
Chapter 10

Strategic Behaviour

You know my methods [Watson]. Apply them. ñ Sherlock Holmes
(Sir Arthur Conan Doyle: The Sign of Four.)

10.1 Introduction

In this chapter we focus on the conáict and cooperation that are fundamental
to microeconomic problems. The principles of economic analysis that we will
develop will provide a basis for the discussion of chapters 11 and 12 and provide
essential tools for the wider study of microeconomics. Why a change in the
direction of analysis?
Our analysis of strategic behaviour in economics focuses on the theory of

games. Game theory is an important subject in its own right and it is impossible
to do it justice within a chapter or so. Here we use it as a further powerful
analytical tool. The methodology that we will introduce in this chapter o§ers
new insights on concepts and techniques we have discussed earlier including the
speciÖcation of the optimisation process and the nature of equilibrium. The
logical processes may require some mental adjustment in order to grasp the
methods involved. But, having mastered the methods, one can apply them ñ
Sherlock Holmes style ñ to a wide variety of models and problems.
The chapter covers the topics in strategic behaviour by grouping them into

three broad areas as follows:

! The essential building blocks. In sections 10.2 and 10.3 we review some
of the ideas that were taken for granted in the case of perfect markets
(chapters 2ñ7) and rethink the notion of equilibrium. Section 10.4 applies
these concepts to industrial organisation.

! Time. In section 10.5 we examine how the sequencing of decisions in
strategic interactions will a§ect notions of rationality and equilibrium.
Section 10.6 examines these principles in the context of market structure.
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! Uncertainty. In section 10.7 we introduce some of the issues raised in
chapter 8 to the context of strategic interaction. The resulting models are

quite rich and the analysis here is continued into chapter 11.

10.2 Games ñ basic concepts

Many of the concepts and methods of game theory are quite intuitive but,

in order to avoid ambiguity, let us set run through a preliminary list of its

constituent parts and note those that will require fuller treatment.

10.2.1 Players, rules and payo§s

The literature o§ers several alternative thumbnail sketches of the elementary

ingredients of a game. The following four-part summary has claim to be a

consensus approach:

Players

The ìplayersî are the individual entities that are involved in the economic prob-

lem represented by the game. We will take these to be economic agents such as

Örms, households or the government. But occasionally one needs to extend the

set of players in games that involve an element of exogenous uncertainty. It can

be convenient to treat the random elements of the game as the actions of an

extra player known as ìNature,î a kind of invisible bogeyman rolling the dice

behind the scenes.

Rules of play

The rules of the game focus on moves or actions of the players. The concept of
ìactionî is a wide-ranging idea covering, for example, the consumption choices

made by households, the output decisions of Örms, level of taxes...

In a parlour game it is clearly speciÖed what moves each player can legally

make at each stage of the game. For a well-speciÖed game in microeconomics

this must obviously be done too. But more is involved: in both parlour games

and economic problems: the information that is available at the point of each
move can be crucial to the speciÖcation of the game. To illustrate, there is a

variant of chess known as Kriegsspiel, in which the players can see their own

pieces, but not those of their opponent; kings, queens, pawns and so on all work

in the same way, but the rules of the game obviously become fundamentally

di§erent from ordinary chess in the light of this di§erence in information.

Determination of the outcome

For each set of actions or moves (including moves by ìNatureî to cover the

rÙle of uncertainty) there is a speciÖc outcome that is then determined almost

mechanistically. The outcome could be deÖned in terms in terms of lists of
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outputs, baskets of goods or other economic quantities. It could be something as

simple as the answer to the question ìwho wins?î It is given economic meaning

by evaluation in terms of payo§s.

Payo§s

The playersí objectives (utility, proÖts,...) are just as we have introduced them

in earlier chapters. As previously we have to be careful to distinguish cases

where the payo§s can be treated as purely ordinal concepts (utility in chapter

4) from those where they have cardinal signiÖcance (proÖts in chapter 2 or

ìfelicityî in chapter 8).

These basic ingredients collectively permit a description of what the game

is about, but not how it is to be played. To see what more is involved we have

to examine some of the gameís ingredients more closely: we particularly need

to consider the rÙle of information.

10.2.2 Information and Beliefs

Uncertainty and progressively changing information can greatly ináuence the

possible outcomes of a game: simply turning over cards in an elementary two-

person card game or in solitaire is enough to convince one of that. However more

is involved. Take the Kriegsspiel versus ordinary chess example again: without

being a chess expert oneself, one can see that it would be useful for player A to

try to discover ways of moving his own pieces that will force player B to reveal

information about the disposition of Bís concealed pieces. What players think

that they know is going to a§ect the way that they play the game and will, in

turn, ináuence the way that information develops through time.

Because information plays such a central rÙle in the way a game can un-

fold it is important to incorporate a precise representation of this within the

microeconomic model. The key concept in characterising the situation for an

individual agent at any point in the game is the agentís information set : this is
a full description of the exact state of what is known to the agent at a particular

point in the game and will usually (although not necessarily) embody complete

recall about everything that has happened previously in the game. Obviously

the same individual will usually have a di§erent information set at di§erent

stages of the game. We will be able to make the deÖnition of the information

set precise once we have considered how to represent the game precisely ñ in

10.2.4 below.

A central idea in the discussion of ìwho knows what?î is the concept of

ìcommon knowledge.î An appeal to common knowledge is frequently a feature

of the reasoning required to analyse strategic problems and clearly has much

intuitive appeal. However, the term has a precise interpretation in the context

of games and microeconomics: a piece of information is common knowledge if

it is known by all agents and all agents know that the other agents know it...

and so on, recursively.
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For cases not covered by the comforting quasi-certainty of ìcommon knowl-

edgeî we need to introduce some concept of individual beliefs about the way the
game works. Of course in some very special cases beliefs are almost irrelevant

to the modelling of a game. But usually the use of available information in the

modelling of beliefs is an important extension to the concept of rationality that

we have employed in earlier chapters. If the individual agent were not making

a maximising choice subject to the reasonable beliefs that he has we could say

that the individual is irrational. Of course this begs the question of what consti-

tutes ìreasonableî beliefs. It also leaves open the issue of how the beliefs could

or should be updated in the light of hard information that becomes available

during the playing of the game, a point to which we return in section 10.7.

The explicit treatment of uncertainty in models of strategic behaviour and

the unfolding of information with the passage of time are important features of

microeconomic models and are considered in further detail below.

10.2.3 Strategy

The essence of the game-theoretic approach ñ and the reason for the title of this

chapter ñ is the focus on strategy. A playerís needs to be clearly distinguished
from the idea of an action. Simply stated, player hís strategy is a complete
contingent plan of action for all possible situations that could conceivably arise in

the course of a game. It can be expressed formally as follows. Take the collection

of all the information sets for agent h corresponding to reachable points within
the game: a strategy sh for agent h is a mapping from this collection to the set

of actions feasible for h.
The individualís strategy is the fundamental tool that we will use to analyse

the working and outcomes of games.

10.2.4 Representing a game

A game is usually a complex form of strategic interaction. To make sense of it

a clear method of representation is required. There are two main forms

! The game in extensive form is a kind of tree diagram. The root of the

tree is where the game starts and the beginning of each new branch ñ each

node ñ characterises the situation reached at a given moment from a given
sequence of actions by the players. At each terminal node (i.e. where

the game ends) there is a vector of payo§s, one for each agent. For now

these payo§s could be considered to be purely ordinal and need not be

comparable between di§erent agents ñ we will see below situations when

these assumptions are no longer satisfactory.

! The game in strategic form (also known as normal form) is a kind of
multidimensional spreadsheet. Each dimension (row, column, etc.) of the

spreadsheet corresponds to the set of strategies for each separate player;

each cell in the spreadsheet gives a list of numbers corresponding to the

payo§s associated with that particular combination of strategies.
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Figure 10.1: Simultaneous move, extensive form

A simple example of the two forms of representation can help here. Figure

10.1 depicts the extensive form of a game where the two players each make a

move simultaneously and then the game ends. In this case the strategies for

both agents are very simple ñ each strategy consists of exactly one action. The

top of the diagram depicts Alfís choice between the two strategies sa1 (play
[LEFT]) and sa2 (play [RIGHT]) : his choice then determines whether the left
or the right hand node in the middle of the diagram is the relevant one. In

the bottom part of the diagram Bill makes his choice (between the actions [left]

and [right]); but in view of the simultaneous move he does not, of course, know

whether the left-hand or the right-hand node is the relevant one; this lack of

clarity is depicted by the shaded box around the two nodes depicting the fact

that both nodes are in Billís information set.1 At the bottom of the Ögure is the

list of (Alf, Bill)-payo§s resulting from each
!
sai ; s

b
j

"
-combination. Table 10.1

shows the same game in strategic form. The rows correspond to Alfís choice

of strategy; the columns to Billís choice; the contents of each cell correspond

exactly to the bottom line of Figure 10.1.2

Note the way the concept of the information set is implicitly deÖned in

Figure 10.1. If the agent knows for certain which node the game has reached he

1 The game could also be one where Alf moves Örst but conceals the move that he has

made: brieáy explain why.
2 Consider the game in the following table. Why might it be characterised as strategically

trivial? Assuming that both agents are rational, what is the gameís solution?

sb1 sb2
sa1 3; 3 1; 2
sa2 2; 1 0; 0
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sb1 sb2
[left] [right]

sa1 [LEFT] 2; 2 0; 3
sa2 [RIGHT] 3; 0 1; 1

Table 10.1: Simultaneous move, strategic form

has very precise information to use in making his choice, all the basket of detail
associated with the knowledge of being exactly at that node; the information set
contains just one point. If there is the possibility of more than one node being
relevant ñ if the information set contains multiple points ñ then information is
less precise. More formally we have:

DeÖnition 10.1 Agent hís information set is the set of nodes that h knows
might be the actual node, but that cannot be distinguished by direct observation.

Does it matter whether extensive form or strategic form is used? In most
cases that are relevant to microeconomic modelling the choice between the two
forms is largely a matter of expositional convenience, as long as the represen-
tation in each of the two forms has been properly done.3 However it is worth
noting that one particular strategic-form representation may correspond to more
than one extensive form representation ñ it is just that the alternative extensive-
form representations turn out to be economically equivalent in terms of the way
the game is actually played.4

10.3 Equilibrium

The players ñ economic agents ñ come to the game with their strategies: what
would constitute an equilibrium of the economic problem being represented by
the game? To address this we can draw on the understanding of equilibrium set
out in several contexts in chapters 2 to 7.
First, we introduce a concept that facilitates the deÖnition of further con-

cepts by re-using a term from chapter 9. A proÖle of strategies is a particular
collection of strategies, one for each player in the game. Write this as

[s] :=
!
s1; s2; :::

"
:

Note that we use the same [ ] notation as for allocations in chapter 7. We also
need a notation to describe the strategy being played by all those other than

3A couple want to decide on an eveningís entertainment. He prefers to go to the West End
(thereís a new play); she wants to go to the East End (dog races). If they go as a couple each
person gets utility level 2 if it is his/her preferred activity and 1 otherwise. However, for each
person the evening would be ruined if the partner were not there to share it (utility level 0).
Depict this as a game in (a) strategic form (b) extensive form.

