The Firm: Optimisation

MICROECONOMICS

Principles and Analysis
Frank Cowell

Overview...

Firm: Optimisation

Approaches to
the firm's
optimisation
problem

```
Stage 1: Cost
Minimisation
```

Stage 2: Profit maximisation

The optimisation problem

- We want to set up and solve a standard optimisation problem.
- Let's make a quick list of its components.
- ... and look ahead to the way we will do it for the firm.

The optimisation problem

- Objectives -Profit maximisation?
- Constraints -Technology; other
- Method
- 2-stage optimisation

Construct the objective function

- Use the information on prices...
w_{i}
p
- ...and on quantities...
z_{i}

q

-price of input i

- price of output
-amount of input i
-amount of output
- ...to build the objective function

The firm's objective function

- Cost of inputs:

$$
m
$$

- Revenue:
$p q$
-Subtract Cost from Revenue to get
- Profits: $\quad p q-\sum_{i=1}^{m} w_{i} z_{i}$

Optimisation: the standard approach

- Choose q and \mathbf{z} to maximise

$$
\Pi:=p q-\sum_{i=1}^{m} w_{i} z_{i}
$$

- ...subject to the production constraint...

$$
q \leq \phi(\mathbf{Z})
$$

- Could also write this as $\mathrm{z} \in \mathrm{Z}(q)$
- ..and some obvious constraints:

$$
q \geq 0 \quad z \geq 0
$$

- You can't have negative output or negative inputs

A standard optimisation method

- If ϕ is differentiable...
- Set up a Lagrangean to take care of the constraints

$$
L(\ldots)
$$

- Write down the First Order Conditions (FOC)
necessity

- Use FOC to characterise solution

$$
\mathbf{z}^{*}=\ldots
$$

Uses of FOC

- First order conditions are crucial
- They are used over and over again in optimisation problems.
- For example:
- Characterising efficiency.
- Analysing "Black box" problems.
- Describing the firm's reactions to its environment.
- More of that in the next presentation
- Right now a word of caution...

A word of warning

- We've just argued that using FOC is useful.
- But sometimes it will yield ambiguous results.
- Sometimes it is undefined.
- Depends on the shape of the production function ϕ.
- You have to check whether it's appropriate to apply the Lagrangean method
- You may need to use other ways of finding an optimum.
- Examples coming up...

A way forward

- We could just go ahead and solve the maximisation problem
- But it makes sense to break it down into two stages
- The analysis is a bit easier
- You see how to apply optimisation techniques
- It gives some important concepts that we can re-use later
- The first stage is "minimise cost for a given output level"
- If you have fixed the output level q...
- ...then profit max is equivalent to cost min.
- The second stage is "find the output level to maximise profits"
- Follows the first stage naturally
- Uses the results from the first stage.
- We deal with stage each in turn

Overview...

Firm: Optimisation

A fundamental multivariable problem with a brilliant solution maximisation

Stage 1 optimisation

- Pick a target output level q
- Take as given the market prices of inputs \mathbf{w}
- Maximise profits...
- ...by minimising costs $\sum_{i=1}^{m} w_{i} z_{i}$

A useful tool

- For a given set of input prices w...
- ...the isocost is the set of points \mathbf{Z} in input space...
- ...that yield a given level of factor cost.
- These form a hyperplane (straight line)...
- ...because of the simple expression for factor-cost structure.

Iso-cost lines

- Draw set of points where cost of input is c, a constant
- Repeat for a higher value of the constant
- Imposes direction on the diagram...

Cost-minimisation

- The firm minimises cost...
- Subject to output constraint
- Defines the stage 1 problem.
- Solution to the problem
minimise
$\sum_{i=1}^{m} w_{i} z_{i}$
subject to $\phi(\mathbf{z}) \geq q$
-But the solution depends on the shape of the inputrequirement set Z.
-What would happen in other cases?

Convex, but not strictly convex Z

- An interval of solutions

Convex Z, touching axis

- Here MRTS $_{21}>w_{1} / w_{2}$ at the solution.
- Input 2 is "too expensive" and so isn't used: $z_{2}{ }^{*}=0$.

Non-convex Z

- There could be multiple solutions.
-But note that there's no solution point between z^{*} and $z^{* *}$.

