Almost essential
Firm: Optimisation

Useful, but optional
Firm: Demand and Supply

The Multi-Output Firm

MICROECONOMICS
Principles and Analysis
Frank Cowell

Introduction

- This presentation focuses on analysis of firm producing more than one good
- modelling issues
- production function
- profit maximisation
- For the single-output firm, some things are obvious:
- the direction of production
- returns to scale
- marginal products
- But what of multi-product processes?
- Some rethinking required...?
- nature of inputs and outputs?
- tradeoffs between outputs?
- counterpart to cost function?

Multi-product firm: issues

■ "Direction" of production

- Need a more general notation
- Ambiguity of some commodities
- Is paper an input or an output?
- Aggregation over processes
- How do we add firm 1's inputs and firm 2's outputs?

Net output

- Net output, written as q_{i},
- if positive denotes the amount of good i produced as output
- if negative denotes the amount of good i used up as output
- Key concept
- treat outputs and inputs symmetrically
- offers a representation that is consistent
- Provides consistency
- in aggregation
- in "direction" of production

Approaches to outputs and inputs

NET
OUTPUTS

q_{1}
q_{2}
\ldots
q_{n-1}
q_{n}

OUTPUT INPUTS

$$
\left[\begin{array}{l}
q_{1} \\
q_{2} \\
\cdots \\
q_{n-1} \\
q_{n}
\end{array}\right]=\left[\begin{array}{l}
-z_{1} \\
-z_{2} \\
\cdots \\
-z_{m} \\
+q
\end{array}\right]
$$

Aggregation

- Consider an industry with two firms
- Let q_{i}^{f} be net output for firm f of $\operatorname{good} i, f=1,2$
- Let q_{i} be net output for whole industry of good i
- How is total related to quantities for individual firms?
- Just add up
- $q_{i}=q_{i}{ }^{1}+q_{i}{ }^{2}$
- Example 1: both firms produce i as output
- $q_{i}{ }^{1}=\mathbf{1 0 0}, q_{i}{ }^{2}=100$
- $q_{i}=200$
- Example 2: both firms use i as input
- $q_{i}{ }^{1}=-100, q_{i}^{2}=-100$
- $q_{i}=\mathbf{- 2 0 0}$
- Example 3: firm 1 produces i that is used by firm 2 as input
- $q_{i}{ }^{1}=100, q_{i}{ }^{2}=-100$
- $q_{i}=\mathbf{0}$

Net output: summary

- Sign convention is common sense
- If i is an output...
- addition to overall supply of i
- so sign is positive
- If i is an inputs
- net reduction in overall supply of i
- so sign is negative
- If i is a pure intermediate good
- no change in overall supply of i
- so assign it a zero in aggregate

Overview...

A production function with many outputs, many inputs...

Rewriting the production function...

- Reconsider single-output firm example given earlier
- goods $1, \ldots, m$ are inputs
- good $m+1$ is output
- $n=m+1$
- Conventional way of writing feasibility condition:
- $q \leq \phi\left(z_{1}, z_{2}, \ldots, z_{m}\right)$
- where ϕ is the production function
- Express this in net-output notation and rearrange:
- $q_{n} \leq \phi\left(-q_{1},-q_{2}, \ldots .,-q_{n-1}\right)$
- $q_{n}-\phi\left(-q_{1},-q_{2}, \ldots .,-q_{n-1}\right) \leq 0$
- Rewrite this relationship as
- $\Phi\left(q_{1}, q_{2}, \ldots ., q_{n-1}, q_{n}\right) \leq 0$
- where Φ is the implicit production function
- Properties of Φ are implied by those of $\phi \ldots$

The production function Φ

- Recall equivalence for single output firm:
- $q_{n}-\phi\left(-q_{1},-q_{2}, \ldots,-q_{n-1}\right) \leq 0$
- $\Phi\left(q_{1}, q_{2}, \ldots ., q_{n-1}, q_{n}\right) \leq 0$
- So, for this case:
- Φ is increasing in $q_{1}, q_{2}, \ldots, q_{n}$
- if ϕ is homogeneous of degree $1, \Phi$ is homogeneous of degree 0
- if ϕ is differentiable so is Φ
- for any $i, j=1,2, \ldots, n-1 \operatorname{MRTS}_{i j}=\Phi_{j}(\mathbf{q}) / \Phi_{i}(\mathbf{q})$
- It makes sense to generalise these...

