other than kinks) we
shall often Önd it convenient to work with the slope of the isoquant, which is
formally deÖned as follows:

DeÖnition 2.1 The marginal rate of technical substitution of input i for input
j is given by

MRTSij :=
%j(z)

%i(z)

In this deÖnition and elsewhere we use subscripts as a shorthand for the
appropriate partial derivative. In this case %i(z) means @%(z)=@zi:
The MRTS reáects the ìrelative valueî of one input in terms of another from

the Örmís point of view. The particular value of the MRTS for inputs
!
z01 ; z

0
2

"
is

represented in Figure 2.2 by the slope at point z"; the slope of the ray through
z" represents the corresponding input ratio z2=z1 at this point.

Elasticity of substitution

We can use this idea to characterise the shape of the isoquant. Consider the
question: how responsive is the Örmís production technology to a change in this
relative valuation? This may be made precise by using the following deÖnition.

3 A Örm has o¢ces in London and New York. Fractional units of labour can be employed
in each place (part-timers can be hired) and the headquarters could be in either city. The
minimum viable o¢ce sta§ is 1 full-time employee and the minimum size of headquarters is 3
full-timers. Sketch the isoquants in this case and explain why Z(q) is not convex.
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Figure 2.2: Marginal rate of technical substitution

Figure 2.3: Low and high elasticity of substitution
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Figure 2.4: Homothetic and homogeneous functions

DeÖnition 2.2 The elasticity of substitution is

!ij := !
@ log (zj=zi)

@ log
!
%j(z)=%i(z)

" : (2.6)

Notice that !ij " 0 and that (2.6) has the simple interpretation

proportional change in input ratio

proportional change in MRTS

(in absolute terms).4 Higher values of ! mean that the production function is
more ìáexibleî in that there is a proportionately larger change in the production
technique in response to a given proportionate change in the implicit relative
valuation of the factors: Figure 2.3 illustrates isoquant maps for two cases,
where ! is low (large changes in the MRTS are associated with small changes in
the input ratio) and where ! is high (small changes in the MRTS are associated
with large changes in the input ratio).
We can build up an entire family of isoquants corresponding to all the possi-

ble values of q and there may be a wide variety of potentially interesting forms
that the resulting map might take.

Homothetic and homogenous production functions

For many purposes it is worth considering further restrictions on the function
% that have convenient interpretations. The left-hand half of Figure 2.4 illus-
trates the case of homothetic contours: each isoquant appears like a photocopied

4 Show that !ij = !ji. You may Önd the material on page 496 useful.
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enlargement; along any ray through the origin all the tangents have the same
slope so that the MRTS depends only on the relative proportions of the inputs
used in the production process. The right-hand half of Figure 2.4 illustrates
an important subcase of this family ñ homogeneous production functions ñ for
which the map looks the same but where the labelling of the contours has to
satisfy the following rule: for any scalar t > 0 and any input vector z!0:

#(tz) = tr#(z); (2.7)

where r is a positive scalar. If # (") satisÖes the property in (2.7) then it is
said to be homogeneous of degree r. Clearly the parameter r carries important
information about the way output responds to a proportionate change in all
inputs together: if r > 1, for example then doubling more inputs will more than
double output.

Returns to scale

However, homogenous functions, although very convenient analytically, are ob-
viously rather special. It is helpful to be able to classify the e§ect of changing the
scale of production more generally. This is done using the following deÖnition:

DeÖnition 2.3 The production function # exhibits

1. increasing returns to scale (IRTS) if, for any scalar t > 1:

#(tz) > t#(z) (2.8)

2. decreasing returns to scale (DRTS) if, for any scalar t > 1:

#(tz) < t#(z) (2.9)

3. constant returns to scale (CRTS) if, for any positive scalar t:

#(tz) = t#(z) (2.10)

Figures 2.5 to 2.7 illustrate production functions with two inputs and a
single output corresponding to each of these three cases. In each case the set
of points on or ìunderneathî the tent-like shape represent feasible input-output
combinations. Take a point on the surface such as the one marked in each of
the three Ögures:

# Its vertical coordinate gives the maximum amount of output that can be
produced from the input quantities represented by its (z1; z2) coordinates.

# The dotted path through this point in each Ögure is the expansion path;
this gives the output and input combinations as (z1; z2) are varied in the
same proportion (for example variations along the ray through the origin



2.1. BASIC SETTING 17

Figure 2.5: An IRTS production function

Figure 2.6: A DRTS production function
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Figure 2.7: A CRTS production function

in the 2-dimensional Figure 2.2).5 In the simple constant returns to scale

production function the expansion path is itself a ray through the origin

(Figure 2.7); in the IRTS and DRTS cases this path is clearly curved.

! The solid curve through this point in each Ögure is a contour of !; project
this contour down into the (z1; z2)-plane (the ìáoorî of the diagram) and
you get the isoquant.

Of course one could specify localised increasing returns to scale by limiting

the range of values of t for which (2.8) is true ñ likewise for decreasing or constant
returns to scale; quite a common assumption is that for small-scale production

(low values of z1 and z2) IRTS is true while for large scale operations DRTS is
true. Furthermore it is easy to check that if ! is a concave function all the sets
Z(q) are convex and returns to scale are constant or decreasing everywhere.

Marginal product

Now consider the relationship between output and one input (z1 let us say)
whilst all the other inputs are kept at some Öxed level. We could do this

in Figure 2.7, for example, by picking an arbitrary z2 value and then slicing
through the tent-shape in a plane parallel to q0z1. This would give a shape

5 In the special case of homogeneous production functions what are the values of r that
correspond to increasing/constant/decreasing returns to scale?
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Figure 2.8: Four di§erent technologies

such as the Case 1 in Figure 2.8.6 Cases 2-4 in Figure 2.8 illustrate the same
type of diagram for three other production functions.7 We can use this view of
the production function to depict another very useful concept, shown in Figure
2.9.

DeÖnition 2.4 The marginal product of input i is the derivative (where it is
deÖned) of the production function.

Of course the concept of marginal product was already implicit in the DeÖ-
nition 2.1 earlier: it represents the ìvalueî to the Örm of an input ñ measured
in terms of output.

2.2 The optimisation problem

We could now set out the Örmís objectives in the form of a standard constrained
optimisation problem. To do this we would specify a Lagrangean incorporating
proÖts (2.2), and the production constraint (2.1). However it is more illuminat-
ing to adopt a two-stage approach to solving the Örmís optimisation problem:

6 Sketch 3-D diagrams like the one above that will correspond to Cases 2 to 4 in Figure
2.8.

7 Assume constant returns to scale: then two of the four cases in Figure 2.1 correpond to
two of the four cases in Figure 2.8. Which are they? Suggest a simple formula for each of
the two production functions that would yield these forms.
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Figure 2.9: The marginal product

1. Cost Minimisation. For any speciÖed output level q, Önd the combination
of inputs that will minimise the cost of producing q for known input prices
w.