Non-smooth Z

- z^{*} is unique costminimising point for q.
- True for all positive finite values of w_{1}, w_{2}

Cost-minimisation: strictly convex Z

- Minimise

$$
\sum_{i=1}^{m} w_{i} z_{i}+\lambda \stackrel{\text { multiplier }}{\lambda[q-\phi(z)]}
$$

- Because of strict convexity we have an interior solution.

```
- Use the objective function -...and output constraint -...to build the Lagrangean - Differentiate w.r.t. \(z_{1}, \ldots, z_{m}\) and set equal to 0 .
- ... and w.r.t \(\lambda\)
```

- Denote cost minimising values with a *.
- A set of $m+1$ First-Order Conditions

$$
\left.\left.\begin{array}{l}
\lambda^{*} \phi_{1}\left(\mathbf{z}^{*}\right)=w_{1} \\
\lambda^{*} \phi_{2}\left(\mathbf{z}^{*}\right)=w_{2} \\
\cdots \cdots \\
\lambda^{*} \phi_{m}\left(\mathbf{z}^{*}\right)=w_{m} \\
q=\phi\left(\mathbf{z}_{*}\right)
\end{array}\right\} \begin{array}{l}
\text { output } \\
\text { constraint }
\end{array}\right\}
$$

If isoquants can touch the axes...

- Minimise

$$
\sum_{i=1}^{m} w_{i} z_{i}+\lambda[q-\phi(\mathbf{z})]
$$

- Now there is the possibility of corner solutions.
- A set of $m+1$ First-Order Conditions

$$
\left.\begin{array}{l}
\lambda^{*} \phi_{1}\left(\mathbf{z}^{*}\right) \leq w_{1} \\
\lambda^{*} \phi_{2}\left(\mathbf{z}^{*}\right) \leq w_{2} \\
\cdots \quad \cdots \quad \cdots \\
\lambda^{*} \phi_{m}\left(\mathbf{z}^{*}\right) \leq w_{m} \\
q=\phi\left(\mathbf{z}^{*}\right)
\end{array}\right\} \begin{aligned}
& \begin{array}{l}
\text { Can get " }<" \text { if optimal } \\
\text { value of this input is } 0
\end{array}
\end{aligned}
$$

From the FOC

- If both inputs i and j are used and MRTS is defined then...
$\frac{\phi_{i}\left(\mathbf{Z}^{*}\right)}{\phi_{i}\left(\mathbf{Z}^{*}\right)}=\frac{w_{i}}{w_{j}}$
\cdot MRTS $^{\text {input price ratio }}$
- "implicit" price = market price
- If input i could be zero then...
$\frac{\phi_{i}\left(\mathbf{z}^{*}\right)}{\phi_{j}\left(\mathbf{z}^{*}\right)} \leq \frac{w_{i}}{w_{j}}$
- MRAS ${ }_{j i} \leq$ input price ratio
- "implicit" price \leq market \rrbracket rice

The solution...

- Solving the FOC, you get a cost-minimising value for each input...

$$
\mathbf{z}_{i}^{*}=H^{i}(\mathbf{w}, q)
$$

-...for the Lagrange multiplier

$$
\lambda^{*}=\lambda^{*}(\mathbf{w}, q)
$$

- ...and for the minimised value of cost itself.
- The cost function is defined as

Interpreting the Lagrange multiplier

- The solution function:

$$
\begin{aligned}
C(\mathbf{w}, q)= & \sum_{i} w_{i} z_{i}^{*} \\
& =\sum_{i} w_{i} z_{i}^{*}-\lambda^{*}\left[\phi\left(\mathbf{z}^{*}\right)-q\right]
\end{aligned}
$$

- Differentiate with respect to q :
$C_{q}(\mathbf{w}, q)=\Sigma_{i} w_{i} H_{q}^{i}(\mathbf{w}, q)$

$$
-\lambda^{*}\left[\sum_{i} \phi_{i}\left(\mathbf{Z}^{*}\right) I \quad \begin{array}{l}
\text { Vanishes because of } \\
\text { FOC } \lambda^{*} \phi_{i}\left(\mathbf{x}^{*}\right)=w_{i}
\end{array}\right.
$$

- Rearrange:
$C_{q}(\mathbf{w}, q)=\Sigma_{i}\left[w_{i}-\lambda^{*} \phi_{i}\left(\mathbf{z}^{*}\right)\right] H_{q}^{i}(\mathbf{w}, q)+\lambda^{*} \quad$ Lagrange multiplier in the stage 1 problem is just marginal cost

At the optimum, either the constraint binds or the Lagrange multiplier is zero

Express demands in terms of (w,q)
$C_{q}(\mathbf{w}, q)=\lambda^{*}$
This result - extremely important in economics - is just an applications of a general "envelope" theorem.

The cost function is an amazingly useful concept

- Because it is a solution function...
- ...it automatically has very nice properties.
- These are true for all production functions.
- And they carry over to applications other than the firm.
- We'll investigate these graphically.