The production function Φ (more)

- For a vector \mathbf{q} of net outputs
- \mathbf{q} is feasible if $\Phi(\mathbf{q}) \leq 0$
- \mathbf{q} is technically efficient if $\Phi(\mathbf{q})=0$
- \mathbf{q} is infeasible if $\Phi(\mathbf{q})>0$
- For all feasible \mathbf{q} :
- $\Phi(\mathbf{q})$ is increasing in $q_{1}, q_{2}, \ldots, q_{n}$
- if there is CRTS then Φ is homogeneous of degree 0
- if ϕ is differentiable so is Φ
- for any two inputs $i, j, \operatorname{MRTS}_{i j}=\Phi_{j}(\mathbf{q}) / \Phi_{i}(\mathbf{q})$
- for any two outputs i, j, the marginal rate of transformation of i into j is $\operatorname{MRT}_{i j}=\Phi_{j}(\mathbf{q}) / \Phi_{i}(\mathbf{q})$
- Illustrate the last concept using the transformation curve...

Firm's transformation curve

An example with five goods

- Goods 1 and 2 are outputs
- Goods 3, 4, 5 are inputs
- A linear technology
- fixed proportions of each input needed for the production of each output:
- $q_{1} a_{1 i}+q_{2} a_{2 i} \leq-q_{i}$
- where $a_{j i}$ is a constant $i=3,4,5, j=1,2$
- given the sign convention $-q_{i}>0$
- Take the case where inputs are fixed at some arbitrary values...

The three input constraints

The resulting feasible set

Changing quantities of inputs

satisfying \quad-The feasible set for the two $q_{2} a_{23} \leq-q_{3}$ consumption goods as before: - Suppose there were more of input 3
points satisfying
$q_{1} a_{13}+q_{2} a_{23} \leq-q_{3}-d q_{3}$
points satisfying
$q_{1} a_{14}+q_{2} a_{24} \leq-q_{4}+d q_{4}$

Overview...
 Integrated approach to optimisation

Profit
maximisation

Profits

- The basic concept is (of course) the same
- Revenue - Costs
- But we use the concept of net output
- this simplifies the expression
- exploits symmetry of inputs and outputs
- Consider an "accounting" presentation...

Accounting with net outputs

- Suppose goods $1, \ldots, m$ are inputs and goods $m+1$ to n are outputs

$$
\sum_{i=m+1}^{n} p_{i} q_{i} \quad \text { Revenue }
$$

$$
-\sum_{i=1}^{m} p_{i}\left[-q_{i}\right] \quad-\text { Costs }
$$

$$
\sum_{i=1}^{n} p_{i} q_{i} \quad=\text { Profits }
$$

Iso-profit lines...

Profit maximisation: multiproduct firm (1)


```
- Feasible outputs
- Isoprofit line
- Maximise profits
-Profit-maximising output
-MRTS at profit-maximising
output
```

- Here $q_{1}{ }^{*}>0$
and $q_{2}{ }^{*}>0$
- \mathbf{q}^{*} is
technically efficient
- Slope at \mathbf{q}^{*} equals price ratio

Profit maximisation: multi-

 product firm (2)

```
- Feasible outputs
- Isoprofit line
- Maximise profits
-Profit-maximising output
-MRTS at profit-maximising
output
```

- Here $q_{1}{ }^{*}>0$
but $q_{2}{ }^{*}=0$
- \mathbf{q}^{*} is
technically
efficient
- Slope at $\mathbf{q}^{*} \leq$ price ratio

Maximising profits

- Problem is to choose \mathbf{q} so as to maximise

$$
\sum_{i=1}^{n} p_{i} q_{i} \text { subject to } \Phi(\mathbf{q}) \leq 0
$$

- Lagrangean is

$$
\sum_{i=1}^{n} p_{i} q_{i}-\lambda \Phi(\mathbf{q})
$$

- FOC for an interior maximum is

$$
\diamond p_{i}-\lambda \Phi_{i}(\mathbf{q})=0
$$

Maximised profits

- Introduce the profit function
- the solution function for the profit maximisation problem
$\Pi(\mathbf{p})=\max _{\{\Phi(\mathbf{q}) \leq 0\}} \sum_{i=1}^{n} p_{i} q_{i}=\sum_{i=1}^{n} p_{i} q_{i}{ }^{*}$
- Works like other solution functions:
- non-decreasing
- homogeneous of degree 1
- continuous
- convex
- Take derivative with respect to p_{i} :
- $\Pi_{i}(\mathbf{p})=q_{i}{ }^{*}$
- write $q_{i}{ }^{*}$ as net supply function
- $q_{i}{ }^{*}=q_{i}(\mathbf{p})$

Summary

- Three key concepts
- Net output
- simplifies analysis
- key to modelling multi-output firm
- easy to rewrite production function in terms of net outputs
- Transformation curve
- summarises tradeoffs between outputs
- Profit function
- counterpart of cost function