4 Draw another extensive-form game tree that corresponds to the strategic form given in
Table 10.1.
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agent h; this is of course just the proÖle [s] with the hth component deleted, so
we express this as

[s]
!h
:=
!
s1; s2; :::; sh!1; sh+1; sh+2; :::

"
: (10.1)

In order to evaluate the outcome of the game we will write payo§s as utilities.
It makes sense to write utility as a function of strategies ñ in a kind of reduced
form. So, for a given proÖle of strategies [s], we write hís utility as

vh
#
sh; [s]

!h
$
; (10.2)

person hís utility is dependent on his own choice of strategy sh and on those of
everyone else in the game [s]!h.
Let us denote the set of all feasible strategies for agent h as Sh: this gives a

comprehensive description of what h can do and when he can do it. Then for
a given set of agents (players) we can completely diatribe a game by just two
objects, a proÖle of payo§ functions and the corresponding list of strategy sets,
as follows: !

v1; v2; :::
"
;
!
S1; S2; :::

"
(10.3)

These elementary building blocks allow us to introduce the essential concept
to grasp in any consideration of economic strategy. This is the idea of an agentís
ìbest responseî to other agentsí strategies and is deÖned as follows:

DeÖnition 10.2 The strategy ŝh is hís best response to [s]!h if

vh
#
ŝh; [s]

!h
$
! vh

#
sh; [s]

!h
$

(10.4)

for all sh 2 Sh; sh 6= ŝh or, equivalently, if

ŝh 2 argmax
sh

vh
#
sh; [s]

!h
$

(10.5)

The form (10.5) uses the ìargmaxì notation to denote the set of values of
sh that do the required maximisation job ñ see Appendix section A.7.5 for a
formal deÖnition. We could, of course, alter the deÖnition to ìstrongly bestî by
replacing the ì!î with ì>î in (10.4) in which case the set on the right-hand
side of (10.5) has just one element.
The best-response idea is indeed a logical extension of what we have assumed

about agents in earlier chapters that focused on perfect markets. There we can
see each proÖt-maximising Örm making a ìbest responseî in terms of inputs and
outputs to a ruling set of market prices; the utility-maximising consumer makes
the ìbest responseî to the market in the light of the household budget and his
or her own preferences. But now, instead of the sharp information about market
conditions the individual agent has to form a view as to what the consequences
will be of his own actions as they are observed and interpreted by other agents.
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Contained within the concept of DeÖnition 10.2, there is a very special case
that deserves recognition in its own right. A dominant strategy is one that
remains a best-response strategy whatever the actions of the other players in
the game: there is a dominant strategy for agent h if ŝh in (10.5) is actually
independent of [s]!h. Of course in many interesting cases dominant strategies
just do not exist ñ but they are of particular interest in certain important
applications as we will see in chapter 12.
The idea of the best response leads us on to the fundamental concept of

equilibrium of a game.

DeÖnition 10.3 A Nash equilibrium is a proÖle of strategies [s"] such that, for
all agents h:

s"h 2 argmax
sh

vh
!
sh; [s"]

!h
"

(10.6)

The plain language interpretation of this is as follows. The Nash equilibrium
is a situation where everyone is making the best response to everyone else. No
agent has an incentive to deviate from his strategy given that all the other
agents do not deviate from their policy.
Finding an equilibrium in the kind of uncomplicated games that we have

used thus far can be quite easy. The method essentially follows Sherlock Holmesí
dictum ìwhen you have eliminated the impossible, whatever remains, however
improbable, must be the truth.î So indeed one can often Önd equilibrium strate-
gies through a process of simple elimination ñ two examples of this are given in
Exercises 10.1 and 10.2. However, in richer models the solution method can be
much less straightforward.
Furthermore, although the Nash equilibrium is the main plank on which our

approach to strategic behaviour is based we ought to take immediate note of
three serious di¢culties that are frequently encountered in applying the Nash
concept to microeconomic and other problems. These di¢culties are handled in
10.3.1 to 10.3.2.

10.3.1 Multiple equilibria

In many interesting economic cases there is more than one Nash equilibrium.
For example, in Table 10.2 both

#
sa1 ; s

b
1

$
and

#
sa2 ; s

b
2

$
are equilibria. Clearly the

former generates outcomes that Pareto-dominate the latter but, as far as the
Nash concept is concerned, each is equally valid as an equilibrium outcome of
the game. The second example, in Table 10.3, appears more problematic: the
strategy proÖles

#
sa1 ; s

b
2

$
and

#
sa1 ; s

b
2

$
(yielding payo§s (3; 1) and (1; 3) respec-

tively) are both Nash equilibria: in contrast to the previous example they are
the (only) unequal outcomes of the game ñ either Alf is exalted and Bill ends
in near despair, or vice versa.
So, in each game there are two equilibria: how to choose between them? In

some cases the economic context will provide an answer (more on this below);
but the Nash concept by itself is of no help.
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sb1 sb2
sa1 3; 3 1; 0
sa2 0; 1 2; 2

Table 10.2: Multiple equilibria 1

sb1 sb2
sa1 2; 2 1; 3
sa2 3; 1 0; 0

Table 10.3: Multiple equilibria 2

10.3.2 E¢ciency

The terminology ìbest responseî that was used to underpin the Nash equilib-

rium concept should be treated with caution ñ ìbestî in what sense? If we

are tempted to reply ìbest in the sense that a rational agent makes the choice

that maximises his own payo§, given the environment that he is in,î then we

should be aware that rationality needs careful interpretation here. This can be

illustrated by the example just considered in Table 10.2 ñ only one of the two

equilibria is e¢cient, but both equilibria are characterised by ìbest responses.î

The point comes out even more forcefully in the next example. To set the

scene let us pose an important question about games in general ñ what is the

worst that can happen to a rational economic agent? Formally we could write

this as the minimax payo§ for agent h:

$h := min
[s]!h

!
max
sh
vh
"
sh; [s]

!h
#$
; (10.7)

Checking back to deÖnition 10.2 we see that expression enclosed in [ ] of (10.7)
means that h is making the best response to everyone elseís strategy; the ìminî
operator in (10.7) means that everyone else is trying to punish him within the

rules of the game. This minimax value plays the rÙle of reservation utility and

provides a useful reference point in judging the outcomes of games in terms of

their payo§s.

Now for the example: this is the game introduced in Figure 10.1 and Table

10.1 ñ a game form known as the Prisonerís Dilemma.5 Note Örst that there

5 Recreate the Prisonerís Dilemma from the following. Two bad guys have been arrested

and are held in separate locations. The problem for the authorities is to prove that they are

bad guys: evidence is only likely to come from the individuals themselves. So the authorities

announce to each bad guy that if he confesses and implicates the other he will get o§ with

a token sentence of 1 year while the other will go down for 20 years; if they both confess

then they each get 10 years. Both of them know, however, that if they both stay schtumm

the authorities can only get them for bad driving during the police chase: this will incur a

sentence of 2 years each.

Write the game in strategic form and show that there is a dominant strategy for each aof

the two bad guys. Find the Nash equilibrium payo§s and explain why it appears ine¢cient

from the bad guysí point of view.
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Figure 10.2: Utility possibilities: Prisonerís Dilemma

is a single Nash equilibrium at
!
sa2 ; s

b
2

"
; note second that it is ine¢cient: the

strategy proÖle
!
sa1 ; s

b
1

"
would yield higher payo§s for both agents! This is

illustrated in Figure 10.2 where the utility possibilities representing the payo§s

from the game consist of just the four dots.6 The Nash equilibrium yields

in fact the minimax outcome shown in the Ögure as the utility pair
#
#a; #b

$
.

The equilibrium is myopically and individualistically rational, by deÖnition.

However, it is arguable that the Pareto-e¢cient outcome of (3; 3) is where some
sense of group rationality ought to lead us.7

This is not just a bizarre example carefully selected in order to make a

recondite theoretical point. The Prisonerís Dilemma issue lies at the heart of

many economic questions where group interests and narrowly deÖned individual

interests do not coincide: we will discuss one important example from the Öeld

of industrial organisation in 10.4 below; another important area is introduced

in chapter 12.

Suppose that the bad guys get the opportunity to communicate and are then put back into

their separate cells: will this make a di§erence to the outcome of the game?
6Draw the same kind of diagram for the games depicted in footnote 3 (ìBattle of the

Sexesî) and in Table 10.3 (ìChickenî).
7 Suppose all of Alf ís payo§s are subjected to a given monotonically increasing transforma-

tion; and that Billís payo§s are subjected to another monotonically increasing transformation.

Show that the outcome of the game is una§ected.



10.3. EQUILIBRIUM 281

sb1 sb2
sa1 2; 2 0; 3
sa2 0; 1 1; 0

Table 10.4: No equilibrium in pure strategies

10.3.3 Existence

There may be no Nash Equilibrium at all. To see this consider the problem
depicted in strategic form in Table 10.4 (more on this in exercise 10.3). Again
it is set up so that strategies coincide with actions. In this case if Alf ( agent
a ) were to select strategy sa1 then Billís best response is to select strategy s

b
2;

but if Bill selects strategy sb2 then Alfís best response is to go for strategy s
a
2 ;

... and so on round the cycle. There is no strategy proÖle where each agent is
simultaneously making the best response to the other. What is at the bottom
of the problem and can one Önd a way round it?

A suggested solution

Consider the best response for agent a as a function of agent bís strategy, and
vice versa: it is clear that they are discontinuous. We may recall from our
previous discussion of agents in perfect markets that where the response func-
tion was discontinuous it might be that there was, strictly speaking, no market
equilibrium (see, for example, pages 53§. in chapter 3); we may also recall that
there is a common-sense argument to ìrescueî the equilibrium concept in con-
ventional cases. The query might come to mind whether a similar issue arises
with strategic models like those depicted in Table 10.4: is lack of equilibrium in
some way attributable to the discontinuity of response in this case? And is there
a similar ìrescueî argument? In the case of the Örm and the market it made
sense to appeal to a large numbers argument ñ on average the supply function
is continuous and then we know that there is a price-taking equilibrium. But
the large numbers device may not be appropriate here ñ perhaps there really
are only two players. However there is an approach that has a similar áavour.
This involves introducing an explicit probabilistic device that allows an agent
to enlarge the set of available strategies. We will see how this works in the
particular case of the game in Table 10.4 and then examine the issues that are
involved in the extra step that apparently o§ers us the solution.
Suppose that Alf announces that he will adopt strategy sa1 with probability

%a and strategy sa2 with probability 1 ! %a. Likewise Bill announces that he
will adopt strategies

!
sb1; s

b
2

"
with probabilities

!
%b; 1! %b

"
respectively. Fur-

thermore, let us take the criterion for each of the agents as being their expected
payo§ (in utility terms). Then, from Table 10.4, if Alf takes %b as given and
chooses probability %a his expected utility is8

#
3%b ! 1

$
%a + 1! %b; (10.8)

8Use Table 10.4 to derive (10.8) and (10.9) .
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Figure 10.3: Equilibrium in mixed strategy

and if Bill takes !a as given and chooses probability !b, then his expected utility
is

[1! 2!a]!b + 3!a (10.9)

We can use (10.8) to derive Alfís choice of !a as a best response to Billís
choice of !b. Clearly if !b = 1

3 the value of !
a has no impact on Alfís expected

payo§; but if !b > 1
3 then (10.8) is increasing in !

a and it would pay Alf to
push !a as high as it will go (!a = 1) ñ i.e. he would then adopt strategy sa1
with certainty; if !b < 1

3 the converse happens ñ (10.8) is then decreasing in !
a

and Alf would adopt strategy sa2 with certainty. Alfís best-response behaviour
is summarised by the correspondence %a (") in Figure 10.3 (we are being picky
here: %a is a correspondence rather than a function because it is multivalued at
the point !b = 1

3 ). The expression %
a
!
!b
"
will give the set of values of !a that

constitute Alfís best response to an announced !b.
Now think about Billís best response to Alfís chosen probability. From (10.9)

we see that his expected payo§ is increasing or decreasing in !b as !a < 1
2 or

!a > 1
2 , respectively. So, by similar reasoning to the Alf case, Billís best-

response correspondence %b (") is as depicted in Figure 10.3: for low values of
!a Bill uses strategy sb1 with certainty and for high values of !

a he adopts sb2
with certainty.
But now we can see an apparent solution staring at us from Figure 10.3. Put

the question, ìis there a probability pair such that !a 2 %a
!
!b
"
and !b 2 %b (!a)

simultaneously?î and it is clear that the pair
!
!!a; !!b

"
=
!
1
2 ;

1
3

"
does the

job exactly. If Alf and Bill respectively select exactly these probabilities when
randomising between their two strategies then each is making a best response
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Figure 10.4: Alfís pure and mixed strategies

to the other. Again we seem to have an equilibrium in the Nash sense.

To summarise the suggested resolution of the problem, we see that each

agent...

! invents his own lottery that a§ects the other agentís payo§s;

! knows and believes the probability with which the other agent will adopt
any particular strategy;

! formulates a best-response policy by maximising expected utility in the
light of that belief.

However, to make clear what is happening with this methodological devel-

opment we need to re-examine the basic concepts and their meaning.

ìMixedî strategies

First let us reÖne the description of strategies. We ought to refer to those that

have been discussed so far as pure strategies. If Sa, the set of pure strategies
for agent a, is Önite we can imagine each pure strategy as a separate radio
button that agent a can press. If in a particular game there were just three
pure strategies (three buttons) then we could depict the situation as on the left-

hand side of Figure 10.4: each of the agentís three ìbuttonsî is labelled both

with the strategy name (sai ) and with what looks like the binary code for the
button ñ (0,0,1) and so on.
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By introducing randomisation we can change the whole the idea of strategies

at a stroke. The picture on the right-hand side of Figure 10.4 is borrowed

directly from Figure 8.18 in chapter 8. It depicts the set of lotteries amongst

the three pure strategies ñ the shaded triangle with vertices at (0; 0; 1), (0; 1; 0)
and (1; 0; 0). Conventionally each such lottery is known as a mixed strategy
and the dot in the centre of the picture denotes a mixed strategy where agent

a adopts sa1 ; s
a
2 ; s

a
3 with probabilities 0:5; 0:25; 0:25 respectively. Obviously the

idea extends readily to any situation where the number of pure strategies is

Önite:

DeÖnition 10.4 Given a Önite set Sh of pure strategies for agent h, a mixed
strategy is a probability distribution over the elements of Sh.