2. Output Optimisation. Once the appropriate input policy conditional upon
an arbitrary output level is known, choose the appropriate output level.

In stage 1 we notionally Öx the output level at some arbitrary level q as in
Figure 2.1; in stage 2 the output level becomes endogenous. Why go via this

roundabout route? There are two reasons. First, it neatly compartmentalises

two aspects of the Örmís activities that have an intuitive independent rationale;

for example the stage-2 problem is a self-contained topic often presented in

introductory texts. Second, the stage-1 problem is highly ìportable:î we will see

later examples of this approach to the solution of microeconomic problems that

are in e§ect just a simple translation of the Örmís cost-minimisation problem.

2.2.1 Optimisation stage 1: cost minimisation

The essence of the problem can be set out simply in terms of just two inputs:

we can represent it diagrammatically as in Figure 2.10. Two important points

to note about this diagram:

! Consider a line drawn with slope w1=w2 in this diagram. By deÖnition
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Figure 2.10: Cost minimisation

this has the equation:

w1z2 + w2z2 = constant (2.11)

In other words, all the points lying on such a line represent input combi-
nations that require the same Önancial outlay by the Örm. For this reason
such a line is known as an isocost line.

! Shift an isocost line up and cost goes up: you just change the constant on
the right-hand side of (2.11).

Intuitively the cost-minimisation problem for a given output q involves reach-
ing the lowest isocost line subject to staying within the input-requirement set
Z(q). Formally we can represent the cost-minimisation problem as that of min-
imising the Lagrangean:

L(z; &;w; q) :=
mX

i=1

wizi + & [q # '(z)] (2.12)

for some speciÖed output level q, and for given input prices w, subject to the
restrictions that zi $ 0 for every input i, where & is the Lagrange multiplier
associated with the constraint (2.1).
Di§erentiating (2.12) with respect to zi we can derive the Örst-order con-

ditions (FOC) for a minimum . Let z! denote the vector of cost-minimising
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inputs that emerges in the solution to (2.12); if input i is used in strictly posi-
tive amounts at the optimum then the FOC implies:

"!#i(z
!) = wi (2.13)

More generally we have:
"!#i(z

!) ! wi (2.14)

for every i where the ì<î part applies only if z!i = 0. Likewise, di§erentiating
(2.12) with respect to ", we would Önd

q = #(z!): (2.15)

The general condition for a maximum is actually

q ! #(z!): (2.16)

where the ì<î part applies only if "! = 0. However, conditions (2.13, 2.14)
imply that the Lagrange multiplier "! must be positive at the optimum,8 and
so we actually do have (2.15) ñ production must be technically e¢cient.9 From
all of this we can deduce that if cost-minimisation requires a positive amount
of input i then for any other input j:10

#j(z
!)

#i(z
!)
!
wj
wi

(2.17)

with equality in (2.17) if input j is also used in positive amounts. So in the case
where cost-minimising amounts of both inputs are positive we have:

input
MRTS = price

ratio

Drawing all these remarks together we have established the following result:

Theorem 2.1 (Proporties of the minimum-cost solution) (a) The cost-
minimising output under perfect competition is technically e¢cient. (b) For
any two inputs, i; j purchased in positive amounts MRTSij must equal the input
price ratio wj=wi. (c) If i is an input that is purchased, and j is an input that
is not purchased then MRTSij will be less than or equal to the input price ratio
wj=wi.

8 Explain why this implies that !! must be positive in non-trivial cases.
9 Provide an intuitive argument to show (2.15). Hint: Suppose that at z! the strict

inequality part of (2.1) were true; show that you could then Önd a feasible input vector that
is cheaper for the Örm.
10 (a) Draw a Ögure illustrating the corner solution in (b) Interpret this Örst-order condition

using the concept of the Örmís ìrelative valueî of one input in terms of another from the Örmís
point of view (see page 13) (i) in the case where ì<î holds in (2.17), (ii) in the case where
ì=î holds in (2.17)
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As the earlier discussion implies, the solution may be at a corner, and it may

not be unique: this all depends on the shape of the input-requirement set Z(q),
as we will see later.

We can express the inputs that satisfy (2.15) and (2.17) in terms of the

speciÖed output level q and the input-price vectorw. We shall write this solution
as follows:

z!i = H
i(w; q) (2.18)

for inputs i = 1; :::;m. Think of the relationship Hi
as the conditional demand

for input i ñ demand that is conditional upon the level q. We shall discuss a
number of aspects of this relationship ñ in particular the conditions under which

Hi
is a genuine single-valued function ñ after we have considered some other

important features of the optimum (but you have to wait until chapter 4 on the

consumer to see why the letter H is used...).

2.2.2 The cost function

We can also write the minimised cost that is the solution to (2.12) as a function

of q and w. This will prove to be a valuable concept that has applications not
only throughout the rest of our discussion of the theory of the Örm, but also in

other areas of economic theory, such as consumer optimisation.

DeÖnition 2.5 The Örmís cost function is a real-valued function C of input
prices and the output level such that:

C(w; q) := min
fz#0;#(z)#qg

mX

i=1

wizi (2.19)

=
mX

i=1

wiH
i(w; q) (2.20)

The meaning of the cost function is as follows. Given a speciÖed value for

the price of each input and for the level of output, what is the minimum outlay

that the Örm requires in order to purchase the inputs? Because the function

C is derived from a process of cost minimisation, it possesses a number of very

useful properties.

First, C must be strictly increasing in at least one of the input prices and, if
the production function is continuous, C must be strictly increasing in output

too: if this were not so then you could either use less of all inputs to get the

same level of output, or get more output for the same expenditure on inputs;

either way, you clearly would not be at a cost-minimising point. For much the

same sort of reason we can see that C cannot be decreasing in any of the wi.
11

Second, we can see from (2.17) that a 10 percent increase in both input

prices w1 and w2 would not change the optimal input levels z
!
i and z

!
2 ; so by

how much would the minimised cost, w1z
!
1 + w2z

!
2 have increased? Obviously

11 C could be constant in some of the wi. Why?
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Figure 2.11: Cost and input price

10 percent. The argument easily extends to m inputs and an arbitrary rescaling
of all input prices.
Third, the cost function must be concave in prices, as illustrated by the one-

input snapshot that is illustrated in Figure 2.11: note that this a general result
and does not depend on any special properties of the production function ".12

Fourth, imagine that you are employing a thousand hours of labour at the
cost-minimising point: by how much would your Örmís costs increase if there
was in inÖnitesimal increase in the wage paid to labour (say one penny an
hour)? By how much would your costs have gone up had you been employing
1200 hundred units of labour at the cost-minimising point? 1200 pence? If your
intuition is sharp you should have spotted that the rate of increase of cost with
respect to input price equals the amount of units of that input that you employ
at the optimum ñ a property of the cost function that is known as Shephardís
Lemma.13

All these features can be summarised as follows (a proof is provided in Ap-
pendix C):

Theorem 2.2 (Properties of the cost function) The competitive Örmís cost
function C in (2.19) is nondecreasing and continuous in w, homogeneous of de-
gree one in w and concave in w. It is strictly increasing in at least one wi.