Properties of C

- Draw cost as function of w_{1} - Cost is non-decreasing in input prices.
 - Cost is increasing in output.
 - Cost is concave in input price
 - Shephard's Lemma

$$
\begin{aligned}
& C\left(t \mathbf{w}+[1-t] \mathbf{w}^{\prime}, q\right) \geq \\
& t C(\mathbf{w}, q)+[1-t] C\left(\mathbf{w}^{\prime}, q\right)
\end{aligned}
$$

$$
\frac{\partial C(\mathbf{w}, q)}{\partial w_{j}}=z_{j}^{*}
$$

What happens to cost if \mathbf{w} changes to $t \mathbf{w}$

- Find cost-minimising inputs for w, given q
- Find cost-minimising inputs for tw, given q
- So we have:

$$
\begin{aligned}
& C(t \mathrm{w}, q)=\Sigma_{i} t w_{i} z_{i}^{*}=t \\
& \Sigma_{i} w_{i} z_{i}^{*}=t C(\mathbf{w}, q)
\end{aligned}
$$

-The cost function is homogeneous of degree 1 in prices.

Cost Function: 5 things to remember

- Non-decreasing in every input price.
- Increasing in at least one input price.
- Increasing in output.
- Concave in prices.
- Homogeneous of degree 1 in prices.
- Shephard's Lemma.

Example

Production function: $q \leq z_{1}^{0.1} z_{2}{ }^{0.4}$
Equivalent form: $\quad \log q \leq 0.1 \log z_{1}+0.4 \log z_{2}$
Lagrangean: $w_{1} z_{1}+w_{2} z_{2}+\lambda\left[\log q-0.1 \log z_{1}-0.4 \log z_{2}\right]$
FOCs for an interior solution:

$$
\begin{aligned}
& w_{1}-0.1 \lambda / z_{1}=0 \\
& w_{2}-0.4 \lambda / z_{2}=0 \\
& \log q=0.1 \log z_{1}+0.4 \log z_{2}
\end{aligned}
$$

From the FOCs:

$$
\begin{aligned}
& \log q=0.1 \log \left(0.1 \lambda / w_{1}\right)+0.4 \log \left(0.4 \lambda / w_{2}\right) \\
& \lambda=0.1^{-0.2} 0.4^{-0.8} w_{1}^{0.2} w_{2}^{0.8} q^{2}
\end{aligned}
$$

Therefore, from this and the FOCs:

$$
w_{1} z_{1}+w_{2} z_{2}=0.5 \lambda=1.649 w_{1}^{0.2} w_{2}^{0.8} q^{2}
$$

Overview...

Firm: Optimisation
...using the results of stage 1

Minimisation maximisation

Stage 2 optimisation

- Take the cost-minimisation problem as solved.
- Take output price p as given.
- Use minimised costs $C(\mathbf{w}, q)$.
- Set up a 1-variable maximisation problem.
- Choose q to maximise profits.
- First analyse the components of the solution graphically.
- Tie-in with properties of the firm introduced in the previous presentation.
- Then we come back to the formal solution.

Average and marginal cost

Revenue and profits

What happens if price is low...

Profit maximisation

- Objective is to choose q to max:

$$
p q-C(\mathbf{w}, q)
$$

"Revenue minus minimised cost"

- From the First-Order

Conditions if $q^{*}>0$:

$$
p=C_{q}\left(\mathbf{w}, q^{*}\right)
$$

"Price equals marginal cost"

$$
p \geq \frac{C\left(\mathbf{w}, q^{*}\right)}{q^{*}}
$$

"Price covers average cost"

- In general:

$$
\begin{aligned}
& p \leq C_{q}\left(\mathbf{w}, q^{*}\right) \\
& p q^{*} \geq C\left(\mathbf{w}, q^{*}\right)
\end{aligned}
$$

covers both the cases:
$q^{*}>0$ and $q^{*}=0$

Example (continued)

Production function: $q \leq z_{1}^{0.1} z_{2}{ }^{0.4}$
Resulting cost function: $C(\mathbf{w}, q)=1.649 w_{1}{ }^{0.2} w_{2}{ }^{0.8} q^{2}$

Profits:

$$
\begin{aligned}
& p q-C(\mathbf{w}, q)=p q-A q^{2} \\
& \quad \text { where } A:=1.649 w_{1}^{0.2} w_{2}^{0.8}
\end{aligned}
$$

FOC:
$p-2 A q=0$
Result:

$$
\begin{aligned}
q & =p / 2 A . \\
& =0.3031 w_{1}^{-0.2} w_{2}^{-0.8} p
\end{aligned}
$$

Summary

- Key point: Profit maximisation can be viewed in two stages:

Review

- Stage 1: choose inputs to minimise cost
- Stage 2: choose output to maximise profit
- What next? Use these to predict firm's reactions