We can represent the mixed strategy by writing out the elements of Sh in
vector form

!
sh1 ; s

h
2 ; :::

"
and representing the probability distribution by !h :=!

'h1 ; '
h
2 ; :::

"
such that 'hi is the probability that s

h
i is the strategy that is actually

adopted by h.9

Expected utility

The extension to a mixed-strategy equilibrium also requires a new view of pay-

o§s. In previous examples of games and strategic behaviour we were able to

assume that payo§s were purely ordinal. However, by assuming that expected

utility is an appropriate criterion, we now have to impose much more structure

on individual agentsí evaluation of outcomes. In the light of the discussion of

chapter 8 (see, for example, page 188) this is not something that we should

automatically assume is appropriate.

Two results

The advantage of the extended example based on Table 10.4 is that it conve-

niently introduces a powerful result lying at the heart of the game-theoretic

approach to strategic behaviour:

Theorem 10.1 (Nash equilibrium in mixed strategies) Every game with
a Önite number of pure strategies has an equilibrium in mixed strategies.

The equilibrium in mixed strategies can include degenerate cases where

!h = (0; 0; :::; 1; :::) (by a linguistic paradox, of course, these ìdegenerateî cases
involve pure strategies only...!). It is not hard to see where the result in Theorem
10.1 comes from in view of the result on competitive equilibrium in chapter 7.

There a mapping from a convex compact set into itself was used to establish the

existence of a general competitive equilibrium using a ìÖxed pointî result (see

the discussion in Appendix section C.5.2); the mapping was induced by price

9 Introducing the possibility of mixed strategies will not change the outcome in the case of

the prisonerís dilemma game form. Show this using the same reasoning as for equations (10.8)

and (10.9) in the case of the game in Table 10.4.
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adjustments using the excess demand function; and the set in question was the

set of all normalised prices. Here we have a very similar story: the mapping is

the best-response correspondence; the set is the set of mixed strategies, which

has exactly the same form as in the general-equilibrium problem ñ compare

Figure 10.4 with Figure B.21 (page 547).

However, in reviewing why this result works the thought might occur whether

there is some other way of obtaining an existence result without using the mixed-

strategy device ñ perhaps by appealing to the same Öxed-point argument but

in a transformed problem. Indeed there is, and for a class of problems that

is especially relevant to microeconomic applications. Suppose, in contrast to

Theorem 10.1 and the examples used so far, the set of pure strategies is inÖnite:

for example a Örm might select an output level anywhere between 0 and q.
Then, in many cases we can use the following:

Theorem 10.2 (Nash equilibrium with inÖnite strategy sets ) If the game
is such that, for all agents h, the strategy sets Sh are convex, compact subsets of
Rn and the payo§ functions vh in (10.2) are continuous and quasiconcave then
the game has a Nash equilibrium in pure strategies.

Mixed strategies: assessment

A mixed strategy can be seen as a theoretical artiÖce that closes up an oth-

erwise awkward hole in the Nash-equilibrium approach to strategic behaviour.

Whether it is an appropriate device depends on speciÖc context of the micro-

economic model in which it is employed and the degree to which one Önds it

plausible that economic actors observe and understand the use of randomisation

devices as strategic tools.

This is not the last occasion on which we will Önd it necessary to reÖne the

concept of equilibrium as new features and subtleties are introduced into the

model of strategic behaviour. We will need to keep picking away at the concept

of equilibrium as the concept of the game becomes more sophisticated and more

interesting.

10.4 Application: duopoly

It is time to put the analysis to work. One of the most obvious gaps in the discus-

sion of chapter 3 was the idea that each Örm in a market might have to operate

without having a given, determinate demand function. The classic instance of

this is oligopoly ñ competition amongst the few. Each Örm has to condition its

behaviour not on the parameters of a determinate market environment on the

conjectured behaviour of the competition.

We are going to treat this by taking a very simple version of the strategic

problem. The rules of the game limit the players to exactly two ñ duopoly as a
special case of oligopoly. How the game is to be played will depend on whether

decisions about prices or decisions about quantities are to be treated as actions
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by the Örms; it will also depend on whether the Örms have to make their move
simultaneously (more on this below).

10.4.1 Competition in quantities

We will Örst examine the classic version of the Cournot model and then interpret
it in terms of the principles of strategic behaviour that we have set out earlier in
this chapter. The Cournot model assumes that Örms make decisions over output
quantities ñ the market price will be determined mechanically by market demand
ñ and they make their decisions simultaneously. As a reminder, in this simple
world we can treat these quantity decisions, the actions, as strategies.

Model speciÖcation

There are two Örms simultaneously making decisions on the production of the
same homogeneous good. So total market output of the good is given by

q = q1 + q2 (10.10)

where qf is the output of Örm f = 1; 2. There is a known market-demand
curve for this single good that can be characterised by p (!), the inverse demand
function for the market: this is just a way of saying that there is a known market
price for any given total market output q, thus:

p = p (q) :

Each Örm f has a known cost function Cf that is a function just of its own
output. So the proÖts for Örm f are:

p (q) qf " Cf
!
qf
"
: (10.11)

Optimisation

Firm 1 assumes that q2, the output of Örm 2, is a number that is exogenously
given. So, using the case f = 1 in (10.11), we can see that it is attempting to
maximise

'1
!
q1; q2

"
:= p

!
q1 + q2

"
q1 " C1

!
q1
"

(10.12)

on the assumption that q2 is a constant. This is illustrated in Figure 10.5 where
Örm 1ís objectives are represented by a family of isoproÖt contours: each contour
is in the form of an inverted U and proÖts for Örm 1 are increasing in the direction
of the arrow.10 To Önd Örm 1ís optimum given the particular assumption that
Örm 2ís output is constant at q20 just draw a horizontal line at the level q

2
0 ; this

can be repeated for any other given value of Örm 1ís output conditioned on a
particular value of q2. The graph of these points is conventionally known as
Örm 1ís reaction function, which is a slight misnomer. The reaction function

10 Give a one-line verbal explanation for each of these two assertions.
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Figure 10.5: Cournot ñ the reaction function

might be thought of as what Örm would do if it were to know of a change in the
other Örmís action ñ in simultaneous move games of course this changing about
cannot actually happen.
Formally, di§erentiating (10.12), we have the FOC:

@!1
!
q1; q2

"

@q1
= pq

!
q1 + q2

"
q1 + p

!
q1 + q2

"
! C1q

!
q1
"
" 0

= 0 if q1 > 0: (10.13)

We Önd q1 as a function of q2:

q1 = '1
!
q2
"

(10.14)

where '1 (#) is a function satisfying (10.13): this is also illustrated in Figure
10.5.11

Likewise for Örm 2 we get a relationship '2 giving q2 as a function of some
arbitrary value q1 of the output of Örm 1:

q2 = '2
!
q1
"
: (10.15)

Equilibrium and e¢ciency

Treating '1 and '2 as characterising the Örmsí best responses and combining
them, the Cournot-Nash solution is then evident ñ see the point labelled

!
q1C; q

2
C

"

11 Give a brief interpretation of the straight segment of the reaction function for q2 >.q2
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Figure 10.6: Cournot-Nash equilibrium

in Figure 10.6.12

Closer inspection of Figure 10.6 reveals a problem, however. Check the two
sets of isoproÖt contours for the two Örms (Örm 2ís contours are those that run
across the diagram in the form of a reverse C-shape): we know that any point
lying below Örm 1ís contour that passes through the Cournot-Nash equilibrium
would yield higher proÖts for Örm 1; by the same reasoning, any point to the
left of Örm 2ís contour through the Cournot-Nash outputs means higher proÖts
for Örm 2; so any point in the shaded area would mean higher proÖts for both
Örms. Both Örms would beneÖt if they were able to restrict output and move
away from the Cournot-Nash point into this zone. Clearly the Cournot-Nash
equilibrium is dominated.

Collusion

Let us tackle the problem from a di§erent direction. Suppose the two Örms
were able to join forces and pursue their common interest in proÖt: they form
a cartel. In the context of the simple model just developed we consider the
possibility that the two Örms maximise joint proÖts and split the result between
them in some agreed fashion ñ in e§ect we are treating the two Örms as though
they were a single monopoly with two separate plants.
In general the proÖts for this two-plant monopoly would be

p (q) q ! C1
!
q1
"
! C2

!
q2
"

(10.16)

12Using theorem 10.2 explain under what conditions we can be sure that the Cournot-Nash
equilibrium will exist.
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where q is given by (10.10). Di§erentiating (10.16) with respect to qf we get:

pq (q) q + p (q)! Cfq
!
qf
"
= 0 (10.17)

f = 1; 2. So joint proÖt maximisation occurs where

C1q
!
q1
"
= pq (q) q + p (q) (10.18)

C2q
!
q2
"
= pq (q) q + p (q) (10.19)

ñ marginal cost for each ìplantî (each Örm) equals overall marginal revenue.
From this pair of equations we get the joint-proÖt maximising outputs

!
q1J; q

2
J

"

illustrated in Figure 10.6.13

It is clear that the overall proÖts associated with
!
q1J; q

2
J

"
are going to be

higher than they would have been at
!
q1C; q

2
C

"
.

Defection

However, if the joint-proÖt maximising solution is to survive the two Örms would
each need an iron resolution and a sharp eye. Each would be tempted by a
possibility that is easily demonstrated in Figure 10.6. Draw a line horizontally
from

!
q1J; q

2
J

"
to the right: it is clear that along this line proÖts for Örm 1 will

increase for a while as one moves rightwards. What this means is that, if Örm 1
believes that Örm 2 is too slow-witted to observe what is happening, then Örm
1 might try to ìchiselî: increase its own output and proÖts while 2ís output
stays Öxed.14 Of course Örm 2 may have the same temptation, with the rÙles
reversed (look what happens to its proÖts on a straight line upwards from the
joint-proÖt maximising solution).
By now we can see the familiar form of the Prisonerís Dilemma emerging.

Take a stylised version of the problem we have been discussing: the two Örms
have identical cost structures and, instead of being able to choose output freely.
must select just one of two output levels: either low output or high. We can
then reconstruct Table 10.1 as Table 10.5. If both Örms choose strategy 1 [low],
then each get the joint-proÖt maximising payo§ (J, but if they both choose
strategy 2 [high] then they get only the Cournot-Nash payo§s (C < (J; if they
play di§erent strategies then the one choosing [high] gets ( > (J while the one
playing [low], gets 0 (this is just for simplicity it could be some positive value
less than (C). Likewise we can reinterpret Figure 10.1 as the extensive form of
the Cournot game in Figure 10.7.15

13The point
!
q1J ; q

2
J

"
lies on the tangency of the two iso-proÖt curves such that the tangent

passes through the origin. Show why this is so.
14What will be happening to Örm 2ís proÖts? Why?
15 There is a possibility here that was not present when we discussed the Prisonerís Dilemma

before. The payo§s can be transferred between players ñ contrast this with Figure 10.2 where
the payo§s were in utility (that may or may not be transferable) or footnote question 5 where
the payo§s were in length of prison sentence (not transferable). So Örms in a cartel could
agree on arbitrary divisions of total proÖts or on side-payments. Draw the set of possible
payo§s in the Cournot game. Show that the transferability of the payo§ makes no di§erence
to the strategic outcome.
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s21 s22
[low] [high]

s11 [low] !J;!J 0;!
s12 [high] !; 0 !C;!C

Table 10.5: Cournot model as Prisonerís Dilemma

Figure 10.7: SimpliÖed one-shot Cournot game
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10.4.2 Competition in prices

Suppose we change the rules of the game for the duopoly: Örms play by setting
prices rather than quantities: total market output is determined by the market
demand curve once the price is known. This the classic Bertrand model, adapted
slightly here to facilitate comparison with other models.

