The Firm: Basics

MICROECONOMICS
 Principles and Analysis Frank Cowell

Overview...

The Firm: Basics

The environment for the basic model of the firm.

Input requirement sets

Isoquants

Returns to scale

Marginal products

The basics of production...

- We set out some of the elements needed for an analysis of the firm.
- Technical efficiency
- Returns to scale
- Convexity
- Substitutability
- Marginal products
- This is in the context of a single-output firm...
- ...and assuming a competitive environment.
- First we need the building blocks of a model...

Notation

- Quantities
z_{i}
$\mathbf{Z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$
q
-amount of input i
-input vector
-amount of output
- Prices
w_{i} $\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{m}\right)$
p
- price of input i
-Input-price vector
- price of output

Feasible production

- The basic relationshin hetween output and in The production output and in function
$q \leq \phi\left(z_{1}, \overparen{z_{2}}, \ldots, z_{m}\right)$
-single-output, multiple-input production relation
-Note that we use " \leq " and not "=" in the relation. Why?
-Consider the meaning of ϕ
- ϕ gives the maximum amount of output that can be produced from a given list of inputs

Technical efficiency

- Case 1:
$q=\phi(\mathbf{z})$
- Case 2 :
$q<\phi(\mathbf{z})$
-The case where production is technically efficient
-The case where production is
(technically) inefficient

Intuition: if the combination (z, q) is inefficient you can throw away some inputs and still produce the same output

The function ϕ

Overview...

The Firm: Basics

The structure of the production function.

Input requirement sets

Isoquants

Returns to scale

Marginal products

The input requirement set

- Pick a particular output level q
- Find a feasible input vector \mathbf{z}
- Repeat to find all such vectors
- Yields the input-requirement set
$Z(q):=\{\mathbf{z}: \phi(\mathbf{z}) \geq q\}$
- The shape of Z depends on the assumptions made about production...
-We will look at four cases.
- remember, we must have $q \leq \phi(\mathbf{z})$
- The set of input vector that meet the technical feasibility condition for output q...

The input requirement set

- Feasible but inefficient
- Feasible and technically efficient
- Infeasible points.

Case 1: Z smooth, strictly convex

- Pick two boundary points
 - Draw the line between them
 - Intermediate points lie in the interior of \mathbf{Z}.

- Note important role of convexity.
- A combination of two techniques may produce more output.
- What if we changed some of the assumptions?

Case 2: Z Convex (but not strictly)

\author{

- Pick two boundary points
 - Draw the line between them
 - Intermediate points lie in Z (perhaps on the boundary).
}
- A combination of feasible techniques is also feasible

Case 3: Z smooth but not convex


```
- Join two points across the
"dent"
- Take an intermediate point
- Highlight zone where this car occur.
```

- in this region there is an indivisibility

Case 4: Z convex but not smooth

- Slope of the boundary is undefined at this point.

Summary: 4 possibilities for Z

Standard case, but strong assumptions about divisibility and smoothness

Almost conventional: mixtures may be just as good as single techniques

Problems: the "dent" represents an indivisibility

Overview...
 Contours of the production function.

The Firm: Basics

Input requirement sets

Returns to scale

Marginal products

Isoquants

- Pick a particular output level q
- Find the input requirement set $Z(q)$
- The isoquant is the boundary of Z :
$\{\mathbf{z}: \phi(\mathbf{z})=q\}$
- If the function ϕ is differentiable at \mathbf{z} then the marginal rate of technical substitution is the slope at \mathbf{z} :

$$
\frac{\phi_{j}(\mathbf{z})}{\phi_{i}(\mathbf{z})}
$$

- Gives the rate at which you can trade off one output against another along the isoquant - to maintain a constant q.
- Think of the isoquant as an integral part of the set $Z(q) \ldots$
- Where appropriate, use subscript to denote partial derivatives. So

Isoquant, input ratio, MRTS


```
The set Z(q).
- A contour of the function }\phi\mathrm{ .
- An efficient point.
The input ratio
Marginal Rate of Technical
Substitution
Increase the MRTS
```

- The isoquant is the boundary of Z.
- Input ratio describes one particular production technique.
- Higher input ratio associated with higher MRTS..