12 Show that the cost function must be concave using Remark A.4 in Appendix A.
13 Prove this in the special case where z! is unique and strictly positive (Hint: di§erentiate

(2.20) with respect to wi and use the Örst-order conditions).
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If the production function is continuous then C is strictly increasing in q. At
every point where the di§erential is deÖned

@C(w; q)

@wi
= z!i (2.21)

the optimal demand for input i.

For a couple of further points of interest we introduce the concepts of average
cost C(w; q)=q, and of marginal cost Cq(w; q). There is a neat and very useful
relationship between the ìreturns-to-scaleî property of the production function

) and the behaviour of average cost: decreasing returns to scale imply rising
average cost14 and vice versa; constant returns to scale imply constant average
cost. Also rising average cost implies that marginal cost is above average cost;

falling average cost implies that marginal cost is below average cost.15 Further-

more, consider the impact of an increase in the speciÖed level of output on the

cost minimisation problem. Noting that (2.15) holds at the optimum, we must

have

C(w;q) =

mX

i=1

wiz
!
i + *

! [q ! )(z!)] : (2.22)

Equation (2.22) leads to the following very useful general result on marginal

cost (see Appendix C):16

Cq(w; q) = *
! (2.23)

To see why we get this result, put the question: ìhow much would the Örm be

prepared to pay for an inÖnitesimal relaxation of the output target in (2.12) from

to q to q !4q?î The intuitive answer to this is: ìan amount that is just equal
to the extra cost of producing 4q.î In other words, in the neighbourhood of
the optimum, the appropriate ìvalueî of the constraint in (2.12) ñ the Lagrange

multiplier ñ is the marginal cost of output at q

2.2.3 Optimisation stage 2: choosing output

Using the cost function we can now set out the problem of Önding optimal

output. What we do is simply substitute C(w; q) back into (2.2). Then the
problem becomes:

max
fq#0g

pq ! C(w; q) (2.24)

14 Prove this. Hint: draw a pair of isoquants at q and tq ; for a given input-price ratio
mark in the cost-minimising input combination on the tq-isoquant and draw a ray through

this point; Önd the point where this ray intersects q-isoquant and work out the input bill at
this point; then use the deÖnition of the cost function.
15 Show this.
16 Show this in the special case where z! is unique and strictly positive (Hint: di§erentiate

(2.12) or (2.20) with respect to q and use the Örst-order conditions. Also check the results on
page 515).
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The Örst-order condition for this maximisation problem yields an optimum quan-
tity q! where

p = Cq(w; q
!) if q! > 0;

p ! Cq(w; q!) if q! = 0:

9
=

; (2.25)

In other words product price is less than or equal to marginal cost at the opti-
mum.
A necessary condition for a maximum of (2.24) is that its second derivative

with respect to q should be negative or zero in the neighbourhood of q!. Working
this out we Önd that this implies:

Cqq(w; q) " 0 (2.26)

So the optimum must be on a constant or rising portion of the marginal cost
curve. However we must also take into account the obvious restriction that no
Örm will stay in business if it makes a loss.17 Clearly this requires

pq # C(w; q)"0; (2.27)

which we may rewrite as
C(w; q)

q
! p; (2.28)

which in plain language says that average cost must not exceed product price
at the optimum.
Once again we can, in principle, express the optimal supply of output as

a function of the exogenously given variables in the problem by solving for q!

from the Örst-order condition (2.25); let us think for a moment about this supply
relationship. Suppose that there is some value of output q at which marginal
cost equals average cost. If marginal cost is strictly greater than average cost
(to the right of q),18 and if marginal cost is rising then there is a one-to-one
relationship between price p and optimal output; if marginal cost is less than
average cost (to the left of q), then the Örm will produce no output; if marginal
cost equals average cost then the Örm is indi§erent between producing q and
producing nothing at all ñ see Figure 2.12. So there may be more than one
proÖt-maximising output level for a single value of p = p. We shall develop this
point later, but for the moment, let us set it aside and return to the overall
optimisation problem of the Örm.

2.2.4 Assembling the solution

Let us now see what we get when we put together the solutions to the two
component problems, cost-minimisation and output optimisation. The main
result is as follows:

17 We have ruled out ! < 0, but what would be likely to happen in a market if ! > 0?
See page 57.
18What must be true about the production function # for such a q to exist?
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Figure 2.12: Optimal output may be multivalued

Theorem 2.3 (Marginal products and input prices) At the proÖt-maximising
technique, for any input the value of the marginal product of the input must be
no greater than the price of that input. If the input is purchased in positive
amounts, the value of its marginal product must equal its price.

The proof of this result requires no more than gathering together some points
that we already know: from expression (2.13) in the cost-minimisation problem
we know that ! times the marginal product of i must be less than or equal to
wi; our discussion of the cost function revealed that ! must be marginal cost;
from the optimisation of output problem we know that marginal cost equals
price.
Of course, now that we have obtained the solution of the combined problem

in terms of market prices p and w it would be interesting to know how the
solution might be a§ected if those prices were to change.

2.3 The Örm as a ìblack boxî

We shall now see how we can put the Örmís cost function to work: we use it to
characterise the equilibrium of the Örm in a simple way, and to analyse how the
proÖt-maximising Örm will react to changes in its market environment. We can
imagine the Örm to be like an electronic black box that accepts incoming signals
from the market in the form of prices and, as the result of some predetermined
inner workings, processes them and emits other signals in the form of quantities
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Figure 2.13: Convexity and input demands

of input demands and output supply. Our task is to characterise the inner

workings of the black box.

To do this we shall make use of the method of comparative statics, which
basically means that we see how the solution to the optimisation problem would

change if some of the market data were to be altered a little. This can do more

than just provide a simple mechanical response; it can reveal information about

the structure of the solution as well. We shall then extend our analysis of the

elementary model of the Örm to cover two important developments: its reaction

to ìshort-runî constraints, and the possibility of acting as a price-maker rather

than as a price taker.