Model speciÖcation

There is a market for a single good with a known market-demand curve. We
will assume a straight-line form of this curve so that the quantity sold in this
market at price p is given by:

q =
#0 ! p
#

(10.20)

where #0 and # are positive parameters. If there were a single Örm with constant
marginal cost c operating in this market then it would announce the following
monopoly price16

pM =
#0 + c

2

However, suppose two Örms supply the market: each has zero Öxed cost and
constant marginal cost c. They compete on price as follows. Firm 1 announces
price p1 and Örm 2 announces p2; in the light of this announcement there are
three possibilities:

1. If p1 < p2 Örm 1 sells !0!p
1

! ; Örm 2 sells nothing.

2. If p1 > p2 the reverse happens

3. If p1 = p2 = p each Örm sells !0!p
2! .

Equilibrium

How will the Örms set the price? Consider the following steps of an argument:

" Clearly if one Örm charges a price above the monopoly price pM, the other
can capture the whole market by charging exactly pM.

" If one Örm charges a price p above c and at or below pM then the other
could charge a price p! ' (where ' is a small number) and again capture
the whole market.

" If one Örm charges a price c then the other Örm would not charge a price
below this (it would make a loss were it to do that); but it could exactly
match the price c, in which case we assume that the market is equally
split between the Örms.
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Figure 10.8: Bertrand model

This gives a complete characterisation of a function !f (!) for each Örm that

would enable us to conclude how it would set its own price given the price that

it anticipates would be set by the rival. In the case of Örm 1 we have

!1
!
p2
"
=

8
<

:

p2 " # if p2 > c

c if p2 # c
(10.21)

It is clear from (10.21) that there is a Nash equilibrium at (c; c).17

Taken at face value the result seems really remarkable. It appears that there

is, e§ectively, a competitive outcome with just two Örms. Contrast this with

the case of monopoly (analysed in chapter 3) where the Örm sets a price strictly

greater than marginal cost with a consequent loss of e¢ciency. However, it is

important to recognise that the rules of the game here are rather restrictive:

there are constant marginal costs and no capacity constraints; the product of

the two Örms is perceived as identical by the customers; the game is played out

simultaneously and once only ñ there is no idea of a true price war. Relaxing

any of these assumptions would generate a much richer model; but we can think

of the Bertrand model and its solution as an instructive limiting case.

16 Derive the monopolistís optimum price in this model.
17 In this case, strictly speaking, !f is not a ìbest-responseî function: why? Take a modiÖed

version of this model where for administrative reasons it is only possible to set prices as integer

values (payment is by coins in a slot machine). Marginal cost is c, an integer, and pM = 4c.
Illustrate the game in strategic form; explain why, in this modiÖed model, there is a well-
deÖned best-response function for each Örm and conÖrm that the Nash equilibrium outcome

is as above.
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sh strategy for agent h
Sh strategy set for agent h
[s]
!h strategies for all agents other than h

vh payo§ function for agent h
% best-response correspondence
!h randomisation vector for agent h
&h type of agent h

Table 10.6: Strategic behaviour: notation

10.5 Time

Until now, there has been a signiÖcant omission in the analysis of strategic
behaviour: the lack of an explicit treatment of time. However ìtimeî here has a
signiÖcance di§erent from that where it has popped up in earlier chapters. We
have seen time in its rÙle as the scope for economic áexibility (see the discussion
of the short run in section 2.4) and time as a characteristic of an economic good
(see the discussion of savings in section 5.3.2). Now we focus on time in its rÙle
of sequencing ñ the ordering of decision-making.
Taking this step means that much more becomes possible within a strategic

microeconomic model. Several intuitive concepts in analysing games just make
no sense without the introduction of time into the model. One cannot speak
about reactions, an equilibrium path, or even threats without modelling the se-
quence of decision making and carefully consideration of the rÙle of information
in that sequence.
With this temporal dimension of the strategic problem we will Önd it im-

portant to extend the use and application of the tools introduced in sections
10.2 and 10.3. The distinction between strategies and actions will emerge with
greater clarity and we will also need to reÖne the equilibrium concept. This can
be illustrated by re-examining the standard game introduced in Figure 10.1.
Suppose the two players now move in sequence ñ Alf, then Bill. The new situ-
ation is represented in extensive form in Figure 10.9. Representing the game in
strategic form is a bit more complex and less transparent; but it is done in Table
10.7. There is one small development in notation here; since Bill moves second
he has to condition his strategy on what Alf does when making the Örst move;
so we will write, for example, [left-right] for the strategy which states ìmove left
if Alf has chosen [LEFT] and move right if Alf has chosen [RIGHT].î Although
at each stage of the game there are exactly two possible actions that a player
can take (move left or move right) as far as Bill is concerned there are now four
strategies sb1; :::; s

b
4 as shown in the columns of the table.

Will sequencing the play in this way alter the likely outcome of the game? In
the case of this particular game the outcome is much the same18 but in others

18 Explain why. [hint: put yourself in Billís position and ask ìwhat would I do if Alf had
played [LEFT]? What would I do if he had played [RIGHT]?î Then put yourself in the role
of Alf and think about what is going to happen after you have made your move.]
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Figure 10.9: Sequential move ñ extensive form

sb1 sb2 sb3 sb4
[left-left] [left-right] [right-left] [right-right]

sa1 [LEFT] 2; 2 2; 2 0; 3 0; 3
sa2 [RIGHT] 3; 0 1; 1 3; 0 1; 1

Table 10.7: Simultaneous move, strategic form
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there can be a drastic change.19 However, before we treat the solution to this
properly we need to consider how the explicit introduction of time allows for
more elaborate and illuminating game structures. In doing so we will assume
that there is perfect information in that everyone knows exactly what happened
at earlier stages of the game (this assumption about information will be dropped
in section 10.7).

10.5.1 Games and subgames

Let us begin by extending the kind of extensive-form diagram depicted in Figures
10.1 and 10.1. In Figure 10.10 there is a further stage of the game, in other
words a further level of decision making with additional nodes; the payo§s after
the Önal stage of the game are given by the payo§ proÖles [!1] ; :::; [!8] where
[!i] :=

!
!ai ; !

b
i

"
gives the payo§s to Alf and Bill in terminal node i.

There is an obvious and useful way of referring to the position of nodes in
the structure: take, for example, the nodes highlighted at the bottom of the
diagram are those that can be reached from node labelled *: we can think of
these as successor nodes to *. This enables to make precise an important new
concept. A glance at the Ögure suggests that by deleting part of the tree we can
again end up with another viable game tree starting from *. Indeed it is often
true that some subsets of the extensive form game can themselves be considered
as games and it is these that are of special economic interest:

DeÖnition 10.5 A subgame of a game in extensive form is a subset of the
game such that

1. It begins at a single node;

2. it contains all the successor nodes;

3. If the game contains an information set with multiple nodes then either
all of these nodes are in the subset or none of them are.

With reference to Figure 10.11 it is clear that the successor nodes to the
node marked * form a subgame as do the successor nodes to the node marked
**. But suppose we consider a modiÖed structure as in Figure 10.11: here
Alfís choice of actions at the start of the game has been expanded (there is a
the [MID] option); furthermore there is an information set with multiple nodes
(indicated by the shaded area). Again * marks the beginning of a subgame;
but the successor nodes to the node marked # do not form a subgame.20 The
advantage of this new concept is that it permits a naturally intuitive description
of the way a game unfolds through time. Think again about the chess analogy
used earlier. Even if you are not a chess player you may have seen the kind of
chess puzzles that appear in newspapers: typically you are given the position

19 Take the model of footnote 3. What happens if the players move sequentially? What if
they have to move simultaneously?
20Explain why.
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Figure 10.10: Game and subgame (1)

Figure 10.11: Game and subgame (2)
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that a game has reached after many moves; then you are asked to Önish o§ the
game. Given that the position shown in the puzzle can be reached by a sequence
of legal chess moves the puzzle is a subgame of the original game.
In the same way it is interesting to examine the ìendgameî of situations

of strategic economic interaction. By analysing the endgame one gets a better
understanding of the whole of the game: this leads us naturally on to a further
discussion of solution concepts.

10.5.2 Equilibrium: more on concept and method

In the light of the multi-period nature of games we need not only to re-examine
the way in which a solution is derived but also what is meant by a satisfactory
solution. The reason for this is that, as we will see, some Nash equilibria can
appear as unattractive when examined from the point of view of each subgame.
So, how to solve for an equilibrium in this case? We will start with some

useful intuition and then move on to a more formal concept. Again we can use
another good principle from Sherlock Holmes (from A Study in Scarlet): ìIn
solving a problem of this sort, the grand thing is to be able to reason backwards.
That is a very useful accomplishment, and a very easy one, but people do not
practise it much.î This intuition is exactly what is required: start at the end
of the game and work back through the stages of the game ñ a process usually
known as backwards induction.
To see how this works let us apply the method to solve the game in the

case of Figure 10.10. Suppose it is true that !a1 > !a2 and !
a
3 > !a4 and so

on (we could easily retell the story if the inequalities were di§erent). Then, if
the game had reached the lower left-hand node where it is Alfís turn to play,
obviously Alf would choose 1; so the value of reaching this node is e§ectively
[!1] =

!
!a1 ; !

b
1

"
; reasoning in this way we can see that the value associated with

reaching each of the other nodes on the same level of this diagram is [!3], [!5],
[!7] respectively. We have e§ectively reduced a three-stage game to a two-stage
game with payo§s [!1], [!3], [!5], [!7]. We can then solve the two-stage game
using the same method ñ see footnote 18 above.
Associated with the backward-induction method we can now introduce a

reÖned concept of equilibrium in a multi-stage game:

DeÖnition 10.6 A proÖle of strategies is a subgame-perfect equilibrium for a
game if

1. It is a Nash equilibrium

2. It induces actions that are consistent with a Nash equilibrium in every
subgame.

Two key points about this concept and the associated backwards-induction
algorithm should be noted right away:
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! DeÖnition 10.6 is quite demanding because it says something about all the
subgames, even if one might have thought that some individual subgames
are not particularly interesting and are unlikely to be actually reached in
practice.

! The straightforward backward-induction method is not going to be suit-
able for all games with richer information sets. We will come back to this
point in section 10.7.4 below.

Now for the reason why the concept of equilibrium needs to be reÖned in this
way when we take into account the temporal sequence of a game: some Nash
equilibria involve strategies that lack credibility. What we mean by this is as
follows. Imagine reaching the Önal stage of a game at a position where a speciÖc
move by player h may well damage the opponent(s) but would cause serious
damage to player h himself. Taking the subgame starting from this position as
a game in its own right it is clear that h would not rationally make the move;
so, in the context of the overall game, threatening to make this move should the
position be reached is unlikely to be impressive. Yet there may well be Nash
equilibria of the whole game that imply the use of such empty threats: clearly
there is a good case for discarding such strategy combinations as candidates for
equilibria and focusing just on those that satisfy subgame perfection (deÖnition
10.6).
This point is illustrated in 10.12. Alf gets to play Örst; Bill knows that if

Alf plays [RIGHT] then Bill gets a payo§ of 2; but if they play the sequence
[LEFT],[right] then the situation would be disastrous for Bill ñ he would get
a payo§ of no more than 1. Can Bill dissuade Alf from playing [LEFT] by
threatening to play [left] as well, so reducing Alfís payo§ to 0?
On checking the strategic form in Table 10.8 we can see that there are four

Nash equilibria
!
sa2 ; s

b
1

"
,
!
sa2 ; s

b
2

"
,
!
sa1 ; s

b
3

"
and

!
sa1 ; s

b
4

"
: the Örst two of these

are equivalent in their outcomes; likewise the third and fourth equilibria are
equivalent. So it appears that the case where Alfís strategy is to play [RIGHT]
and Billís strategy is to play [left] whatever Alf does

!
sa2 ; s

b
1

"
is a valid equilibrium

outcome of the game. But it is a bit odd. Put the case that on Monday Alf
plays [LEFT] anyway and then says to Bill (who plays on Tuesday) ìwhat are you
going to do about that?î Presented with this fait accompli one could imagine
Bill thinking on Monday night that maybe he ought to make the best of a bad
job and play [right]: the reasoning is that on Monday night we are at the node
marked * and, viewed from this standpoint, Bill would do better to play [right]
on Tuesday in order to secure a payo§ of 1 rather than 0. Knowing that this is
how a rational opponent would reason on Monday night, Alf is unlikely to be
impressed by a threat from Bill on Sunday of ìIíll play [left] whatever happens.î
So, although

!
sa2 ; s

b
1

"
is a Nash equilibrium, it is not subgame perfect.21

21Back in the 1960s nuclear strategists (seriously?) discussed the idea of a ìDoomsday
machine.î This was to be a gizmo that would automatically launch world-devastating nuclear
strike if (a) any nuclear missile landed on its home territory or (b) any attempt was made to
disarm it. Could a similar device assist Bill?
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Figure 10.12: An incredible threat

sb1 sb2 sb3 sb4
[left-left] [left-right] [right-left] [right-right]

sa1 [LEFT] 0; 0 0; 0 2;1 2;1
sa2 [RIGHT] 1;2 1;2 1; 2 1; 2

Table 10.8: Incredible threat: strategic view
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By restricting attention to equilibria that satisfy subgame perfection we are
insisting on an important aspect of consistency in economic behaviour. In doing
this we have to consider what a player would do in positions that are not actually
played out.