Input ratio and MRTS

- MRTS_{21} is the implicit "price" of input 1 in terms of input 2.
- The higher is this "price", the smaller is the relative usage of input 1 .
- Responsiveness of input ratio to the MRTS is a key property of ϕ.
- Given by the elasticity of substitution

$$
\partial \log \left(z_{1} / z_{2}\right)
$$

- Can think of it as measuring the isoquant's "curvature" or "bendiness"

A simple derivation of the logarithmic form of elasticity of substitution

See also A.4.6

$$
\begin{aligned}
& \sigma_{21}=\frac{\frac{d\left(z_{1} / z_{2}\right)}{z_{j} / z_{i}}}{\frac{d\left(\phi_{1} / \phi_{2}\right)}{\phi_{1} / \phi_{2}}} \\
& d \ln y=\frac{1}{y} d y \quad d \ln x=\frac{1}{x} d x
\end{aligned}
$$

$$
\varepsilon=\frac{d \ln y}{d \ln x}=\frac{d y}{d x} \frac{x}{y}=\frac{\frac{d y}{y}}{\frac{d x}{x}}
$$

$$
\text { let } y=z_{1} / z_{2}
$$

$$
\text { let } x=\phi_{1} / \phi_{2}
$$

$$
\sigma_{21}=\frac{d \ln \left(z_{1} / z_{2}\right)}{d \ln \left|\left(\phi_{1} / \phi_{2}\right)\right|}
$$

Elasticity: diagrammatic explanation

Elasticity: perfect substitute isoquants

Elasticity of substitution

Homothetic contours

Contours of a homogeneous function

Overview...
 Changing all inputs together.

The Firm: Basics

Input requirement sets

Isoquants

Marginal products

Let's rebuild from the isoquants

- The isoquants form a contour map.
- If we looked at the "parent" diagram, what would we see?
- Consider returns to scale of the production function.
- Examine effect of varying all inputs together:
- Focus on the expansion path.
- q plotted against proportionate increases in \mathbf{z}.
- Take three standard cases:
- Increasing Returns to Scale
- Decreasing Returns to Scale
- Constant Returns to Scale
- Let's do this for 2 inputs, one output. . .

Case 1: IRTS

Case 2: DRTS

- $t>1$ implies
$\phi(t z)<t \phi(z)$
- Double inputs and output increases by less than double

Case 3: CRTS

Relationship to isoquants

Overview...
 Changing one input at time.

The Firm: Basics

Input requirement sets

Isoquants

Returns to scale

Marginal
products

Marginal products

- Pick a technically efficient input vector
- Remember, this means a
z such that $q=\phi(\mathbf{z})$
- Keep all but one input constant
- Measure the marginal change in output w.r.t. this input
- The marginal product

$$
\mathrm{MP}_{i}=\phi_{i}(\mathbf{z})=\frac{\partial \phi(\mathbf{z})}{\partial z_{i}}
$$

CRTS production function again

MP for the CRTS function

The feasible set
 Technically efficient points
 Slope of tangent is the marginal product of input 1 - Increase $z_{1} \ldots$

- A section of the production function
- Input 1 is essential: If $z_{1}=0$ then $q=0$
- $\phi_{1}(\mathrm{z})$ falls with z_{1} (or stays constant) if ϕ is concave

Relationship between q and z_{1}

- We've just taken the conventional case
- But in general this curve depends on the shape of ϕ.

- Some other possibilities for the
 relation between output and one input...

Key concepts

Review

- Technical efficiency

Raveen - Returns to scale
Remen - Convexity
Renew •MRTS

Review

- Marginal product

What next?

- Introduce the market
- Optimisation problem of the firm
- Method of solution
- Solution concepts.