As a simple example of the basic comparative statics method let us go back

to a point that we made earlier, that the nature of the solution to the Örmís

cost-minimisation problem would depend on the shape of the input-requirement

set Z(q). To examine the implications of alternative possible shapes for Z(q)
try the following four-part experiment:

! Take the case where Z(q) is strictly convex ñ case 1 in Figure 2.13 ñ and
use a straight-edge to represent the isocost line on the Ögure. Then, on a

separate piece of paper, plot the cost-minimising value of z1 against w1=w2,
the slope of the isocost line; you should get a continuous, downward sloping

curve. The shading of the boundary indicates the optimal z-values that
you pick up as you do the experiment.

! If you conduct the same experiment for the case where Z(q) is convex but
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not strictly convex (case 2) you should Önd that you get a similar graph,
but that there will be at least one point at which a single value of w1=w2
corresponds to an interval of values of z1.

! Thirdly, try it for the case where Z(q) is non-convex (case 3): you should
Önd a point at which a single value of w1=w2 corresponds to exactly two
values of z1: between these two z1-values there is a discontinuity in the
relationship you are plotting.

! Fourthly, try it for the ìkinked caseî: you will Önd that at a kink there
is a range of w1=w2-values for which the optimal z1 remains unchanged.
However, although there is a unique input demand for a given w1=w2 value
at the kinks, you will Önd a range of (w1=w2)-values which yield the same
input demand.19

It is useful to compare Figures 2.1 and 2.13: note that not all the bound-
ary points of Z(q) (Figure 2.1) emerge as possible solution points in the cost-
minimisation exercise (Figure 2.13) if Z(q) is nonconvex. The experiment shows
that the issue of convexity of the input-requirement set is central to the rela-
tionship between market prices and input demands. Also kinkedness of the
boundary may destroy the uniqueness of the relationship between input de-
mands and input prices. This will be put on a more formal basis in a moment;
we will Önd that these insights apply in other aspects of economic optimisation.

2.3.1 Demand and supply functions of the Örm

Let us follow up the point that emerged from the experiment, that for a suit-
ably shaped Z(q) ñ in other words a ìwell-behavedî production function & ñ
you would get a one-to-one relationship between the input price ratio and the
demand for an input, but that for other production functions multiple solu-
tions might emerge. This point ñ proved in Appendix C ñ is summarised more
formally as:

Theorem 2.4 (Firmís demand and supply functions) (a) If all input-requirement
sets are strictly convex, conditional input demand functions are always well de-
Öned and continuous for all positive input prices. (b) If the production function
is strictly concave, the supply function and input demand functions are always
well deÖned and continuous for all positive input prices.

The conditions required for the second half of this result are rather demand-
ing. To see why this is so let us recall that the ìconventionalî supply relationship
that we sketched in Figure 2.12 does not actually satisfy the requirements of
part (b). If the average cost curve is U-shaped then the Örmís supply of output
is in fact multi-valued at one point: this is point q, where p equals minimum

19 Draw a case where Z(q) is strictly convex and for which the boundary has multiple kinks.
Draw the relationship between input price and conditional input demand and check that input
demands are always uniquely deÖned.
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average cost (given p = p the Örm does not care whether it produces at q or
produces nothing at all because it makes zero proÖts either way). This means

that, strictly speaking, we have a supply correspondence rather than a supply
function (see page 487 in Appendix A for this important technical distinction).

The Örmís supply curve is discontinuous at p: there is a jump from 0 to q as
the market price increases from a level just below p to just above p. The reason
for this is simple: the left-hand branch of the U-shape (to the left of q) is a
region where there is increasing returns to scale: the production function is not

concave in this region.

Having thought about this, let us promptly ignore it for the moment and

introduce three key concepts that we shall use frequently from now on. The

Örst two are:

DeÖnition 2.6 The conditional demand functions for inputs i = 1; 2; :::;m is
a set of real-valued functions Hi of input prices and an output level such that

z!i = H
i(w; q) (2.29)

where (z!1 ; z
!
2 ; :::; z

!
m) are the cost-minimising inputs for w and q.

DeÖnition 2.7 The supply function of the competitive Örm is a real-valued
function S of prices such that

q! = S(w; p) (2.30)

where q! is the proÖt-maximising output for w and p.

Notice that Hi
must be homogeneous of degree zero in input prices w, and

that S is homogeneous of degree zero in (w; p).20 Next, stick together these two
principal solution functions that we have introduced. This then gives us the

third key concept:

DeÖnition 2.8 The unconditional demand function for input i is a real-valued
function Diof input prices and the output price such that:

z!i = D
i(w; p); (2.31)

where
Di(w; p) := Hi(w; S(w; p)): (2.32)

Equation (2.32) emphasises that conditional and unconditional demands are

just two di§erent ways of tying down the same basic concept: in the Örst case

we write the solution to the input-optimisation problem as function of input

prices and output; in the second we write it as a function of input prices and

the output price. Both versions are useful, as we shall see.

20 Use the properties of the cost function to explain why this is so.
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2.3.2 Comparative statics: the general case

Working with the supply curve is a simple example of comparative statics: we

can show how q! responds to p given the assumption of proÖt maximisation.
Suppose that we are in the interesting part of the problem where the Örm

is producing a strictly positive output. Then the points on the supply curve

must also satisfy the standard Örst-order condition ìprice = marginal costî.

Substituting in for q! from (2.30), we may thus write:

p = Cq(w; S(w; p)): (2.33)

where we have again used the subscript notation to represent the partial deriv-

ative. Di§erentiate (2.33) with respect to p and rearrange it to get:21

Sp(w; p) =
1

Cqq(w; q!)
: (2.34)

The left-hand side of (2.34) is the slope of the supply curve. The right-hand side

depends on the way marginal cost Cq increases with output q. Since we know
from the second order conditions that Cqq must be positive at the optimum, we
see immediately from this that the competitive Örm must have a rising supply

curve.

Now consider input demands using the same sort of approach. Suppose the

market price of output rises: as we know, output goes up, but what happens to

input usage? Will a shift in the demand for the product also increase demand

for, say, labour? Let us use the fundamental relationship between the two ways

of writing input demands given in equation (2.32). Di§erentiating (2.32) with

respect to p we get

Di
p(w; p) = H

i
q(w; q

!)Sp(w; p): (2.35)

So the answer to our question is not quite straightforward: a rise in p will
increase the demand for labour if and only if the term Hi

q is positive: this term is

an ìoutput e§ectî describing what would happen to conditional input demand if

the speciÖed level of output q were to be increased; the conventional assumption
is that it is positive, so that z!i would go up as output level is increased ( a
ìnormal inputî); but there are odd cases (so-called inferior inputs) where this

does not happen. We can get further insight on this if we use Shephardís Lemma

which, using (2.21) and (2.29), we may write as:

Ci(w; q) = H
i(w; q): (2.36)

Then we Önd that (2.35) can be rewritten22

Di
p(w; p) =

@Cq(w; q
!)