10.5.3 Repeated interactions

For some purposes it is useful to jump from the case of comparatively few
stages to the case of arbitrarily many. The principles that can be learned from
this apparently arbitrary exercise have some profound implications. They can
illuminate the possibilities for long-term cooperative outcomes that may appear
absent from a myopic analysis of a simple model of strategic interaction.
The basic idea of a repeated game is simple. One joins together multiple

instances of an atemporal game: the analysis models a repeated encounter be-
tween the players in apparently the same simple situation of economic conáict.
Figure 10.13 shows an outline of the setup for the Prisonerís Dilemma game: the
same players face the same outcomes from their actions that they may choose
in periods 1; 2; :::; t; :::. The example of the Prisonerís Dilemma is particularly
instructive given its importance in microeconomics and, as noted earlier (page
280), the somewhat pessimistic outcome of an isolated implementation of the
game.
What makes the repeated game di§erent from a collection of unrelated games

of identical structure with identical players? The key point is history. One typi-
cally assumes that everyone can know all the information about actual play that
has accumulated at any particular stage of the game ñ the perfect-information
assumption again. Individual strategies can then be conditioned on this infor-
mation and may be used to support equilibrium outcomes that could not have
arisen from play by rational economic agents of an isolated single encounter.

The stage game

The basic building block of repeated-interactions analysis is the stage game.
This is just an instance of one of the simultaneous-play atemporal games that
were considered in section 10.3: in particular we can see that each stage in Figure
10.13 is just a copy of Figure 10.1. It is important to distinguish between what
goes on in a single play of the stage game and strategy in the game as a whole.
If an instance of the stage game were to be played in isolation, of course, we can
take strategies as being equivalent to actions; but if the stage game is taken as a
component of the repeated game then the individual strategies refer to planned
choices over the entire sequence of play: the actions at stage t+1 will have been
conditioned by the sequence of behaviour up to t.
It is also important to understand the relationship between the payo§s that

emerge from an isolated instance of the stage game and those that might be
obtainable from a repeated version of the game in which strategies can be con-
ditioned on history. In Figure 10.14, based on Figure 10.2, we have introduced
the set of all payo§s that could be reached by mixing the payo§s from the pure
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Figure 10.13: Repeated Prisonerís Dilemma

strategy combinations in the basic Prisonerís Dilemma game: these are repre-
sented by the heavily shaded lozenge shape. The mixes could be achieved by
agreeing on a coordinated randomisation plan or by taking it in turns to use
di§erent strategy combinations, for example. Note the following features of this
Ögure:

! The ìsouth-westî corner of the shaded set represents the minimax out-
comes for the two players ñ the worst that can happen to player h in a
particular instance of the stage game; as we know it is also the Nash-
equilibrium outcome of the stage game.

! The set represented by lightly shaded area north-east of this point con-
sists of all the payo§s that would be Pareto improvements over the Nash-
equilibrium outcome.

! The set U!, as the intersection of these two sets, consists of payo§s that
are an improvement on the Nash outcome and that can be represented as
mixtures of payo§s in a one-shot stage game.
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Figure 10.14: Utility possibilities: Prisonerís Dilemma with ìmixingî

! The points on the north-east boundary of U! correspond to the Pareto-
e¢cient outcomes.

The issue is, can one achieve a Pareto-e¢cient outcome in U! or, indeed,
anything other than the minimax value at

!
!a; !b

"
? As we know (check foot-

note 9) the use of mixed strategies in an isolated play of Prisonerís Dilemma
does nothing to alter the single Nash-equilibrium outcome at

!
!a; !b

"
; however,

it may be that through the structure of repetitive play other points U! are
implementable as equilibrium outcomes.

The repeated game

To investigate this possibility we need a model of payo§s in an inÖnite-horizon
world. Obviously this is based on the model of payo§s in a typical stage game:
but we also need a method of aggregating payo§s across the stages. The ag-
gregation method is a generalisation of the intertemporal utility function in
equation (5.13). SpeciÖcally, let !h (t) denote the payo§ for agent h in period t
and introduce the possibility of pure time preference in the form of a discount
factor % lying between zero and one inclusive; then the value of payo§ stream!
!h (1) ; !h (2) ; :::; !h (t) :::

"
is given by

[1" %]
1X

t=1

%t#1 !h (t) (10.22)

Note two technical points about the speciÖcation of (10.22). First, the term
[1" %] performs a normalisation rÙle : if the payo§ in the stage game were
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Alfís action in 0; :::; t Billís action at t+ 1
[LEFT][LEFT].... [LEFT] [left]

Anything else [right]

Table 10.9: Billís trigger strategy sbT

constant throughout all time, so that %h (t) = %0, then the overall payo§ is
itself %0. Second, if we allow & ! 1 then the overall payo§ becomes a simple
average with current utility components being given equal weight with those in

the indeÖnite future.

Why an inÖnite number of periods? The short answer is that this ensures

that there is always a tomorrow. In many situations if there were to be a known

Last Day then the game would ìunravelî: you just have to imagine yourself at

the Last Day and then apply the Sherlock-Holmes working-backwards method

that we outlined in section 10.5.2 above.

How could rational players use the information from a history of play in

a repeated game? We can illustrate a method in an argument by example

on Figure 10.14. Suppose Alf and Bill collectively recognise that it would be in

their interests if they could maintain actions in each period that would guarantee

them the Pareto-e¢cient payo§s
!
%!a; %!b

"
in each period; to do this they need

to play [LEFT],[left] every period. The problem is they cannot trust each other,

nor indeed themselves: Alf has the temptation to jump at the possibility of

getting the payo§ %a by being antisocial and playing [RIGHT]; Bill has a similar
temptation. To forestall this suppose that they each adopt a strategy that

(1) rewards the other partyís cooperative behaviour by responding with the

action [left] and (2) punishes antisocial behaviour with the action [right], thus

generating the minimax payo§s
!
%a; %b

"
. What gives the strategy bite is that

the punishment action applies to every period after the one where the antisocial
action occurred: the o§ender is cast into outer darkness and minimaxed for ever.

This is known as a trigger strategy.
Consider the trigger strategy for Bill, sbT, set out in detail in Table 10.9:

would it persuade Alf to behave cooperatively? The gain to Alf from behaving

antisocially in period t is %a " %!a. The consequence for Alf in every period
from t+1 onwards is a di§erence in utility given by %!a" %a per period; so Alf
would not Önd it worth while to behave antisocially if22

%a " %!a #
&

1" &
[%!a " %a] (10.23)

The trigger strategy for Alf follows the same reasoning ñ just interchange the a
and b labels.
Now let us examine whether the strategy pair

#
saT; s

b
T

$
constitutes an equi-

librium that would support the Pareto-e¢cient payo§s. Note Örst that if there

were antisocial behaviour at t then the sequence of actions prescribed by Table
10.9 and its counterpart for saT together constitute a Nash equilibrium for the

22Explain why.
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subgame that would then start at t + 1: Alf could not increase his payo§ by
switching from [RIGHT] to [LEFT] given that Bill is playing [left]; likewise for

Bill. The same conclusion follows for any subgame starting after t + 1. Note
second that if " is large enough23 and [LEFT],[left] has been played in every
period up till t then it is clear from (10.23) that Alf would not wish to switch to
[RIGHT]; again a similar statement follows for Bill. So

!
saT; s

b
T

"
is a subgame-

perfect perfect equilibrium that will implement
#
%!a; %!b

$
.24

It is important to recognise that this reasoning is not speciÖc to an isolated

example, as the following key result shows:

Theorem 10.3 (The Folk Theorem) In a two-person inÖnitely repeated game
any combination of actions observed in any Önite number of stages is the out-
come of a subgame-perfect equilibrium if the discount factor is su¢ciently close
to 1.

Theorem 10.3 ñ known as the Folk theorem because informal versions of

it were around well before it was formally stated and proved ñ tells us that

any point in U! can be supported as a subgame-perfect equilibrium, given a
condition on the utility function in (10.22). However, this does not mean that

the result turns just on a quirk of individualsí intertemporal preferences. We can

consider the discount factor to be a product of a factor derived from a personís

impatience ñ a pure preference parameter ñ and the probability that the person

will be around to enjoy utility in the next period. (Check out the reasoning in

Exercise 8.9 to convince yourself of this). So, in this case we can imagine that

although in principle the game could go on forever, there is a probability that it

will end in Önite time. Then Theorem 10.3 requires both that this probability

be ìsu¢ciently lowî and that the individual agents be ìsu¢ciently patient.î

Although I have tagged Theorem 10.3 as The Folk Theorem there is actually
a family of results that deal with this type of issue in the Öeld of repeated

games: the version stated here is somewhat conservative. Some results focus

only on Nash equilibria (which, perhaps, rather misses the point since credibility

is important), some deal with more than two agents (but ensuring subgame-

perfection then gets a bit tricky) and some discuss repeated games of Önite

length. However, in assessing the contribution of the Folk Theorem(s) it is

important to be clear about the main message of the result.

The implication of Theorem 10.3 is that there is a wide range of possible

equilibria in inÖnitely repeated games: it does not predict that rational behav-

iour will generate one speciÖc outcome. Should it seem troubling that there are

so many equilibrium outcomes for the repeated game? Perhaps not: we can

think of Theorem 10.3 as a kind of possibility result demonstrating that strate-

gic problems that do not have ìsensibleî solutions in the short run may yet be

susceptible of sensible solution in the long run through induced cooperation.

23We need to have ! ! ! ! 1. What is the value of !?
24 In the answer to footnote question 7 it is shown that a monotonic transformation of

utilities does not change the outcome of the Prisonerís Dilemma one-shot game. Could such

a transformation a§ect the repeated game?



10.6. APPLICATION: MARKET STRUCTURE 305

10.6 Application: market structure

The temporal sequence on which we have focused plays an important rÙle in
the analysis of industrial organisation. We will illustrate its contribution by
considering three applications.

10.6.1 Market leadership

First, let us revisit the simple competition-in-quantities version of the duopoly
model Explicit recognition of the time sequence within the game structure per-
mits the strategic modelling of an important economic phenomenon, market
leadership.
Assume that social customs or institutional rules (of what sort, or from

where, we do not enquire) ensure that Örm 1 gets the chance to move Örst in
deciding output ñ it is the leader. The follower (Örm 2) observes the leaderís
output choice q1 and then announces its output q2. What would we expect as
a solution?
First let us note that the Nash concept does not give us much leverage.

In fact, using the reaction function given in (10.15), any non-negative output
pair

!
q1; q2

"
satisfying q2 = #2

!
q1
"
can be taken as the outcome of a Nash

equilibrium to the sequentially played game described above; but given the
sequence of decision making we know that many of these equilibria will involve
incredible threats ñ they are not subgame perfect.25 To Önd the subgame-perfect
equilibrium consider Örst the subgame that follows Örm 1ís output decision;
clearly this involves Örm 2 choosing #2

!
q1
"
as a best response to whatever q1

has been selected; reasoning backwards Örm 1 will therefore select its output so
as to maximise its proÖts conditional on Örm 2ís best response.
The upshot of this argument is that the leader e§ectively manipulates the

follower by choosing its own output appropriately. Given the reaction function
(10.15), the leaderís expression for proÖts becomes

p
!
q1 + #2

!
q1
""
q1 ! C1

!
q1
"

(10.24)

The prerogative of being the leader is the opportunity to construct an opportu-
nity set for oneself from the responses of oneís opponents: this is illustrated in
Figure 10.15 where Örm 2ís reaction function #2 marks out the boundary of Örm
1ís opportunity set. This is the essence of the Stackelberg model of duopoly.
The solution to the Stackelberg duopoly problem (10.24) is depicted by the

point
!
q1S; q

2
S

"
in Figure 10.15: the leaderís isoproÖt contour is tangent to the

followerís reaction function at this point. The leader has a Örst-mover advantage
in that Örm 1ís proÖts will be higher than those of Örm 2 and, indeed higher
than would be the case at the Cournot-Nash solution.