@wi
Sp(w; p): (2.37)

21Do the di§erentiation and show this. You may Önd a review of the ìfunction of a functionî

rule helpful ñ see section A.4.3.
22 Show this, using the basic theorem on the properties of the cost function and the fact

that the second partial di§erentials of C commute.
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So, if the cost structure is such that an increase in the wage rate would have

raised marginal cost, then we may deduce that an increase in product price

would increase the employment of labour.

Now, what would happen to the demand for input i if the market price of
input j were to alter? If the cost of paper (wj) goes up do you employ fewer
secretaries (z!i )? To address this issue, di§erentiate equation (2.32) again, this
time with respect to wj :

Di
j(w; p) = H

i
j(w; q

!) +Hi
q(w; q

!)Sj(w; p): (2.38)

We can simplify the second term on the right-hand side of this expression us-

ing the same sort of tricks as we have employed for earlier comparative-statics

exercises. Using Shephardís Lemma the term Hi
q can be put in terms of the

second derivative of the cost function; and di§erentiating (2.33) with respect to

wj we can get an expression for the required derivative of the supply function.
23

Substituting into (2.38) we Önd:

Di
j(w; p) = H

i
j(w; q

!)!
Ciq(w; q

!)Cjq(w; q
!)

Cqq(w; q!)
(2.39)

This fundamental decomposition formula for the e§ect of a price change can be

expressed as follows:

total substitution output

= +

e§ect e§ect e§ect

The Örst component, the substitution e§ect, is the response that a Örm would

make to the input-price change if it were constrained to meet a Öxed output

target. The second component, the output e§ect, gives the change in input

demand that is induced by a change in optimal output. Two nice results follow

from the decomposition formula (2.39).

First, consider the substitution term Hi
j . Because of (2.36) we can write

this term as Cij ; the cross-partial derivative of the cost function; and because
Cij = Cji (if the function is well-behaved, the order of di§erentiation does not

matter) we see immediately that Hi
j = Hj

i wherever the derivatives are well-

deÖned. In other words all the substitution terms must be symmetric.

Second, have a look at the output e§ect term in (2.39). Clearly this too is

symmetric in i and j: So since both this and the substitution term are symmetric
we must also have Di

j = Dj
i for the uncompensated demands too: the overall

cross-price e§ects are symmetric. So a rise in the price of paper would have the

same e§ect on the (ordinary) demand for secretarial hours as would a rise in

the wages of secretaries on the demand for paper.

Now let us think about the important special case where goods i and j
happen to be the same, in other words the demand-response of input i to its own

23
Do all this and derive (2.39).
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Figure 2.14: The substitution e§ect of a fall in price

price, wi. Because C is concave in w, we must have Cii ! 0 and hence Hi
i ! 0.24

In fact we can show that if $ were everywhere smooth and concave-contoured
then, for all strictly positive input price vectors, we would have Hi

i < 0: the
conditional demand for input i must be a decreasing function of its own price.
Furthermore a quick check on the decomposition formula (2.39) reveals that in
the own-price case we have:

Di
i(w; p) = H

i
i (w; q

!)"
Ciq(w; q

!)2

Cqq(w; q!)
(2.40)

We have just seen that the substitution e§ect in (2.40) is negative; so too,
evidently, is the output e§ect (the squared term and Cqq are both positive);
hence we have Di

i(w; p) ! 0.25
We can pull all this together in the following statement:

Theorem 2.5 (Input prices and demands) (a) The e§ect of an increase in
the price of input j on the conditional demand for input i equals the e§ect of
an increase in the price of input i on the conditional demand for input j; (b)
the same result holds for the unconditional input demands; (c) the e§ect of an
increase in the price of input i on the conditional demand for input i must
24 (For the mathematically inclined). Show this by using the result that a di§erentiable

concave function must have a negative-semideÖnite matrix of second partial derivatives ñ see
page 507.
25 Will the downward-sloping demand-curve also apply to consumer demand?
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Figure 2.15: Input-price fall: total e§ect

be non-positive; (d) the e§ect of an increase in the price of input i on the
unconditional demand for input i must be non-positive and greater in absolute
size than the e§ect in (c).

We can use this information to sketch the shape of the demand curves for an
input: ñ Figure 2.14 depicts the demand for input 1, conditional on a particular
output level q. It must be downward sloping, because H1

1 < 0 (Theorem 2.5).
We also know that H1(w; q) gives the marginal change in cost C(w; q) as w1
changes (Shephardís Lemma): so the change in cost (for a Öxed output q)
resulting from a change in w1 is given by the integral of H

1, which is depicted
by the shaded area in Figure 2.14.
Let us consider the full e§ect of such a fall in w1 such as that shown in Figure

2.14. It is obvious from Figure 2.14 that z1 must increase, but that is purely a
substitution e§ect. As we saw in equation (2.40) there is also an output e§ect;
let us suppose that as w1 falls the marginal cost curve in Figure 2.12 shifts
downward so that output rises (the case of a normal input):26 then the output
e§ect is obviously positive, so that the total impact of the fall in input price is
as shown in Figure 2.15.
Finally there is in this diagram a separate conditional demand curve for each

level of output: that is why two conditional demand curves are drawn in ñ one
for q! (the original output level) and one for q!! (the output level after the price

26 Notice that this reasoning implies that, for normal inputs, the ordinary demand curve is
áatter than the conditional demand curve. Does the same apply to inferior inputs?
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LONG RUN
C Cost function
Di Unconditional demand for input i
Hi Conditional demand for input i
S Supply function
SHORT RUN
~C Cost function
~Hi Conditional demand for input i

Table 2.2: The Firm: Solution Functions

fall).

2.4 The short run

The short run is a notional period in which one or more inputs are assumed to
be Öxed. We introduce it to our model by taking input m to be Öxed in the
short run although, of course, it is variable in the long run.

! Example 1: Capital Equipment.27 Take input m to be a mainframe com-
puter. At some stage the Örm has to decide how large a computer to
install. The short-run curves are then derived on the assumption of a
given size of computer, varying other inputs such as programmersí hours,
secretarial hours, consumables..

! Example 2: Employment protection. Some types of workers may be able
to negotiate long-term contracts with an employer. This section of sta§
in e§ect becomes a quasi-Öxed factor.