25Let qM be the proÖt-maximising output for Örm 2 if it were an monopolist and assume
that "1 (qM) = 0 in the case of simultaneous play ñ see (10.14). Show that in the sequential-
play game a strategy pair yielding the output combination (0; qM) is a Nash equilibrium but
is not a subgame-perfect solution.
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Figure 10.15: Leader-follower

However, the Stackelberg analysis leaves upon a fundamental and important

question ñ what constitutes a credible leader? How is the leadership position

maintained? There are two responses here. First, this special duopoly model

establishes some important principles that are relevant for other economic ap-

plications (see chapter 12). Second, we can dig a little deeper into the issues of

industrial organisation that are raised by this model; this we will handle in the

topic of market entry.

10.6.2 Market entry

In chapter 3 we considered a simple mechanism of introducing new Örms to a

market (page 56); but the mechanism was almost mechanical and took no ac-

count of the strategic issues involved in the relationship between the incumbent

Örm(s) and the potential entrants that are challenging them. Here we will use

the analysis of time in games as the basis for modelling a strategic model of

entry.

The point of departure is the story depicted in Figure 10.12 and Table 10.8.

Replace player Alf with a potential entrant Örm (here [LEFT] means ìenter the

industryî, [RIGHT] means ìstay outî) and Bill as the incumbent (so [left] means

ìÖght a potential entrantî, [right] means ìaccommodate a potential entrantî).

The numbers in the example depict the case where the incumbentís position is

relatively weak and so the subgame-perfect equilibrium is one where the incum-

bent immediately accommodates the potential entrant without a Öght.26

26 Suppose the Örst two payo§ pairs in Figure 10.12 are changed from ì(0; 0) (2; 1)î to
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Figure 10.16: Entry deterrence

However, the model is rather naive and ináexible: the relative strength of
the positions of the incumbent and the challenger are just hardwired into the
payo§s and do not o§er much economic insight. What if the rules of the game
were altered a little? Could an incumbent make credible threats? The principal
way of allowing for this possibility within the model of market structure is to
introduce a ìcommitment deviceî (see footnote 21). A simple and realistic
example of this is where a Örm incurs sunk costs: this means that the Örm
spends money on some investment that has no resale value.27 A simple version
of the idea is depicted in Figure 10.16.
Figure 10.16 is based on Figure 10.12 but now there are now three stages

of the game. Stages two and three correspond to the story that we have just
described; the subgame starting at the node marked * on the left is e§ectively
the same game as we discussed before where the incumbent conceded imme-
diately; in the corresponding subgame on the right-hand side (starting at the
node marked **) the payo§s for the incumbent have been changed so that, in
this case, it will no longer be proÖtable to concede entry to the challenger.28

In the Örst stage the incumbent makes a decision whether or not to invest an

ì(0; 1) (2; 0).î How will this alter the equilibrium of the game? What interpretation can be
given in terms of the model of contested entry? What is the equilibrium?
27You set up a window cleaning business. You buy a ladder, window cleaning áuid and 1000

leaáets to publicise your business in the neighbourhood. Identify (i) variable costs, (ii) Öxed
costs, (iii) sunk costs.
28 Show that the subgame starting at the left-hand node marked 2 in Figure 10.16 is es-

sentially the same game, up to an ordinal transformation of payo§s, as the game in Figure
10.12.
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amount that will cost a given amount k: this decision is publicly observable.
The decision on investment is crucial to the way the rest of the game works.

The following is common knowledge.

! If the challenger stays out it makes a reservation proÖt level ! and the
incumbent makes monopoly proÖts !M (less the cost of investment if it
had been undertaken in stage 1).

! If the incumbent concedes to the challenger then they share the market
and each gets !J.

! If the investment is not undertaken then the cost of Öghting is !F.

! If the investment is undertaken in stage 1 then it is recouped, dollar for
dollar, should a Öght occur. So, if the incumbent Öghts, it makes proÖts
of exactly !F, net of the investment cost.

Now consider the equilibrium. Let us focus Örst on the subgame that follows
on from a decision by the incumbent to invest (for the case where the incumbent
does not invest see Exercise 10.11). If the challenger were to enter after this
then the incumbent would Önd that it is more proÖtable to Öght than concede
as long as

!F > !J " k: (10.25)

Now consider the Örst stage of the game: is it more proÖtable for the incumbent
to commit the investment than just to allow the no-commitment subgame to
occur? Yes if the net proÖt to be derived from successful entry deterrence ex-
ceeds the best that the incumbent could do without committing the investment:

!M " k > !J: (10.26)

Combining the two pieces of information in (10.25) and (10.26) we get the result
that deterrence works (in the sense of having a subgame-perfect equilibrium) as
long as k has been chosen such that:

!J "!F < k < !M "!J: (10.27)

In the light of condition (10.27) it is clear that, for some values of !F, !J and
!M, it may be impossible for the incumbent to deter entry by this method of
precommitting to investment.
There is a natural connection with the Stackelberg duopoly model. Think

of the investment as advance production costs: the Örm is seen to build up
a ìwar-chestî in the form of an inventory of output that can be released on
to the market. If deterrence is successful, this stored output will have to be
thrown away. However, should the challenger choose to enter, the incumbent
can unload inventory from its warehouses without further cost. Furthermore the
newcomerís optimal output will be determined by the amount of output that
the incumbent will have stashed away and then released. We can then see that
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the overall game becomes something very close to that discussed in the leader-

follower model of section 10.6.1, but with the important di§erence that the

rÙle of the leader is now determined in a natural way through a common-sense

interpretation of timing in the model.

10.6.3 Another look at duopoly

In the light of the discussion of repeated games (section 10.5.3) it is useful to

reconsider the duopoly model of section 10.4.1. Applying the Folk Theorem

enables us to examine the logic in the custom and practice of a tacit cartel. The

story is the familiar one of collusion between the Örms in restricting output so as

to maintain high proÖts; if the collusion fails then the Cournot-Nash equilibrium

will establish itself.

First we will oversimplify the problem by supposing that the two Örms have

e§ectively a binary choice in each stage game ñ they can choose one of the two

output levels as in the discussion on page 290. Again, for ease of exposition, we

take the special case of identical Örms and we use the values given in Table 10.5

as payo§s in the stage game:

! If they both choose [low], this gives the joint-proÖt maximising payo§ to
each Örm, !J.

! If they both choose [high], gives the Cournot-Nash payo§ to each Örm, !C.

! If one Örm defects from the collusive arrangement it can get a payo§ !.

Using the argument for equation (10.23) (see also the answer to footnote 23)

the critical value of the discount factor is

! :=
!"!J
!"!C

So it appears that we could just carry across the argument of page 304 to the

issue of cooperative behaviour in a duopoly setting. The joint-proÖt maximising

payo§ to the cartel could be implemented as the outcome of a subgame-perfect

equilibrium in which the strategy would involve punishing deviation from coop-

erative behaviour by switching to the Cournot-Nash output levels for ever after.

But it is important to make two qualifying remarks.

First, suppose the market is expanding over time. Let ~! (t) be a variable
that can take the value !, !J or !C Then it is clear that the payo§ in the stage
game for Örm f at time t can be written

!f (t) = ~! (t) [1 + g]
t!1

where g is the expected growth rate and the particular value of ~! (t) will depend
on the actions of each of the players in the stage game. The payo§ to Örm f of
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the whole repeated game is the following present value:

[1! !]
1X

t=1

!t"1 $f (t)

= [1! !]
1X

t=1

~!
t"1 ~$ (t) (10.28)

where ~! := ! [1 + g]. So it is clear that we can reinterpret the discount factor as a
product of pure time preference, the probability that the game will continue and
the expected growth in the market. We can see that if the market is expected to
be growing the e§ective discount factor will be higher and so in view of Theorem
10.3 the possibility of sustaining cooperation as a subgame-perfect equilibrium
will be enhanced.
Second, it is essential to remember that the argument is based on the simple

Prisonerís Dilemma where the action space for the stage game just has the two
output levels. The standard Cournot model with a continuum of possible actions
introduces further possibilities that we have not considered in the Prisonerís
Dilemma. In particular we can see that minimax level of proÖt for Örm f in
a Cournot oligopoly is not the Nash-equilibrium outcome, $C. The minimax
proÖt level is zero ñ the other Örm(s) could set output such that the f cannot
make a proÖt (see, for example, point q2 in Figure 10.5). However, if one were
to set output so as to ensure this outcome in every period from t+1 to 1, this
would clearly not be a best response by any other Örm to an action by Örm f
(it is clear from the two-Örm case in Figure 10.6 that (0; q2) is not on the graph
of Örm 2ís reaction function); so it cannot correspond to a Nash equilibrium
to the subgame that would follow a deviation by Örm f . Everlasting minimax
punishment is not credible in this case.29

10.7 Uncertainty

As we have seen, having precise information about the detail of how a game is
being played out is vital in shaping a rational playerís strategy ñ the Kriegsspiel
example on page 272 is enough to convince of that. It is also valuable to have
clear ideas about the opponentsí characteristics a chess player might want to
know whether the opponent is ìstrongî or ìweak,î the type of play that he
favours and so on.
These general remarks lead us on to the nature of the uncertainty to be

considered here. In principle we could imagine that the information available to
a player in the game is imperfect in that some details about the history of the
game are unknown (who moved where at which stage?) or that it is incomplete

29 Draw a diagram similar to Figure B.33 to shaw the possible payo§ combinations that
are consistent with a Nash equilibrium in inÖnitely repeated subgame. Would everlasting
minimax punishment be credible if the stage game involved Bertrand competition rather than
Cournot competition?



10.7. UNCERTAINTY 311

in that the player does not fully know what the consequences and payo§s will
be for others because he does not know what type of opponent he is facing (risk-
averse or risk-loving individual? high-cost or low-cost Örm?). Having created
this careful distinction we can immediately destroy it by noting that the two
versions of uncertainty can be made equivalent as far as the structure of the game
is concerned. This is done by introducing one extra player to the game, called
ìNature.î Nature acts as an extra player by making a move that determines
the characteristics of the players; if, as is usually the case, Nature moves Örst
and the move that he/she/it makes is unknown and unobservable, then we can
see that the problem of incomplete information (missing details about types of
players) is, at a stroke, converted into one of imperfect information (missing
details about history).

10.7.1 A basic model

We focus on the speciÖc case where each economic agent h has a type "h. This
type can be taken as a simple numerical parameter; for example it could be an
index of risk aversion, an indicator of health status, a component of costs. The
type indicator is the key to the model of uncertainty: "h is a random variable;
each agentís type is determined at the beginning of the game but the realisation
of "h is only observed by agent h.

Payo§s

The Örst thing to note is that an agentís type may a§ect his payo§s (if I become
ill I may get lower level of utility from a given consumption bundle than if I
stay healthy) and so we need to modify the notation used in (10.2) to allow for
this. Accordingly, write agent hís utility as

V h
!
sh; [s]

!h
; "h

"
(10.29)

where the Örst two arguments argument consists of the list of strategies ñ hís
strategy and everybody elseís strategy as in expression (10.2) ñ and the last
argument is the type associated with player h.

Conditional strategies

Given that the selection of strategy involves some sort of maximisation of payo§
(utility), the next point we should note is that each agentís strategy must be
conditioned on his type. So a strategy is no longer a single ìbuttonî as in the
discussion on page 283 but is, rather, a ìbutton ruleî that speciÖes a particular
button to each possible value of the type "h. Write this rule for agent h as a
function &h (!) from the set of types to the set of pure strategies Sh. For example
if agent h can be of exactly one of two types f[healthy];[ill]g then agent hís
button rule &h (!) will generate exactly one of two pure strategies

sh0 = &
h ([healthy])
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Figure 10.17: Alfís beliefs about Bill

or
sh1 = &

h ([ill])

according to the value of #h realised at the beginning of the game.