To see the impact of this short-run Öxity of an input, think of the behav-
iour of the proÖt-maximising Örm as an mechanism, converting market data
(prices) into supplies of output and demands for inputs. We have seen how this
mechanism works in the comparative statics manipulations that we performed
earlier on. Now suppose you tie down part of the system by imposing short-run
constraints: what would we expect to happen? Presumably this will make the
mechanism more sluggish ñ it will be less áexible in its response to changes in
the market environment. This is in fact exactly what occurs.
To see this, let us introduce a proper deÖnition of what we mean by the short

run. Suppose that the conventional cost-minimisation problem has been solved
for some speciÖed output level q by setting input demands to z1; z2; :::; zm. By

27 In what way might this be useful in representing Örmsí activities in a macroeconomic
model?
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deÖnition we have:
z1 = H

1(w; q);
z2 = H

2(w; q);
: : : : : :

zm = H
m(w; q):

9
>>=

>>;
(2.41)

Now suppose that the speciÖed output level is changed to some other value of
q, but that the Örm is constrained to keep its usage of the mth input Öxed.
Clearly it may want to alter its usage of the remaining m-1 variables; we will
Önd the following concept useful:

DeÖnition 2.9 The Örmís short-run cost function is a real-valued function ~C
of input prices, the output level, and an amount of input m such that:

~C(w; q; zm) := min
fzi"0;$(z)"q;zm=zmg

mX

i=1

wizi (2.42)

The idea of these short run costs is that they are the best that you can do
given that you are committed to an input level of zm for themth input.28 Check
this deÖnition, term by term, against the deÖnition of the Örmís cost function
in (2.19); in fact this function inherits ñ with very simple modiÖcations ñ most
of the conventional cost functionís properties. In particular we have:

~Ci(w; q; zm) = ~Hi(w; q; zm); (2.43)

where ~Hi(i = 1; :::m ! 1) is the short-run demand for input i, conditional on
output q, which emerges from the solution of the problem in (2.42).
By deÖnition of the cost function, we must have

~C(w; q; zm) " C(w; q): (2.44)

Dividing both sides of (2.44) by q, we see immediately that long-run average
cost must be less than or equal to short-run average cost. Of course, exactly at
the point q = q it is true that:

~C(w; q; zm) = C(w; q): (2.45)

and therefore, at this point, @ ~C(w; q; zm)=@zm = 0.
Let us look at the behaviour of long-run and short-run costs. What would

have happened were we to have started from a di§erent output level q? Use
(2.41) to write (2.45) as

~C(w; q;Hm(w; q)) = C(w; q) (2.46)

28 It is sometimes convenient to work with the concepts of short-run variable costs (the Örst
m ! 1 terms of the sum in the above deÖnition) and of Öxed costs, which are simply wmzm.
Show that the results which follow also work for short-run variable costs, rather than ~C, as
deÖned.
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and then di§erentiate this with respect to q so as to obtain, on simpliÖcation:29

~Cq(w; q; zm) = Cq(w; q); (2.47)

Thus, when output is at the level for the Öxed input level zm is optimal, long-
run marginal costs (Cq) equal short-run marginal costs ( ~Cq). Hence at q the
slope of the long-run average cost curve must equal the slope of the short-run
average cost curve. Using the same general method we can di§erentiate (2.45)
with respect to wi so as to obtain

~Ci(w; q; zm) = Ci(w; q); (2.48)

which implies
~Hi(w; q; zm) = H

i(w; q): (2.49)

So, in the neighbourhood of q, short-run and long-run conditional input demands
are identical.
Now let us look at the second-order conditions. Using the conditional input

demand function for input m (see equation (2.41) above) di§erentiate (2.47)
with respect to q :

~Cqq(w; q; zm) + ~Cqzm(w; q; zm)H
m
q (w; q) = Cqq(w; q); (2.50)

Rearranging (2.50) we get:30

Cqq(w; q) = ~Cqq(w; q; z) +
Hm
q (w; q)

2

Hm
m (w; q)

(2.51)

But we know that the own-price substitution e§ect Hm
m must be non-positive

(and if the production function is smooth it must be strictly negative). Hence
for a locally smooth production function we Önd:

Cqq(w; q) < ~Cqq(w; q; z) (2.52)

In other words short-run marginal cost is steeper than long-run marginal cost.
In like manner by di§erentiating (2.49) with respect to wi(i = 1; 2; :::;m!1)

we can derive31

Hi
i (w; q) >

eHi
i (w; q; z); (2.53)

so that short-run input demand is less elastic (to its own price) than long-run
input demand.
We can summarise the above results thus:

29 Explain why @ ~C=@zm = 0 at q = q, and prove (2.47).
30 Show this. Hint: substitute the conditional demand function for zm in (2.47) and dif-

ferentiate (2.47) with respect to wm, noting that @ ~Cq=@wm = 0 [Why?]; you then Önd an
expression for ~Cqzm to substitute in (2.50).
31 Show this by following through the same steps as for short-run marginal costs, using

Shephardís Lemma and the fact that the second derivatives of C commute.



38 CHAPTER 2. THE FIRM

Figure 2.16: Marginal and average costs in the short and long run

Theorem 2.6 (Short-run demand and supply) (a) Where output is at the
optimal level for the Öxed input, short-run and long-run total costs are equal.
(b) At this output level, short- and long-run marginal costs are equal. (c) At this
output level, short- and long-run input demands are equal. (d) The short-run
marginal cost curve is at least as steep as the long-run marginal cost curve. (e)
Long-run input demands are at least as elastic as short-run demands.

Figure 2.16 illustrates these results in the case where long-run marginal costs

are rising. Take the example where inputm represents the computer the Örm has
just installed: technological change may have shifted the production function so

that the Örm now wishes it had a larger computer, but for now it is committed

to the installation (q = q). The broken cost curve represents the situation with
the existing computer (allowing programmersí hours and materials to be varied

in the short run);32 the solid curve represents average costs given that computer

installation can itself be taken as a variable input.

The results may be easily generalised. Instead of just one constraint, zm =
zm, let a further input be constrained, and then another and then another.
Then we have the following for this sequential exercise:

@z!i
@wi

!!!!
no constraints

!
@z!i
@wi

!!!!
one constraint

!
@z!i
@wi

!!!!
two constraints

! ::: (2.54)

32 Draw in on this diagram the short-run cost curves given that a computer system of ideal

size had been installed.
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a result which makes the ìshort runî as short as you like.

Example 2.1 A classic study of US airlines (Eads et al. 1969) modelled long
run costs as

C(w; q) = Cf + k
0q

1
!w1

#1
!w2

#2
!

(2.55)

where q is an index of airline output,Cf is the cost of fuel (separately estimated),
w1 is the price of labour other than pilots and copilots and w2 is the price of pilots
and copilots: the &s are parameters to be estimated econometrically, ' = &1+&2,
and k0 is also a function of the &s. Di§erentiate (2.55) with respect to w1 we
get

z"i = H
1(w; q) =

&1k

'
q

1
!w1

#i!1
!

#2
! (2.56)

In other words the (long-run) conditional demand for labour of type 1 is given
by the log-linear equation:

log(z"i ) = *0 + *1 log(w1) + *2 log(w2)! ' log(q) (2.57)

Eads et al. (1969) assumed that in the short run pilots and copilots are a Öxed
factor (try sacking them!). The short-run cost function is then

~C (w; q; z2) = Cf + kq
1
#1 w1z

##2=#1
2 (2.58)

Di§erentiating this with respect to w1 we get the short-run demand for non-pilot
labour which will also be log-linear. Try it.