Beliefs, probabilities and expected payo§s

However, agent h does not know the types of the other agents who are players
in the game. instead he has to select a strategy based on some set of beliefs
about the othersí types. These beliefs are incorporated into a simple probabilistic
model: F , the joint probability distribution of types over the agents is assumed
to be common knowledge. Although it is by no means essential, from now on we
will simply assume that the type of each individual is just a number in [0; 1].30

Figure 10.17 shows a stylised sketch of the idea. Here Alf, who has been re-
vealed to be of type #a0 and who is about to choose [LEFT] or [RIGHT], does not
know what Billís type is at the moment of the decision. There are three possibil-
ities, indicated by the three points in the information set. However, because Alf
knows the distribution of types that Bill may possess he can at least rationally
assign conditional probabilities Pr

!
# b1j #a0

"
, Pr

!
# b2j #a0

"
and Pr

!
# b3j #a0

"
to the

three members of the information set, given the type that has been realised for
Alf. These probabilities are derived from the joint distribution F , conditional
on Alfís own type: these are Alfís beliefs (since the probability distribution of
types is common knowledge then he would be crazy to believe anything else).
Consider the way that this uncertainty a§ects hís payo§. Each of the other

agentsí strategies will be conditioned on the type which ìNatureî endows them
and so, in evaluating (10.29) agent h faces the situation that

sh = &h
!
#h
"

(10.30)

30This assumption about types is adaptable to a wide range of speciÖc models of individual
characteristics. Show how the two-case example used here, where the person is either of type
[healthy] or of type [ill] can be expressed using the convention that agent hís type "h 2 [0; 1]
if the probability of agent h being healthy is $.
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[s]
!h
=
!
&1
"
#1
#
; :::; &h!1

"
#h!1

#
; &h+1

"
#h+1

#
; :::
$

(10.31)

The arguments in the functions on the right-hand side of (10.30) and (10.31) are

random variables and so the things on the left-hand side of (10.30) and (10.31)

are also random. Evaluating (10.29) with these random variables one then gets

V h
"
&1
"
#1
#
; &2

"
#2
#
; :::; #h

#
(10.32)

as the (random) payo§ for agent h.
In order to incorporate the random variables in (10.30)-(10.32) into a co-

herent objective function for agent h we need one further step. We assume the
standard model of utility under uncertainty that was Örst introduced in chapter

8 (page 187) ñ the von Neumann-Morgenstern function. This means that the

appropriate way of writing the payo§ is in expectational terms

EV h
%
sh; [s]

!h
; #h

&
(10.33)

where sh is given by (10.30), [s]
!h

is given by (10.31), E is the expectations
operator and the expectation is taken over the joint distribution of types for all

the agents.

Equilibrium

We need a further reÖnement in the deÖnition of equilibrium that will allow for

the type of uncertainty that we have just modelled. To do this note that the

game can be completely described by three objects, a proÖle of utility functions,

the corresponding list of strategy sets, and the joint probability distribution of

types: !
V 1; V 2; :::

$
;
!
S1; S2; :::

$
; F (10.34)

However, we can recast the game in a way that is familiar from the discussion of

section 10.3. We could think of each agentís ìbutton-ruleî &h (") as a redeÖned
strategy in its own right; agent h gets utility vh

%
&h; [&]

!h
&
which exactly equals

(10.33) and where vh is just the same as in (10.2). If we use the symbol Sh the
set of these redeÖned strategies or ìbutton rulesî for agent h Then (10.34) is
equivalent to the game

!
v1; v2; :::

$
;
!
S1;S2; :::

$
(10.35)

Comparing this with (10.3) we can see that, on this interpretation, we have a

standard game with redeÖned strategy sets for each player.

This alternative, equivalent representation of the Bayesian game enables us

to introduce the deÖnition of equilibrium:

DeÖnition 10.7 A pure strategy Bayesian Nash equilibrium for (10.34) is a
proÖle of rules [&"] that is a Nash equilibrium of the game (10.35).
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This deÖnition means that we can just adapt (10.6) by replacing the ordinary
strategies (ìbuttonsî) in the Nash equilibrium with the ìbutton rulesî &!h (!)
where

&!h (!) 2 argmax
&h(")

vh
!
&h (!) ; [&! (!)]#h

"
(10.36)

Identity

The description of this model of incomplete information may seem daunting
at Örst reading, but there is a natural intuitive way of seeing the issues here.
Recall that in chapter 8 we modelled uncertainty in competitive markets by,
e§ectively, expanding the commodity space ñ n physical goods are replaced by
n$ contingent goods, where $ is the number of possible states-of-the-world
(page 203). A similar thought experiment works here. Think of the incomplete-
information case as one involving players as superheroes where the same agent
can take on a number of identities. We can then visualise a Bayesian equilibrium
as a Nash equilibrium of a game involving a larger number of players: if there
are 2 players and 2 types we can take this setup as equivalent to a game with
4 players (Batman, Superman, Bruce Wayne and Clark Kent). Each agent in a
particular identity plays so as to maximise his expected utility in that identity;
expected utility is computed using the conditional attached to the each of the
possible identities of the opponent(s); the probabilities are conditional on the
agentís own identity. So Batman maximises Batmanís expected utility having
assigned particular probabilities that he is facing Superman or Clark Kent;
Bruce Wayne does the same with Bruce Wayneís utility function although the
probabilities that he assigns to the (Superman, Clark Kent) identities may be
di§erent.
This can be expressed in the following way. Use the notation E

#
$j &h0

$
to

denote conditional expectation ñ in this case the expectation taken over the
distribution of all agents other than h, conditional on the speciÖc type value &h0
for agent h ñ and write [s!]#h for the proÖle of random variables in (10.31) at
the optimum where &j = &!j , j 6= h. Then we have:

Theorem 10.4 A proÖle of decision rules [&!] is a Bayesian Nash equilibrium
for (10.34) if and only if for all h and for any &h0 occurring with positive prob-
ability

E
!
V h
!
&!h

#
&h0
$
; [s!]

#h j &h0
""
' E

!
V h
!
sh; [s!]

#h j &h0
""

for all sh 2 Sh.

So the rules given in (10.36) will maximise the expected payo§ of every agent,
conditional on his beliefs about the other agents.

10.7.2 An application: entry again

We can illustrate the concept of a Bayesian equilibrium and outline a method
of solution using an example that ties in with the earlier discussion of strategic
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issues in industrial organisation.
Figure 10.18 takes the story of section 10.6.2 a stage further. The new twist

is that the monopolistís characteristics are not fully known by a Örm trying to
enter the industry. It is known that Örm 1, the incumbent, has the possibility of
committing to investment that might strategically deter entry: the investment
would enhance the incumbentís market position. However the Örm may incur
either high cost or low cost in making this investment: which of the two cost
levels actually applies to Örm 1 is something unknown to Örm 2. So the game
involves Örst a preliminary move by ìNatureî (player 0) that determines the cost
type, then a simultaneous move by Örm 1, choosing whether or not to invest,
and Örm 2, choosing whether or not to enter. Consider the following three cases
concerning Örm 1ís circumstances and behaviour:

1. Firm 1 does not invest. If Örm 2 enters then both Örms make proÖts !J.
But if Örm 2 stays out then it just makes its reservation proÖt level !,
where 0 < ! < !J, while Örm 1 makes monopoly proÖts !M.

2. Firm 1 invests and is low cost. If Örm 2 enters then Örm 1 makes proÖts
!!J < !J but Örm 2ís proÖts are forced right down to zero. If Örm 2 stays
out then it again gets just reservation proÖts ! but Örm 1 gets enhanced
monopoly proÖts !!M > !M.

3. Firm 1 invests and is high cost. Story is as above, but Örm 1ís proÖts are
reduced by an amount k, the cost di§erence.

To make the model interesting we will assume that k is fairly large, in the
following sense:

k > max f!!J "!J;!
!
M "!Mg :

In this case it is never optimal for Örm 1 to invest if it has high cost (check the
bottom right-hand part of Figure 10.18 to see this).
To Önd the equilibrium in this model we will introduce a device that we

used earlier in section 10.3.3. even though we are focusing on pure (i.e. non-
randomised) strategies let us suppose that Örm 1 and Örm 2 each consider a
randomisation between the two actions that they can take. To do this, deÖne
the following:31

$ &0 is the probability that ìNatureî endows Örm 1 with low cost. This
probability is common knowledge.

$ &1 is the probability that Örm 1 chooses [INVEST] given that its cost is
low.

$ &2 is the probability that Örm 1 chooses [In].

31Write out the expressions for epected payo§ for Örm 1 and for Örm 2 and verify (10.37)
and (10.39).
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Figure 10.18: Entry with incomplete information

Then, writing out the expected payo§ to Örm 1, E!1 we Önd that:

@E!1

@"1
> 0() "2 <

1

1 + %
(10.37)

where

% :=
!J $!!J
!!M $!M

> 0: (10.38)

Furthermore, evaluating E!2, the expected payo§ to Örm 2:

@E!2

@"2
> 0() "1 <

!J $!
"0!J

: (10.39)

The restriction on the right-hand of (10.39) only makes sense if the probability
of being low-cost is large enough, that is, if

"0 % 1$
!

!J
: (10.40)

To Önd the equilibrium in pure strategies32 check whether conditions (10.37)-
(10.39) can be satisÖed by probability pairs

!
"1; "2

"
equal to any of the values

(0; 0), (0; 1), (1; 0) or (1; 1). Clearly condition (10.37) rules out (0; 0) and (1; 1).
However the pair (0; 1) always satisÖes the conditions, meaning that ([NOT IN-
VEST],[In]) is always a pure-strategy Nash equilibrium. Likewise, if the probabil-
ity of [LOW] is large enough that condition (10.40) holds, then ([INVEST],[Out])
will also be a pure-strategy Nash equilibrium.

32Will there also be a mixed-strategy equilibrium to this game?
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The method is of interest here as much as is detail of the equilibrium solu-
tions. It enables us to see a link with the solution concept that we introduced
on page 283.

10.7.3 Mixed strategies again

One of the features that emerges from the description of Bayesian Nash equilib-
rium and the example in section 10.7.2 is the use of probabilities in evaluating
payo§s. The way that uncertainty about the type of oneís opponent is handled
in the Bayesian game appears to be very similar to the resolution of the prob-
lem arising in elementary games where there is no equilibrium in pure strategies.
The assumption that the distribution of types is common knowledge enables us
to focus on a Nash equilibrium solution that is familiar from the discussion of
mixed strategies in section 10.3.3.
In fact one can also establish that a mixed-strategy equilibrium with given

players Alf, Bill, Charlie,... each of whom randomise their play, is equivalent to
a Bayesian equilibrium in which there is a continuum of a-types all with Alfís
preferences but slightly di§erent types, a continuum of b-types all with Billís
preferences but with slightly di§erent types,... and so on, all of whom play pure
strategies.
The consequence of this is that there may be a response to those who see

strategic arguments relying on mixed strategies as artiÖcial and unsatisfactory
(see page 285). Large numbers and variability in types appear to ìrescueî
the situation by showing that there is an equivalent, or closely approximating
Bayesian-Nash equilibrium in pure strategies.

10.7.4 A ìdynamicî approach

The discussion of uncertainty thus far has been essentially static in so far as
the sequencing of the game is concerned. But it is arguable that this misses
out one of the most important aspects of incomplete information in most games
and situations of economic conáict. With the passage of time each player gets
to learn something about the other playersí characteristics through observation
of the other playersí actions at previous stages; this information will be taken
into account in the way the game is planned and played out from then on.
In view of this it is clear that the Bayesian Nash approach outlined above

only captures part of essential problem. There are two important omissions:

1. Credibility. We have already discussed the problem of credibility in con-
nection with Nash equilibria of multi-stage games involving complete infor-
mation (see pages 299 §). The same issue would arise here if we considered
multi-stage versions of games of incomplete information.

2. Updating. As information is generated by the actions of players this can be
used to update the probabilities used by the players in evaluating expected
utility. This is typically done by using Bayesí rule (see Appendix A, page
518).
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So in order to put right the limitations of the uncertainty model one would

expect to combine the ìperfectionî involved in the analysis of subgames with

the logic of the Bayesian approach to handling uncertainty. This is exactly what

is done in the following further reÖnement of equilibrium

DeÖnition 10.8 A perfect Bayesian equilibrium in a multi-stage game is a
collection of strategies of beliefs at each node of the game such that:

1. the strategies form a subgame-perfect equilibrium, given the beliefs;

2. the beliefs are updated from prior beliefs using Bayesí rule at every node
of the game that is reached with positive probability using the equilibrium
strategies.

The two parts of the deÖnition show a nice symbiosis: the subgame-perfect

strategies at every ìrelevantî node make use of the set of beliefs that is the

natural one to use at that point of the game; the beliefs are revised the light of

the information that is revealed by playing out the strategies.

However, note that the deÖnition is limited in its scope. It remains silent

about what is supposed to happen to beliefs out of equilibrium ñ but this issue

raises complex questions and takes us beyond the scope of the present book.

Note too, that in some cases the updating may be simple and drastic so that

the problem of incomplete information is resolved after one stage of the game.

However, despite these qualiÖcations, the issue of strategic interactions that in-

corporate learning is so important and so multifaceted that we shall be devoting

all of chapter 11 to it.