2.5 The multiproduct Örm

Clearly the assumption that the Örm produces but a single output is rather

limiting. To try to put this matter right we need another way of represent-

ing production possibilities. A method that is particularly convenient in the

multiproduct case involves introducing one new concept ñ that of net output.
Net outputs subsume both inputs and outputs using a natural sign convention

under which outputs are measured in the positive direction (qi > 0), and inputs
negatively (qi < 0).
Suppose there are n goods in the economy: the net output vector q :=

(q1; :::; qn) for the Örm summarises all the Örmsí activities in the outside world.

The Örmís non-zero amounts of output or input for each good can be described

according to the above sign convention; irrelevant goods, or pure intermediate

goods can be ignored (qi = 0). The production constraint33 corresponding to
(2.1) can be written

+(q) " 0 (2.59)

where the function + is nondecreasing34 in each of the qi. A sectional snapshot
of the multiproduct Örmís production function is given in Figure 2.17: this

33
Express the single-output production function (2.1) in this notation.

34
Explain why it makes economic sense for ! to be a non-decreasing function in each

component, whether it be an input or an output.
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Figure 2.17: Firmís transformation curve

shows the production possibilities of two outputs that are potentially produced
by the Örm (of course the exact form of this snapshot depends on the values
of the other components of the net-output vector ñ dimensions 3; 4; :::; n). The
shaded set depicts the net-output vectors that satisfy (2.59); the boundary of
this set is known as the transformation curve.
There are obvious counterparts of assumptions about the single-output pro-

duction function (see section 2.1.2 above) that can be easily established for #.
Many of the standard concepts such as MRTS, marginal products and returns
to scale35 carry over straightforwardly to the multiproduct case: for the Örst
two of these concepts the trick is usually to identify the appropriate contour
of #. Obviously we have skated over these issues rather rapidly: we will have
much more to say about them in chapter 6.
One important new concept can be deÖned wherever the production function

is di§erentiable:

DeÖnition 2.10 The marginal rate of transformation of (net) output i into
(net) output j is given by

MRTij :=
#j(q)

#i(q)

35 How would constant returns to scale be expressed in terms of the multi-output production
function ! (!)?
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The MRT is the Örmís trade-o§ or marginal valuation of a pair of goods ñ
for example, the rate at which the Örm would have to give up of one output in
order to produce more of another. It has a central rÙle to play in characterising
market equilibrium (this is dealt with in chapters 6 and 7) and the e¢ciency of
the allocation of goods and resources in an economy (chapter 9). Notice that
the MRTS in deÖnition 2.1 can be seen as a special case of deÖnition 2.10 where
goods i and j are both inputs.
One of the advantages of the net-output approach is that one has a particu-

larly convenient expression for proÖts. To see this, imagine that for a particular
Örm the goods are labelled so that 1; :::;m are unambiguously inputs, goods
m+1; :::; r are are either intermediate goods or irrelevant, and goods r+1; :::; n
are unambiguously outputs (the labelling of goods is arbitrary, so we can always
do this). The total value of inputs is given by:

cost =
mX

i=1

pi [!qi] (2.60)

where the term !qi is a positive number (because qi is negative for inputs, under
the convention); this is the absolute amount used of input i. The value of the
outputs from the Örm is obviously

revenue =
nX

i=r+1

piqi: (2.61)

So, subtracting (2.60) from (2.61) and noting that the valuation of goods m +
1; :::; r is zero (because here all the qi values are zero) we Önd that

profits =
nX

i=1

piqi: (2.62)

The diagrammatic representation of proÖts works in just the same way as
the diagrammatic representation of costs in Figure 2.10, but in the opposite
direction ñ see the set of parallel isoproÖt lines with slope !p1=p2 in Figure 2.18
that are the counterparts to the isocost lines in Figure 2.10. The Örmís optimi-
sation problem36 then requires a solution to the constrained-maximum problem
ìmaximise (2.62) subject to the feasibility condition (2.59).î Intuitively this in-
volves reaching the highest isoproÖt line in Figure 2.18 subject to remaining in
the technologically feasible set (shaded in the Ögure). The method for solving
this is in e§ect a modiÖcation of the cost-minimisation problem that we carried
out for a Öxed single output and a vector of m variable inputs in section 2.2.1.
Formally we can represent this problem as that of maximising the Lagrangean:

L(q; +;p) :=
nX

i=1

piqi ! +*(q) (2.63)

36 Re-express condition (2.27) for the multiproduct case.
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Figure 2.18: ProÖt maximisation: multiproduct Örm

for given prices p, where ! is the Lagrange multiplier associated with the con-
straint (2.59). Di§erentiating (2.63) with respect to qi we can derive a set of
Örst-order conditions that are the counterparts of the FOC in section 2.2.1. The
result is a set of n proÖt-maximising net outputs (q!1 ; :::; q

!
n) that satisfy the set

of FOCs. In a manner similar to section 2.2.1 we then Önd:

! If net output i is produced in non-zero amounts at the optimum then

!!#i(q
!) = pi: (2.64)

! For any pair of outputs i and j where output i is produced in positive
amounts at the optimum the FOCs imply:

#j(q
!)

#i(q!)
"
pj
pi

(2.65)

with equality in (2.65) if input i is also used in positive amounts.37

! At the vector of optimal net outputs:

#(q!) = 0: (2.66)

37 Draw a diagram to illustrate the case where ì<î holds in (2.65). Give a brief verbal
interpretation of the optimum.
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So, once again we Önd that production is technically e¢cient and, in the

case where proÖt-maximising amounts of both outputs are positive, we have the

rule of thumb:
output

MRT = price

ratio

:

Furthermore the result of this optimisation process is another solution func-

tion as follows:

DeÖnition 2.11 The Örmís proÖt function is a real-valued function ! of net
output prices such that:

!(p) := max
f!(z)"0g

nX

i=1

piqi (2.67)

Clearly the proÖt function ! is the ìtwinî of the cost function C for the

cost-minimisation problem in sections 2.2.1 and 2.2.2. So it is not surprising to

Önd that there is a theorem characterising the properties of the proÖt function

that is very similar to Theorem 2.2 for the cost function:

Theorem 2.7 (Properties of proÖt function) The competitive Örmís proÖt
function ! is nondecreasing, continuous, homogeneous of degree one and concave
in p. At every point where the di§erential is deÖned

@!(p)

@pi
= q$i (2.68)

the optimal value of net output i.