10.8 Summary

Strategic behaviour is not just a new microeconomic topic but a new method

and a fresh way of looking at economic analysis. Game theory permits the

construction of an abstract framework that enables us to think through the way

economic models work in cases where the simpliÖed structure of price-taking is

inapplicable or inappropriate.

But how much should one expect from game theory? It clearly provides a

collection of important general principles for microeconomics. It also o§ers some

truly striking results, for example the demonstration that cooperative outcomes

can be induced from selÖsh agents by the design of credible strategies that

involve future punishment for ìantisocialî behaviour (the folk theorem). On

the other hand game theory perhaps warrants an enthusiasm that is tempered

by considerations of practicality. Game theoretic approaches do not always

give clear-cut answers but may rather point to a multiplicity of solutions and,

where they do give clear-cut answers in principle, these answers may be almost

impossible to work out in practice. To illustrate: Önding all the outcomes in

chess is a computable problem, but where is the computer that could do the

job?
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To summarise the ways in which this chapter has illustrated the contribution
of the game-theoretic approach to economic principles and to point the forward
to later chapters let us focus on three key aspects:

! The nature of equilibrium. In moving to an economic environment in which
strategic issues are crucial we have had to introduce several new deÖnitions
of equilibrium; in the formal literature on this subject there are even more
intellectual constructions that are candidates for equilibrium concepts. Do
the subtle di§erences between the various deÖnitions matter? Each can be
defended as the correct way of modelling coherence of agentsí behaviour
in a carefully speciÖed strategic setting. Each incorporates a notion of
rationality consistent with this setting. However, as the model structure
is made richer, the accompanying structure of beliefs and interlocking
behaviour can appear to be impossibly sophisticated and complex. The
di¢culty for the economic modeller is, perhaps, to Önd an appropriate
location on the spectrum from total naivety to hyper-rationality (more on
this in chapter 12).

! Time. The sequencing of decisions and actions is a crucial feature of many
situations of potential economic conáict because it will often a§ect the
way the underlying game is played and even the viability of the solution
concept. A modest extension of fairly simple games to more than one
period enables one to develop models that incorporate the issues of power,
induced cooperation.

! Uncertainty In chapter 8 uncertainty and risk appeared in economic de-
cision making in the rÙle of mechanistic chance. Here, the mechanistic
chance can be a player in the game and clear-cut results carry over from
the complete-information case, although they rest on quite strong assump-
tions about individual beliefs and understanding of the uncertain universe.
However, we can go further. The Bayesian model opens the possibility of
using the acquisition of information strategically and has implications for
how we model the economics of information. This is developed in chapter
11.

10.9 Reading notes

A good introduction is provided by Dixit and Skeath (2004), Gardner (2003),
Osborne (2004) or Rasmusen (2001); the older Gibbons (1992) still provides
an excellent and thorough overview of the main issues; for a more advanced
treatment Vega-Redondo (2003) is useful. The Nash equilibrium concept Örst
appeared in Nash (1951); on the appropriateness of using it as a solution concept
see Kreps (1990). The rationale of mixed-strategy equilibria is discussed in
Harsanyi (1973) and the argument for treating ìnatureî as a player in the game
is developed in Harsanyi (1967). For the history and precursors of the concept of
Nash equilibrium see Myerson (1999); on Nash equilibrium and behaviour see
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Mailath (1998) and Samuelson (2002). Subgame-perfection as an equilibrium
concept is attributable to Selten (1965, 1975).
The folk theorem and variants on repeated games form a substantial liter-

ature. For an early statement in the context of oligopoly see Friedman (1971).
A key result establishing sub-game perfection in repeated games is proved in
Fudenberg and Maskin (1979).
The standard reference on industrial organisation is the thorough treatment

by Tirole (1988); the original classic contributions whose logic underlies so much
modern work are to be found in Bertrand (1883), Cournot (1838) and von
Stackelberg (1934).

10.10 Exercises

10.1 Table 10.10 is the strategic form representation of a simultaneous move
game in which strategies are actions.

sb1 sb2 sb3
sa1 0; 2 3; 1 4; 3
sa2 2; 4 0; 3 3; 2
sa3 1; 1 2; 0 2; 1

Table 10.10: Elimination and equilibrium

1. Is there a dominant strategy for either of the two agents?

2. Which strategies can always be eliminated as individually irrational?

3. Which strategies can be eliminated if it is common knowledge that both
players are rational?

4. What are the Nash equilibria in pure strategies?

10.2 Table 10.11 again represents a simultaneous move game in which strate-
gies are actions.

sb1 sb2 sb3
sa1 0; 2 2; 0 3; 1
sa2 2; 0 0; 2 3; 1
sa3 1; 3 1; 3 4; 4

Table 10.11: Pure-strategy Nash equilibria

1. Identify the best responses for each of the players a, b.

2. What are the Nash equilibria in pure strategies?



10.10. EXERCISES 321

10.3 A taxpayer has income y that should be reported in full to the tax au-
thority. There is a áat (proportional) tax rate " on income. The reporting
technology means that that taxpayer must report income in full or zero income.
The tax authority can choose whether or not to audit the taxpayer. Each audit
costs an amount ' and if the audit uncovers under-reporting then the taxpayer
is required to pay the full amount of tax owed plus a Öne F .

1. Set the problem out as a game in strategic form where each agent (taxpayer,
tax-authority) has two pure strategies.

2. Explain why there is no simultaneous-move equilibrium in pure strategies.

3. Find the mixed-strategy equilibrium. How will the equilibrium respond to
changes in the parameters ", ' and F?

10.4 Take the ìbattle-of-the-sexesî game of footnote 3 (the strategic form is
given in Table B.1 on page 562).

1. Show that, in addition to the pure strategy, Nash equilibria there is also a
mixed strategy equilibrium.

2. Construct the payo§-possibility frontier (as in Figure B.33 on page 566).
Why is the interpretation of this frontier in the battle-of-the-sexes context
rather unusual in comparison with the Cournot-oligopoly case?

3. Show that the mixed-strategy equilibrium lies strictly inside the frontier.

4. Suppose the two players adopt the same randomisation device, observable
by both of them: they know that the speciÖed random variable takes the
value 1 with probability % and 2 with probability 1! %; they agree to play!
sa1 ; s

b
1

"
with probability % and

!
sa2 ; s

b
2

"
with probability 1!%; show that this

correlated mixed strategy always produces a payo§ on the frontier.

10.5 Rework Exercise 10.4 for the case of the game in Table 10.3 (this is
commonly known as the Chicken game).

10.6 Consider the three-person game depicted in Figure 10.19 where strategies
are actions. For each strategy combination, the column of Ögures in parentheses
denotes the payo§s to Alf, Bill and Charlie, respectively. (Fudenberg and Tirole
1991, page 55)

1. For the simultaneous-move game shown in Figure 10.19 show that there
is a unique pure-strategy Nash equilibrium.

2. Suppose the game is changed. Alf and Bill agree to coordinate their ac-
tions by tossing a coin and playing [LEFT],[left] if heads comes up and
[RIGHT],[right] if tails comes up. Charlie is not told the outcome of the
spin of the coin before making his move. What is Charlieís best response?
Compare your answer to part 1.
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Figure 10.19: BeneÖts of restricting information

3. Now take the version of part 2 but suppose that Charlie knows the out-

come of the coin toss before making his choice. What is his best response?

Compare your answer to parts 1 and 2. Does this mean that restricting

information can be socially beneÖcial?

10.7 Consider a duopoly with identical Örms. The cost function for Örm f is

C0 + cq
f ; f = 1; 2:

The inverse demand function is

'0 ! 'q

where C0, c, '0 and ' are all positive numbers and total output is given by
q = q1 + q2.

1. Find the isoproÖt contour and the reaction function for Örm 2.

2. Find the Cournot-Nash equilibrium for the industry and illustrate it in!
q1; q2

"
-space.

3. Find the joint-proÖt maximising solution for the industry and illustrate it

on the same diagram.

4. If Örm 1 acts as leader and Örm 2 as a follower Önd the Stackelberg solu-

tion.
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5. Draw the set of payo§ possibilities and plot the payo§s for cases 2-4 and
for the case where there is a monopoly.

10.8 An oligopoly contains N identical Örms. The cost function is convex in
output. Show that if the Örms act as Cournot competitors then as N increases
the market price will approach the competitive price.

10.9 Two identical Örms consider entering a new market; setting up in the
new market incurs a once-for-all cost k > 0; production involves constant mar-
ginal cost c. If both Örms enter the market Bertrand competition then takes
place afterwards. If the Örms make their entry decision sequentially, what is the
equilibrium?

10.10 There is a cake of size 1 to be divided between Alf and Bill. In period
t = 1 Alf o§ers player Bill a share: Bill may accept now (in which case the
game ends), or reject. If Bill rejects then, in period t = 2 Alf again makes an
o§er, which Bill can accept (game ends) or reject. If Bill rejects, the game ends
one period later with exogenously Öxed payo§s of & to Alf and 1 ! & to Bill.
Assume that Alf and Billís payo§s are linear in cake and that both persons have
the same, time-invariant discount factor ' < 1.

1. What is the backwards induction outcome in the two-period model?

2. How does the answer change if the time horizon increases but is Önite?

3. What would happen if the horizon were inÖnite? (Rubinstein 1982, StÂhl
1972, Sutton 1986)

10.11 Take the game that begins at the node marked ì*î in Figure 10.16 (page
307).

1. Show that if %M > %J > %F then the incumbent Örm will always concede
to a challenger.

2. Now suppose that the incumbent operates a chain of N stores, each in a
separate location. It faces a challenge to each of the N stores: in each
location there is a Örm that would like to enter the local market). The
challenges take place sequentially, location by location; at each point the
potential entrant knows the outcomes of all previous challenges. The pay-
o§s in each location are as in part 1 and the incumbentís overall payo§ is
the undiscounted sum of the payo§s over all locations. Show that, however
large N is, all the challengers will enter and the incumbent never Öghts
(Selten 1978).

10.12 In a monopolistic industry Örm 1, the incumbent, is considering whether
to install extra capacity in order to deter the potential entry of Örm 2. Marginal
capacity installation costs, and marginal production costs (for production in ex-
cess of capacity) are equal and constant. Excess capacity cannot be sold. The
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potential entrant incurs a Öxed cost k in the event of entry.(Dixit 1980, Spence
1977)

1. Let q1 be the incumbentís output level for which the potential entrantís best
response yields zero proÖts for the entrant. Suppose q1 6= qM, where qM is
Örm 1ís output if its monopolistic position is unassailable (i.e. if entry-
deterrence is inevitable). Show that this implies that market demand must
be nonlinear.

2. In the case where entry deterrence is possible but not inevitable, show
that if q1S > q1, then it is more proÖtable for Örm 1 to deter entry than
to accommodate the challenger, where q1S is Örm 1ís output level at the
Stackelberg solution..

10.13 Two Örms in a duopolistic industry have constant and equal marginal
costs c and face market demand schedule given by p = k " q where k > c and q
is total output..

1. What would be the solution to the Bertrand price setting game?

2. Compute the joint-proÖt maximising solution for this industry.

3. Consider an inÖnitely repeated game based on the Bertrand stage game
when both Örms have the discount factor & < 1. What trigger strategy,
based on punishment levels p = c; will generate the outcome in part 2?
For what values of & do these trigger strategies constitute a subgame perfect
Nash equilibrium?

10.14 Consider a market with a very large number of consumers in which a
Örm faces a Öxed cost of entry F . In period 0, N Örms enter and in period 1 each
Örm chooses the quality of its product to be High, which costs c > 0, or Low,
which costs 0. Consumers choose which Örms to buy from, choosing randomly
if they are indi§erent. Only after purchasing the commodity can consumers
observe the quality. In subsequent time periods the stage game just described is
repeated indeÖnitely. The market demand function is given by

q =

8
<

:

'(p) if quality is believed to beHigh

0 otherwise

where ' (#) is a strictly decreasing function and p is the price of the commodity.
The discount rate is zero.

1. Specify a trigger strategy for consumers which induces Örms always to
choose high quality. Hence determine the subgame-perfect equilibrium.
What price will be charged in equilibrium?

2. What is the equilibrium number of Örms, and each Örmís output level in
a long-run equilibrium with free entry and exit?
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3. What would happen if F = 0?

10.15 In a duopoly both Örms have constant marginal cost. It is common
knowledge that this is 1 for Örm 1 and that for Örm 2 it is either 3

4 or 1
1
4 . It is

common knowledge that Örm 1 believes that Örm 2 is low cost with probability
1
2 . The inverse demand function is

2! q

where q is total output. The Örms choose output simultaneously. What is the
equilibrium in pure strategies?
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