For proof see Appendix C. Equation (2.68) is usually known as Hotellingís

Lemma and is established in the same way as Shephardís Lemma. In particular

we can see that the part of the theorem about the slope of the proÖt function

in equation (2.68) is obviously just Shephardís Lemma ìturned aroundî in the

case where i is an input. Other parts of the Theorem are proved in the same

way as for Theorem 2.2.

We can push the analogy between the analysis of the multiproduct Örm

and the single product Örm in sections 2.2 and 2.3 one stage further. Clearly

the optimal net output value in (2.68) can be expressed as a function (or as a

correspondence) of the price vector:

q$i = qi(p): (2.69)

The properties of the net-output function qi(!) in (2.69) follow from those of the
single-output Örmís demand and supply functions (see for example Theorems

2.4 and 2.5 and the associated discussion). So we Önd that qi(!) is homogeneous
of degree zero, is nondecreasing in its own price pi and that, for any i and j:

@qi(p)

@pj
=
@qj(p)

@pi
: (2.70)
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Clearly the analysis in terms of the proÖt function and net outputs has an

attractive elegance. However it is not for the sake of elegance that we have

introduced it on top of the more pedestrian output-as-a-function-of-input ap-

proach. We will Önd that this approach has special advantages when we come

to model the economic system as a whole.

2.6 Summary

The elementary microeconomic model of the Örm can be constructed rigorously

and informatively with rather few ingredients. Perhaps the hardest part is to

decide what the appropriate assumptions are that should be imposed on the

production function that determines the Örmís technological constraints.

The fundamental economic problem of the competitive Örm can be usefully

broken down into two subproblems: that of minimising the cost of inputs for a

given output and that of Önding the proÖt-maximising output, given that input

combinations have already been optimally selected for each output level. Each

of these subproblems gives rise to some intuitively appealing rules of thumb such

as ìMRTS = input price ratioî for the Örst subproblem and ìprice = marginal

costî for the second subproblem.

Changing the model by introducing side constraints enables us to derive

a modiÖed solution function (the short-run cost function) and a collection of

modiÖed response functions. We get the common-sense result that the more of

these side constraints there are, the less áexible is the Örmís response to changes

in signals from the market.

The elementary model of the Örm can usefully be generalised by what amounts

to little more than a relabelling trick. Outputs and inputs are replaced by the

concept of net output. This trick is an important step for the future development
of the production model in chapters 6 and onwards.

2.7 Reading notes

On the mathematical modelling of production see Fuss and McFadden (1980).

The classic references that introduced the cost function and the proÖt function

are Hotelling (1932) and Shephard (1953). See also Samuelson (1983) chapters

III and IV.

2.8 Exercises

2.1 Suppose that a unit of output q can be produced by any of the following
combinations of inputs

z1 =

!
0:2
0:5

"
; z2 =

!
0:3
0:2

"
; z3 =

!
0:5
0:1

"

1. Construct the isoquant for q = 1.
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2. Assuming constant returns to scale, construct the isoquant for q = 2.

3. If the technique z4 = [0:25; 0:5] were also available would it be included in
the isoquant for q = 1?

2.2 A Örm uses two inputs in the production of a single good. The input

requirements per unit of output for a number of alternative techniques are given

by the following table:

Process 1 2 3 4 5 6

Input 1 9 15 7 1 3 4

Input 2 4 2 6 10 9 7

The Örm has exactly 140 units of input 1 and 410 units of input 2 at its disposal.

1. Discuss the concepts of technological and economic e¢ciency with refer-

ence to this example.

2. Describe the optimal production strategy for the Örm.

3. Would the Örm prefer 10 extra units of input 1 or 20 extra units of input

2?

2.3 Consider the following structure of the cost function: C(w; 0) = 0; Cq(w; q) =
int(q) where int(x) is the smallest integer greater than or equal to x. Sketch to-
tal, average and marginal cost curves.

2.4 Draw the isoquants and Önd the cost function corresponding to each of the
following production functions:

Case A : q = z"11 z
"2
2

Case B : q = '1z1 + '2z2

Case C : q = '1z
2
1 + '2z

2
2

Case D : q = min

!
z1
'1
;
z2
'2

"
:

where q is output, z1 and z2 are inputs, '1 and '2 are positive constants. [Hint:
think about cases D and B Örst; make good use of the diagrams to help you Önd

minimum cost.]

1. Explain what the returns to scale are in each of the above cases using the

production function and then the cost function. [Hint: check the result on

page 25 to verify your answers]

2. Discuss the elasticity of substitution and the conditional demand for inputs

in each of the above cases.
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2.5 Assume the production function

!(z) =
h
"1z

!
1 + "2z

!
2

i 1
!

where zi is the quantity of input i and "i ! 0 , "1 < & $ 1 are parameters.
This is an example of the CES (Constant Elasticity of Substitution) production
function.

1. Show that the elasticity of substitution is 1
1!! .

2. Explain what happens to the form of the production function and the elas-
ticity of substitution in each of the following three cases: & ! "1, & ! 0,
& ! 1.

2.6 For a homothetic production function show that the cost function must be
expressible in the form

C (w; q) = a (w) b (q) :

2.7 For the CES function in Exercise 2.5 Önd H1(w; q), the conditional de-
mand for good 1, for the case where & 6= 0; 1. Verify that it is decreasing in w1
and homogeneous of degree 0 in (w1,w2).

2.8 Consider the production function

q =
#
"1z

!1
1 + "2z

!1
2 + "3z

!1
3

$!1

1. Find the long-run cost function and sketch the long-run and short-run
marginal and average cost curves and comment on their form.

2. Suppose input 3 is Öxed in the short run. Repeat the analysis for the
short-run case.

3. What is the elasticity of supply in the short and the long run?

2.9 A competitive Örmís output q is determined by

q = z#11 z
#2
2 :::z

#m
m

where zi is its usage of input i and "i > 0 is a parameter i = 1; 2; :::;m. Assume
that in the short run only k of the m inputs are variable.

1. Find the long-run average and marginal cost functions for this Örm. Under
what conditions will marginal cost rise with output?

2. Find the short-run marginal cost function.

3. Find the Örmís short-run elasticity of supply. What would happen to this
elasticity if k were reduced?
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2.10 A Örm produces goods 1 and 2 using goods 3,...,5 as inputs. The pro-
duction of one unit of good i (i = 1; 2) requires at least aij units of good j, (
j = 3; 4; 5).

1. Assuming constant returns to scale, how much of resource j will be needed
to produce qi units of commodity 1?

2. For given values of q3; q4; q5 sketch the set of technologically feasible out-
puts of goods 1 and 2.

2.11 A Örm produces goods 1 and 2 uses labour (good 3) as input subject to
the production constraint

[q1]
2
+ [q2]

2
+Aq3 ! 0

where qi is net output of good i and A is a positive constant. Draw the trans-
formation curve for goods 1 and 2. What would happen to this transformation
curve if the constant A had a larger value?
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